xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 96edb2e37e7614be21e52504c1246c96b6e5f65d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     if (LangOpts.OpenMPSimd)
211       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212     else
213       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214     break;
215   }
216 }
217 
218 void CodeGenModule::createCUDARuntime() {
219   CUDARuntime.reset(CreateNVCUDARuntime(*this));
220 }
221 
222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223   Replacements[Name] = C;
224 }
225 
226 void CodeGenModule::applyReplacements() {
227   for (auto &I : Replacements) {
228     StringRef MangledName = I.first();
229     llvm::Constant *Replacement = I.second;
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     if (!Entry)
232       continue;
233     auto *OldF = cast<llvm::Function>(Entry);
234     auto *NewF = dyn_cast<llvm::Function>(Replacement);
235     if (!NewF) {
236       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238       } else {
239         auto *CE = cast<llvm::ConstantExpr>(Replacement);
240         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
241                CE->getOpcode() == llvm::Instruction::GetElementPtr);
242         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243       }
244     }
245 
246     // Replace old with new, but keep the old order.
247     OldF->replaceAllUsesWith(Replacement);
248     if (NewF) {
249       NewF->removeFromParent();
250       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251                                                        NewF);
252     }
253     OldF->eraseFromParent();
254   }
255 }
256 
257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258   GlobalValReplacements.push_back(std::make_pair(GV, C));
259 }
260 
261 void CodeGenModule::applyGlobalValReplacements() {
262   for (auto &I : GlobalValReplacements) {
263     llvm::GlobalValue *GV = I.first;
264     llvm::Constant *C = I.second;
265 
266     GV->replaceAllUsesWith(C);
267     GV->eraseFromParent();
268   }
269 }
270 
271 // This is only used in aliases that we created and we know they have a
272 // linear structure.
273 static const llvm::GlobalObject *getAliasedGlobal(
274     const llvm::GlobalIndirectSymbol &GIS) {
275   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276   const llvm::Constant *C = &GIS;
277   for (;;) {
278     C = C->stripPointerCasts();
279     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280       return GO;
281     // stripPointerCasts will not walk over weak aliases.
282     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283     if (!GIS2)
284       return nullptr;
285     if (!Visited.insert(GIS2).second)
286       return nullptr;
287     C = GIS2->getIndirectSymbol();
288   }
289 }
290 
291 void CodeGenModule::checkAliases() {
292   // Check if the constructed aliases are well formed. It is really unfortunate
293   // that we have to do this in CodeGen, but we only construct mangled names
294   // and aliases during codegen.
295   bool Error = false;
296   DiagnosticsEngine &Diags = getDiags();
297   for (const GlobalDecl &GD : Aliases) {
298     const auto *D = cast<ValueDecl>(GD.getDecl());
299     SourceLocation Location;
300     bool IsIFunc = D->hasAttr<IFuncAttr>();
301     if (const Attr *A = D->getDefiningAttr())
302       Location = A->getLocation();
303     else
304       llvm_unreachable("Not an alias or ifunc?");
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
308     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309     if (!GV) {
310       Error = true;
311       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312     } else if (GV->isDeclaration()) {
313       Error = true;
314       Diags.Report(Location, diag::err_alias_to_undefined)
315           << IsIFunc << IsIFunc;
316     } else if (IsIFunc) {
317       // Check resolver function type.
318       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319           GV->getType()->getPointerElementType());
320       assert(FTy);
321       if (!FTy->getReturnType()->isPointerTy())
322         Diags.Report(Location, diag::err_ifunc_resolver_return);
323       if (FTy->getNumParams())
324         Diags.Report(Location, diag::err_ifunc_resolver_params);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419     OpenMPRuntime->clear();
420   }
421   if (PGOReader) {
422     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
423     if (PGOStats.hasDiagnostics())
424       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
425   }
426   EmitCtorList(GlobalCtors, "llvm.global_ctors");
427   EmitCtorList(GlobalDtors, "llvm.global_dtors");
428   EmitGlobalAnnotations();
429   EmitStaticExternCAliases();
430   EmitDeferredUnusedCoverageMappings();
431   if (CoverageMapping)
432     CoverageMapping->emit();
433   if (CodeGenOpts.SanitizeCfiCrossDso) {
434     CodeGenFunction(*this).EmitCfiCheckFail();
435     CodeGenFunction(*this).EmitCfiCheckStub();
436   }
437   emitAtAvailableLinkGuard();
438   emitLLVMUsed();
439   if (SanStats)
440     SanStats->finish();
441 
442   if (CodeGenOpts.Autolink &&
443       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
444     EmitModuleLinkOptions();
445   }
446 
447   // Record mregparm value now so it is visible through rest of codegen.
448   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450                               CodeGenOpts.NumRegisterParameters);
451 
452   if (CodeGenOpts.DwarfVersion) {
453     // We actually want the latest version when there are conflicts.
454     // We can change from Warning to Latest if such mode is supported.
455     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
456                               CodeGenOpts.DwarfVersion);
457   }
458   if (CodeGenOpts.EmitCodeView) {
459     // Indicate that we want CodeView in the metadata.
460     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
461   }
462   if (CodeGenOpts.ControlFlowGuard) {
463     // We want function ID tables for Control Flow Guard.
464     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
465   }
466   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
467     // We don't support LTO with 2 with different StrictVTablePointers
468     // FIXME: we could support it by stripping all the information introduced
469     // by StrictVTablePointers.
470 
471     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
472 
473     llvm::Metadata *Ops[2] = {
474               llvm::MDString::get(VMContext, "StrictVTablePointers"),
475               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
476                   llvm::Type::getInt32Ty(VMContext), 1))};
477 
478     getModule().addModuleFlag(llvm::Module::Require,
479                               "StrictVTablePointersRequirement",
480                               llvm::MDNode::get(VMContext, Ops));
481   }
482   if (DebugInfo)
483     // We support a single version in the linked module. The LLVM
484     // parser will drop debug info with a different version number
485     // (and warn about it, too).
486     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
487                               llvm::DEBUG_METADATA_VERSION);
488 
489   // We need to record the widths of enums and wchar_t, so that we can generate
490   // the correct build attributes in the ARM backend. wchar_size is also used by
491   // TargetLibraryInfo.
492   uint64_t WCharWidth =
493       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
494   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
495 
496   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
497   if (   Arch == llvm::Triple::arm
498       || Arch == llvm::Triple::armeb
499       || Arch == llvm::Triple::thumb
500       || Arch == llvm::Triple::thumbeb) {
501     // The minimum width of an enum in bytes
502     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
503     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
504   }
505 
506   if (CodeGenOpts.SanitizeCfiCrossDso) {
507     // Indicate that we want cross-DSO control flow integrity checks.
508     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
509   }
510 
511   if (CodeGenOpts.CFProtectionReturn &&
512       Target.checkCFProtectionReturnSupported(getDiags())) {
513     // Indicate that we want to instrument return control flow protection.
514     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
515                               1);
516   }
517 
518   if (CodeGenOpts.CFProtectionBranch &&
519       Target.checkCFProtectionBranchSupported(getDiags())) {
520     // Indicate that we want to instrument branch control flow protection.
521     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
522                               1);
523   }
524 
525   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
526     // Indicate whether __nvvm_reflect should be configured to flush denormal
527     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
528     // property.)
529     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
530                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
531   }
532 
533   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
534   if (LangOpts.OpenCL) {
535     EmitOpenCLMetadata();
536     // Emit SPIR version.
537     if (getTriple().getArch() == llvm::Triple::spir ||
538         getTriple().getArch() == llvm::Triple::spir64) {
539       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
540       // opencl.spir.version named metadata.
541       llvm::Metadata *SPIRVerElts[] = {
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, LangOpts.OpenCLVersion / 100)),
544           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
545               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
546       llvm::NamedMDNode *SPIRVerMD =
547           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
548       llvm::LLVMContext &Ctx = TheModule.getContext();
549       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
550     }
551   }
552 
553   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
554     assert(PLevel < 3 && "Invalid PIC Level");
555     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
556     if (Context.getLangOpts().PIE)
557       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
558   }
559 
560   if (CodeGenOpts.NoPLT)
561     getModule().setRtLibUseGOT();
562 
563   SimplifyPersonality();
564 
565   if (getCodeGenOpts().EmitDeclMetadata)
566     EmitDeclMetadata();
567 
568   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
569     EmitCoverageFile();
570 
571   if (DebugInfo)
572     DebugInfo->finalize();
573 
574   if (getCodeGenOpts().EmitVersionIdentMetadata)
575     EmitVersionIdentMetadata();
576 
577   EmitTargetMetadata();
578 }
579 
580 void CodeGenModule::EmitOpenCLMetadata() {
581   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
582   // opencl.ocl.version named metadata node.
583   llvm::Metadata *OCLVerElts[] = {
584       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
585           Int32Ty, LangOpts.OpenCLVersion / 100)),
586       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
587           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
588   llvm::NamedMDNode *OCLVerMD =
589       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
590   llvm::LLVMContext &Ctx = TheModule.getContext();
591   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
592 }
593 
594 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
595   // Make sure that this type is translated.
596   Types.UpdateCompletedType(TD);
597 }
598 
599 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
600   // Make sure that this type is translated.
601   Types.RefreshTypeCacheForClass(RD);
602 }
603 
604 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
605   if (!TBAA)
606     return nullptr;
607   return TBAA->getTypeInfo(QTy);
608 }
609 
610 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
611   if (!TBAA)
612     return TBAAAccessInfo();
613   return TBAA->getAccessInfo(AccessType);
614 }
615 
616 TBAAAccessInfo
617 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
618   if (!TBAA)
619     return TBAAAccessInfo();
620   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
621 }
622 
623 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
624   if (!TBAA)
625     return nullptr;
626   return TBAA->getTBAAStructInfo(QTy);
627 }
628 
629 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
630   if (!TBAA)
631     return nullptr;
632   return TBAA->getBaseTypeInfo(QTy);
633 }
634 
635 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
636   if (!TBAA)
637     return nullptr;
638   return TBAA->getAccessTagInfo(Info);
639 }
640 
641 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
642                                                    TBAAAccessInfo TargetInfo) {
643   if (!TBAA)
644     return TBAAAccessInfo();
645   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
646 }
647 
648 TBAAAccessInfo
649 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
650                                                    TBAAAccessInfo InfoB) {
651   if (!TBAA)
652     return TBAAAccessInfo();
653   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
654 }
655 
656 TBAAAccessInfo
657 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
658                                               TBAAAccessInfo SrcInfo) {
659   if (!TBAA)
660     return TBAAAccessInfo();
661   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
662 }
663 
664 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
665                                                 TBAAAccessInfo TBAAInfo) {
666   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
667     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
668 }
669 
670 void CodeGenModule::DecorateInstructionWithInvariantGroup(
671     llvm::Instruction *I, const CXXRecordDecl *RD) {
672   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
673                  llvm::MDNode::get(getLLVMContext(), {}));
674 }
675 
676 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
677   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
678   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
679 }
680 
681 /// ErrorUnsupported - Print out an error that codegen doesn't support the
682 /// specified stmt yet.
683 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
684   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
685                                                "cannot compile this %0 yet");
686   std::string Msg = Type;
687   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
688     << Msg << S->getSourceRange();
689 }
690 
691 /// ErrorUnsupported - Print out an error that codegen doesn't support the
692 /// specified decl yet.
693 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
694   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
695                                                "cannot compile this %0 yet");
696   std::string Msg = Type;
697   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
698 }
699 
700 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
701   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
702 }
703 
704 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
705                                         const NamedDecl *D) const {
706   if (GV->hasDLLImportStorageClass())
707     return;
708   // Internal definitions always have default visibility.
709   if (GV->hasLocalLinkage()) {
710     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
711     return;
712   }
713   if (!D)
714     return;
715   // Set visibility for definitions.
716   LinkageInfo LV = D->getLinkageAndVisibility();
717   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
718     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
719 }
720 
721 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
722                                  llvm::GlobalValue *GV) {
723   if (GV->hasLocalLinkage())
724     return true;
725 
726   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
727     return true;
728 
729   // DLLImport explicitly marks the GV as external.
730   if (GV->hasDLLImportStorageClass())
731     return false;
732 
733   const llvm::Triple &TT = CGM.getTriple();
734   // Every other GV is local on COFF.
735   // Make an exception for windows OS in the triple: Some firmware builds use
736   // *-win32-macho triples. This (accidentally?) produced windows relocations
737   // without GOT tables in older clang versions; Keep this behaviour.
738   // FIXME: even thread local variables?
739   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
740     return true;
741 
742   // Only handle COFF and ELF for now.
743   if (!TT.isOSBinFormatELF())
744     return false;
745 
746   // If this is not an executable, don't assume anything is local.
747   const auto &CGOpts = CGM.getCodeGenOpts();
748   llvm::Reloc::Model RM = CGOpts.RelocationModel;
749   const auto &LOpts = CGM.getLangOpts();
750   if (RM != llvm::Reloc::Static && !LOpts.PIE)
751     return false;
752 
753   // A definition cannot be preempted from an executable.
754   if (!GV->isDeclarationForLinker())
755     return true;
756 
757   // Most PIC code sequences that assume that a symbol is local cannot produce a
758   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
759   // depended, it seems worth it to handle it here.
760   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
761     return false;
762 
763   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
764   llvm::Triple::ArchType Arch = TT.getArch();
765   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
766       Arch == llvm::Triple::ppc64le)
767     return false;
768 
769   // If we can use copy relocations we can assume it is local.
770   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
771     if (!Var->isThreadLocal() &&
772         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
773       return true;
774 
775   // If we can use a plt entry as the symbol address we can assume it
776   // is local.
777   // FIXME: This should work for PIE, but the gold linker doesn't support it.
778   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
779     return true;
780 
781   // Otherwise don't assue it is local.
782   return false;
783 }
784 
785 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
786   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
787 }
788 
789 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
790                                           GlobalDecl GD) const {
791   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
792   // C++ destructors have a few C++ ABI specific special cases.
793   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
794     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
795     return;
796   }
797   setDLLImportDLLExport(GV, D);
798 }
799 
800 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
801                                           const NamedDecl *D) const {
802   if (D && D->isExternallyVisible()) {
803     if (D->hasAttr<DLLImportAttr>())
804       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
805     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
806       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
807   }
808 }
809 
810 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
811                                     GlobalDecl GD) const {
812   setDLLImportDLLExport(GV, GD);
813   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
814 }
815 
816 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
817                                     const NamedDecl *D) const {
818   setDLLImportDLLExport(GV, D);
819   setGlobalVisibilityAndLocal(GV, D);
820 }
821 
822 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
823                                                 const NamedDecl *D) const {
824   setGlobalVisibility(GV, D);
825   setDSOLocal(GV);
826 }
827 
828 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
829   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
830       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
831       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
832       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
833       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
834 }
835 
836 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
837     CodeGenOptions::TLSModel M) {
838   switch (M) {
839   case CodeGenOptions::GeneralDynamicTLSModel:
840     return llvm::GlobalVariable::GeneralDynamicTLSModel;
841   case CodeGenOptions::LocalDynamicTLSModel:
842     return llvm::GlobalVariable::LocalDynamicTLSModel;
843   case CodeGenOptions::InitialExecTLSModel:
844     return llvm::GlobalVariable::InitialExecTLSModel;
845   case CodeGenOptions::LocalExecTLSModel:
846     return llvm::GlobalVariable::LocalExecTLSModel;
847   }
848   llvm_unreachable("Invalid TLS model!");
849 }
850 
851 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
852   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
853 
854   llvm::GlobalValue::ThreadLocalMode TLM;
855   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
856 
857   // Override the TLS model if it is explicitly specified.
858   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
859     TLM = GetLLVMTLSModel(Attr->getModel());
860   }
861 
862   GV->setThreadLocalMode(TLM);
863 }
864 
865 static void AppendTargetMangling(const CodeGenModule &CGM,
866                                  const TargetAttr *Attr, raw_ostream &Out) {
867   if (Attr->isDefaultVersion())
868     return;
869 
870   Out << '.';
871   const auto &Target = CGM.getTarget();
872   TargetAttr::ParsedTargetAttr Info =
873       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
874                     // Multiversioning doesn't allow "no-${feature}", so we can
875                     // only have "+" prefixes here.
876                     assert(LHS.startswith("+") && RHS.startswith("+") &&
877                            "Features should always have a prefix.");
878                     return Target.multiVersionSortPriority(LHS.substr(1)) >
879                            Target.multiVersionSortPriority(RHS.substr(1));
880                   });
881 
882   bool IsFirst = true;
883 
884   if (!Info.Architecture.empty()) {
885     IsFirst = false;
886     Out << "arch_" << Info.Architecture;
887   }
888 
889   for (StringRef Feat : Info.Features) {
890     if (!IsFirst)
891       Out << '_';
892     IsFirst = false;
893     Out << Feat.substr(1);
894   }
895 }
896 
897 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
898                                       const NamedDecl *ND,
899                                       bool OmitTargetMangling = false) {
900   SmallString<256> Buffer;
901   llvm::raw_svector_ostream Out(Buffer);
902   MangleContext &MC = CGM.getCXXABI().getMangleContext();
903   if (MC.shouldMangleDeclName(ND)) {
904     llvm::raw_svector_ostream Out(Buffer);
905     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
906       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
907     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
908       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
909     else
910       MC.mangleName(ND, Out);
911   } else {
912     IdentifierInfo *II = ND->getIdentifier();
913     assert(II && "Attempt to mangle unnamed decl.");
914     const auto *FD = dyn_cast<FunctionDecl>(ND);
915 
916     if (FD &&
917         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
918       llvm::raw_svector_ostream Out(Buffer);
919       Out << "__regcall3__" << II->getName();
920     } else {
921       Out << II->getName();
922     }
923   }
924 
925   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
926     if (FD->isMultiVersion() && !OmitTargetMangling)
927       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
928   return Out.str();
929 }
930 
931 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
932                                             const FunctionDecl *FD) {
933   if (!FD->isMultiVersion())
934     return;
935 
936   // Get the name of what this would be without the 'target' attribute.  This
937   // allows us to lookup the version that was emitted when this wasn't a
938   // multiversion function.
939   std::string NonTargetName =
940       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
941   GlobalDecl OtherGD;
942   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
943     assert(OtherGD.getCanonicalDecl()
944                .getDecl()
945                ->getAsFunction()
946                ->isMultiVersion() &&
947            "Other GD should now be a multiversioned function");
948     // OtherFD is the version of this function that was mangled BEFORE
949     // becoming a MultiVersion function.  It potentially needs to be updated.
950     const FunctionDecl *OtherFD =
951         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
952     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
953     // This is so that if the initial version was already the 'default'
954     // version, we don't try to update it.
955     if (OtherName != NonTargetName) {
956       // Remove instead of erase, since others may have stored the StringRef
957       // to this.
958       const auto ExistingRecord = Manglings.find(NonTargetName);
959       if (ExistingRecord != std::end(Manglings))
960         Manglings.remove(&(*ExistingRecord));
961       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
962       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
963       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
964         Entry->setName(OtherName);
965     }
966   }
967 }
968 
969 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
970   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
971 
972   // Some ABIs don't have constructor variants.  Make sure that base and
973   // complete constructors get mangled the same.
974   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
975     if (!getTarget().getCXXABI().hasConstructorVariants()) {
976       CXXCtorType OrigCtorType = GD.getCtorType();
977       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
978       if (OrigCtorType == Ctor_Base)
979         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
980     }
981   }
982 
983   auto FoundName = MangledDeclNames.find(CanonicalGD);
984   if (FoundName != MangledDeclNames.end())
985     return FoundName->second;
986 
987 
988   // Keep the first result in the case of a mangling collision.
989   const auto *ND = cast<NamedDecl>(GD.getDecl());
990   auto Result =
991       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
992   return MangledDeclNames[CanonicalGD] = Result.first->first();
993 }
994 
995 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
996                                              const BlockDecl *BD) {
997   MangleContext &MangleCtx = getCXXABI().getMangleContext();
998   const Decl *D = GD.getDecl();
999 
1000   SmallString<256> Buffer;
1001   llvm::raw_svector_ostream Out(Buffer);
1002   if (!D)
1003     MangleCtx.mangleGlobalBlock(BD,
1004       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1005   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1006     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1007   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1008     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1009   else
1010     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1011 
1012   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1013   return Result.first->first();
1014 }
1015 
1016 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1017   return getModule().getNamedValue(Name);
1018 }
1019 
1020 /// AddGlobalCtor - Add a function to the list that will be called before
1021 /// main() runs.
1022 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1023                                   llvm::Constant *AssociatedData) {
1024   // FIXME: Type coercion of void()* types.
1025   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1026 }
1027 
1028 /// AddGlobalDtor - Add a function to the list that will be called
1029 /// when the module is unloaded.
1030 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1031   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1032     DtorsUsingAtExit[Priority].push_back(Dtor);
1033     return;
1034   }
1035 
1036   // FIXME: Type coercion of void()* types.
1037   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1038 }
1039 
1040 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1041   if (Fns.empty()) return;
1042 
1043   // Ctor function type is void()*.
1044   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1045   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1046 
1047   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1048   llvm::StructType *CtorStructTy = llvm::StructType::get(
1049       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1050 
1051   // Construct the constructor and destructor arrays.
1052   ConstantInitBuilder builder(*this);
1053   auto ctors = builder.beginArray(CtorStructTy);
1054   for (const auto &I : Fns) {
1055     auto ctor = ctors.beginStruct(CtorStructTy);
1056     ctor.addInt(Int32Ty, I.Priority);
1057     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1058     if (I.AssociatedData)
1059       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1060     else
1061       ctor.addNullPointer(VoidPtrTy);
1062     ctor.finishAndAddTo(ctors);
1063   }
1064 
1065   auto list =
1066     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1067                                 /*constant*/ false,
1068                                 llvm::GlobalValue::AppendingLinkage);
1069 
1070   // The LTO linker doesn't seem to like it when we set an alignment
1071   // on appending variables.  Take it off as a workaround.
1072   list->setAlignment(0);
1073 
1074   Fns.clear();
1075 }
1076 
1077 llvm::GlobalValue::LinkageTypes
1078 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1079   const auto *D = cast<FunctionDecl>(GD.getDecl());
1080 
1081   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1082 
1083   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1084     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1085 
1086   if (isa<CXXConstructorDecl>(D) &&
1087       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1088       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1089     // Our approach to inheriting constructors is fundamentally different from
1090     // that used by the MS ABI, so keep our inheriting constructor thunks
1091     // internal rather than trying to pick an unambiguous mangling for them.
1092     return llvm::GlobalValue::InternalLinkage;
1093   }
1094 
1095   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1096 }
1097 
1098 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1099   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1100   if (!MDS) return nullptr;
1101 
1102   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1103 }
1104 
1105 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1106                                               const CGFunctionInfo &Info,
1107                                               llvm::Function *F) {
1108   unsigned CallingConv;
1109   llvm::AttributeList PAL;
1110   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1111   F->setAttributes(PAL);
1112   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1113 }
1114 
1115 /// Determines whether the language options require us to model
1116 /// unwind exceptions.  We treat -fexceptions as mandating this
1117 /// except under the fragile ObjC ABI with only ObjC exceptions
1118 /// enabled.  This means, for example, that C with -fexceptions
1119 /// enables this.
1120 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1121   // If exceptions are completely disabled, obviously this is false.
1122   if (!LangOpts.Exceptions) return false;
1123 
1124   // If C++ exceptions are enabled, this is true.
1125   if (LangOpts.CXXExceptions) return true;
1126 
1127   // If ObjC exceptions are enabled, this depends on the ABI.
1128   if (LangOpts.ObjCExceptions) {
1129     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1130   }
1131 
1132   return true;
1133 }
1134 
1135 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1136                                                            llvm::Function *F) {
1137   llvm::AttrBuilder B;
1138 
1139   if (CodeGenOpts.UnwindTables)
1140     B.addAttribute(llvm::Attribute::UWTable);
1141 
1142   if (!hasUnwindExceptions(LangOpts))
1143     B.addAttribute(llvm::Attribute::NoUnwind);
1144 
1145   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1146     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1147       B.addAttribute(llvm::Attribute::StackProtect);
1148     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1149       B.addAttribute(llvm::Attribute::StackProtectStrong);
1150     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1151       B.addAttribute(llvm::Attribute::StackProtectReq);
1152   }
1153 
1154   if (!D) {
1155     // If we don't have a declaration to control inlining, the function isn't
1156     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1157     // disabled, mark the function as noinline.
1158     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1159         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1160       B.addAttribute(llvm::Attribute::NoInline);
1161 
1162     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1163     return;
1164   }
1165 
1166   // Track whether we need to add the optnone LLVM attribute,
1167   // starting with the default for this optimization level.
1168   bool ShouldAddOptNone =
1169       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1170   // We can't add optnone in the following cases, it won't pass the verifier.
1171   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1172   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1173   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1174 
1175   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1176     B.addAttribute(llvm::Attribute::OptimizeNone);
1177 
1178     // OptimizeNone implies noinline; we should not be inlining such functions.
1179     B.addAttribute(llvm::Attribute::NoInline);
1180     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1181            "OptimizeNone and AlwaysInline on same function!");
1182 
1183     // We still need to handle naked functions even though optnone subsumes
1184     // much of their semantics.
1185     if (D->hasAttr<NakedAttr>())
1186       B.addAttribute(llvm::Attribute::Naked);
1187 
1188     // OptimizeNone wins over OptimizeForSize and MinSize.
1189     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1190     F->removeFnAttr(llvm::Attribute::MinSize);
1191   } else if (D->hasAttr<NakedAttr>()) {
1192     // Naked implies noinline: we should not be inlining such functions.
1193     B.addAttribute(llvm::Attribute::Naked);
1194     B.addAttribute(llvm::Attribute::NoInline);
1195   } else if (D->hasAttr<NoDuplicateAttr>()) {
1196     B.addAttribute(llvm::Attribute::NoDuplicate);
1197   } else if (D->hasAttr<NoInlineAttr>()) {
1198     B.addAttribute(llvm::Attribute::NoInline);
1199   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1200              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1201     // (noinline wins over always_inline, and we can't specify both in IR)
1202     B.addAttribute(llvm::Attribute::AlwaysInline);
1203   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1204     // If we're not inlining, then force everything that isn't always_inline to
1205     // carry an explicit noinline attribute.
1206     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1207       B.addAttribute(llvm::Attribute::NoInline);
1208   } else {
1209     // Otherwise, propagate the inline hint attribute and potentially use its
1210     // absence to mark things as noinline.
1211     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1212       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1213             return Redecl->isInlineSpecified();
1214           })) {
1215         B.addAttribute(llvm::Attribute::InlineHint);
1216       } else if (CodeGenOpts.getInlining() ==
1217                      CodeGenOptions::OnlyHintInlining &&
1218                  !FD->isInlined() &&
1219                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1220         B.addAttribute(llvm::Attribute::NoInline);
1221       }
1222     }
1223   }
1224 
1225   // Add other optimization related attributes if we are optimizing this
1226   // function.
1227   if (!D->hasAttr<OptimizeNoneAttr>()) {
1228     if (D->hasAttr<ColdAttr>()) {
1229       if (!ShouldAddOptNone)
1230         B.addAttribute(llvm::Attribute::OptimizeForSize);
1231       B.addAttribute(llvm::Attribute::Cold);
1232     }
1233 
1234     if (D->hasAttr<MinSizeAttr>())
1235       B.addAttribute(llvm::Attribute::MinSize);
1236   }
1237 
1238   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1239 
1240   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1241   if (alignment)
1242     F->setAlignment(alignment);
1243 
1244   if (!D->hasAttr<AlignedAttr>())
1245     if (LangOpts.FunctionAlignment)
1246       F->setAlignment(1 << LangOpts.FunctionAlignment);
1247 
1248   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1249   // reserve a bit for differentiating between virtual and non-virtual member
1250   // functions. If the current target's C++ ABI requires this and this is a
1251   // member function, set its alignment accordingly.
1252   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1253     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1254       F->setAlignment(2);
1255   }
1256 
1257   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1258   if (CodeGenOpts.SanitizeCfiCrossDso)
1259     if (auto *FD = dyn_cast<FunctionDecl>(D))
1260       CreateFunctionTypeMetadata(FD, F);
1261 }
1262 
1263 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1264   const Decl *D = GD.getDecl();
1265   if (dyn_cast_or_null<NamedDecl>(D))
1266     setGVProperties(GV, GD);
1267   else
1268     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1269 
1270   if (D && D->hasAttr<UsedAttr>())
1271     addUsedGlobal(GV);
1272 }
1273 
1274 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1275                                                 llvm::AttrBuilder &Attrs) {
1276   // Add target-cpu and target-features attributes to functions. If
1277   // we have a decl for the function and it has a target attribute then
1278   // parse that and add it to the feature set.
1279   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1280   std::vector<std::string> Features;
1281   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1282   FD = FD ? FD->getMostRecentDecl() : FD;
1283   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1284   bool AddedAttr = false;
1285   if (TD) {
1286     llvm::StringMap<bool> FeatureMap;
1287     getFunctionFeatureMap(FeatureMap, FD);
1288 
1289     // Produce the canonical string for this set of features.
1290     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1291       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1292 
1293     // Now add the target-cpu and target-features to the function.
1294     // While we populated the feature map above, we still need to
1295     // get and parse the target attribute so we can get the cpu for
1296     // the function.
1297     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1298     if (ParsedAttr.Architecture != "" &&
1299         getTarget().isValidCPUName(ParsedAttr.Architecture))
1300       TargetCPU = ParsedAttr.Architecture;
1301   } else {
1302     // Otherwise just add the existing target cpu and target features to the
1303     // function.
1304     Features = getTarget().getTargetOpts().Features;
1305   }
1306 
1307   if (TargetCPU != "") {
1308     Attrs.addAttribute("target-cpu", TargetCPU);
1309     AddedAttr = true;
1310   }
1311   if (!Features.empty()) {
1312     llvm::sort(Features.begin(), Features.end());
1313     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1314     AddedAttr = true;
1315   }
1316 
1317   return AddedAttr;
1318 }
1319 
1320 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1321                                           llvm::GlobalObject *GO) {
1322   const Decl *D = GD.getDecl();
1323   SetCommonAttributes(GD, GO);
1324 
1325   if (D) {
1326     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1327       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1328         GV->addAttribute("bss-section", SA->getName());
1329       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1330         GV->addAttribute("data-section", SA->getName());
1331       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1332         GV->addAttribute("rodata-section", SA->getName());
1333     }
1334 
1335     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1336       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1337         if (!D->getAttr<SectionAttr>())
1338           F->addFnAttr("implicit-section-name", SA->getName());
1339 
1340       llvm::AttrBuilder Attrs;
1341       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1342         // We know that GetCPUAndFeaturesAttributes will always have the
1343         // newest set, since it has the newest possible FunctionDecl, so the
1344         // new ones should replace the old.
1345         F->removeFnAttr("target-cpu");
1346         F->removeFnAttr("target-features");
1347         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1348       }
1349     }
1350 
1351     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1352       GO->setSection(SA->getName());
1353   }
1354 
1355   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1356 }
1357 
1358 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1359                                                   llvm::Function *F,
1360                                                   const CGFunctionInfo &FI) {
1361   const Decl *D = GD.getDecl();
1362   SetLLVMFunctionAttributes(D, FI, F);
1363   SetLLVMFunctionAttributesForDefinition(D, F);
1364 
1365   F->setLinkage(llvm::Function::InternalLinkage);
1366 
1367   setNonAliasAttributes(GD, F);
1368 }
1369 
1370 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1371   // Set linkage and visibility in case we never see a definition.
1372   LinkageInfo LV = ND->getLinkageAndVisibility();
1373   // Don't set internal linkage on declarations.
1374   // "extern_weak" is overloaded in LLVM; we probably should have
1375   // separate linkage types for this.
1376   if (isExternallyVisible(LV.getLinkage()) &&
1377       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1378     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1379 }
1380 
1381 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1382                                                llvm::Function *F) {
1383   // Only if we are checking indirect calls.
1384   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1385     return;
1386 
1387   // Non-static class methods are handled via vtable pointer checks elsewhere.
1388   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1389     return;
1390 
1391   // Additionally, if building with cross-DSO support...
1392   if (CodeGenOpts.SanitizeCfiCrossDso) {
1393     // Skip available_externally functions. They won't be codegen'ed in the
1394     // current module anyway.
1395     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1396       return;
1397   }
1398 
1399   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1400   F->addTypeMetadata(0, MD);
1401   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1402 
1403   // Emit a hash-based bit set entry for cross-DSO calls.
1404   if (CodeGenOpts.SanitizeCfiCrossDso)
1405     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1406       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1407 }
1408 
1409 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1410                                           bool IsIncompleteFunction,
1411                                           bool IsThunk) {
1412 
1413   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1414     // If this is an intrinsic function, set the function's attributes
1415     // to the intrinsic's attributes.
1416     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1417     return;
1418   }
1419 
1420   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1421 
1422   if (!IsIncompleteFunction) {
1423     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1424     // Setup target-specific attributes.
1425     if (F->isDeclaration())
1426       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1427   }
1428 
1429   // Add the Returned attribute for "this", except for iOS 5 and earlier
1430   // where substantial code, including the libstdc++ dylib, was compiled with
1431   // GCC and does not actually return "this".
1432   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1433       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1434     assert(!F->arg_empty() &&
1435            F->arg_begin()->getType()
1436              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1437            "unexpected this return");
1438     F->addAttribute(1, llvm::Attribute::Returned);
1439   }
1440 
1441   // Only a few attributes are set on declarations; these may later be
1442   // overridden by a definition.
1443 
1444   setLinkageForGV(F, FD);
1445   setGVProperties(F, FD);
1446 
1447   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1448     F->addFnAttr("implicit-section-name");
1449   }
1450 
1451   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1452     F->setSection(SA->getName());
1453 
1454   if (FD->isReplaceableGlobalAllocationFunction()) {
1455     // A replaceable global allocation function does not act like a builtin by
1456     // default, only if it is invoked by a new-expression or delete-expression.
1457     F->addAttribute(llvm::AttributeList::FunctionIndex,
1458                     llvm::Attribute::NoBuiltin);
1459 
1460     // A sane operator new returns a non-aliasing pointer.
1461     // FIXME: Also add NonNull attribute to the return value
1462     // for the non-nothrow forms?
1463     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1464     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1465         (Kind == OO_New || Kind == OO_Array_New))
1466       F->addAttribute(llvm::AttributeList::ReturnIndex,
1467                       llvm::Attribute::NoAlias);
1468   }
1469 
1470   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1471     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1472   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1473     if (MD->isVirtual())
1474       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1475 
1476   // Don't emit entries for function declarations in the cross-DSO mode. This
1477   // is handled with better precision by the receiving DSO.
1478   if (!CodeGenOpts.SanitizeCfiCrossDso)
1479     CreateFunctionTypeMetadata(FD, F);
1480 
1481   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1482     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1483 }
1484 
1485 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1486   assert(!GV->isDeclaration() &&
1487          "Only globals with definition can force usage.");
1488   LLVMUsed.emplace_back(GV);
1489 }
1490 
1491 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1492   assert(!GV->isDeclaration() &&
1493          "Only globals with definition can force usage.");
1494   LLVMCompilerUsed.emplace_back(GV);
1495 }
1496 
1497 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1498                      std::vector<llvm::WeakTrackingVH> &List) {
1499   // Don't create llvm.used if there is no need.
1500   if (List.empty())
1501     return;
1502 
1503   // Convert List to what ConstantArray needs.
1504   SmallVector<llvm::Constant*, 8> UsedArray;
1505   UsedArray.resize(List.size());
1506   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1507     UsedArray[i] =
1508         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1509             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1510   }
1511 
1512   if (UsedArray.empty())
1513     return;
1514   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1515 
1516   auto *GV = new llvm::GlobalVariable(
1517       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1518       llvm::ConstantArray::get(ATy, UsedArray), Name);
1519 
1520   GV->setSection("llvm.metadata");
1521 }
1522 
1523 void CodeGenModule::emitLLVMUsed() {
1524   emitUsed(*this, "llvm.used", LLVMUsed);
1525   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1526 }
1527 
1528 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1529   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1530   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1531 }
1532 
1533 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1534   llvm::SmallString<32> Opt;
1535   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1536   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1537   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1538 }
1539 
1540 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1541   auto &C = getLLVMContext();
1542   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1543       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1544 }
1545 
1546 void CodeGenModule::AddDependentLib(StringRef Lib) {
1547   llvm::SmallString<24> Opt;
1548   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1549   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1550   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1551 }
1552 
1553 /// Add link options implied by the given module, including modules
1554 /// it depends on, using a postorder walk.
1555 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1556                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1557                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1558   // Import this module's parent.
1559   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1560     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1561   }
1562 
1563   // Import this module's dependencies.
1564   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1565     if (Visited.insert(Mod->Imports[I - 1]).second)
1566       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1567   }
1568 
1569   // Add linker options to link against the libraries/frameworks
1570   // described by this module.
1571   llvm::LLVMContext &Context = CGM.getLLVMContext();
1572 
1573   // For modules that use export_as for linking, use that module
1574   // name instead.
1575   if (Mod->UseExportAsModuleLinkName)
1576     return;
1577 
1578   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1579     // Link against a framework.  Frameworks are currently Darwin only, so we
1580     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1581     if (Mod->LinkLibraries[I-1].IsFramework) {
1582       llvm::Metadata *Args[2] = {
1583           llvm::MDString::get(Context, "-framework"),
1584           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1585 
1586       Metadata.push_back(llvm::MDNode::get(Context, Args));
1587       continue;
1588     }
1589 
1590     // Link against a library.
1591     llvm::SmallString<24> Opt;
1592     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1593       Mod->LinkLibraries[I-1].Library, Opt);
1594     auto *OptString = llvm::MDString::get(Context, Opt);
1595     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1596   }
1597 }
1598 
1599 void CodeGenModule::EmitModuleLinkOptions() {
1600   // Collect the set of all of the modules we want to visit to emit link
1601   // options, which is essentially the imported modules and all of their
1602   // non-explicit child modules.
1603   llvm::SetVector<clang::Module *> LinkModules;
1604   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1605   SmallVector<clang::Module *, 16> Stack;
1606 
1607   // Seed the stack with imported modules.
1608   for (Module *M : ImportedModules) {
1609     // Do not add any link flags when an implementation TU of a module imports
1610     // a header of that same module.
1611     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1612         !getLangOpts().isCompilingModule())
1613       continue;
1614     if (Visited.insert(M).second)
1615       Stack.push_back(M);
1616   }
1617 
1618   // Find all of the modules to import, making a little effort to prune
1619   // non-leaf modules.
1620   while (!Stack.empty()) {
1621     clang::Module *Mod = Stack.pop_back_val();
1622 
1623     bool AnyChildren = false;
1624 
1625     // Visit the submodules of this module.
1626     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1627                                         SubEnd = Mod->submodule_end();
1628          Sub != SubEnd; ++Sub) {
1629       // Skip explicit children; they need to be explicitly imported to be
1630       // linked against.
1631       if ((*Sub)->IsExplicit)
1632         continue;
1633 
1634       if (Visited.insert(*Sub).second) {
1635         Stack.push_back(*Sub);
1636         AnyChildren = true;
1637       }
1638     }
1639 
1640     // We didn't find any children, so add this module to the list of
1641     // modules to link against.
1642     if (!AnyChildren) {
1643       LinkModules.insert(Mod);
1644     }
1645   }
1646 
1647   // Add link options for all of the imported modules in reverse topological
1648   // order.  We don't do anything to try to order import link flags with respect
1649   // to linker options inserted by things like #pragma comment().
1650   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1651   Visited.clear();
1652   for (Module *M : LinkModules)
1653     if (Visited.insert(M).second)
1654       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1655   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1656   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1657 
1658   // Add the linker options metadata flag.
1659   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1660   for (auto *MD : LinkerOptionsMetadata)
1661     NMD->addOperand(MD);
1662 }
1663 
1664 void CodeGenModule::EmitDeferred() {
1665   // Emit code for any potentially referenced deferred decls.  Since a
1666   // previously unused static decl may become used during the generation of code
1667   // for a static function, iterate until no changes are made.
1668 
1669   if (!DeferredVTables.empty()) {
1670     EmitDeferredVTables();
1671 
1672     // Emitting a vtable doesn't directly cause more vtables to
1673     // become deferred, although it can cause functions to be
1674     // emitted that then need those vtables.
1675     assert(DeferredVTables.empty());
1676   }
1677 
1678   // Stop if we're out of both deferred vtables and deferred declarations.
1679   if (DeferredDeclsToEmit.empty())
1680     return;
1681 
1682   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1683   // work, it will not interfere with this.
1684   std::vector<GlobalDecl> CurDeclsToEmit;
1685   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1686 
1687   for (GlobalDecl &D : CurDeclsToEmit) {
1688     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1689     // to get GlobalValue with exactly the type we need, not something that
1690     // might had been created for another decl with the same mangled name but
1691     // different type.
1692     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1693         GetAddrOfGlobal(D, ForDefinition));
1694 
1695     // In case of different address spaces, we may still get a cast, even with
1696     // IsForDefinition equal to true. Query mangled names table to get
1697     // GlobalValue.
1698     if (!GV)
1699       GV = GetGlobalValue(getMangledName(D));
1700 
1701     // Make sure GetGlobalValue returned non-null.
1702     assert(GV);
1703 
1704     // Check to see if we've already emitted this.  This is necessary
1705     // for a couple of reasons: first, decls can end up in the
1706     // deferred-decls queue multiple times, and second, decls can end
1707     // up with definitions in unusual ways (e.g. by an extern inline
1708     // function acquiring a strong function redefinition).  Just
1709     // ignore these cases.
1710     if (!GV->isDeclaration())
1711       continue;
1712 
1713     // Otherwise, emit the definition and move on to the next one.
1714     EmitGlobalDefinition(D, GV);
1715 
1716     // If we found out that we need to emit more decls, do that recursively.
1717     // This has the advantage that the decls are emitted in a DFS and related
1718     // ones are close together, which is convenient for testing.
1719     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1720       EmitDeferred();
1721       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1722     }
1723   }
1724 }
1725 
1726 void CodeGenModule::EmitVTablesOpportunistically() {
1727   // Try to emit external vtables as available_externally if they have emitted
1728   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1729   // is not allowed to create new references to things that need to be emitted
1730   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1731 
1732   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1733          && "Only emit opportunistic vtables with optimizations");
1734 
1735   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1736     assert(getVTables().isVTableExternal(RD) &&
1737            "This queue should only contain external vtables");
1738     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1739       VTables.GenerateClassData(RD);
1740   }
1741   OpportunisticVTables.clear();
1742 }
1743 
1744 void CodeGenModule::EmitGlobalAnnotations() {
1745   if (Annotations.empty())
1746     return;
1747 
1748   // Create a new global variable for the ConstantStruct in the Module.
1749   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1750     Annotations[0]->getType(), Annotations.size()), Annotations);
1751   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1752                                       llvm::GlobalValue::AppendingLinkage,
1753                                       Array, "llvm.global.annotations");
1754   gv->setSection(AnnotationSection);
1755 }
1756 
1757 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1758   llvm::Constant *&AStr = AnnotationStrings[Str];
1759   if (AStr)
1760     return AStr;
1761 
1762   // Not found yet, create a new global.
1763   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1764   auto *gv =
1765       new llvm::GlobalVariable(getModule(), s->getType(), true,
1766                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1767   gv->setSection(AnnotationSection);
1768   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1769   AStr = gv;
1770   return gv;
1771 }
1772 
1773 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1774   SourceManager &SM = getContext().getSourceManager();
1775   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1776   if (PLoc.isValid())
1777     return EmitAnnotationString(PLoc.getFilename());
1778   return EmitAnnotationString(SM.getBufferName(Loc));
1779 }
1780 
1781 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1782   SourceManager &SM = getContext().getSourceManager();
1783   PresumedLoc PLoc = SM.getPresumedLoc(L);
1784   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1785     SM.getExpansionLineNumber(L);
1786   return llvm::ConstantInt::get(Int32Ty, LineNo);
1787 }
1788 
1789 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1790                                                 const AnnotateAttr *AA,
1791                                                 SourceLocation L) {
1792   // Get the globals for file name, annotation, and the line number.
1793   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1794                  *UnitGV = EmitAnnotationUnit(L),
1795                  *LineNoCst = EmitAnnotationLineNo(L);
1796 
1797   // Create the ConstantStruct for the global annotation.
1798   llvm::Constant *Fields[4] = {
1799     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1800     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1801     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1802     LineNoCst
1803   };
1804   return llvm::ConstantStruct::getAnon(Fields);
1805 }
1806 
1807 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1808                                          llvm::GlobalValue *GV) {
1809   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1810   // Get the struct elements for these annotations.
1811   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1812     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1813 }
1814 
1815 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1816                                            llvm::Function *Fn,
1817                                            SourceLocation Loc) const {
1818   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1819   // Blacklist by function name.
1820   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1821     return true;
1822   // Blacklist by location.
1823   if (Loc.isValid())
1824     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1825   // If location is unknown, this may be a compiler-generated function. Assume
1826   // it's located in the main file.
1827   auto &SM = Context.getSourceManager();
1828   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1829     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1830   }
1831   return false;
1832 }
1833 
1834 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1835                                            SourceLocation Loc, QualType Ty,
1836                                            StringRef Category) const {
1837   // For now globals can be blacklisted only in ASan and KASan.
1838   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1839       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1840        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1841   if (!EnabledAsanMask)
1842     return false;
1843   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1844   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1845     return true;
1846   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1847     return true;
1848   // Check global type.
1849   if (!Ty.isNull()) {
1850     // Drill down the array types: if global variable of a fixed type is
1851     // blacklisted, we also don't instrument arrays of them.
1852     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1853       Ty = AT->getElementType();
1854     Ty = Ty.getCanonicalType().getUnqualifiedType();
1855     // We allow to blacklist only record types (classes, structs etc.)
1856     if (Ty->isRecordType()) {
1857       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1858       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1859         return true;
1860     }
1861   }
1862   return false;
1863 }
1864 
1865 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1866                                    StringRef Category) const {
1867   if (!LangOpts.XRayInstrument)
1868     return false;
1869 
1870   const auto &XRayFilter = getContext().getXRayFilter();
1871   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1872   auto Attr = ImbueAttr::NONE;
1873   if (Loc.isValid())
1874     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1875   if (Attr == ImbueAttr::NONE)
1876     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1877   switch (Attr) {
1878   case ImbueAttr::NONE:
1879     return false;
1880   case ImbueAttr::ALWAYS:
1881     Fn->addFnAttr("function-instrument", "xray-always");
1882     break;
1883   case ImbueAttr::ALWAYS_ARG1:
1884     Fn->addFnAttr("function-instrument", "xray-always");
1885     Fn->addFnAttr("xray-log-args", "1");
1886     break;
1887   case ImbueAttr::NEVER:
1888     Fn->addFnAttr("function-instrument", "xray-never");
1889     break;
1890   }
1891   return true;
1892 }
1893 
1894 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1895   // Never defer when EmitAllDecls is specified.
1896   if (LangOpts.EmitAllDecls)
1897     return true;
1898 
1899   return getContext().DeclMustBeEmitted(Global);
1900 }
1901 
1902 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1903   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1904     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1905       // Implicit template instantiations may change linkage if they are later
1906       // explicitly instantiated, so they should not be emitted eagerly.
1907       return false;
1908   if (const auto *VD = dyn_cast<VarDecl>(Global))
1909     if (Context.getInlineVariableDefinitionKind(VD) ==
1910         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1911       // A definition of an inline constexpr static data member may change
1912       // linkage later if it's redeclared outside the class.
1913       return false;
1914   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1915   // codegen for global variables, because they may be marked as threadprivate.
1916   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1917       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
1918       !isTypeConstant(Global->getType(), false))
1919     return false;
1920 
1921   return true;
1922 }
1923 
1924 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1925     const CXXUuidofExpr* E) {
1926   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1927   // well-formed.
1928   StringRef Uuid = E->getUuidStr();
1929   std::string Name = "_GUID_" + Uuid.lower();
1930   std::replace(Name.begin(), Name.end(), '-', '_');
1931 
1932   // The UUID descriptor should be pointer aligned.
1933   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1934 
1935   // Look for an existing global.
1936   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1937     return ConstantAddress(GV, Alignment);
1938 
1939   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1940   assert(Init && "failed to initialize as constant");
1941 
1942   auto *GV = new llvm::GlobalVariable(
1943       getModule(), Init->getType(),
1944       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1945   if (supportsCOMDAT())
1946     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1947   setDSOLocal(GV);
1948   return ConstantAddress(GV, Alignment);
1949 }
1950 
1951 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1952   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1953   assert(AA && "No alias?");
1954 
1955   CharUnits Alignment = getContext().getDeclAlign(VD);
1956   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1957 
1958   // See if there is already something with the target's name in the module.
1959   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1960   if (Entry) {
1961     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1962     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1963     return ConstantAddress(Ptr, Alignment);
1964   }
1965 
1966   llvm::Constant *Aliasee;
1967   if (isa<llvm::FunctionType>(DeclTy))
1968     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1969                                       GlobalDecl(cast<FunctionDecl>(VD)),
1970                                       /*ForVTable=*/false);
1971   else
1972     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1973                                     llvm::PointerType::getUnqual(DeclTy),
1974                                     nullptr);
1975 
1976   auto *F = cast<llvm::GlobalValue>(Aliasee);
1977   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1978   WeakRefReferences.insert(F);
1979 
1980   return ConstantAddress(Aliasee, Alignment);
1981 }
1982 
1983 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1984   const auto *Global = cast<ValueDecl>(GD.getDecl());
1985 
1986   // Weak references don't produce any output by themselves.
1987   if (Global->hasAttr<WeakRefAttr>())
1988     return;
1989 
1990   // If this is an alias definition (which otherwise looks like a declaration)
1991   // emit it now.
1992   if (Global->hasAttr<AliasAttr>())
1993     return EmitAliasDefinition(GD);
1994 
1995   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1996   if (Global->hasAttr<IFuncAttr>())
1997     return emitIFuncDefinition(GD);
1998 
1999   // If this is CUDA, be selective about which declarations we emit.
2000   if (LangOpts.CUDA) {
2001     if (LangOpts.CUDAIsDevice) {
2002       if (!Global->hasAttr<CUDADeviceAttr>() &&
2003           !Global->hasAttr<CUDAGlobalAttr>() &&
2004           !Global->hasAttr<CUDAConstantAttr>() &&
2005           !Global->hasAttr<CUDASharedAttr>())
2006         return;
2007     } else {
2008       // We need to emit host-side 'shadows' for all global
2009       // device-side variables because the CUDA runtime needs their
2010       // size and host-side address in order to provide access to
2011       // their device-side incarnations.
2012 
2013       // So device-only functions are the only things we skip.
2014       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2015           Global->hasAttr<CUDADeviceAttr>())
2016         return;
2017 
2018       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2019              "Expected Variable or Function");
2020     }
2021   }
2022 
2023   if (LangOpts.OpenMP) {
2024     // If this is OpenMP device, check if it is legal to emit this global
2025     // normally.
2026     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2027       return;
2028     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2029       if (MustBeEmitted(Global))
2030         EmitOMPDeclareReduction(DRD);
2031       return;
2032     }
2033   }
2034 
2035   // Ignore declarations, they will be emitted on their first use.
2036   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2037     // Forward declarations are emitted lazily on first use.
2038     if (!FD->doesThisDeclarationHaveABody()) {
2039       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2040         return;
2041 
2042       StringRef MangledName = getMangledName(GD);
2043 
2044       // Compute the function info and LLVM type.
2045       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2046       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2047 
2048       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2049                               /*DontDefer=*/false);
2050       return;
2051     }
2052   } else {
2053     const auto *VD = cast<VarDecl>(Global);
2054     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2055     // We need to emit device-side global CUDA variables even if a
2056     // variable does not have a definition -- we still need to define
2057     // host-side shadow for it.
2058     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2059                            !VD->hasDefinition() &&
2060                            (VD->hasAttr<CUDAConstantAttr>() ||
2061                             VD->hasAttr<CUDADeviceAttr>());
2062     if (!MustEmitForCuda &&
2063         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2064         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2065       // If this declaration may have caused an inline variable definition to
2066       // change linkage, make sure that it's emitted.
2067       if (Context.getInlineVariableDefinitionKind(VD) ==
2068           ASTContext::InlineVariableDefinitionKind::Strong)
2069         GetAddrOfGlobalVar(VD);
2070       return;
2071     }
2072   }
2073 
2074   // Defer code generation to first use when possible, e.g. if this is an inline
2075   // function. If the global must always be emitted, do it eagerly if possible
2076   // to benefit from cache locality.
2077   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2078     // Emit the definition if it can't be deferred.
2079     EmitGlobalDefinition(GD);
2080     return;
2081   }
2082 
2083   // If we're deferring emission of a C++ variable with an
2084   // initializer, remember the order in which it appeared in the file.
2085   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2086       cast<VarDecl>(Global)->hasInit()) {
2087     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2088     CXXGlobalInits.push_back(nullptr);
2089   }
2090 
2091   StringRef MangledName = getMangledName(GD);
2092   if (GetGlobalValue(MangledName) != nullptr) {
2093     // The value has already been used and should therefore be emitted.
2094     addDeferredDeclToEmit(GD);
2095   } else if (MustBeEmitted(Global)) {
2096     // The value must be emitted, but cannot be emitted eagerly.
2097     assert(!MayBeEmittedEagerly(Global));
2098     addDeferredDeclToEmit(GD);
2099   } else {
2100     // Otherwise, remember that we saw a deferred decl with this name.  The
2101     // first use of the mangled name will cause it to move into
2102     // DeferredDeclsToEmit.
2103     DeferredDecls[MangledName] = GD;
2104   }
2105 }
2106 
2107 // Check if T is a class type with a destructor that's not dllimport.
2108 static bool HasNonDllImportDtor(QualType T) {
2109   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2110     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2111       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2112         return true;
2113 
2114   return false;
2115 }
2116 
2117 namespace {
2118   struct FunctionIsDirectlyRecursive :
2119     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2120     const StringRef Name;
2121     const Builtin::Context &BI;
2122     bool Result;
2123     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2124       Name(N), BI(C), Result(false) {
2125     }
2126     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2127 
2128     bool TraverseCallExpr(CallExpr *E) {
2129       const FunctionDecl *FD = E->getDirectCallee();
2130       if (!FD)
2131         return true;
2132       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2133       if (Attr && Name == Attr->getLabel()) {
2134         Result = true;
2135         return false;
2136       }
2137       unsigned BuiltinID = FD->getBuiltinID();
2138       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2139         return true;
2140       StringRef BuiltinName = BI.getName(BuiltinID);
2141       if (BuiltinName.startswith("__builtin_") &&
2142           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2143         Result = true;
2144         return false;
2145       }
2146       return true;
2147     }
2148   };
2149 
2150   // Make sure we're not referencing non-imported vars or functions.
2151   struct DLLImportFunctionVisitor
2152       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2153     bool SafeToInline = true;
2154 
2155     bool shouldVisitImplicitCode() const { return true; }
2156 
2157     bool VisitVarDecl(VarDecl *VD) {
2158       if (VD->getTLSKind()) {
2159         // A thread-local variable cannot be imported.
2160         SafeToInline = false;
2161         return SafeToInline;
2162       }
2163 
2164       // A variable definition might imply a destructor call.
2165       if (VD->isThisDeclarationADefinition())
2166         SafeToInline = !HasNonDllImportDtor(VD->getType());
2167 
2168       return SafeToInline;
2169     }
2170 
2171     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2172       if (const auto *D = E->getTemporary()->getDestructor())
2173         SafeToInline = D->hasAttr<DLLImportAttr>();
2174       return SafeToInline;
2175     }
2176 
2177     bool VisitDeclRefExpr(DeclRefExpr *E) {
2178       ValueDecl *VD = E->getDecl();
2179       if (isa<FunctionDecl>(VD))
2180         SafeToInline = VD->hasAttr<DLLImportAttr>();
2181       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2182         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2183       return SafeToInline;
2184     }
2185 
2186     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2187       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2188       return SafeToInline;
2189     }
2190 
2191     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2192       CXXMethodDecl *M = E->getMethodDecl();
2193       if (!M) {
2194         // Call through a pointer to member function. This is safe to inline.
2195         SafeToInline = true;
2196       } else {
2197         SafeToInline = M->hasAttr<DLLImportAttr>();
2198       }
2199       return SafeToInline;
2200     }
2201 
2202     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2203       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2204       return SafeToInline;
2205     }
2206 
2207     bool VisitCXXNewExpr(CXXNewExpr *E) {
2208       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2209       return SafeToInline;
2210     }
2211   };
2212 }
2213 
2214 // isTriviallyRecursive - Check if this function calls another
2215 // decl that, because of the asm attribute or the other decl being a builtin,
2216 // ends up pointing to itself.
2217 bool
2218 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2219   StringRef Name;
2220   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2221     // asm labels are a special kind of mangling we have to support.
2222     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2223     if (!Attr)
2224       return false;
2225     Name = Attr->getLabel();
2226   } else {
2227     Name = FD->getName();
2228   }
2229 
2230   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2231   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2232   return Walker.Result;
2233 }
2234 
2235 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2236   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2237     return true;
2238   const auto *F = cast<FunctionDecl>(GD.getDecl());
2239   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2240     return false;
2241 
2242   if (F->hasAttr<DLLImportAttr>()) {
2243     // Check whether it would be safe to inline this dllimport function.
2244     DLLImportFunctionVisitor Visitor;
2245     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2246     if (!Visitor.SafeToInline)
2247       return false;
2248 
2249     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2250       // Implicit destructor invocations aren't captured in the AST, so the
2251       // check above can't see them. Check for them manually here.
2252       for (const Decl *Member : Dtor->getParent()->decls())
2253         if (isa<FieldDecl>(Member))
2254           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2255             return false;
2256       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2257         if (HasNonDllImportDtor(B.getType()))
2258           return false;
2259     }
2260   }
2261 
2262   // PR9614. Avoid cases where the source code is lying to us. An available
2263   // externally function should have an equivalent function somewhere else,
2264   // but a function that calls itself is clearly not equivalent to the real
2265   // implementation.
2266   // This happens in glibc's btowc and in some configure checks.
2267   return !isTriviallyRecursive(F);
2268 }
2269 
2270 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2271   return CodeGenOpts.OptimizationLevel > 0;
2272 }
2273 
2274 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2275   const auto *D = cast<ValueDecl>(GD.getDecl());
2276 
2277   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2278                                  Context.getSourceManager(),
2279                                  "Generating code for declaration");
2280 
2281   if (isa<FunctionDecl>(D)) {
2282     // At -O0, don't generate IR for functions with available_externally
2283     // linkage.
2284     if (!shouldEmitFunction(GD))
2285       return;
2286 
2287     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2288       // Make sure to emit the definition(s) before we emit the thunks.
2289       // This is necessary for the generation of certain thunks.
2290       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2291         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2292       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2293         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2294       else
2295         EmitGlobalFunctionDefinition(GD, GV);
2296 
2297       if (Method->isVirtual())
2298         getVTables().EmitThunks(GD);
2299 
2300       return;
2301     }
2302 
2303     return EmitGlobalFunctionDefinition(GD, GV);
2304   }
2305 
2306   if (const auto *VD = dyn_cast<VarDecl>(D))
2307     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2308 
2309   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2310 }
2311 
2312 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2313                                                       llvm::Function *NewFn);
2314 
2315 void CodeGenModule::emitMultiVersionFunctions() {
2316   for (GlobalDecl GD : MultiVersionFuncs) {
2317     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2318     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2319     getContext().forEachMultiversionedFunctionVersion(
2320         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2321           GlobalDecl CurGD{
2322               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2323           StringRef MangledName = getMangledName(CurGD);
2324           llvm::Constant *Func = GetGlobalValue(MangledName);
2325           if (!Func) {
2326             if (CurFD->isDefined()) {
2327               EmitGlobalFunctionDefinition(CurGD, nullptr);
2328               Func = GetGlobalValue(MangledName);
2329             } else {
2330               const CGFunctionInfo &FI =
2331                   getTypes().arrangeGlobalDeclaration(GD);
2332               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2333               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2334                                        /*DontDefer=*/false, ForDefinition);
2335             }
2336             assert(Func && "This should have just been created");
2337           }
2338           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2339                                CurFD->getAttr<TargetAttr>()->parse());
2340         });
2341 
2342     llvm::Function *ResolverFunc = cast<llvm::Function>(
2343         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2344     if (supportsCOMDAT())
2345       ResolverFunc->setComdat(
2346           getModule().getOrInsertComdat(ResolverFunc->getName()));
2347     std::stable_sort(
2348         Options.begin(), Options.end(),
2349         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2350     CodeGenFunction CGF(*this);
2351     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2352   }
2353 }
2354 
2355 /// If an ifunc for the specified mangled name is not in the module, create and
2356 /// return an llvm IFunc Function with the specified type.
2357 llvm::Constant *
2358 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2359                                             StringRef MangledName,
2360                                             const FunctionDecl *FD) {
2361   std::string IFuncName = (MangledName + ".ifunc").str();
2362   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2363     return IFuncGV;
2364 
2365   // Since this is the first time we've created this IFunc, make sure
2366   // that we put this multiversioned function into the list to be
2367   // replaced later.
2368   MultiVersionFuncs.push_back(GD);
2369 
2370   std::string ResolverName = (MangledName + ".resolver").str();
2371   llvm::Type *ResolverType = llvm::FunctionType::get(
2372       llvm::PointerType::get(DeclTy,
2373                              Context.getTargetAddressSpace(FD->getType())),
2374       false);
2375   llvm::Constant *Resolver =
2376       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2377                               /*ForVTable=*/false);
2378   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2379       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2380   GIF->setName(IFuncName);
2381   SetCommonAttributes(FD, GIF);
2382 
2383   return GIF;
2384 }
2385 
2386 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2387 /// module, create and return an llvm Function with the specified type. If there
2388 /// is something in the module with the specified name, return it potentially
2389 /// bitcasted to the right type.
2390 ///
2391 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2392 /// to set the attributes on the function when it is first created.
2393 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2394     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2395     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2396     ForDefinition_t IsForDefinition) {
2397   const Decl *D = GD.getDecl();
2398 
2399   // Any attempts to use a MultiVersion function should result in retrieving
2400   // the iFunc instead. Name Mangling will handle the rest of the changes.
2401   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2402     // For the device mark the function as one that should be emitted.
2403     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2404         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2405         !DontDefer && !IsForDefinition) {
2406       const FunctionDecl *FDDef = FD->getDefinition();
2407       GlobalDecl GDDef;
2408       if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2409         GDDef = GlobalDecl(CD, GD.getCtorType());
2410       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2411         GDDef = GlobalDecl(DD, GD.getDtorType());
2412       else
2413         GDDef = GlobalDecl(FDDef);
2414       addDeferredDeclToEmit(GDDef);
2415     }
2416 
2417     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2418       UpdateMultiVersionNames(GD, FD);
2419       if (!IsForDefinition)
2420         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2421     }
2422   }
2423 
2424   // Lookup the entry, lazily creating it if necessary.
2425   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2426   if (Entry) {
2427     if (WeakRefReferences.erase(Entry)) {
2428       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2429       if (FD && !FD->hasAttr<WeakAttr>())
2430         Entry->setLinkage(llvm::Function::ExternalLinkage);
2431     }
2432 
2433     // Handle dropped DLL attributes.
2434     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2435       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2436       setDSOLocal(Entry);
2437     }
2438 
2439     // If there are two attempts to define the same mangled name, issue an
2440     // error.
2441     if (IsForDefinition && !Entry->isDeclaration()) {
2442       GlobalDecl OtherGD;
2443       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2444       // to make sure that we issue an error only once.
2445       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2446           (GD.getCanonicalDecl().getDecl() !=
2447            OtherGD.getCanonicalDecl().getDecl()) &&
2448           DiagnosedConflictingDefinitions.insert(GD).second) {
2449         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2450             << MangledName;
2451         getDiags().Report(OtherGD.getDecl()->getLocation(),
2452                           diag::note_previous_definition);
2453       }
2454     }
2455 
2456     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2457         (Entry->getType()->getElementType() == Ty)) {
2458       return Entry;
2459     }
2460 
2461     // Make sure the result is of the correct type.
2462     // (If function is requested for a definition, we always need to create a new
2463     // function, not just return a bitcast.)
2464     if (!IsForDefinition)
2465       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2466   }
2467 
2468   // This function doesn't have a complete type (for example, the return
2469   // type is an incomplete struct). Use a fake type instead, and make
2470   // sure not to try to set attributes.
2471   bool IsIncompleteFunction = false;
2472 
2473   llvm::FunctionType *FTy;
2474   if (isa<llvm::FunctionType>(Ty)) {
2475     FTy = cast<llvm::FunctionType>(Ty);
2476   } else {
2477     FTy = llvm::FunctionType::get(VoidTy, false);
2478     IsIncompleteFunction = true;
2479   }
2480 
2481   llvm::Function *F =
2482       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2483                              Entry ? StringRef() : MangledName, &getModule());
2484 
2485   // If we already created a function with the same mangled name (but different
2486   // type) before, take its name and add it to the list of functions to be
2487   // replaced with F at the end of CodeGen.
2488   //
2489   // This happens if there is a prototype for a function (e.g. "int f()") and
2490   // then a definition of a different type (e.g. "int f(int x)").
2491   if (Entry) {
2492     F->takeName(Entry);
2493 
2494     // This might be an implementation of a function without a prototype, in
2495     // which case, try to do special replacement of calls which match the new
2496     // prototype.  The really key thing here is that we also potentially drop
2497     // arguments from the call site so as to make a direct call, which makes the
2498     // inliner happier and suppresses a number of optimizer warnings (!) about
2499     // dropping arguments.
2500     if (!Entry->use_empty()) {
2501       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2502       Entry->removeDeadConstantUsers();
2503     }
2504 
2505     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2506         F, Entry->getType()->getElementType()->getPointerTo());
2507     addGlobalValReplacement(Entry, BC);
2508   }
2509 
2510   assert(F->getName() == MangledName && "name was uniqued!");
2511   if (D)
2512     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2513   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2514     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2515     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2516   }
2517 
2518   if (!DontDefer) {
2519     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2520     // each other bottoming out with the base dtor.  Therefore we emit non-base
2521     // dtors on usage, even if there is no dtor definition in the TU.
2522     if (D && isa<CXXDestructorDecl>(D) &&
2523         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2524                                            GD.getDtorType()))
2525       addDeferredDeclToEmit(GD);
2526 
2527     // This is the first use or definition of a mangled name.  If there is a
2528     // deferred decl with this name, remember that we need to emit it at the end
2529     // of the file.
2530     auto DDI = DeferredDecls.find(MangledName);
2531     if (DDI != DeferredDecls.end()) {
2532       // Move the potentially referenced deferred decl to the
2533       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2534       // don't need it anymore).
2535       addDeferredDeclToEmit(DDI->second);
2536       DeferredDecls.erase(DDI);
2537 
2538       // Otherwise, there are cases we have to worry about where we're
2539       // using a declaration for which we must emit a definition but where
2540       // we might not find a top-level definition:
2541       //   - member functions defined inline in their classes
2542       //   - friend functions defined inline in some class
2543       //   - special member functions with implicit definitions
2544       // If we ever change our AST traversal to walk into class methods,
2545       // this will be unnecessary.
2546       //
2547       // We also don't emit a definition for a function if it's going to be an
2548       // entry in a vtable, unless it's already marked as used.
2549     } else if (getLangOpts().CPlusPlus && D) {
2550       // Look for a declaration that's lexically in a record.
2551       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2552            FD = FD->getPreviousDecl()) {
2553         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2554           if (FD->doesThisDeclarationHaveABody()) {
2555             addDeferredDeclToEmit(GD.getWithDecl(FD));
2556             break;
2557           }
2558         }
2559       }
2560     }
2561   }
2562 
2563   // Make sure the result is of the requested type.
2564   if (!IsIncompleteFunction) {
2565     assert(F->getType()->getElementType() == Ty);
2566     return F;
2567   }
2568 
2569   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2570   return llvm::ConstantExpr::getBitCast(F, PTy);
2571 }
2572 
2573 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2574 /// non-null, then this function will use the specified type if it has to
2575 /// create it (this occurs when we see a definition of the function).
2576 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2577                                                  llvm::Type *Ty,
2578                                                  bool ForVTable,
2579                                                  bool DontDefer,
2580                                               ForDefinition_t IsForDefinition) {
2581   // If there was no specific requested type, just convert it now.
2582   if (!Ty) {
2583     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2584     auto CanonTy = Context.getCanonicalType(FD->getType());
2585     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2586   }
2587 
2588   // Devirtualized destructor calls may come through here instead of via
2589   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2590   // of the complete destructor when necessary.
2591   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2592     if (getTarget().getCXXABI().isMicrosoft() &&
2593         GD.getDtorType() == Dtor_Complete &&
2594         DD->getParent()->getNumVBases() == 0)
2595       GD = GlobalDecl(DD, Dtor_Base);
2596   }
2597 
2598   StringRef MangledName = getMangledName(GD);
2599   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2600                                  /*IsThunk=*/false, llvm::AttributeList(),
2601                                  IsForDefinition);
2602 }
2603 
2604 static const FunctionDecl *
2605 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2606   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2607   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2608 
2609   IdentifierInfo &CII = C.Idents.get(Name);
2610   for (const auto &Result : DC->lookup(&CII))
2611     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2612       return FD;
2613 
2614   if (!C.getLangOpts().CPlusPlus)
2615     return nullptr;
2616 
2617   // Demangle the premangled name from getTerminateFn()
2618   IdentifierInfo &CXXII =
2619       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2620           ? C.Idents.get("terminate")
2621           : C.Idents.get(Name);
2622 
2623   for (const auto &N : {"__cxxabiv1", "std"}) {
2624     IdentifierInfo &NS = C.Idents.get(N);
2625     for (const auto &Result : DC->lookup(&NS)) {
2626       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2627       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2628         for (const auto &Result : LSD->lookup(&NS))
2629           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2630             break;
2631 
2632       if (ND)
2633         for (const auto &Result : ND->lookup(&CXXII))
2634           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2635             return FD;
2636     }
2637   }
2638 
2639   return nullptr;
2640 }
2641 
2642 /// CreateRuntimeFunction - Create a new runtime function with the specified
2643 /// type and name.
2644 llvm::Constant *
2645 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2646                                      llvm::AttributeList ExtraAttrs,
2647                                      bool Local) {
2648   llvm::Constant *C =
2649       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2650                               /*DontDefer=*/false, /*IsThunk=*/false,
2651                               ExtraAttrs);
2652 
2653   if (auto *F = dyn_cast<llvm::Function>(C)) {
2654     if (F->empty()) {
2655       F->setCallingConv(getRuntimeCC());
2656 
2657       if (!Local && getTriple().isOSBinFormatCOFF() &&
2658           !getCodeGenOpts().LTOVisibilityPublicStd &&
2659           !getTriple().isWindowsGNUEnvironment()) {
2660         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2661         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2662           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2663           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2664         }
2665       }
2666       setDSOLocal(F);
2667     }
2668   }
2669 
2670   return C;
2671 }
2672 
2673 /// CreateBuiltinFunction - Create a new builtin function with the specified
2674 /// type and name.
2675 llvm::Constant *
2676 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2677                                      llvm::AttributeList ExtraAttrs) {
2678   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2679 }
2680 
2681 /// isTypeConstant - Determine whether an object of this type can be emitted
2682 /// as a constant.
2683 ///
2684 /// If ExcludeCtor is true, the duration when the object's constructor runs
2685 /// will not be considered. The caller will need to verify that the object is
2686 /// not written to during its construction.
2687 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2688   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2689     return false;
2690 
2691   if (Context.getLangOpts().CPlusPlus) {
2692     if (const CXXRecordDecl *Record
2693           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2694       return ExcludeCtor && !Record->hasMutableFields() &&
2695              Record->hasTrivialDestructor();
2696   }
2697 
2698   return true;
2699 }
2700 
2701 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2702 /// create and return an llvm GlobalVariable with the specified type.  If there
2703 /// is something in the module with the specified name, return it potentially
2704 /// bitcasted to the right type.
2705 ///
2706 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2707 /// to set the attributes on the global when it is first created.
2708 ///
2709 /// If IsForDefinition is true, it is guaranteed that an actual global with
2710 /// type Ty will be returned, not conversion of a variable with the same
2711 /// mangled name but some other type.
2712 llvm::Constant *
2713 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2714                                      llvm::PointerType *Ty,
2715                                      const VarDecl *D,
2716                                      ForDefinition_t IsForDefinition) {
2717   // Lookup the entry, lazily creating it if necessary.
2718   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2719   if (Entry) {
2720     if (WeakRefReferences.erase(Entry)) {
2721       if (D && !D->hasAttr<WeakAttr>())
2722         Entry->setLinkage(llvm::Function::ExternalLinkage);
2723     }
2724 
2725     // Handle dropped DLL attributes.
2726     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2727       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2728 
2729     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2730       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2731 
2732     if (Entry->getType() == Ty)
2733       return Entry;
2734 
2735     // If there are two attempts to define the same mangled name, issue an
2736     // error.
2737     if (IsForDefinition && !Entry->isDeclaration()) {
2738       GlobalDecl OtherGD;
2739       const VarDecl *OtherD;
2740 
2741       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2742       // to make sure that we issue an error only once.
2743       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2744           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2745           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2746           OtherD->hasInit() &&
2747           DiagnosedConflictingDefinitions.insert(D).second) {
2748         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2749             << MangledName;
2750         getDiags().Report(OtherGD.getDecl()->getLocation(),
2751                           diag::note_previous_definition);
2752       }
2753     }
2754 
2755     // Make sure the result is of the correct type.
2756     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2757       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2758 
2759     // (If global is requested for a definition, we always need to create a new
2760     // global, not just return a bitcast.)
2761     if (!IsForDefinition)
2762       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2763   }
2764 
2765   auto AddrSpace = GetGlobalVarAddressSpace(D);
2766   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2767 
2768   auto *GV = new llvm::GlobalVariable(
2769       getModule(), Ty->getElementType(), false,
2770       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2771       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2772 
2773   // If we already created a global with the same mangled name (but different
2774   // type) before, take its name and remove it from its parent.
2775   if (Entry) {
2776     GV->takeName(Entry);
2777 
2778     if (!Entry->use_empty()) {
2779       llvm::Constant *NewPtrForOldDecl =
2780           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2781       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2782     }
2783 
2784     Entry->eraseFromParent();
2785   }
2786 
2787   // This is the first use or definition of a mangled name.  If there is a
2788   // deferred decl with this name, remember that we need to emit it at the end
2789   // of the file.
2790   auto DDI = DeferredDecls.find(MangledName);
2791   if (DDI != DeferredDecls.end()) {
2792     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2793     // list, and remove it from DeferredDecls (since we don't need it anymore).
2794     addDeferredDeclToEmit(DDI->second);
2795     DeferredDecls.erase(DDI);
2796   }
2797 
2798   // Handle things which are present even on external declarations.
2799   if (D) {
2800     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2801       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2802 
2803     // FIXME: This code is overly simple and should be merged with other global
2804     // handling.
2805     GV->setConstant(isTypeConstant(D->getType(), false));
2806 
2807     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2808 
2809     setLinkageForGV(GV, D);
2810 
2811     if (D->getTLSKind()) {
2812       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2813         CXXThreadLocals.push_back(D);
2814       setTLSMode(GV, *D);
2815     }
2816 
2817     setGVProperties(GV, D);
2818 
2819     // If required by the ABI, treat declarations of static data members with
2820     // inline initializers as definitions.
2821     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2822       EmitGlobalVarDefinition(D);
2823     }
2824 
2825     // Emit section information for extern variables.
2826     if (D->hasExternalStorage()) {
2827       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2828         GV->setSection(SA->getName());
2829     }
2830 
2831     // Handle XCore specific ABI requirements.
2832     if (getTriple().getArch() == llvm::Triple::xcore &&
2833         D->getLanguageLinkage() == CLanguageLinkage &&
2834         D->getType().isConstant(Context) &&
2835         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2836       GV->setSection(".cp.rodata");
2837 
2838     // Check if we a have a const declaration with an initializer, we may be
2839     // able to emit it as available_externally to expose it's value to the
2840     // optimizer.
2841     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2842         D->getType().isConstQualified() && !GV->hasInitializer() &&
2843         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2844       const auto *Record =
2845           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2846       bool HasMutableFields = Record && Record->hasMutableFields();
2847       if (!HasMutableFields) {
2848         const VarDecl *InitDecl;
2849         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2850         if (InitExpr) {
2851           ConstantEmitter emitter(*this);
2852           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2853           if (Init) {
2854             auto *InitType = Init->getType();
2855             if (GV->getType()->getElementType() != InitType) {
2856               // The type of the initializer does not match the definition.
2857               // This happens when an initializer has a different type from
2858               // the type of the global (because of padding at the end of a
2859               // structure for instance).
2860               GV->setName(StringRef());
2861               // Make a new global with the correct type, this is now guaranteed
2862               // to work.
2863               auto *NewGV = cast<llvm::GlobalVariable>(
2864                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2865 
2866               // Erase the old global, since it is no longer used.
2867               GV->eraseFromParent();
2868               GV = NewGV;
2869             } else {
2870               GV->setInitializer(Init);
2871               GV->setConstant(true);
2872               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2873             }
2874             emitter.finalize(GV);
2875           }
2876         }
2877       }
2878     }
2879   }
2880 
2881   LangAS ExpectedAS =
2882       D ? D->getType().getAddressSpace()
2883         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2884   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2885          Ty->getPointerAddressSpace());
2886   if (AddrSpace != ExpectedAS)
2887     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2888                                                        ExpectedAS, Ty);
2889 
2890   return GV;
2891 }
2892 
2893 llvm::Constant *
2894 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2895                                ForDefinition_t IsForDefinition) {
2896   const Decl *D = GD.getDecl();
2897   if (isa<CXXConstructorDecl>(D))
2898     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2899                                 getFromCtorType(GD.getCtorType()),
2900                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2901                                 /*DontDefer=*/false, IsForDefinition);
2902   else if (isa<CXXDestructorDecl>(D))
2903     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2904                                 getFromDtorType(GD.getDtorType()),
2905                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2906                                 /*DontDefer=*/false, IsForDefinition);
2907   else if (isa<CXXMethodDecl>(D)) {
2908     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2909         cast<CXXMethodDecl>(D));
2910     auto Ty = getTypes().GetFunctionType(*FInfo);
2911     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2912                              IsForDefinition);
2913   } else if (isa<FunctionDecl>(D)) {
2914     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2915     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2916     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2917                              IsForDefinition);
2918   } else
2919     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2920                               IsForDefinition);
2921 }
2922 
2923 llvm::GlobalVariable *
2924 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2925                                       llvm::Type *Ty,
2926                                       llvm::GlobalValue::LinkageTypes Linkage) {
2927   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2928   llvm::GlobalVariable *OldGV = nullptr;
2929 
2930   if (GV) {
2931     // Check if the variable has the right type.
2932     if (GV->getType()->getElementType() == Ty)
2933       return GV;
2934 
2935     // Because C++ name mangling, the only way we can end up with an already
2936     // existing global with the same name is if it has been declared extern "C".
2937     assert(GV->isDeclaration() && "Declaration has wrong type!");
2938     OldGV = GV;
2939   }
2940 
2941   // Create a new variable.
2942   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2943                                 Linkage, nullptr, Name);
2944 
2945   if (OldGV) {
2946     // Replace occurrences of the old variable if needed.
2947     GV->takeName(OldGV);
2948 
2949     if (!OldGV->use_empty()) {
2950       llvm::Constant *NewPtrForOldDecl =
2951       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2952       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2953     }
2954 
2955     OldGV->eraseFromParent();
2956   }
2957 
2958   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2959       !GV->hasAvailableExternallyLinkage())
2960     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2961 
2962   return GV;
2963 }
2964 
2965 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2966 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2967 /// then it will be created with the specified type instead of whatever the
2968 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
2969 /// that an actual global with type Ty will be returned, not conversion of a
2970 /// variable with the same mangled name but some other type.
2971 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2972                                                   llvm::Type *Ty,
2973                                            ForDefinition_t IsForDefinition) {
2974   assert(D->hasGlobalStorage() && "Not a global variable");
2975   QualType ASTTy = D->getType();
2976   if (!Ty)
2977     Ty = getTypes().ConvertTypeForMem(ASTTy);
2978 
2979   llvm::PointerType *PTy =
2980     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2981 
2982   StringRef MangledName = getMangledName(D);
2983   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2984 }
2985 
2986 /// CreateRuntimeVariable - Create a new runtime global variable with the
2987 /// specified type and name.
2988 llvm::Constant *
2989 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2990                                      StringRef Name) {
2991   auto *Ret =
2992       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2993   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
2994   return Ret;
2995 }
2996 
2997 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2998   assert(!D->getInit() && "Cannot emit definite definitions here!");
2999 
3000   StringRef MangledName = getMangledName(D);
3001   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3002 
3003   // We already have a definition, not declaration, with the same mangled name.
3004   // Emitting of declaration is not required (and actually overwrites emitted
3005   // definition).
3006   if (GV && !GV->isDeclaration())
3007     return;
3008 
3009   // If we have not seen a reference to this variable yet, place it into the
3010   // deferred declarations table to be emitted if needed later.
3011   if (!MustBeEmitted(D) && !GV) {
3012       DeferredDecls[MangledName] = D;
3013       return;
3014   }
3015 
3016   // The tentative definition is the only definition.
3017   EmitGlobalVarDefinition(D);
3018 }
3019 
3020 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3021   return Context.toCharUnitsFromBits(
3022       getDataLayout().getTypeStoreSizeInBits(Ty));
3023 }
3024 
3025 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3026   LangAS AddrSpace = LangAS::Default;
3027   if (LangOpts.OpenCL) {
3028     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3029     assert(AddrSpace == LangAS::opencl_global ||
3030            AddrSpace == LangAS::opencl_constant ||
3031            AddrSpace == LangAS::opencl_local ||
3032            AddrSpace >= LangAS::FirstTargetAddressSpace);
3033     return AddrSpace;
3034   }
3035 
3036   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3037     if (D && D->hasAttr<CUDAConstantAttr>())
3038       return LangAS::cuda_constant;
3039     else if (D && D->hasAttr<CUDASharedAttr>())
3040       return LangAS::cuda_shared;
3041     else
3042       return LangAS::cuda_device;
3043   }
3044 
3045   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3046 }
3047 
3048 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3049   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3050   if (LangOpts.OpenCL)
3051     return LangAS::opencl_constant;
3052   if (auto AS = getTarget().getConstantAddressSpace())
3053     return AS.getValue();
3054   return LangAS::Default;
3055 }
3056 
3057 // In address space agnostic languages, string literals are in default address
3058 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3059 // emitted in constant address space in LLVM IR. To be consistent with other
3060 // parts of AST, string literal global variables in constant address space
3061 // need to be casted to default address space before being put into address
3062 // map and referenced by other part of CodeGen.
3063 // In OpenCL, string literals are in constant address space in AST, therefore
3064 // they should not be casted to default address space.
3065 static llvm::Constant *
3066 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3067                                        llvm::GlobalVariable *GV) {
3068   llvm::Constant *Cast = GV;
3069   if (!CGM.getLangOpts().OpenCL) {
3070     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3071       if (AS != LangAS::Default)
3072         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3073             CGM, GV, AS.getValue(), LangAS::Default,
3074             GV->getValueType()->getPointerTo(
3075                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3076     }
3077   }
3078   return Cast;
3079 }
3080 
3081 template<typename SomeDecl>
3082 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3083                                                llvm::GlobalValue *GV) {
3084   if (!getLangOpts().CPlusPlus)
3085     return;
3086 
3087   // Must have 'used' attribute, or else inline assembly can't rely on
3088   // the name existing.
3089   if (!D->template hasAttr<UsedAttr>())
3090     return;
3091 
3092   // Must have internal linkage and an ordinary name.
3093   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3094     return;
3095 
3096   // Must be in an extern "C" context. Entities declared directly within
3097   // a record are not extern "C" even if the record is in such a context.
3098   const SomeDecl *First = D->getFirstDecl();
3099   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3100     return;
3101 
3102   // OK, this is an internal linkage entity inside an extern "C" linkage
3103   // specification. Make a note of that so we can give it the "expected"
3104   // mangled name if nothing else is using that name.
3105   std::pair<StaticExternCMap::iterator, bool> R =
3106       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3107 
3108   // If we have multiple internal linkage entities with the same name
3109   // in extern "C" regions, none of them gets that name.
3110   if (!R.second)
3111     R.first->second = nullptr;
3112 }
3113 
3114 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3115   if (!CGM.supportsCOMDAT())
3116     return false;
3117 
3118   if (D.hasAttr<SelectAnyAttr>())
3119     return true;
3120 
3121   GVALinkage Linkage;
3122   if (auto *VD = dyn_cast<VarDecl>(&D))
3123     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3124   else
3125     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3126 
3127   switch (Linkage) {
3128   case GVA_Internal:
3129   case GVA_AvailableExternally:
3130   case GVA_StrongExternal:
3131     return false;
3132   case GVA_DiscardableODR:
3133   case GVA_StrongODR:
3134     return true;
3135   }
3136   llvm_unreachable("No such linkage");
3137 }
3138 
3139 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3140                                           llvm::GlobalObject &GO) {
3141   if (!shouldBeInCOMDAT(*this, D))
3142     return;
3143   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3144 }
3145 
3146 /// Pass IsTentative as true if you want to create a tentative definition.
3147 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3148                                             bool IsTentative) {
3149   // OpenCL global variables of sampler type are translated to function calls,
3150   // therefore no need to be translated.
3151   QualType ASTTy = D->getType();
3152   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3153     return;
3154 
3155   // If this is OpenMP device, check if it is legal to emit this global
3156   // normally.
3157   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3158       OpenMPRuntime->emitTargetGlobalVariable(D))
3159     return;
3160 
3161   llvm::Constant *Init = nullptr;
3162   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3163   bool NeedsGlobalCtor = false;
3164   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3165 
3166   const VarDecl *InitDecl;
3167   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3168 
3169   Optional<ConstantEmitter> emitter;
3170 
3171   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3172   // as part of their declaration."  Sema has already checked for
3173   // error cases, so we just need to set Init to UndefValue.
3174   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3175       D->hasAttr<CUDASharedAttr>())
3176     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3177   else if (!InitExpr) {
3178     // This is a tentative definition; tentative definitions are
3179     // implicitly initialized with { 0 }.
3180     //
3181     // Note that tentative definitions are only emitted at the end of
3182     // a translation unit, so they should never have incomplete
3183     // type. In addition, EmitTentativeDefinition makes sure that we
3184     // never attempt to emit a tentative definition if a real one
3185     // exists. A use may still exists, however, so we still may need
3186     // to do a RAUW.
3187     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3188     Init = EmitNullConstant(D->getType());
3189   } else {
3190     initializedGlobalDecl = GlobalDecl(D);
3191     emitter.emplace(*this);
3192     Init = emitter->tryEmitForInitializer(*InitDecl);
3193 
3194     if (!Init) {
3195       QualType T = InitExpr->getType();
3196       if (D->getType()->isReferenceType())
3197         T = D->getType();
3198 
3199       if (getLangOpts().CPlusPlus) {
3200         Init = EmitNullConstant(T);
3201         NeedsGlobalCtor = true;
3202       } else {
3203         ErrorUnsupported(D, "static initializer");
3204         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3205       }
3206     } else {
3207       // We don't need an initializer, so remove the entry for the delayed
3208       // initializer position (just in case this entry was delayed) if we
3209       // also don't need to register a destructor.
3210       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3211         DelayedCXXInitPosition.erase(D);
3212     }
3213   }
3214 
3215   llvm::Type* InitType = Init->getType();
3216   llvm::Constant *Entry =
3217       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3218 
3219   // Strip off a bitcast if we got one back.
3220   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3221     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3222            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3223            // All zero index gep.
3224            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3225     Entry = CE->getOperand(0);
3226   }
3227 
3228   // Entry is now either a Function or GlobalVariable.
3229   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3230 
3231   // We have a definition after a declaration with the wrong type.
3232   // We must make a new GlobalVariable* and update everything that used OldGV
3233   // (a declaration or tentative definition) with the new GlobalVariable*
3234   // (which will be a definition).
3235   //
3236   // This happens if there is a prototype for a global (e.g.
3237   // "extern int x[];") and then a definition of a different type (e.g.
3238   // "int x[10];"). This also happens when an initializer has a different type
3239   // from the type of the global (this happens with unions).
3240   if (!GV || GV->getType()->getElementType() != InitType ||
3241       GV->getType()->getAddressSpace() !=
3242           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3243 
3244     // Move the old entry aside so that we'll create a new one.
3245     Entry->setName(StringRef());
3246 
3247     // Make a new global with the correct type, this is now guaranteed to work.
3248     GV = cast<llvm::GlobalVariable>(
3249         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3250 
3251     // Replace all uses of the old global with the new global
3252     llvm::Constant *NewPtrForOldDecl =
3253         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3254     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3255 
3256     // Erase the old global, since it is no longer used.
3257     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3258   }
3259 
3260   MaybeHandleStaticInExternC(D, GV);
3261 
3262   if (D->hasAttr<AnnotateAttr>())
3263     AddGlobalAnnotations(D, GV);
3264 
3265   // Set the llvm linkage type as appropriate.
3266   llvm::GlobalValue::LinkageTypes Linkage =
3267       getLLVMLinkageVarDefinition(D, GV->isConstant());
3268 
3269   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3270   // the device. [...]"
3271   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3272   // __device__, declares a variable that: [...]
3273   // Is accessible from all the threads within the grid and from the host
3274   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3275   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3276   if (GV && LangOpts.CUDA) {
3277     if (LangOpts.CUDAIsDevice) {
3278       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3279         GV->setExternallyInitialized(true);
3280     } else {
3281       // Host-side shadows of external declarations of device-side
3282       // global variables become internal definitions. These have to
3283       // be internal in order to prevent name conflicts with global
3284       // host variables with the same name in a different TUs.
3285       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3286         Linkage = llvm::GlobalValue::InternalLinkage;
3287 
3288         // Shadow variables and their properties must be registered
3289         // with CUDA runtime.
3290         unsigned Flags = 0;
3291         if (!D->hasDefinition())
3292           Flags |= CGCUDARuntime::ExternDeviceVar;
3293         if (D->hasAttr<CUDAConstantAttr>())
3294           Flags |= CGCUDARuntime::ConstantDeviceVar;
3295         getCUDARuntime().registerDeviceVar(*GV, Flags);
3296       } else if (D->hasAttr<CUDASharedAttr>())
3297         // __shared__ variables are odd. Shadows do get created, but
3298         // they are not registered with the CUDA runtime, so they
3299         // can't really be used to access their device-side
3300         // counterparts. It's not clear yet whether it's nvcc's bug or
3301         // a feature, but we've got to do the same for compatibility.
3302         Linkage = llvm::GlobalValue::InternalLinkage;
3303     }
3304   }
3305 
3306   GV->setInitializer(Init);
3307   if (emitter) emitter->finalize(GV);
3308 
3309   // If it is safe to mark the global 'constant', do so now.
3310   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3311                   isTypeConstant(D->getType(), true));
3312 
3313   // If it is in a read-only section, mark it 'constant'.
3314   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3315     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3316     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3317       GV->setConstant(true);
3318   }
3319 
3320   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3321 
3322 
3323   // On Darwin, if the normal linkage of a C++ thread_local variable is
3324   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3325   // copies within a linkage unit; otherwise, the backing variable has
3326   // internal linkage and all accesses should just be calls to the
3327   // Itanium-specified entry point, which has the normal linkage of the
3328   // variable. This is to preserve the ability to change the implementation
3329   // behind the scenes.
3330   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3331       Context.getTargetInfo().getTriple().isOSDarwin() &&
3332       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3333       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3334     Linkage = llvm::GlobalValue::InternalLinkage;
3335 
3336   GV->setLinkage(Linkage);
3337   if (D->hasAttr<DLLImportAttr>())
3338     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3339   else if (D->hasAttr<DLLExportAttr>())
3340     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3341   else
3342     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3343 
3344   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3345     // common vars aren't constant even if declared const.
3346     GV->setConstant(false);
3347     // Tentative definition of global variables may be initialized with
3348     // non-zero null pointers. In this case they should have weak linkage
3349     // since common linkage must have zero initializer and must not have
3350     // explicit section therefore cannot have non-zero initial value.
3351     if (!GV->getInitializer()->isNullValue())
3352       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3353   }
3354 
3355   setNonAliasAttributes(D, GV);
3356 
3357   if (D->getTLSKind() && !GV->isThreadLocal()) {
3358     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3359       CXXThreadLocals.push_back(D);
3360     setTLSMode(GV, *D);
3361   }
3362 
3363   maybeSetTrivialComdat(*D, *GV);
3364 
3365   // Emit the initializer function if necessary.
3366   if (NeedsGlobalCtor || NeedsGlobalDtor)
3367     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3368 
3369   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3370 
3371   // Emit global variable debug information.
3372   if (CGDebugInfo *DI = getModuleDebugInfo())
3373     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3374       DI->EmitGlobalVariable(GV, D);
3375 }
3376 
3377 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3378                                       CodeGenModule &CGM, const VarDecl *D,
3379                                       bool NoCommon) {
3380   // Don't give variables common linkage if -fno-common was specified unless it
3381   // was overridden by a NoCommon attribute.
3382   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3383     return true;
3384 
3385   // C11 6.9.2/2:
3386   //   A declaration of an identifier for an object that has file scope without
3387   //   an initializer, and without a storage-class specifier or with the
3388   //   storage-class specifier static, constitutes a tentative definition.
3389   if (D->getInit() || D->hasExternalStorage())
3390     return true;
3391 
3392   // A variable cannot be both common and exist in a section.
3393   if (D->hasAttr<SectionAttr>())
3394     return true;
3395 
3396   // A variable cannot be both common and exist in a section.
3397   // We don't try to determine which is the right section in the front-end.
3398   // If no specialized section name is applicable, it will resort to default.
3399   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3400       D->hasAttr<PragmaClangDataSectionAttr>() ||
3401       D->hasAttr<PragmaClangRodataSectionAttr>())
3402     return true;
3403 
3404   // Thread local vars aren't considered common linkage.
3405   if (D->getTLSKind())
3406     return true;
3407 
3408   // Tentative definitions marked with WeakImportAttr are true definitions.
3409   if (D->hasAttr<WeakImportAttr>())
3410     return true;
3411 
3412   // A variable cannot be both common and exist in a comdat.
3413   if (shouldBeInCOMDAT(CGM, *D))
3414     return true;
3415 
3416   // Declarations with a required alignment do not have common linkage in MSVC
3417   // mode.
3418   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3419     if (D->hasAttr<AlignedAttr>())
3420       return true;
3421     QualType VarType = D->getType();
3422     if (Context.isAlignmentRequired(VarType))
3423       return true;
3424 
3425     if (const auto *RT = VarType->getAs<RecordType>()) {
3426       const RecordDecl *RD = RT->getDecl();
3427       for (const FieldDecl *FD : RD->fields()) {
3428         if (FD->isBitField())
3429           continue;
3430         if (FD->hasAttr<AlignedAttr>())
3431           return true;
3432         if (Context.isAlignmentRequired(FD->getType()))
3433           return true;
3434       }
3435     }
3436   }
3437 
3438   return false;
3439 }
3440 
3441 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3442     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3443   if (Linkage == GVA_Internal)
3444     return llvm::Function::InternalLinkage;
3445 
3446   if (D->hasAttr<WeakAttr>()) {
3447     if (IsConstantVariable)
3448       return llvm::GlobalVariable::WeakODRLinkage;
3449     else
3450       return llvm::GlobalVariable::WeakAnyLinkage;
3451   }
3452 
3453   // We are guaranteed to have a strong definition somewhere else,
3454   // so we can use available_externally linkage.
3455   if (Linkage == GVA_AvailableExternally)
3456     return llvm::GlobalValue::AvailableExternallyLinkage;
3457 
3458   // Note that Apple's kernel linker doesn't support symbol
3459   // coalescing, so we need to avoid linkonce and weak linkages there.
3460   // Normally, this means we just map to internal, but for explicit
3461   // instantiations we'll map to external.
3462 
3463   // In C++, the compiler has to emit a definition in every translation unit
3464   // that references the function.  We should use linkonce_odr because
3465   // a) if all references in this translation unit are optimized away, we
3466   // don't need to codegen it.  b) if the function persists, it needs to be
3467   // merged with other definitions. c) C++ has the ODR, so we know the
3468   // definition is dependable.
3469   if (Linkage == GVA_DiscardableODR)
3470     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3471                                             : llvm::Function::InternalLinkage;
3472 
3473   // An explicit instantiation of a template has weak linkage, since
3474   // explicit instantiations can occur in multiple translation units
3475   // and must all be equivalent. However, we are not allowed to
3476   // throw away these explicit instantiations.
3477   //
3478   // We don't currently support CUDA device code spread out across multiple TUs,
3479   // so say that CUDA templates are either external (for kernels) or internal.
3480   // This lets llvm perform aggressive inter-procedural optimizations.
3481   if (Linkage == GVA_StrongODR) {
3482     if (Context.getLangOpts().AppleKext)
3483       return llvm::Function::ExternalLinkage;
3484     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3485       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3486                                           : llvm::Function::InternalLinkage;
3487     return llvm::Function::WeakODRLinkage;
3488   }
3489 
3490   // C++ doesn't have tentative definitions and thus cannot have common
3491   // linkage.
3492   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3493       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3494                                  CodeGenOpts.NoCommon))
3495     return llvm::GlobalVariable::CommonLinkage;
3496 
3497   // selectany symbols are externally visible, so use weak instead of
3498   // linkonce.  MSVC optimizes away references to const selectany globals, so
3499   // all definitions should be the same and ODR linkage should be used.
3500   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3501   if (D->hasAttr<SelectAnyAttr>())
3502     return llvm::GlobalVariable::WeakODRLinkage;
3503 
3504   // Otherwise, we have strong external linkage.
3505   assert(Linkage == GVA_StrongExternal);
3506   return llvm::GlobalVariable::ExternalLinkage;
3507 }
3508 
3509 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3510     const VarDecl *VD, bool IsConstant) {
3511   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3512   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3513 }
3514 
3515 /// Replace the uses of a function that was declared with a non-proto type.
3516 /// We want to silently drop extra arguments from call sites
3517 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3518                                           llvm::Function *newFn) {
3519   // Fast path.
3520   if (old->use_empty()) return;
3521 
3522   llvm::Type *newRetTy = newFn->getReturnType();
3523   SmallVector<llvm::Value*, 4> newArgs;
3524   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3525 
3526   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3527          ui != ue; ) {
3528     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3529     llvm::User *user = use->getUser();
3530 
3531     // Recognize and replace uses of bitcasts.  Most calls to
3532     // unprototyped functions will use bitcasts.
3533     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3534       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3535         replaceUsesOfNonProtoConstant(bitcast, newFn);
3536       continue;
3537     }
3538 
3539     // Recognize calls to the function.
3540     llvm::CallSite callSite(user);
3541     if (!callSite) continue;
3542     if (!callSite.isCallee(&*use)) continue;
3543 
3544     // If the return types don't match exactly, then we can't
3545     // transform this call unless it's dead.
3546     if (callSite->getType() != newRetTy && !callSite->use_empty())
3547       continue;
3548 
3549     // Get the call site's attribute list.
3550     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3551     llvm::AttributeList oldAttrs = callSite.getAttributes();
3552 
3553     // If the function was passed too few arguments, don't transform.
3554     unsigned newNumArgs = newFn->arg_size();
3555     if (callSite.arg_size() < newNumArgs) continue;
3556 
3557     // If extra arguments were passed, we silently drop them.
3558     // If any of the types mismatch, we don't transform.
3559     unsigned argNo = 0;
3560     bool dontTransform = false;
3561     for (llvm::Argument &A : newFn->args()) {
3562       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3563         dontTransform = true;
3564         break;
3565       }
3566 
3567       // Add any parameter attributes.
3568       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3569       argNo++;
3570     }
3571     if (dontTransform)
3572       continue;
3573 
3574     // Okay, we can transform this.  Create the new call instruction and copy
3575     // over the required information.
3576     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3577 
3578     // Copy over any operand bundles.
3579     callSite.getOperandBundlesAsDefs(newBundles);
3580 
3581     llvm::CallSite newCall;
3582     if (callSite.isCall()) {
3583       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3584                                        callSite.getInstruction());
3585     } else {
3586       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3587       newCall = llvm::InvokeInst::Create(newFn,
3588                                          oldInvoke->getNormalDest(),
3589                                          oldInvoke->getUnwindDest(),
3590                                          newArgs, newBundles, "",
3591                                          callSite.getInstruction());
3592     }
3593     newArgs.clear(); // for the next iteration
3594 
3595     if (!newCall->getType()->isVoidTy())
3596       newCall->takeName(callSite.getInstruction());
3597     newCall.setAttributes(llvm::AttributeList::get(
3598         newFn->getContext(), oldAttrs.getFnAttributes(),
3599         oldAttrs.getRetAttributes(), newArgAttrs));
3600     newCall.setCallingConv(callSite.getCallingConv());
3601 
3602     // Finally, remove the old call, replacing any uses with the new one.
3603     if (!callSite->use_empty())
3604       callSite->replaceAllUsesWith(newCall.getInstruction());
3605 
3606     // Copy debug location attached to CI.
3607     if (callSite->getDebugLoc())
3608       newCall->setDebugLoc(callSite->getDebugLoc());
3609 
3610     callSite->eraseFromParent();
3611   }
3612 }
3613 
3614 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3615 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3616 /// existing call uses of the old function in the module, this adjusts them to
3617 /// call the new function directly.
3618 ///
3619 /// This is not just a cleanup: the always_inline pass requires direct calls to
3620 /// functions to be able to inline them.  If there is a bitcast in the way, it
3621 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3622 /// run at -O0.
3623 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3624                                                       llvm::Function *NewFn) {
3625   // If we're redefining a global as a function, don't transform it.
3626   if (!isa<llvm::Function>(Old)) return;
3627 
3628   replaceUsesOfNonProtoConstant(Old, NewFn);
3629 }
3630 
3631 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3632   auto DK = VD->isThisDeclarationADefinition();
3633   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3634     return;
3635 
3636   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3637   // If we have a definition, this might be a deferred decl. If the
3638   // instantiation is explicit, make sure we emit it at the end.
3639   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3640     GetAddrOfGlobalVar(VD);
3641 
3642   EmitTopLevelDecl(VD);
3643 }
3644 
3645 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3646                                                  llvm::GlobalValue *GV) {
3647   const auto *D = cast<FunctionDecl>(GD.getDecl());
3648 
3649   // Compute the function info and LLVM type.
3650   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3651   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3652 
3653   // Get or create the prototype for the function.
3654   if (!GV || (GV->getType()->getElementType() != Ty))
3655     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3656                                                    /*DontDefer=*/true,
3657                                                    ForDefinition));
3658 
3659   // Already emitted.
3660   if (!GV->isDeclaration())
3661     return;
3662 
3663   // We need to set linkage and visibility on the function before
3664   // generating code for it because various parts of IR generation
3665   // want to propagate this information down (e.g. to local static
3666   // declarations).
3667   auto *Fn = cast<llvm::Function>(GV);
3668   setFunctionLinkage(GD, Fn);
3669 
3670   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3671   setGVProperties(Fn, GD);
3672 
3673   MaybeHandleStaticInExternC(D, Fn);
3674 
3675 
3676   maybeSetTrivialComdat(*D, *Fn);
3677 
3678   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3679 
3680   setNonAliasAttributes(GD, Fn);
3681   SetLLVMFunctionAttributesForDefinition(D, Fn);
3682 
3683   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3684     AddGlobalCtor(Fn, CA->getPriority());
3685   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3686     AddGlobalDtor(Fn, DA->getPriority());
3687   if (D->hasAttr<AnnotateAttr>())
3688     AddGlobalAnnotations(D, Fn);
3689 }
3690 
3691 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3692   const auto *D = cast<ValueDecl>(GD.getDecl());
3693   const AliasAttr *AA = D->getAttr<AliasAttr>();
3694   assert(AA && "Not an alias?");
3695 
3696   StringRef MangledName = getMangledName(GD);
3697 
3698   if (AA->getAliasee() == MangledName) {
3699     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3700     return;
3701   }
3702 
3703   // If there is a definition in the module, then it wins over the alias.
3704   // This is dubious, but allow it to be safe.  Just ignore the alias.
3705   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3706   if (Entry && !Entry->isDeclaration())
3707     return;
3708 
3709   Aliases.push_back(GD);
3710 
3711   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3712 
3713   // Create a reference to the named value.  This ensures that it is emitted
3714   // if a deferred decl.
3715   llvm::Constant *Aliasee;
3716   if (isa<llvm::FunctionType>(DeclTy))
3717     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3718                                       /*ForVTable=*/false);
3719   else
3720     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3721                                     llvm::PointerType::getUnqual(DeclTy),
3722                                     /*D=*/nullptr);
3723 
3724   // Create the new alias itself, but don't set a name yet.
3725   auto *GA = llvm::GlobalAlias::create(
3726       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3727 
3728   if (Entry) {
3729     if (GA->getAliasee() == Entry) {
3730       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3731       return;
3732     }
3733 
3734     assert(Entry->isDeclaration());
3735 
3736     // If there is a declaration in the module, then we had an extern followed
3737     // by the alias, as in:
3738     //   extern int test6();
3739     //   ...
3740     //   int test6() __attribute__((alias("test7")));
3741     //
3742     // Remove it and replace uses of it with the alias.
3743     GA->takeName(Entry);
3744 
3745     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3746                                                           Entry->getType()));
3747     Entry->eraseFromParent();
3748   } else {
3749     GA->setName(MangledName);
3750   }
3751 
3752   // Set attributes which are particular to an alias; this is a
3753   // specialization of the attributes which may be set on a global
3754   // variable/function.
3755   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3756       D->isWeakImported()) {
3757     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3758   }
3759 
3760   if (const auto *VD = dyn_cast<VarDecl>(D))
3761     if (VD->getTLSKind())
3762       setTLSMode(GA, *VD);
3763 
3764   SetCommonAttributes(GD, GA);
3765 }
3766 
3767 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3768   const auto *D = cast<ValueDecl>(GD.getDecl());
3769   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3770   assert(IFA && "Not an ifunc?");
3771 
3772   StringRef MangledName = getMangledName(GD);
3773 
3774   if (IFA->getResolver() == MangledName) {
3775     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3776     return;
3777   }
3778 
3779   // Report an error if some definition overrides ifunc.
3780   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3781   if (Entry && !Entry->isDeclaration()) {
3782     GlobalDecl OtherGD;
3783     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3784         DiagnosedConflictingDefinitions.insert(GD).second) {
3785       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
3786           << MangledName;
3787       Diags.Report(OtherGD.getDecl()->getLocation(),
3788                    diag::note_previous_definition);
3789     }
3790     return;
3791   }
3792 
3793   Aliases.push_back(GD);
3794 
3795   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3796   llvm::Constant *Resolver =
3797       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3798                               /*ForVTable=*/false);
3799   llvm::GlobalIFunc *GIF =
3800       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3801                                 "", Resolver, &getModule());
3802   if (Entry) {
3803     if (GIF->getResolver() == Entry) {
3804       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3805       return;
3806     }
3807     assert(Entry->isDeclaration());
3808 
3809     // If there is a declaration in the module, then we had an extern followed
3810     // by the ifunc, as in:
3811     //   extern int test();
3812     //   ...
3813     //   int test() __attribute__((ifunc("resolver")));
3814     //
3815     // Remove it and replace uses of it with the ifunc.
3816     GIF->takeName(Entry);
3817 
3818     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3819                                                           Entry->getType()));
3820     Entry->eraseFromParent();
3821   } else
3822     GIF->setName(MangledName);
3823 
3824   SetCommonAttributes(GD, GIF);
3825 }
3826 
3827 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3828                                             ArrayRef<llvm::Type*> Tys) {
3829   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3830                                          Tys);
3831 }
3832 
3833 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3834 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3835                          const StringLiteral *Literal, bool TargetIsLSB,
3836                          bool &IsUTF16, unsigned &StringLength) {
3837   StringRef String = Literal->getString();
3838   unsigned NumBytes = String.size();
3839 
3840   // Check for simple case.
3841   if (!Literal->containsNonAsciiOrNull()) {
3842     StringLength = NumBytes;
3843     return *Map.insert(std::make_pair(String, nullptr)).first;
3844   }
3845 
3846   // Otherwise, convert the UTF8 literals into a string of shorts.
3847   IsUTF16 = true;
3848 
3849   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3850   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3851   llvm::UTF16 *ToPtr = &ToBuf[0];
3852 
3853   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3854                                  ToPtr + NumBytes, llvm::strictConversion);
3855 
3856   // ConvertUTF8toUTF16 returns the length in ToPtr.
3857   StringLength = ToPtr - &ToBuf[0];
3858 
3859   // Add an explicit null.
3860   *ToPtr = 0;
3861   return *Map.insert(std::make_pair(
3862                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3863                                    (StringLength + 1) * 2),
3864                          nullptr)).first;
3865 }
3866 
3867 ConstantAddress
3868 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3869   unsigned StringLength = 0;
3870   bool isUTF16 = false;
3871   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3872       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3873                                getDataLayout().isLittleEndian(), isUTF16,
3874                                StringLength);
3875 
3876   if (auto *C = Entry.second)
3877     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3878 
3879   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3880   llvm::Constant *Zeros[] = { Zero, Zero };
3881 
3882   // If we don't already have it, get __CFConstantStringClassReference.
3883   if (!CFConstantStringClassRef) {
3884     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3885     Ty = llvm::ArrayType::get(Ty, 0);
3886     llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
3887         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
3888 
3889     if (getTriple().isOSBinFormatCOFF()) {
3890       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3891       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3892       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3893 
3894       const VarDecl *VD = nullptr;
3895       for (const auto &Result : DC->lookup(&II))
3896         if ((VD = dyn_cast<VarDecl>(Result)))
3897           break;
3898 
3899       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3900         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3901         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3902       } else {
3903         GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3904         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3905       }
3906     }
3907     setDSOLocal(GV);
3908 
3909     // Decay array -> ptr
3910     CFConstantStringClassRef =
3911         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3912   }
3913 
3914   QualType CFTy = getContext().getCFConstantStringType();
3915 
3916   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3917 
3918   ConstantInitBuilder Builder(*this);
3919   auto Fields = Builder.beginStruct(STy);
3920 
3921   // Class pointer.
3922   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3923 
3924   // Flags.
3925   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3926 
3927   // String pointer.
3928   llvm::Constant *C = nullptr;
3929   if (isUTF16) {
3930     auto Arr = llvm::makeArrayRef(
3931         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3932         Entry.first().size() / 2);
3933     C = llvm::ConstantDataArray::get(VMContext, Arr);
3934   } else {
3935     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3936   }
3937 
3938   // Note: -fwritable-strings doesn't make the backing store strings of
3939   // CFStrings writable. (See <rdar://problem/10657500>)
3940   auto *GV =
3941       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3942                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3943   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3944   // Don't enforce the target's minimum global alignment, since the only use
3945   // of the string is via this class initializer.
3946   CharUnits Align = isUTF16
3947                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3948                         : getContext().getTypeAlignInChars(getContext().CharTy);
3949   GV->setAlignment(Align.getQuantity());
3950 
3951   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3952   // Without it LLVM can merge the string with a non unnamed_addr one during
3953   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3954   if (getTriple().isOSBinFormatMachO())
3955     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3956                            : "__TEXT,__cstring,cstring_literals");
3957 
3958   // String.
3959   llvm::Constant *Str =
3960       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3961 
3962   if (isUTF16)
3963     // Cast the UTF16 string to the correct type.
3964     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3965   Fields.add(Str);
3966 
3967   // String length.
3968   auto Ty = getTypes().ConvertType(getContext().LongTy);
3969   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3970 
3971   CharUnits Alignment = getPointerAlign();
3972 
3973   // The struct.
3974   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3975                                     /*isConstant=*/false,
3976                                     llvm::GlobalVariable::PrivateLinkage);
3977   switch (getTriple().getObjectFormat()) {
3978   case llvm::Triple::UnknownObjectFormat:
3979     llvm_unreachable("unknown file format");
3980   case llvm::Triple::COFF:
3981   case llvm::Triple::ELF:
3982   case llvm::Triple::Wasm:
3983     GV->setSection("cfstring");
3984     break;
3985   case llvm::Triple::MachO:
3986     GV->setSection("__DATA,__cfstring");
3987     break;
3988   }
3989   Entry.second = GV;
3990 
3991   return ConstantAddress(GV, Alignment);
3992 }
3993 
3994 bool CodeGenModule::getExpressionLocationsEnabled() const {
3995   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3996 }
3997 
3998 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3999   if (ObjCFastEnumerationStateType.isNull()) {
4000     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4001     D->startDefinition();
4002 
4003     QualType FieldTypes[] = {
4004       Context.UnsignedLongTy,
4005       Context.getPointerType(Context.getObjCIdType()),
4006       Context.getPointerType(Context.UnsignedLongTy),
4007       Context.getConstantArrayType(Context.UnsignedLongTy,
4008                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4009     };
4010 
4011     for (size_t i = 0; i < 4; ++i) {
4012       FieldDecl *Field = FieldDecl::Create(Context,
4013                                            D,
4014                                            SourceLocation(),
4015                                            SourceLocation(), nullptr,
4016                                            FieldTypes[i], /*TInfo=*/nullptr,
4017                                            /*BitWidth=*/nullptr,
4018                                            /*Mutable=*/false,
4019                                            ICIS_NoInit);
4020       Field->setAccess(AS_public);
4021       D->addDecl(Field);
4022     }
4023 
4024     D->completeDefinition();
4025     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4026   }
4027 
4028   return ObjCFastEnumerationStateType;
4029 }
4030 
4031 llvm::Constant *
4032 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4033   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4034 
4035   // Don't emit it as the address of the string, emit the string data itself
4036   // as an inline array.
4037   if (E->getCharByteWidth() == 1) {
4038     SmallString<64> Str(E->getString());
4039 
4040     // Resize the string to the right size, which is indicated by its type.
4041     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4042     Str.resize(CAT->getSize().getZExtValue());
4043     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4044   }
4045 
4046   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4047   llvm::Type *ElemTy = AType->getElementType();
4048   unsigned NumElements = AType->getNumElements();
4049 
4050   // Wide strings have either 2-byte or 4-byte elements.
4051   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4052     SmallVector<uint16_t, 32> Elements;
4053     Elements.reserve(NumElements);
4054 
4055     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4056       Elements.push_back(E->getCodeUnit(i));
4057     Elements.resize(NumElements);
4058     return llvm::ConstantDataArray::get(VMContext, Elements);
4059   }
4060 
4061   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4062   SmallVector<uint32_t, 32> Elements;
4063   Elements.reserve(NumElements);
4064 
4065   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4066     Elements.push_back(E->getCodeUnit(i));
4067   Elements.resize(NumElements);
4068   return llvm::ConstantDataArray::get(VMContext, Elements);
4069 }
4070 
4071 static llvm::GlobalVariable *
4072 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4073                       CodeGenModule &CGM, StringRef GlobalName,
4074                       CharUnits Alignment) {
4075   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4076       CGM.getStringLiteralAddressSpace());
4077 
4078   llvm::Module &M = CGM.getModule();
4079   // Create a global variable for this string
4080   auto *GV = new llvm::GlobalVariable(
4081       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4082       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4083   GV->setAlignment(Alignment.getQuantity());
4084   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4085   if (GV->isWeakForLinker()) {
4086     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4087     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4088   }
4089   CGM.setDSOLocal(GV);
4090 
4091   return GV;
4092 }
4093 
4094 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4095 /// constant array for the given string literal.
4096 ConstantAddress
4097 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4098                                                   StringRef Name) {
4099   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4100 
4101   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4102   llvm::GlobalVariable **Entry = nullptr;
4103   if (!LangOpts.WritableStrings) {
4104     Entry = &ConstantStringMap[C];
4105     if (auto GV = *Entry) {
4106       if (Alignment.getQuantity() > GV->getAlignment())
4107         GV->setAlignment(Alignment.getQuantity());
4108       return ConstantAddress(GV, Alignment);
4109     }
4110   }
4111 
4112   SmallString<256> MangledNameBuffer;
4113   StringRef GlobalVariableName;
4114   llvm::GlobalValue::LinkageTypes LT;
4115 
4116   // Mangle the string literal if that's how the ABI merges duplicate strings.
4117   // Don't do it if they are writable, since we don't want writes in one TU to
4118   // affect strings in another.
4119   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4120       !LangOpts.WritableStrings) {
4121     llvm::raw_svector_ostream Out(MangledNameBuffer);
4122     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4123     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4124     GlobalVariableName = MangledNameBuffer;
4125   } else {
4126     LT = llvm::GlobalValue::PrivateLinkage;
4127     GlobalVariableName = Name;
4128   }
4129 
4130   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4131   if (Entry)
4132     *Entry = GV;
4133 
4134   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4135                                   QualType());
4136 
4137   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4138                          Alignment);
4139 }
4140 
4141 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4142 /// array for the given ObjCEncodeExpr node.
4143 ConstantAddress
4144 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4145   std::string Str;
4146   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4147 
4148   return GetAddrOfConstantCString(Str);
4149 }
4150 
4151 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4152 /// the literal and a terminating '\0' character.
4153 /// The result has pointer to array type.
4154 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4155     const std::string &Str, const char *GlobalName) {
4156   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4157   CharUnits Alignment =
4158     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4159 
4160   llvm::Constant *C =
4161       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4162 
4163   // Don't share any string literals if strings aren't constant.
4164   llvm::GlobalVariable **Entry = nullptr;
4165   if (!LangOpts.WritableStrings) {
4166     Entry = &ConstantStringMap[C];
4167     if (auto GV = *Entry) {
4168       if (Alignment.getQuantity() > GV->getAlignment())
4169         GV->setAlignment(Alignment.getQuantity());
4170       return ConstantAddress(GV, Alignment);
4171     }
4172   }
4173 
4174   // Get the default prefix if a name wasn't specified.
4175   if (!GlobalName)
4176     GlobalName = ".str";
4177   // Create a global variable for this.
4178   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4179                                   GlobalName, Alignment);
4180   if (Entry)
4181     *Entry = GV;
4182 
4183   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4184                          Alignment);
4185 }
4186 
4187 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4188     const MaterializeTemporaryExpr *E, const Expr *Init) {
4189   assert((E->getStorageDuration() == SD_Static ||
4190           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4191   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4192 
4193   // If we're not materializing a subobject of the temporary, keep the
4194   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4195   QualType MaterializedType = Init->getType();
4196   if (Init == E->GetTemporaryExpr())
4197     MaterializedType = E->getType();
4198 
4199   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4200 
4201   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4202     return ConstantAddress(Slot, Align);
4203 
4204   // FIXME: If an externally-visible declaration extends multiple temporaries,
4205   // we need to give each temporary the same name in every translation unit (and
4206   // we also need to make the temporaries externally-visible).
4207   SmallString<256> Name;
4208   llvm::raw_svector_ostream Out(Name);
4209   getCXXABI().getMangleContext().mangleReferenceTemporary(
4210       VD, E->getManglingNumber(), Out);
4211 
4212   APValue *Value = nullptr;
4213   if (E->getStorageDuration() == SD_Static) {
4214     // We might have a cached constant initializer for this temporary. Note
4215     // that this might have a different value from the value computed by
4216     // evaluating the initializer if the surrounding constant expression
4217     // modifies the temporary.
4218     Value = getContext().getMaterializedTemporaryValue(E, false);
4219     if (Value && Value->isUninit())
4220       Value = nullptr;
4221   }
4222 
4223   // Try evaluating it now, it might have a constant initializer.
4224   Expr::EvalResult EvalResult;
4225   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4226       !EvalResult.hasSideEffects())
4227     Value = &EvalResult.Val;
4228 
4229   LangAS AddrSpace =
4230       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4231 
4232   Optional<ConstantEmitter> emitter;
4233   llvm::Constant *InitialValue = nullptr;
4234   bool Constant = false;
4235   llvm::Type *Type;
4236   if (Value) {
4237     // The temporary has a constant initializer, use it.
4238     emitter.emplace(*this);
4239     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4240                                                MaterializedType);
4241     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4242     Type = InitialValue->getType();
4243   } else {
4244     // No initializer, the initialization will be provided when we
4245     // initialize the declaration which performed lifetime extension.
4246     Type = getTypes().ConvertTypeForMem(MaterializedType);
4247   }
4248 
4249   // Create a global variable for this lifetime-extended temporary.
4250   llvm::GlobalValue::LinkageTypes Linkage =
4251       getLLVMLinkageVarDefinition(VD, Constant);
4252   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4253     const VarDecl *InitVD;
4254     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4255         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4256       // Temporaries defined inside a class get linkonce_odr linkage because the
4257       // class can be defined in multiple translation units.
4258       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4259     } else {
4260       // There is no need for this temporary to have external linkage if the
4261       // VarDecl has external linkage.
4262       Linkage = llvm::GlobalVariable::InternalLinkage;
4263     }
4264   }
4265   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4266   auto *GV = new llvm::GlobalVariable(
4267       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4268       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4269   if (emitter) emitter->finalize(GV);
4270   setGVProperties(GV, VD);
4271   GV->setAlignment(Align.getQuantity());
4272   if (supportsCOMDAT() && GV->isWeakForLinker())
4273     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4274   if (VD->getTLSKind())
4275     setTLSMode(GV, *VD);
4276   llvm::Constant *CV = GV;
4277   if (AddrSpace != LangAS::Default)
4278     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4279         *this, GV, AddrSpace, LangAS::Default,
4280         Type->getPointerTo(
4281             getContext().getTargetAddressSpace(LangAS::Default)));
4282   MaterializedGlobalTemporaryMap[E] = CV;
4283   return ConstantAddress(CV, Align);
4284 }
4285 
4286 /// EmitObjCPropertyImplementations - Emit information for synthesized
4287 /// properties for an implementation.
4288 void CodeGenModule::EmitObjCPropertyImplementations(const
4289                                                     ObjCImplementationDecl *D) {
4290   for (const auto *PID : D->property_impls()) {
4291     // Dynamic is just for type-checking.
4292     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4293       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4294 
4295       // Determine which methods need to be implemented, some may have
4296       // been overridden. Note that ::isPropertyAccessor is not the method
4297       // we want, that just indicates if the decl came from a
4298       // property. What we want to know is if the method is defined in
4299       // this implementation.
4300       if (!D->getInstanceMethod(PD->getGetterName()))
4301         CodeGenFunction(*this).GenerateObjCGetter(
4302                                  const_cast<ObjCImplementationDecl *>(D), PID);
4303       if (!PD->isReadOnly() &&
4304           !D->getInstanceMethod(PD->getSetterName()))
4305         CodeGenFunction(*this).GenerateObjCSetter(
4306                                  const_cast<ObjCImplementationDecl *>(D), PID);
4307     }
4308   }
4309 }
4310 
4311 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4312   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4313   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4314        ivar; ivar = ivar->getNextIvar())
4315     if (ivar->getType().isDestructedType())
4316       return true;
4317 
4318   return false;
4319 }
4320 
4321 static bool AllTrivialInitializers(CodeGenModule &CGM,
4322                                    ObjCImplementationDecl *D) {
4323   CodeGenFunction CGF(CGM);
4324   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4325        E = D->init_end(); B != E; ++B) {
4326     CXXCtorInitializer *CtorInitExp = *B;
4327     Expr *Init = CtorInitExp->getInit();
4328     if (!CGF.isTrivialInitializer(Init))
4329       return false;
4330   }
4331   return true;
4332 }
4333 
4334 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4335 /// for an implementation.
4336 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4337   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4338   if (needsDestructMethod(D)) {
4339     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4340     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4341     ObjCMethodDecl *DTORMethod =
4342       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4343                              cxxSelector, getContext().VoidTy, nullptr, D,
4344                              /*isInstance=*/true, /*isVariadic=*/false,
4345                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4346                              /*isDefined=*/false, ObjCMethodDecl::Required);
4347     D->addInstanceMethod(DTORMethod);
4348     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4349     D->setHasDestructors(true);
4350   }
4351 
4352   // If the implementation doesn't have any ivar initializers, we don't need
4353   // a .cxx_construct.
4354   if (D->getNumIvarInitializers() == 0 ||
4355       AllTrivialInitializers(*this, D))
4356     return;
4357 
4358   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4359   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4360   // The constructor returns 'self'.
4361   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4362                                                 D->getLocation(),
4363                                                 D->getLocation(),
4364                                                 cxxSelector,
4365                                                 getContext().getObjCIdType(),
4366                                                 nullptr, D, /*isInstance=*/true,
4367                                                 /*isVariadic=*/false,
4368                                                 /*isPropertyAccessor=*/true,
4369                                                 /*isImplicitlyDeclared=*/true,
4370                                                 /*isDefined=*/false,
4371                                                 ObjCMethodDecl::Required);
4372   D->addInstanceMethod(CTORMethod);
4373   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4374   D->setHasNonZeroConstructors(true);
4375 }
4376 
4377 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4378 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4379   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4380       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4381     ErrorUnsupported(LSD, "linkage spec");
4382     return;
4383   }
4384 
4385   EmitDeclContext(LSD);
4386 }
4387 
4388 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4389   for (auto *I : DC->decls()) {
4390     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4391     // are themselves considered "top-level", so EmitTopLevelDecl on an
4392     // ObjCImplDecl does not recursively visit them. We need to do that in
4393     // case they're nested inside another construct (LinkageSpecDecl /
4394     // ExportDecl) that does stop them from being considered "top-level".
4395     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4396       for (auto *M : OID->methods())
4397         EmitTopLevelDecl(M);
4398     }
4399 
4400     EmitTopLevelDecl(I);
4401   }
4402 }
4403 
4404 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4405 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4406   // Ignore dependent declarations.
4407   if (D->isTemplated())
4408     return;
4409 
4410   switch (D->getKind()) {
4411   case Decl::CXXConversion:
4412   case Decl::CXXMethod:
4413   case Decl::Function:
4414     EmitGlobal(cast<FunctionDecl>(D));
4415     // Always provide some coverage mapping
4416     // even for the functions that aren't emitted.
4417     AddDeferredUnusedCoverageMapping(D);
4418     break;
4419 
4420   case Decl::CXXDeductionGuide:
4421     // Function-like, but does not result in code emission.
4422     break;
4423 
4424   case Decl::Var:
4425   case Decl::Decomposition:
4426   case Decl::VarTemplateSpecialization:
4427     EmitGlobal(cast<VarDecl>(D));
4428     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4429       for (auto *B : DD->bindings())
4430         if (auto *HD = B->getHoldingVar())
4431           EmitGlobal(HD);
4432     break;
4433 
4434   // Indirect fields from global anonymous structs and unions can be
4435   // ignored; only the actual variable requires IR gen support.
4436   case Decl::IndirectField:
4437     break;
4438 
4439   // C++ Decls
4440   case Decl::Namespace:
4441     EmitDeclContext(cast<NamespaceDecl>(D));
4442     break;
4443   case Decl::ClassTemplateSpecialization: {
4444     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4445     if (DebugInfo &&
4446         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4447         Spec->hasDefinition())
4448       DebugInfo->completeTemplateDefinition(*Spec);
4449   } LLVM_FALLTHROUGH;
4450   case Decl::CXXRecord:
4451     if (DebugInfo) {
4452       if (auto *ES = D->getASTContext().getExternalSource())
4453         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4454           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4455     }
4456     // Emit any static data members, they may be definitions.
4457     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4458       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4459         EmitTopLevelDecl(I);
4460     break;
4461     // No code generation needed.
4462   case Decl::UsingShadow:
4463   case Decl::ClassTemplate:
4464   case Decl::VarTemplate:
4465   case Decl::VarTemplatePartialSpecialization:
4466   case Decl::FunctionTemplate:
4467   case Decl::TypeAliasTemplate:
4468   case Decl::Block:
4469   case Decl::Empty:
4470     break;
4471   case Decl::Using:          // using X; [C++]
4472     if (CGDebugInfo *DI = getModuleDebugInfo())
4473         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4474     return;
4475   case Decl::NamespaceAlias:
4476     if (CGDebugInfo *DI = getModuleDebugInfo())
4477         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4478     return;
4479   case Decl::UsingDirective: // using namespace X; [C++]
4480     if (CGDebugInfo *DI = getModuleDebugInfo())
4481       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4482     return;
4483   case Decl::CXXConstructor:
4484     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4485     break;
4486   case Decl::CXXDestructor:
4487     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4488     break;
4489 
4490   case Decl::StaticAssert:
4491     // Nothing to do.
4492     break;
4493 
4494   // Objective-C Decls
4495 
4496   // Forward declarations, no (immediate) code generation.
4497   case Decl::ObjCInterface:
4498   case Decl::ObjCCategory:
4499     break;
4500 
4501   case Decl::ObjCProtocol: {
4502     auto *Proto = cast<ObjCProtocolDecl>(D);
4503     if (Proto->isThisDeclarationADefinition())
4504       ObjCRuntime->GenerateProtocol(Proto);
4505     break;
4506   }
4507 
4508   case Decl::ObjCCategoryImpl:
4509     // Categories have properties but don't support synthesize so we
4510     // can ignore them here.
4511     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4512     break;
4513 
4514   case Decl::ObjCImplementation: {
4515     auto *OMD = cast<ObjCImplementationDecl>(D);
4516     EmitObjCPropertyImplementations(OMD);
4517     EmitObjCIvarInitializations(OMD);
4518     ObjCRuntime->GenerateClass(OMD);
4519     // Emit global variable debug information.
4520     if (CGDebugInfo *DI = getModuleDebugInfo())
4521       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4522         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4523             OMD->getClassInterface()), OMD->getLocation());
4524     break;
4525   }
4526   case Decl::ObjCMethod: {
4527     auto *OMD = cast<ObjCMethodDecl>(D);
4528     // If this is not a prototype, emit the body.
4529     if (OMD->getBody())
4530       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4531     break;
4532   }
4533   case Decl::ObjCCompatibleAlias:
4534     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4535     break;
4536 
4537   case Decl::PragmaComment: {
4538     const auto *PCD = cast<PragmaCommentDecl>(D);
4539     switch (PCD->getCommentKind()) {
4540     case PCK_Unknown:
4541       llvm_unreachable("unexpected pragma comment kind");
4542     case PCK_Linker:
4543       AppendLinkerOptions(PCD->getArg());
4544       break;
4545     case PCK_Lib:
4546       if (getTarget().getTriple().isOSBinFormatELF() &&
4547           !getTarget().getTriple().isPS4())
4548         AddELFLibDirective(PCD->getArg());
4549       else
4550         AddDependentLib(PCD->getArg());
4551       break;
4552     case PCK_Compiler:
4553     case PCK_ExeStr:
4554     case PCK_User:
4555       break; // We ignore all of these.
4556     }
4557     break;
4558   }
4559 
4560   case Decl::PragmaDetectMismatch: {
4561     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4562     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4563     break;
4564   }
4565 
4566   case Decl::LinkageSpec:
4567     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4568     break;
4569 
4570   case Decl::FileScopeAsm: {
4571     // File-scope asm is ignored during device-side CUDA compilation.
4572     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4573       break;
4574     // File-scope asm is ignored during device-side OpenMP compilation.
4575     if (LangOpts.OpenMPIsDevice)
4576       break;
4577     auto *AD = cast<FileScopeAsmDecl>(D);
4578     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4579     break;
4580   }
4581 
4582   case Decl::Import: {
4583     auto *Import = cast<ImportDecl>(D);
4584 
4585     // If we've already imported this module, we're done.
4586     if (!ImportedModules.insert(Import->getImportedModule()))
4587       break;
4588 
4589     // Emit debug information for direct imports.
4590     if (!Import->getImportedOwningModule()) {
4591       if (CGDebugInfo *DI = getModuleDebugInfo())
4592         DI->EmitImportDecl(*Import);
4593     }
4594 
4595     // Find all of the submodules and emit the module initializers.
4596     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4597     SmallVector<clang::Module *, 16> Stack;
4598     Visited.insert(Import->getImportedModule());
4599     Stack.push_back(Import->getImportedModule());
4600 
4601     while (!Stack.empty()) {
4602       clang::Module *Mod = Stack.pop_back_val();
4603       if (!EmittedModuleInitializers.insert(Mod).second)
4604         continue;
4605 
4606       for (auto *D : Context.getModuleInitializers(Mod))
4607         EmitTopLevelDecl(D);
4608 
4609       // Visit the submodules of this module.
4610       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4611                                              SubEnd = Mod->submodule_end();
4612            Sub != SubEnd; ++Sub) {
4613         // Skip explicit children; they need to be explicitly imported to emit
4614         // the initializers.
4615         if ((*Sub)->IsExplicit)
4616           continue;
4617 
4618         if (Visited.insert(*Sub).second)
4619           Stack.push_back(*Sub);
4620       }
4621     }
4622     break;
4623   }
4624 
4625   case Decl::Export:
4626     EmitDeclContext(cast<ExportDecl>(D));
4627     break;
4628 
4629   case Decl::OMPThreadPrivate:
4630     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4631     break;
4632 
4633   case Decl::OMPDeclareReduction:
4634     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4635     break;
4636 
4637   default:
4638     // Make sure we handled everything we should, every other kind is a
4639     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4640     // function. Need to recode Decl::Kind to do that easily.
4641     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4642     break;
4643   }
4644 }
4645 
4646 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4647   // Do we need to generate coverage mapping?
4648   if (!CodeGenOpts.CoverageMapping)
4649     return;
4650   switch (D->getKind()) {
4651   case Decl::CXXConversion:
4652   case Decl::CXXMethod:
4653   case Decl::Function:
4654   case Decl::ObjCMethod:
4655   case Decl::CXXConstructor:
4656   case Decl::CXXDestructor: {
4657     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4658       return;
4659     SourceManager &SM = getContext().getSourceManager();
4660     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4661       return;
4662     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4663     if (I == DeferredEmptyCoverageMappingDecls.end())
4664       DeferredEmptyCoverageMappingDecls[D] = true;
4665     break;
4666   }
4667   default:
4668     break;
4669   };
4670 }
4671 
4672 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4673   // Do we need to generate coverage mapping?
4674   if (!CodeGenOpts.CoverageMapping)
4675     return;
4676   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4677     if (Fn->isTemplateInstantiation())
4678       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4679   }
4680   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4681   if (I == DeferredEmptyCoverageMappingDecls.end())
4682     DeferredEmptyCoverageMappingDecls[D] = false;
4683   else
4684     I->second = false;
4685 }
4686 
4687 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4688   // We call takeVector() here to avoid use-after-free.
4689   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4690   // we deserialize function bodies to emit coverage info for them, and that
4691   // deserializes more declarations. How should we handle that case?
4692   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4693     if (!Entry.second)
4694       continue;
4695     const Decl *D = Entry.first;
4696     switch (D->getKind()) {
4697     case Decl::CXXConversion:
4698     case Decl::CXXMethod:
4699     case Decl::Function:
4700     case Decl::ObjCMethod: {
4701       CodeGenPGO PGO(*this);
4702       GlobalDecl GD(cast<FunctionDecl>(D));
4703       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4704                                   getFunctionLinkage(GD));
4705       break;
4706     }
4707     case Decl::CXXConstructor: {
4708       CodeGenPGO PGO(*this);
4709       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4710       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4711                                   getFunctionLinkage(GD));
4712       break;
4713     }
4714     case Decl::CXXDestructor: {
4715       CodeGenPGO PGO(*this);
4716       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4717       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4718                                   getFunctionLinkage(GD));
4719       break;
4720     }
4721     default:
4722       break;
4723     };
4724   }
4725 }
4726 
4727 /// Turns the given pointer into a constant.
4728 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4729                                           const void *Ptr) {
4730   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4731   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4732   return llvm::ConstantInt::get(i64, PtrInt);
4733 }
4734 
4735 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4736                                    llvm::NamedMDNode *&GlobalMetadata,
4737                                    GlobalDecl D,
4738                                    llvm::GlobalValue *Addr) {
4739   if (!GlobalMetadata)
4740     GlobalMetadata =
4741       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4742 
4743   // TODO: should we report variant information for ctors/dtors?
4744   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4745                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4746                                CGM.getLLVMContext(), D.getDecl()))};
4747   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4748 }
4749 
4750 /// For each function which is declared within an extern "C" region and marked
4751 /// as 'used', but has internal linkage, create an alias from the unmangled
4752 /// name to the mangled name if possible. People expect to be able to refer
4753 /// to such functions with an unmangled name from inline assembly within the
4754 /// same translation unit.
4755 void CodeGenModule::EmitStaticExternCAliases() {
4756   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4757     return;
4758   for (auto &I : StaticExternCValues) {
4759     IdentifierInfo *Name = I.first;
4760     llvm::GlobalValue *Val = I.second;
4761     if (Val && !getModule().getNamedValue(Name->getName()))
4762       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4763   }
4764 }
4765 
4766 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4767                                              GlobalDecl &Result) const {
4768   auto Res = Manglings.find(MangledName);
4769   if (Res == Manglings.end())
4770     return false;
4771   Result = Res->getValue();
4772   return true;
4773 }
4774 
4775 /// Emits metadata nodes associating all the global values in the
4776 /// current module with the Decls they came from.  This is useful for
4777 /// projects using IR gen as a subroutine.
4778 ///
4779 /// Since there's currently no way to associate an MDNode directly
4780 /// with an llvm::GlobalValue, we create a global named metadata
4781 /// with the name 'clang.global.decl.ptrs'.
4782 void CodeGenModule::EmitDeclMetadata() {
4783   llvm::NamedMDNode *GlobalMetadata = nullptr;
4784 
4785   for (auto &I : MangledDeclNames) {
4786     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4787     // Some mangled names don't necessarily have an associated GlobalValue
4788     // in this module, e.g. if we mangled it for DebugInfo.
4789     if (Addr)
4790       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4791   }
4792 }
4793 
4794 /// Emits metadata nodes for all the local variables in the current
4795 /// function.
4796 void CodeGenFunction::EmitDeclMetadata() {
4797   if (LocalDeclMap.empty()) return;
4798 
4799   llvm::LLVMContext &Context = getLLVMContext();
4800 
4801   // Find the unique metadata ID for this name.
4802   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4803 
4804   llvm::NamedMDNode *GlobalMetadata = nullptr;
4805 
4806   for (auto &I : LocalDeclMap) {
4807     const Decl *D = I.first;
4808     llvm::Value *Addr = I.second.getPointer();
4809     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4810       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4811       Alloca->setMetadata(
4812           DeclPtrKind, llvm::MDNode::get(
4813                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4814     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4815       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4816       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4817     }
4818   }
4819 }
4820 
4821 void CodeGenModule::EmitVersionIdentMetadata() {
4822   llvm::NamedMDNode *IdentMetadata =
4823     TheModule.getOrInsertNamedMetadata("llvm.ident");
4824   std::string Version = getClangFullVersion();
4825   llvm::LLVMContext &Ctx = TheModule.getContext();
4826 
4827   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4828   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4829 }
4830 
4831 void CodeGenModule::EmitTargetMetadata() {
4832   // Warning, new MangledDeclNames may be appended within this loop.
4833   // We rely on MapVector insertions adding new elements to the end
4834   // of the container.
4835   // FIXME: Move this loop into the one target that needs it, and only
4836   // loop over those declarations for which we couldn't emit the target
4837   // metadata when we emitted the declaration.
4838   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4839     auto Val = *(MangledDeclNames.begin() + I);
4840     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4841     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4842     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4843   }
4844 }
4845 
4846 void CodeGenModule::EmitCoverageFile() {
4847   if (getCodeGenOpts().CoverageDataFile.empty() &&
4848       getCodeGenOpts().CoverageNotesFile.empty())
4849     return;
4850 
4851   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4852   if (!CUNode)
4853     return;
4854 
4855   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4856   llvm::LLVMContext &Ctx = TheModule.getContext();
4857   auto *CoverageDataFile =
4858       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4859   auto *CoverageNotesFile =
4860       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4861   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4862     llvm::MDNode *CU = CUNode->getOperand(i);
4863     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4864     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4865   }
4866 }
4867 
4868 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4869   // Sema has checked that all uuid strings are of the form
4870   // "12345678-1234-1234-1234-1234567890ab".
4871   assert(Uuid.size() == 36);
4872   for (unsigned i = 0; i < 36; ++i) {
4873     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4874     else                                         assert(isHexDigit(Uuid[i]));
4875   }
4876 
4877   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4878   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4879 
4880   llvm::Constant *Field3[8];
4881   for (unsigned Idx = 0; Idx < 8; ++Idx)
4882     Field3[Idx] = llvm::ConstantInt::get(
4883         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4884 
4885   llvm::Constant *Fields[4] = {
4886     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4887     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4888     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4889     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4890   };
4891 
4892   return llvm::ConstantStruct::getAnon(Fields);
4893 }
4894 
4895 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4896                                                        bool ForEH) {
4897   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4898   // FIXME: should we even be calling this method if RTTI is disabled
4899   // and it's not for EH?
4900   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
4901     return llvm::Constant::getNullValue(Int8PtrTy);
4902 
4903   if (ForEH && Ty->isObjCObjectPointerType() &&
4904       LangOpts.ObjCRuntime.isGNUFamily())
4905     return ObjCRuntime->GetEHType(Ty);
4906 
4907   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4908 }
4909 
4910 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4911   // Do not emit threadprivates in simd-only mode.
4912   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4913     return;
4914   for (auto RefExpr : D->varlists()) {
4915     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4916     bool PerformInit =
4917         VD->getAnyInitializer() &&
4918         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4919                                                         /*ForRef=*/false);
4920 
4921     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4922     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4923             VD, Addr, RefExpr->getLocStart(), PerformInit))
4924       CXXGlobalInits.push_back(InitFunction);
4925   }
4926 }
4927 
4928 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4929   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4930   if (InternalId)
4931     return InternalId;
4932 
4933   if (isExternallyVisible(T->getLinkage())) {
4934     std::string OutName;
4935     llvm::raw_string_ostream Out(OutName);
4936     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4937 
4938     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4939   } else {
4940     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4941                                            llvm::ArrayRef<llvm::Metadata *>());
4942   }
4943 
4944   return InternalId;
4945 }
4946 
4947 // Generalize pointer types to a void pointer with the qualifiers of the
4948 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4949 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4950 // 'void *'.
4951 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4952   if (!Ty->isPointerType())
4953     return Ty;
4954 
4955   return Ctx.getPointerType(
4956       QualType(Ctx.VoidTy).withCVRQualifiers(
4957           Ty->getPointeeType().getCVRQualifiers()));
4958 }
4959 
4960 // Apply type generalization to a FunctionType's return and argument types
4961 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4962   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4963     SmallVector<QualType, 8> GeneralizedParams;
4964     for (auto &Param : FnType->param_types())
4965       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4966 
4967     return Ctx.getFunctionType(
4968         GeneralizeType(Ctx, FnType->getReturnType()),
4969         GeneralizedParams, FnType->getExtProtoInfo());
4970   }
4971 
4972   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4973     return Ctx.getFunctionNoProtoType(
4974         GeneralizeType(Ctx, FnType->getReturnType()));
4975 
4976   llvm_unreachable("Encountered unknown FunctionType");
4977 }
4978 
4979 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4980   T = GeneralizeFunctionType(getContext(), T);
4981 
4982   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4983   if (InternalId)
4984     return InternalId;
4985 
4986   if (isExternallyVisible(T->getLinkage())) {
4987     std::string OutName;
4988     llvm::raw_string_ostream Out(OutName);
4989     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4990     Out << ".generalized";
4991 
4992     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4993   } else {
4994     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4995                                            llvm::ArrayRef<llvm::Metadata *>());
4996   }
4997 
4998   return InternalId;
4999 }
5000 
5001 /// Returns whether this module needs the "all-vtables" type identifier.
5002 bool CodeGenModule::NeedAllVtablesTypeId() const {
5003   // Returns true if at least one of vtable-based CFI checkers is enabled and
5004   // is not in the trapping mode.
5005   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5006            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5007           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5008            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5009           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5010            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5011           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5012            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5013 }
5014 
5015 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5016                                           CharUnits Offset,
5017                                           const CXXRecordDecl *RD) {
5018   llvm::Metadata *MD =
5019       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5020   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5021 
5022   if (CodeGenOpts.SanitizeCfiCrossDso)
5023     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5024       VTable->addTypeMetadata(Offset.getQuantity(),
5025                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5026 
5027   if (NeedAllVtablesTypeId()) {
5028     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5029     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5030   }
5031 }
5032 
5033 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5034   assert(TD != nullptr);
5035   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5036 
5037   ParsedAttr.Features.erase(
5038       llvm::remove_if(ParsedAttr.Features,
5039                       [&](const std::string &Feat) {
5040                         return !Target.isValidFeatureName(
5041                             StringRef{Feat}.substr(1));
5042                       }),
5043       ParsedAttr.Features.end());
5044   return ParsedAttr;
5045 }
5046 
5047 
5048 // Fills in the supplied string map with the set of target features for the
5049 // passed in function.
5050 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5051                                           const FunctionDecl *FD) {
5052   StringRef TargetCPU = Target.getTargetOpts().CPU;
5053   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5054     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5055 
5056     // Make a copy of the features as passed on the command line into the
5057     // beginning of the additional features from the function to override.
5058     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5059                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5060                             Target.getTargetOpts().FeaturesAsWritten.end());
5061 
5062     if (ParsedAttr.Architecture != "" &&
5063         Target.isValidCPUName(ParsedAttr.Architecture))
5064       TargetCPU = ParsedAttr.Architecture;
5065 
5066     // Now populate the feature map, first with the TargetCPU which is either
5067     // the default or a new one from the target attribute string. Then we'll use
5068     // the passed in features (FeaturesAsWritten) along with the new ones from
5069     // the attribute.
5070     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5071                           ParsedAttr.Features);
5072   } else {
5073     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5074                           Target.getTargetOpts().Features);
5075   }
5076 }
5077 
5078 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5079   if (!SanStats)
5080     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5081 
5082   return *SanStats;
5083 }
5084 llvm::Value *
5085 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5086                                                   CodeGenFunction &CGF) {
5087   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5088   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5089   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5090   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5091                                 "__translate_sampler_initializer"),
5092                                 {C});
5093 }
5094