1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 SizeSizeInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, 111 C.getTargetInfo().getMaxPointerWidth()); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 AllocaInt8PtrTy = Int8Ty->getPointerTo( 115 M.getDataLayout().getAllocaAddrSpace()); 116 117 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 118 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 119 120 if (LangOpts.ObjC1) 121 createObjCRuntime(); 122 if (LangOpts.OpenCL) 123 createOpenCLRuntime(); 124 if (LangOpts.OpenMP) 125 createOpenMPRuntime(); 126 if (LangOpts.CUDA) 127 createCUDARuntime(); 128 129 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 130 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 131 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 132 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 133 getCXXABI().getMangleContext())); 134 135 // If debug info or coverage generation is enabled, create the CGDebugInfo 136 // object. 137 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 138 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 139 DebugInfo.reset(new CGDebugInfo(*this)); 140 141 Block.GlobalUniqueCount = 0; 142 143 if (C.getLangOpts().ObjC1) 144 ObjCData.reset(new ObjCEntrypoints()); 145 146 if (CodeGenOpts.hasProfileClangUse()) { 147 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 148 CodeGenOpts.ProfileInstrumentUsePath); 149 if (auto E = ReaderOrErr.takeError()) { 150 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 151 "Could not read profile %0: %1"); 152 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 153 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 154 << EI.message(); 155 }); 156 } else 157 PGOReader = std::move(ReaderOrErr.get()); 158 } 159 160 // If coverage mapping generation is enabled, create the 161 // CoverageMappingModuleGen object. 162 if (CodeGenOpts.CoverageMapping) 163 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 164 } 165 166 CodeGenModule::~CodeGenModule() {} 167 168 void CodeGenModule::createObjCRuntime() { 169 // This is just isGNUFamily(), but we want to force implementors of 170 // new ABIs to decide how best to do this. 171 switch (LangOpts.ObjCRuntime.getKind()) { 172 case ObjCRuntime::GNUstep: 173 case ObjCRuntime::GCC: 174 case ObjCRuntime::ObjFW: 175 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 176 return; 177 178 case ObjCRuntime::FragileMacOSX: 179 case ObjCRuntime::MacOSX: 180 case ObjCRuntime::iOS: 181 case ObjCRuntime::WatchOS: 182 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 183 return; 184 } 185 llvm_unreachable("bad runtime kind"); 186 } 187 188 void CodeGenModule::createOpenCLRuntime() { 189 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 190 } 191 192 void CodeGenModule::createOpenMPRuntime() { 193 // Select a specialized code generation class based on the target, if any. 194 // If it does not exist use the default implementation. 195 switch (getTriple().getArch()) { 196 case llvm::Triple::nvptx: 197 case llvm::Triple::nvptx64: 198 assert(getLangOpts().OpenMPIsDevice && 199 "OpenMP NVPTX is only prepared to deal with device code."); 200 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 201 break; 202 default: 203 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 204 break; 205 } 206 } 207 208 void CodeGenModule::createCUDARuntime() { 209 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 210 } 211 212 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 213 Replacements[Name] = C; 214 } 215 216 void CodeGenModule::applyReplacements() { 217 for (auto &I : Replacements) { 218 StringRef MangledName = I.first(); 219 llvm::Constant *Replacement = I.second; 220 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 221 if (!Entry) 222 continue; 223 auto *OldF = cast<llvm::Function>(Entry); 224 auto *NewF = dyn_cast<llvm::Function>(Replacement); 225 if (!NewF) { 226 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 227 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 228 } else { 229 auto *CE = cast<llvm::ConstantExpr>(Replacement); 230 assert(CE->getOpcode() == llvm::Instruction::BitCast || 231 CE->getOpcode() == llvm::Instruction::GetElementPtr); 232 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 233 } 234 } 235 236 // Replace old with new, but keep the old order. 237 OldF->replaceAllUsesWith(Replacement); 238 if (NewF) { 239 NewF->removeFromParent(); 240 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 241 NewF); 242 } 243 OldF->eraseFromParent(); 244 } 245 } 246 247 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 248 GlobalValReplacements.push_back(std::make_pair(GV, C)); 249 } 250 251 void CodeGenModule::applyGlobalValReplacements() { 252 for (auto &I : GlobalValReplacements) { 253 llvm::GlobalValue *GV = I.first; 254 llvm::Constant *C = I.second; 255 256 GV->replaceAllUsesWith(C); 257 GV->eraseFromParent(); 258 } 259 } 260 261 // This is only used in aliases that we created and we know they have a 262 // linear structure. 263 static const llvm::GlobalObject *getAliasedGlobal( 264 const llvm::GlobalIndirectSymbol &GIS) { 265 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 266 const llvm::Constant *C = &GIS; 267 for (;;) { 268 C = C->stripPointerCasts(); 269 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 270 return GO; 271 // stripPointerCasts will not walk over weak aliases. 272 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 273 if (!GIS2) 274 return nullptr; 275 if (!Visited.insert(GIS2).second) 276 return nullptr; 277 C = GIS2->getIndirectSymbol(); 278 } 279 } 280 281 void CodeGenModule::checkAliases() { 282 // Check if the constructed aliases are well formed. It is really unfortunate 283 // that we have to do this in CodeGen, but we only construct mangled names 284 // and aliases during codegen. 285 bool Error = false; 286 DiagnosticsEngine &Diags = getDiags(); 287 for (const GlobalDecl &GD : Aliases) { 288 const auto *D = cast<ValueDecl>(GD.getDecl()); 289 SourceLocation Location; 290 bool IsIFunc = D->hasAttr<IFuncAttr>(); 291 if (const Attr *A = D->getDefiningAttr()) 292 Location = A->getLocation(); 293 else 294 llvm_unreachable("Not an alias or ifunc?"); 295 StringRef MangledName = getMangledName(GD); 296 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 297 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 298 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 299 if (!GV) { 300 Error = true; 301 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 302 } else if (GV->isDeclaration()) { 303 Error = true; 304 Diags.Report(Location, diag::err_alias_to_undefined) 305 << IsIFunc << IsIFunc; 306 } else if (IsIFunc) { 307 // Check resolver function type. 308 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 309 GV->getType()->getPointerElementType()); 310 assert(FTy); 311 if (!FTy->getReturnType()->isPointerTy()) 312 Diags.Report(Location, diag::err_ifunc_resolver_return); 313 if (FTy->getNumParams()) 314 Diags.Report(Location, diag::err_ifunc_resolver_params); 315 } 316 317 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 318 llvm::GlobalValue *AliaseeGV; 319 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 320 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 321 else 322 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 323 324 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 325 StringRef AliasSection = SA->getName(); 326 if (AliasSection != AliaseeGV->getSection()) 327 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 328 << AliasSection << IsIFunc << IsIFunc; 329 } 330 331 // We have to handle alias to weak aliases in here. LLVM itself disallows 332 // this since the object semantics would not match the IL one. For 333 // compatibility with gcc we implement it by just pointing the alias 334 // to its aliasee's aliasee. We also warn, since the user is probably 335 // expecting the link to be weak. 336 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 337 if (GA->isInterposable()) { 338 Diags.Report(Location, diag::warn_alias_to_weak_alias) 339 << GV->getName() << GA->getName() << IsIFunc; 340 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 341 GA->getIndirectSymbol(), Alias->getType()); 342 Alias->setIndirectSymbol(Aliasee); 343 } 344 } 345 } 346 if (!Error) 347 return; 348 349 for (const GlobalDecl &GD : Aliases) { 350 StringRef MangledName = getMangledName(GD); 351 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 352 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 353 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 354 Alias->eraseFromParent(); 355 } 356 } 357 358 void CodeGenModule::clear() { 359 DeferredDeclsToEmit.clear(); 360 if (OpenMPRuntime) 361 OpenMPRuntime->clear(); 362 } 363 364 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 365 StringRef MainFile) { 366 if (!hasDiagnostics()) 367 return; 368 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 369 if (MainFile.empty()) 370 MainFile = "<stdin>"; 371 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 372 } else { 373 if (Mismatched > 0) 374 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 375 376 if (Missing > 0) 377 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 378 } 379 } 380 381 void CodeGenModule::Release() { 382 EmitDeferred(); 383 applyGlobalValReplacements(); 384 applyReplacements(); 385 checkAliases(); 386 EmitCXXGlobalInitFunc(); 387 EmitCXXGlobalDtorFunc(); 388 EmitCXXThreadLocalInitFunc(); 389 if (ObjCRuntime) 390 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 391 AddGlobalCtor(ObjCInitFunction); 392 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 393 CUDARuntime) { 394 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 395 AddGlobalCtor(CudaCtorFunction); 396 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 397 AddGlobalDtor(CudaDtorFunction); 398 } 399 if (OpenMPRuntime) 400 if (llvm::Function *OpenMPRegistrationFunction = 401 OpenMPRuntime->emitRegistrationFunction()) 402 AddGlobalCtor(OpenMPRegistrationFunction, 0); 403 if (PGOReader) { 404 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 405 if (PGOStats.hasDiagnostics()) 406 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 407 } 408 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 409 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 410 EmitGlobalAnnotations(); 411 EmitStaticExternCAliases(); 412 EmitDeferredUnusedCoverageMappings(); 413 if (CoverageMapping) 414 CoverageMapping->emit(); 415 if (CodeGenOpts.SanitizeCfiCrossDso) { 416 CodeGenFunction(*this).EmitCfiCheckFail(); 417 CodeGenFunction(*this).EmitCfiCheckStub(); 418 } 419 emitAtAvailableLinkGuard(); 420 emitLLVMUsed(); 421 if (SanStats) 422 SanStats->finish(); 423 424 if (CodeGenOpts.Autolink && 425 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 426 EmitModuleLinkOptions(); 427 } 428 429 // Record mregparm value now so it is visible through rest of codegen. 430 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 431 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 432 CodeGenOpts.NumRegisterParameters); 433 434 if (CodeGenOpts.DwarfVersion) { 435 // We actually want the latest version when there are conflicts. 436 // We can change from Warning to Latest if such mode is supported. 437 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 438 CodeGenOpts.DwarfVersion); 439 } 440 if (CodeGenOpts.EmitCodeView) { 441 // Indicate that we want CodeView in the metadata. 442 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 443 } 444 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 445 // We don't support LTO with 2 with different StrictVTablePointers 446 // FIXME: we could support it by stripping all the information introduced 447 // by StrictVTablePointers. 448 449 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 450 451 llvm::Metadata *Ops[2] = { 452 llvm::MDString::get(VMContext, "StrictVTablePointers"), 453 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 454 llvm::Type::getInt32Ty(VMContext), 1))}; 455 456 getModule().addModuleFlag(llvm::Module::Require, 457 "StrictVTablePointersRequirement", 458 llvm::MDNode::get(VMContext, Ops)); 459 } 460 if (DebugInfo) 461 // We support a single version in the linked module. The LLVM 462 // parser will drop debug info with a different version number 463 // (and warn about it, too). 464 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 465 llvm::DEBUG_METADATA_VERSION); 466 467 // We need to record the widths of enums and wchar_t, so that we can generate 468 // the correct build attributes in the ARM backend. 469 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 470 if ( Arch == llvm::Triple::arm 471 || Arch == llvm::Triple::armeb 472 || Arch == llvm::Triple::thumb 473 || Arch == llvm::Triple::thumbeb) { 474 // Width of wchar_t in bytes 475 uint64_t WCharWidth = 476 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 477 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 478 479 // The minimum width of an enum in bytes 480 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 481 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 482 } 483 484 if (CodeGenOpts.SanitizeCfiCrossDso) { 485 // Indicate that we want cross-DSO control flow integrity checks. 486 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 487 } 488 489 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 490 // Indicate whether __nvvm_reflect should be configured to flush denormal 491 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 492 // property.) 493 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 494 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 495 } 496 497 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 498 assert(PLevel < 3 && "Invalid PIC Level"); 499 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 500 if (Context.getLangOpts().PIE) 501 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 502 } 503 504 SimplifyPersonality(); 505 506 if (getCodeGenOpts().EmitDeclMetadata) 507 EmitDeclMetadata(); 508 509 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 510 EmitCoverageFile(); 511 512 if (DebugInfo) 513 DebugInfo->finalize(); 514 515 EmitVersionIdentMetadata(); 516 517 EmitTargetMetadata(); 518 } 519 520 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 521 // Make sure that this type is translated. 522 Types.UpdateCompletedType(TD); 523 } 524 525 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 526 // Make sure that this type is translated. 527 Types.RefreshTypeCacheForClass(RD); 528 } 529 530 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 531 if (!TBAA) 532 return nullptr; 533 return TBAA->getTBAAInfo(QTy); 534 } 535 536 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 537 if (!TBAA) 538 return nullptr; 539 return TBAA->getTBAAInfoForVTablePtr(); 540 } 541 542 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 543 if (!TBAA) 544 return nullptr; 545 return TBAA->getTBAAStructInfo(QTy); 546 } 547 548 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 549 llvm::MDNode *AccessN, 550 uint64_t O) { 551 if (!TBAA) 552 return nullptr; 553 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 554 } 555 556 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 557 /// and struct-path aware TBAA, the tag has the same format: 558 /// base type, access type and offset. 559 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 560 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 561 llvm::MDNode *TBAAInfo, 562 bool ConvertTypeToTag) { 563 if (ConvertTypeToTag && TBAA) 564 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 565 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 566 else 567 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 568 } 569 570 void CodeGenModule::DecorateInstructionWithInvariantGroup( 571 llvm::Instruction *I, const CXXRecordDecl *RD) { 572 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 573 llvm::MDNode::get(getLLVMContext(), {})); 574 } 575 576 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 577 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 578 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 579 } 580 581 /// ErrorUnsupported - Print out an error that codegen doesn't support the 582 /// specified stmt yet. 583 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 584 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 585 "cannot compile this %0 yet"); 586 std::string Msg = Type; 587 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 588 << Msg << S->getSourceRange(); 589 } 590 591 /// ErrorUnsupported - Print out an error that codegen doesn't support the 592 /// specified decl yet. 593 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 594 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 595 "cannot compile this %0 yet"); 596 std::string Msg = Type; 597 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 598 } 599 600 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 601 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 602 } 603 604 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 605 const NamedDecl *D) const { 606 // Internal definitions always have default visibility. 607 if (GV->hasLocalLinkage()) { 608 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 609 return; 610 } 611 612 // Set visibility for definitions. 613 LinkageInfo LV = D->getLinkageAndVisibility(); 614 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 615 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 616 } 617 618 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 619 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 620 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 621 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 622 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 623 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 624 } 625 626 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 627 CodeGenOptions::TLSModel M) { 628 switch (M) { 629 case CodeGenOptions::GeneralDynamicTLSModel: 630 return llvm::GlobalVariable::GeneralDynamicTLSModel; 631 case CodeGenOptions::LocalDynamicTLSModel: 632 return llvm::GlobalVariable::LocalDynamicTLSModel; 633 case CodeGenOptions::InitialExecTLSModel: 634 return llvm::GlobalVariable::InitialExecTLSModel; 635 case CodeGenOptions::LocalExecTLSModel: 636 return llvm::GlobalVariable::LocalExecTLSModel; 637 } 638 llvm_unreachable("Invalid TLS model!"); 639 } 640 641 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 642 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 643 644 llvm::GlobalValue::ThreadLocalMode TLM; 645 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 646 647 // Override the TLS model if it is explicitly specified. 648 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 649 TLM = GetLLVMTLSModel(Attr->getModel()); 650 } 651 652 GV->setThreadLocalMode(TLM); 653 } 654 655 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 656 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 657 658 // Some ABIs don't have constructor variants. Make sure that base and 659 // complete constructors get mangled the same. 660 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 661 if (!getTarget().getCXXABI().hasConstructorVariants()) { 662 CXXCtorType OrigCtorType = GD.getCtorType(); 663 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 664 if (OrigCtorType == Ctor_Base) 665 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 666 } 667 } 668 669 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 670 if (!FoundStr.empty()) 671 return FoundStr; 672 673 const auto *ND = cast<NamedDecl>(GD.getDecl()); 674 SmallString<256> Buffer; 675 StringRef Str; 676 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 677 llvm::raw_svector_ostream Out(Buffer); 678 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 679 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 680 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 681 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 682 else 683 getCXXABI().getMangleContext().mangleName(ND, Out); 684 Str = Out.str(); 685 } else { 686 IdentifierInfo *II = ND->getIdentifier(); 687 assert(II && "Attempt to mangle unnamed decl."); 688 const auto *FD = dyn_cast<FunctionDecl>(ND); 689 690 if (FD && 691 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 692 llvm::raw_svector_ostream Out(Buffer); 693 Out << "__regcall3__" << II->getName(); 694 Str = Out.str(); 695 } else { 696 Str = II->getName(); 697 } 698 } 699 700 // Keep the first result in the case of a mangling collision. 701 auto Result = Manglings.insert(std::make_pair(Str, GD)); 702 return FoundStr = Result.first->first(); 703 } 704 705 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 706 const BlockDecl *BD) { 707 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 708 const Decl *D = GD.getDecl(); 709 710 SmallString<256> Buffer; 711 llvm::raw_svector_ostream Out(Buffer); 712 if (!D) 713 MangleCtx.mangleGlobalBlock(BD, 714 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 715 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 716 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 717 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 718 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 719 else 720 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 721 722 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 723 return Result.first->first(); 724 } 725 726 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 727 return getModule().getNamedValue(Name); 728 } 729 730 /// AddGlobalCtor - Add a function to the list that will be called before 731 /// main() runs. 732 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 733 llvm::Constant *AssociatedData) { 734 // FIXME: Type coercion of void()* types. 735 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 736 } 737 738 /// AddGlobalDtor - Add a function to the list that will be called 739 /// when the module is unloaded. 740 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 741 // FIXME: Type coercion of void()* types. 742 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 743 } 744 745 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 746 if (Fns.empty()) return; 747 748 // Ctor function type is void()*. 749 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 750 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 751 752 // Get the type of a ctor entry, { i32, void ()*, i8* }. 753 llvm::StructType *CtorStructTy = llvm::StructType::get( 754 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 755 756 // Construct the constructor and destructor arrays. 757 ConstantInitBuilder builder(*this); 758 auto ctors = builder.beginArray(CtorStructTy); 759 for (const auto &I : Fns) { 760 auto ctor = ctors.beginStruct(CtorStructTy); 761 ctor.addInt(Int32Ty, I.Priority); 762 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 763 if (I.AssociatedData) 764 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 765 else 766 ctor.addNullPointer(VoidPtrTy); 767 ctor.finishAndAddTo(ctors); 768 } 769 770 auto list = 771 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 772 /*constant*/ false, 773 llvm::GlobalValue::AppendingLinkage); 774 775 // The LTO linker doesn't seem to like it when we set an alignment 776 // on appending variables. Take it off as a workaround. 777 list->setAlignment(0); 778 779 Fns.clear(); 780 } 781 782 llvm::GlobalValue::LinkageTypes 783 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 784 const auto *D = cast<FunctionDecl>(GD.getDecl()); 785 786 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 787 788 if (isa<CXXDestructorDecl>(D) && 789 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 790 GD.getDtorType())) { 791 // Destructor variants in the Microsoft C++ ABI are always internal or 792 // linkonce_odr thunks emitted on an as-needed basis. 793 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 794 : llvm::GlobalValue::LinkOnceODRLinkage; 795 } 796 797 if (isa<CXXConstructorDecl>(D) && 798 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 799 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 800 // Our approach to inheriting constructors is fundamentally different from 801 // that used by the MS ABI, so keep our inheriting constructor thunks 802 // internal rather than trying to pick an unambiguous mangling for them. 803 return llvm::GlobalValue::InternalLinkage; 804 } 805 806 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 807 } 808 809 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 810 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 811 812 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 813 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 814 // Don't dllexport/import destructor thunks. 815 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 816 return; 817 } 818 } 819 820 if (FD->hasAttr<DLLImportAttr>()) 821 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 822 else if (FD->hasAttr<DLLExportAttr>()) 823 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 824 else 825 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 826 } 827 828 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 829 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 830 if (!MDS) return nullptr; 831 832 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 833 } 834 835 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 836 llvm::Function *F) { 837 setNonAliasAttributes(D, F); 838 } 839 840 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 841 const CGFunctionInfo &Info, 842 llvm::Function *F) { 843 unsigned CallingConv; 844 llvm::AttributeList PAL; 845 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 846 F->setAttributes(PAL); 847 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 848 } 849 850 /// Determines whether the language options require us to model 851 /// unwind exceptions. We treat -fexceptions as mandating this 852 /// except under the fragile ObjC ABI with only ObjC exceptions 853 /// enabled. This means, for example, that C with -fexceptions 854 /// enables this. 855 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 856 // If exceptions are completely disabled, obviously this is false. 857 if (!LangOpts.Exceptions) return false; 858 859 // If C++ exceptions are enabled, this is true. 860 if (LangOpts.CXXExceptions) return true; 861 862 // If ObjC exceptions are enabled, this depends on the ABI. 863 if (LangOpts.ObjCExceptions) { 864 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 865 } 866 867 return true; 868 } 869 870 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 871 llvm::Function *F) { 872 llvm::AttrBuilder B; 873 874 if (CodeGenOpts.UnwindTables) 875 B.addAttribute(llvm::Attribute::UWTable); 876 877 if (!hasUnwindExceptions(LangOpts)) 878 B.addAttribute(llvm::Attribute::NoUnwind); 879 880 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 881 B.addAttribute(llvm::Attribute::StackProtect); 882 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 883 B.addAttribute(llvm::Attribute::StackProtectStrong); 884 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 885 B.addAttribute(llvm::Attribute::StackProtectReq); 886 887 if (!D) { 888 // If we don't have a declaration to control inlining, the function isn't 889 // explicitly marked as alwaysinline for semantic reasons, and inlining is 890 // disabled, mark the function as noinline. 891 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 892 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 893 B.addAttribute(llvm::Attribute::NoInline); 894 895 F->addAttributes( 896 llvm::AttributeList::FunctionIndex, 897 llvm::AttributeList::get(F->getContext(), 898 llvm::AttributeList::FunctionIndex, B)); 899 return; 900 } 901 902 if (D->hasAttr<OptimizeNoneAttr>()) { 903 B.addAttribute(llvm::Attribute::OptimizeNone); 904 905 // OptimizeNone implies noinline; we should not be inlining such functions. 906 B.addAttribute(llvm::Attribute::NoInline); 907 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 908 "OptimizeNone and AlwaysInline on same function!"); 909 910 // We still need to handle naked functions even though optnone subsumes 911 // much of their semantics. 912 if (D->hasAttr<NakedAttr>()) 913 B.addAttribute(llvm::Attribute::Naked); 914 915 // OptimizeNone wins over OptimizeForSize and MinSize. 916 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 917 F->removeFnAttr(llvm::Attribute::MinSize); 918 } else if (D->hasAttr<NakedAttr>()) { 919 // Naked implies noinline: we should not be inlining such functions. 920 B.addAttribute(llvm::Attribute::Naked); 921 B.addAttribute(llvm::Attribute::NoInline); 922 } else if (D->hasAttr<NoDuplicateAttr>()) { 923 B.addAttribute(llvm::Attribute::NoDuplicate); 924 } else if (D->hasAttr<NoInlineAttr>()) { 925 B.addAttribute(llvm::Attribute::NoInline); 926 } else if (D->hasAttr<AlwaysInlineAttr>() && 927 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 928 // (noinline wins over always_inline, and we can't specify both in IR) 929 B.addAttribute(llvm::Attribute::AlwaysInline); 930 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 931 // If we're not inlining, then force everything that isn't always_inline to 932 // carry an explicit noinline attribute. 933 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 934 B.addAttribute(llvm::Attribute::NoInline); 935 } else { 936 // Otherwise, propagate the inline hint attribute and potentially use its 937 // absence to mark things as noinline. 938 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 939 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 940 return Redecl->isInlineSpecified(); 941 })) { 942 B.addAttribute(llvm::Attribute::InlineHint); 943 } else if (CodeGenOpts.getInlining() == 944 CodeGenOptions::OnlyHintInlining && 945 !FD->isInlined() && 946 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 947 B.addAttribute(llvm::Attribute::NoInline); 948 } 949 } 950 } 951 952 // Add other optimization related attributes if we are optimizing this 953 // function. 954 if (!D->hasAttr<OptimizeNoneAttr>()) { 955 if (D->hasAttr<ColdAttr>()) { 956 B.addAttribute(llvm::Attribute::OptimizeForSize); 957 B.addAttribute(llvm::Attribute::Cold); 958 } 959 960 if (D->hasAttr<MinSizeAttr>()) 961 B.addAttribute(llvm::Attribute::MinSize); 962 } 963 964 F->addAttributes(llvm::AttributeList::FunctionIndex, 965 llvm::AttributeList::get( 966 F->getContext(), llvm::AttributeList::FunctionIndex, B)); 967 968 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 969 if (alignment) 970 F->setAlignment(alignment); 971 972 // Some C++ ABIs require 2-byte alignment for member functions, in order to 973 // reserve a bit for differentiating between virtual and non-virtual member 974 // functions. If the current target's C++ ABI requires this and this is a 975 // member function, set its alignment accordingly. 976 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 977 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 978 F->setAlignment(2); 979 } 980 981 // In the cross-dso CFI mode, we want !type attributes on definitions only. 982 if (CodeGenOpts.SanitizeCfiCrossDso) 983 if (auto *FD = dyn_cast<FunctionDecl>(D)) 984 CreateFunctionTypeMetadata(FD, F); 985 } 986 987 void CodeGenModule::SetCommonAttributes(const Decl *D, 988 llvm::GlobalValue *GV) { 989 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 990 setGlobalVisibility(GV, ND); 991 else 992 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 993 994 if (D && D->hasAttr<UsedAttr>()) 995 addUsedGlobal(GV); 996 } 997 998 void CodeGenModule::setAliasAttributes(const Decl *D, 999 llvm::GlobalValue *GV) { 1000 SetCommonAttributes(D, GV); 1001 1002 // Process the dllexport attribute based on whether the original definition 1003 // (not necessarily the aliasee) was exported. 1004 if (D->hasAttr<DLLExportAttr>()) 1005 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1006 } 1007 1008 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1009 llvm::GlobalObject *GO) { 1010 SetCommonAttributes(D, GO); 1011 1012 if (D) 1013 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1014 GO->setSection(SA->getName()); 1015 1016 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1017 } 1018 1019 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1020 llvm::Function *F, 1021 const CGFunctionInfo &FI) { 1022 SetLLVMFunctionAttributes(D, FI, F); 1023 SetLLVMFunctionAttributesForDefinition(D, F); 1024 1025 F->setLinkage(llvm::Function::InternalLinkage); 1026 1027 setNonAliasAttributes(D, F); 1028 } 1029 1030 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1031 const NamedDecl *ND) { 1032 // Set linkage and visibility in case we never see a definition. 1033 LinkageInfo LV = ND->getLinkageAndVisibility(); 1034 if (LV.getLinkage() != ExternalLinkage) { 1035 // Don't set internal linkage on declarations. 1036 } else { 1037 if (ND->hasAttr<DLLImportAttr>()) { 1038 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1039 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1040 } else if (ND->hasAttr<DLLExportAttr>()) { 1041 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1042 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1043 // "extern_weak" is overloaded in LLVM; we probably should have 1044 // separate linkage types for this. 1045 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1046 } 1047 1048 // Set visibility on a declaration only if it's explicit. 1049 if (LV.isVisibilityExplicit()) 1050 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1051 } 1052 } 1053 1054 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1055 llvm::Function *F) { 1056 // Only if we are checking indirect calls. 1057 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1058 return; 1059 1060 // Non-static class methods are handled via vtable pointer checks elsewhere. 1061 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1062 return; 1063 1064 // Additionally, if building with cross-DSO support... 1065 if (CodeGenOpts.SanitizeCfiCrossDso) { 1066 // Skip available_externally functions. They won't be codegen'ed in the 1067 // current module anyway. 1068 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1069 return; 1070 } 1071 1072 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1073 F->addTypeMetadata(0, MD); 1074 1075 // Emit a hash-based bit set entry for cross-DSO calls. 1076 if (CodeGenOpts.SanitizeCfiCrossDso) 1077 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1078 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1079 } 1080 1081 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1082 bool IsIncompleteFunction, 1083 bool IsThunk) { 1084 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1085 // If this is an intrinsic function, set the function's attributes 1086 // to the intrinsic's attributes. 1087 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1088 return; 1089 } 1090 1091 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1092 1093 if (!IsIncompleteFunction) 1094 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1095 1096 // Add the Returned attribute for "this", except for iOS 5 and earlier 1097 // where substantial code, including the libstdc++ dylib, was compiled with 1098 // GCC and does not actually return "this". 1099 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1100 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1101 assert(!F->arg_empty() && 1102 F->arg_begin()->getType() 1103 ->canLosslesslyBitCastTo(F->getReturnType()) && 1104 "unexpected this return"); 1105 F->addAttribute(1, llvm::Attribute::Returned); 1106 } 1107 1108 // Only a few attributes are set on declarations; these may later be 1109 // overridden by a definition. 1110 1111 setLinkageAndVisibilityForGV(F, FD); 1112 1113 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1114 F->setSection(SA->getName()); 1115 1116 if (FD->isReplaceableGlobalAllocationFunction()) { 1117 // A replaceable global allocation function does not act like a builtin by 1118 // default, only if it is invoked by a new-expression or delete-expression. 1119 F->addAttribute(llvm::AttributeList::FunctionIndex, 1120 llvm::Attribute::NoBuiltin); 1121 1122 // A sane operator new returns a non-aliasing pointer. 1123 // FIXME: Also add NonNull attribute to the return value 1124 // for the non-nothrow forms? 1125 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1126 if (getCodeGenOpts().AssumeSaneOperatorNew && 1127 (Kind == OO_New || Kind == OO_Array_New)) 1128 F->addAttribute(llvm::AttributeList::ReturnIndex, 1129 llvm::Attribute::NoAlias); 1130 } 1131 1132 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1133 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1134 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1135 if (MD->isVirtual()) 1136 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1137 1138 // Don't emit entries for function declarations in the cross-DSO mode. This 1139 // is handled with better precision by the receiving DSO. 1140 if (!CodeGenOpts.SanitizeCfiCrossDso) 1141 CreateFunctionTypeMetadata(FD, F); 1142 } 1143 1144 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1145 assert(!GV->isDeclaration() && 1146 "Only globals with definition can force usage."); 1147 LLVMUsed.emplace_back(GV); 1148 } 1149 1150 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1151 assert(!GV->isDeclaration() && 1152 "Only globals with definition can force usage."); 1153 LLVMCompilerUsed.emplace_back(GV); 1154 } 1155 1156 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1157 std::vector<llvm::WeakVH> &List) { 1158 // Don't create llvm.used if there is no need. 1159 if (List.empty()) 1160 return; 1161 1162 // Convert List to what ConstantArray needs. 1163 SmallVector<llvm::Constant*, 8> UsedArray; 1164 UsedArray.resize(List.size()); 1165 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1166 UsedArray[i] = 1167 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1168 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1169 } 1170 1171 if (UsedArray.empty()) 1172 return; 1173 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1174 1175 auto *GV = new llvm::GlobalVariable( 1176 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1177 llvm::ConstantArray::get(ATy, UsedArray), Name); 1178 1179 GV->setSection("llvm.metadata"); 1180 } 1181 1182 void CodeGenModule::emitLLVMUsed() { 1183 emitUsed(*this, "llvm.used", LLVMUsed); 1184 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1185 } 1186 1187 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1188 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1189 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1190 } 1191 1192 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1193 llvm::SmallString<32> Opt; 1194 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1195 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1196 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1197 } 1198 1199 void CodeGenModule::AddDependentLib(StringRef Lib) { 1200 llvm::SmallString<24> Opt; 1201 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1202 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1203 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1204 } 1205 1206 /// \brief Add link options implied by the given module, including modules 1207 /// it depends on, using a postorder walk. 1208 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1209 SmallVectorImpl<llvm::Metadata *> &Metadata, 1210 llvm::SmallPtrSet<Module *, 16> &Visited) { 1211 // Import this module's parent. 1212 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1213 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1214 } 1215 1216 // Import this module's dependencies. 1217 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1218 if (Visited.insert(Mod->Imports[I - 1]).second) 1219 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1220 } 1221 1222 // Add linker options to link against the libraries/frameworks 1223 // described by this module. 1224 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1225 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1226 // Link against a framework. Frameworks are currently Darwin only, so we 1227 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1228 if (Mod->LinkLibraries[I-1].IsFramework) { 1229 llvm::Metadata *Args[2] = { 1230 llvm::MDString::get(Context, "-framework"), 1231 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1232 1233 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1234 continue; 1235 } 1236 1237 // Link against a library. 1238 llvm::SmallString<24> Opt; 1239 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1240 Mod->LinkLibraries[I-1].Library, Opt); 1241 auto *OptString = llvm::MDString::get(Context, Opt); 1242 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1243 } 1244 } 1245 1246 void CodeGenModule::EmitModuleLinkOptions() { 1247 // Collect the set of all of the modules we want to visit to emit link 1248 // options, which is essentially the imported modules and all of their 1249 // non-explicit child modules. 1250 llvm::SetVector<clang::Module *> LinkModules; 1251 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1252 SmallVector<clang::Module *, 16> Stack; 1253 1254 // Seed the stack with imported modules. 1255 for (Module *M : ImportedModules) { 1256 // Do not add any link flags when an implementation TU of a module imports 1257 // a header of that same module. 1258 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1259 !getLangOpts().isCompilingModule()) 1260 continue; 1261 if (Visited.insert(M).second) 1262 Stack.push_back(M); 1263 } 1264 1265 // Find all of the modules to import, making a little effort to prune 1266 // non-leaf modules. 1267 while (!Stack.empty()) { 1268 clang::Module *Mod = Stack.pop_back_val(); 1269 1270 bool AnyChildren = false; 1271 1272 // Visit the submodules of this module. 1273 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1274 SubEnd = Mod->submodule_end(); 1275 Sub != SubEnd; ++Sub) { 1276 // Skip explicit children; they need to be explicitly imported to be 1277 // linked against. 1278 if ((*Sub)->IsExplicit) 1279 continue; 1280 1281 if (Visited.insert(*Sub).second) { 1282 Stack.push_back(*Sub); 1283 AnyChildren = true; 1284 } 1285 } 1286 1287 // We didn't find any children, so add this module to the list of 1288 // modules to link against. 1289 if (!AnyChildren) { 1290 LinkModules.insert(Mod); 1291 } 1292 } 1293 1294 // Add link options for all of the imported modules in reverse topological 1295 // order. We don't do anything to try to order import link flags with respect 1296 // to linker options inserted by things like #pragma comment(). 1297 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1298 Visited.clear(); 1299 for (Module *M : LinkModules) 1300 if (Visited.insert(M).second) 1301 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1302 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1303 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1304 1305 // Add the linker options metadata flag. 1306 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1307 llvm::MDNode::get(getLLVMContext(), 1308 LinkerOptionsMetadata)); 1309 } 1310 1311 void CodeGenModule::EmitDeferred() { 1312 // Emit code for any potentially referenced deferred decls. Since a 1313 // previously unused static decl may become used during the generation of code 1314 // for a static function, iterate until no changes are made. 1315 1316 if (!DeferredVTables.empty()) { 1317 EmitDeferredVTables(); 1318 1319 // Emitting a vtable doesn't directly cause more vtables to 1320 // become deferred, although it can cause functions to be 1321 // emitted that then need those vtables. 1322 assert(DeferredVTables.empty()); 1323 } 1324 1325 // Stop if we're out of both deferred vtables and deferred declarations. 1326 if (DeferredDeclsToEmit.empty()) 1327 return; 1328 1329 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1330 // work, it will not interfere with this. 1331 std::vector<DeferredGlobal> CurDeclsToEmit; 1332 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1333 1334 for (DeferredGlobal &G : CurDeclsToEmit) { 1335 GlobalDecl D = G.GD; 1336 G.GV = nullptr; 1337 1338 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1339 // to get GlobalValue with exactly the type we need, not something that 1340 // might had been created for another decl with the same mangled name but 1341 // different type. 1342 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1343 GetAddrOfGlobal(D, ForDefinition)); 1344 1345 // In case of different address spaces, we may still get a cast, even with 1346 // IsForDefinition equal to true. Query mangled names table to get 1347 // GlobalValue. 1348 if (!GV) 1349 GV = GetGlobalValue(getMangledName(D)); 1350 1351 // Make sure GetGlobalValue returned non-null. 1352 assert(GV); 1353 1354 // Check to see if we've already emitted this. This is necessary 1355 // for a couple of reasons: first, decls can end up in the 1356 // deferred-decls queue multiple times, and second, decls can end 1357 // up with definitions in unusual ways (e.g. by an extern inline 1358 // function acquiring a strong function redefinition). Just 1359 // ignore these cases. 1360 if (!GV->isDeclaration()) 1361 continue; 1362 1363 // Otherwise, emit the definition and move on to the next one. 1364 EmitGlobalDefinition(D, GV); 1365 1366 // If we found out that we need to emit more decls, do that recursively. 1367 // This has the advantage that the decls are emitted in a DFS and related 1368 // ones are close together, which is convenient for testing. 1369 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1370 EmitDeferred(); 1371 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1372 } 1373 } 1374 } 1375 1376 void CodeGenModule::EmitGlobalAnnotations() { 1377 if (Annotations.empty()) 1378 return; 1379 1380 // Create a new global variable for the ConstantStruct in the Module. 1381 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1382 Annotations[0]->getType(), Annotations.size()), Annotations); 1383 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1384 llvm::GlobalValue::AppendingLinkage, 1385 Array, "llvm.global.annotations"); 1386 gv->setSection(AnnotationSection); 1387 } 1388 1389 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1390 llvm::Constant *&AStr = AnnotationStrings[Str]; 1391 if (AStr) 1392 return AStr; 1393 1394 // Not found yet, create a new global. 1395 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1396 auto *gv = 1397 new llvm::GlobalVariable(getModule(), s->getType(), true, 1398 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1399 gv->setSection(AnnotationSection); 1400 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1401 AStr = gv; 1402 return gv; 1403 } 1404 1405 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1406 SourceManager &SM = getContext().getSourceManager(); 1407 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1408 if (PLoc.isValid()) 1409 return EmitAnnotationString(PLoc.getFilename()); 1410 return EmitAnnotationString(SM.getBufferName(Loc)); 1411 } 1412 1413 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1414 SourceManager &SM = getContext().getSourceManager(); 1415 PresumedLoc PLoc = SM.getPresumedLoc(L); 1416 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1417 SM.getExpansionLineNumber(L); 1418 return llvm::ConstantInt::get(Int32Ty, LineNo); 1419 } 1420 1421 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1422 const AnnotateAttr *AA, 1423 SourceLocation L) { 1424 // Get the globals for file name, annotation, and the line number. 1425 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1426 *UnitGV = EmitAnnotationUnit(L), 1427 *LineNoCst = EmitAnnotationLineNo(L); 1428 1429 // Create the ConstantStruct for the global annotation. 1430 llvm::Constant *Fields[4] = { 1431 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1432 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1433 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1434 LineNoCst 1435 }; 1436 return llvm::ConstantStruct::getAnon(Fields); 1437 } 1438 1439 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1440 llvm::GlobalValue *GV) { 1441 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1442 // Get the struct elements for these annotations. 1443 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1444 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1445 } 1446 1447 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1448 SourceLocation Loc) const { 1449 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1450 // Blacklist by function name. 1451 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1452 return true; 1453 // Blacklist by location. 1454 if (Loc.isValid()) 1455 return SanitizerBL.isBlacklistedLocation(Loc); 1456 // If location is unknown, this may be a compiler-generated function. Assume 1457 // it's located in the main file. 1458 auto &SM = Context.getSourceManager(); 1459 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1460 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1461 } 1462 return false; 1463 } 1464 1465 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1466 SourceLocation Loc, QualType Ty, 1467 StringRef Category) const { 1468 // For now globals can be blacklisted only in ASan and KASan. 1469 if (!LangOpts.Sanitize.hasOneOf( 1470 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1471 return false; 1472 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1473 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1474 return true; 1475 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1476 return true; 1477 // Check global type. 1478 if (!Ty.isNull()) { 1479 // Drill down the array types: if global variable of a fixed type is 1480 // blacklisted, we also don't instrument arrays of them. 1481 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1482 Ty = AT->getElementType(); 1483 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1484 // We allow to blacklist only record types (classes, structs etc.) 1485 if (Ty->isRecordType()) { 1486 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1487 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1488 return true; 1489 } 1490 } 1491 return false; 1492 } 1493 1494 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1495 StringRef Category) const { 1496 if (!LangOpts.XRayInstrument) 1497 return false; 1498 const auto &XRayFilter = getContext().getXRayFilter(); 1499 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1500 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1501 if (Loc.isValid()) 1502 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1503 if (Attr == ImbueAttr::NONE) 1504 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1505 switch (Attr) { 1506 case ImbueAttr::NONE: 1507 return false; 1508 case ImbueAttr::ALWAYS: 1509 Fn->addFnAttr("function-instrument", "xray-always"); 1510 break; 1511 case ImbueAttr::NEVER: 1512 Fn->addFnAttr("function-instrument", "xray-never"); 1513 break; 1514 } 1515 return true; 1516 } 1517 1518 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1519 // Never defer when EmitAllDecls is specified. 1520 if (LangOpts.EmitAllDecls) 1521 return true; 1522 1523 return getContext().DeclMustBeEmitted(Global); 1524 } 1525 1526 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1527 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1528 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1529 // Implicit template instantiations may change linkage if they are later 1530 // explicitly instantiated, so they should not be emitted eagerly. 1531 return false; 1532 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1533 if (Context.getInlineVariableDefinitionKind(VD) == 1534 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1535 // A definition of an inline constexpr static data member may change 1536 // linkage later if it's redeclared outside the class. 1537 return false; 1538 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1539 // codegen for global variables, because they may be marked as threadprivate. 1540 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1541 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1542 return false; 1543 1544 return true; 1545 } 1546 1547 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1548 const CXXUuidofExpr* E) { 1549 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1550 // well-formed. 1551 StringRef Uuid = E->getUuidStr(); 1552 std::string Name = "_GUID_" + Uuid.lower(); 1553 std::replace(Name.begin(), Name.end(), '-', '_'); 1554 1555 // The UUID descriptor should be pointer aligned. 1556 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1557 1558 // Look for an existing global. 1559 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1560 return ConstantAddress(GV, Alignment); 1561 1562 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1563 assert(Init && "failed to initialize as constant"); 1564 1565 auto *GV = new llvm::GlobalVariable( 1566 getModule(), Init->getType(), 1567 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1568 if (supportsCOMDAT()) 1569 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1570 return ConstantAddress(GV, Alignment); 1571 } 1572 1573 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1574 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1575 assert(AA && "No alias?"); 1576 1577 CharUnits Alignment = getContext().getDeclAlign(VD); 1578 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1579 1580 // See if there is already something with the target's name in the module. 1581 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1582 if (Entry) { 1583 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1584 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1585 return ConstantAddress(Ptr, Alignment); 1586 } 1587 1588 llvm::Constant *Aliasee; 1589 if (isa<llvm::FunctionType>(DeclTy)) 1590 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1591 GlobalDecl(cast<FunctionDecl>(VD)), 1592 /*ForVTable=*/false); 1593 else 1594 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1595 llvm::PointerType::getUnqual(DeclTy), 1596 nullptr); 1597 1598 auto *F = cast<llvm::GlobalValue>(Aliasee); 1599 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1600 WeakRefReferences.insert(F); 1601 1602 return ConstantAddress(Aliasee, Alignment); 1603 } 1604 1605 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1606 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1607 1608 // Weak references don't produce any output by themselves. 1609 if (Global->hasAttr<WeakRefAttr>()) 1610 return; 1611 1612 // If this is an alias definition (which otherwise looks like a declaration) 1613 // emit it now. 1614 if (Global->hasAttr<AliasAttr>()) 1615 return EmitAliasDefinition(GD); 1616 1617 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1618 if (Global->hasAttr<IFuncAttr>()) 1619 return emitIFuncDefinition(GD); 1620 1621 // If this is CUDA, be selective about which declarations we emit. 1622 if (LangOpts.CUDA) { 1623 if (LangOpts.CUDAIsDevice) { 1624 if (!Global->hasAttr<CUDADeviceAttr>() && 1625 !Global->hasAttr<CUDAGlobalAttr>() && 1626 !Global->hasAttr<CUDAConstantAttr>() && 1627 !Global->hasAttr<CUDASharedAttr>()) 1628 return; 1629 } else { 1630 // We need to emit host-side 'shadows' for all global 1631 // device-side variables because the CUDA runtime needs their 1632 // size and host-side address in order to provide access to 1633 // their device-side incarnations. 1634 1635 // So device-only functions are the only things we skip. 1636 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1637 Global->hasAttr<CUDADeviceAttr>()) 1638 return; 1639 1640 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1641 "Expected Variable or Function"); 1642 } 1643 } 1644 1645 if (LangOpts.OpenMP) { 1646 // If this is OpenMP device, check if it is legal to emit this global 1647 // normally. 1648 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1649 return; 1650 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1651 if (MustBeEmitted(Global)) 1652 EmitOMPDeclareReduction(DRD); 1653 return; 1654 } 1655 } 1656 1657 // Ignore declarations, they will be emitted on their first use. 1658 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1659 // Forward declarations are emitted lazily on first use. 1660 if (!FD->doesThisDeclarationHaveABody()) { 1661 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1662 return; 1663 1664 StringRef MangledName = getMangledName(GD); 1665 1666 // Compute the function info and LLVM type. 1667 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1668 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1669 1670 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1671 /*DontDefer=*/false); 1672 return; 1673 } 1674 } else { 1675 const auto *VD = cast<VarDecl>(Global); 1676 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1677 // We need to emit device-side global CUDA variables even if a 1678 // variable does not have a definition -- we still need to define 1679 // host-side shadow for it. 1680 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1681 !VD->hasDefinition() && 1682 (VD->hasAttr<CUDAConstantAttr>() || 1683 VD->hasAttr<CUDADeviceAttr>()); 1684 if (!MustEmitForCuda && 1685 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1686 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1687 // If this declaration may have caused an inline variable definition to 1688 // change linkage, make sure that it's emitted. 1689 if (Context.getInlineVariableDefinitionKind(VD) == 1690 ASTContext::InlineVariableDefinitionKind::Strong) 1691 GetAddrOfGlobalVar(VD); 1692 return; 1693 } 1694 } 1695 1696 // Defer code generation to first use when possible, e.g. if this is an inline 1697 // function. If the global must always be emitted, do it eagerly if possible 1698 // to benefit from cache locality. 1699 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1700 // Emit the definition if it can't be deferred. 1701 EmitGlobalDefinition(GD); 1702 return; 1703 } 1704 1705 // If we're deferring emission of a C++ variable with an 1706 // initializer, remember the order in which it appeared in the file. 1707 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1708 cast<VarDecl>(Global)->hasInit()) { 1709 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1710 CXXGlobalInits.push_back(nullptr); 1711 } 1712 1713 StringRef MangledName = getMangledName(GD); 1714 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1715 // The value has already been used and should therefore be emitted. 1716 addDeferredDeclToEmit(GV, GD); 1717 } else if (MustBeEmitted(Global)) { 1718 // The value must be emitted, but cannot be emitted eagerly. 1719 assert(!MayBeEmittedEagerly(Global)); 1720 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1721 } else { 1722 // Otherwise, remember that we saw a deferred decl with this name. The 1723 // first use of the mangled name will cause it to move into 1724 // DeferredDeclsToEmit. 1725 DeferredDecls[MangledName] = GD; 1726 } 1727 } 1728 1729 // Check if T is a class type with a destructor that's not dllimport. 1730 static bool HasNonDllImportDtor(QualType T) { 1731 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1732 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1733 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1734 return true; 1735 1736 return false; 1737 } 1738 1739 namespace { 1740 struct FunctionIsDirectlyRecursive : 1741 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1742 const StringRef Name; 1743 const Builtin::Context &BI; 1744 bool Result; 1745 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1746 Name(N), BI(C), Result(false) { 1747 } 1748 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1749 1750 bool TraverseCallExpr(CallExpr *E) { 1751 const FunctionDecl *FD = E->getDirectCallee(); 1752 if (!FD) 1753 return true; 1754 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1755 if (Attr && Name == Attr->getLabel()) { 1756 Result = true; 1757 return false; 1758 } 1759 unsigned BuiltinID = FD->getBuiltinID(); 1760 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1761 return true; 1762 StringRef BuiltinName = BI.getName(BuiltinID); 1763 if (BuiltinName.startswith("__builtin_") && 1764 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1765 Result = true; 1766 return false; 1767 } 1768 return true; 1769 } 1770 }; 1771 1772 // Make sure we're not referencing non-imported vars or functions. 1773 struct DLLImportFunctionVisitor 1774 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1775 bool SafeToInline = true; 1776 1777 bool shouldVisitImplicitCode() const { return true; } 1778 1779 bool VisitVarDecl(VarDecl *VD) { 1780 if (VD->getTLSKind()) { 1781 // A thread-local variable cannot be imported. 1782 SafeToInline = false; 1783 return SafeToInline; 1784 } 1785 1786 // A variable definition might imply a destructor call. 1787 if (VD->isThisDeclarationADefinition()) 1788 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1789 1790 return SafeToInline; 1791 } 1792 1793 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1794 if (const auto *D = E->getTemporary()->getDestructor()) 1795 SafeToInline = D->hasAttr<DLLImportAttr>(); 1796 return SafeToInline; 1797 } 1798 1799 bool VisitDeclRefExpr(DeclRefExpr *E) { 1800 ValueDecl *VD = E->getDecl(); 1801 if (isa<FunctionDecl>(VD)) 1802 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1803 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1804 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1805 return SafeToInline; 1806 } 1807 1808 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1809 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1810 return SafeToInline; 1811 } 1812 1813 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1814 CXXMethodDecl *M = E->getMethodDecl(); 1815 if (!M) { 1816 // Call through a pointer to member function. This is safe to inline. 1817 SafeToInline = true; 1818 } else { 1819 SafeToInline = M->hasAttr<DLLImportAttr>(); 1820 } 1821 return SafeToInline; 1822 } 1823 1824 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1825 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1826 return SafeToInline; 1827 } 1828 1829 bool VisitCXXNewExpr(CXXNewExpr *E) { 1830 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1831 return SafeToInline; 1832 } 1833 }; 1834 } 1835 1836 // isTriviallyRecursive - Check if this function calls another 1837 // decl that, because of the asm attribute or the other decl being a builtin, 1838 // ends up pointing to itself. 1839 bool 1840 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1841 StringRef Name; 1842 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1843 // asm labels are a special kind of mangling we have to support. 1844 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1845 if (!Attr) 1846 return false; 1847 Name = Attr->getLabel(); 1848 } else { 1849 Name = FD->getName(); 1850 } 1851 1852 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1853 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1854 return Walker.Result; 1855 } 1856 1857 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1858 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1859 return true; 1860 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1861 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1862 return false; 1863 1864 if (F->hasAttr<DLLImportAttr>()) { 1865 // Check whether it would be safe to inline this dllimport function. 1866 DLLImportFunctionVisitor Visitor; 1867 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1868 if (!Visitor.SafeToInline) 1869 return false; 1870 1871 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1872 // Implicit destructor invocations aren't captured in the AST, so the 1873 // check above can't see them. Check for them manually here. 1874 for (const Decl *Member : Dtor->getParent()->decls()) 1875 if (isa<FieldDecl>(Member)) 1876 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1877 return false; 1878 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1879 if (HasNonDllImportDtor(B.getType())) 1880 return false; 1881 } 1882 } 1883 1884 // PR9614. Avoid cases where the source code is lying to us. An available 1885 // externally function should have an equivalent function somewhere else, 1886 // but a function that calls itself is clearly not equivalent to the real 1887 // implementation. 1888 // This happens in glibc's btowc and in some configure checks. 1889 return !isTriviallyRecursive(F); 1890 } 1891 1892 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1893 const auto *D = cast<ValueDecl>(GD.getDecl()); 1894 1895 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1896 Context.getSourceManager(), 1897 "Generating code for declaration"); 1898 1899 if (isa<FunctionDecl>(D)) { 1900 // At -O0, don't generate IR for functions with available_externally 1901 // linkage. 1902 if (!shouldEmitFunction(GD)) 1903 return; 1904 1905 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1906 // Make sure to emit the definition(s) before we emit the thunks. 1907 // This is necessary for the generation of certain thunks. 1908 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1909 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1910 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1911 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1912 else 1913 EmitGlobalFunctionDefinition(GD, GV); 1914 1915 if (Method->isVirtual()) 1916 getVTables().EmitThunks(GD); 1917 1918 return; 1919 } 1920 1921 return EmitGlobalFunctionDefinition(GD, GV); 1922 } 1923 1924 if (const auto *VD = dyn_cast<VarDecl>(D)) 1925 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1926 1927 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1928 } 1929 1930 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1931 llvm::Function *NewFn); 1932 1933 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1934 /// module, create and return an llvm Function with the specified type. If there 1935 /// is something in the module with the specified name, return it potentially 1936 /// bitcasted to the right type. 1937 /// 1938 /// If D is non-null, it specifies a decl that correspond to this. This is used 1939 /// to set the attributes on the function when it is first created. 1940 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 1941 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 1942 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 1943 ForDefinition_t IsForDefinition) { 1944 const Decl *D = GD.getDecl(); 1945 1946 // Lookup the entry, lazily creating it if necessary. 1947 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1948 if (Entry) { 1949 if (WeakRefReferences.erase(Entry)) { 1950 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1951 if (FD && !FD->hasAttr<WeakAttr>()) 1952 Entry->setLinkage(llvm::Function::ExternalLinkage); 1953 } 1954 1955 // Handle dropped DLL attributes. 1956 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1957 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1958 1959 // If there are two attempts to define the same mangled name, issue an 1960 // error. 1961 if (IsForDefinition && !Entry->isDeclaration()) { 1962 GlobalDecl OtherGD; 1963 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1964 // to make sure that we issue an error only once. 1965 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1966 (GD.getCanonicalDecl().getDecl() != 1967 OtherGD.getCanonicalDecl().getDecl()) && 1968 DiagnosedConflictingDefinitions.insert(GD).second) { 1969 getDiags().Report(D->getLocation(), 1970 diag::err_duplicate_mangled_name); 1971 getDiags().Report(OtherGD.getDecl()->getLocation(), 1972 diag::note_previous_definition); 1973 } 1974 } 1975 1976 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1977 (Entry->getType()->getElementType() == Ty)) { 1978 return Entry; 1979 } 1980 1981 // Make sure the result is of the correct type. 1982 // (If function is requested for a definition, we always need to create a new 1983 // function, not just return a bitcast.) 1984 if (!IsForDefinition) 1985 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1986 } 1987 1988 // This function doesn't have a complete type (for example, the return 1989 // type is an incomplete struct). Use a fake type instead, and make 1990 // sure not to try to set attributes. 1991 bool IsIncompleteFunction = false; 1992 1993 llvm::FunctionType *FTy; 1994 if (isa<llvm::FunctionType>(Ty)) { 1995 FTy = cast<llvm::FunctionType>(Ty); 1996 } else { 1997 FTy = llvm::FunctionType::get(VoidTy, false); 1998 IsIncompleteFunction = true; 1999 } 2000 2001 llvm::Function *F = 2002 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2003 Entry ? StringRef() : MangledName, &getModule()); 2004 2005 // If we already created a function with the same mangled name (but different 2006 // type) before, take its name and add it to the list of functions to be 2007 // replaced with F at the end of CodeGen. 2008 // 2009 // This happens if there is a prototype for a function (e.g. "int f()") and 2010 // then a definition of a different type (e.g. "int f(int x)"). 2011 if (Entry) { 2012 F->takeName(Entry); 2013 2014 // This might be an implementation of a function without a prototype, in 2015 // which case, try to do special replacement of calls which match the new 2016 // prototype. The really key thing here is that we also potentially drop 2017 // arguments from the call site so as to make a direct call, which makes the 2018 // inliner happier and suppresses a number of optimizer warnings (!) about 2019 // dropping arguments. 2020 if (!Entry->use_empty()) { 2021 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2022 Entry->removeDeadConstantUsers(); 2023 } 2024 2025 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2026 F, Entry->getType()->getElementType()->getPointerTo()); 2027 addGlobalValReplacement(Entry, BC); 2028 } 2029 2030 assert(F->getName() == MangledName && "name was uniqued!"); 2031 if (D) 2032 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2033 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2034 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2035 F->addAttributes(llvm::AttributeList::FunctionIndex, 2036 llvm::AttributeList::get( 2037 VMContext, llvm::AttributeList::FunctionIndex, B)); 2038 } 2039 2040 if (!DontDefer) { 2041 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2042 // each other bottoming out with the base dtor. Therefore we emit non-base 2043 // dtors on usage, even if there is no dtor definition in the TU. 2044 if (D && isa<CXXDestructorDecl>(D) && 2045 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2046 GD.getDtorType())) 2047 addDeferredDeclToEmit(F, GD); 2048 2049 // This is the first use or definition of a mangled name. If there is a 2050 // deferred decl with this name, remember that we need to emit it at the end 2051 // of the file. 2052 auto DDI = DeferredDecls.find(MangledName); 2053 if (DDI != DeferredDecls.end()) { 2054 // Move the potentially referenced deferred decl to the 2055 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2056 // don't need it anymore). 2057 addDeferredDeclToEmit(F, DDI->second); 2058 DeferredDecls.erase(DDI); 2059 2060 // Otherwise, there are cases we have to worry about where we're 2061 // using a declaration for which we must emit a definition but where 2062 // we might not find a top-level definition: 2063 // - member functions defined inline in their classes 2064 // - friend functions defined inline in some class 2065 // - special member functions with implicit definitions 2066 // If we ever change our AST traversal to walk into class methods, 2067 // this will be unnecessary. 2068 // 2069 // We also don't emit a definition for a function if it's going to be an 2070 // entry in a vtable, unless it's already marked as used. 2071 } else if (getLangOpts().CPlusPlus && D) { 2072 // Look for a declaration that's lexically in a record. 2073 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2074 FD = FD->getPreviousDecl()) { 2075 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2076 if (FD->doesThisDeclarationHaveABody()) { 2077 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 2078 break; 2079 } 2080 } 2081 } 2082 } 2083 } 2084 2085 // Make sure the result is of the requested type. 2086 if (!IsIncompleteFunction) { 2087 assert(F->getType()->getElementType() == Ty); 2088 return F; 2089 } 2090 2091 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2092 return llvm::ConstantExpr::getBitCast(F, PTy); 2093 } 2094 2095 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2096 /// non-null, then this function will use the specified type if it has to 2097 /// create it (this occurs when we see a definition of the function). 2098 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2099 llvm::Type *Ty, 2100 bool ForVTable, 2101 bool DontDefer, 2102 ForDefinition_t IsForDefinition) { 2103 // If there was no specific requested type, just convert it now. 2104 if (!Ty) { 2105 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2106 auto CanonTy = Context.getCanonicalType(FD->getType()); 2107 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2108 } 2109 2110 StringRef MangledName = getMangledName(GD); 2111 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2112 /*IsThunk=*/false, llvm::AttributeList(), 2113 IsForDefinition); 2114 } 2115 2116 static const FunctionDecl * 2117 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2118 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2119 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2120 2121 IdentifierInfo &CII = C.Idents.get(Name); 2122 for (const auto &Result : DC->lookup(&CII)) 2123 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2124 return FD; 2125 2126 if (!C.getLangOpts().CPlusPlus) 2127 return nullptr; 2128 2129 // Demangle the premangled name from getTerminateFn() 2130 IdentifierInfo &CXXII = 2131 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2132 ? C.Idents.get("terminate") 2133 : C.Idents.get(Name); 2134 2135 for (const auto &N : {"__cxxabiv1", "std"}) { 2136 IdentifierInfo &NS = C.Idents.get(N); 2137 for (const auto &Result : DC->lookup(&NS)) { 2138 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2139 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2140 for (const auto &Result : LSD->lookup(&NS)) 2141 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2142 break; 2143 2144 if (ND) 2145 for (const auto &Result : ND->lookup(&CXXII)) 2146 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2147 return FD; 2148 } 2149 } 2150 2151 return nullptr; 2152 } 2153 2154 /// CreateRuntimeFunction - Create a new runtime function with the specified 2155 /// type and name. 2156 llvm::Constant * 2157 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2158 llvm::AttributeList ExtraAttrs, 2159 bool Local) { 2160 llvm::Constant *C = 2161 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2162 /*DontDefer=*/false, /*IsThunk=*/false, 2163 ExtraAttrs); 2164 2165 if (auto *F = dyn_cast<llvm::Function>(C)) { 2166 if (F->empty()) { 2167 F->setCallingConv(getRuntimeCC()); 2168 2169 if (!Local && getTriple().isOSBinFormatCOFF() && 2170 !getCodeGenOpts().LTOVisibilityPublicStd) { 2171 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2172 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2173 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2174 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2175 } 2176 } 2177 } 2178 } 2179 2180 return C; 2181 } 2182 2183 /// CreateBuiltinFunction - Create a new builtin function with the specified 2184 /// type and name. 2185 llvm::Constant * 2186 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2187 llvm::AttributeList ExtraAttrs) { 2188 llvm::Constant *C = 2189 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2190 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2191 if (auto *F = dyn_cast<llvm::Function>(C)) 2192 if (F->empty()) 2193 F->setCallingConv(getBuiltinCC()); 2194 return C; 2195 } 2196 2197 /// isTypeConstant - Determine whether an object of this type can be emitted 2198 /// as a constant. 2199 /// 2200 /// If ExcludeCtor is true, the duration when the object's constructor runs 2201 /// will not be considered. The caller will need to verify that the object is 2202 /// not written to during its construction. 2203 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2204 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2205 return false; 2206 2207 if (Context.getLangOpts().CPlusPlus) { 2208 if (const CXXRecordDecl *Record 2209 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2210 return ExcludeCtor && !Record->hasMutableFields() && 2211 Record->hasTrivialDestructor(); 2212 } 2213 2214 return true; 2215 } 2216 2217 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2218 /// create and return an llvm GlobalVariable with the specified type. If there 2219 /// is something in the module with the specified name, return it potentially 2220 /// bitcasted to the right type. 2221 /// 2222 /// If D is non-null, it specifies a decl that correspond to this. This is used 2223 /// to set the attributes on the global when it is first created. 2224 /// 2225 /// If IsForDefinition is true, it is guranteed that an actual global with 2226 /// type Ty will be returned, not conversion of a variable with the same 2227 /// mangled name but some other type. 2228 llvm::Constant * 2229 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2230 llvm::PointerType *Ty, 2231 const VarDecl *D, 2232 ForDefinition_t IsForDefinition) { 2233 // Lookup the entry, lazily creating it if necessary. 2234 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2235 if (Entry) { 2236 if (WeakRefReferences.erase(Entry)) { 2237 if (D && !D->hasAttr<WeakAttr>()) 2238 Entry->setLinkage(llvm::Function::ExternalLinkage); 2239 } 2240 2241 // Handle dropped DLL attributes. 2242 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2243 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2244 2245 if (Entry->getType() == Ty) 2246 return Entry; 2247 2248 // If there are two attempts to define the same mangled name, issue an 2249 // error. 2250 if (IsForDefinition && !Entry->isDeclaration()) { 2251 GlobalDecl OtherGD; 2252 const VarDecl *OtherD; 2253 2254 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2255 // to make sure that we issue an error only once. 2256 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2257 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2258 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2259 OtherD->hasInit() && 2260 DiagnosedConflictingDefinitions.insert(D).second) { 2261 getDiags().Report(D->getLocation(), 2262 diag::err_duplicate_mangled_name); 2263 getDiags().Report(OtherGD.getDecl()->getLocation(), 2264 diag::note_previous_definition); 2265 } 2266 } 2267 2268 // Make sure the result is of the correct type. 2269 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2270 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2271 2272 // (If global is requested for a definition, we always need to create a new 2273 // global, not just return a bitcast.) 2274 if (!IsForDefinition) 2275 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2276 } 2277 2278 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2279 auto *GV = new llvm::GlobalVariable( 2280 getModule(), Ty->getElementType(), false, 2281 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2282 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2283 2284 // If we already created a global with the same mangled name (but different 2285 // type) before, take its name and remove it from its parent. 2286 if (Entry) { 2287 GV->takeName(Entry); 2288 2289 if (!Entry->use_empty()) { 2290 llvm::Constant *NewPtrForOldDecl = 2291 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2292 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2293 } 2294 2295 Entry->eraseFromParent(); 2296 } 2297 2298 // This is the first use or definition of a mangled name. If there is a 2299 // deferred decl with this name, remember that we need to emit it at the end 2300 // of the file. 2301 auto DDI = DeferredDecls.find(MangledName); 2302 if (DDI != DeferredDecls.end()) { 2303 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2304 // list, and remove it from DeferredDecls (since we don't need it anymore). 2305 addDeferredDeclToEmit(GV, DDI->second); 2306 DeferredDecls.erase(DDI); 2307 } 2308 2309 // Handle things which are present even on external declarations. 2310 if (D) { 2311 // FIXME: This code is overly simple and should be merged with other global 2312 // handling. 2313 GV->setConstant(isTypeConstant(D->getType(), false)); 2314 2315 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2316 2317 setLinkageAndVisibilityForGV(GV, D); 2318 2319 if (D->getTLSKind()) { 2320 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2321 CXXThreadLocals.push_back(D); 2322 setTLSMode(GV, *D); 2323 } 2324 2325 // If required by the ABI, treat declarations of static data members with 2326 // inline initializers as definitions. 2327 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2328 EmitGlobalVarDefinition(D); 2329 } 2330 2331 // Handle XCore specific ABI requirements. 2332 if (getTriple().getArch() == llvm::Triple::xcore && 2333 D->getLanguageLinkage() == CLanguageLinkage && 2334 D->getType().isConstant(Context) && 2335 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2336 GV->setSection(".cp.rodata"); 2337 } 2338 2339 if (AddrSpace != Ty->getAddressSpace()) 2340 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2341 2342 return GV; 2343 } 2344 2345 llvm::Constant * 2346 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2347 ForDefinition_t IsForDefinition) { 2348 const Decl *D = GD.getDecl(); 2349 if (isa<CXXConstructorDecl>(D)) 2350 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2351 getFromCtorType(GD.getCtorType()), 2352 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2353 /*DontDefer=*/false, IsForDefinition); 2354 else if (isa<CXXDestructorDecl>(D)) 2355 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2356 getFromDtorType(GD.getDtorType()), 2357 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2358 /*DontDefer=*/false, IsForDefinition); 2359 else if (isa<CXXMethodDecl>(D)) { 2360 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2361 cast<CXXMethodDecl>(D)); 2362 auto Ty = getTypes().GetFunctionType(*FInfo); 2363 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2364 IsForDefinition); 2365 } else if (isa<FunctionDecl>(D)) { 2366 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2367 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2368 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2369 IsForDefinition); 2370 } else 2371 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2372 IsForDefinition); 2373 } 2374 2375 llvm::GlobalVariable * 2376 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2377 llvm::Type *Ty, 2378 llvm::GlobalValue::LinkageTypes Linkage) { 2379 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2380 llvm::GlobalVariable *OldGV = nullptr; 2381 2382 if (GV) { 2383 // Check if the variable has the right type. 2384 if (GV->getType()->getElementType() == Ty) 2385 return GV; 2386 2387 // Because C++ name mangling, the only way we can end up with an already 2388 // existing global with the same name is if it has been declared extern "C". 2389 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2390 OldGV = GV; 2391 } 2392 2393 // Create a new variable. 2394 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2395 Linkage, nullptr, Name); 2396 2397 if (OldGV) { 2398 // Replace occurrences of the old variable if needed. 2399 GV->takeName(OldGV); 2400 2401 if (!OldGV->use_empty()) { 2402 llvm::Constant *NewPtrForOldDecl = 2403 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2404 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2405 } 2406 2407 OldGV->eraseFromParent(); 2408 } 2409 2410 if (supportsCOMDAT() && GV->isWeakForLinker() && 2411 !GV->hasAvailableExternallyLinkage()) 2412 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2413 2414 return GV; 2415 } 2416 2417 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2418 /// given global variable. If Ty is non-null and if the global doesn't exist, 2419 /// then it will be created with the specified type instead of whatever the 2420 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2421 /// that an actual global with type Ty will be returned, not conversion of a 2422 /// variable with the same mangled name but some other type. 2423 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2424 llvm::Type *Ty, 2425 ForDefinition_t IsForDefinition) { 2426 assert(D->hasGlobalStorage() && "Not a global variable"); 2427 QualType ASTTy = D->getType(); 2428 if (!Ty) 2429 Ty = getTypes().ConvertTypeForMem(ASTTy); 2430 2431 llvm::PointerType *PTy = 2432 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2433 2434 StringRef MangledName = getMangledName(D); 2435 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2436 } 2437 2438 /// CreateRuntimeVariable - Create a new runtime global variable with the 2439 /// specified type and name. 2440 llvm::Constant * 2441 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2442 StringRef Name) { 2443 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2444 } 2445 2446 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2447 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2448 2449 StringRef MangledName = getMangledName(D); 2450 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2451 2452 // We already have a definition, not declaration, with the same mangled name. 2453 // Emitting of declaration is not required (and actually overwrites emitted 2454 // definition). 2455 if (GV && !GV->isDeclaration()) 2456 return; 2457 2458 // If we have not seen a reference to this variable yet, place it into the 2459 // deferred declarations table to be emitted if needed later. 2460 if (!MustBeEmitted(D) && !GV) { 2461 DeferredDecls[MangledName] = D; 2462 return; 2463 } 2464 2465 // The tentative definition is the only definition. 2466 EmitGlobalVarDefinition(D); 2467 } 2468 2469 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2470 return Context.toCharUnitsFromBits( 2471 getDataLayout().getTypeStoreSizeInBits(Ty)); 2472 } 2473 2474 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2475 unsigned AddrSpace) { 2476 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2477 if (D->hasAttr<CUDAConstantAttr>()) 2478 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2479 else if (D->hasAttr<CUDASharedAttr>()) 2480 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2481 else 2482 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2483 } 2484 2485 return AddrSpace; 2486 } 2487 2488 template<typename SomeDecl> 2489 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2490 llvm::GlobalValue *GV) { 2491 if (!getLangOpts().CPlusPlus) 2492 return; 2493 2494 // Must have 'used' attribute, or else inline assembly can't rely on 2495 // the name existing. 2496 if (!D->template hasAttr<UsedAttr>()) 2497 return; 2498 2499 // Must have internal linkage and an ordinary name. 2500 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2501 return; 2502 2503 // Must be in an extern "C" context. Entities declared directly within 2504 // a record are not extern "C" even if the record is in such a context. 2505 const SomeDecl *First = D->getFirstDecl(); 2506 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2507 return; 2508 2509 // OK, this is an internal linkage entity inside an extern "C" linkage 2510 // specification. Make a note of that so we can give it the "expected" 2511 // mangled name if nothing else is using that name. 2512 std::pair<StaticExternCMap::iterator, bool> R = 2513 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2514 2515 // If we have multiple internal linkage entities with the same name 2516 // in extern "C" regions, none of them gets that name. 2517 if (!R.second) 2518 R.first->second = nullptr; 2519 } 2520 2521 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2522 if (!CGM.supportsCOMDAT()) 2523 return false; 2524 2525 if (D.hasAttr<SelectAnyAttr>()) 2526 return true; 2527 2528 GVALinkage Linkage; 2529 if (auto *VD = dyn_cast<VarDecl>(&D)) 2530 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2531 else 2532 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2533 2534 switch (Linkage) { 2535 case GVA_Internal: 2536 case GVA_AvailableExternally: 2537 case GVA_StrongExternal: 2538 return false; 2539 case GVA_DiscardableODR: 2540 case GVA_StrongODR: 2541 return true; 2542 } 2543 llvm_unreachable("No such linkage"); 2544 } 2545 2546 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2547 llvm::GlobalObject &GO) { 2548 if (!shouldBeInCOMDAT(*this, D)) 2549 return; 2550 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2551 } 2552 2553 /// Pass IsTentative as true if you want to create a tentative definition. 2554 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2555 bool IsTentative) { 2556 // OpenCL global variables of sampler type are translated to function calls, 2557 // therefore no need to be translated. 2558 QualType ASTTy = D->getType(); 2559 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2560 return; 2561 2562 llvm::Constant *Init = nullptr; 2563 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2564 bool NeedsGlobalCtor = false; 2565 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2566 2567 const VarDecl *InitDecl; 2568 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2569 2570 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2571 // as part of their declaration." Sema has already checked for 2572 // error cases, so we just need to set Init to UndefValue. 2573 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2574 D->hasAttr<CUDASharedAttr>()) 2575 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2576 else if (!InitExpr) { 2577 // This is a tentative definition; tentative definitions are 2578 // implicitly initialized with { 0 }. 2579 // 2580 // Note that tentative definitions are only emitted at the end of 2581 // a translation unit, so they should never have incomplete 2582 // type. In addition, EmitTentativeDefinition makes sure that we 2583 // never attempt to emit a tentative definition if a real one 2584 // exists. A use may still exists, however, so we still may need 2585 // to do a RAUW. 2586 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2587 Init = EmitNullConstant(D->getType()); 2588 } else { 2589 initializedGlobalDecl = GlobalDecl(D); 2590 Init = EmitConstantInit(*InitDecl); 2591 2592 if (!Init) { 2593 QualType T = InitExpr->getType(); 2594 if (D->getType()->isReferenceType()) 2595 T = D->getType(); 2596 2597 if (getLangOpts().CPlusPlus) { 2598 Init = EmitNullConstant(T); 2599 NeedsGlobalCtor = true; 2600 } else { 2601 ErrorUnsupported(D, "static initializer"); 2602 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2603 } 2604 } else { 2605 // We don't need an initializer, so remove the entry for the delayed 2606 // initializer position (just in case this entry was delayed) if we 2607 // also don't need to register a destructor. 2608 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2609 DelayedCXXInitPosition.erase(D); 2610 } 2611 } 2612 2613 llvm::Type* InitType = Init->getType(); 2614 llvm::Constant *Entry = 2615 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2616 2617 // Strip off a bitcast if we got one back. 2618 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2619 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2620 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2621 // All zero index gep. 2622 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2623 Entry = CE->getOperand(0); 2624 } 2625 2626 // Entry is now either a Function or GlobalVariable. 2627 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2628 2629 // We have a definition after a declaration with the wrong type. 2630 // We must make a new GlobalVariable* and update everything that used OldGV 2631 // (a declaration or tentative definition) with the new GlobalVariable* 2632 // (which will be a definition). 2633 // 2634 // This happens if there is a prototype for a global (e.g. 2635 // "extern int x[];") and then a definition of a different type (e.g. 2636 // "int x[10];"). This also happens when an initializer has a different type 2637 // from the type of the global (this happens with unions). 2638 if (!GV || 2639 GV->getType()->getElementType() != InitType || 2640 GV->getType()->getAddressSpace() != 2641 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2642 2643 // Move the old entry aside so that we'll create a new one. 2644 Entry->setName(StringRef()); 2645 2646 // Make a new global with the correct type, this is now guaranteed to work. 2647 GV = cast<llvm::GlobalVariable>( 2648 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2649 2650 // Replace all uses of the old global with the new global 2651 llvm::Constant *NewPtrForOldDecl = 2652 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2653 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2654 2655 // Erase the old global, since it is no longer used. 2656 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2657 } 2658 2659 MaybeHandleStaticInExternC(D, GV); 2660 2661 if (D->hasAttr<AnnotateAttr>()) 2662 AddGlobalAnnotations(D, GV); 2663 2664 // Set the llvm linkage type as appropriate. 2665 llvm::GlobalValue::LinkageTypes Linkage = 2666 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2667 2668 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2669 // the device. [...]" 2670 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2671 // __device__, declares a variable that: [...] 2672 // Is accessible from all the threads within the grid and from the host 2673 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2674 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2675 if (GV && LangOpts.CUDA) { 2676 if (LangOpts.CUDAIsDevice) { 2677 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2678 GV->setExternallyInitialized(true); 2679 } else { 2680 // Host-side shadows of external declarations of device-side 2681 // global variables become internal definitions. These have to 2682 // be internal in order to prevent name conflicts with global 2683 // host variables with the same name in a different TUs. 2684 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2685 Linkage = llvm::GlobalValue::InternalLinkage; 2686 2687 // Shadow variables and their properties must be registered 2688 // with CUDA runtime. 2689 unsigned Flags = 0; 2690 if (!D->hasDefinition()) 2691 Flags |= CGCUDARuntime::ExternDeviceVar; 2692 if (D->hasAttr<CUDAConstantAttr>()) 2693 Flags |= CGCUDARuntime::ConstantDeviceVar; 2694 getCUDARuntime().registerDeviceVar(*GV, Flags); 2695 } else if (D->hasAttr<CUDASharedAttr>()) 2696 // __shared__ variables are odd. Shadows do get created, but 2697 // they are not registered with the CUDA runtime, so they 2698 // can't really be used to access their device-side 2699 // counterparts. It's not clear yet whether it's nvcc's bug or 2700 // a feature, but we've got to do the same for compatibility. 2701 Linkage = llvm::GlobalValue::InternalLinkage; 2702 } 2703 } 2704 GV->setInitializer(Init); 2705 2706 // If it is safe to mark the global 'constant', do so now. 2707 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2708 isTypeConstant(D->getType(), true)); 2709 2710 // If it is in a read-only section, mark it 'constant'. 2711 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2712 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2713 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2714 GV->setConstant(true); 2715 } 2716 2717 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2718 2719 2720 // On Darwin, if the normal linkage of a C++ thread_local variable is 2721 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2722 // copies within a linkage unit; otherwise, the backing variable has 2723 // internal linkage and all accesses should just be calls to the 2724 // Itanium-specified entry point, which has the normal linkage of the 2725 // variable. This is to preserve the ability to change the implementation 2726 // behind the scenes. 2727 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2728 Context.getTargetInfo().getTriple().isOSDarwin() && 2729 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2730 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2731 Linkage = llvm::GlobalValue::InternalLinkage; 2732 2733 GV->setLinkage(Linkage); 2734 if (D->hasAttr<DLLImportAttr>()) 2735 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2736 else if (D->hasAttr<DLLExportAttr>()) 2737 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2738 else 2739 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2740 2741 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2742 // common vars aren't constant even if declared const. 2743 GV->setConstant(false); 2744 // Tentative definition of global variables may be initialized with 2745 // non-zero null pointers. In this case they should have weak linkage 2746 // since common linkage must have zero initializer and must not have 2747 // explicit section therefore cannot have non-zero initial value. 2748 if (!GV->getInitializer()->isNullValue()) 2749 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2750 } 2751 2752 setNonAliasAttributes(D, GV); 2753 2754 if (D->getTLSKind() && !GV->isThreadLocal()) { 2755 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2756 CXXThreadLocals.push_back(D); 2757 setTLSMode(GV, *D); 2758 } 2759 2760 maybeSetTrivialComdat(*D, *GV); 2761 2762 // Emit the initializer function if necessary. 2763 if (NeedsGlobalCtor || NeedsGlobalDtor) 2764 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2765 2766 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2767 2768 // Emit global variable debug information. 2769 if (CGDebugInfo *DI = getModuleDebugInfo()) 2770 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2771 DI->EmitGlobalVariable(GV, D); 2772 } 2773 2774 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2775 CodeGenModule &CGM, const VarDecl *D, 2776 bool NoCommon) { 2777 // Don't give variables common linkage if -fno-common was specified unless it 2778 // was overridden by a NoCommon attribute. 2779 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2780 return true; 2781 2782 // C11 6.9.2/2: 2783 // A declaration of an identifier for an object that has file scope without 2784 // an initializer, and without a storage-class specifier or with the 2785 // storage-class specifier static, constitutes a tentative definition. 2786 if (D->getInit() || D->hasExternalStorage()) 2787 return true; 2788 2789 // A variable cannot be both common and exist in a section. 2790 if (D->hasAttr<SectionAttr>()) 2791 return true; 2792 2793 // Thread local vars aren't considered common linkage. 2794 if (D->getTLSKind()) 2795 return true; 2796 2797 // Tentative definitions marked with WeakImportAttr are true definitions. 2798 if (D->hasAttr<WeakImportAttr>()) 2799 return true; 2800 2801 // A variable cannot be both common and exist in a comdat. 2802 if (shouldBeInCOMDAT(CGM, *D)) 2803 return true; 2804 2805 // Declarations with a required alignment do not have common linkage in MSVC 2806 // mode. 2807 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2808 if (D->hasAttr<AlignedAttr>()) 2809 return true; 2810 QualType VarType = D->getType(); 2811 if (Context.isAlignmentRequired(VarType)) 2812 return true; 2813 2814 if (const auto *RT = VarType->getAs<RecordType>()) { 2815 const RecordDecl *RD = RT->getDecl(); 2816 for (const FieldDecl *FD : RD->fields()) { 2817 if (FD->isBitField()) 2818 continue; 2819 if (FD->hasAttr<AlignedAttr>()) 2820 return true; 2821 if (Context.isAlignmentRequired(FD->getType())) 2822 return true; 2823 } 2824 } 2825 } 2826 2827 return false; 2828 } 2829 2830 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2831 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2832 if (Linkage == GVA_Internal) 2833 return llvm::Function::InternalLinkage; 2834 2835 if (D->hasAttr<WeakAttr>()) { 2836 if (IsConstantVariable) 2837 return llvm::GlobalVariable::WeakODRLinkage; 2838 else 2839 return llvm::GlobalVariable::WeakAnyLinkage; 2840 } 2841 2842 // We are guaranteed to have a strong definition somewhere else, 2843 // so we can use available_externally linkage. 2844 if (Linkage == GVA_AvailableExternally) 2845 return llvm::GlobalValue::AvailableExternallyLinkage; 2846 2847 // Note that Apple's kernel linker doesn't support symbol 2848 // coalescing, so we need to avoid linkonce and weak linkages there. 2849 // Normally, this means we just map to internal, but for explicit 2850 // instantiations we'll map to external. 2851 2852 // In C++, the compiler has to emit a definition in every translation unit 2853 // that references the function. We should use linkonce_odr because 2854 // a) if all references in this translation unit are optimized away, we 2855 // don't need to codegen it. b) if the function persists, it needs to be 2856 // merged with other definitions. c) C++ has the ODR, so we know the 2857 // definition is dependable. 2858 if (Linkage == GVA_DiscardableODR) 2859 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2860 : llvm::Function::InternalLinkage; 2861 2862 // An explicit instantiation of a template has weak linkage, since 2863 // explicit instantiations can occur in multiple translation units 2864 // and must all be equivalent. However, we are not allowed to 2865 // throw away these explicit instantiations. 2866 // 2867 // We don't currently support CUDA device code spread out across multiple TUs, 2868 // so say that CUDA templates are either external (for kernels) or internal. 2869 // This lets llvm perform aggressive inter-procedural optimizations. 2870 if (Linkage == GVA_StrongODR) { 2871 if (Context.getLangOpts().AppleKext) 2872 return llvm::Function::ExternalLinkage; 2873 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2874 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2875 : llvm::Function::InternalLinkage; 2876 return llvm::Function::WeakODRLinkage; 2877 } 2878 2879 // C++ doesn't have tentative definitions and thus cannot have common 2880 // linkage. 2881 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2882 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2883 CodeGenOpts.NoCommon)) 2884 return llvm::GlobalVariable::CommonLinkage; 2885 2886 // selectany symbols are externally visible, so use weak instead of 2887 // linkonce. MSVC optimizes away references to const selectany globals, so 2888 // all definitions should be the same and ODR linkage should be used. 2889 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2890 if (D->hasAttr<SelectAnyAttr>()) 2891 return llvm::GlobalVariable::WeakODRLinkage; 2892 2893 // Otherwise, we have strong external linkage. 2894 assert(Linkage == GVA_StrongExternal); 2895 return llvm::GlobalVariable::ExternalLinkage; 2896 } 2897 2898 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2899 const VarDecl *VD, bool IsConstant) { 2900 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2901 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2902 } 2903 2904 /// Replace the uses of a function that was declared with a non-proto type. 2905 /// We want to silently drop extra arguments from call sites 2906 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2907 llvm::Function *newFn) { 2908 // Fast path. 2909 if (old->use_empty()) return; 2910 2911 llvm::Type *newRetTy = newFn->getReturnType(); 2912 SmallVector<llvm::Value*, 4> newArgs; 2913 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2914 2915 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2916 ui != ue; ) { 2917 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2918 llvm::User *user = use->getUser(); 2919 2920 // Recognize and replace uses of bitcasts. Most calls to 2921 // unprototyped functions will use bitcasts. 2922 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2923 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2924 replaceUsesOfNonProtoConstant(bitcast, newFn); 2925 continue; 2926 } 2927 2928 // Recognize calls to the function. 2929 llvm::CallSite callSite(user); 2930 if (!callSite) continue; 2931 if (!callSite.isCallee(&*use)) continue; 2932 2933 // If the return types don't match exactly, then we can't 2934 // transform this call unless it's dead. 2935 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2936 continue; 2937 2938 // Get the call site's attribute list. 2939 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 2940 llvm::AttributeList oldAttrs = callSite.getAttributes(); 2941 2942 // If the function was passed too few arguments, don't transform. 2943 unsigned newNumArgs = newFn->arg_size(); 2944 if (callSite.arg_size() < newNumArgs) continue; 2945 2946 // If extra arguments were passed, we silently drop them. 2947 // If any of the types mismatch, we don't transform. 2948 unsigned argNo = 0; 2949 bool dontTransform = false; 2950 for (llvm::Argument &A : newFn->args()) { 2951 if (callSite.getArgument(argNo)->getType() != A.getType()) { 2952 dontTransform = true; 2953 break; 2954 } 2955 2956 // Add any parameter attributes. 2957 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 2958 argNo++; 2959 } 2960 if (dontTransform) 2961 continue; 2962 2963 // Okay, we can transform this. Create the new call instruction and copy 2964 // over the required information. 2965 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2966 2967 // Copy over any operand bundles. 2968 callSite.getOperandBundlesAsDefs(newBundles); 2969 2970 llvm::CallSite newCall; 2971 if (callSite.isCall()) { 2972 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2973 callSite.getInstruction()); 2974 } else { 2975 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2976 newCall = llvm::InvokeInst::Create(newFn, 2977 oldInvoke->getNormalDest(), 2978 oldInvoke->getUnwindDest(), 2979 newArgs, newBundles, "", 2980 callSite.getInstruction()); 2981 } 2982 newArgs.clear(); // for the next iteration 2983 2984 if (!newCall->getType()->isVoidTy()) 2985 newCall->takeName(callSite.getInstruction()); 2986 newCall.setAttributes(llvm::AttributeList::get( 2987 newFn->getContext(), oldAttrs.getFnAttributes(), 2988 oldAttrs.getRetAttributes(), newArgAttrs)); 2989 newCall.setCallingConv(callSite.getCallingConv()); 2990 2991 // Finally, remove the old call, replacing any uses with the new one. 2992 if (!callSite->use_empty()) 2993 callSite->replaceAllUsesWith(newCall.getInstruction()); 2994 2995 // Copy debug location attached to CI. 2996 if (callSite->getDebugLoc()) 2997 newCall->setDebugLoc(callSite->getDebugLoc()); 2998 2999 callSite->eraseFromParent(); 3000 } 3001 } 3002 3003 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3004 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3005 /// existing call uses of the old function in the module, this adjusts them to 3006 /// call the new function directly. 3007 /// 3008 /// This is not just a cleanup: the always_inline pass requires direct calls to 3009 /// functions to be able to inline them. If there is a bitcast in the way, it 3010 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3011 /// run at -O0. 3012 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3013 llvm::Function *NewFn) { 3014 // If we're redefining a global as a function, don't transform it. 3015 if (!isa<llvm::Function>(Old)) return; 3016 3017 replaceUsesOfNonProtoConstant(Old, NewFn); 3018 } 3019 3020 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3021 auto DK = VD->isThisDeclarationADefinition(); 3022 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3023 return; 3024 3025 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3026 // If we have a definition, this might be a deferred decl. If the 3027 // instantiation is explicit, make sure we emit it at the end. 3028 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3029 GetAddrOfGlobalVar(VD); 3030 3031 EmitTopLevelDecl(VD); 3032 } 3033 3034 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3035 llvm::GlobalValue *GV) { 3036 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3037 3038 // Compute the function info and LLVM type. 3039 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3040 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3041 3042 // Get or create the prototype for the function. 3043 if (!GV || (GV->getType()->getElementType() != Ty)) 3044 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3045 /*DontDefer=*/true, 3046 ForDefinition)); 3047 3048 // Already emitted. 3049 if (!GV->isDeclaration()) 3050 return; 3051 3052 // We need to set linkage and visibility on the function before 3053 // generating code for it because various parts of IR generation 3054 // want to propagate this information down (e.g. to local static 3055 // declarations). 3056 auto *Fn = cast<llvm::Function>(GV); 3057 setFunctionLinkage(GD, Fn); 3058 setFunctionDLLStorageClass(GD, Fn); 3059 3060 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3061 setGlobalVisibility(Fn, D); 3062 3063 MaybeHandleStaticInExternC(D, Fn); 3064 3065 maybeSetTrivialComdat(*D, *Fn); 3066 3067 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3068 3069 setFunctionDefinitionAttributes(D, Fn); 3070 SetLLVMFunctionAttributesForDefinition(D, Fn); 3071 3072 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3073 AddGlobalCtor(Fn, CA->getPriority()); 3074 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3075 AddGlobalDtor(Fn, DA->getPriority()); 3076 if (D->hasAttr<AnnotateAttr>()) 3077 AddGlobalAnnotations(D, Fn); 3078 } 3079 3080 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3081 const auto *D = cast<ValueDecl>(GD.getDecl()); 3082 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3083 assert(AA && "Not an alias?"); 3084 3085 StringRef MangledName = getMangledName(GD); 3086 3087 if (AA->getAliasee() == MangledName) { 3088 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3089 return; 3090 } 3091 3092 // If there is a definition in the module, then it wins over the alias. 3093 // This is dubious, but allow it to be safe. Just ignore the alias. 3094 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3095 if (Entry && !Entry->isDeclaration()) 3096 return; 3097 3098 Aliases.push_back(GD); 3099 3100 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3101 3102 // Create a reference to the named value. This ensures that it is emitted 3103 // if a deferred decl. 3104 llvm::Constant *Aliasee; 3105 if (isa<llvm::FunctionType>(DeclTy)) 3106 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3107 /*ForVTable=*/false); 3108 else 3109 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3110 llvm::PointerType::getUnqual(DeclTy), 3111 /*D=*/nullptr); 3112 3113 // Create the new alias itself, but don't set a name yet. 3114 auto *GA = llvm::GlobalAlias::create( 3115 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3116 3117 if (Entry) { 3118 if (GA->getAliasee() == Entry) { 3119 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3120 return; 3121 } 3122 3123 assert(Entry->isDeclaration()); 3124 3125 // If there is a declaration in the module, then we had an extern followed 3126 // by the alias, as in: 3127 // extern int test6(); 3128 // ... 3129 // int test6() __attribute__((alias("test7"))); 3130 // 3131 // Remove it and replace uses of it with the alias. 3132 GA->takeName(Entry); 3133 3134 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3135 Entry->getType())); 3136 Entry->eraseFromParent(); 3137 } else { 3138 GA->setName(MangledName); 3139 } 3140 3141 // Set attributes which are particular to an alias; this is a 3142 // specialization of the attributes which may be set on a global 3143 // variable/function. 3144 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3145 D->isWeakImported()) { 3146 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3147 } 3148 3149 if (const auto *VD = dyn_cast<VarDecl>(D)) 3150 if (VD->getTLSKind()) 3151 setTLSMode(GA, *VD); 3152 3153 setAliasAttributes(D, GA); 3154 } 3155 3156 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3157 const auto *D = cast<ValueDecl>(GD.getDecl()); 3158 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3159 assert(IFA && "Not an ifunc?"); 3160 3161 StringRef MangledName = getMangledName(GD); 3162 3163 if (IFA->getResolver() == MangledName) { 3164 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3165 return; 3166 } 3167 3168 // Report an error if some definition overrides ifunc. 3169 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3170 if (Entry && !Entry->isDeclaration()) { 3171 GlobalDecl OtherGD; 3172 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3173 DiagnosedConflictingDefinitions.insert(GD).second) { 3174 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3175 Diags.Report(OtherGD.getDecl()->getLocation(), 3176 diag::note_previous_definition); 3177 } 3178 return; 3179 } 3180 3181 Aliases.push_back(GD); 3182 3183 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3184 llvm::Constant *Resolver = 3185 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3186 /*ForVTable=*/false); 3187 llvm::GlobalIFunc *GIF = 3188 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3189 "", Resolver, &getModule()); 3190 if (Entry) { 3191 if (GIF->getResolver() == Entry) { 3192 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3193 return; 3194 } 3195 assert(Entry->isDeclaration()); 3196 3197 // If there is a declaration in the module, then we had an extern followed 3198 // by the ifunc, as in: 3199 // extern int test(); 3200 // ... 3201 // int test() __attribute__((ifunc("resolver"))); 3202 // 3203 // Remove it and replace uses of it with the ifunc. 3204 GIF->takeName(Entry); 3205 3206 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3207 Entry->getType())); 3208 Entry->eraseFromParent(); 3209 } else 3210 GIF->setName(MangledName); 3211 3212 SetCommonAttributes(D, GIF); 3213 } 3214 3215 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3216 ArrayRef<llvm::Type*> Tys) { 3217 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3218 Tys); 3219 } 3220 3221 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3222 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3223 const StringLiteral *Literal, bool TargetIsLSB, 3224 bool &IsUTF16, unsigned &StringLength) { 3225 StringRef String = Literal->getString(); 3226 unsigned NumBytes = String.size(); 3227 3228 // Check for simple case. 3229 if (!Literal->containsNonAsciiOrNull()) { 3230 StringLength = NumBytes; 3231 return *Map.insert(std::make_pair(String, nullptr)).first; 3232 } 3233 3234 // Otherwise, convert the UTF8 literals into a string of shorts. 3235 IsUTF16 = true; 3236 3237 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3238 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3239 llvm::UTF16 *ToPtr = &ToBuf[0]; 3240 3241 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3242 ToPtr + NumBytes, llvm::strictConversion); 3243 3244 // ConvertUTF8toUTF16 returns the length in ToPtr. 3245 StringLength = ToPtr - &ToBuf[0]; 3246 3247 // Add an explicit null. 3248 *ToPtr = 0; 3249 return *Map.insert(std::make_pair( 3250 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3251 (StringLength + 1) * 2), 3252 nullptr)).first; 3253 } 3254 3255 ConstantAddress 3256 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3257 unsigned StringLength = 0; 3258 bool isUTF16 = false; 3259 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3260 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3261 getDataLayout().isLittleEndian(), isUTF16, 3262 StringLength); 3263 3264 if (auto *C = Entry.second) 3265 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3266 3267 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3268 llvm::Constant *Zeros[] = { Zero, Zero }; 3269 3270 // If we don't already have it, get __CFConstantStringClassReference. 3271 if (!CFConstantStringClassRef) { 3272 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3273 Ty = llvm::ArrayType::get(Ty, 0); 3274 llvm::Constant *GV = 3275 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3276 3277 if (getTriple().isOSBinFormatCOFF()) { 3278 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3279 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3280 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3281 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3282 3283 const VarDecl *VD = nullptr; 3284 for (const auto &Result : DC->lookup(&II)) 3285 if ((VD = dyn_cast<VarDecl>(Result))) 3286 break; 3287 3288 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3289 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3290 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3291 } else { 3292 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3293 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3294 } 3295 } 3296 3297 // Decay array -> ptr 3298 CFConstantStringClassRef = 3299 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3300 } 3301 3302 QualType CFTy = getContext().getCFConstantStringType(); 3303 3304 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3305 3306 ConstantInitBuilder Builder(*this); 3307 auto Fields = Builder.beginStruct(STy); 3308 3309 // Class pointer. 3310 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3311 3312 // Flags. 3313 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3314 3315 // String pointer. 3316 llvm::Constant *C = nullptr; 3317 if (isUTF16) { 3318 auto Arr = llvm::makeArrayRef( 3319 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3320 Entry.first().size() / 2); 3321 C = llvm::ConstantDataArray::get(VMContext, Arr); 3322 } else { 3323 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3324 } 3325 3326 // Note: -fwritable-strings doesn't make the backing store strings of 3327 // CFStrings writable. (See <rdar://problem/10657500>) 3328 auto *GV = 3329 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3330 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3331 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3332 // Don't enforce the target's minimum global alignment, since the only use 3333 // of the string is via this class initializer. 3334 CharUnits Align = isUTF16 3335 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3336 : getContext().getTypeAlignInChars(getContext().CharTy); 3337 GV->setAlignment(Align.getQuantity()); 3338 3339 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3340 // Without it LLVM can merge the string with a non unnamed_addr one during 3341 // LTO. Doing that changes the section it ends in, which surprises ld64. 3342 if (getTriple().isOSBinFormatMachO()) 3343 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3344 : "__TEXT,__cstring,cstring_literals"); 3345 3346 // String. 3347 llvm::Constant *Str = 3348 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3349 3350 if (isUTF16) 3351 // Cast the UTF16 string to the correct type. 3352 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3353 Fields.add(Str); 3354 3355 // String length. 3356 auto Ty = getTypes().ConvertType(getContext().LongTy); 3357 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3358 3359 CharUnits Alignment = getPointerAlign(); 3360 3361 // The struct. 3362 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3363 /*isConstant=*/false, 3364 llvm::GlobalVariable::PrivateLinkage); 3365 switch (getTriple().getObjectFormat()) { 3366 case llvm::Triple::UnknownObjectFormat: 3367 llvm_unreachable("unknown file format"); 3368 case llvm::Triple::COFF: 3369 case llvm::Triple::ELF: 3370 case llvm::Triple::Wasm: 3371 GV->setSection("cfstring"); 3372 break; 3373 case llvm::Triple::MachO: 3374 GV->setSection("__DATA,__cfstring"); 3375 break; 3376 } 3377 Entry.second = GV; 3378 3379 return ConstantAddress(GV, Alignment); 3380 } 3381 3382 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3383 if (ObjCFastEnumerationStateType.isNull()) { 3384 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3385 D->startDefinition(); 3386 3387 QualType FieldTypes[] = { 3388 Context.UnsignedLongTy, 3389 Context.getPointerType(Context.getObjCIdType()), 3390 Context.getPointerType(Context.UnsignedLongTy), 3391 Context.getConstantArrayType(Context.UnsignedLongTy, 3392 llvm::APInt(32, 5), ArrayType::Normal, 0) 3393 }; 3394 3395 for (size_t i = 0; i < 4; ++i) { 3396 FieldDecl *Field = FieldDecl::Create(Context, 3397 D, 3398 SourceLocation(), 3399 SourceLocation(), nullptr, 3400 FieldTypes[i], /*TInfo=*/nullptr, 3401 /*BitWidth=*/nullptr, 3402 /*Mutable=*/false, 3403 ICIS_NoInit); 3404 Field->setAccess(AS_public); 3405 D->addDecl(Field); 3406 } 3407 3408 D->completeDefinition(); 3409 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3410 } 3411 3412 return ObjCFastEnumerationStateType; 3413 } 3414 3415 llvm::Constant * 3416 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3417 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3418 3419 // Don't emit it as the address of the string, emit the string data itself 3420 // as an inline array. 3421 if (E->getCharByteWidth() == 1) { 3422 SmallString<64> Str(E->getString()); 3423 3424 // Resize the string to the right size, which is indicated by its type. 3425 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3426 Str.resize(CAT->getSize().getZExtValue()); 3427 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3428 } 3429 3430 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3431 llvm::Type *ElemTy = AType->getElementType(); 3432 unsigned NumElements = AType->getNumElements(); 3433 3434 // Wide strings have either 2-byte or 4-byte elements. 3435 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3436 SmallVector<uint16_t, 32> Elements; 3437 Elements.reserve(NumElements); 3438 3439 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3440 Elements.push_back(E->getCodeUnit(i)); 3441 Elements.resize(NumElements); 3442 return llvm::ConstantDataArray::get(VMContext, Elements); 3443 } 3444 3445 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3446 SmallVector<uint32_t, 32> Elements; 3447 Elements.reserve(NumElements); 3448 3449 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3450 Elements.push_back(E->getCodeUnit(i)); 3451 Elements.resize(NumElements); 3452 return llvm::ConstantDataArray::get(VMContext, Elements); 3453 } 3454 3455 static llvm::GlobalVariable * 3456 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3457 CodeGenModule &CGM, StringRef GlobalName, 3458 CharUnits Alignment) { 3459 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3460 unsigned AddrSpace = 0; 3461 if (CGM.getLangOpts().OpenCL) 3462 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3463 3464 llvm::Module &M = CGM.getModule(); 3465 // Create a global variable for this string 3466 auto *GV = new llvm::GlobalVariable( 3467 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3468 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3469 GV->setAlignment(Alignment.getQuantity()); 3470 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3471 if (GV->isWeakForLinker()) { 3472 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3473 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3474 } 3475 3476 return GV; 3477 } 3478 3479 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3480 /// constant array for the given string literal. 3481 ConstantAddress 3482 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3483 StringRef Name) { 3484 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3485 3486 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3487 llvm::GlobalVariable **Entry = nullptr; 3488 if (!LangOpts.WritableStrings) { 3489 Entry = &ConstantStringMap[C]; 3490 if (auto GV = *Entry) { 3491 if (Alignment.getQuantity() > GV->getAlignment()) 3492 GV->setAlignment(Alignment.getQuantity()); 3493 return ConstantAddress(GV, Alignment); 3494 } 3495 } 3496 3497 SmallString<256> MangledNameBuffer; 3498 StringRef GlobalVariableName; 3499 llvm::GlobalValue::LinkageTypes LT; 3500 3501 // Mangle the string literal if the ABI allows for it. However, we cannot 3502 // do this if we are compiling with ASan or -fwritable-strings because they 3503 // rely on strings having normal linkage. 3504 if (!LangOpts.WritableStrings && 3505 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3506 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3507 llvm::raw_svector_ostream Out(MangledNameBuffer); 3508 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3509 3510 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3511 GlobalVariableName = MangledNameBuffer; 3512 } else { 3513 LT = llvm::GlobalValue::PrivateLinkage; 3514 GlobalVariableName = Name; 3515 } 3516 3517 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3518 if (Entry) 3519 *Entry = GV; 3520 3521 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3522 QualType()); 3523 return ConstantAddress(GV, Alignment); 3524 } 3525 3526 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3527 /// array for the given ObjCEncodeExpr node. 3528 ConstantAddress 3529 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3530 std::string Str; 3531 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3532 3533 return GetAddrOfConstantCString(Str); 3534 } 3535 3536 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3537 /// the literal and a terminating '\0' character. 3538 /// The result has pointer to array type. 3539 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3540 const std::string &Str, const char *GlobalName) { 3541 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3542 CharUnits Alignment = 3543 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3544 3545 llvm::Constant *C = 3546 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3547 3548 // Don't share any string literals if strings aren't constant. 3549 llvm::GlobalVariable **Entry = nullptr; 3550 if (!LangOpts.WritableStrings) { 3551 Entry = &ConstantStringMap[C]; 3552 if (auto GV = *Entry) { 3553 if (Alignment.getQuantity() > GV->getAlignment()) 3554 GV->setAlignment(Alignment.getQuantity()); 3555 return ConstantAddress(GV, Alignment); 3556 } 3557 } 3558 3559 // Get the default prefix if a name wasn't specified. 3560 if (!GlobalName) 3561 GlobalName = ".str"; 3562 // Create a global variable for this. 3563 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3564 GlobalName, Alignment); 3565 if (Entry) 3566 *Entry = GV; 3567 return ConstantAddress(GV, Alignment); 3568 } 3569 3570 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3571 const MaterializeTemporaryExpr *E, const Expr *Init) { 3572 assert((E->getStorageDuration() == SD_Static || 3573 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3574 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3575 3576 // If we're not materializing a subobject of the temporary, keep the 3577 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3578 QualType MaterializedType = Init->getType(); 3579 if (Init == E->GetTemporaryExpr()) 3580 MaterializedType = E->getType(); 3581 3582 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3583 3584 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3585 return ConstantAddress(Slot, Align); 3586 3587 // FIXME: If an externally-visible declaration extends multiple temporaries, 3588 // we need to give each temporary the same name in every translation unit (and 3589 // we also need to make the temporaries externally-visible). 3590 SmallString<256> Name; 3591 llvm::raw_svector_ostream Out(Name); 3592 getCXXABI().getMangleContext().mangleReferenceTemporary( 3593 VD, E->getManglingNumber(), Out); 3594 3595 APValue *Value = nullptr; 3596 if (E->getStorageDuration() == SD_Static) { 3597 // We might have a cached constant initializer for this temporary. Note 3598 // that this might have a different value from the value computed by 3599 // evaluating the initializer if the surrounding constant expression 3600 // modifies the temporary. 3601 Value = getContext().getMaterializedTemporaryValue(E, false); 3602 if (Value && Value->isUninit()) 3603 Value = nullptr; 3604 } 3605 3606 // Try evaluating it now, it might have a constant initializer. 3607 Expr::EvalResult EvalResult; 3608 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3609 !EvalResult.hasSideEffects()) 3610 Value = &EvalResult.Val; 3611 3612 llvm::Constant *InitialValue = nullptr; 3613 bool Constant = false; 3614 llvm::Type *Type; 3615 if (Value) { 3616 // The temporary has a constant initializer, use it. 3617 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3618 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3619 Type = InitialValue->getType(); 3620 } else { 3621 // No initializer, the initialization will be provided when we 3622 // initialize the declaration which performed lifetime extension. 3623 Type = getTypes().ConvertTypeForMem(MaterializedType); 3624 } 3625 3626 // Create a global variable for this lifetime-extended temporary. 3627 llvm::GlobalValue::LinkageTypes Linkage = 3628 getLLVMLinkageVarDefinition(VD, Constant); 3629 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3630 const VarDecl *InitVD; 3631 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3632 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3633 // Temporaries defined inside a class get linkonce_odr linkage because the 3634 // class can be defined in multipe translation units. 3635 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3636 } else { 3637 // There is no need for this temporary to have external linkage if the 3638 // VarDecl has external linkage. 3639 Linkage = llvm::GlobalVariable::InternalLinkage; 3640 } 3641 } 3642 unsigned AddrSpace = GetGlobalVarAddressSpace( 3643 VD, getContext().getTargetAddressSpace(MaterializedType)); 3644 auto *GV = new llvm::GlobalVariable( 3645 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3646 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3647 AddrSpace); 3648 setGlobalVisibility(GV, VD); 3649 GV->setAlignment(Align.getQuantity()); 3650 if (supportsCOMDAT() && GV->isWeakForLinker()) 3651 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3652 if (VD->getTLSKind()) 3653 setTLSMode(GV, *VD); 3654 MaterializedGlobalTemporaryMap[E] = GV; 3655 return ConstantAddress(GV, Align); 3656 } 3657 3658 /// EmitObjCPropertyImplementations - Emit information for synthesized 3659 /// properties for an implementation. 3660 void CodeGenModule::EmitObjCPropertyImplementations(const 3661 ObjCImplementationDecl *D) { 3662 for (const auto *PID : D->property_impls()) { 3663 // Dynamic is just for type-checking. 3664 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3665 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3666 3667 // Determine which methods need to be implemented, some may have 3668 // been overridden. Note that ::isPropertyAccessor is not the method 3669 // we want, that just indicates if the decl came from a 3670 // property. What we want to know is if the method is defined in 3671 // this implementation. 3672 if (!D->getInstanceMethod(PD->getGetterName())) 3673 CodeGenFunction(*this).GenerateObjCGetter( 3674 const_cast<ObjCImplementationDecl *>(D), PID); 3675 if (!PD->isReadOnly() && 3676 !D->getInstanceMethod(PD->getSetterName())) 3677 CodeGenFunction(*this).GenerateObjCSetter( 3678 const_cast<ObjCImplementationDecl *>(D), PID); 3679 } 3680 } 3681 } 3682 3683 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3684 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3685 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3686 ivar; ivar = ivar->getNextIvar()) 3687 if (ivar->getType().isDestructedType()) 3688 return true; 3689 3690 return false; 3691 } 3692 3693 static bool AllTrivialInitializers(CodeGenModule &CGM, 3694 ObjCImplementationDecl *D) { 3695 CodeGenFunction CGF(CGM); 3696 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3697 E = D->init_end(); B != E; ++B) { 3698 CXXCtorInitializer *CtorInitExp = *B; 3699 Expr *Init = CtorInitExp->getInit(); 3700 if (!CGF.isTrivialInitializer(Init)) 3701 return false; 3702 } 3703 return true; 3704 } 3705 3706 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3707 /// for an implementation. 3708 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3709 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3710 if (needsDestructMethod(D)) { 3711 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3712 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3713 ObjCMethodDecl *DTORMethod = 3714 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3715 cxxSelector, getContext().VoidTy, nullptr, D, 3716 /*isInstance=*/true, /*isVariadic=*/false, 3717 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3718 /*isDefined=*/false, ObjCMethodDecl::Required); 3719 D->addInstanceMethod(DTORMethod); 3720 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3721 D->setHasDestructors(true); 3722 } 3723 3724 // If the implementation doesn't have any ivar initializers, we don't need 3725 // a .cxx_construct. 3726 if (D->getNumIvarInitializers() == 0 || 3727 AllTrivialInitializers(*this, D)) 3728 return; 3729 3730 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3731 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3732 // The constructor returns 'self'. 3733 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3734 D->getLocation(), 3735 D->getLocation(), 3736 cxxSelector, 3737 getContext().getObjCIdType(), 3738 nullptr, D, /*isInstance=*/true, 3739 /*isVariadic=*/false, 3740 /*isPropertyAccessor=*/true, 3741 /*isImplicitlyDeclared=*/true, 3742 /*isDefined=*/false, 3743 ObjCMethodDecl::Required); 3744 D->addInstanceMethod(CTORMethod); 3745 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3746 D->setHasNonZeroConstructors(true); 3747 } 3748 3749 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3750 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3751 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3752 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3753 ErrorUnsupported(LSD, "linkage spec"); 3754 return; 3755 } 3756 3757 EmitDeclContext(LSD); 3758 } 3759 3760 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3761 for (auto *I : DC->decls()) { 3762 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3763 // are themselves considered "top-level", so EmitTopLevelDecl on an 3764 // ObjCImplDecl does not recursively visit them. We need to do that in 3765 // case they're nested inside another construct (LinkageSpecDecl / 3766 // ExportDecl) that does stop them from being considered "top-level". 3767 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3768 for (auto *M : OID->methods()) 3769 EmitTopLevelDecl(M); 3770 } 3771 3772 EmitTopLevelDecl(I); 3773 } 3774 } 3775 3776 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3777 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3778 // Ignore dependent declarations. 3779 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3780 return; 3781 3782 switch (D->getKind()) { 3783 case Decl::CXXConversion: 3784 case Decl::CXXMethod: 3785 case Decl::Function: 3786 // Skip function templates 3787 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3788 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3789 return; 3790 3791 EmitGlobal(cast<FunctionDecl>(D)); 3792 // Always provide some coverage mapping 3793 // even for the functions that aren't emitted. 3794 AddDeferredUnusedCoverageMapping(D); 3795 break; 3796 3797 case Decl::CXXDeductionGuide: 3798 // Function-like, but does not result in code emission. 3799 break; 3800 3801 case Decl::Var: 3802 case Decl::Decomposition: 3803 // Skip variable templates 3804 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3805 return; 3806 case Decl::VarTemplateSpecialization: 3807 EmitGlobal(cast<VarDecl>(D)); 3808 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3809 for (auto *B : DD->bindings()) 3810 if (auto *HD = B->getHoldingVar()) 3811 EmitGlobal(HD); 3812 break; 3813 3814 // Indirect fields from global anonymous structs and unions can be 3815 // ignored; only the actual variable requires IR gen support. 3816 case Decl::IndirectField: 3817 break; 3818 3819 // C++ Decls 3820 case Decl::Namespace: 3821 EmitDeclContext(cast<NamespaceDecl>(D)); 3822 break; 3823 case Decl::CXXRecord: 3824 if (DebugInfo) { 3825 if (auto *ES = D->getASTContext().getExternalSource()) 3826 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 3827 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 3828 } 3829 // Emit any static data members, they may be definitions. 3830 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3831 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3832 EmitTopLevelDecl(I); 3833 break; 3834 // No code generation needed. 3835 case Decl::UsingShadow: 3836 case Decl::ClassTemplate: 3837 case Decl::VarTemplate: 3838 case Decl::VarTemplatePartialSpecialization: 3839 case Decl::FunctionTemplate: 3840 case Decl::TypeAliasTemplate: 3841 case Decl::Block: 3842 case Decl::Empty: 3843 break; 3844 case Decl::Using: // using X; [C++] 3845 if (CGDebugInfo *DI = getModuleDebugInfo()) 3846 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3847 return; 3848 case Decl::NamespaceAlias: 3849 if (CGDebugInfo *DI = getModuleDebugInfo()) 3850 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3851 return; 3852 case Decl::UsingDirective: // using namespace X; [C++] 3853 if (CGDebugInfo *DI = getModuleDebugInfo()) 3854 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3855 return; 3856 case Decl::CXXConstructor: 3857 // Skip function templates 3858 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3859 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3860 return; 3861 3862 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3863 break; 3864 case Decl::CXXDestructor: 3865 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3866 return; 3867 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3868 break; 3869 3870 case Decl::StaticAssert: 3871 // Nothing to do. 3872 break; 3873 3874 // Objective-C Decls 3875 3876 // Forward declarations, no (immediate) code generation. 3877 case Decl::ObjCInterface: 3878 case Decl::ObjCCategory: 3879 break; 3880 3881 case Decl::ObjCProtocol: { 3882 auto *Proto = cast<ObjCProtocolDecl>(D); 3883 if (Proto->isThisDeclarationADefinition()) 3884 ObjCRuntime->GenerateProtocol(Proto); 3885 break; 3886 } 3887 3888 case Decl::ObjCCategoryImpl: 3889 // Categories have properties but don't support synthesize so we 3890 // can ignore them here. 3891 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3892 break; 3893 3894 case Decl::ObjCImplementation: { 3895 auto *OMD = cast<ObjCImplementationDecl>(D); 3896 EmitObjCPropertyImplementations(OMD); 3897 EmitObjCIvarInitializations(OMD); 3898 ObjCRuntime->GenerateClass(OMD); 3899 // Emit global variable debug information. 3900 if (CGDebugInfo *DI = getModuleDebugInfo()) 3901 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3902 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3903 OMD->getClassInterface()), OMD->getLocation()); 3904 break; 3905 } 3906 case Decl::ObjCMethod: { 3907 auto *OMD = cast<ObjCMethodDecl>(D); 3908 // If this is not a prototype, emit the body. 3909 if (OMD->getBody()) 3910 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3911 break; 3912 } 3913 case Decl::ObjCCompatibleAlias: 3914 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3915 break; 3916 3917 case Decl::PragmaComment: { 3918 const auto *PCD = cast<PragmaCommentDecl>(D); 3919 switch (PCD->getCommentKind()) { 3920 case PCK_Unknown: 3921 llvm_unreachable("unexpected pragma comment kind"); 3922 case PCK_Linker: 3923 AppendLinkerOptions(PCD->getArg()); 3924 break; 3925 case PCK_Lib: 3926 AddDependentLib(PCD->getArg()); 3927 break; 3928 case PCK_Compiler: 3929 case PCK_ExeStr: 3930 case PCK_User: 3931 break; // We ignore all of these. 3932 } 3933 break; 3934 } 3935 3936 case Decl::PragmaDetectMismatch: { 3937 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3938 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3939 break; 3940 } 3941 3942 case Decl::LinkageSpec: 3943 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3944 break; 3945 3946 case Decl::FileScopeAsm: { 3947 // File-scope asm is ignored during device-side CUDA compilation. 3948 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3949 break; 3950 // File-scope asm is ignored during device-side OpenMP compilation. 3951 if (LangOpts.OpenMPIsDevice) 3952 break; 3953 auto *AD = cast<FileScopeAsmDecl>(D); 3954 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3955 break; 3956 } 3957 3958 case Decl::Import: { 3959 auto *Import = cast<ImportDecl>(D); 3960 3961 // If we've already imported this module, we're done. 3962 if (!ImportedModules.insert(Import->getImportedModule())) 3963 break; 3964 3965 // Emit debug information for direct imports. 3966 if (!Import->getImportedOwningModule()) { 3967 if (CGDebugInfo *DI = getModuleDebugInfo()) 3968 DI->EmitImportDecl(*Import); 3969 } 3970 3971 // Find all of the submodules and emit the module initializers. 3972 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3973 SmallVector<clang::Module *, 16> Stack; 3974 Visited.insert(Import->getImportedModule()); 3975 Stack.push_back(Import->getImportedModule()); 3976 3977 while (!Stack.empty()) { 3978 clang::Module *Mod = Stack.pop_back_val(); 3979 if (!EmittedModuleInitializers.insert(Mod).second) 3980 continue; 3981 3982 for (auto *D : Context.getModuleInitializers(Mod)) 3983 EmitTopLevelDecl(D); 3984 3985 // Visit the submodules of this module. 3986 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3987 SubEnd = Mod->submodule_end(); 3988 Sub != SubEnd; ++Sub) { 3989 // Skip explicit children; they need to be explicitly imported to emit 3990 // the initializers. 3991 if ((*Sub)->IsExplicit) 3992 continue; 3993 3994 if (Visited.insert(*Sub).second) 3995 Stack.push_back(*Sub); 3996 } 3997 } 3998 break; 3999 } 4000 4001 case Decl::Export: 4002 EmitDeclContext(cast<ExportDecl>(D)); 4003 break; 4004 4005 case Decl::OMPThreadPrivate: 4006 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4007 break; 4008 4009 case Decl::ClassTemplateSpecialization: { 4010 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4011 if (DebugInfo && 4012 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4013 Spec->hasDefinition()) 4014 DebugInfo->completeTemplateDefinition(*Spec); 4015 break; 4016 } 4017 4018 case Decl::OMPDeclareReduction: 4019 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4020 break; 4021 4022 default: 4023 // Make sure we handled everything we should, every other kind is a 4024 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4025 // function. Need to recode Decl::Kind to do that easily. 4026 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4027 break; 4028 } 4029 } 4030 4031 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4032 // Do we need to generate coverage mapping? 4033 if (!CodeGenOpts.CoverageMapping) 4034 return; 4035 switch (D->getKind()) { 4036 case Decl::CXXConversion: 4037 case Decl::CXXMethod: 4038 case Decl::Function: 4039 case Decl::ObjCMethod: 4040 case Decl::CXXConstructor: 4041 case Decl::CXXDestructor: { 4042 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4043 return; 4044 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4045 if (I == DeferredEmptyCoverageMappingDecls.end()) 4046 DeferredEmptyCoverageMappingDecls[D] = true; 4047 break; 4048 } 4049 default: 4050 break; 4051 }; 4052 } 4053 4054 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4055 // Do we need to generate coverage mapping? 4056 if (!CodeGenOpts.CoverageMapping) 4057 return; 4058 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4059 if (Fn->isTemplateInstantiation()) 4060 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4061 } 4062 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4063 if (I == DeferredEmptyCoverageMappingDecls.end()) 4064 DeferredEmptyCoverageMappingDecls[D] = false; 4065 else 4066 I->second = false; 4067 } 4068 4069 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4070 std::vector<const Decl *> DeferredDecls; 4071 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4072 if (!I.second) 4073 continue; 4074 DeferredDecls.push_back(I.first); 4075 } 4076 // Sort the declarations by their location to make sure that the tests get a 4077 // predictable order for the coverage mapping for the unused declarations. 4078 if (CodeGenOpts.DumpCoverageMapping) 4079 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4080 [] (const Decl *LHS, const Decl *RHS) { 4081 return LHS->getLocStart() < RHS->getLocStart(); 4082 }); 4083 for (const auto *D : DeferredDecls) { 4084 switch (D->getKind()) { 4085 case Decl::CXXConversion: 4086 case Decl::CXXMethod: 4087 case Decl::Function: 4088 case Decl::ObjCMethod: { 4089 CodeGenPGO PGO(*this); 4090 GlobalDecl GD(cast<FunctionDecl>(D)); 4091 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4092 getFunctionLinkage(GD)); 4093 break; 4094 } 4095 case Decl::CXXConstructor: { 4096 CodeGenPGO PGO(*this); 4097 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4098 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4099 getFunctionLinkage(GD)); 4100 break; 4101 } 4102 case Decl::CXXDestructor: { 4103 CodeGenPGO PGO(*this); 4104 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4105 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4106 getFunctionLinkage(GD)); 4107 break; 4108 } 4109 default: 4110 break; 4111 }; 4112 } 4113 } 4114 4115 /// Turns the given pointer into a constant. 4116 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4117 const void *Ptr) { 4118 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4119 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4120 return llvm::ConstantInt::get(i64, PtrInt); 4121 } 4122 4123 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4124 llvm::NamedMDNode *&GlobalMetadata, 4125 GlobalDecl D, 4126 llvm::GlobalValue *Addr) { 4127 if (!GlobalMetadata) 4128 GlobalMetadata = 4129 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4130 4131 // TODO: should we report variant information for ctors/dtors? 4132 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4133 llvm::ConstantAsMetadata::get(GetPointerConstant( 4134 CGM.getLLVMContext(), D.getDecl()))}; 4135 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4136 } 4137 4138 /// For each function which is declared within an extern "C" region and marked 4139 /// as 'used', but has internal linkage, create an alias from the unmangled 4140 /// name to the mangled name if possible. People expect to be able to refer 4141 /// to such functions with an unmangled name from inline assembly within the 4142 /// same translation unit. 4143 void CodeGenModule::EmitStaticExternCAliases() { 4144 // Don't do anything if we're generating CUDA device code -- the NVPTX 4145 // assembly target doesn't support aliases. 4146 if (Context.getTargetInfo().getTriple().isNVPTX()) 4147 return; 4148 for (auto &I : StaticExternCValues) { 4149 IdentifierInfo *Name = I.first; 4150 llvm::GlobalValue *Val = I.second; 4151 if (Val && !getModule().getNamedValue(Name->getName())) 4152 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4153 } 4154 } 4155 4156 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4157 GlobalDecl &Result) const { 4158 auto Res = Manglings.find(MangledName); 4159 if (Res == Manglings.end()) 4160 return false; 4161 Result = Res->getValue(); 4162 return true; 4163 } 4164 4165 /// Emits metadata nodes associating all the global values in the 4166 /// current module with the Decls they came from. This is useful for 4167 /// projects using IR gen as a subroutine. 4168 /// 4169 /// Since there's currently no way to associate an MDNode directly 4170 /// with an llvm::GlobalValue, we create a global named metadata 4171 /// with the name 'clang.global.decl.ptrs'. 4172 void CodeGenModule::EmitDeclMetadata() { 4173 llvm::NamedMDNode *GlobalMetadata = nullptr; 4174 4175 for (auto &I : MangledDeclNames) { 4176 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4177 // Some mangled names don't necessarily have an associated GlobalValue 4178 // in this module, e.g. if we mangled it for DebugInfo. 4179 if (Addr) 4180 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4181 } 4182 } 4183 4184 /// Emits metadata nodes for all the local variables in the current 4185 /// function. 4186 void CodeGenFunction::EmitDeclMetadata() { 4187 if (LocalDeclMap.empty()) return; 4188 4189 llvm::LLVMContext &Context = getLLVMContext(); 4190 4191 // Find the unique metadata ID for this name. 4192 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4193 4194 llvm::NamedMDNode *GlobalMetadata = nullptr; 4195 4196 for (auto &I : LocalDeclMap) { 4197 const Decl *D = I.first; 4198 llvm::Value *Addr = I.second.getPointer(); 4199 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4200 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4201 Alloca->setMetadata( 4202 DeclPtrKind, llvm::MDNode::get( 4203 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4204 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4205 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4206 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4207 } 4208 } 4209 } 4210 4211 void CodeGenModule::EmitVersionIdentMetadata() { 4212 llvm::NamedMDNode *IdentMetadata = 4213 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4214 std::string Version = getClangFullVersion(); 4215 llvm::LLVMContext &Ctx = TheModule.getContext(); 4216 4217 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4218 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4219 } 4220 4221 void CodeGenModule::EmitTargetMetadata() { 4222 // Warning, new MangledDeclNames may be appended within this loop. 4223 // We rely on MapVector insertions adding new elements to the end 4224 // of the container. 4225 // FIXME: Move this loop into the one target that needs it, and only 4226 // loop over those declarations for which we couldn't emit the target 4227 // metadata when we emitted the declaration. 4228 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4229 auto Val = *(MangledDeclNames.begin() + I); 4230 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4231 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4232 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4233 } 4234 } 4235 4236 void CodeGenModule::EmitCoverageFile() { 4237 if (getCodeGenOpts().CoverageDataFile.empty() && 4238 getCodeGenOpts().CoverageNotesFile.empty()) 4239 return; 4240 4241 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4242 if (!CUNode) 4243 return; 4244 4245 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4246 llvm::LLVMContext &Ctx = TheModule.getContext(); 4247 auto *CoverageDataFile = 4248 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4249 auto *CoverageNotesFile = 4250 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4251 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4252 llvm::MDNode *CU = CUNode->getOperand(i); 4253 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4254 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4255 } 4256 } 4257 4258 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4259 // Sema has checked that all uuid strings are of the form 4260 // "12345678-1234-1234-1234-1234567890ab". 4261 assert(Uuid.size() == 36); 4262 for (unsigned i = 0; i < 36; ++i) { 4263 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4264 else assert(isHexDigit(Uuid[i])); 4265 } 4266 4267 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4268 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4269 4270 llvm::Constant *Field3[8]; 4271 for (unsigned Idx = 0; Idx < 8; ++Idx) 4272 Field3[Idx] = llvm::ConstantInt::get( 4273 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4274 4275 llvm::Constant *Fields[4] = { 4276 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4277 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4278 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4279 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4280 }; 4281 4282 return llvm::ConstantStruct::getAnon(Fields); 4283 } 4284 4285 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4286 bool ForEH) { 4287 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4288 // FIXME: should we even be calling this method if RTTI is disabled 4289 // and it's not for EH? 4290 if (!ForEH && !getLangOpts().RTTI) 4291 return llvm::Constant::getNullValue(Int8PtrTy); 4292 4293 if (ForEH && Ty->isObjCObjectPointerType() && 4294 LangOpts.ObjCRuntime.isGNUFamily()) 4295 return ObjCRuntime->GetEHType(Ty); 4296 4297 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4298 } 4299 4300 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4301 for (auto RefExpr : D->varlists()) { 4302 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4303 bool PerformInit = 4304 VD->getAnyInitializer() && 4305 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4306 /*ForRef=*/false); 4307 4308 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4309 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4310 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4311 CXXGlobalInits.push_back(InitFunction); 4312 } 4313 } 4314 4315 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4316 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4317 if (InternalId) 4318 return InternalId; 4319 4320 if (isExternallyVisible(T->getLinkage())) { 4321 std::string OutName; 4322 llvm::raw_string_ostream Out(OutName); 4323 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4324 4325 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4326 } else { 4327 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4328 llvm::ArrayRef<llvm::Metadata *>()); 4329 } 4330 4331 return InternalId; 4332 } 4333 4334 /// Returns whether this module needs the "all-vtables" type identifier. 4335 bool CodeGenModule::NeedAllVtablesTypeId() const { 4336 // Returns true if at least one of vtable-based CFI checkers is enabled and 4337 // is not in the trapping mode. 4338 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4339 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4340 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4341 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4342 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4343 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4344 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4345 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4346 } 4347 4348 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4349 CharUnits Offset, 4350 const CXXRecordDecl *RD) { 4351 llvm::Metadata *MD = 4352 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4353 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4354 4355 if (CodeGenOpts.SanitizeCfiCrossDso) 4356 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4357 VTable->addTypeMetadata(Offset.getQuantity(), 4358 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4359 4360 if (NeedAllVtablesTypeId()) { 4361 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4362 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4363 } 4364 } 4365 4366 // Fills in the supplied string map with the set of target features for the 4367 // passed in function. 4368 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4369 const FunctionDecl *FD) { 4370 StringRef TargetCPU = Target.getTargetOpts().CPU; 4371 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4372 // If we have a TargetAttr build up the feature map based on that. 4373 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4374 4375 // Make a copy of the features as passed on the command line into the 4376 // beginning of the additional features from the function to override. 4377 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4378 Target.getTargetOpts().FeaturesAsWritten.begin(), 4379 Target.getTargetOpts().FeaturesAsWritten.end()); 4380 4381 if (ParsedAttr.second != "") 4382 TargetCPU = ParsedAttr.second; 4383 4384 // Now populate the feature map, first with the TargetCPU which is either 4385 // the default or a new one from the target attribute string. Then we'll use 4386 // the passed in features (FeaturesAsWritten) along with the new ones from 4387 // the attribute. 4388 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4389 } else { 4390 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4391 Target.getTargetOpts().Features); 4392 } 4393 } 4394 4395 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4396 if (!SanStats) 4397 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4398 4399 return *SanStats; 4400 } 4401 llvm::Value * 4402 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4403 CodeGenFunction &CGF) { 4404 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4405 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4406 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4407 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4408 "__translate_sampler_initializer"), 4409 {C}); 4410 } 4411