1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 if (FTy->getNumParams()) 324 Diags.Report(Location, diag::err_ifunc_resolver_params); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 423 if (PGOStats.hasDiagnostics()) 424 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 425 } 426 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 427 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 428 EmitGlobalAnnotations(); 429 EmitStaticExternCAliases(); 430 EmitDeferredUnusedCoverageMappings(); 431 if (CoverageMapping) 432 CoverageMapping->emit(); 433 if (CodeGenOpts.SanitizeCfiCrossDso) { 434 CodeGenFunction(*this).EmitCfiCheckFail(); 435 CodeGenFunction(*this).EmitCfiCheckStub(); 436 } 437 emitAtAvailableLinkGuard(); 438 emitLLVMUsed(); 439 if (SanStats) 440 SanStats->finish(); 441 442 if (CodeGenOpts.Autolink && 443 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 444 EmitModuleLinkOptions(); 445 } 446 447 // Record mregparm value now so it is visible through rest of codegen. 448 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 449 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 450 CodeGenOpts.NumRegisterParameters); 451 452 if (CodeGenOpts.DwarfVersion) { 453 // We actually want the latest version when there are conflicts. 454 // We can change from Warning to Latest if such mode is supported. 455 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 456 CodeGenOpts.DwarfVersion); 457 } 458 if (CodeGenOpts.EmitCodeView) { 459 // Indicate that we want CodeView in the metadata. 460 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 461 } 462 if (CodeGenOpts.ControlFlowGuard) { 463 // We want function ID tables for Control Flow Guard. 464 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 465 } 466 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 467 // We don't support LTO with 2 with different StrictVTablePointers 468 // FIXME: we could support it by stripping all the information introduced 469 // by StrictVTablePointers. 470 471 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 472 473 llvm::Metadata *Ops[2] = { 474 llvm::MDString::get(VMContext, "StrictVTablePointers"), 475 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 476 llvm::Type::getInt32Ty(VMContext), 1))}; 477 478 getModule().addModuleFlag(llvm::Module::Require, 479 "StrictVTablePointersRequirement", 480 llvm::MDNode::get(VMContext, Ops)); 481 } 482 if (DebugInfo) 483 // We support a single version in the linked module. The LLVM 484 // parser will drop debug info with a different version number 485 // (and warn about it, too). 486 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 487 llvm::DEBUG_METADATA_VERSION); 488 489 // We need to record the widths of enums and wchar_t, so that we can generate 490 // the correct build attributes in the ARM backend. wchar_size is also used by 491 // TargetLibraryInfo. 492 uint64_t WCharWidth = 493 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 494 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 495 496 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 497 if ( Arch == llvm::Triple::arm 498 || Arch == llvm::Triple::armeb 499 || Arch == llvm::Triple::thumb 500 || Arch == llvm::Triple::thumbeb) { 501 // The minimum width of an enum in bytes 502 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 503 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 504 } 505 506 if (CodeGenOpts.SanitizeCfiCrossDso) { 507 // Indicate that we want cross-DSO control flow integrity checks. 508 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 509 } 510 511 if (CodeGenOpts.CFProtectionReturn && 512 Target.checkCFProtectionReturnSupported(getDiags())) { 513 // Indicate that we want to instrument return control flow protection. 514 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 515 1); 516 } 517 518 if (CodeGenOpts.CFProtectionBranch && 519 Target.checkCFProtectionBranchSupported(getDiags())) { 520 // Indicate that we want to instrument branch control flow protection. 521 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 522 1); 523 } 524 525 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 526 // Indicate whether __nvvm_reflect should be configured to flush denormal 527 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 528 // property.) 529 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 530 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 531 } 532 533 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 534 if (LangOpts.OpenCL) { 535 EmitOpenCLMetadata(); 536 // Emit SPIR version. 537 if (getTriple().getArch() == llvm::Triple::spir || 538 getTriple().getArch() == llvm::Triple::spir64) { 539 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 540 // opencl.spir.version named metadata. 541 llvm::Metadata *SPIRVerElts[] = { 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, LangOpts.OpenCLVersion / 100)), 544 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 545 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 546 llvm::NamedMDNode *SPIRVerMD = 547 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 548 llvm::LLVMContext &Ctx = TheModule.getContext(); 549 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 550 } 551 } 552 553 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 554 assert(PLevel < 3 && "Invalid PIC Level"); 555 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 556 if (Context.getLangOpts().PIE) 557 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 558 } 559 560 if (CodeGenOpts.NoPLT) 561 getModule().setRtLibUseGOT(); 562 563 SimplifyPersonality(); 564 565 if (getCodeGenOpts().EmitDeclMetadata) 566 EmitDeclMetadata(); 567 568 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 569 EmitCoverageFile(); 570 571 if (DebugInfo) 572 DebugInfo->finalize(); 573 574 if (getCodeGenOpts().EmitVersionIdentMetadata) 575 EmitVersionIdentMetadata(); 576 577 EmitTargetMetadata(); 578 } 579 580 void CodeGenModule::EmitOpenCLMetadata() { 581 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 582 // opencl.ocl.version named metadata node. 583 llvm::Metadata *OCLVerElts[] = { 584 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 585 Int32Ty, LangOpts.OpenCLVersion / 100)), 586 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 587 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 588 llvm::NamedMDNode *OCLVerMD = 589 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 590 llvm::LLVMContext &Ctx = TheModule.getContext(); 591 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 592 } 593 594 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 595 // Make sure that this type is translated. 596 Types.UpdateCompletedType(TD); 597 } 598 599 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 600 // Make sure that this type is translated. 601 Types.RefreshTypeCacheForClass(RD); 602 } 603 604 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 605 if (!TBAA) 606 return nullptr; 607 return TBAA->getTypeInfo(QTy); 608 } 609 610 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 611 if (!TBAA) 612 return TBAAAccessInfo(); 613 return TBAA->getAccessInfo(AccessType); 614 } 615 616 TBAAAccessInfo 617 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 618 if (!TBAA) 619 return TBAAAccessInfo(); 620 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 621 } 622 623 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 624 if (!TBAA) 625 return nullptr; 626 return TBAA->getTBAAStructInfo(QTy); 627 } 628 629 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 630 if (!TBAA) 631 return nullptr; 632 return TBAA->getBaseTypeInfo(QTy); 633 } 634 635 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 636 if (!TBAA) 637 return nullptr; 638 return TBAA->getAccessTagInfo(Info); 639 } 640 641 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 642 TBAAAccessInfo TargetInfo) { 643 if (!TBAA) 644 return TBAAAccessInfo(); 645 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 646 } 647 648 TBAAAccessInfo 649 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 650 TBAAAccessInfo InfoB) { 651 if (!TBAA) 652 return TBAAAccessInfo(); 653 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 654 } 655 656 TBAAAccessInfo 657 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 658 TBAAAccessInfo SrcInfo) { 659 if (!TBAA) 660 return TBAAAccessInfo(); 661 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 662 } 663 664 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 665 TBAAAccessInfo TBAAInfo) { 666 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 667 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 668 } 669 670 void CodeGenModule::DecorateInstructionWithInvariantGroup( 671 llvm::Instruction *I, const CXXRecordDecl *RD) { 672 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 673 llvm::MDNode::get(getLLVMContext(), {})); 674 } 675 676 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 677 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 678 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 679 } 680 681 /// ErrorUnsupported - Print out an error that codegen doesn't support the 682 /// specified stmt yet. 683 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 684 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 685 "cannot compile this %0 yet"); 686 std::string Msg = Type; 687 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 688 << Msg << S->getSourceRange(); 689 } 690 691 /// ErrorUnsupported - Print out an error that codegen doesn't support the 692 /// specified decl yet. 693 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 694 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 695 "cannot compile this %0 yet"); 696 std::string Msg = Type; 697 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 698 } 699 700 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 701 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 702 } 703 704 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 705 const NamedDecl *D) const { 706 if (GV->hasDLLImportStorageClass()) 707 return; 708 // Internal definitions always have default visibility. 709 if (GV->hasLocalLinkage()) { 710 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 711 return; 712 } 713 if (!D) 714 return; 715 // Set visibility for definitions. 716 LinkageInfo LV = D->getLinkageAndVisibility(); 717 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 718 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 719 } 720 721 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 722 llvm::GlobalValue *GV) { 723 if (GV->hasLocalLinkage()) 724 return true; 725 726 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 727 return true; 728 729 // DLLImport explicitly marks the GV as external. 730 if (GV->hasDLLImportStorageClass()) 731 return false; 732 733 const llvm::Triple &TT = CGM.getTriple(); 734 // Every other GV is local on COFF. 735 // Make an exception for windows OS in the triple: Some firmware builds use 736 // *-win32-macho triples. This (accidentally?) produced windows relocations 737 // without GOT tables in older clang versions; Keep this behaviour. 738 // FIXME: even thread local variables? 739 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 740 return true; 741 742 // Only handle COFF and ELF for now. 743 if (!TT.isOSBinFormatELF()) 744 return false; 745 746 // If this is not an executable, don't assume anything is local. 747 const auto &CGOpts = CGM.getCodeGenOpts(); 748 llvm::Reloc::Model RM = CGOpts.RelocationModel; 749 const auto &LOpts = CGM.getLangOpts(); 750 if (RM != llvm::Reloc::Static && !LOpts.PIE) 751 return false; 752 753 // A definition cannot be preempted from an executable. 754 if (!GV->isDeclarationForLinker()) 755 return true; 756 757 // Most PIC code sequences that assume that a symbol is local cannot produce a 758 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 759 // depended, it seems worth it to handle it here. 760 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 761 return false; 762 763 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 764 llvm::Triple::ArchType Arch = TT.getArch(); 765 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 766 Arch == llvm::Triple::ppc64le) 767 return false; 768 769 // If we can use copy relocations we can assume it is local. 770 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 771 if (!Var->isThreadLocal() && 772 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 773 return true; 774 775 // If we can use a plt entry as the symbol address we can assume it 776 // is local. 777 // FIXME: This should work for PIE, but the gold linker doesn't support it. 778 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 779 return true; 780 781 // Otherwise don't assue it is local. 782 return false; 783 } 784 785 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 786 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 787 } 788 789 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 790 GlobalDecl GD) const { 791 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 792 // C++ destructors have a few C++ ABI specific special cases. 793 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 794 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 795 return; 796 } 797 setDLLImportDLLExport(GV, D); 798 } 799 800 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 801 const NamedDecl *D) const { 802 if (D && D->isExternallyVisible()) { 803 if (D->hasAttr<DLLImportAttr>()) 804 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 805 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 806 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 807 } 808 } 809 810 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 811 GlobalDecl GD) const { 812 setDLLImportDLLExport(GV, GD); 813 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 814 } 815 816 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 817 const NamedDecl *D) const { 818 setDLLImportDLLExport(GV, D); 819 setGlobalVisibilityAndLocal(GV, D); 820 } 821 822 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 823 const NamedDecl *D) const { 824 setGlobalVisibility(GV, D); 825 setDSOLocal(GV); 826 } 827 828 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 829 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 830 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 831 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 832 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 833 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 834 } 835 836 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 837 CodeGenOptions::TLSModel M) { 838 switch (M) { 839 case CodeGenOptions::GeneralDynamicTLSModel: 840 return llvm::GlobalVariable::GeneralDynamicTLSModel; 841 case CodeGenOptions::LocalDynamicTLSModel: 842 return llvm::GlobalVariable::LocalDynamicTLSModel; 843 case CodeGenOptions::InitialExecTLSModel: 844 return llvm::GlobalVariable::InitialExecTLSModel; 845 case CodeGenOptions::LocalExecTLSModel: 846 return llvm::GlobalVariable::LocalExecTLSModel; 847 } 848 llvm_unreachable("Invalid TLS model!"); 849 } 850 851 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 852 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 853 854 llvm::GlobalValue::ThreadLocalMode TLM; 855 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 856 857 // Override the TLS model if it is explicitly specified. 858 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 859 TLM = GetLLVMTLSModel(Attr->getModel()); 860 } 861 862 GV->setThreadLocalMode(TLM); 863 } 864 865 static void AppendTargetMangling(const CodeGenModule &CGM, 866 const TargetAttr *Attr, raw_ostream &Out) { 867 if (Attr->isDefaultVersion()) 868 return; 869 870 Out << '.'; 871 const auto &Target = CGM.getTarget(); 872 TargetAttr::ParsedTargetAttr Info = 873 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 874 // Multiversioning doesn't allow "no-${feature}", so we can 875 // only have "+" prefixes here. 876 assert(LHS.startswith("+") && RHS.startswith("+") && 877 "Features should always have a prefix."); 878 return Target.multiVersionSortPriority(LHS.substr(1)) > 879 Target.multiVersionSortPriority(RHS.substr(1)); 880 }); 881 882 bool IsFirst = true; 883 884 if (!Info.Architecture.empty()) { 885 IsFirst = false; 886 Out << "arch_" << Info.Architecture; 887 } 888 889 for (StringRef Feat : Info.Features) { 890 if (!IsFirst) 891 Out << '_'; 892 IsFirst = false; 893 Out << Feat.substr(1); 894 } 895 } 896 897 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 898 const NamedDecl *ND, 899 bool OmitTargetMangling = false) { 900 SmallString<256> Buffer; 901 llvm::raw_svector_ostream Out(Buffer); 902 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 903 if (MC.shouldMangleDeclName(ND)) { 904 llvm::raw_svector_ostream Out(Buffer); 905 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 906 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 907 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 908 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 909 else 910 MC.mangleName(ND, Out); 911 } else { 912 IdentifierInfo *II = ND->getIdentifier(); 913 assert(II && "Attempt to mangle unnamed decl."); 914 const auto *FD = dyn_cast<FunctionDecl>(ND); 915 916 if (FD && 917 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 918 llvm::raw_svector_ostream Out(Buffer); 919 Out << "__regcall3__" << II->getName(); 920 } else { 921 Out << II->getName(); 922 } 923 } 924 925 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 926 if (FD->isMultiVersion() && !OmitTargetMangling) 927 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 928 return Out.str(); 929 } 930 931 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 932 const FunctionDecl *FD) { 933 if (!FD->isMultiVersion()) 934 return; 935 936 // Get the name of what this would be without the 'target' attribute. This 937 // allows us to lookup the version that was emitted when this wasn't a 938 // multiversion function. 939 std::string NonTargetName = 940 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 941 GlobalDecl OtherGD; 942 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 943 assert(OtherGD.getCanonicalDecl() 944 .getDecl() 945 ->getAsFunction() 946 ->isMultiVersion() && 947 "Other GD should now be a multiversioned function"); 948 // OtherFD is the version of this function that was mangled BEFORE 949 // becoming a MultiVersion function. It potentially needs to be updated. 950 const FunctionDecl *OtherFD = 951 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 952 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 953 // This is so that if the initial version was already the 'default' 954 // version, we don't try to update it. 955 if (OtherName != NonTargetName) { 956 // Remove instead of erase, since others may have stored the StringRef 957 // to this. 958 const auto ExistingRecord = Manglings.find(NonTargetName); 959 if (ExistingRecord != std::end(Manglings)) 960 Manglings.remove(&(*ExistingRecord)); 961 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 962 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 963 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 964 Entry->setName(OtherName); 965 } 966 } 967 } 968 969 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 970 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 971 972 // Some ABIs don't have constructor variants. Make sure that base and 973 // complete constructors get mangled the same. 974 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 975 if (!getTarget().getCXXABI().hasConstructorVariants()) { 976 CXXCtorType OrigCtorType = GD.getCtorType(); 977 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 978 if (OrigCtorType == Ctor_Base) 979 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 980 } 981 } 982 983 auto FoundName = MangledDeclNames.find(CanonicalGD); 984 if (FoundName != MangledDeclNames.end()) 985 return FoundName->second; 986 987 988 // Keep the first result in the case of a mangling collision. 989 const auto *ND = cast<NamedDecl>(GD.getDecl()); 990 auto Result = 991 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 992 return MangledDeclNames[CanonicalGD] = Result.first->first(); 993 } 994 995 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 996 const BlockDecl *BD) { 997 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 998 const Decl *D = GD.getDecl(); 999 1000 SmallString<256> Buffer; 1001 llvm::raw_svector_ostream Out(Buffer); 1002 if (!D) 1003 MangleCtx.mangleGlobalBlock(BD, 1004 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1005 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1006 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1007 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1008 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1009 else 1010 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1011 1012 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1013 return Result.first->first(); 1014 } 1015 1016 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1017 return getModule().getNamedValue(Name); 1018 } 1019 1020 /// AddGlobalCtor - Add a function to the list that will be called before 1021 /// main() runs. 1022 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1023 llvm::Constant *AssociatedData) { 1024 // FIXME: Type coercion of void()* types. 1025 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1026 } 1027 1028 /// AddGlobalDtor - Add a function to the list that will be called 1029 /// when the module is unloaded. 1030 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1031 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1032 DtorsUsingAtExit[Priority].push_back(Dtor); 1033 return; 1034 } 1035 1036 // FIXME: Type coercion of void()* types. 1037 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1038 } 1039 1040 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1041 if (Fns.empty()) return; 1042 1043 // Ctor function type is void()*. 1044 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1045 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1046 1047 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1048 llvm::StructType *CtorStructTy = llvm::StructType::get( 1049 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1050 1051 // Construct the constructor and destructor arrays. 1052 ConstantInitBuilder builder(*this); 1053 auto ctors = builder.beginArray(CtorStructTy); 1054 for (const auto &I : Fns) { 1055 auto ctor = ctors.beginStruct(CtorStructTy); 1056 ctor.addInt(Int32Ty, I.Priority); 1057 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1058 if (I.AssociatedData) 1059 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1060 else 1061 ctor.addNullPointer(VoidPtrTy); 1062 ctor.finishAndAddTo(ctors); 1063 } 1064 1065 auto list = 1066 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1067 /*constant*/ false, 1068 llvm::GlobalValue::AppendingLinkage); 1069 1070 // The LTO linker doesn't seem to like it when we set an alignment 1071 // on appending variables. Take it off as a workaround. 1072 list->setAlignment(0); 1073 1074 Fns.clear(); 1075 } 1076 1077 llvm::GlobalValue::LinkageTypes 1078 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1079 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1080 1081 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1082 1083 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1084 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1085 1086 if (isa<CXXConstructorDecl>(D) && 1087 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1088 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1089 // Our approach to inheriting constructors is fundamentally different from 1090 // that used by the MS ABI, so keep our inheriting constructor thunks 1091 // internal rather than trying to pick an unambiguous mangling for them. 1092 return llvm::GlobalValue::InternalLinkage; 1093 } 1094 1095 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1096 } 1097 1098 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1099 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1100 if (!MDS) return nullptr; 1101 1102 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1103 } 1104 1105 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1106 const CGFunctionInfo &Info, 1107 llvm::Function *F) { 1108 unsigned CallingConv; 1109 llvm::AttributeList PAL; 1110 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1111 F->setAttributes(PAL); 1112 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1113 } 1114 1115 /// Determines whether the language options require us to model 1116 /// unwind exceptions. We treat -fexceptions as mandating this 1117 /// except under the fragile ObjC ABI with only ObjC exceptions 1118 /// enabled. This means, for example, that C with -fexceptions 1119 /// enables this. 1120 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1121 // If exceptions are completely disabled, obviously this is false. 1122 if (!LangOpts.Exceptions) return false; 1123 1124 // If C++ exceptions are enabled, this is true. 1125 if (LangOpts.CXXExceptions) return true; 1126 1127 // If ObjC exceptions are enabled, this depends on the ABI. 1128 if (LangOpts.ObjCExceptions) { 1129 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1130 } 1131 1132 return true; 1133 } 1134 1135 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1136 llvm::Function *F) { 1137 llvm::AttrBuilder B; 1138 1139 if (CodeGenOpts.UnwindTables) 1140 B.addAttribute(llvm::Attribute::UWTable); 1141 1142 if (!hasUnwindExceptions(LangOpts)) 1143 B.addAttribute(llvm::Attribute::NoUnwind); 1144 1145 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1146 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1147 B.addAttribute(llvm::Attribute::StackProtect); 1148 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1149 B.addAttribute(llvm::Attribute::StackProtectStrong); 1150 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1151 B.addAttribute(llvm::Attribute::StackProtectReq); 1152 } 1153 1154 if (!D) { 1155 // If we don't have a declaration to control inlining, the function isn't 1156 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1157 // disabled, mark the function as noinline. 1158 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1159 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1160 B.addAttribute(llvm::Attribute::NoInline); 1161 1162 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1163 return; 1164 } 1165 1166 // Track whether we need to add the optnone LLVM attribute, 1167 // starting with the default for this optimization level. 1168 bool ShouldAddOptNone = 1169 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1170 // We can't add optnone in the following cases, it won't pass the verifier. 1171 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1172 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1173 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1174 1175 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1176 B.addAttribute(llvm::Attribute::OptimizeNone); 1177 1178 // OptimizeNone implies noinline; we should not be inlining such functions. 1179 B.addAttribute(llvm::Attribute::NoInline); 1180 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1181 "OptimizeNone and AlwaysInline on same function!"); 1182 1183 // We still need to handle naked functions even though optnone subsumes 1184 // much of their semantics. 1185 if (D->hasAttr<NakedAttr>()) 1186 B.addAttribute(llvm::Attribute::Naked); 1187 1188 // OptimizeNone wins over OptimizeForSize and MinSize. 1189 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1190 F->removeFnAttr(llvm::Attribute::MinSize); 1191 } else if (D->hasAttr<NakedAttr>()) { 1192 // Naked implies noinline: we should not be inlining such functions. 1193 B.addAttribute(llvm::Attribute::Naked); 1194 B.addAttribute(llvm::Attribute::NoInline); 1195 } else if (D->hasAttr<NoDuplicateAttr>()) { 1196 B.addAttribute(llvm::Attribute::NoDuplicate); 1197 } else if (D->hasAttr<NoInlineAttr>()) { 1198 B.addAttribute(llvm::Attribute::NoInline); 1199 } else if (D->hasAttr<AlwaysInlineAttr>() && 1200 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1201 // (noinline wins over always_inline, and we can't specify both in IR) 1202 B.addAttribute(llvm::Attribute::AlwaysInline); 1203 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1204 // If we're not inlining, then force everything that isn't always_inline to 1205 // carry an explicit noinline attribute. 1206 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1207 B.addAttribute(llvm::Attribute::NoInline); 1208 } else { 1209 // Otherwise, propagate the inline hint attribute and potentially use its 1210 // absence to mark things as noinline. 1211 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1212 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1213 return Redecl->isInlineSpecified(); 1214 })) { 1215 B.addAttribute(llvm::Attribute::InlineHint); 1216 } else if (CodeGenOpts.getInlining() == 1217 CodeGenOptions::OnlyHintInlining && 1218 !FD->isInlined() && 1219 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1220 B.addAttribute(llvm::Attribute::NoInline); 1221 } 1222 } 1223 } 1224 1225 // Add other optimization related attributes if we are optimizing this 1226 // function. 1227 if (!D->hasAttr<OptimizeNoneAttr>()) { 1228 if (D->hasAttr<ColdAttr>()) { 1229 if (!ShouldAddOptNone) 1230 B.addAttribute(llvm::Attribute::OptimizeForSize); 1231 B.addAttribute(llvm::Attribute::Cold); 1232 } 1233 1234 if (D->hasAttr<MinSizeAttr>()) 1235 B.addAttribute(llvm::Attribute::MinSize); 1236 } 1237 1238 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1239 1240 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1241 if (alignment) 1242 F->setAlignment(alignment); 1243 1244 if (!D->hasAttr<AlignedAttr>()) 1245 if (LangOpts.FunctionAlignment) 1246 F->setAlignment(1 << LangOpts.FunctionAlignment); 1247 1248 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1249 // reserve a bit for differentiating between virtual and non-virtual member 1250 // functions. If the current target's C++ ABI requires this and this is a 1251 // member function, set its alignment accordingly. 1252 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1253 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1254 F->setAlignment(2); 1255 } 1256 1257 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1258 if (CodeGenOpts.SanitizeCfiCrossDso) 1259 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1260 CreateFunctionTypeMetadata(FD, F); 1261 } 1262 1263 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1264 const Decl *D = GD.getDecl(); 1265 if (dyn_cast_or_null<NamedDecl>(D)) 1266 setGVProperties(GV, GD); 1267 else 1268 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1269 1270 if (D && D->hasAttr<UsedAttr>()) 1271 addUsedGlobal(GV); 1272 } 1273 1274 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1275 llvm::AttrBuilder &Attrs) { 1276 // Add target-cpu and target-features attributes to functions. If 1277 // we have a decl for the function and it has a target attribute then 1278 // parse that and add it to the feature set. 1279 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1280 std::vector<std::string> Features; 1281 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1282 FD = FD ? FD->getMostRecentDecl() : FD; 1283 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1284 bool AddedAttr = false; 1285 if (TD) { 1286 llvm::StringMap<bool> FeatureMap; 1287 getFunctionFeatureMap(FeatureMap, FD); 1288 1289 // Produce the canonical string for this set of features. 1290 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1291 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1292 1293 // Now add the target-cpu and target-features to the function. 1294 // While we populated the feature map above, we still need to 1295 // get and parse the target attribute so we can get the cpu for 1296 // the function. 1297 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1298 if (ParsedAttr.Architecture != "" && 1299 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1300 TargetCPU = ParsedAttr.Architecture; 1301 } else { 1302 // Otherwise just add the existing target cpu and target features to the 1303 // function. 1304 Features = getTarget().getTargetOpts().Features; 1305 } 1306 1307 if (TargetCPU != "") { 1308 Attrs.addAttribute("target-cpu", TargetCPU); 1309 AddedAttr = true; 1310 } 1311 if (!Features.empty()) { 1312 llvm::sort(Features.begin(), Features.end()); 1313 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1314 AddedAttr = true; 1315 } 1316 1317 return AddedAttr; 1318 } 1319 1320 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1321 llvm::GlobalObject *GO) { 1322 const Decl *D = GD.getDecl(); 1323 SetCommonAttributes(GD, GO); 1324 1325 if (D) { 1326 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1327 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1328 GV->addAttribute("bss-section", SA->getName()); 1329 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1330 GV->addAttribute("data-section", SA->getName()); 1331 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1332 GV->addAttribute("rodata-section", SA->getName()); 1333 } 1334 1335 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1336 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1337 if (!D->getAttr<SectionAttr>()) 1338 F->addFnAttr("implicit-section-name", SA->getName()); 1339 1340 llvm::AttrBuilder Attrs; 1341 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1342 // We know that GetCPUAndFeaturesAttributes will always have the 1343 // newest set, since it has the newest possible FunctionDecl, so the 1344 // new ones should replace the old. 1345 F->removeFnAttr("target-cpu"); 1346 F->removeFnAttr("target-features"); 1347 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1348 } 1349 } 1350 1351 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1352 GO->setSection(SA->getName()); 1353 } 1354 1355 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1356 } 1357 1358 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1359 llvm::Function *F, 1360 const CGFunctionInfo &FI) { 1361 const Decl *D = GD.getDecl(); 1362 SetLLVMFunctionAttributes(D, FI, F); 1363 SetLLVMFunctionAttributesForDefinition(D, F); 1364 1365 F->setLinkage(llvm::Function::InternalLinkage); 1366 1367 setNonAliasAttributes(GD, F); 1368 } 1369 1370 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1371 // Set linkage and visibility in case we never see a definition. 1372 LinkageInfo LV = ND->getLinkageAndVisibility(); 1373 // Don't set internal linkage on declarations. 1374 // "extern_weak" is overloaded in LLVM; we probably should have 1375 // separate linkage types for this. 1376 if (isExternallyVisible(LV.getLinkage()) && 1377 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1378 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1379 } 1380 1381 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1382 llvm::Function *F) { 1383 // Only if we are checking indirect calls. 1384 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1385 return; 1386 1387 // Non-static class methods are handled via vtable pointer checks elsewhere. 1388 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1389 return; 1390 1391 // Additionally, if building with cross-DSO support... 1392 if (CodeGenOpts.SanitizeCfiCrossDso) { 1393 // Skip available_externally functions. They won't be codegen'ed in the 1394 // current module anyway. 1395 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1396 return; 1397 } 1398 1399 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1400 F->addTypeMetadata(0, MD); 1401 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1402 1403 // Emit a hash-based bit set entry for cross-DSO calls. 1404 if (CodeGenOpts.SanitizeCfiCrossDso) 1405 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1406 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1407 } 1408 1409 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1410 bool IsIncompleteFunction, 1411 bool IsThunk) { 1412 1413 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1414 // If this is an intrinsic function, set the function's attributes 1415 // to the intrinsic's attributes. 1416 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1417 return; 1418 } 1419 1420 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1421 1422 if (!IsIncompleteFunction) { 1423 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1424 // Setup target-specific attributes. 1425 if (F->isDeclaration()) 1426 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1427 } 1428 1429 // Add the Returned attribute for "this", except for iOS 5 and earlier 1430 // where substantial code, including the libstdc++ dylib, was compiled with 1431 // GCC and does not actually return "this". 1432 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1433 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1434 assert(!F->arg_empty() && 1435 F->arg_begin()->getType() 1436 ->canLosslesslyBitCastTo(F->getReturnType()) && 1437 "unexpected this return"); 1438 F->addAttribute(1, llvm::Attribute::Returned); 1439 } 1440 1441 // Only a few attributes are set on declarations; these may later be 1442 // overridden by a definition. 1443 1444 setLinkageForGV(F, FD); 1445 setGVProperties(F, FD); 1446 1447 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1448 F->addFnAttr("implicit-section-name"); 1449 } 1450 1451 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1452 F->setSection(SA->getName()); 1453 1454 if (FD->isReplaceableGlobalAllocationFunction()) { 1455 // A replaceable global allocation function does not act like a builtin by 1456 // default, only if it is invoked by a new-expression or delete-expression. 1457 F->addAttribute(llvm::AttributeList::FunctionIndex, 1458 llvm::Attribute::NoBuiltin); 1459 1460 // A sane operator new returns a non-aliasing pointer. 1461 // FIXME: Also add NonNull attribute to the return value 1462 // for the non-nothrow forms? 1463 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1464 if (getCodeGenOpts().AssumeSaneOperatorNew && 1465 (Kind == OO_New || Kind == OO_Array_New)) 1466 F->addAttribute(llvm::AttributeList::ReturnIndex, 1467 llvm::Attribute::NoAlias); 1468 } 1469 1470 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1471 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1472 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1473 if (MD->isVirtual()) 1474 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1475 1476 // Don't emit entries for function declarations in the cross-DSO mode. This 1477 // is handled with better precision by the receiving DSO. 1478 if (!CodeGenOpts.SanitizeCfiCrossDso) 1479 CreateFunctionTypeMetadata(FD, F); 1480 1481 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1482 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1483 } 1484 1485 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1486 assert(!GV->isDeclaration() && 1487 "Only globals with definition can force usage."); 1488 LLVMUsed.emplace_back(GV); 1489 } 1490 1491 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1492 assert(!GV->isDeclaration() && 1493 "Only globals with definition can force usage."); 1494 LLVMCompilerUsed.emplace_back(GV); 1495 } 1496 1497 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1498 std::vector<llvm::WeakTrackingVH> &List) { 1499 // Don't create llvm.used if there is no need. 1500 if (List.empty()) 1501 return; 1502 1503 // Convert List to what ConstantArray needs. 1504 SmallVector<llvm::Constant*, 8> UsedArray; 1505 UsedArray.resize(List.size()); 1506 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1507 UsedArray[i] = 1508 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1509 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1510 } 1511 1512 if (UsedArray.empty()) 1513 return; 1514 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1515 1516 auto *GV = new llvm::GlobalVariable( 1517 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1518 llvm::ConstantArray::get(ATy, UsedArray), Name); 1519 1520 GV->setSection("llvm.metadata"); 1521 } 1522 1523 void CodeGenModule::emitLLVMUsed() { 1524 emitUsed(*this, "llvm.used", LLVMUsed); 1525 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1526 } 1527 1528 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1529 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1530 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1531 } 1532 1533 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1534 llvm::SmallString<32> Opt; 1535 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1536 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1537 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1538 } 1539 1540 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1541 auto &C = getLLVMContext(); 1542 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1543 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1544 } 1545 1546 void CodeGenModule::AddDependentLib(StringRef Lib) { 1547 llvm::SmallString<24> Opt; 1548 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1549 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1550 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1551 } 1552 1553 /// Add link options implied by the given module, including modules 1554 /// it depends on, using a postorder walk. 1555 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1556 SmallVectorImpl<llvm::MDNode *> &Metadata, 1557 llvm::SmallPtrSet<Module *, 16> &Visited) { 1558 // Import this module's parent. 1559 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1560 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1561 } 1562 1563 // Import this module's dependencies. 1564 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1565 if (Visited.insert(Mod->Imports[I - 1]).second) 1566 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1567 } 1568 1569 // Add linker options to link against the libraries/frameworks 1570 // described by this module. 1571 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1572 1573 // For modules that use export_as for linking, use that module 1574 // name instead. 1575 if (Mod->UseExportAsModuleLinkName) 1576 return; 1577 1578 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1579 // Link against a framework. Frameworks are currently Darwin only, so we 1580 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1581 if (Mod->LinkLibraries[I-1].IsFramework) { 1582 llvm::Metadata *Args[2] = { 1583 llvm::MDString::get(Context, "-framework"), 1584 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1585 1586 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1587 continue; 1588 } 1589 1590 // Link against a library. 1591 llvm::SmallString<24> Opt; 1592 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1593 Mod->LinkLibraries[I-1].Library, Opt); 1594 auto *OptString = llvm::MDString::get(Context, Opt); 1595 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1596 } 1597 } 1598 1599 void CodeGenModule::EmitModuleLinkOptions() { 1600 // Collect the set of all of the modules we want to visit to emit link 1601 // options, which is essentially the imported modules and all of their 1602 // non-explicit child modules. 1603 llvm::SetVector<clang::Module *> LinkModules; 1604 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1605 SmallVector<clang::Module *, 16> Stack; 1606 1607 // Seed the stack with imported modules. 1608 for (Module *M : ImportedModules) { 1609 // Do not add any link flags when an implementation TU of a module imports 1610 // a header of that same module. 1611 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1612 !getLangOpts().isCompilingModule()) 1613 continue; 1614 if (Visited.insert(M).second) 1615 Stack.push_back(M); 1616 } 1617 1618 // Find all of the modules to import, making a little effort to prune 1619 // non-leaf modules. 1620 while (!Stack.empty()) { 1621 clang::Module *Mod = Stack.pop_back_val(); 1622 1623 bool AnyChildren = false; 1624 1625 // Visit the submodules of this module. 1626 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1627 SubEnd = Mod->submodule_end(); 1628 Sub != SubEnd; ++Sub) { 1629 // Skip explicit children; they need to be explicitly imported to be 1630 // linked against. 1631 if ((*Sub)->IsExplicit) 1632 continue; 1633 1634 if (Visited.insert(*Sub).second) { 1635 Stack.push_back(*Sub); 1636 AnyChildren = true; 1637 } 1638 } 1639 1640 // We didn't find any children, so add this module to the list of 1641 // modules to link against. 1642 if (!AnyChildren) { 1643 LinkModules.insert(Mod); 1644 } 1645 } 1646 1647 // Add link options for all of the imported modules in reverse topological 1648 // order. We don't do anything to try to order import link flags with respect 1649 // to linker options inserted by things like #pragma comment(). 1650 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1651 Visited.clear(); 1652 for (Module *M : LinkModules) 1653 if (Visited.insert(M).second) 1654 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1655 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1656 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1657 1658 // Add the linker options metadata flag. 1659 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1660 for (auto *MD : LinkerOptionsMetadata) 1661 NMD->addOperand(MD); 1662 } 1663 1664 void CodeGenModule::EmitDeferred() { 1665 // Emit code for any potentially referenced deferred decls. Since a 1666 // previously unused static decl may become used during the generation of code 1667 // for a static function, iterate until no changes are made. 1668 1669 if (!DeferredVTables.empty()) { 1670 EmitDeferredVTables(); 1671 1672 // Emitting a vtable doesn't directly cause more vtables to 1673 // become deferred, although it can cause functions to be 1674 // emitted that then need those vtables. 1675 assert(DeferredVTables.empty()); 1676 } 1677 1678 // Stop if we're out of both deferred vtables and deferred declarations. 1679 if (DeferredDeclsToEmit.empty()) 1680 return; 1681 1682 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1683 // work, it will not interfere with this. 1684 std::vector<GlobalDecl> CurDeclsToEmit; 1685 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1686 1687 for (GlobalDecl &D : CurDeclsToEmit) { 1688 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1689 // to get GlobalValue with exactly the type we need, not something that 1690 // might had been created for another decl with the same mangled name but 1691 // different type. 1692 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1693 GetAddrOfGlobal(D, ForDefinition)); 1694 1695 // In case of different address spaces, we may still get a cast, even with 1696 // IsForDefinition equal to true. Query mangled names table to get 1697 // GlobalValue. 1698 if (!GV) 1699 GV = GetGlobalValue(getMangledName(D)); 1700 1701 // Make sure GetGlobalValue returned non-null. 1702 assert(GV); 1703 1704 // Check to see if we've already emitted this. This is necessary 1705 // for a couple of reasons: first, decls can end up in the 1706 // deferred-decls queue multiple times, and second, decls can end 1707 // up with definitions in unusual ways (e.g. by an extern inline 1708 // function acquiring a strong function redefinition). Just 1709 // ignore these cases. 1710 if (!GV->isDeclaration()) 1711 continue; 1712 1713 // Otherwise, emit the definition and move on to the next one. 1714 EmitGlobalDefinition(D, GV); 1715 1716 // If we found out that we need to emit more decls, do that recursively. 1717 // This has the advantage that the decls are emitted in a DFS and related 1718 // ones are close together, which is convenient for testing. 1719 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1720 EmitDeferred(); 1721 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1722 } 1723 } 1724 } 1725 1726 void CodeGenModule::EmitVTablesOpportunistically() { 1727 // Try to emit external vtables as available_externally if they have emitted 1728 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1729 // is not allowed to create new references to things that need to be emitted 1730 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1731 1732 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1733 && "Only emit opportunistic vtables with optimizations"); 1734 1735 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1736 assert(getVTables().isVTableExternal(RD) && 1737 "This queue should only contain external vtables"); 1738 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1739 VTables.GenerateClassData(RD); 1740 } 1741 OpportunisticVTables.clear(); 1742 } 1743 1744 void CodeGenModule::EmitGlobalAnnotations() { 1745 if (Annotations.empty()) 1746 return; 1747 1748 // Create a new global variable for the ConstantStruct in the Module. 1749 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1750 Annotations[0]->getType(), Annotations.size()), Annotations); 1751 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1752 llvm::GlobalValue::AppendingLinkage, 1753 Array, "llvm.global.annotations"); 1754 gv->setSection(AnnotationSection); 1755 } 1756 1757 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1758 llvm::Constant *&AStr = AnnotationStrings[Str]; 1759 if (AStr) 1760 return AStr; 1761 1762 // Not found yet, create a new global. 1763 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1764 auto *gv = 1765 new llvm::GlobalVariable(getModule(), s->getType(), true, 1766 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1767 gv->setSection(AnnotationSection); 1768 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1769 AStr = gv; 1770 return gv; 1771 } 1772 1773 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1774 SourceManager &SM = getContext().getSourceManager(); 1775 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1776 if (PLoc.isValid()) 1777 return EmitAnnotationString(PLoc.getFilename()); 1778 return EmitAnnotationString(SM.getBufferName(Loc)); 1779 } 1780 1781 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1782 SourceManager &SM = getContext().getSourceManager(); 1783 PresumedLoc PLoc = SM.getPresumedLoc(L); 1784 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1785 SM.getExpansionLineNumber(L); 1786 return llvm::ConstantInt::get(Int32Ty, LineNo); 1787 } 1788 1789 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1790 const AnnotateAttr *AA, 1791 SourceLocation L) { 1792 // Get the globals for file name, annotation, and the line number. 1793 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1794 *UnitGV = EmitAnnotationUnit(L), 1795 *LineNoCst = EmitAnnotationLineNo(L); 1796 1797 // Create the ConstantStruct for the global annotation. 1798 llvm::Constant *Fields[4] = { 1799 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1800 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1801 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1802 LineNoCst 1803 }; 1804 return llvm::ConstantStruct::getAnon(Fields); 1805 } 1806 1807 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1808 llvm::GlobalValue *GV) { 1809 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1810 // Get the struct elements for these annotations. 1811 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1812 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1813 } 1814 1815 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1816 llvm::Function *Fn, 1817 SourceLocation Loc) const { 1818 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1819 // Blacklist by function name. 1820 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1821 return true; 1822 // Blacklist by location. 1823 if (Loc.isValid()) 1824 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1825 // If location is unknown, this may be a compiler-generated function. Assume 1826 // it's located in the main file. 1827 auto &SM = Context.getSourceManager(); 1828 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1829 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1830 } 1831 return false; 1832 } 1833 1834 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1835 SourceLocation Loc, QualType Ty, 1836 StringRef Category) const { 1837 // For now globals can be blacklisted only in ASan and KASan. 1838 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1839 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1840 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1841 if (!EnabledAsanMask) 1842 return false; 1843 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1844 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1845 return true; 1846 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1847 return true; 1848 // Check global type. 1849 if (!Ty.isNull()) { 1850 // Drill down the array types: if global variable of a fixed type is 1851 // blacklisted, we also don't instrument arrays of them. 1852 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1853 Ty = AT->getElementType(); 1854 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1855 // We allow to blacklist only record types (classes, structs etc.) 1856 if (Ty->isRecordType()) { 1857 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1858 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1859 return true; 1860 } 1861 } 1862 return false; 1863 } 1864 1865 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1866 StringRef Category) const { 1867 if (!LangOpts.XRayInstrument) 1868 return false; 1869 1870 const auto &XRayFilter = getContext().getXRayFilter(); 1871 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1872 auto Attr = ImbueAttr::NONE; 1873 if (Loc.isValid()) 1874 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1875 if (Attr == ImbueAttr::NONE) 1876 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1877 switch (Attr) { 1878 case ImbueAttr::NONE: 1879 return false; 1880 case ImbueAttr::ALWAYS: 1881 Fn->addFnAttr("function-instrument", "xray-always"); 1882 break; 1883 case ImbueAttr::ALWAYS_ARG1: 1884 Fn->addFnAttr("function-instrument", "xray-always"); 1885 Fn->addFnAttr("xray-log-args", "1"); 1886 break; 1887 case ImbueAttr::NEVER: 1888 Fn->addFnAttr("function-instrument", "xray-never"); 1889 break; 1890 } 1891 return true; 1892 } 1893 1894 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1895 // Never defer when EmitAllDecls is specified. 1896 if (LangOpts.EmitAllDecls) 1897 return true; 1898 1899 return getContext().DeclMustBeEmitted(Global); 1900 } 1901 1902 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1903 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1904 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1905 // Implicit template instantiations may change linkage if they are later 1906 // explicitly instantiated, so they should not be emitted eagerly. 1907 return false; 1908 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1909 if (Context.getInlineVariableDefinitionKind(VD) == 1910 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1911 // A definition of an inline constexpr static data member may change 1912 // linkage later if it's redeclared outside the class. 1913 return false; 1914 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1915 // codegen for global variables, because they may be marked as threadprivate. 1916 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1917 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 1918 !isTypeConstant(Global->getType(), false)) 1919 return false; 1920 1921 return true; 1922 } 1923 1924 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1925 const CXXUuidofExpr* E) { 1926 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1927 // well-formed. 1928 StringRef Uuid = E->getUuidStr(); 1929 std::string Name = "_GUID_" + Uuid.lower(); 1930 std::replace(Name.begin(), Name.end(), '-', '_'); 1931 1932 // The UUID descriptor should be pointer aligned. 1933 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1934 1935 // Look for an existing global. 1936 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1937 return ConstantAddress(GV, Alignment); 1938 1939 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1940 assert(Init && "failed to initialize as constant"); 1941 1942 auto *GV = new llvm::GlobalVariable( 1943 getModule(), Init->getType(), 1944 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1945 if (supportsCOMDAT()) 1946 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1947 setDSOLocal(GV); 1948 return ConstantAddress(GV, Alignment); 1949 } 1950 1951 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1952 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1953 assert(AA && "No alias?"); 1954 1955 CharUnits Alignment = getContext().getDeclAlign(VD); 1956 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1957 1958 // See if there is already something with the target's name in the module. 1959 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1960 if (Entry) { 1961 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1962 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1963 return ConstantAddress(Ptr, Alignment); 1964 } 1965 1966 llvm::Constant *Aliasee; 1967 if (isa<llvm::FunctionType>(DeclTy)) 1968 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1969 GlobalDecl(cast<FunctionDecl>(VD)), 1970 /*ForVTable=*/false); 1971 else 1972 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1973 llvm::PointerType::getUnqual(DeclTy), 1974 nullptr); 1975 1976 auto *F = cast<llvm::GlobalValue>(Aliasee); 1977 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1978 WeakRefReferences.insert(F); 1979 1980 return ConstantAddress(Aliasee, Alignment); 1981 } 1982 1983 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1984 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1985 1986 // Weak references don't produce any output by themselves. 1987 if (Global->hasAttr<WeakRefAttr>()) 1988 return; 1989 1990 // If this is an alias definition (which otherwise looks like a declaration) 1991 // emit it now. 1992 if (Global->hasAttr<AliasAttr>()) 1993 return EmitAliasDefinition(GD); 1994 1995 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1996 if (Global->hasAttr<IFuncAttr>()) 1997 return emitIFuncDefinition(GD); 1998 1999 // If this is CUDA, be selective about which declarations we emit. 2000 if (LangOpts.CUDA) { 2001 if (LangOpts.CUDAIsDevice) { 2002 if (!Global->hasAttr<CUDADeviceAttr>() && 2003 !Global->hasAttr<CUDAGlobalAttr>() && 2004 !Global->hasAttr<CUDAConstantAttr>() && 2005 !Global->hasAttr<CUDASharedAttr>()) 2006 return; 2007 } else { 2008 // We need to emit host-side 'shadows' for all global 2009 // device-side variables because the CUDA runtime needs their 2010 // size and host-side address in order to provide access to 2011 // their device-side incarnations. 2012 2013 // So device-only functions are the only things we skip. 2014 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2015 Global->hasAttr<CUDADeviceAttr>()) 2016 return; 2017 2018 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2019 "Expected Variable or Function"); 2020 } 2021 } 2022 2023 if (LangOpts.OpenMP) { 2024 // If this is OpenMP device, check if it is legal to emit this global 2025 // normally. 2026 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2027 return; 2028 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2029 if (MustBeEmitted(Global)) 2030 EmitOMPDeclareReduction(DRD); 2031 return; 2032 } 2033 } 2034 2035 // Ignore declarations, they will be emitted on their first use. 2036 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2037 // Forward declarations are emitted lazily on first use. 2038 if (!FD->doesThisDeclarationHaveABody()) { 2039 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2040 return; 2041 2042 StringRef MangledName = getMangledName(GD); 2043 2044 // Compute the function info and LLVM type. 2045 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2046 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2047 2048 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2049 /*DontDefer=*/false); 2050 return; 2051 } 2052 } else { 2053 const auto *VD = cast<VarDecl>(Global); 2054 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2055 // We need to emit device-side global CUDA variables even if a 2056 // variable does not have a definition -- we still need to define 2057 // host-side shadow for it. 2058 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2059 !VD->hasDefinition() && 2060 (VD->hasAttr<CUDAConstantAttr>() || 2061 VD->hasAttr<CUDADeviceAttr>()); 2062 if (!MustEmitForCuda && 2063 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2064 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2065 // If this declaration may have caused an inline variable definition to 2066 // change linkage, make sure that it's emitted. 2067 if (Context.getInlineVariableDefinitionKind(VD) == 2068 ASTContext::InlineVariableDefinitionKind::Strong) 2069 GetAddrOfGlobalVar(VD); 2070 return; 2071 } 2072 } 2073 2074 // Defer code generation to first use when possible, e.g. if this is an inline 2075 // function. If the global must always be emitted, do it eagerly if possible 2076 // to benefit from cache locality. 2077 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2078 // Emit the definition if it can't be deferred. 2079 EmitGlobalDefinition(GD); 2080 return; 2081 } 2082 2083 // If we're deferring emission of a C++ variable with an 2084 // initializer, remember the order in which it appeared in the file. 2085 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2086 cast<VarDecl>(Global)->hasInit()) { 2087 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2088 CXXGlobalInits.push_back(nullptr); 2089 } 2090 2091 StringRef MangledName = getMangledName(GD); 2092 if (GetGlobalValue(MangledName) != nullptr) { 2093 // The value has already been used and should therefore be emitted. 2094 addDeferredDeclToEmit(GD); 2095 } else if (MustBeEmitted(Global)) { 2096 // The value must be emitted, but cannot be emitted eagerly. 2097 assert(!MayBeEmittedEagerly(Global)); 2098 addDeferredDeclToEmit(GD); 2099 } else { 2100 // Otherwise, remember that we saw a deferred decl with this name. The 2101 // first use of the mangled name will cause it to move into 2102 // DeferredDeclsToEmit. 2103 DeferredDecls[MangledName] = GD; 2104 } 2105 } 2106 2107 // Check if T is a class type with a destructor that's not dllimport. 2108 static bool HasNonDllImportDtor(QualType T) { 2109 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2110 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2111 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2112 return true; 2113 2114 return false; 2115 } 2116 2117 namespace { 2118 struct FunctionIsDirectlyRecursive : 2119 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2120 const StringRef Name; 2121 const Builtin::Context &BI; 2122 bool Result; 2123 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2124 Name(N), BI(C), Result(false) { 2125 } 2126 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2127 2128 bool TraverseCallExpr(CallExpr *E) { 2129 const FunctionDecl *FD = E->getDirectCallee(); 2130 if (!FD) 2131 return true; 2132 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2133 if (Attr && Name == Attr->getLabel()) { 2134 Result = true; 2135 return false; 2136 } 2137 unsigned BuiltinID = FD->getBuiltinID(); 2138 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2139 return true; 2140 StringRef BuiltinName = BI.getName(BuiltinID); 2141 if (BuiltinName.startswith("__builtin_") && 2142 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2143 Result = true; 2144 return false; 2145 } 2146 return true; 2147 } 2148 }; 2149 2150 // Make sure we're not referencing non-imported vars or functions. 2151 struct DLLImportFunctionVisitor 2152 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2153 bool SafeToInline = true; 2154 2155 bool shouldVisitImplicitCode() const { return true; } 2156 2157 bool VisitVarDecl(VarDecl *VD) { 2158 if (VD->getTLSKind()) { 2159 // A thread-local variable cannot be imported. 2160 SafeToInline = false; 2161 return SafeToInline; 2162 } 2163 2164 // A variable definition might imply a destructor call. 2165 if (VD->isThisDeclarationADefinition()) 2166 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2167 2168 return SafeToInline; 2169 } 2170 2171 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2172 if (const auto *D = E->getTemporary()->getDestructor()) 2173 SafeToInline = D->hasAttr<DLLImportAttr>(); 2174 return SafeToInline; 2175 } 2176 2177 bool VisitDeclRefExpr(DeclRefExpr *E) { 2178 ValueDecl *VD = E->getDecl(); 2179 if (isa<FunctionDecl>(VD)) 2180 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2181 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2182 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2183 return SafeToInline; 2184 } 2185 2186 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2187 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2188 return SafeToInline; 2189 } 2190 2191 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2192 CXXMethodDecl *M = E->getMethodDecl(); 2193 if (!M) { 2194 // Call through a pointer to member function. This is safe to inline. 2195 SafeToInline = true; 2196 } else { 2197 SafeToInline = M->hasAttr<DLLImportAttr>(); 2198 } 2199 return SafeToInline; 2200 } 2201 2202 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2203 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2204 return SafeToInline; 2205 } 2206 2207 bool VisitCXXNewExpr(CXXNewExpr *E) { 2208 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2209 return SafeToInline; 2210 } 2211 }; 2212 } 2213 2214 // isTriviallyRecursive - Check if this function calls another 2215 // decl that, because of the asm attribute or the other decl being a builtin, 2216 // ends up pointing to itself. 2217 bool 2218 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2219 StringRef Name; 2220 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2221 // asm labels are a special kind of mangling we have to support. 2222 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2223 if (!Attr) 2224 return false; 2225 Name = Attr->getLabel(); 2226 } else { 2227 Name = FD->getName(); 2228 } 2229 2230 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2231 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2232 return Walker.Result; 2233 } 2234 2235 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2236 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2237 return true; 2238 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2239 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2240 return false; 2241 2242 if (F->hasAttr<DLLImportAttr>()) { 2243 // Check whether it would be safe to inline this dllimport function. 2244 DLLImportFunctionVisitor Visitor; 2245 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2246 if (!Visitor.SafeToInline) 2247 return false; 2248 2249 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2250 // Implicit destructor invocations aren't captured in the AST, so the 2251 // check above can't see them. Check for them manually here. 2252 for (const Decl *Member : Dtor->getParent()->decls()) 2253 if (isa<FieldDecl>(Member)) 2254 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2255 return false; 2256 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2257 if (HasNonDllImportDtor(B.getType())) 2258 return false; 2259 } 2260 } 2261 2262 // PR9614. Avoid cases where the source code is lying to us. An available 2263 // externally function should have an equivalent function somewhere else, 2264 // but a function that calls itself is clearly not equivalent to the real 2265 // implementation. 2266 // This happens in glibc's btowc and in some configure checks. 2267 return !isTriviallyRecursive(F); 2268 } 2269 2270 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2271 return CodeGenOpts.OptimizationLevel > 0; 2272 } 2273 2274 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2275 const auto *D = cast<ValueDecl>(GD.getDecl()); 2276 2277 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2278 Context.getSourceManager(), 2279 "Generating code for declaration"); 2280 2281 if (isa<FunctionDecl>(D)) { 2282 // At -O0, don't generate IR for functions with available_externally 2283 // linkage. 2284 if (!shouldEmitFunction(GD)) 2285 return; 2286 2287 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2288 // Make sure to emit the definition(s) before we emit the thunks. 2289 // This is necessary for the generation of certain thunks. 2290 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2291 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2292 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2293 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2294 else 2295 EmitGlobalFunctionDefinition(GD, GV); 2296 2297 if (Method->isVirtual()) 2298 getVTables().EmitThunks(GD); 2299 2300 return; 2301 } 2302 2303 return EmitGlobalFunctionDefinition(GD, GV); 2304 } 2305 2306 if (const auto *VD = dyn_cast<VarDecl>(D)) 2307 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2308 2309 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2310 } 2311 2312 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2313 llvm::Function *NewFn); 2314 2315 void CodeGenModule::emitMultiVersionFunctions() { 2316 for (GlobalDecl GD : MultiVersionFuncs) { 2317 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2318 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2319 getContext().forEachMultiversionedFunctionVersion( 2320 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2321 GlobalDecl CurGD{ 2322 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2323 StringRef MangledName = getMangledName(CurGD); 2324 llvm::Constant *Func = GetGlobalValue(MangledName); 2325 if (!Func) { 2326 if (CurFD->isDefined()) { 2327 EmitGlobalFunctionDefinition(CurGD, nullptr); 2328 Func = GetGlobalValue(MangledName); 2329 } else { 2330 const CGFunctionInfo &FI = 2331 getTypes().arrangeGlobalDeclaration(GD); 2332 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2333 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2334 /*DontDefer=*/false, ForDefinition); 2335 } 2336 assert(Func && "This should have just been created"); 2337 } 2338 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2339 CurFD->getAttr<TargetAttr>()->parse()); 2340 }); 2341 2342 llvm::Function *ResolverFunc = cast<llvm::Function>( 2343 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2344 if (supportsCOMDAT()) 2345 ResolverFunc->setComdat( 2346 getModule().getOrInsertComdat(ResolverFunc->getName())); 2347 std::stable_sort( 2348 Options.begin(), Options.end(), 2349 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2350 CodeGenFunction CGF(*this); 2351 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2352 } 2353 } 2354 2355 /// If an ifunc for the specified mangled name is not in the module, create and 2356 /// return an llvm IFunc Function with the specified type. 2357 llvm::Constant * 2358 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2359 StringRef MangledName, 2360 const FunctionDecl *FD) { 2361 std::string IFuncName = (MangledName + ".ifunc").str(); 2362 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2363 return IFuncGV; 2364 2365 // Since this is the first time we've created this IFunc, make sure 2366 // that we put this multiversioned function into the list to be 2367 // replaced later. 2368 MultiVersionFuncs.push_back(GD); 2369 2370 std::string ResolverName = (MangledName + ".resolver").str(); 2371 llvm::Type *ResolverType = llvm::FunctionType::get( 2372 llvm::PointerType::get(DeclTy, 2373 Context.getTargetAddressSpace(FD->getType())), 2374 false); 2375 llvm::Constant *Resolver = 2376 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2377 /*ForVTable=*/false); 2378 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2379 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2380 GIF->setName(IFuncName); 2381 SetCommonAttributes(FD, GIF); 2382 2383 return GIF; 2384 } 2385 2386 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2387 /// module, create and return an llvm Function with the specified type. If there 2388 /// is something in the module with the specified name, return it potentially 2389 /// bitcasted to the right type. 2390 /// 2391 /// If D is non-null, it specifies a decl that correspond to this. This is used 2392 /// to set the attributes on the function when it is first created. 2393 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2394 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2395 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2396 ForDefinition_t IsForDefinition) { 2397 const Decl *D = GD.getDecl(); 2398 2399 // Any attempts to use a MultiVersion function should result in retrieving 2400 // the iFunc instead. Name Mangling will handle the rest of the changes. 2401 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2402 // For the device mark the function as one that should be emitted. 2403 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2404 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2405 !DontDefer && !IsForDefinition) { 2406 const FunctionDecl *FDDef = FD->getDefinition(); 2407 GlobalDecl GDDef; 2408 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2409 GDDef = GlobalDecl(CD, GD.getCtorType()); 2410 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2411 GDDef = GlobalDecl(DD, GD.getDtorType()); 2412 else 2413 GDDef = GlobalDecl(FDDef); 2414 addDeferredDeclToEmit(GDDef); 2415 } 2416 2417 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2418 UpdateMultiVersionNames(GD, FD); 2419 if (!IsForDefinition) 2420 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2421 } 2422 } 2423 2424 // Lookup the entry, lazily creating it if necessary. 2425 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2426 if (Entry) { 2427 if (WeakRefReferences.erase(Entry)) { 2428 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2429 if (FD && !FD->hasAttr<WeakAttr>()) 2430 Entry->setLinkage(llvm::Function::ExternalLinkage); 2431 } 2432 2433 // Handle dropped DLL attributes. 2434 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2435 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2436 setDSOLocal(Entry); 2437 } 2438 2439 // If there are two attempts to define the same mangled name, issue an 2440 // error. 2441 if (IsForDefinition && !Entry->isDeclaration()) { 2442 GlobalDecl OtherGD; 2443 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2444 // to make sure that we issue an error only once. 2445 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2446 (GD.getCanonicalDecl().getDecl() != 2447 OtherGD.getCanonicalDecl().getDecl()) && 2448 DiagnosedConflictingDefinitions.insert(GD).second) { 2449 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2450 << MangledName; 2451 getDiags().Report(OtherGD.getDecl()->getLocation(), 2452 diag::note_previous_definition); 2453 } 2454 } 2455 2456 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2457 (Entry->getType()->getElementType() == Ty)) { 2458 return Entry; 2459 } 2460 2461 // Make sure the result is of the correct type. 2462 // (If function is requested for a definition, we always need to create a new 2463 // function, not just return a bitcast.) 2464 if (!IsForDefinition) 2465 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2466 } 2467 2468 // This function doesn't have a complete type (for example, the return 2469 // type is an incomplete struct). Use a fake type instead, and make 2470 // sure not to try to set attributes. 2471 bool IsIncompleteFunction = false; 2472 2473 llvm::FunctionType *FTy; 2474 if (isa<llvm::FunctionType>(Ty)) { 2475 FTy = cast<llvm::FunctionType>(Ty); 2476 } else { 2477 FTy = llvm::FunctionType::get(VoidTy, false); 2478 IsIncompleteFunction = true; 2479 } 2480 2481 llvm::Function *F = 2482 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2483 Entry ? StringRef() : MangledName, &getModule()); 2484 2485 // If we already created a function with the same mangled name (but different 2486 // type) before, take its name and add it to the list of functions to be 2487 // replaced with F at the end of CodeGen. 2488 // 2489 // This happens if there is a prototype for a function (e.g. "int f()") and 2490 // then a definition of a different type (e.g. "int f(int x)"). 2491 if (Entry) { 2492 F->takeName(Entry); 2493 2494 // This might be an implementation of a function without a prototype, in 2495 // which case, try to do special replacement of calls which match the new 2496 // prototype. The really key thing here is that we also potentially drop 2497 // arguments from the call site so as to make a direct call, which makes the 2498 // inliner happier and suppresses a number of optimizer warnings (!) about 2499 // dropping arguments. 2500 if (!Entry->use_empty()) { 2501 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2502 Entry->removeDeadConstantUsers(); 2503 } 2504 2505 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2506 F, Entry->getType()->getElementType()->getPointerTo()); 2507 addGlobalValReplacement(Entry, BC); 2508 } 2509 2510 assert(F->getName() == MangledName && "name was uniqued!"); 2511 if (D) 2512 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2513 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2514 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2515 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2516 } 2517 2518 if (!DontDefer) { 2519 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2520 // each other bottoming out with the base dtor. Therefore we emit non-base 2521 // dtors on usage, even if there is no dtor definition in the TU. 2522 if (D && isa<CXXDestructorDecl>(D) && 2523 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2524 GD.getDtorType())) 2525 addDeferredDeclToEmit(GD); 2526 2527 // This is the first use or definition of a mangled name. If there is a 2528 // deferred decl with this name, remember that we need to emit it at the end 2529 // of the file. 2530 auto DDI = DeferredDecls.find(MangledName); 2531 if (DDI != DeferredDecls.end()) { 2532 // Move the potentially referenced deferred decl to the 2533 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2534 // don't need it anymore). 2535 addDeferredDeclToEmit(DDI->second); 2536 DeferredDecls.erase(DDI); 2537 2538 // Otherwise, there are cases we have to worry about where we're 2539 // using a declaration for which we must emit a definition but where 2540 // we might not find a top-level definition: 2541 // - member functions defined inline in their classes 2542 // - friend functions defined inline in some class 2543 // - special member functions with implicit definitions 2544 // If we ever change our AST traversal to walk into class methods, 2545 // this will be unnecessary. 2546 // 2547 // We also don't emit a definition for a function if it's going to be an 2548 // entry in a vtable, unless it's already marked as used. 2549 } else if (getLangOpts().CPlusPlus && D) { 2550 // Look for a declaration that's lexically in a record. 2551 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2552 FD = FD->getPreviousDecl()) { 2553 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2554 if (FD->doesThisDeclarationHaveABody()) { 2555 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2556 break; 2557 } 2558 } 2559 } 2560 } 2561 } 2562 2563 // Make sure the result is of the requested type. 2564 if (!IsIncompleteFunction) { 2565 assert(F->getType()->getElementType() == Ty); 2566 return F; 2567 } 2568 2569 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2570 return llvm::ConstantExpr::getBitCast(F, PTy); 2571 } 2572 2573 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2574 /// non-null, then this function will use the specified type if it has to 2575 /// create it (this occurs when we see a definition of the function). 2576 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2577 llvm::Type *Ty, 2578 bool ForVTable, 2579 bool DontDefer, 2580 ForDefinition_t IsForDefinition) { 2581 // If there was no specific requested type, just convert it now. 2582 if (!Ty) { 2583 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2584 auto CanonTy = Context.getCanonicalType(FD->getType()); 2585 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2586 } 2587 2588 // Devirtualized destructor calls may come through here instead of via 2589 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2590 // of the complete destructor when necessary. 2591 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2592 if (getTarget().getCXXABI().isMicrosoft() && 2593 GD.getDtorType() == Dtor_Complete && 2594 DD->getParent()->getNumVBases() == 0) 2595 GD = GlobalDecl(DD, Dtor_Base); 2596 } 2597 2598 StringRef MangledName = getMangledName(GD); 2599 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2600 /*IsThunk=*/false, llvm::AttributeList(), 2601 IsForDefinition); 2602 } 2603 2604 static const FunctionDecl * 2605 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2606 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2607 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2608 2609 IdentifierInfo &CII = C.Idents.get(Name); 2610 for (const auto &Result : DC->lookup(&CII)) 2611 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2612 return FD; 2613 2614 if (!C.getLangOpts().CPlusPlus) 2615 return nullptr; 2616 2617 // Demangle the premangled name from getTerminateFn() 2618 IdentifierInfo &CXXII = 2619 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2620 ? C.Idents.get("terminate") 2621 : C.Idents.get(Name); 2622 2623 for (const auto &N : {"__cxxabiv1", "std"}) { 2624 IdentifierInfo &NS = C.Idents.get(N); 2625 for (const auto &Result : DC->lookup(&NS)) { 2626 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2627 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2628 for (const auto &Result : LSD->lookup(&NS)) 2629 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2630 break; 2631 2632 if (ND) 2633 for (const auto &Result : ND->lookup(&CXXII)) 2634 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2635 return FD; 2636 } 2637 } 2638 2639 return nullptr; 2640 } 2641 2642 /// CreateRuntimeFunction - Create a new runtime function with the specified 2643 /// type and name. 2644 llvm::Constant * 2645 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2646 llvm::AttributeList ExtraAttrs, 2647 bool Local) { 2648 llvm::Constant *C = 2649 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2650 /*DontDefer=*/false, /*IsThunk=*/false, 2651 ExtraAttrs); 2652 2653 if (auto *F = dyn_cast<llvm::Function>(C)) { 2654 if (F->empty()) { 2655 F->setCallingConv(getRuntimeCC()); 2656 2657 if (!Local && getTriple().isOSBinFormatCOFF() && 2658 !getCodeGenOpts().LTOVisibilityPublicStd && 2659 !getTriple().isWindowsGNUEnvironment()) { 2660 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2661 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2662 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2663 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2664 } 2665 } 2666 setDSOLocal(F); 2667 } 2668 } 2669 2670 return C; 2671 } 2672 2673 /// CreateBuiltinFunction - Create a new builtin function with the specified 2674 /// type and name. 2675 llvm::Constant * 2676 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2677 llvm::AttributeList ExtraAttrs) { 2678 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2679 } 2680 2681 /// isTypeConstant - Determine whether an object of this type can be emitted 2682 /// as a constant. 2683 /// 2684 /// If ExcludeCtor is true, the duration when the object's constructor runs 2685 /// will not be considered. The caller will need to verify that the object is 2686 /// not written to during its construction. 2687 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2688 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2689 return false; 2690 2691 if (Context.getLangOpts().CPlusPlus) { 2692 if (const CXXRecordDecl *Record 2693 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2694 return ExcludeCtor && !Record->hasMutableFields() && 2695 Record->hasTrivialDestructor(); 2696 } 2697 2698 return true; 2699 } 2700 2701 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2702 /// create and return an llvm GlobalVariable with the specified type. If there 2703 /// is something in the module with the specified name, return it potentially 2704 /// bitcasted to the right type. 2705 /// 2706 /// If D is non-null, it specifies a decl that correspond to this. This is used 2707 /// to set the attributes on the global when it is first created. 2708 /// 2709 /// If IsForDefinition is true, it is guaranteed that an actual global with 2710 /// type Ty will be returned, not conversion of a variable with the same 2711 /// mangled name but some other type. 2712 llvm::Constant * 2713 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2714 llvm::PointerType *Ty, 2715 const VarDecl *D, 2716 ForDefinition_t IsForDefinition) { 2717 // Lookup the entry, lazily creating it if necessary. 2718 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2719 if (Entry) { 2720 if (WeakRefReferences.erase(Entry)) { 2721 if (D && !D->hasAttr<WeakAttr>()) 2722 Entry->setLinkage(llvm::Function::ExternalLinkage); 2723 } 2724 2725 // Handle dropped DLL attributes. 2726 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2727 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2728 2729 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2730 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2731 2732 if (Entry->getType() == Ty) 2733 return Entry; 2734 2735 // If there are two attempts to define the same mangled name, issue an 2736 // error. 2737 if (IsForDefinition && !Entry->isDeclaration()) { 2738 GlobalDecl OtherGD; 2739 const VarDecl *OtherD; 2740 2741 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2742 // to make sure that we issue an error only once. 2743 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2744 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2745 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2746 OtherD->hasInit() && 2747 DiagnosedConflictingDefinitions.insert(D).second) { 2748 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2749 << MangledName; 2750 getDiags().Report(OtherGD.getDecl()->getLocation(), 2751 diag::note_previous_definition); 2752 } 2753 } 2754 2755 // Make sure the result is of the correct type. 2756 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2757 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2758 2759 // (If global is requested for a definition, we always need to create a new 2760 // global, not just return a bitcast.) 2761 if (!IsForDefinition) 2762 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2763 } 2764 2765 auto AddrSpace = GetGlobalVarAddressSpace(D); 2766 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2767 2768 auto *GV = new llvm::GlobalVariable( 2769 getModule(), Ty->getElementType(), false, 2770 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2771 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2772 2773 // If we already created a global with the same mangled name (but different 2774 // type) before, take its name and remove it from its parent. 2775 if (Entry) { 2776 GV->takeName(Entry); 2777 2778 if (!Entry->use_empty()) { 2779 llvm::Constant *NewPtrForOldDecl = 2780 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2781 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2782 } 2783 2784 Entry->eraseFromParent(); 2785 } 2786 2787 // This is the first use or definition of a mangled name. If there is a 2788 // deferred decl with this name, remember that we need to emit it at the end 2789 // of the file. 2790 auto DDI = DeferredDecls.find(MangledName); 2791 if (DDI != DeferredDecls.end()) { 2792 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2793 // list, and remove it from DeferredDecls (since we don't need it anymore). 2794 addDeferredDeclToEmit(DDI->second); 2795 DeferredDecls.erase(DDI); 2796 } 2797 2798 // Handle things which are present even on external declarations. 2799 if (D) { 2800 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2801 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2802 2803 // FIXME: This code is overly simple and should be merged with other global 2804 // handling. 2805 GV->setConstant(isTypeConstant(D->getType(), false)); 2806 2807 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2808 2809 setLinkageForGV(GV, D); 2810 2811 if (D->getTLSKind()) { 2812 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2813 CXXThreadLocals.push_back(D); 2814 setTLSMode(GV, *D); 2815 } 2816 2817 setGVProperties(GV, D); 2818 2819 // If required by the ABI, treat declarations of static data members with 2820 // inline initializers as definitions. 2821 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2822 EmitGlobalVarDefinition(D); 2823 } 2824 2825 // Emit section information for extern variables. 2826 if (D->hasExternalStorage()) { 2827 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2828 GV->setSection(SA->getName()); 2829 } 2830 2831 // Handle XCore specific ABI requirements. 2832 if (getTriple().getArch() == llvm::Triple::xcore && 2833 D->getLanguageLinkage() == CLanguageLinkage && 2834 D->getType().isConstant(Context) && 2835 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2836 GV->setSection(".cp.rodata"); 2837 2838 // Check if we a have a const declaration with an initializer, we may be 2839 // able to emit it as available_externally to expose it's value to the 2840 // optimizer. 2841 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2842 D->getType().isConstQualified() && !GV->hasInitializer() && 2843 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2844 const auto *Record = 2845 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2846 bool HasMutableFields = Record && Record->hasMutableFields(); 2847 if (!HasMutableFields) { 2848 const VarDecl *InitDecl; 2849 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2850 if (InitExpr) { 2851 ConstantEmitter emitter(*this); 2852 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2853 if (Init) { 2854 auto *InitType = Init->getType(); 2855 if (GV->getType()->getElementType() != InitType) { 2856 // The type of the initializer does not match the definition. 2857 // This happens when an initializer has a different type from 2858 // the type of the global (because of padding at the end of a 2859 // structure for instance). 2860 GV->setName(StringRef()); 2861 // Make a new global with the correct type, this is now guaranteed 2862 // to work. 2863 auto *NewGV = cast<llvm::GlobalVariable>( 2864 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2865 2866 // Erase the old global, since it is no longer used. 2867 GV->eraseFromParent(); 2868 GV = NewGV; 2869 } else { 2870 GV->setInitializer(Init); 2871 GV->setConstant(true); 2872 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2873 } 2874 emitter.finalize(GV); 2875 } 2876 } 2877 } 2878 } 2879 } 2880 2881 LangAS ExpectedAS = 2882 D ? D->getType().getAddressSpace() 2883 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2884 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2885 Ty->getPointerAddressSpace()); 2886 if (AddrSpace != ExpectedAS) 2887 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2888 ExpectedAS, Ty); 2889 2890 return GV; 2891 } 2892 2893 llvm::Constant * 2894 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2895 ForDefinition_t IsForDefinition) { 2896 const Decl *D = GD.getDecl(); 2897 if (isa<CXXConstructorDecl>(D)) 2898 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2899 getFromCtorType(GD.getCtorType()), 2900 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2901 /*DontDefer=*/false, IsForDefinition); 2902 else if (isa<CXXDestructorDecl>(D)) 2903 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2904 getFromDtorType(GD.getDtorType()), 2905 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2906 /*DontDefer=*/false, IsForDefinition); 2907 else if (isa<CXXMethodDecl>(D)) { 2908 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2909 cast<CXXMethodDecl>(D)); 2910 auto Ty = getTypes().GetFunctionType(*FInfo); 2911 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2912 IsForDefinition); 2913 } else if (isa<FunctionDecl>(D)) { 2914 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2915 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2916 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2917 IsForDefinition); 2918 } else 2919 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2920 IsForDefinition); 2921 } 2922 2923 llvm::GlobalVariable * 2924 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2925 llvm::Type *Ty, 2926 llvm::GlobalValue::LinkageTypes Linkage) { 2927 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2928 llvm::GlobalVariable *OldGV = nullptr; 2929 2930 if (GV) { 2931 // Check if the variable has the right type. 2932 if (GV->getType()->getElementType() == Ty) 2933 return GV; 2934 2935 // Because C++ name mangling, the only way we can end up with an already 2936 // existing global with the same name is if it has been declared extern "C". 2937 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2938 OldGV = GV; 2939 } 2940 2941 // Create a new variable. 2942 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2943 Linkage, nullptr, Name); 2944 2945 if (OldGV) { 2946 // Replace occurrences of the old variable if needed. 2947 GV->takeName(OldGV); 2948 2949 if (!OldGV->use_empty()) { 2950 llvm::Constant *NewPtrForOldDecl = 2951 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2952 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2953 } 2954 2955 OldGV->eraseFromParent(); 2956 } 2957 2958 if (supportsCOMDAT() && GV->isWeakForLinker() && 2959 !GV->hasAvailableExternallyLinkage()) 2960 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2961 2962 return GV; 2963 } 2964 2965 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2966 /// given global variable. If Ty is non-null and if the global doesn't exist, 2967 /// then it will be created with the specified type instead of whatever the 2968 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 2969 /// that an actual global with type Ty will be returned, not conversion of a 2970 /// variable with the same mangled name but some other type. 2971 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2972 llvm::Type *Ty, 2973 ForDefinition_t IsForDefinition) { 2974 assert(D->hasGlobalStorage() && "Not a global variable"); 2975 QualType ASTTy = D->getType(); 2976 if (!Ty) 2977 Ty = getTypes().ConvertTypeForMem(ASTTy); 2978 2979 llvm::PointerType *PTy = 2980 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2981 2982 StringRef MangledName = getMangledName(D); 2983 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2984 } 2985 2986 /// CreateRuntimeVariable - Create a new runtime global variable with the 2987 /// specified type and name. 2988 llvm::Constant * 2989 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2990 StringRef Name) { 2991 auto *Ret = 2992 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2993 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 2994 return Ret; 2995 } 2996 2997 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2998 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2999 3000 StringRef MangledName = getMangledName(D); 3001 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3002 3003 // We already have a definition, not declaration, with the same mangled name. 3004 // Emitting of declaration is not required (and actually overwrites emitted 3005 // definition). 3006 if (GV && !GV->isDeclaration()) 3007 return; 3008 3009 // If we have not seen a reference to this variable yet, place it into the 3010 // deferred declarations table to be emitted if needed later. 3011 if (!MustBeEmitted(D) && !GV) { 3012 DeferredDecls[MangledName] = D; 3013 return; 3014 } 3015 3016 // The tentative definition is the only definition. 3017 EmitGlobalVarDefinition(D); 3018 } 3019 3020 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3021 return Context.toCharUnitsFromBits( 3022 getDataLayout().getTypeStoreSizeInBits(Ty)); 3023 } 3024 3025 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3026 LangAS AddrSpace = LangAS::Default; 3027 if (LangOpts.OpenCL) { 3028 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3029 assert(AddrSpace == LangAS::opencl_global || 3030 AddrSpace == LangAS::opencl_constant || 3031 AddrSpace == LangAS::opencl_local || 3032 AddrSpace >= LangAS::FirstTargetAddressSpace); 3033 return AddrSpace; 3034 } 3035 3036 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3037 if (D && D->hasAttr<CUDAConstantAttr>()) 3038 return LangAS::cuda_constant; 3039 else if (D && D->hasAttr<CUDASharedAttr>()) 3040 return LangAS::cuda_shared; 3041 else 3042 return LangAS::cuda_device; 3043 } 3044 3045 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3046 } 3047 3048 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3049 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3050 if (LangOpts.OpenCL) 3051 return LangAS::opencl_constant; 3052 if (auto AS = getTarget().getConstantAddressSpace()) 3053 return AS.getValue(); 3054 return LangAS::Default; 3055 } 3056 3057 // In address space agnostic languages, string literals are in default address 3058 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3059 // emitted in constant address space in LLVM IR. To be consistent with other 3060 // parts of AST, string literal global variables in constant address space 3061 // need to be casted to default address space before being put into address 3062 // map and referenced by other part of CodeGen. 3063 // In OpenCL, string literals are in constant address space in AST, therefore 3064 // they should not be casted to default address space. 3065 static llvm::Constant * 3066 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3067 llvm::GlobalVariable *GV) { 3068 llvm::Constant *Cast = GV; 3069 if (!CGM.getLangOpts().OpenCL) { 3070 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3071 if (AS != LangAS::Default) 3072 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3073 CGM, GV, AS.getValue(), LangAS::Default, 3074 GV->getValueType()->getPointerTo( 3075 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3076 } 3077 } 3078 return Cast; 3079 } 3080 3081 template<typename SomeDecl> 3082 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3083 llvm::GlobalValue *GV) { 3084 if (!getLangOpts().CPlusPlus) 3085 return; 3086 3087 // Must have 'used' attribute, or else inline assembly can't rely on 3088 // the name existing. 3089 if (!D->template hasAttr<UsedAttr>()) 3090 return; 3091 3092 // Must have internal linkage and an ordinary name. 3093 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3094 return; 3095 3096 // Must be in an extern "C" context. Entities declared directly within 3097 // a record are not extern "C" even if the record is in such a context. 3098 const SomeDecl *First = D->getFirstDecl(); 3099 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3100 return; 3101 3102 // OK, this is an internal linkage entity inside an extern "C" linkage 3103 // specification. Make a note of that so we can give it the "expected" 3104 // mangled name if nothing else is using that name. 3105 std::pair<StaticExternCMap::iterator, bool> R = 3106 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3107 3108 // If we have multiple internal linkage entities with the same name 3109 // in extern "C" regions, none of them gets that name. 3110 if (!R.second) 3111 R.first->second = nullptr; 3112 } 3113 3114 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3115 if (!CGM.supportsCOMDAT()) 3116 return false; 3117 3118 if (D.hasAttr<SelectAnyAttr>()) 3119 return true; 3120 3121 GVALinkage Linkage; 3122 if (auto *VD = dyn_cast<VarDecl>(&D)) 3123 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3124 else 3125 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3126 3127 switch (Linkage) { 3128 case GVA_Internal: 3129 case GVA_AvailableExternally: 3130 case GVA_StrongExternal: 3131 return false; 3132 case GVA_DiscardableODR: 3133 case GVA_StrongODR: 3134 return true; 3135 } 3136 llvm_unreachable("No such linkage"); 3137 } 3138 3139 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3140 llvm::GlobalObject &GO) { 3141 if (!shouldBeInCOMDAT(*this, D)) 3142 return; 3143 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3144 } 3145 3146 /// Pass IsTentative as true if you want to create a tentative definition. 3147 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3148 bool IsTentative) { 3149 // OpenCL global variables of sampler type are translated to function calls, 3150 // therefore no need to be translated. 3151 QualType ASTTy = D->getType(); 3152 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3153 return; 3154 3155 // If this is OpenMP device, check if it is legal to emit this global 3156 // normally. 3157 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3158 OpenMPRuntime->emitTargetGlobalVariable(D)) 3159 return; 3160 3161 llvm::Constant *Init = nullptr; 3162 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3163 bool NeedsGlobalCtor = false; 3164 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3165 3166 const VarDecl *InitDecl; 3167 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3168 3169 Optional<ConstantEmitter> emitter; 3170 3171 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3172 // as part of their declaration." Sema has already checked for 3173 // error cases, so we just need to set Init to UndefValue. 3174 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3175 D->hasAttr<CUDASharedAttr>()) 3176 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3177 else if (!InitExpr) { 3178 // This is a tentative definition; tentative definitions are 3179 // implicitly initialized with { 0 }. 3180 // 3181 // Note that tentative definitions are only emitted at the end of 3182 // a translation unit, so they should never have incomplete 3183 // type. In addition, EmitTentativeDefinition makes sure that we 3184 // never attempt to emit a tentative definition if a real one 3185 // exists. A use may still exists, however, so we still may need 3186 // to do a RAUW. 3187 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3188 Init = EmitNullConstant(D->getType()); 3189 } else { 3190 initializedGlobalDecl = GlobalDecl(D); 3191 emitter.emplace(*this); 3192 Init = emitter->tryEmitForInitializer(*InitDecl); 3193 3194 if (!Init) { 3195 QualType T = InitExpr->getType(); 3196 if (D->getType()->isReferenceType()) 3197 T = D->getType(); 3198 3199 if (getLangOpts().CPlusPlus) { 3200 Init = EmitNullConstant(T); 3201 NeedsGlobalCtor = true; 3202 } else { 3203 ErrorUnsupported(D, "static initializer"); 3204 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3205 } 3206 } else { 3207 // We don't need an initializer, so remove the entry for the delayed 3208 // initializer position (just in case this entry was delayed) if we 3209 // also don't need to register a destructor. 3210 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3211 DelayedCXXInitPosition.erase(D); 3212 } 3213 } 3214 3215 llvm::Type* InitType = Init->getType(); 3216 llvm::Constant *Entry = 3217 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3218 3219 // Strip off a bitcast if we got one back. 3220 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3221 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3222 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3223 // All zero index gep. 3224 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3225 Entry = CE->getOperand(0); 3226 } 3227 3228 // Entry is now either a Function or GlobalVariable. 3229 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3230 3231 // We have a definition after a declaration with the wrong type. 3232 // We must make a new GlobalVariable* and update everything that used OldGV 3233 // (a declaration or tentative definition) with the new GlobalVariable* 3234 // (which will be a definition). 3235 // 3236 // This happens if there is a prototype for a global (e.g. 3237 // "extern int x[];") and then a definition of a different type (e.g. 3238 // "int x[10];"). This also happens when an initializer has a different type 3239 // from the type of the global (this happens with unions). 3240 if (!GV || GV->getType()->getElementType() != InitType || 3241 GV->getType()->getAddressSpace() != 3242 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3243 3244 // Move the old entry aside so that we'll create a new one. 3245 Entry->setName(StringRef()); 3246 3247 // Make a new global with the correct type, this is now guaranteed to work. 3248 GV = cast<llvm::GlobalVariable>( 3249 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3250 3251 // Replace all uses of the old global with the new global 3252 llvm::Constant *NewPtrForOldDecl = 3253 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3254 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3255 3256 // Erase the old global, since it is no longer used. 3257 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3258 } 3259 3260 MaybeHandleStaticInExternC(D, GV); 3261 3262 if (D->hasAttr<AnnotateAttr>()) 3263 AddGlobalAnnotations(D, GV); 3264 3265 // Set the llvm linkage type as appropriate. 3266 llvm::GlobalValue::LinkageTypes Linkage = 3267 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3268 3269 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3270 // the device. [...]" 3271 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3272 // __device__, declares a variable that: [...] 3273 // Is accessible from all the threads within the grid and from the host 3274 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3275 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3276 if (GV && LangOpts.CUDA) { 3277 if (LangOpts.CUDAIsDevice) { 3278 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3279 GV->setExternallyInitialized(true); 3280 } else { 3281 // Host-side shadows of external declarations of device-side 3282 // global variables become internal definitions. These have to 3283 // be internal in order to prevent name conflicts with global 3284 // host variables with the same name in a different TUs. 3285 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3286 Linkage = llvm::GlobalValue::InternalLinkage; 3287 3288 // Shadow variables and their properties must be registered 3289 // with CUDA runtime. 3290 unsigned Flags = 0; 3291 if (!D->hasDefinition()) 3292 Flags |= CGCUDARuntime::ExternDeviceVar; 3293 if (D->hasAttr<CUDAConstantAttr>()) 3294 Flags |= CGCUDARuntime::ConstantDeviceVar; 3295 getCUDARuntime().registerDeviceVar(*GV, Flags); 3296 } else if (D->hasAttr<CUDASharedAttr>()) 3297 // __shared__ variables are odd. Shadows do get created, but 3298 // they are not registered with the CUDA runtime, so they 3299 // can't really be used to access their device-side 3300 // counterparts. It's not clear yet whether it's nvcc's bug or 3301 // a feature, but we've got to do the same for compatibility. 3302 Linkage = llvm::GlobalValue::InternalLinkage; 3303 } 3304 } 3305 3306 GV->setInitializer(Init); 3307 if (emitter) emitter->finalize(GV); 3308 3309 // If it is safe to mark the global 'constant', do so now. 3310 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3311 isTypeConstant(D->getType(), true)); 3312 3313 // If it is in a read-only section, mark it 'constant'. 3314 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3315 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3316 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3317 GV->setConstant(true); 3318 } 3319 3320 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3321 3322 3323 // On Darwin, if the normal linkage of a C++ thread_local variable is 3324 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3325 // copies within a linkage unit; otherwise, the backing variable has 3326 // internal linkage and all accesses should just be calls to the 3327 // Itanium-specified entry point, which has the normal linkage of the 3328 // variable. This is to preserve the ability to change the implementation 3329 // behind the scenes. 3330 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3331 Context.getTargetInfo().getTriple().isOSDarwin() && 3332 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3333 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3334 Linkage = llvm::GlobalValue::InternalLinkage; 3335 3336 GV->setLinkage(Linkage); 3337 if (D->hasAttr<DLLImportAttr>()) 3338 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3339 else if (D->hasAttr<DLLExportAttr>()) 3340 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3341 else 3342 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3343 3344 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3345 // common vars aren't constant even if declared const. 3346 GV->setConstant(false); 3347 // Tentative definition of global variables may be initialized with 3348 // non-zero null pointers. In this case they should have weak linkage 3349 // since common linkage must have zero initializer and must not have 3350 // explicit section therefore cannot have non-zero initial value. 3351 if (!GV->getInitializer()->isNullValue()) 3352 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3353 } 3354 3355 setNonAliasAttributes(D, GV); 3356 3357 if (D->getTLSKind() && !GV->isThreadLocal()) { 3358 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3359 CXXThreadLocals.push_back(D); 3360 setTLSMode(GV, *D); 3361 } 3362 3363 maybeSetTrivialComdat(*D, *GV); 3364 3365 // Emit the initializer function if necessary. 3366 if (NeedsGlobalCtor || NeedsGlobalDtor) 3367 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3368 3369 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3370 3371 // Emit global variable debug information. 3372 if (CGDebugInfo *DI = getModuleDebugInfo()) 3373 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3374 DI->EmitGlobalVariable(GV, D); 3375 } 3376 3377 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3378 CodeGenModule &CGM, const VarDecl *D, 3379 bool NoCommon) { 3380 // Don't give variables common linkage if -fno-common was specified unless it 3381 // was overridden by a NoCommon attribute. 3382 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3383 return true; 3384 3385 // C11 6.9.2/2: 3386 // A declaration of an identifier for an object that has file scope without 3387 // an initializer, and without a storage-class specifier or with the 3388 // storage-class specifier static, constitutes a tentative definition. 3389 if (D->getInit() || D->hasExternalStorage()) 3390 return true; 3391 3392 // A variable cannot be both common and exist in a section. 3393 if (D->hasAttr<SectionAttr>()) 3394 return true; 3395 3396 // A variable cannot be both common and exist in a section. 3397 // We don't try to determine which is the right section in the front-end. 3398 // If no specialized section name is applicable, it will resort to default. 3399 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3400 D->hasAttr<PragmaClangDataSectionAttr>() || 3401 D->hasAttr<PragmaClangRodataSectionAttr>()) 3402 return true; 3403 3404 // Thread local vars aren't considered common linkage. 3405 if (D->getTLSKind()) 3406 return true; 3407 3408 // Tentative definitions marked with WeakImportAttr are true definitions. 3409 if (D->hasAttr<WeakImportAttr>()) 3410 return true; 3411 3412 // A variable cannot be both common and exist in a comdat. 3413 if (shouldBeInCOMDAT(CGM, *D)) 3414 return true; 3415 3416 // Declarations with a required alignment do not have common linkage in MSVC 3417 // mode. 3418 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3419 if (D->hasAttr<AlignedAttr>()) 3420 return true; 3421 QualType VarType = D->getType(); 3422 if (Context.isAlignmentRequired(VarType)) 3423 return true; 3424 3425 if (const auto *RT = VarType->getAs<RecordType>()) { 3426 const RecordDecl *RD = RT->getDecl(); 3427 for (const FieldDecl *FD : RD->fields()) { 3428 if (FD->isBitField()) 3429 continue; 3430 if (FD->hasAttr<AlignedAttr>()) 3431 return true; 3432 if (Context.isAlignmentRequired(FD->getType())) 3433 return true; 3434 } 3435 } 3436 } 3437 3438 return false; 3439 } 3440 3441 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3442 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3443 if (Linkage == GVA_Internal) 3444 return llvm::Function::InternalLinkage; 3445 3446 if (D->hasAttr<WeakAttr>()) { 3447 if (IsConstantVariable) 3448 return llvm::GlobalVariable::WeakODRLinkage; 3449 else 3450 return llvm::GlobalVariable::WeakAnyLinkage; 3451 } 3452 3453 // We are guaranteed to have a strong definition somewhere else, 3454 // so we can use available_externally linkage. 3455 if (Linkage == GVA_AvailableExternally) 3456 return llvm::GlobalValue::AvailableExternallyLinkage; 3457 3458 // Note that Apple's kernel linker doesn't support symbol 3459 // coalescing, so we need to avoid linkonce and weak linkages there. 3460 // Normally, this means we just map to internal, but for explicit 3461 // instantiations we'll map to external. 3462 3463 // In C++, the compiler has to emit a definition in every translation unit 3464 // that references the function. We should use linkonce_odr because 3465 // a) if all references in this translation unit are optimized away, we 3466 // don't need to codegen it. b) if the function persists, it needs to be 3467 // merged with other definitions. c) C++ has the ODR, so we know the 3468 // definition is dependable. 3469 if (Linkage == GVA_DiscardableODR) 3470 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3471 : llvm::Function::InternalLinkage; 3472 3473 // An explicit instantiation of a template has weak linkage, since 3474 // explicit instantiations can occur in multiple translation units 3475 // and must all be equivalent. However, we are not allowed to 3476 // throw away these explicit instantiations. 3477 // 3478 // We don't currently support CUDA device code spread out across multiple TUs, 3479 // so say that CUDA templates are either external (for kernels) or internal. 3480 // This lets llvm perform aggressive inter-procedural optimizations. 3481 if (Linkage == GVA_StrongODR) { 3482 if (Context.getLangOpts().AppleKext) 3483 return llvm::Function::ExternalLinkage; 3484 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3485 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3486 : llvm::Function::InternalLinkage; 3487 return llvm::Function::WeakODRLinkage; 3488 } 3489 3490 // C++ doesn't have tentative definitions and thus cannot have common 3491 // linkage. 3492 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3493 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3494 CodeGenOpts.NoCommon)) 3495 return llvm::GlobalVariable::CommonLinkage; 3496 3497 // selectany symbols are externally visible, so use weak instead of 3498 // linkonce. MSVC optimizes away references to const selectany globals, so 3499 // all definitions should be the same and ODR linkage should be used. 3500 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3501 if (D->hasAttr<SelectAnyAttr>()) 3502 return llvm::GlobalVariable::WeakODRLinkage; 3503 3504 // Otherwise, we have strong external linkage. 3505 assert(Linkage == GVA_StrongExternal); 3506 return llvm::GlobalVariable::ExternalLinkage; 3507 } 3508 3509 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3510 const VarDecl *VD, bool IsConstant) { 3511 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3512 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3513 } 3514 3515 /// Replace the uses of a function that was declared with a non-proto type. 3516 /// We want to silently drop extra arguments from call sites 3517 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3518 llvm::Function *newFn) { 3519 // Fast path. 3520 if (old->use_empty()) return; 3521 3522 llvm::Type *newRetTy = newFn->getReturnType(); 3523 SmallVector<llvm::Value*, 4> newArgs; 3524 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3525 3526 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3527 ui != ue; ) { 3528 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3529 llvm::User *user = use->getUser(); 3530 3531 // Recognize and replace uses of bitcasts. Most calls to 3532 // unprototyped functions will use bitcasts. 3533 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3534 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3535 replaceUsesOfNonProtoConstant(bitcast, newFn); 3536 continue; 3537 } 3538 3539 // Recognize calls to the function. 3540 llvm::CallSite callSite(user); 3541 if (!callSite) continue; 3542 if (!callSite.isCallee(&*use)) continue; 3543 3544 // If the return types don't match exactly, then we can't 3545 // transform this call unless it's dead. 3546 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3547 continue; 3548 3549 // Get the call site's attribute list. 3550 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3551 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3552 3553 // If the function was passed too few arguments, don't transform. 3554 unsigned newNumArgs = newFn->arg_size(); 3555 if (callSite.arg_size() < newNumArgs) continue; 3556 3557 // If extra arguments were passed, we silently drop them. 3558 // If any of the types mismatch, we don't transform. 3559 unsigned argNo = 0; 3560 bool dontTransform = false; 3561 for (llvm::Argument &A : newFn->args()) { 3562 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3563 dontTransform = true; 3564 break; 3565 } 3566 3567 // Add any parameter attributes. 3568 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3569 argNo++; 3570 } 3571 if (dontTransform) 3572 continue; 3573 3574 // Okay, we can transform this. Create the new call instruction and copy 3575 // over the required information. 3576 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3577 3578 // Copy over any operand bundles. 3579 callSite.getOperandBundlesAsDefs(newBundles); 3580 3581 llvm::CallSite newCall; 3582 if (callSite.isCall()) { 3583 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3584 callSite.getInstruction()); 3585 } else { 3586 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3587 newCall = llvm::InvokeInst::Create(newFn, 3588 oldInvoke->getNormalDest(), 3589 oldInvoke->getUnwindDest(), 3590 newArgs, newBundles, "", 3591 callSite.getInstruction()); 3592 } 3593 newArgs.clear(); // for the next iteration 3594 3595 if (!newCall->getType()->isVoidTy()) 3596 newCall->takeName(callSite.getInstruction()); 3597 newCall.setAttributes(llvm::AttributeList::get( 3598 newFn->getContext(), oldAttrs.getFnAttributes(), 3599 oldAttrs.getRetAttributes(), newArgAttrs)); 3600 newCall.setCallingConv(callSite.getCallingConv()); 3601 3602 // Finally, remove the old call, replacing any uses with the new one. 3603 if (!callSite->use_empty()) 3604 callSite->replaceAllUsesWith(newCall.getInstruction()); 3605 3606 // Copy debug location attached to CI. 3607 if (callSite->getDebugLoc()) 3608 newCall->setDebugLoc(callSite->getDebugLoc()); 3609 3610 callSite->eraseFromParent(); 3611 } 3612 } 3613 3614 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3615 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3616 /// existing call uses of the old function in the module, this adjusts them to 3617 /// call the new function directly. 3618 /// 3619 /// This is not just a cleanup: the always_inline pass requires direct calls to 3620 /// functions to be able to inline them. If there is a bitcast in the way, it 3621 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3622 /// run at -O0. 3623 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3624 llvm::Function *NewFn) { 3625 // If we're redefining a global as a function, don't transform it. 3626 if (!isa<llvm::Function>(Old)) return; 3627 3628 replaceUsesOfNonProtoConstant(Old, NewFn); 3629 } 3630 3631 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3632 auto DK = VD->isThisDeclarationADefinition(); 3633 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3634 return; 3635 3636 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3637 // If we have a definition, this might be a deferred decl. If the 3638 // instantiation is explicit, make sure we emit it at the end. 3639 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3640 GetAddrOfGlobalVar(VD); 3641 3642 EmitTopLevelDecl(VD); 3643 } 3644 3645 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3646 llvm::GlobalValue *GV) { 3647 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3648 3649 // Compute the function info and LLVM type. 3650 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3651 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3652 3653 // Get or create the prototype for the function. 3654 if (!GV || (GV->getType()->getElementType() != Ty)) 3655 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3656 /*DontDefer=*/true, 3657 ForDefinition)); 3658 3659 // Already emitted. 3660 if (!GV->isDeclaration()) 3661 return; 3662 3663 // We need to set linkage and visibility on the function before 3664 // generating code for it because various parts of IR generation 3665 // want to propagate this information down (e.g. to local static 3666 // declarations). 3667 auto *Fn = cast<llvm::Function>(GV); 3668 setFunctionLinkage(GD, Fn); 3669 3670 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3671 setGVProperties(Fn, GD); 3672 3673 MaybeHandleStaticInExternC(D, Fn); 3674 3675 3676 maybeSetTrivialComdat(*D, *Fn); 3677 3678 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3679 3680 setNonAliasAttributes(GD, Fn); 3681 SetLLVMFunctionAttributesForDefinition(D, Fn); 3682 3683 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3684 AddGlobalCtor(Fn, CA->getPriority()); 3685 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3686 AddGlobalDtor(Fn, DA->getPriority()); 3687 if (D->hasAttr<AnnotateAttr>()) 3688 AddGlobalAnnotations(D, Fn); 3689 } 3690 3691 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3692 const auto *D = cast<ValueDecl>(GD.getDecl()); 3693 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3694 assert(AA && "Not an alias?"); 3695 3696 StringRef MangledName = getMangledName(GD); 3697 3698 if (AA->getAliasee() == MangledName) { 3699 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3700 return; 3701 } 3702 3703 // If there is a definition in the module, then it wins over the alias. 3704 // This is dubious, but allow it to be safe. Just ignore the alias. 3705 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3706 if (Entry && !Entry->isDeclaration()) 3707 return; 3708 3709 Aliases.push_back(GD); 3710 3711 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3712 3713 // Create a reference to the named value. This ensures that it is emitted 3714 // if a deferred decl. 3715 llvm::Constant *Aliasee; 3716 if (isa<llvm::FunctionType>(DeclTy)) 3717 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3718 /*ForVTable=*/false); 3719 else 3720 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3721 llvm::PointerType::getUnqual(DeclTy), 3722 /*D=*/nullptr); 3723 3724 // Create the new alias itself, but don't set a name yet. 3725 auto *GA = llvm::GlobalAlias::create( 3726 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3727 3728 if (Entry) { 3729 if (GA->getAliasee() == Entry) { 3730 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3731 return; 3732 } 3733 3734 assert(Entry->isDeclaration()); 3735 3736 // If there is a declaration in the module, then we had an extern followed 3737 // by the alias, as in: 3738 // extern int test6(); 3739 // ... 3740 // int test6() __attribute__((alias("test7"))); 3741 // 3742 // Remove it and replace uses of it with the alias. 3743 GA->takeName(Entry); 3744 3745 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3746 Entry->getType())); 3747 Entry->eraseFromParent(); 3748 } else { 3749 GA->setName(MangledName); 3750 } 3751 3752 // Set attributes which are particular to an alias; this is a 3753 // specialization of the attributes which may be set on a global 3754 // variable/function. 3755 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3756 D->isWeakImported()) { 3757 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3758 } 3759 3760 if (const auto *VD = dyn_cast<VarDecl>(D)) 3761 if (VD->getTLSKind()) 3762 setTLSMode(GA, *VD); 3763 3764 SetCommonAttributes(GD, GA); 3765 } 3766 3767 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3768 const auto *D = cast<ValueDecl>(GD.getDecl()); 3769 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3770 assert(IFA && "Not an ifunc?"); 3771 3772 StringRef MangledName = getMangledName(GD); 3773 3774 if (IFA->getResolver() == MangledName) { 3775 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3776 return; 3777 } 3778 3779 // Report an error if some definition overrides ifunc. 3780 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3781 if (Entry && !Entry->isDeclaration()) { 3782 GlobalDecl OtherGD; 3783 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3784 DiagnosedConflictingDefinitions.insert(GD).second) { 3785 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 3786 << MangledName; 3787 Diags.Report(OtherGD.getDecl()->getLocation(), 3788 diag::note_previous_definition); 3789 } 3790 return; 3791 } 3792 3793 Aliases.push_back(GD); 3794 3795 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3796 llvm::Constant *Resolver = 3797 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3798 /*ForVTable=*/false); 3799 llvm::GlobalIFunc *GIF = 3800 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3801 "", Resolver, &getModule()); 3802 if (Entry) { 3803 if (GIF->getResolver() == Entry) { 3804 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3805 return; 3806 } 3807 assert(Entry->isDeclaration()); 3808 3809 // If there is a declaration in the module, then we had an extern followed 3810 // by the ifunc, as in: 3811 // extern int test(); 3812 // ... 3813 // int test() __attribute__((ifunc("resolver"))); 3814 // 3815 // Remove it and replace uses of it with the ifunc. 3816 GIF->takeName(Entry); 3817 3818 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3819 Entry->getType())); 3820 Entry->eraseFromParent(); 3821 } else 3822 GIF->setName(MangledName); 3823 3824 SetCommonAttributes(GD, GIF); 3825 } 3826 3827 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3828 ArrayRef<llvm::Type*> Tys) { 3829 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3830 Tys); 3831 } 3832 3833 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3834 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3835 const StringLiteral *Literal, bool TargetIsLSB, 3836 bool &IsUTF16, unsigned &StringLength) { 3837 StringRef String = Literal->getString(); 3838 unsigned NumBytes = String.size(); 3839 3840 // Check for simple case. 3841 if (!Literal->containsNonAsciiOrNull()) { 3842 StringLength = NumBytes; 3843 return *Map.insert(std::make_pair(String, nullptr)).first; 3844 } 3845 3846 // Otherwise, convert the UTF8 literals into a string of shorts. 3847 IsUTF16 = true; 3848 3849 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3850 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3851 llvm::UTF16 *ToPtr = &ToBuf[0]; 3852 3853 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3854 ToPtr + NumBytes, llvm::strictConversion); 3855 3856 // ConvertUTF8toUTF16 returns the length in ToPtr. 3857 StringLength = ToPtr - &ToBuf[0]; 3858 3859 // Add an explicit null. 3860 *ToPtr = 0; 3861 return *Map.insert(std::make_pair( 3862 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3863 (StringLength + 1) * 2), 3864 nullptr)).first; 3865 } 3866 3867 ConstantAddress 3868 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3869 unsigned StringLength = 0; 3870 bool isUTF16 = false; 3871 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3872 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3873 getDataLayout().isLittleEndian(), isUTF16, 3874 StringLength); 3875 3876 if (auto *C = Entry.second) 3877 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3878 3879 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3880 llvm::Constant *Zeros[] = { Zero, Zero }; 3881 3882 // If we don't already have it, get __CFConstantStringClassReference. 3883 if (!CFConstantStringClassRef) { 3884 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3885 Ty = llvm::ArrayType::get(Ty, 0); 3886 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 3887 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 3888 3889 if (getTriple().isOSBinFormatCOFF()) { 3890 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3891 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3892 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3893 3894 const VarDecl *VD = nullptr; 3895 for (const auto &Result : DC->lookup(&II)) 3896 if ((VD = dyn_cast<VarDecl>(Result))) 3897 break; 3898 3899 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3900 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3901 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3902 } else { 3903 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3904 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3905 } 3906 } 3907 setDSOLocal(GV); 3908 3909 // Decay array -> ptr 3910 CFConstantStringClassRef = 3911 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3912 } 3913 3914 QualType CFTy = getContext().getCFConstantStringType(); 3915 3916 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3917 3918 ConstantInitBuilder Builder(*this); 3919 auto Fields = Builder.beginStruct(STy); 3920 3921 // Class pointer. 3922 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3923 3924 // Flags. 3925 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3926 3927 // String pointer. 3928 llvm::Constant *C = nullptr; 3929 if (isUTF16) { 3930 auto Arr = llvm::makeArrayRef( 3931 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3932 Entry.first().size() / 2); 3933 C = llvm::ConstantDataArray::get(VMContext, Arr); 3934 } else { 3935 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3936 } 3937 3938 // Note: -fwritable-strings doesn't make the backing store strings of 3939 // CFStrings writable. (See <rdar://problem/10657500>) 3940 auto *GV = 3941 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3942 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3943 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3944 // Don't enforce the target's minimum global alignment, since the only use 3945 // of the string is via this class initializer. 3946 CharUnits Align = isUTF16 3947 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3948 : getContext().getTypeAlignInChars(getContext().CharTy); 3949 GV->setAlignment(Align.getQuantity()); 3950 3951 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3952 // Without it LLVM can merge the string with a non unnamed_addr one during 3953 // LTO. Doing that changes the section it ends in, which surprises ld64. 3954 if (getTriple().isOSBinFormatMachO()) 3955 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3956 : "__TEXT,__cstring,cstring_literals"); 3957 3958 // String. 3959 llvm::Constant *Str = 3960 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3961 3962 if (isUTF16) 3963 // Cast the UTF16 string to the correct type. 3964 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3965 Fields.add(Str); 3966 3967 // String length. 3968 auto Ty = getTypes().ConvertType(getContext().LongTy); 3969 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3970 3971 CharUnits Alignment = getPointerAlign(); 3972 3973 // The struct. 3974 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3975 /*isConstant=*/false, 3976 llvm::GlobalVariable::PrivateLinkage); 3977 switch (getTriple().getObjectFormat()) { 3978 case llvm::Triple::UnknownObjectFormat: 3979 llvm_unreachable("unknown file format"); 3980 case llvm::Triple::COFF: 3981 case llvm::Triple::ELF: 3982 case llvm::Triple::Wasm: 3983 GV->setSection("cfstring"); 3984 break; 3985 case llvm::Triple::MachO: 3986 GV->setSection("__DATA,__cfstring"); 3987 break; 3988 } 3989 Entry.second = GV; 3990 3991 return ConstantAddress(GV, Alignment); 3992 } 3993 3994 bool CodeGenModule::getExpressionLocationsEnabled() const { 3995 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3996 } 3997 3998 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3999 if (ObjCFastEnumerationStateType.isNull()) { 4000 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4001 D->startDefinition(); 4002 4003 QualType FieldTypes[] = { 4004 Context.UnsignedLongTy, 4005 Context.getPointerType(Context.getObjCIdType()), 4006 Context.getPointerType(Context.UnsignedLongTy), 4007 Context.getConstantArrayType(Context.UnsignedLongTy, 4008 llvm::APInt(32, 5), ArrayType::Normal, 0) 4009 }; 4010 4011 for (size_t i = 0; i < 4; ++i) { 4012 FieldDecl *Field = FieldDecl::Create(Context, 4013 D, 4014 SourceLocation(), 4015 SourceLocation(), nullptr, 4016 FieldTypes[i], /*TInfo=*/nullptr, 4017 /*BitWidth=*/nullptr, 4018 /*Mutable=*/false, 4019 ICIS_NoInit); 4020 Field->setAccess(AS_public); 4021 D->addDecl(Field); 4022 } 4023 4024 D->completeDefinition(); 4025 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4026 } 4027 4028 return ObjCFastEnumerationStateType; 4029 } 4030 4031 llvm::Constant * 4032 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4033 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4034 4035 // Don't emit it as the address of the string, emit the string data itself 4036 // as an inline array. 4037 if (E->getCharByteWidth() == 1) { 4038 SmallString<64> Str(E->getString()); 4039 4040 // Resize the string to the right size, which is indicated by its type. 4041 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4042 Str.resize(CAT->getSize().getZExtValue()); 4043 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4044 } 4045 4046 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4047 llvm::Type *ElemTy = AType->getElementType(); 4048 unsigned NumElements = AType->getNumElements(); 4049 4050 // Wide strings have either 2-byte or 4-byte elements. 4051 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4052 SmallVector<uint16_t, 32> Elements; 4053 Elements.reserve(NumElements); 4054 4055 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4056 Elements.push_back(E->getCodeUnit(i)); 4057 Elements.resize(NumElements); 4058 return llvm::ConstantDataArray::get(VMContext, Elements); 4059 } 4060 4061 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4062 SmallVector<uint32_t, 32> Elements; 4063 Elements.reserve(NumElements); 4064 4065 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4066 Elements.push_back(E->getCodeUnit(i)); 4067 Elements.resize(NumElements); 4068 return llvm::ConstantDataArray::get(VMContext, Elements); 4069 } 4070 4071 static llvm::GlobalVariable * 4072 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4073 CodeGenModule &CGM, StringRef GlobalName, 4074 CharUnits Alignment) { 4075 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4076 CGM.getStringLiteralAddressSpace()); 4077 4078 llvm::Module &M = CGM.getModule(); 4079 // Create a global variable for this string 4080 auto *GV = new llvm::GlobalVariable( 4081 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4082 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4083 GV->setAlignment(Alignment.getQuantity()); 4084 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4085 if (GV->isWeakForLinker()) { 4086 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4087 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4088 } 4089 CGM.setDSOLocal(GV); 4090 4091 return GV; 4092 } 4093 4094 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4095 /// constant array for the given string literal. 4096 ConstantAddress 4097 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4098 StringRef Name) { 4099 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4100 4101 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4102 llvm::GlobalVariable **Entry = nullptr; 4103 if (!LangOpts.WritableStrings) { 4104 Entry = &ConstantStringMap[C]; 4105 if (auto GV = *Entry) { 4106 if (Alignment.getQuantity() > GV->getAlignment()) 4107 GV->setAlignment(Alignment.getQuantity()); 4108 return ConstantAddress(GV, Alignment); 4109 } 4110 } 4111 4112 SmallString<256> MangledNameBuffer; 4113 StringRef GlobalVariableName; 4114 llvm::GlobalValue::LinkageTypes LT; 4115 4116 // Mangle the string literal if that's how the ABI merges duplicate strings. 4117 // Don't do it if they are writable, since we don't want writes in one TU to 4118 // affect strings in another. 4119 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4120 !LangOpts.WritableStrings) { 4121 llvm::raw_svector_ostream Out(MangledNameBuffer); 4122 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4123 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4124 GlobalVariableName = MangledNameBuffer; 4125 } else { 4126 LT = llvm::GlobalValue::PrivateLinkage; 4127 GlobalVariableName = Name; 4128 } 4129 4130 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4131 if (Entry) 4132 *Entry = GV; 4133 4134 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4135 QualType()); 4136 4137 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4138 Alignment); 4139 } 4140 4141 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4142 /// array for the given ObjCEncodeExpr node. 4143 ConstantAddress 4144 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4145 std::string Str; 4146 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4147 4148 return GetAddrOfConstantCString(Str); 4149 } 4150 4151 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4152 /// the literal and a terminating '\0' character. 4153 /// The result has pointer to array type. 4154 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4155 const std::string &Str, const char *GlobalName) { 4156 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4157 CharUnits Alignment = 4158 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4159 4160 llvm::Constant *C = 4161 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4162 4163 // Don't share any string literals if strings aren't constant. 4164 llvm::GlobalVariable **Entry = nullptr; 4165 if (!LangOpts.WritableStrings) { 4166 Entry = &ConstantStringMap[C]; 4167 if (auto GV = *Entry) { 4168 if (Alignment.getQuantity() > GV->getAlignment()) 4169 GV->setAlignment(Alignment.getQuantity()); 4170 return ConstantAddress(GV, Alignment); 4171 } 4172 } 4173 4174 // Get the default prefix if a name wasn't specified. 4175 if (!GlobalName) 4176 GlobalName = ".str"; 4177 // Create a global variable for this. 4178 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4179 GlobalName, Alignment); 4180 if (Entry) 4181 *Entry = GV; 4182 4183 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4184 Alignment); 4185 } 4186 4187 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4188 const MaterializeTemporaryExpr *E, const Expr *Init) { 4189 assert((E->getStorageDuration() == SD_Static || 4190 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4191 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4192 4193 // If we're not materializing a subobject of the temporary, keep the 4194 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4195 QualType MaterializedType = Init->getType(); 4196 if (Init == E->GetTemporaryExpr()) 4197 MaterializedType = E->getType(); 4198 4199 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4200 4201 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4202 return ConstantAddress(Slot, Align); 4203 4204 // FIXME: If an externally-visible declaration extends multiple temporaries, 4205 // we need to give each temporary the same name in every translation unit (and 4206 // we also need to make the temporaries externally-visible). 4207 SmallString<256> Name; 4208 llvm::raw_svector_ostream Out(Name); 4209 getCXXABI().getMangleContext().mangleReferenceTemporary( 4210 VD, E->getManglingNumber(), Out); 4211 4212 APValue *Value = nullptr; 4213 if (E->getStorageDuration() == SD_Static) { 4214 // We might have a cached constant initializer for this temporary. Note 4215 // that this might have a different value from the value computed by 4216 // evaluating the initializer if the surrounding constant expression 4217 // modifies the temporary. 4218 Value = getContext().getMaterializedTemporaryValue(E, false); 4219 if (Value && Value->isUninit()) 4220 Value = nullptr; 4221 } 4222 4223 // Try evaluating it now, it might have a constant initializer. 4224 Expr::EvalResult EvalResult; 4225 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4226 !EvalResult.hasSideEffects()) 4227 Value = &EvalResult.Val; 4228 4229 LangAS AddrSpace = 4230 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4231 4232 Optional<ConstantEmitter> emitter; 4233 llvm::Constant *InitialValue = nullptr; 4234 bool Constant = false; 4235 llvm::Type *Type; 4236 if (Value) { 4237 // The temporary has a constant initializer, use it. 4238 emitter.emplace(*this); 4239 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4240 MaterializedType); 4241 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4242 Type = InitialValue->getType(); 4243 } else { 4244 // No initializer, the initialization will be provided when we 4245 // initialize the declaration which performed lifetime extension. 4246 Type = getTypes().ConvertTypeForMem(MaterializedType); 4247 } 4248 4249 // Create a global variable for this lifetime-extended temporary. 4250 llvm::GlobalValue::LinkageTypes Linkage = 4251 getLLVMLinkageVarDefinition(VD, Constant); 4252 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4253 const VarDecl *InitVD; 4254 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4255 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4256 // Temporaries defined inside a class get linkonce_odr linkage because the 4257 // class can be defined in multiple translation units. 4258 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4259 } else { 4260 // There is no need for this temporary to have external linkage if the 4261 // VarDecl has external linkage. 4262 Linkage = llvm::GlobalVariable::InternalLinkage; 4263 } 4264 } 4265 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4266 auto *GV = new llvm::GlobalVariable( 4267 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4268 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4269 if (emitter) emitter->finalize(GV); 4270 setGVProperties(GV, VD); 4271 GV->setAlignment(Align.getQuantity()); 4272 if (supportsCOMDAT() && GV->isWeakForLinker()) 4273 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4274 if (VD->getTLSKind()) 4275 setTLSMode(GV, *VD); 4276 llvm::Constant *CV = GV; 4277 if (AddrSpace != LangAS::Default) 4278 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4279 *this, GV, AddrSpace, LangAS::Default, 4280 Type->getPointerTo( 4281 getContext().getTargetAddressSpace(LangAS::Default))); 4282 MaterializedGlobalTemporaryMap[E] = CV; 4283 return ConstantAddress(CV, Align); 4284 } 4285 4286 /// EmitObjCPropertyImplementations - Emit information for synthesized 4287 /// properties for an implementation. 4288 void CodeGenModule::EmitObjCPropertyImplementations(const 4289 ObjCImplementationDecl *D) { 4290 for (const auto *PID : D->property_impls()) { 4291 // Dynamic is just for type-checking. 4292 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4293 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4294 4295 // Determine which methods need to be implemented, some may have 4296 // been overridden. Note that ::isPropertyAccessor is not the method 4297 // we want, that just indicates if the decl came from a 4298 // property. What we want to know is if the method is defined in 4299 // this implementation. 4300 if (!D->getInstanceMethod(PD->getGetterName())) 4301 CodeGenFunction(*this).GenerateObjCGetter( 4302 const_cast<ObjCImplementationDecl *>(D), PID); 4303 if (!PD->isReadOnly() && 4304 !D->getInstanceMethod(PD->getSetterName())) 4305 CodeGenFunction(*this).GenerateObjCSetter( 4306 const_cast<ObjCImplementationDecl *>(D), PID); 4307 } 4308 } 4309 } 4310 4311 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4312 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4313 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4314 ivar; ivar = ivar->getNextIvar()) 4315 if (ivar->getType().isDestructedType()) 4316 return true; 4317 4318 return false; 4319 } 4320 4321 static bool AllTrivialInitializers(CodeGenModule &CGM, 4322 ObjCImplementationDecl *D) { 4323 CodeGenFunction CGF(CGM); 4324 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4325 E = D->init_end(); B != E; ++B) { 4326 CXXCtorInitializer *CtorInitExp = *B; 4327 Expr *Init = CtorInitExp->getInit(); 4328 if (!CGF.isTrivialInitializer(Init)) 4329 return false; 4330 } 4331 return true; 4332 } 4333 4334 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4335 /// for an implementation. 4336 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4337 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4338 if (needsDestructMethod(D)) { 4339 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4340 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4341 ObjCMethodDecl *DTORMethod = 4342 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4343 cxxSelector, getContext().VoidTy, nullptr, D, 4344 /*isInstance=*/true, /*isVariadic=*/false, 4345 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4346 /*isDefined=*/false, ObjCMethodDecl::Required); 4347 D->addInstanceMethod(DTORMethod); 4348 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4349 D->setHasDestructors(true); 4350 } 4351 4352 // If the implementation doesn't have any ivar initializers, we don't need 4353 // a .cxx_construct. 4354 if (D->getNumIvarInitializers() == 0 || 4355 AllTrivialInitializers(*this, D)) 4356 return; 4357 4358 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4359 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4360 // The constructor returns 'self'. 4361 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4362 D->getLocation(), 4363 D->getLocation(), 4364 cxxSelector, 4365 getContext().getObjCIdType(), 4366 nullptr, D, /*isInstance=*/true, 4367 /*isVariadic=*/false, 4368 /*isPropertyAccessor=*/true, 4369 /*isImplicitlyDeclared=*/true, 4370 /*isDefined=*/false, 4371 ObjCMethodDecl::Required); 4372 D->addInstanceMethod(CTORMethod); 4373 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4374 D->setHasNonZeroConstructors(true); 4375 } 4376 4377 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4378 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4379 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4380 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4381 ErrorUnsupported(LSD, "linkage spec"); 4382 return; 4383 } 4384 4385 EmitDeclContext(LSD); 4386 } 4387 4388 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4389 for (auto *I : DC->decls()) { 4390 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4391 // are themselves considered "top-level", so EmitTopLevelDecl on an 4392 // ObjCImplDecl does not recursively visit them. We need to do that in 4393 // case they're nested inside another construct (LinkageSpecDecl / 4394 // ExportDecl) that does stop them from being considered "top-level". 4395 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4396 for (auto *M : OID->methods()) 4397 EmitTopLevelDecl(M); 4398 } 4399 4400 EmitTopLevelDecl(I); 4401 } 4402 } 4403 4404 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4405 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4406 // Ignore dependent declarations. 4407 if (D->isTemplated()) 4408 return; 4409 4410 switch (D->getKind()) { 4411 case Decl::CXXConversion: 4412 case Decl::CXXMethod: 4413 case Decl::Function: 4414 EmitGlobal(cast<FunctionDecl>(D)); 4415 // Always provide some coverage mapping 4416 // even for the functions that aren't emitted. 4417 AddDeferredUnusedCoverageMapping(D); 4418 break; 4419 4420 case Decl::CXXDeductionGuide: 4421 // Function-like, but does not result in code emission. 4422 break; 4423 4424 case Decl::Var: 4425 case Decl::Decomposition: 4426 case Decl::VarTemplateSpecialization: 4427 EmitGlobal(cast<VarDecl>(D)); 4428 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4429 for (auto *B : DD->bindings()) 4430 if (auto *HD = B->getHoldingVar()) 4431 EmitGlobal(HD); 4432 break; 4433 4434 // Indirect fields from global anonymous structs and unions can be 4435 // ignored; only the actual variable requires IR gen support. 4436 case Decl::IndirectField: 4437 break; 4438 4439 // C++ Decls 4440 case Decl::Namespace: 4441 EmitDeclContext(cast<NamespaceDecl>(D)); 4442 break; 4443 case Decl::ClassTemplateSpecialization: { 4444 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4445 if (DebugInfo && 4446 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4447 Spec->hasDefinition()) 4448 DebugInfo->completeTemplateDefinition(*Spec); 4449 } LLVM_FALLTHROUGH; 4450 case Decl::CXXRecord: 4451 if (DebugInfo) { 4452 if (auto *ES = D->getASTContext().getExternalSource()) 4453 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4454 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4455 } 4456 // Emit any static data members, they may be definitions. 4457 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4458 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4459 EmitTopLevelDecl(I); 4460 break; 4461 // No code generation needed. 4462 case Decl::UsingShadow: 4463 case Decl::ClassTemplate: 4464 case Decl::VarTemplate: 4465 case Decl::VarTemplatePartialSpecialization: 4466 case Decl::FunctionTemplate: 4467 case Decl::TypeAliasTemplate: 4468 case Decl::Block: 4469 case Decl::Empty: 4470 break; 4471 case Decl::Using: // using X; [C++] 4472 if (CGDebugInfo *DI = getModuleDebugInfo()) 4473 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4474 return; 4475 case Decl::NamespaceAlias: 4476 if (CGDebugInfo *DI = getModuleDebugInfo()) 4477 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4478 return; 4479 case Decl::UsingDirective: // using namespace X; [C++] 4480 if (CGDebugInfo *DI = getModuleDebugInfo()) 4481 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4482 return; 4483 case Decl::CXXConstructor: 4484 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4485 break; 4486 case Decl::CXXDestructor: 4487 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4488 break; 4489 4490 case Decl::StaticAssert: 4491 // Nothing to do. 4492 break; 4493 4494 // Objective-C Decls 4495 4496 // Forward declarations, no (immediate) code generation. 4497 case Decl::ObjCInterface: 4498 case Decl::ObjCCategory: 4499 break; 4500 4501 case Decl::ObjCProtocol: { 4502 auto *Proto = cast<ObjCProtocolDecl>(D); 4503 if (Proto->isThisDeclarationADefinition()) 4504 ObjCRuntime->GenerateProtocol(Proto); 4505 break; 4506 } 4507 4508 case Decl::ObjCCategoryImpl: 4509 // Categories have properties but don't support synthesize so we 4510 // can ignore them here. 4511 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4512 break; 4513 4514 case Decl::ObjCImplementation: { 4515 auto *OMD = cast<ObjCImplementationDecl>(D); 4516 EmitObjCPropertyImplementations(OMD); 4517 EmitObjCIvarInitializations(OMD); 4518 ObjCRuntime->GenerateClass(OMD); 4519 // Emit global variable debug information. 4520 if (CGDebugInfo *DI = getModuleDebugInfo()) 4521 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4522 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4523 OMD->getClassInterface()), OMD->getLocation()); 4524 break; 4525 } 4526 case Decl::ObjCMethod: { 4527 auto *OMD = cast<ObjCMethodDecl>(D); 4528 // If this is not a prototype, emit the body. 4529 if (OMD->getBody()) 4530 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4531 break; 4532 } 4533 case Decl::ObjCCompatibleAlias: 4534 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4535 break; 4536 4537 case Decl::PragmaComment: { 4538 const auto *PCD = cast<PragmaCommentDecl>(D); 4539 switch (PCD->getCommentKind()) { 4540 case PCK_Unknown: 4541 llvm_unreachable("unexpected pragma comment kind"); 4542 case PCK_Linker: 4543 AppendLinkerOptions(PCD->getArg()); 4544 break; 4545 case PCK_Lib: 4546 if (getTarget().getTriple().isOSBinFormatELF() && 4547 !getTarget().getTriple().isPS4()) 4548 AddELFLibDirective(PCD->getArg()); 4549 else 4550 AddDependentLib(PCD->getArg()); 4551 break; 4552 case PCK_Compiler: 4553 case PCK_ExeStr: 4554 case PCK_User: 4555 break; // We ignore all of these. 4556 } 4557 break; 4558 } 4559 4560 case Decl::PragmaDetectMismatch: { 4561 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4562 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4563 break; 4564 } 4565 4566 case Decl::LinkageSpec: 4567 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4568 break; 4569 4570 case Decl::FileScopeAsm: { 4571 // File-scope asm is ignored during device-side CUDA compilation. 4572 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4573 break; 4574 // File-scope asm is ignored during device-side OpenMP compilation. 4575 if (LangOpts.OpenMPIsDevice) 4576 break; 4577 auto *AD = cast<FileScopeAsmDecl>(D); 4578 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4579 break; 4580 } 4581 4582 case Decl::Import: { 4583 auto *Import = cast<ImportDecl>(D); 4584 4585 // If we've already imported this module, we're done. 4586 if (!ImportedModules.insert(Import->getImportedModule())) 4587 break; 4588 4589 // Emit debug information for direct imports. 4590 if (!Import->getImportedOwningModule()) { 4591 if (CGDebugInfo *DI = getModuleDebugInfo()) 4592 DI->EmitImportDecl(*Import); 4593 } 4594 4595 // Find all of the submodules and emit the module initializers. 4596 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4597 SmallVector<clang::Module *, 16> Stack; 4598 Visited.insert(Import->getImportedModule()); 4599 Stack.push_back(Import->getImportedModule()); 4600 4601 while (!Stack.empty()) { 4602 clang::Module *Mod = Stack.pop_back_val(); 4603 if (!EmittedModuleInitializers.insert(Mod).second) 4604 continue; 4605 4606 for (auto *D : Context.getModuleInitializers(Mod)) 4607 EmitTopLevelDecl(D); 4608 4609 // Visit the submodules of this module. 4610 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4611 SubEnd = Mod->submodule_end(); 4612 Sub != SubEnd; ++Sub) { 4613 // Skip explicit children; they need to be explicitly imported to emit 4614 // the initializers. 4615 if ((*Sub)->IsExplicit) 4616 continue; 4617 4618 if (Visited.insert(*Sub).second) 4619 Stack.push_back(*Sub); 4620 } 4621 } 4622 break; 4623 } 4624 4625 case Decl::Export: 4626 EmitDeclContext(cast<ExportDecl>(D)); 4627 break; 4628 4629 case Decl::OMPThreadPrivate: 4630 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4631 break; 4632 4633 case Decl::OMPDeclareReduction: 4634 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4635 break; 4636 4637 default: 4638 // Make sure we handled everything we should, every other kind is a 4639 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4640 // function. Need to recode Decl::Kind to do that easily. 4641 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4642 break; 4643 } 4644 } 4645 4646 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4647 // Do we need to generate coverage mapping? 4648 if (!CodeGenOpts.CoverageMapping) 4649 return; 4650 switch (D->getKind()) { 4651 case Decl::CXXConversion: 4652 case Decl::CXXMethod: 4653 case Decl::Function: 4654 case Decl::ObjCMethod: 4655 case Decl::CXXConstructor: 4656 case Decl::CXXDestructor: { 4657 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4658 return; 4659 SourceManager &SM = getContext().getSourceManager(); 4660 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4661 return; 4662 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4663 if (I == DeferredEmptyCoverageMappingDecls.end()) 4664 DeferredEmptyCoverageMappingDecls[D] = true; 4665 break; 4666 } 4667 default: 4668 break; 4669 }; 4670 } 4671 4672 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4673 // Do we need to generate coverage mapping? 4674 if (!CodeGenOpts.CoverageMapping) 4675 return; 4676 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4677 if (Fn->isTemplateInstantiation()) 4678 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4679 } 4680 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4681 if (I == DeferredEmptyCoverageMappingDecls.end()) 4682 DeferredEmptyCoverageMappingDecls[D] = false; 4683 else 4684 I->second = false; 4685 } 4686 4687 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4688 // We call takeVector() here to avoid use-after-free. 4689 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4690 // we deserialize function bodies to emit coverage info for them, and that 4691 // deserializes more declarations. How should we handle that case? 4692 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4693 if (!Entry.second) 4694 continue; 4695 const Decl *D = Entry.first; 4696 switch (D->getKind()) { 4697 case Decl::CXXConversion: 4698 case Decl::CXXMethod: 4699 case Decl::Function: 4700 case Decl::ObjCMethod: { 4701 CodeGenPGO PGO(*this); 4702 GlobalDecl GD(cast<FunctionDecl>(D)); 4703 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4704 getFunctionLinkage(GD)); 4705 break; 4706 } 4707 case Decl::CXXConstructor: { 4708 CodeGenPGO PGO(*this); 4709 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4710 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4711 getFunctionLinkage(GD)); 4712 break; 4713 } 4714 case Decl::CXXDestructor: { 4715 CodeGenPGO PGO(*this); 4716 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4717 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4718 getFunctionLinkage(GD)); 4719 break; 4720 } 4721 default: 4722 break; 4723 }; 4724 } 4725 } 4726 4727 /// Turns the given pointer into a constant. 4728 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4729 const void *Ptr) { 4730 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4731 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4732 return llvm::ConstantInt::get(i64, PtrInt); 4733 } 4734 4735 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4736 llvm::NamedMDNode *&GlobalMetadata, 4737 GlobalDecl D, 4738 llvm::GlobalValue *Addr) { 4739 if (!GlobalMetadata) 4740 GlobalMetadata = 4741 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4742 4743 // TODO: should we report variant information for ctors/dtors? 4744 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4745 llvm::ConstantAsMetadata::get(GetPointerConstant( 4746 CGM.getLLVMContext(), D.getDecl()))}; 4747 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4748 } 4749 4750 /// For each function which is declared within an extern "C" region and marked 4751 /// as 'used', but has internal linkage, create an alias from the unmangled 4752 /// name to the mangled name if possible. People expect to be able to refer 4753 /// to such functions with an unmangled name from inline assembly within the 4754 /// same translation unit. 4755 void CodeGenModule::EmitStaticExternCAliases() { 4756 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4757 return; 4758 for (auto &I : StaticExternCValues) { 4759 IdentifierInfo *Name = I.first; 4760 llvm::GlobalValue *Val = I.second; 4761 if (Val && !getModule().getNamedValue(Name->getName())) 4762 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4763 } 4764 } 4765 4766 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4767 GlobalDecl &Result) const { 4768 auto Res = Manglings.find(MangledName); 4769 if (Res == Manglings.end()) 4770 return false; 4771 Result = Res->getValue(); 4772 return true; 4773 } 4774 4775 /// Emits metadata nodes associating all the global values in the 4776 /// current module with the Decls they came from. This is useful for 4777 /// projects using IR gen as a subroutine. 4778 /// 4779 /// Since there's currently no way to associate an MDNode directly 4780 /// with an llvm::GlobalValue, we create a global named metadata 4781 /// with the name 'clang.global.decl.ptrs'. 4782 void CodeGenModule::EmitDeclMetadata() { 4783 llvm::NamedMDNode *GlobalMetadata = nullptr; 4784 4785 for (auto &I : MangledDeclNames) { 4786 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4787 // Some mangled names don't necessarily have an associated GlobalValue 4788 // in this module, e.g. if we mangled it for DebugInfo. 4789 if (Addr) 4790 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4791 } 4792 } 4793 4794 /// Emits metadata nodes for all the local variables in the current 4795 /// function. 4796 void CodeGenFunction::EmitDeclMetadata() { 4797 if (LocalDeclMap.empty()) return; 4798 4799 llvm::LLVMContext &Context = getLLVMContext(); 4800 4801 // Find the unique metadata ID for this name. 4802 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4803 4804 llvm::NamedMDNode *GlobalMetadata = nullptr; 4805 4806 for (auto &I : LocalDeclMap) { 4807 const Decl *D = I.first; 4808 llvm::Value *Addr = I.second.getPointer(); 4809 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4810 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4811 Alloca->setMetadata( 4812 DeclPtrKind, llvm::MDNode::get( 4813 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4814 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4815 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4816 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4817 } 4818 } 4819 } 4820 4821 void CodeGenModule::EmitVersionIdentMetadata() { 4822 llvm::NamedMDNode *IdentMetadata = 4823 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4824 std::string Version = getClangFullVersion(); 4825 llvm::LLVMContext &Ctx = TheModule.getContext(); 4826 4827 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4828 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4829 } 4830 4831 void CodeGenModule::EmitTargetMetadata() { 4832 // Warning, new MangledDeclNames may be appended within this loop. 4833 // We rely on MapVector insertions adding new elements to the end 4834 // of the container. 4835 // FIXME: Move this loop into the one target that needs it, and only 4836 // loop over those declarations for which we couldn't emit the target 4837 // metadata when we emitted the declaration. 4838 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4839 auto Val = *(MangledDeclNames.begin() + I); 4840 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4841 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4842 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4843 } 4844 } 4845 4846 void CodeGenModule::EmitCoverageFile() { 4847 if (getCodeGenOpts().CoverageDataFile.empty() && 4848 getCodeGenOpts().CoverageNotesFile.empty()) 4849 return; 4850 4851 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4852 if (!CUNode) 4853 return; 4854 4855 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4856 llvm::LLVMContext &Ctx = TheModule.getContext(); 4857 auto *CoverageDataFile = 4858 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4859 auto *CoverageNotesFile = 4860 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4861 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4862 llvm::MDNode *CU = CUNode->getOperand(i); 4863 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4864 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4865 } 4866 } 4867 4868 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4869 // Sema has checked that all uuid strings are of the form 4870 // "12345678-1234-1234-1234-1234567890ab". 4871 assert(Uuid.size() == 36); 4872 for (unsigned i = 0; i < 36; ++i) { 4873 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4874 else assert(isHexDigit(Uuid[i])); 4875 } 4876 4877 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4878 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4879 4880 llvm::Constant *Field3[8]; 4881 for (unsigned Idx = 0; Idx < 8; ++Idx) 4882 Field3[Idx] = llvm::ConstantInt::get( 4883 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4884 4885 llvm::Constant *Fields[4] = { 4886 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4887 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4888 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4889 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4890 }; 4891 4892 return llvm::ConstantStruct::getAnon(Fields); 4893 } 4894 4895 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4896 bool ForEH) { 4897 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4898 // FIXME: should we even be calling this method if RTTI is disabled 4899 // and it's not for EH? 4900 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 4901 return llvm::Constant::getNullValue(Int8PtrTy); 4902 4903 if (ForEH && Ty->isObjCObjectPointerType() && 4904 LangOpts.ObjCRuntime.isGNUFamily()) 4905 return ObjCRuntime->GetEHType(Ty); 4906 4907 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4908 } 4909 4910 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4911 // Do not emit threadprivates in simd-only mode. 4912 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4913 return; 4914 for (auto RefExpr : D->varlists()) { 4915 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4916 bool PerformInit = 4917 VD->getAnyInitializer() && 4918 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4919 /*ForRef=*/false); 4920 4921 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4922 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4923 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4924 CXXGlobalInits.push_back(InitFunction); 4925 } 4926 } 4927 4928 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4929 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4930 if (InternalId) 4931 return InternalId; 4932 4933 if (isExternallyVisible(T->getLinkage())) { 4934 std::string OutName; 4935 llvm::raw_string_ostream Out(OutName); 4936 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4937 4938 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4939 } else { 4940 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4941 llvm::ArrayRef<llvm::Metadata *>()); 4942 } 4943 4944 return InternalId; 4945 } 4946 4947 // Generalize pointer types to a void pointer with the qualifiers of the 4948 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4949 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4950 // 'void *'. 4951 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4952 if (!Ty->isPointerType()) 4953 return Ty; 4954 4955 return Ctx.getPointerType( 4956 QualType(Ctx.VoidTy).withCVRQualifiers( 4957 Ty->getPointeeType().getCVRQualifiers())); 4958 } 4959 4960 // Apply type generalization to a FunctionType's return and argument types 4961 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4962 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4963 SmallVector<QualType, 8> GeneralizedParams; 4964 for (auto &Param : FnType->param_types()) 4965 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4966 4967 return Ctx.getFunctionType( 4968 GeneralizeType(Ctx, FnType->getReturnType()), 4969 GeneralizedParams, FnType->getExtProtoInfo()); 4970 } 4971 4972 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4973 return Ctx.getFunctionNoProtoType( 4974 GeneralizeType(Ctx, FnType->getReturnType())); 4975 4976 llvm_unreachable("Encountered unknown FunctionType"); 4977 } 4978 4979 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4980 T = GeneralizeFunctionType(getContext(), T); 4981 4982 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4983 if (InternalId) 4984 return InternalId; 4985 4986 if (isExternallyVisible(T->getLinkage())) { 4987 std::string OutName; 4988 llvm::raw_string_ostream Out(OutName); 4989 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4990 Out << ".generalized"; 4991 4992 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4993 } else { 4994 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4995 llvm::ArrayRef<llvm::Metadata *>()); 4996 } 4997 4998 return InternalId; 4999 } 5000 5001 /// Returns whether this module needs the "all-vtables" type identifier. 5002 bool CodeGenModule::NeedAllVtablesTypeId() const { 5003 // Returns true if at least one of vtable-based CFI checkers is enabled and 5004 // is not in the trapping mode. 5005 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5006 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5007 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5008 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5009 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5010 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5011 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5012 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5013 } 5014 5015 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5016 CharUnits Offset, 5017 const CXXRecordDecl *RD) { 5018 llvm::Metadata *MD = 5019 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5020 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5021 5022 if (CodeGenOpts.SanitizeCfiCrossDso) 5023 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5024 VTable->addTypeMetadata(Offset.getQuantity(), 5025 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5026 5027 if (NeedAllVtablesTypeId()) { 5028 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5029 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5030 } 5031 } 5032 5033 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5034 assert(TD != nullptr); 5035 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5036 5037 ParsedAttr.Features.erase( 5038 llvm::remove_if(ParsedAttr.Features, 5039 [&](const std::string &Feat) { 5040 return !Target.isValidFeatureName( 5041 StringRef{Feat}.substr(1)); 5042 }), 5043 ParsedAttr.Features.end()); 5044 return ParsedAttr; 5045 } 5046 5047 5048 // Fills in the supplied string map with the set of target features for the 5049 // passed in function. 5050 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5051 const FunctionDecl *FD) { 5052 StringRef TargetCPU = Target.getTargetOpts().CPU; 5053 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5054 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5055 5056 // Make a copy of the features as passed on the command line into the 5057 // beginning of the additional features from the function to override. 5058 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5059 Target.getTargetOpts().FeaturesAsWritten.begin(), 5060 Target.getTargetOpts().FeaturesAsWritten.end()); 5061 5062 if (ParsedAttr.Architecture != "" && 5063 Target.isValidCPUName(ParsedAttr.Architecture)) 5064 TargetCPU = ParsedAttr.Architecture; 5065 5066 // Now populate the feature map, first with the TargetCPU which is either 5067 // the default or a new one from the target attribute string. Then we'll use 5068 // the passed in features (FeaturesAsWritten) along with the new ones from 5069 // the attribute. 5070 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5071 ParsedAttr.Features); 5072 } else { 5073 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5074 Target.getTargetOpts().Features); 5075 } 5076 } 5077 5078 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5079 if (!SanStats) 5080 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5081 5082 return *SanStats; 5083 } 5084 llvm::Value * 5085 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5086 CodeGenFunction &CGF) { 5087 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5088 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5089 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5090 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5091 "__translate_sampler_initializer"), 5092 {C}); 5093 } 5094