xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 96a77693be7cfc87208840b2a367362104c43a6b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitTLSList(TLSInitFuncs);
186   EmitGlobalAnnotations();
187   EmitStaticExternCAliases();
188   EmitLLVMUsed();
189 
190   if (CodeGenOpts.Autolink && Context.getLangOpts().Modules) {
191     EmitModuleLinkOptions();
192   }
193 
194   SimplifyPersonality();
195 
196   if (getCodeGenOpts().EmitDeclMetadata)
197     EmitDeclMetadata();
198 
199   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
200     EmitCoverageFile();
201 
202   if (DebugInfo)
203     DebugInfo->finalize();
204 }
205 
206 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
207   // Make sure that this type is translated.
208   Types.UpdateCompletedType(TD);
209 }
210 
211 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
212   if (!TBAA)
213     return 0;
214   return TBAA->getTBAAInfo(QTy);
215 }
216 
217 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
218   if (!TBAA)
219     return 0;
220   return TBAA->getTBAAInfoForVTablePtr();
221 }
222 
223 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
224   if (!TBAA)
225     return 0;
226   return TBAA->getTBAAStructInfo(QTy);
227 }
228 
229 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
230   if (!TBAA)
231     return 0;
232   return TBAA->getTBAAStructTypeInfo(QTy);
233 }
234 
235 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
236                                                   llvm::MDNode *AccessN,
237                                                   uint64_t O) {
238   if (!TBAA)
239     return 0;
240   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
241 }
242 
243 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
244 /// is the same as the type. For struct-path aware TBAA, the tag
245 /// is different from the type: base type, access type and offset.
246 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
247 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
248                                         llvm::MDNode *TBAAInfo,
249                                         bool ConvertTypeToTag) {
250   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
251     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
252                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
253   else
254     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
255 }
256 
257 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
258   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
259   getDiags().Report(Context.getFullLoc(loc), diagID);
260 }
261 
262 /// ErrorUnsupported - Print out an error that codegen doesn't support the
263 /// specified stmt yet.
264 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
265                                      bool OmitOnError) {
266   if (OmitOnError && getDiags().hasErrorOccurred())
267     return;
268   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
269                                                "cannot compile this %0 yet");
270   std::string Msg = Type;
271   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
272     << Msg << S->getSourceRange();
273 }
274 
275 /// ErrorUnsupported - Print out an error that codegen doesn't support the
276 /// specified decl yet.
277 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
278                                      bool OmitOnError) {
279   if (OmitOnError && getDiags().hasErrorOccurred())
280     return;
281   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
282                                                "cannot compile this %0 yet");
283   std::string Msg = Type;
284   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
285 }
286 
287 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
288   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
289 }
290 
291 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
292                                         const NamedDecl *D) const {
293   // Internal definitions always have default visibility.
294   if (GV->hasLocalLinkage()) {
295     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
296     return;
297   }
298 
299   // Set visibility for definitions.
300   LinkageInfo LV = D->getLinkageAndVisibility();
301   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
302     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
303 }
304 
305 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
306   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
307       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
308       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
309       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
310       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
311 }
312 
313 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
314     CodeGenOptions::TLSModel M) {
315   switch (M) {
316   case CodeGenOptions::GeneralDynamicTLSModel:
317     return llvm::GlobalVariable::GeneralDynamicTLSModel;
318   case CodeGenOptions::LocalDynamicTLSModel:
319     return llvm::GlobalVariable::LocalDynamicTLSModel;
320   case CodeGenOptions::InitialExecTLSModel:
321     return llvm::GlobalVariable::InitialExecTLSModel;
322   case CodeGenOptions::LocalExecTLSModel:
323     return llvm::GlobalVariable::LocalExecTLSModel;
324   }
325   llvm_unreachable("Invalid TLS model!");
326 }
327 
328 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
329                                const VarDecl &D) const {
330   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
331 
332   llvm::GlobalVariable::ThreadLocalMode TLM;
333   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
334 
335   // Override the TLS model if it is explicitly specified.
336   if (D.hasAttr<TLSModelAttr>()) {
337     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
338     TLM = GetLLVMTLSModel(Attr->getModel());
339   }
340 
341   GV->setThreadLocalMode(TLM);
342 }
343 
344 /// Set the symbol visibility of type information (vtable and RTTI)
345 /// associated with the given type.
346 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
347                                       const CXXRecordDecl *RD,
348                                       TypeVisibilityKind TVK) const {
349   setGlobalVisibility(GV, RD);
350 
351   if (!CodeGenOpts.HiddenWeakVTables)
352     return;
353 
354   // We never want to drop the visibility for RTTI names.
355   if (TVK == TVK_ForRTTIName)
356     return;
357 
358   // We want to drop the visibility to hidden for weak type symbols.
359   // This isn't possible if there might be unresolved references
360   // elsewhere that rely on this symbol being visible.
361 
362   // This should be kept roughly in sync with setThunkVisibility
363   // in CGVTables.cpp.
364 
365   // Preconditions.
366   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
367       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
368     return;
369 
370   // Don't override an explicit visibility attribute.
371   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
372     return;
373 
374   switch (RD->getTemplateSpecializationKind()) {
375   // We have to disable the optimization if this is an EI definition
376   // because there might be EI declarations in other shared objects.
377   case TSK_ExplicitInstantiationDefinition:
378   case TSK_ExplicitInstantiationDeclaration:
379     return;
380 
381   // Every use of a non-template class's type information has to emit it.
382   case TSK_Undeclared:
383     break;
384 
385   // In theory, implicit instantiations can ignore the possibility of
386   // an explicit instantiation declaration because there necessarily
387   // must be an EI definition somewhere with default visibility.  In
388   // practice, it's possible to have an explicit instantiation for
389   // an arbitrary template class, and linkers aren't necessarily able
390   // to deal with mixed-visibility symbols.
391   case TSK_ExplicitSpecialization:
392   case TSK_ImplicitInstantiation:
393     return;
394   }
395 
396   // If there's a key function, there may be translation units
397   // that don't have the key function's definition.  But ignore
398   // this if we're emitting RTTI under -fno-rtti.
399   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
400     // FIXME: what should we do if we "lose" the key function during
401     // the emission of the file?
402     if (Context.getCurrentKeyFunction(RD))
403       return;
404   }
405 
406   // Otherwise, drop the visibility to hidden.
407   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
408   GV->setUnnamedAddr(true);
409 }
410 
411 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
412   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
413 
414   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
415   if (!Str.empty())
416     return Str;
417 
418   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
419     IdentifierInfo *II = ND->getIdentifier();
420     assert(II && "Attempt to mangle unnamed decl.");
421 
422     Str = II->getName();
423     return Str;
424   }
425 
426   SmallString<256> Buffer;
427   llvm::raw_svector_ostream Out(Buffer);
428   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
429     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
430   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
431     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
432   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
433     getCXXABI().getMangleContext().mangleBlock(BD, Out,
434       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
435   else
436     getCXXABI().getMangleContext().mangleName(ND, Out);
437 
438   // Allocate space for the mangled name.
439   Out.flush();
440   size_t Length = Buffer.size();
441   char *Name = MangledNamesAllocator.Allocate<char>(Length);
442   std::copy(Buffer.begin(), Buffer.end(), Name);
443 
444   Str = StringRef(Name, Length);
445 
446   return Str;
447 }
448 
449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
450                                         const BlockDecl *BD) {
451   MangleContext &MangleCtx = getCXXABI().getMangleContext();
452   const Decl *D = GD.getDecl();
453   llvm::raw_svector_ostream Out(Buffer.getBuffer());
454   if (D == 0)
455     MangleCtx.mangleGlobalBlock(BD,
456       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
457   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
458     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
459   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
460     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
461   else
462     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
463 }
464 
465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
466   return getModule().getNamedValue(Name);
467 }
468 
469 /// AddGlobalCtor - Add a function to the list that will be called before
470 /// main() runs.
471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
472   // FIXME: Type coercion of void()* types.
473   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
474 }
475 
476 /// AddGlobalDtor - Add a function to the list that will be called
477 /// when the module is unloaded.
478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
479   // FIXME: Type coercion of void()* types.
480   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
481 }
482 
483 /// AddTLSInitFunc - Add a function to the list that will initialize TLS
484 /// variables before main() runs.
485 void CodeGenModule::AddTLSInitFunc(llvm::Function *Init) {
486   TLSInitFuncs.push_back(Init);
487 }
488 
489 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
490   // Ctor function type is void()*.
491   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
492   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
493 
494   // Get the type of a ctor entry, { i32, void ()* }.
495   llvm::StructType *CtorStructTy =
496     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
497 
498   // Construct the constructor and destructor arrays.
499   SmallVector<llvm::Constant*, 8> Ctors;
500   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
501     llvm::Constant *S[] = {
502       llvm::ConstantInt::get(Int32Ty, I->second, false),
503       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
504     };
505     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
506   }
507 
508   if (!Ctors.empty()) {
509     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
510     new llvm::GlobalVariable(TheModule, AT, false,
511                              llvm::GlobalValue::AppendingLinkage,
512                              llvm::ConstantArray::get(AT, Ctors),
513                              GlobalName);
514   }
515 }
516 
517 void CodeGenModule::EmitTLSList(ArrayRef<llvm::Constant*> Fns) {
518   if (Fns.empty()) return;
519 
520   // TLS init function types are void()*.
521   llvm::FunctionType* TLSFTy = llvm::FunctionType::get(VoidTy, false);
522   llvm::Type *TLSPFTy = llvm::PointerType::getUnqual(TLSFTy);
523 
524   SmallVector<llvm::Constant*, 8> Inits;
525   for (ArrayRef<llvm::Constant*>::iterator I = Fns.begin(),
526          E = Fns.end(); I != E; ++I)
527     Inits.push_back(llvm::ConstantExpr::getBitCast(*I, TLSPFTy));
528 
529   llvm::ArrayType *AT = llvm::ArrayType::get(TLSPFTy, Inits.size());
530   new llvm::GlobalVariable(TheModule, AT, false,
531                            llvm::GlobalValue::AppendingLinkage,
532                            llvm::ConstantArray::get(AT, Inits),
533                            "llvm.tls_init_funcs");
534 }
535 
536 llvm::GlobalValue::LinkageTypes
537 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
538   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
539 
540   if (Linkage == GVA_Internal)
541     return llvm::Function::InternalLinkage;
542 
543   if (D->hasAttr<DLLExportAttr>())
544     return llvm::Function::DLLExportLinkage;
545 
546   if (D->hasAttr<WeakAttr>())
547     return llvm::Function::WeakAnyLinkage;
548 
549   // In C99 mode, 'inline' functions are guaranteed to have a strong
550   // definition somewhere else, so we can use available_externally linkage.
551   if (Linkage == GVA_C99Inline)
552     return llvm::Function::AvailableExternallyLinkage;
553 
554   // Note that Apple's kernel linker doesn't support symbol
555   // coalescing, so we need to avoid linkonce and weak linkages there.
556   // Normally, this means we just map to internal, but for explicit
557   // instantiations we'll map to external.
558 
559   // In C++, the compiler has to emit a definition in every translation unit
560   // that references the function.  We should use linkonce_odr because
561   // a) if all references in this translation unit are optimized away, we
562   // don't need to codegen it.  b) if the function persists, it needs to be
563   // merged with other definitions. c) C++ has the ODR, so we know the
564   // definition is dependable.
565   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
566     return !Context.getLangOpts().AppleKext
567              ? llvm::Function::LinkOnceODRLinkage
568              : llvm::Function::InternalLinkage;
569 
570   // An explicit instantiation of a template has weak linkage, since
571   // explicit instantiations can occur in multiple translation units
572   // and must all be equivalent. However, we are not allowed to
573   // throw away these explicit instantiations.
574   if (Linkage == GVA_ExplicitTemplateInstantiation)
575     return !Context.getLangOpts().AppleKext
576              ? llvm::Function::WeakODRLinkage
577              : llvm::Function::ExternalLinkage;
578 
579   // Otherwise, we have strong external linkage.
580   assert(Linkage == GVA_StrongExternal);
581   return llvm::Function::ExternalLinkage;
582 }
583 
584 
585 /// SetFunctionDefinitionAttributes - Set attributes for a global.
586 ///
587 /// FIXME: This is currently only done for aliases and functions, but not for
588 /// variables (these details are set in EmitGlobalVarDefinition for variables).
589 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
590                                                     llvm::GlobalValue *GV) {
591   SetCommonAttributes(D, GV);
592 }
593 
594 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
595                                               const CGFunctionInfo &Info,
596                                               llvm::Function *F) {
597   unsigned CallingConv;
598   AttributeListType AttributeList;
599   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
600   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
601   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
602 }
603 
604 /// Determines whether the language options require us to model
605 /// unwind exceptions.  We treat -fexceptions as mandating this
606 /// except under the fragile ObjC ABI with only ObjC exceptions
607 /// enabled.  This means, for example, that C with -fexceptions
608 /// enables this.
609 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
610   // If exceptions are completely disabled, obviously this is false.
611   if (!LangOpts.Exceptions) return false;
612 
613   // If C++ exceptions are enabled, this is true.
614   if (LangOpts.CXXExceptions) return true;
615 
616   // If ObjC exceptions are enabled, this depends on the ABI.
617   if (LangOpts.ObjCExceptions) {
618     return LangOpts.ObjCRuntime.hasUnwindExceptions();
619   }
620 
621   return true;
622 }
623 
624 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
625                                                            llvm::Function *F) {
626   if (CodeGenOpts.UnwindTables)
627     F->setHasUWTable();
628 
629   if (!hasUnwindExceptions(LangOpts))
630     F->addFnAttr(llvm::Attribute::NoUnwind);
631 
632   if (D->hasAttr<NakedAttr>()) {
633     // Naked implies noinline: we should not be inlining such functions.
634     F->addFnAttr(llvm::Attribute::Naked);
635     F->addFnAttr(llvm::Attribute::NoInline);
636   }
637 
638   if (D->hasAttr<NoInlineAttr>())
639     F->addFnAttr(llvm::Attribute::NoInline);
640 
641   // (noinline wins over always_inline, and we can't specify both in IR)
642   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
643       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
644                                        llvm::Attribute::NoInline))
645     F->addFnAttr(llvm::Attribute::AlwaysInline);
646 
647   // FIXME: Communicate hot and cold attributes to LLVM more directly.
648   if (D->hasAttr<ColdAttr>())
649     F->addFnAttr(llvm::Attribute::OptimizeForSize);
650 
651   if (D->hasAttr<MinSizeAttr>())
652     F->addFnAttr(llvm::Attribute::MinSize);
653 
654   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
655     F->setUnnamedAddr(true);
656 
657   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
658     if (MD->isVirtual())
659       F->setUnnamedAddr(true);
660 
661   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
662     F->addFnAttr(llvm::Attribute::StackProtect);
663   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
664     F->addFnAttr(llvm::Attribute::StackProtectReq);
665 
666   // Add sanitizer attributes if function is not blacklisted.
667   if (!SanitizerBlacklist.isIn(*F)) {
668     // When AddressSanitizer is enabled, set SanitizeAddress attribute
669     // unless __attribute__((no_sanitize_address)) is used.
670     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
671       F->addFnAttr(llvm::Attribute::SanitizeAddress);
672     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
673     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
674       F->addFnAttr(llvm::Attribute::SanitizeThread);
675     }
676     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
677     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
678       F->addFnAttr(llvm::Attribute::SanitizeMemory);
679   }
680 
681   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
682   if (alignment)
683     F->setAlignment(alignment);
684 
685   // C++ ABI requires 2-byte alignment for member functions.
686   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
687     F->setAlignment(2);
688 }
689 
690 void CodeGenModule::SetCommonAttributes(const Decl *D,
691                                         llvm::GlobalValue *GV) {
692   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
693     setGlobalVisibility(GV, ND);
694   else
695     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
696 
697   if (D->hasAttr<UsedAttr>())
698     AddUsedGlobal(GV);
699 
700   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
701     GV->setSection(SA->getName());
702 
703   // Alias cannot have attributes. Filter them here.
704   if (!isa<llvm::GlobalAlias>(GV))
705     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
706 }
707 
708 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
709                                                   llvm::Function *F,
710                                                   const CGFunctionInfo &FI) {
711   SetLLVMFunctionAttributes(D, FI, F);
712   SetLLVMFunctionAttributesForDefinition(D, F);
713 
714   F->setLinkage(llvm::Function::InternalLinkage);
715 
716   SetCommonAttributes(D, F);
717 }
718 
719 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
720                                           llvm::Function *F,
721                                           bool IsIncompleteFunction) {
722   if (unsigned IID = F->getIntrinsicID()) {
723     // If this is an intrinsic function, set the function's attributes
724     // to the intrinsic's attributes.
725     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
726                                                     (llvm::Intrinsic::ID)IID));
727     return;
728   }
729 
730   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
731 
732   if (!IsIncompleteFunction)
733     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
734 
735   // Only a few attributes are set on declarations; these may later be
736   // overridden by a definition.
737 
738   if (FD->hasAttr<DLLImportAttr>()) {
739     F->setLinkage(llvm::Function::DLLImportLinkage);
740   } else if (FD->hasAttr<WeakAttr>() ||
741              FD->isWeakImported()) {
742     // "extern_weak" is overloaded in LLVM; we probably should have
743     // separate linkage types for this.
744     F->setLinkage(llvm::Function::ExternalWeakLinkage);
745   } else {
746     F->setLinkage(llvm::Function::ExternalLinkage);
747 
748     LinkageInfo LV = FD->getLinkageAndVisibility();
749     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
750       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
751     }
752   }
753 
754   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
755     F->setSection(SA->getName());
756 }
757 
758 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
759   assert(!GV->isDeclaration() &&
760          "Only globals with definition can force usage.");
761   LLVMUsed.push_back(GV);
762 }
763 
764 void CodeGenModule::EmitLLVMUsed() {
765   // Don't create llvm.used if there is no need.
766   if (LLVMUsed.empty())
767     return;
768 
769   // Convert LLVMUsed to what ConstantArray needs.
770   SmallVector<llvm::Constant*, 8> UsedArray;
771   UsedArray.resize(LLVMUsed.size());
772   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
773     UsedArray[i] =
774      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
775                                     Int8PtrTy);
776   }
777 
778   if (UsedArray.empty())
779     return;
780   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
781 
782   llvm::GlobalVariable *GV =
783     new llvm::GlobalVariable(getModule(), ATy, false,
784                              llvm::GlobalValue::AppendingLinkage,
785                              llvm::ConstantArray::get(ATy, UsedArray),
786                              "llvm.used");
787 
788   GV->setSection("llvm.metadata");
789 }
790 
791 /// \brief Add link options implied by the given module, including modules
792 /// it depends on, using a postorder walk.
793 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
794                                     Module *Mod,
795                                     SmallVectorImpl<llvm::Value *> &Metadata,
796                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
797   // Import this module's parent.
798   if (Mod->Parent && Visited.insert(Mod->Parent)) {
799     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
800   }
801 
802   // Import this module's dependencies.
803   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
804     if (Visited.insert(Mod->Imports[I-1]))
805       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
806   }
807 
808   // Add linker options to link against the libraries/frameworks
809   // described by this module.
810   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
811     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
812     // We need to know more about the linker to know how to encode these
813     // options propertly.
814 
815     // Link against a framework.
816     if (Mod->LinkLibraries[I-1].IsFramework) {
817       llvm::Value *Args[2] = {
818         llvm::MDString::get(Context, "-framework"),
819         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
820       };
821 
822       Metadata.push_back(llvm::MDNode::get(Context, Args));
823       continue;
824     }
825 
826     // Link against a library.
827     llvm::Value *OptString
828     = llvm::MDString::get(Context,
829                           "-l" + Mod->LinkLibraries[I-1].Library);
830     Metadata.push_back(llvm::MDNode::get(Context, OptString));
831   }
832 }
833 
834 void CodeGenModule::EmitModuleLinkOptions() {
835   // Collect the set of all of the modules we want to visit to emit link
836   // options, which is essentially the imported modules and all of their
837   // non-explicit child modules.
838   llvm::SetVector<clang::Module *> LinkModules;
839   llvm::SmallPtrSet<clang::Module *, 16> Visited;
840   SmallVector<clang::Module *, 16> Stack;
841 
842   // Seed the stack with imported modules.
843   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
844                                                MEnd = ImportedModules.end();
845        M != MEnd; ++M) {
846     if (Visited.insert(*M))
847       Stack.push_back(*M);
848   }
849 
850   // Find all of the modules to import, making a little effort to prune
851   // non-leaf modules.
852   while (!Stack.empty()) {
853     clang::Module *Mod = Stack.back();
854     Stack.pop_back();
855 
856     bool AnyChildren = false;
857 
858     // Visit the submodules of this module.
859     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
860                                         SubEnd = Mod->submodule_end();
861          Sub != SubEnd; ++Sub) {
862       // Skip explicit children; they need to be explicitly imported to be
863       // linked against.
864       if ((*Sub)->IsExplicit)
865         continue;
866 
867       if (Visited.insert(*Sub)) {
868         Stack.push_back(*Sub);
869         AnyChildren = true;
870       }
871     }
872 
873     // We didn't find any children, so add this module to the list of
874     // modules to link against.
875     if (!AnyChildren) {
876       LinkModules.insert(Mod);
877     }
878   }
879 
880   // Add link options for all of the imported modules in reverse topological
881   // order.
882   SmallVector<llvm::Value *, 16> MetadataArgs;
883   Visited.clear();
884   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
885                                                MEnd = LinkModules.end();
886        M != MEnd; ++M) {
887     if (Visited.insert(*M))
888       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
889   }
890   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
891 
892   // Add the linker options metadata flag.
893   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
894                             llvm::MDNode::get(getLLVMContext(), MetadataArgs));
895 }
896 
897 void CodeGenModule::EmitDeferred() {
898   // Emit code for any potentially referenced deferred decls.  Since a
899   // previously unused static decl may become used during the generation of code
900   // for a static function, iterate until no changes are made.
901 
902   while (true) {
903     if (!DeferredVTables.empty()) {
904       EmitDeferredVTables();
905 
906       // Emitting a v-table doesn't directly cause more v-tables to
907       // become deferred, although it can cause functions to be
908       // emitted that then need those v-tables.
909       assert(DeferredVTables.empty());
910     }
911 
912     // Stop if we're out of both deferred v-tables and deferred declarations.
913     if (DeferredDeclsToEmit.empty()) break;
914 
915     GlobalDecl D = DeferredDeclsToEmit.back();
916     DeferredDeclsToEmit.pop_back();
917 
918     // Check to see if we've already emitted this.  This is necessary
919     // for a couple of reasons: first, decls can end up in the
920     // deferred-decls queue multiple times, and second, decls can end
921     // up with definitions in unusual ways (e.g. by an extern inline
922     // function acquiring a strong function redefinition).  Just
923     // ignore these cases.
924     //
925     // TODO: That said, looking this up multiple times is very wasteful.
926     StringRef Name = getMangledName(D);
927     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
928     assert(CGRef && "Deferred decl wasn't referenced?");
929 
930     if (!CGRef->isDeclaration())
931       continue;
932 
933     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
934     // purposes an alias counts as a definition.
935     if (isa<llvm::GlobalAlias>(CGRef))
936       continue;
937 
938     // Otherwise, emit the definition and move on to the next one.
939     EmitGlobalDefinition(D);
940   }
941 }
942 
943 void CodeGenModule::EmitGlobalAnnotations() {
944   if (Annotations.empty())
945     return;
946 
947   // Create a new global variable for the ConstantStruct in the Module.
948   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
949     Annotations[0]->getType(), Annotations.size()), Annotations);
950   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
951     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
952     "llvm.global.annotations");
953   gv->setSection(AnnotationSection);
954 }
955 
956 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
957   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
958   if (i != AnnotationStrings.end())
959     return i->second;
960 
961   // Not found yet, create a new global.
962   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
963   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
964     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
965   gv->setSection(AnnotationSection);
966   gv->setUnnamedAddr(true);
967   AnnotationStrings[Str] = gv;
968   return gv;
969 }
970 
971 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
972   SourceManager &SM = getContext().getSourceManager();
973   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
974   if (PLoc.isValid())
975     return EmitAnnotationString(PLoc.getFilename());
976   return EmitAnnotationString(SM.getBufferName(Loc));
977 }
978 
979 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
980   SourceManager &SM = getContext().getSourceManager();
981   PresumedLoc PLoc = SM.getPresumedLoc(L);
982   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
983     SM.getExpansionLineNumber(L);
984   return llvm::ConstantInt::get(Int32Ty, LineNo);
985 }
986 
987 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
988                                                 const AnnotateAttr *AA,
989                                                 SourceLocation L) {
990   // Get the globals for file name, annotation, and the line number.
991   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
992                  *UnitGV = EmitAnnotationUnit(L),
993                  *LineNoCst = EmitAnnotationLineNo(L);
994 
995   // Create the ConstantStruct for the global annotation.
996   llvm::Constant *Fields[4] = {
997     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
998     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
999     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1000     LineNoCst
1001   };
1002   return llvm::ConstantStruct::getAnon(Fields);
1003 }
1004 
1005 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1006                                          llvm::GlobalValue *GV) {
1007   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1008   // Get the struct elements for these annotations.
1009   for (specific_attr_iterator<AnnotateAttr>
1010        ai = D->specific_attr_begin<AnnotateAttr>(),
1011        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1012     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1013 }
1014 
1015 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1016   // Never defer when EmitAllDecls is specified.
1017   if (LangOpts.EmitAllDecls)
1018     return false;
1019 
1020   return !getContext().DeclMustBeEmitted(Global);
1021 }
1022 
1023 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1024     const CXXUuidofExpr* E) {
1025   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1026   // well-formed.
1027   StringRef Uuid;
1028   if (E->isTypeOperand())
1029     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1030   else {
1031     // Special case: __uuidof(0) means an all-zero GUID.
1032     Expr *Op = E->getExprOperand();
1033     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1034       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1035     else
1036       Uuid = "00000000-0000-0000-0000-000000000000";
1037   }
1038   std::string Name = "__uuid_" + Uuid.str();
1039 
1040   // Look for an existing global.
1041   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1042     return GV;
1043 
1044   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1045   assert(Init && "failed to initialize as constant");
1046 
1047   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1048   // first field is declared as "long", which for many targets is 8 bytes.
1049   // Those architectures are not supported. (With the MS abi, long is always 4
1050   // bytes.)
1051   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1052   if (Init->getType() != GuidType) {
1053     DiagnosticsEngine &Diags = getDiags();
1054     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1055         "__uuidof codegen is not supported on this architecture");
1056     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1057     Init = llvm::UndefValue::get(GuidType);
1058   }
1059 
1060   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1061       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1062   GV->setUnnamedAddr(true);
1063   return GV;
1064 }
1065 
1066 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1067   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1068   assert(AA && "No alias?");
1069 
1070   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1071 
1072   // See if there is already something with the target's name in the module.
1073   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1074   if (Entry) {
1075     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1076     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1077   }
1078 
1079   llvm::Constant *Aliasee;
1080   if (isa<llvm::FunctionType>(DeclTy))
1081     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1082                                       GlobalDecl(cast<FunctionDecl>(VD)),
1083                                       /*ForVTable=*/false);
1084   else
1085     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1086                                     llvm::PointerType::getUnqual(DeclTy), 0);
1087 
1088   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1089   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1090   WeakRefReferences.insert(F);
1091 
1092   return Aliasee;
1093 }
1094 
1095 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1096   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1097 
1098   // Weak references don't produce any output by themselves.
1099   if (Global->hasAttr<WeakRefAttr>())
1100     return;
1101 
1102   // If this is an alias definition (which otherwise looks like a declaration)
1103   // emit it now.
1104   if (Global->hasAttr<AliasAttr>())
1105     return EmitAliasDefinition(GD);
1106 
1107   // If this is CUDA, be selective about which declarations we emit.
1108   if (LangOpts.CUDA) {
1109     if (CodeGenOpts.CUDAIsDevice) {
1110       if (!Global->hasAttr<CUDADeviceAttr>() &&
1111           !Global->hasAttr<CUDAGlobalAttr>() &&
1112           !Global->hasAttr<CUDAConstantAttr>() &&
1113           !Global->hasAttr<CUDASharedAttr>())
1114         return;
1115     } else {
1116       if (!Global->hasAttr<CUDAHostAttr>() && (
1117             Global->hasAttr<CUDADeviceAttr>() ||
1118             Global->hasAttr<CUDAConstantAttr>() ||
1119             Global->hasAttr<CUDASharedAttr>()))
1120         return;
1121     }
1122   }
1123 
1124   // Ignore declarations, they will be emitted on their first use.
1125   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1126     // Forward declarations are emitted lazily on first use.
1127     if (!FD->doesThisDeclarationHaveABody()) {
1128       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1129         return;
1130 
1131       const FunctionDecl *InlineDefinition = 0;
1132       FD->getBody(InlineDefinition);
1133 
1134       StringRef MangledName = getMangledName(GD);
1135       DeferredDecls.erase(MangledName);
1136       EmitGlobalDefinition(InlineDefinition);
1137       return;
1138     }
1139   } else {
1140     const VarDecl *VD = cast<VarDecl>(Global);
1141     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1142 
1143     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1144       return;
1145   }
1146 
1147   // Defer code generation when possible if this is a static definition, inline
1148   // function etc.  These we only want to emit if they are used.
1149   if (!MayDeferGeneration(Global)) {
1150     // Emit the definition if it can't be deferred.
1151     EmitGlobalDefinition(GD);
1152     return;
1153   }
1154 
1155   // If we're deferring emission of a C++ variable with an
1156   // initializer, remember the order in which it appeared in the file.
1157   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1158       cast<VarDecl>(Global)->hasInit()) {
1159     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1160     CXXGlobalInits.push_back(0);
1161   }
1162 
1163   // If the value has already been used, add it directly to the
1164   // DeferredDeclsToEmit list.
1165   StringRef MangledName = getMangledName(GD);
1166   if (GetGlobalValue(MangledName))
1167     DeferredDeclsToEmit.push_back(GD);
1168   else {
1169     // Otherwise, remember that we saw a deferred decl with this name.  The
1170     // first use of the mangled name will cause it to move into
1171     // DeferredDeclsToEmit.
1172     DeferredDecls[MangledName] = GD;
1173   }
1174 }
1175 
1176 namespace {
1177   struct FunctionIsDirectlyRecursive :
1178     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1179     const StringRef Name;
1180     const Builtin::Context &BI;
1181     bool Result;
1182     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1183       Name(N), BI(C), Result(false) {
1184     }
1185     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1186 
1187     bool TraverseCallExpr(CallExpr *E) {
1188       const FunctionDecl *FD = E->getDirectCallee();
1189       if (!FD)
1190         return true;
1191       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1192       if (Attr && Name == Attr->getLabel()) {
1193         Result = true;
1194         return false;
1195       }
1196       unsigned BuiltinID = FD->getBuiltinID();
1197       if (!BuiltinID)
1198         return true;
1199       StringRef BuiltinName = BI.GetName(BuiltinID);
1200       if (BuiltinName.startswith("__builtin_") &&
1201           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1202         Result = true;
1203         return false;
1204       }
1205       return true;
1206     }
1207   };
1208 }
1209 
1210 // isTriviallyRecursive - Check if this function calls another
1211 // decl that, because of the asm attribute or the other decl being a builtin,
1212 // ends up pointing to itself.
1213 bool
1214 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1215   StringRef Name;
1216   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1217     // asm labels are a special kind of mangling we have to support.
1218     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1219     if (!Attr)
1220       return false;
1221     Name = Attr->getLabel();
1222   } else {
1223     Name = FD->getName();
1224   }
1225 
1226   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1227   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1228   return Walker.Result;
1229 }
1230 
1231 bool
1232 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1233   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1234     return true;
1235   if (CodeGenOpts.OptimizationLevel == 0 &&
1236       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1237     return false;
1238   // PR9614. Avoid cases where the source code is lying to us. An available
1239   // externally function should have an equivalent function somewhere else,
1240   // but a function that calls itself is clearly not equivalent to the real
1241   // implementation.
1242   // This happens in glibc's btowc and in some configure checks.
1243   return !isTriviallyRecursive(F);
1244 }
1245 
1246 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1247   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1248 
1249   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1250                                  Context.getSourceManager(),
1251                                  "Generating code for declaration");
1252 
1253   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1254     // At -O0, don't generate IR for functions with available_externally
1255     // linkage.
1256     if (!shouldEmitFunction(Function))
1257       return;
1258 
1259     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1260       // Make sure to emit the definition(s) before we emit the thunks.
1261       // This is necessary for the generation of certain thunks.
1262       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1263         EmitCXXConstructor(CD, GD.getCtorType());
1264       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1265         EmitCXXDestructor(DD, GD.getDtorType());
1266       else
1267         EmitGlobalFunctionDefinition(GD);
1268 
1269       if (Method->isVirtual())
1270         getVTables().EmitThunks(GD);
1271 
1272       return;
1273     }
1274 
1275     return EmitGlobalFunctionDefinition(GD);
1276   }
1277 
1278   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1279     return EmitGlobalVarDefinition(VD);
1280 
1281   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1282 }
1283 
1284 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1285 /// module, create and return an llvm Function with the specified type. If there
1286 /// is something in the module with the specified name, return it potentially
1287 /// bitcasted to the right type.
1288 ///
1289 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1290 /// to set the attributes on the function when it is first created.
1291 llvm::Constant *
1292 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1293                                        llvm::Type *Ty,
1294                                        GlobalDecl D, bool ForVTable,
1295                                        llvm::AttributeSet ExtraAttrs) {
1296   // Lookup the entry, lazily creating it if necessary.
1297   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1298   if (Entry) {
1299     if (WeakRefReferences.erase(Entry)) {
1300       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1301       if (FD && !FD->hasAttr<WeakAttr>())
1302         Entry->setLinkage(llvm::Function::ExternalLinkage);
1303     }
1304 
1305     if (Entry->getType()->getElementType() == Ty)
1306       return Entry;
1307 
1308     // Make sure the result is of the correct type.
1309     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1310   }
1311 
1312   // This function doesn't have a complete type (for example, the return
1313   // type is an incomplete struct). Use a fake type instead, and make
1314   // sure not to try to set attributes.
1315   bool IsIncompleteFunction = false;
1316 
1317   llvm::FunctionType *FTy;
1318   if (isa<llvm::FunctionType>(Ty)) {
1319     FTy = cast<llvm::FunctionType>(Ty);
1320   } else {
1321     FTy = llvm::FunctionType::get(VoidTy, false);
1322     IsIncompleteFunction = true;
1323   }
1324 
1325   llvm::Function *F = llvm::Function::Create(FTy,
1326                                              llvm::Function::ExternalLinkage,
1327                                              MangledName, &getModule());
1328   assert(F->getName() == MangledName && "name was uniqued!");
1329   if (D.getDecl())
1330     SetFunctionAttributes(D, F, IsIncompleteFunction);
1331   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1332     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1333     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1334                      llvm::AttributeSet::get(VMContext,
1335                                              llvm::AttributeSet::FunctionIndex,
1336                                              B));
1337   }
1338 
1339   // This is the first use or definition of a mangled name.  If there is a
1340   // deferred decl with this name, remember that we need to emit it at the end
1341   // of the file.
1342   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1343   if (DDI != DeferredDecls.end()) {
1344     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1345     // list, and remove it from DeferredDecls (since we don't need it anymore).
1346     DeferredDeclsToEmit.push_back(DDI->second);
1347     DeferredDecls.erase(DDI);
1348 
1349   // Otherwise, there are cases we have to worry about where we're
1350   // using a declaration for which we must emit a definition but where
1351   // we might not find a top-level definition:
1352   //   - member functions defined inline in their classes
1353   //   - friend functions defined inline in some class
1354   //   - special member functions with implicit definitions
1355   // If we ever change our AST traversal to walk into class methods,
1356   // this will be unnecessary.
1357   //
1358   // We also don't emit a definition for a function if it's going to be an entry
1359   // in a vtable, unless it's already marked as used.
1360   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1361     // Look for a declaration that's lexically in a record.
1362     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1363     FD = FD->getMostRecentDecl();
1364     do {
1365       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1366         if (FD->isImplicit() && !ForVTable) {
1367           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1368           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1369           break;
1370         } else if (FD->doesThisDeclarationHaveABody()) {
1371           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1372           break;
1373         }
1374       }
1375       FD = FD->getPreviousDecl();
1376     } while (FD);
1377   }
1378 
1379   // Make sure the result is of the requested type.
1380   if (!IsIncompleteFunction) {
1381     assert(F->getType()->getElementType() == Ty);
1382     return F;
1383   }
1384 
1385   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1386   return llvm::ConstantExpr::getBitCast(F, PTy);
1387 }
1388 
1389 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1390 /// non-null, then this function will use the specified type if it has to
1391 /// create it (this occurs when we see a definition of the function).
1392 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1393                                                  llvm::Type *Ty,
1394                                                  bool ForVTable) {
1395   // If there was no specific requested type, just convert it now.
1396   if (!Ty)
1397     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1398 
1399   StringRef MangledName = getMangledName(GD);
1400   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1401 }
1402 
1403 /// CreateRuntimeFunction - Create a new runtime function with the specified
1404 /// type and name.
1405 llvm::Constant *
1406 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1407                                      StringRef Name,
1408                                      llvm::AttributeSet ExtraAttrs) {
1409   llvm::Constant *C
1410     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1411                               ExtraAttrs);
1412   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1413     if (F->empty())
1414       F->setCallingConv(getRuntimeCC());
1415   return C;
1416 }
1417 
1418 /// isTypeConstant - Determine whether an object of this type can be emitted
1419 /// as a constant.
1420 ///
1421 /// If ExcludeCtor is true, the duration when the object's constructor runs
1422 /// will not be considered. The caller will need to verify that the object is
1423 /// not written to during its construction.
1424 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1425   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1426     return false;
1427 
1428   if (Context.getLangOpts().CPlusPlus) {
1429     if (const CXXRecordDecl *Record
1430           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1431       return ExcludeCtor && !Record->hasMutableFields() &&
1432              Record->hasTrivialDestructor();
1433   }
1434 
1435   return true;
1436 }
1437 
1438 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1439 /// create and return an llvm GlobalVariable with the specified type.  If there
1440 /// is something in the module with the specified name, return it potentially
1441 /// bitcasted to the right type.
1442 ///
1443 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1444 /// to set the attributes on the global when it is first created.
1445 llvm::Constant *
1446 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1447                                      llvm::PointerType *Ty,
1448                                      const VarDecl *D,
1449                                      bool UnnamedAddr) {
1450   // Lookup the entry, lazily creating it if necessary.
1451   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1452   if (Entry) {
1453     if (WeakRefReferences.erase(Entry)) {
1454       if (D && !D->hasAttr<WeakAttr>())
1455         Entry->setLinkage(llvm::Function::ExternalLinkage);
1456     }
1457 
1458     if (UnnamedAddr)
1459       Entry->setUnnamedAddr(true);
1460 
1461     if (Entry->getType() == Ty)
1462       return Entry;
1463 
1464     // Make sure the result is of the correct type.
1465     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1466   }
1467 
1468   // This is the first use or definition of a mangled name.  If there is a
1469   // deferred decl with this name, remember that we need to emit it at the end
1470   // of the file.
1471   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1472   if (DDI != DeferredDecls.end()) {
1473     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1474     // list, and remove it from DeferredDecls (since we don't need it anymore).
1475     DeferredDeclsToEmit.push_back(DDI->second);
1476     DeferredDecls.erase(DDI);
1477   }
1478 
1479   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1480   llvm::GlobalVariable *GV =
1481     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1482                              llvm::GlobalValue::ExternalLinkage,
1483                              0, MangledName, 0,
1484                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1485 
1486   // Handle things which are present even on external declarations.
1487   if (D) {
1488     // FIXME: This code is overly simple and should be merged with other global
1489     // handling.
1490     GV->setConstant(isTypeConstant(D->getType(), false));
1491 
1492     // Set linkage and visibility in case we never see a definition.
1493     LinkageInfo LV = D->getLinkageAndVisibility();
1494     if (LV.getLinkage() != ExternalLinkage) {
1495       // Don't set internal linkage on declarations.
1496     } else {
1497       if (D->hasAttr<DLLImportAttr>())
1498         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1499       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1500         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1501 
1502       // Set visibility on a declaration only if it's explicit.
1503       if (LV.isVisibilityExplicit())
1504         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1505     }
1506 
1507     if (D->getTLSKind()) {
1508       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1509         CXXThreadLocals.push_back(std::make_pair(D, GV));
1510       setTLSMode(GV, *D);
1511     }
1512   }
1513 
1514   if (AddrSpace != Ty->getAddressSpace())
1515     return llvm::ConstantExpr::getBitCast(GV, Ty);
1516   else
1517     return GV;
1518 }
1519 
1520 
1521 llvm::GlobalVariable *
1522 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1523                                       llvm::Type *Ty,
1524                                       llvm::GlobalValue::LinkageTypes Linkage) {
1525   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1526   llvm::GlobalVariable *OldGV = 0;
1527 
1528 
1529   if (GV) {
1530     // Check if the variable has the right type.
1531     if (GV->getType()->getElementType() == Ty)
1532       return GV;
1533 
1534     // Because C++ name mangling, the only way we can end up with an already
1535     // existing global with the same name is if it has been declared extern "C".
1536     assert(GV->isDeclaration() && "Declaration has wrong type!");
1537     OldGV = GV;
1538   }
1539 
1540   // Create a new variable.
1541   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1542                                 Linkage, 0, Name);
1543 
1544   if (OldGV) {
1545     // Replace occurrences of the old variable if needed.
1546     GV->takeName(OldGV);
1547 
1548     if (!OldGV->use_empty()) {
1549       llvm::Constant *NewPtrForOldDecl =
1550       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1551       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1552     }
1553 
1554     OldGV->eraseFromParent();
1555   }
1556 
1557   return GV;
1558 }
1559 
1560 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1561 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1562 /// then it will be created with the specified type instead of whatever the
1563 /// normal requested type would be.
1564 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1565                                                   llvm::Type *Ty) {
1566   assert(D->hasGlobalStorage() && "Not a global variable");
1567   QualType ASTTy = D->getType();
1568   if (Ty == 0)
1569     Ty = getTypes().ConvertTypeForMem(ASTTy);
1570 
1571   llvm::PointerType *PTy =
1572     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1573 
1574   StringRef MangledName = getMangledName(D);
1575   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1576 }
1577 
1578 /// CreateRuntimeVariable - Create a new runtime global variable with the
1579 /// specified type and name.
1580 llvm::Constant *
1581 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1582                                      StringRef Name) {
1583   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1584                                true);
1585 }
1586 
1587 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1588   assert(!D->getInit() && "Cannot emit definite definitions here!");
1589 
1590   if (MayDeferGeneration(D)) {
1591     // If we have not seen a reference to this variable yet, place it
1592     // into the deferred declarations table to be emitted if needed
1593     // later.
1594     StringRef MangledName = getMangledName(D);
1595     if (!GetGlobalValue(MangledName)) {
1596       DeferredDecls[MangledName] = D;
1597       return;
1598     }
1599   }
1600 
1601   // The tentative definition is the only definition.
1602   EmitGlobalVarDefinition(D);
1603 }
1604 
1605 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1606     return Context.toCharUnitsFromBits(
1607       TheDataLayout.getTypeStoreSizeInBits(Ty));
1608 }
1609 
1610 llvm::Constant *
1611 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1612                                                        const Expr *rawInit) {
1613   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1614   if (const ExprWithCleanups *withCleanups =
1615           dyn_cast<ExprWithCleanups>(rawInit)) {
1616     cleanups = withCleanups->getObjects();
1617     rawInit = withCleanups->getSubExpr();
1618   }
1619 
1620   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1621   if (!init || !init->initializesStdInitializerList() ||
1622       init->getNumInits() == 0)
1623     return 0;
1624 
1625   ASTContext &ctx = getContext();
1626   unsigned numInits = init->getNumInits();
1627   // FIXME: This check is here because we would otherwise silently miscompile
1628   // nested global std::initializer_lists. Better would be to have a real
1629   // implementation.
1630   for (unsigned i = 0; i < numInits; ++i) {
1631     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1632     if (inner && inner->initializesStdInitializerList()) {
1633       ErrorUnsupported(inner, "nested global std::initializer_list");
1634       return 0;
1635     }
1636   }
1637 
1638   // Synthesize a fake VarDecl for the array and initialize that.
1639   QualType elementType = init->getInit(0)->getType();
1640   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1641   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1642                                                 ArrayType::Normal, 0);
1643 
1644   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1645   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1646                                               arrayType, D->getLocation());
1647   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1648                                                           D->getDeclContext()),
1649                                           D->getLocStart(), D->getLocation(),
1650                                           name, arrayType, sourceInfo,
1651                                           SC_Static);
1652   backingArray->setTLSKind(D->getTLSKind());
1653 
1654   // Now clone the InitListExpr to initialize the array instead.
1655   // Incredible hack: we want to use the existing InitListExpr here, so we need
1656   // to tell it that it no longer initializes a std::initializer_list.
1657   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1658                         init->getNumInits());
1659   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1660                                            init->getRBraceLoc());
1661   arrayInit->setType(arrayType);
1662 
1663   if (!cleanups.empty())
1664     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1665 
1666   backingArray->setInit(arrayInit);
1667 
1668   // Emit the definition of the array.
1669   EmitGlobalVarDefinition(backingArray);
1670 
1671   // Inspect the initializer list to validate it and determine its type.
1672   // FIXME: doing this every time is probably inefficient; caching would be nice
1673   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1674   RecordDecl::field_iterator field = record->field_begin();
1675   if (field == record->field_end()) {
1676     ErrorUnsupported(D, "weird std::initializer_list");
1677     return 0;
1678   }
1679   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1680   // Start pointer.
1681   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1682     ErrorUnsupported(D, "weird std::initializer_list");
1683     return 0;
1684   }
1685   ++field;
1686   if (field == record->field_end()) {
1687     ErrorUnsupported(D, "weird std::initializer_list");
1688     return 0;
1689   }
1690   bool isStartEnd = false;
1691   if (ctx.hasSameType(field->getType(), elementPtr)) {
1692     // End pointer.
1693     isStartEnd = true;
1694   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1695     ErrorUnsupported(D, "weird std::initializer_list");
1696     return 0;
1697   }
1698 
1699   // Now build an APValue representing the std::initializer_list.
1700   APValue initListValue(APValue::UninitStruct(), 0, 2);
1701   APValue &startField = initListValue.getStructField(0);
1702   APValue::LValuePathEntry startOffsetPathEntry;
1703   startOffsetPathEntry.ArrayIndex = 0;
1704   startField = APValue(APValue::LValueBase(backingArray),
1705                        CharUnits::fromQuantity(0),
1706                        llvm::makeArrayRef(startOffsetPathEntry),
1707                        /*IsOnePastTheEnd=*/false, 0);
1708 
1709   if (isStartEnd) {
1710     APValue &endField = initListValue.getStructField(1);
1711     APValue::LValuePathEntry endOffsetPathEntry;
1712     endOffsetPathEntry.ArrayIndex = numInits;
1713     endField = APValue(APValue::LValueBase(backingArray),
1714                        ctx.getTypeSizeInChars(elementType) * numInits,
1715                        llvm::makeArrayRef(endOffsetPathEntry),
1716                        /*IsOnePastTheEnd=*/true, 0);
1717   } else {
1718     APValue &sizeField = initListValue.getStructField(1);
1719     sizeField = APValue(llvm::APSInt(numElements));
1720   }
1721 
1722   // Emit the constant for the initializer_list.
1723   llvm::Constant *llvmInit =
1724       EmitConstantValueForMemory(initListValue, D->getType());
1725   assert(llvmInit && "failed to initialize as constant");
1726   return llvmInit;
1727 }
1728 
1729 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1730                                                  unsigned AddrSpace) {
1731   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1732     if (D->hasAttr<CUDAConstantAttr>())
1733       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1734     else if (D->hasAttr<CUDASharedAttr>())
1735       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1736     else
1737       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1738   }
1739 
1740   return AddrSpace;
1741 }
1742 
1743 template<typename SomeDecl>
1744 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1745                                                llvm::GlobalValue *GV) {
1746   if (!getLangOpts().CPlusPlus)
1747     return;
1748 
1749   // Must have 'used' attribute, or else inline assembly can't rely on
1750   // the name existing.
1751   if (!D->template hasAttr<UsedAttr>())
1752     return;
1753 
1754   // Must have internal linkage and an ordinary name.
1755   if (!D->getIdentifier() || D->getLinkage() != InternalLinkage)
1756     return;
1757 
1758   // Must be in an extern "C" context. Entities declared directly within
1759   // a record are not extern "C" even if the record is in such a context.
1760   const DeclContext *DC = D->getFirstDeclaration()->getDeclContext();
1761   if (DC->isRecord() || !DC->isExternCContext())
1762     return;
1763 
1764   // OK, this is an internal linkage entity inside an extern "C" linkage
1765   // specification. Make a note of that so we can give it the "expected"
1766   // mangled name if nothing else is using that name.
1767   std::pair<StaticExternCMap::iterator, bool> R =
1768       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1769 
1770   // If we have multiple internal linkage entities with the same name
1771   // in extern "C" regions, none of them gets that name.
1772   if (!R.second)
1773     R.first->second = 0;
1774 }
1775 
1776 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1777   llvm::Constant *Init = 0;
1778   QualType ASTTy = D->getType();
1779   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1780   bool NeedsGlobalCtor = false;
1781   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1782 
1783   const VarDecl *InitDecl;
1784   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1785 
1786   if (!InitExpr) {
1787     // This is a tentative definition; tentative definitions are
1788     // implicitly initialized with { 0 }.
1789     //
1790     // Note that tentative definitions are only emitted at the end of
1791     // a translation unit, so they should never have incomplete
1792     // type. In addition, EmitTentativeDefinition makes sure that we
1793     // never attempt to emit a tentative definition if a real one
1794     // exists. A use may still exists, however, so we still may need
1795     // to do a RAUW.
1796     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1797     Init = EmitNullConstant(D->getType());
1798   } else {
1799     // If this is a std::initializer_list, emit the special initializer.
1800     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1801     // An empty init list will perform zero-initialization, which happens
1802     // to be exactly what we want.
1803     // FIXME: It does so in a global constructor, which is *not* what we
1804     // want.
1805 
1806     if (!Init) {
1807       initializedGlobalDecl = GlobalDecl(D);
1808       Init = EmitConstantInit(*InitDecl);
1809     }
1810     if (!Init) {
1811       QualType T = InitExpr->getType();
1812       if (D->getType()->isReferenceType())
1813         T = D->getType();
1814 
1815       if (getLangOpts().CPlusPlus) {
1816         Init = EmitNullConstant(T);
1817         NeedsGlobalCtor = true;
1818       } else {
1819         ErrorUnsupported(D, "static initializer");
1820         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1821       }
1822     } else {
1823       // We don't need an initializer, so remove the entry for the delayed
1824       // initializer position (just in case this entry was delayed) if we
1825       // also don't need to register a destructor.
1826       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1827         DelayedCXXInitPosition.erase(D);
1828     }
1829   }
1830 
1831   llvm::Type* InitType = Init->getType();
1832   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1833 
1834   // Strip off a bitcast if we got one back.
1835   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1836     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1837            // all zero index gep.
1838            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1839     Entry = CE->getOperand(0);
1840   }
1841 
1842   // Entry is now either a Function or GlobalVariable.
1843   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1844 
1845   // We have a definition after a declaration with the wrong type.
1846   // We must make a new GlobalVariable* and update everything that used OldGV
1847   // (a declaration or tentative definition) with the new GlobalVariable*
1848   // (which will be a definition).
1849   //
1850   // This happens if there is a prototype for a global (e.g.
1851   // "extern int x[];") and then a definition of a different type (e.g.
1852   // "int x[10];"). This also happens when an initializer has a different type
1853   // from the type of the global (this happens with unions).
1854   if (GV == 0 ||
1855       GV->getType()->getElementType() != InitType ||
1856       GV->getType()->getAddressSpace() !=
1857        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1858 
1859     // Move the old entry aside so that we'll create a new one.
1860     Entry->setName(StringRef());
1861 
1862     // Make a new global with the correct type, this is now guaranteed to work.
1863     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1864 
1865     // Replace all uses of the old global with the new global
1866     llvm::Constant *NewPtrForOldDecl =
1867         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1868     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1869 
1870     // Erase the old global, since it is no longer used.
1871     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1872   }
1873 
1874   MaybeHandleStaticInExternC(D, GV);
1875 
1876   if (D->hasAttr<AnnotateAttr>())
1877     AddGlobalAnnotations(D, GV);
1878 
1879   GV->setInitializer(Init);
1880 
1881   // If it is safe to mark the global 'constant', do so now.
1882   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1883                   isTypeConstant(D->getType(), true));
1884 
1885   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1886 
1887   // Set the llvm linkage type as appropriate.
1888   llvm::GlobalValue::LinkageTypes Linkage =
1889     GetLLVMLinkageVarDefinition(D, GV);
1890   GV->setLinkage(Linkage);
1891   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1892     // common vars aren't constant even if declared const.
1893     GV->setConstant(false);
1894 
1895   SetCommonAttributes(D, GV);
1896 
1897   // Emit the initializer function if necessary.
1898   if (NeedsGlobalCtor || NeedsGlobalDtor)
1899     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1900 
1901   // If we are compiling with ASan, add metadata indicating dynamically
1902   // initialized globals.
1903   if (SanOpts.Address && NeedsGlobalCtor) {
1904     llvm::Module &M = getModule();
1905 
1906     llvm::NamedMDNode *DynamicInitializers =
1907         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1908     llvm::Value *GlobalToAdd[] = { GV };
1909     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1910     DynamicInitializers->addOperand(ThisGlobal);
1911   }
1912 
1913   // Emit global variable debug information.
1914   if (CGDebugInfo *DI = getModuleDebugInfo())
1915     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1916       DI->EmitGlobalVariable(GV, D);
1917 }
1918 
1919 llvm::GlobalValue::LinkageTypes
1920 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1921                                            llvm::GlobalVariable *GV) {
1922   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1923   if (Linkage == GVA_Internal)
1924     return llvm::Function::InternalLinkage;
1925   else if (D->hasAttr<DLLImportAttr>())
1926     return llvm::Function::DLLImportLinkage;
1927   else if (D->hasAttr<DLLExportAttr>())
1928     return llvm::Function::DLLExportLinkage;
1929   else if (D->hasAttr<WeakAttr>()) {
1930     if (GV->isConstant())
1931       return llvm::GlobalVariable::WeakODRLinkage;
1932     else
1933       return llvm::GlobalVariable::WeakAnyLinkage;
1934   } else if (Linkage == GVA_TemplateInstantiation ||
1935              Linkage == GVA_ExplicitTemplateInstantiation)
1936     return llvm::GlobalVariable::WeakODRLinkage;
1937   else if (!getLangOpts().CPlusPlus &&
1938            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1939              D->getAttr<CommonAttr>()) &&
1940            !D->hasExternalStorage() && !D->getInit() &&
1941            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1942            !D->getAttr<WeakImportAttr>()) {
1943     // Thread local vars aren't considered common linkage.
1944     return llvm::GlobalVariable::CommonLinkage;
1945   }
1946   return llvm::GlobalVariable::ExternalLinkage;
1947 }
1948 
1949 /// Replace the uses of a function that was declared with a non-proto type.
1950 /// We want to silently drop extra arguments from call sites
1951 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1952                                           llvm::Function *newFn) {
1953   // Fast path.
1954   if (old->use_empty()) return;
1955 
1956   llvm::Type *newRetTy = newFn->getReturnType();
1957   SmallVector<llvm::Value*, 4> newArgs;
1958 
1959   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1960          ui != ue; ) {
1961     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1962     llvm::User *user = *use;
1963 
1964     // Recognize and replace uses of bitcasts.  Most calls to
1965     // unprototyped functions will use bitcasts.
1966     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1967       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1968         replaceUsesOfNonProtoConstant(bitcast, newFn);
1969       continue;
1970     }
1971 
1972     // Recognize calls to the function.
1973     llvm::CallSite callSite(user);
1974     if (!callSite) continue;
1975     if (!callSite.isCallee(use)) continue;
1976 
1977     // If the return types don't match exactly, then we can't
1978     // transform this call unless it's dead.
1979     if (callSite->getType() != newRetTy && !callSite->use_empty())
1980       continue;
1981 
1982     // Get the call site's attribute list.
1983     SmallVector<llvm::AttributeSet, 8> newAttrs;
1984     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1985 
1986     // Collect any return attributes from the call.
1987     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1988       newAttrs.push_back(
1989         llvm::AttributeSet::get(newFn->getContext(),
1990                                 oldAttrs.getRetAttributes()));
1991 
1992     // If the function was passed too few arguments, don't transform.
1993     unsigned newNumArgs = newFn->arg_size();
1994     if (callSite.arg_size() < newNumArgs) continue;
1995 
1996     // If extra arguments were passed, we silently drop them.
1997     // If any of the types mismatch, we don't transform.
1998     unsigned argNo = 0;
1999     bool dontTransform = false;
2000     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2001            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2002       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2003         dontTransform = true;
2004         break;
2005       }
2006 
2007       // Add any parameter attributes.
2008       if (oldAttrs.hasAttributes(argNo + 1))
2009         newAttrs.
2010           push_back(llvm::
2011                     AttributeSet::get(newFn->getContext(),
2012                                       oldAttrs.getParamAttributes(argNo + 1)));
2013     }
2014     if (dontTransform)
2015       continue;
2016 
2017     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2018       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2019                                                  oldAttrs.getFnAttributes()));
2020 
2021     // Okay, we can transform this.  Create the new call instruction and copy
2022     // over the required information.
2023     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2024 
2025     llvm::CallSite newCall;
2026     if (callSite.isCall()) {
2027       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2028                                        callSite.getInstruction());
2029     } else {
2030       llvm::InvokeInst *oldInvoke =
2031         cast<llvm::InvokeInst>(callSite.getInstruction());
2032       newCall = llvm::InvokeInst::Create(newFn,
2033                                          oldInvoke->getNormalDest(),
2034                                          oldInvoke->getUnwindDest(),
2035                                          newArgs, "",
2036                                          callSite.getInstruction());
2037     }
2038     newArgs.clear(); // for the next iteration
2039 
2040     if (!newCall->getType()->isVoidTy())
2041       newCall->takeName(callSite.getInstruction());
2042     newCall.setAttributes(
2043                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2044     newCall.setCallingConv(callSite.getCallingConv());
2045 
2046     // Finally, remove the old call, replacing any uses with the new one.
2047     if (!callSite->use_empty())
2048       callSite->replaceAllUsesWith(newCall.getInstruction());
2049 
2050     // Copy debug location attached to CI.
2051     if (!callSite->getDebugLoc().isUnknown())
2052       newCall->setDebugLoc(callSite->getDebugLoc());
2053     callSite->eraseFromParent();
2054   }
2055 }
2056 
2057 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2058 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2059 /// existing call uses of the old function in the module, this adjusts them to
2060 /// call the new function directly.
2061 ///
2062 /// This is not just a cleanup: the always_inline pass requires direct calls to
2063 /// functions to be able to inline them.  If there is a bitcast in the way, it
2064 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2065 /// run at -O0.
2066 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2067                                                       llvm::Function *NewFn) {
2068   // If we're redefining a global as a function, don't transform it.
2069   if (!isa<llvm::Function>(Old)) return;
2070 
2071   replaceUsesOfNonProtoConstant(Old, NewFn);
2072 }
2073 
2074 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2075   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2076   // If we have a definition, this might be a deferred decl. If the
2077   // instantiation is explicit, make sure we emit it at the end.
2078   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2079     GetAddrOfGlobalVar(VD);
2080 
2081   EmitTopLevelDecl(VD);
2082 }
2083 
2084 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2085   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2086 
2087   // Compute the function info and LLVM type.
2088   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2089   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2090 
2091   // Get or create the prototype for the function.
2092   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2093 
2094   // Strip off a bitcast if we got one back.
2095   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2096     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2097     Entry = CE->getOperand(0);
2098   }
2099 
2100 
2101   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2102     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2103 
2104     // If the types mismatch then we have to rewrite the definition.
2105     assert(OldFn->isDeclaration() &&
2106            "Shouldn't replace non-declaration");
2107 
2108     // F is the Function* for the one with the wrong type, we must make a new
2109     // Function* and update everything that used F (a declaration) with the new
2110     // Function* (which will be a definition).
2111     //
2112     // This happens if there is a prototype for a function
2113     // (e.g. "int f()") and then a definition of a different type
2114     // (e.g. "int f(int x)").  Move the old function aside so that it
2115     // doesn't interfere with GetAddrOfFunction.
2116     OldFn->setName(StringRef());
2117     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2118 
2119     // This might be an implementation of a function without a
2120     // prototype, in which case, try to do special replacement of
2121     // calls which match the new prototype.  The really key thing here
2122     // is that we also potentially drop arguments from the call site
2123     // so as to make a direct call, which makes the inliner happier
2124     // and suppresses a number of optimizer warnings (!) about
2125     // dropping arguments.
2126     if (!OldFn->use_empty()) {
2127       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2128       OldFn->removeDeadConstantUsers();
2129     }
2130 
2131     // Replace uses of F with the Function we will endow with a body.
2132     if (!Entry->use_empty()) {
2133       llvm::Constant *NewPtrForOldDecl =
2134         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2135       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2136     }
2137 
2138     // Ok, delete the old function now, which is dead.
2139     OldFn->eraseFromParent();
2140 
2141     Entry = NewFn;
2142   }
2143 
2144   // We need to set linkage and visibility on the function before
2145   // generating code for it because various parts of IR generation
2146   // want to propagate this information down (e.g. to local static
2147   // declarations).
2148   llvm::Function *Fn = cast<llvm::Function>(Entry);
2149   setFunctionLinkage(D, Fn);
2150 
2151   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2152   setGlobalVisibility(Fn, D);
2153 
2154   MaybeHandleStaticInExternC(D, Fn);
2155 
2156   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2157 
2158   SetFunctionDefinitionAttributes(D, Fn);
2159   SetLLVMFunctionAttributesForDefinition(D, Fn);
2160 
2161   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2162     AddGlobalCtor(Fn, CA->getPriority());
2163   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2164     AddGlobalDtor(Fn, DA->getPriority());
2165   if (D->hasAttr<AnnotateAttr>())
2166     AddGlobalAnnotations(D, Fn);
2167 }
2168 
2169 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2170   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2171   const AliasAttr *AA = D->getAttr<AliasAttr>();
2172   assert(AA && "Not an alias?");
2173 
2174   StringRef MangledName = getMangledName(GD);
2175 
2176   // If there is a definition in the module, then it wins over the alias.
2177   // This is dubious, but allow it to be safe.  Just ignore the alias.
2178   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2179   if (Entry && !Entry->isDeclaration())
2180     return;
2181 
2182   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2183 
2184   // Create a reference to the named value.  This ensures that it is emitted
2185   // if a deferred decl.
2186   llvm::Constant *Aliasee;
2187   if (isa<llvm::FunctionType>(DeclTy))
2188     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2189                                       /*ForVTable=*/false);
2190   else
2191     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2192                                     llvm::PointerType::getUnqual(DeclTy), 0);
2193 
2194   // Create the new alias itself, but don't set a name yet.
2195   llvm::GlobalValue *GA =
2196     new llvm::GlobalAlias(Aliasee->getType(),
2197                           llvm::Function::ExternalLinkage,
2198                           "", Aliasee, &getModule());
2199 
2200   if (Entry) {
2201     assert(Entry->isDeclaration());
2202 
2203     // If there is a declaration in the module, then we had an extern followed
2204     // by the alias, as in:
2205     //   extern int test6();
2206     //   ...
2207     //   int test6() __attribute__((alias("test7")));
2208     //
2209     // Remove it and replace uses of it with the alias.
2210     GA->takeName(Entry);
2211 
2212     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2213                                                           Entry->getType()));
2214     Entry->eraseFromParent();
2215   } else {
2216     GA->setName(MangledName);
2217   }
2218 
2219   // Set attributes which are particular to an alias; this is a
2220   // specialization of the attributes which may be set on a global
2221   // variable/function.
2222   if (D->hasAttr<DLLExportAttr>()) {
2223     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2224       // The dllexport attribute is ignored for undefined symbols.
2225       if (FD->hasBody())
2226         GA->setLinkage(llvm::Function::DLLExportLinkage);
2227     } else {
2228       GA->setLinkage(llvm::Function::DLLExportLinkage);
2229     }
2230   } else if (D->hasAttr<WeakAttr>() ||
2231              D->hasAttr<WeakRefAttr>() ||
2232              D->isWeakImported()) {
2233     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2234   }
2235 
2236   SetCommonAttributes(D, GA);
2237 }
2238 
2239 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2240                                             ArrayRef<llvm::Type*> Tys) {
2241   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2242                                          Tys);
2243 }
2244 
2245 static llvm::StringMapEntry<llvm::Constant*> &
2246 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2247                          const StringLiteral *Literal,
2248                          bool TargetIsLSB,
2249                          bool &IsUTF16,
2250                          unsigned &StringLength) {
2251   StringRef String = Literal->getString();
2252   unsigned NumBytes = String.size();
2253 
2254   // Check for simple case.
2255   if (!Literal->containsNonAsciiOrNull()) {
2256     StringLength = NumBytes;
2257     return Map.GetOrCreateValue(String);
2258   }
2259 
2260   // Otherwise, convert the UTF8 literals into a string of shorts.
2261   IsUTF16 = true;
2262 
2263   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2264   const UTF8 *FromPtr = (const UTF8 *)String.data();
2265   UTF16 *ToPtr = &ToBuf[0];
2266 
2267   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2268                            &ToPtr, ToPtr + NumBytes,
2269                            strictConversion);
2270 
2271   // ConvertUTF8toUTF16 returns the length in ToPtr.
2272   StringLength = ToPtr - &ToBuf[0];
2273 
2274   // Add an explicit null.
2275   *ToPtr = 0;
2276   return Map.
2277     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2278                                (StringLength + 1) * 2));
2279 }
2280 
2281 static llvm::StringMapEntry<llvm::Constant*> &
2282 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2283                        const StringLiteral *Literal,
2284                        unsigned &StringLength) {
2285   StringRef String = Literal->getString();
2286   StringLength = String.size();
2287   return Map.GetOrCreateValue(String);
2288 }
2289 
2290 llvm::Constant *
2291 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2292   unsigned StringLength = 0;
2293   bool isUTF16 = false;
2294   llvm::StringMapEntry<llvm::Constant*> &Entry =
2295     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2296                              getDataLayout().isLittleEndian(),
2297                              isUTF16, StringLength);
2298 
2299   if (llvm::Constant *C = Entry.getValue())
2300     return C;
2301 
2302   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2303   llvm::Constant *Zeros[] = { Zero, Zero };
2304   llvm::Value *V;
2305 
2306   // If we don't already have it, get __CFConstantStringClassReference.
2307   if (!CFConstantStringClassRef) {
2308     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2309     Ty = llvm::ArrayType::get(Ty, 0);
2310     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2311                                            "__CFConstantStringClassReference");
2312     // Decay array -> ptr
2313     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2314     CFConstantStringClassRef = V;
2315   }
2316   else
2317     V = CFConstantStringClassRef;
2318 
2319   QualType CFTy = getContext().getCFConstantStringType();
2320 
2321   llvm::StructType *STy =
2322     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2323 
2324   llvm::Constant *Fields[4];
2325 
2326   // Class pointer.
2327   Fields[0] = cast<llvm::ConstantExpr>(V);
2328 
2329   // Flags.
2330   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2331   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2332     llvm::ConstantInt::get(Ty, 0x07C8);
2333 
2334   // String pointer.
2335   llvm::Constant *C = 0;
2336   if (isUTF16) {
2337     ArrayRef<uint16_t> Arr =
2338       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2339                                      const_cast<char *>(Entry.getKey().data())),
2340                                    Entry.getKey().size() / 2);
2341     C = llvm::ConstantDataArray::get(VMContext, Arr);
2342   } else {
2343     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2344   }
2345 
2346   llvm::GlobalValue::LinkageTypes Linkage;
2347   if (isUTF16)
2348     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2349     Linkage = llvm::GlobalValue::InternalLinkage;
2350   else
2351     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2352     // when using private linkage. It is not clear if this is a bug in ld
2353     // or a reasonable new restriction.
2354     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2355 
2356   // Note: -fwritable-strings doesn't make the backing store strings of
2357   // CFStrings writable. (See <rdar://problem/10657500>)
2358   llvm::GlobalVariable *GV =
2359     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2360                              Linkage, C, ".str");
2361   GV->setUnnamedAddr(true);
2362   if (isUTF16) {
2363     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2364     GV->setAlignment(Align.getQuantity());
2365   } else {
2366     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2367     GV->setAlignment(Align.getQuantity());
2368   }
2369 
2370   // String.
2371   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2372 
2373   if (isUTF16)
2374     // Cast the UTF16 string to the correct type.
2375     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2376 
2377   // String length.
2378   Ty = getTypes().ConvertType(getContext().LongTy);
2379   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2380 
2381   // The struct.
2382   C = llvm::ConstantStruct::get(STy, Fields);
2383   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2384                                 llvm::GlobalVariable::PrivateLinkage, C,
2385                                 "_unnamed_cfstring_");
2386   if (const char *Sect = getTarget().getCFStringSection())
2387     GV->setSection(Sect);
2388   Entry.setValue(GV);
2389 
2390   return GV;
2391 }
2392 
2393 static RecordDecl *
2394 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2395                  DeclContext *DC, IdentifierInfo *Id) {
2396   SourceLocation Loc;
2397   if (Ctx.getLangOpts().CPlusPlus)
2398     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2399   else
2400     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2401 }
2402 
2403 llvm::Constant *
2404 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2405   unsigned StringLength = 0;
2406   llvm::StringMapEntry<llvm::Constant*> &Entry =
2407     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2408 
2409   if (llvm::Constant *C = Entry.getValue())
2410     return C;
2411 
2412   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2413   llvm::Constant *Zeros[] = { Zero, Zero };
2414   llvm::Value *V;
2415   // If we don't already have it, get _NSConstantStringClassReference.
2416   if (!ConstantStringClassRef) {
2417     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2418     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2419     llvm::Constant *GV;
2420     if (LangOpts.ObjCRuntime.isNonFragile()) {
2421       std::string str =
2422         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2423                             : "OBJC_CLASS_$_" + StringClass;
2424       GV = getObjCRuntime().GetClassGlobal(str);
2425       // Make sure the result is of the correct type.
2426       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2427       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2428       ConstantStringClassRef = V;
2429     } else {
2430       std::string str =
2431         StringClass.empty() ? "_NSConstantStringClassReference"
2432                             : "_" + StringClass + "ClassReference";
2433       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2434       GV = CreateRuntimeVariable(PTy, str);
2435       // Decay array -> ptr
2436       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2437       ConstantStringClassRef = V;
2438     }
2439   }
2440   else
2441     V = ConstantStringClassRef;
2442 
2443   if (!NSConstantStringType) {
2444     // Construct the type for a constant NSString.
2445     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2446                                      Context.getTranslationUnitDecl(),
2447                                    &Context.Idents.get("__builtin_NSString"));
2448     D->startDefinition();
2449 
2450     QualType FieldTypes[3];
2451 
2452     // const int *isa;
2453     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2454     // const char *str;
2455     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2456     // unsigned int length;
2457     FieldTypes[2] = Context.UnsignedIntTy;
2458 
2459     // Create fields
2460     for (unsigned i = 0; i < 3; ++i) {
2461       FieldDecl *Field = FieldDecl::Create(Context, D,
2462                                            SourceLocation(),
2463                                            SourceLocation(), 0,
2464                                            FieldTypes[i], /*TInfo=*/0,
2465                                            /*BitWidth=*/0,
2466                                            /*Mutable=*/false,
2467                                            ICIS_NoInit);
2468       Field->setAccess(AS_public);
2469       D->addDecl(Field);
2470     }
2471 
2472     D->completeDefinition();
2473     QualType NSTy = Context.getTagDeclType(D);
2474     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2475   }
2476 
2477   llvm::Constant *Fields[3];
2478 
2479   // Class pointer.
2480   Fields[0] = cast<llvm::ConstantExpr>(V);
2481 
2482   // String pointer.
2483   llvm::Constant *C =
2484     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2485 
2486   llvm::GlobalValue::LinkageTypes Linkage;
2487   bool isConstant;
2488   Linkage = llvm::GlobalValue::PrivateLinkage;
2489   isConstant = !LangOpts.WritableStrings;
2490 
2491   llvm::GlobalVariable *GV =
2492   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2493                            ".str");
2494   GV->setUnnamedAddr(true);
2495   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2496   GV->setAlignment(Align.getQuantity());
2497   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2498 
2499   // String length.
2500   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2501   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2502 
2503   // The struct.
2504   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2505   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2506                                 llvm::GlobalVariable::PrivateLinkage, C,
2507                                 "_unnamed_nsstring_");
2508   // FIXME. Fix section.
2509   if (const char *Sect =
2510         LangOpts.ObjCRuntime.isNonFragile()
2511           ? getTarget().getNSStringNonFragileABISection()
2512           : getTarget().getNSStringSection())
2513     GV->setSection(Sect);
2514   Entry.setValue(GV);
2515 
2516   return GV;
2517 }
2518 
2519 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2520   if (ObjCFastEnumerationStateType.isNull()) {
2521     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2522                                      Context.getTranslationUnitDecl(),
2523                       &Context.Idents.get("__objcFastEnumerationState"));
2524     D->startDefinition();
2525 
2526     QualType FieldTypes[] = {
2527       Context.UnsignedLongTy,
2528       Context.getPointerType(Context.getObjCIdType()),
2529       Context.getPointerType(Context.UnsignedLongTy),
2530       Context.getConstantArrayType(Context.UnsignedLongTy,
2531                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2532     };
2533 
2534     for (size_t i = 0; i < 4; ++i) {
2535       FieldDecl *Field = FieldDecl::Create(Context,
2536                                            D,
2537                                            SourceLocation(),
2538                                            SourceLocation(), 0,
2539                                            FieldTypes[i], /*TInfo=*/0,
2540                                            /*BitWidth=*/0,
2541                                            /*Mutable=*/false,
2542                                            ICIS_NoInit);
2543       Field->setAccess(AS_public);
2544       D->addDecl(Field);
2545     }
2546 
2547     D->completeDefinition();
2548     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2549   }
2550 
2551   return ObjCFastEnumerationStateType;
2552 }
2553 
2554 llvm::Constant *
2555 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2556   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2557 
2558   // Don't emit it as the address of the string, emit the string data itself
2559   // as an inline array.
2560   if (E->getCharByteWidth() == 1) {
2561     SmallString<64> Str(E->getString());
2562 
2563     // Resize the string to the right size, which is indicated by its type.
2564     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2565     Str.resize(CAT->getSize().getZExtValue());
2566     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2567   }
2568 
2569   llvm::ArrayType *AType =
2570     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2571   llvm::Type *ElemTy = AType->getElementType();
2572   unsigned NumElements = AType->getNumElements();
2573 
2574   // Wide strings have either 2-byte or 4-byte elements.
2575   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2576     SmallVector<uint16_t, 32> Elements;
2577     Elements.reserve(NumElements);
2578 
2579     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2580       Elements.push_back(E->getCodeUnit(i));
2581     Elements.resize(NumElements);
2582     return llvm::ConstantDataArray::get(VMContext, Elements);
2583   }
2584 
2585   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2586   SmallVector<uint32_t, 32> Elements;
2587   Elements.reserve(NumElements);
2588 
2589   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2590     Elements.push_back(E->getCodeUnit(i));
2591   Elements.resize(NumElements);
2592   return llvm::ConstantDataArray::get(VMContext, Elements);
2593 }
2594 
2595 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2596 /// constant array for the given string literal.
2597 llvm::Constant *
2598 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2599   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2600   if (S->isAscii() || S->isUTF8()) {
2601     SmallString<64> Str(S->getString());
2602 
2603     // Resize the string to the right size, which is indicated by its type.
2604     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2605     Str.resize(CAT->getSize().getZExtValue());
2606     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2607   }
2608 
2609   // FIXME: the following does not memoize wide strings.
2610   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2611   llvm::GlobalVariable *GV =
2612     new llvm::GlobalVariable(getModule(),C->getType(),
2613                              !LangOpts.WritableStrings,
2614                              llvm::GlobalValue::PrivateLinkage,
2615                              C,".str");
2616 
2617   GV->setAlignment(Align.getQuantity());
2618   GV->setUnnamedAddr(true);
2619   return GV;
2620 }
2621 
2622 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2623 /// array for the given ObjCEncodeExpr node.
2624 llvm::Constant *
2625 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2626   std::string Str;
2627   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2628 
2629   return GetAddrOfConstantCString(Str);
2630 }
2631 
2632 
2633 /// GenerateWritableString -- Creates storage for a string literal.
2634 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2635                                              bool constant,
2636                                              CodeGenModule &CGM,
2637                                              const char *GlobalName,
2638                                              unsigned Alignment) {
2639   // Create Constant for this string literal. Don't add a '\0'.
2640   llvm::Constant *C =
2641       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2642 
2643   // Create a global variable for this string
2644   llvm::GlobalVariable *GV =
2645     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2646                              llvm::GlobalValue::PrivateLinkage,
2647                              C, GlobalName);
2648   GV->setAlignment(Alignment);
2649   GV->setUnnamedAddr(true);
2650   return GV;
2651 }
2652 
2653 /// GetAddrOfConstantString - Returns a pointer to a character array
2654 /// containing the literal. This contents are exactly that of the
2655 /// given string, i.e. it will not be null terminated automatically;
2656 /// see GetAddrOfConstantCString. Note that whether the result is
2657 /// actually a pointer to an LLVM constant depends on
2658 /// Feature.WriteableStrings.
2659 ///
2660 /// The result has pointer to array type.
2661 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2662                                                        const char *GlobalName,
2663                                                        unsigned Alignment) {
2664   // Get the default prefix if a name wasn't specified.
2665   if (!GlobalName)
2666     GlobalName = ".str";
2667 
2668   // Don't share any string literals if strings aren't constant.
2669   if (LangOpts.WritableStrings)
2670     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2671 
2672   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2673     ConstantStringMap.GetOrCreateValue(Str);
2674 
2675   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2676     if (Alignment > GV->getAlignment()) {
2677       GV->setAlignment(Alignment);
2678     }
2679     return GV;
2680   }
2681 
2682   // Create a global variable for this.
2683   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2684                                                    Alignment);
2685   Entry.setValue(GV);
2686   return GV;
2687 }
2688 
2689 /// GetAddrOfConstantCString - Returns a pointer to a character
2690 /// array containing the literal and a terminating '\0'
2691 /// character. The result has pointer to array type.
2692 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2693                                                         const char *GlobalName,
2694                                                         unsigned Alignment) {
2695   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2696   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2697 }
2698 
2699 /// EmitObjCPropertyImplementations - Emit information for synthesized
2700 /// properties for an implementation.
2701 void CodeGenModule::EmitObjCPropertyImplementations(const
2702                                                     ObjCImplementationDecl *D) {
2703   for (ObjCImplementationDecl::propimpl_iterator
2704          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2705     ObjCPropertyImplDecl *PID = *i;
2706 
2707     // Dynamic is just for type-checking.
2708     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2709       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2710 
2711       // Determine which methods need to be implemented, some may have
2712       // been overridden. Note that ::isPropertyAccessor is not the method
2713       // we want, that just indicates if the decl came from a
2714       // property. What we want to know is if the method is defined in
2715       // this implementation.
2716       if (!D->getInstanceMethod(PD->getGetterName()))
2717         CodeGenFunction(*this).GenerateObjCGetter(
2718                                  const_cast<ObjCImplementationDecl *>(D), PID);
2719       if (!PD->isReadOnly() &&
2720           !D->getInstanceMethod(PD->getSetterName()))
2721         CodeGenFunction(*this).GenerateObjCSetter(
2722                                  const_cast<ObjCImplementationDecl *>(D), PID);
2723     }
2724   }
2725 }
2726 
2727 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2728   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2729   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2730        ivar; ivar = ivar->getNextIvar())
2731     if (ivar->getType().isDestructedType())
2732       return true;
2733 
2734   return false;
2735 }
2736 
2737 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2738 /// for an implementation.
2739 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2740   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2741   if (needsDestructMethod(D)) {
2742     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2743     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2744     ObjCMethodDecl *DTORMethod =
2745       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2746                              cxxSelector, getContext().VoidTy, 0, D,
2747                              /*isInstance=*/true, /*isVariadic=*/false,
2748                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2749                              /*isDefined=*/false, ObjCMethodDecl::Required);
2750     D->addInstanceMethod(DTORMethod);
2751     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2752     D->setHasDestructors(true);
2753   }
2754 
2755   // If the implementation doesn't have any ivar initializers, we don't need
2756   // a .cxx_construct.
2757   if (D->getNumIvarInitializers() == 0)
2758     return;
2759 
2760   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2761   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2762   // The constructor returns 'self'.
2763   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2764                                                 D->getLocation(),
2765                                                 D->getLocation(),
2766                                                 cxxSelector,
2767                                                 getContext().getObjCIdType(), 0,
2768                                                 D, /*isInstance=*/true,
2769                                                 /*isVariadic=*/false,
2770                                                 /*isPropertyAccessor=*/true,
2771                                                 /*isImplicitlyDeclared=*/true,
2772                                                 /*isDefined=*/false,
2773                                                 ObjCMethodDecl::Required);
2774   D->addInstanceMethod(CTORMethod);
2775   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2776   D->setHasNonZeroConstructors(true);
2777 }
2778 
2779 /// EmitNamespace - Emit all declarations in a namespace.
2780 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2781   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2782        I != E; ++I)
2783     EmitTopLevelDecl(*I);
2784 }
2785 
2786 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2787 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2788   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2789       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2790     ErrorUnsupported(LSD, "linkage spec");
2791     return;
2792   }
2793 
2794   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2795        I != E; ++I) {
2796     // Meta-data for ObjC class includes references to implemented methods.
2797     // Generate class's method definitions first.
2798     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2799       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2800            MEnd = OID->meth_end();
2801            M != MEnd; ++M)
2802         EmitTopLevelDecl(*M);
2803     }
2804     EmitTopLevelDecl(*I);
2805   }
2806 }
2807 
2808 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2809 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2810   // If an error has occurred, stop code generation, but continue
2811   // parsing and semantic analysis (to ensure all warnings and errors
2812   // are emitted).
2813   if (Diags.hasErrorOccurred())
2814     return;
2815 
2816   // Ignore dependent declarations.
2817   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2818     return;
2819 
2820   switch (D->getKind()) {
2821   case Decl::CXXConversion:
2822   case Decl::CXXMethod:
2823   case Decl::Function:
2824     // Skip function templates
2825     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2826         cast<FunctionDecl>(D)->isLateTemplateParsed())
2827       return;
2828 
2829     EmitGlobal(cast<FunctionDecl>(D));
2830     break;
2831 
2832   case Decl::Var:
2833     EmitGlobal(cast<VarDecl>(D));
2834     break;
2835 
2836   // Indirect fields from global anonymous structs and unions can be
2837   // ignored; only the actual variable requires IR gen support.
2838   case Decl::IndirectField:
2839     break;
2840 
2841   // C++ Decls
2842   case Decl::Namespace:
2843     EmitNamespace(cast<NamespaceDecl>(D));
2844     break;
2845     // No code generation needed.
2846   case Decl::UsingShadow:
2847   case Decl::Using:
2848   case Decl::ClassTemplate:
2849   case Decl::FunctionTemplate:
2850   case Decl::TypeAliasTemplate:
2851   case Decl::NamespaceAlias:
2852   case Decl::Block:
2853   case Decl::Empty:
2854     break;
2855   case Decl::UsingDirective: // using namespace X; [C++]
2856     if (CGDebugInfo *DI = getModuleDebugInfo())
2857       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2858     return;
2859   case Decl::CXXConstructor:
2860     // Skip function templates
2861     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2862         cast<FunctionDecl>(D)->isLateTemplateParsed())
2863       return;
2864 
2865     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2866     break;
2867   case Decl::CXXDestructor:
2868     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2869       return;
2870     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2871     break;
2872 
2873   case Decl::StaticAssert:
2874     // Nothing to do.
2875     break;
2876 
2877   // Objective-C Decls
2878 
2879   // Forward declarations, no (immediate) code generation.
2880   case Decl::ObjCInterface:
2881   case Decl::ObjCCategory:
2882     break;
2883 
2884   case Decl::ObjCProtocol: {
2885     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2886     if (Proto->isThisDeclarationADefinition())
2887       ObjCRuntime->GenerateProtocol(Proto);
2888     break;
2889   }
2890 
2891   case Decl::ObjCCategoryImpl:
2892     // Categories have properties but don't support synthesize so we
2893     // can ignore them here.
2894     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2895     break;
2896 
2897   case Decl::ObjCImplementation: {
2898     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2899     EmitObjCPropertyImplementations(OMD);
2900     EmitObjCIvarInitializations(OMD);
2901     ObjCRuntime->GenerateClass(OMD);
2902     // Emit global variable debug information.
2903     if (CGDebugInfo *DI = getModuleDebugInfo())
2904       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2905         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2906             OMD->getClassInterface()), OMD->getLocation());
2907     break;
2908   }
2909   case Decl::ObjCMethod: {
2910     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2911     // If this is not a prototype, emit the body.
2912     if (OMD->getBody())
2913       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2914     break;
2915   }
2916   case Decl::ObjCCompatibleAlias:
2917     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2918     break;
2919 
2920   case Decl::LinkageSpec:
2921     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2922     break;
2923 
2924   case Decl::FileScopeAsm: {
2925     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2926     StringRef AsmString = AD->getAsmString()->getString();
2927 
2928     const std::string &S = getModule().getModuleInlineAsm();
2929     if (S.empty())
2930       getModule().setModuleInlineAsm(AsmString);
2931     else if (S.end()[-1] == '\n')
2932       getModule().setModuleInlineAsm(S + AsmString.str());
2933     else
2934       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2935     break;
2936   }
2937 
2938   case Decl::Import: {
2939     ImportDecl *Import = cast<ImportDecl>(D);
2940 
2941     // Ignore import declarations that come from imported modules.
2942     if (clang::Module *Owner = Import->getOwningModule()) {
2943       if (getLangOpts().CurrentModule.empty() ||
2944           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2945         break;
2946     }
2947 
2948     ImportedModules.insert(Import->getImportedModule());
2949     break;
2950  }
2951 
2952   default:
2953     // Make sure we handled everything we should, every other kind is a
2954     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2955     // function. Need to recode Decl::Kind to do that easily.
2956     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2957   }
2958 }
2959 
2960 /// Turns the given pointer into a constant.
2961 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2962                                           const void *Ptr) {
2963   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2964   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2965   return llvm::ConstantInt::get(i64, PtrInt);
2966 }
2967 
2968 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2969                                    llvm::NamedMDNode *&GlobalMetadata,
2970                                    GlobalDecl D,
2971                                    llvm::GlobalValue *Addr) {
2972   if (!GlobalMetadata)
2973     GlobalMetadata =
2974       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2975 
2976   // TODO: should we report variant information for ctors/dtors?
2977   llvm::Value *Ops[] = {
2978     Addr,
2979     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2980   };
2981   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2982 }
2983 
2984 /// For each function which is declared within an extern "C" region and marked
2985 /// as 'used', but has internal linkage, create an alias from the unmangled
2986 /// name to the mangled name if possible. People expect to be able to refer
2987 /// to such functions with an unmangled name from inline assembly within the
2988 /// same translation unit.
2989 void CodeGenModule::EmitStaticExternCAliases() {
2990   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2991                                   E = StaticExternCValues.end();
2992        I != E; ++I) {
2993     IdentifierInfo *Name = I->first;
2994     llvm::GlobalValue *Val = I->second;
2995     if (Val && !getModule().getNamedValue(Name->getName()))
2996       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2997                                           Name->getName(), Val, &getModule()));
2998   }
2999 }
3000 
3001 /// Emits metadata nodes associating all the global values in the
3002 /// current module with the Decls they came from.  This is useful for
3003 /// projects using IR gen as a subroutine.
3004 ///
3005 /// Since there's currently no way to associate an MDNode directly
3006 /// with an llvm::GlobalValue, we create a global named metadata
3007 /// with the name 'clang.global.decl.ptrs'.
3008 void CodeGenModule::EmitDeclMetadata() {
3009   llvm::NamedMDNode *GlobalMetadata = 0;
3010 
3011   // StaticLocalDeclMap
3012   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3013          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3014        I != E; ++I) {
3015     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3016     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3017   }
3018 }
3019 
3020 /// Emits metadata nodes for all the local variables in the current
3021 /// function.
3022 void CodeGenFunction::EmitDeclMetadata() {
3023   if (LocalDeclMap.empty()) return;
3024 
3025   llvm::LLVMContext &Context = getLLVMContext();
3026 
3027   // Find the unique metadata ID for this name.
3028   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3029 
3030   llvm::NamedMDNode *GlobalMetadata = 0;
3031 
3032   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3033          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3034     const Decl *D = I->first;
3035     llvm::Value *Addr = I->second;
3036 
3037     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3038       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3039       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3040     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3041       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3042       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3043     }
3044   }
3045 }
3046 
3047 void CodeGenModule::EmitCoverageFile() {
3048   if (!getCodeGenOpts().CoverageFile.empty()) {
3049     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3050       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3051       llvm::LLVMContext &Ctx = TheModule.getContext();
3052       llvm::MDString *CoverageFile =
3053           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3054       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3055         llvm::MDNode *CU = CUNode->getOperand(i);
3056         llvm::Value *node[] = { CoverageFile, CU };
3057         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3058         GCov->addOperand(N);
3059       }
3060     }
3061   }
3062 }
3063 
3064 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3065                                                      QualType GuidType) {
3066   // Sema has checked that all uuid strings are of the form
3067   // "12345678-1234-1234-1234-1234567890ab".
3068   assert(Uuid.size() == 36);
3069   const char *Uuidstr = Uuid.data();
3070   for (int i = 0; i < 36; ++i) {
3071     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3072     else                                         assert(isHexDigit(Uuidstr[i]));
3073   }
3074 
3075   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3076   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3077   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3078   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3079 
3080   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3081   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3082   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3083   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3084   APValue& Arr = InitStruct.getStructField(3);
3085   Arr = APValue(APValue::UninitArray(), 8, 8);
3086   for (int t = 0; t < 8; ++t)
3087     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3088           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3089 
3090   return EmitConstantValue(InitStruct, GuidType);
3091 }
3092