xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 960ff0810da8fe7bb0059acdc4fdc397440eb245)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 #include "llvm/Support/TimeProfiler.h"
62 
63 using namespace clang;
64 using namespace CodeGen;
65 
66 static llvm::cl::opt<bool> LimitedCoverage(
67     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
68     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
69     llvm::cl::init(false));
70 
71 static const char AnnotationSection[] = "llvm.metadata";
72 
73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
74   switch (CGM.getTarget().getCXXABI().getKind()) {
75   case TargetCXXABI::GenericAArch64:
76   case TargetCXXABI::GenericARM:
77   case TargetCXXABI::iOS:
78   case TargetCXXABI::iOS64:
79   case TargetCXXABI::WatchOS:
80   case TargetCXXABI::GenericMIPS:
81   case TargetCXXABI::GenericItanium:
82   case TargetCXXABI::WebAssembly:
83     return CreateItaniumCXXABI(CGM);
84   case TargetCXXABI::Microsoft:
85     return CreateMicrosoftCXXABI(CGM);
86   }
87 
88   llvm_unreachable("invalid C++ ABI kind");
89 }
90 
91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
92                              const PreprocessorOptions &PPO,
93                              const CodeGenOptions &CGO, llvm::Module &M,
94                              DiagnosticsEngine &diags,
95                              CoverageSourceInfo *CoverageInfo)
96     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
97       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
98       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
99       VMContext(M.getContext()), Types(*this), VTables(*this),
100       SanitizerMD(new SanitizerMetadata(*this)) {
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
107   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109   HalfTy = llvm::Type::getHalfTy(LLVMContext);
110   FloatTy = llvm::Type::getFloatTy(LLVMContext);
111   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
112   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
113   PointerAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
115   SizeSizeInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
117   IntAlignInBytes =
118     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
119   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
120   IntPtrTy = llvm::IntegerType::get(LLVMContext,
121     C.getTargetInfo().getMaxPointerWidth());
122   Int8PtrTy = Int8Ty->getPointerTo(0);
123   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
124   AllocaInt8PtrTy = Int8Ty->getPointerTo(
125       M.getDataLayout().getAllocaAddrSpace());
126   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
127 
128   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
129 
130   if (LangOpts.ObjC)
131     createObjCRuntime();
132   if (LangOpts.OpenCL)
133     createOpenCLRuntime();
134   if (LangOpts.OpenMP)
135     createOpenMPRuntime();
136   if (LangOpts.CUDA)
137     createCUDARuntime();
138 
139   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
140   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
141       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
142     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
143                                getCXXABI().getMangleContext()));
144 
145   // If debug info or coverage generation is enabled, create the CGDebugInfo
146   // object.
147   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
148       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
149     DebugInfo.reset(new CGDebugInfo(*this));
150 
151   Block.GlobalUniqueCount = 0;
152 
153   if (C.getLangOpts().ObjC)
154     ObjCData.reset(new ObjCEntrypoints());
155 
156   if (CodeGenOpts.hasProfileClangUse()) {
157     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
158         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
159     if (auto E = ReaderOrErr.takeError()) {
160       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
161                                               "Could not read profile %0: %1");
162       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
163         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
164                                   << EI.message();
165       });
166     } else
167       PGOReader = std::move(ReaderOrErr.get());
168   }
169 
170   // If coverage mapping generation is enabled, create the
171   // CoverageMappingModuleGen object.
172   if (CodeGenOpts.CoverageMapping)
173     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
174 }
175 
176 CodeGenModule::~CodeGenModule() {}
177 
178 void CodeGenModule::createObjCRuntime() {
179   // This is just isGNUFamily(), but we want to force implementors of
180   // new ABIs to decide how best to do this.
181   switch (LangOpts.ObjCRuntime.getKind()) {
182   case ObjCRuntime::GNUstep:
183   case ObjCRuntime::GCC:
184   case ObjCRuntime::ObjFW:
185     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
186     return;
187 
188   case ObjCRuntime::FragileMacOSX:
189   case ObjCRuntime::MacOSX:
190   case ObjCRuntime::iOS:
191   case ObjCRuntime::WatchOS:
192     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
193     return;
194   }
195   llvm_unreachable("bad runtime kind");
196 }
197 
198 void CodeGenModule::createOpenCLRuntime() {
199   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
200 }
201 
202 void CodeGenModule::createOpenMPRuntime() {
203   // Select a specialized code generation class based on the target, if any.
204   // If it does not exist use the default implementation.
205   switch (getTriple().getArch()) {
206   case llvm::Triple::nvptx:
207   case llvm::Triple::nvptx64:
208     assert(getLangOpts().OpenMPIsDevice &&
209            "OpenMP NVPTX is only prepared to deal with device code.");
210     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
211     break;
212   default:
213     if (LangOpts.OpenMPSimd)
214       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
215     else
216       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
217     break;
218   }
219 }
220 
221 void CodeGenModule::createCUDARuntime() {
222   CUDARuntime.reset(CreateNVCUDARuntime(*this));
223 }
224 
225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
226   Replacements[Name] = C;
227 }
228 
229 void CodeGenModule::applyReplacements() {
230   for (auto &I : Replacements) {
231     StringRef MangledName = I.first();
232     llvm::Constant *Replacement = I.second;
233     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234     if (!Entry)
235       continue;
236     auto *OldF = cast<llvm::Function>(Entry);
237     auto *NewF = dyn_cast<llvm::Function>(Replacement);
238     if (!NewF) {
239       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
240         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
241       } else {
242         auto *CE = cast<llvm::ConstantExpr>(Replacement);
243         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
244                CE->getOpcode() == llvm::Instruction::GetElementPtr);
245         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
246       }
247     }
248 
249     // Replace old with new, but keep the old order.
250     OldF->replaceAllUsesWith(Replacement);
251     if (NewF) {
252       NewF->removeFromParent();
253       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
254                                                        NewF);
255     }
256     OldF->eraseFromParent();
257   }
258 }
259 
260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
261   GlobalValReplacements.push_back(std::make_pair(GV, C));
262 }
263 
264 void CodeGenModule::applyGlobalValReplacements() {
265   for (auto &I : GlobalValReplacements) {
266     llvm::GlobalValue *GV = I.first;
267     llvm::Constant *C = I.second;
268 
269     GV->replaceAllUsesWith(C);
270     GV->eraseFromParent();
271   }
272 }
273 
274 // This is only used in aliases that we created and we know they have a
275 // linear structure.
276 static const llvm::GlobalObject *getAliasedGlobal(
277     const llvm::GlobalIndirectSymbol &GIS) {
278   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
279   const llvm::Constant *C = &GIS;
280   for (;;) {
281     C = C->stripPointerCasts();
282     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283       return GO;
284     // stripPointerCasts will not walk over weak aliases.
285     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
286     if (!GIS2)
287       return nullptr;
288     if (!Visited.insert(GIS2).second)
289       return nullptr;
290     C = GIS2->getIndirectSymbol();
291   }
292 }
293 
294 void CodeGenModule::checkAliases() {
295   // Check if the constructed aliases are well formed. It is really unfortunate
296   // that we have to do this in CodeGen, but we only construct mangled names
297   // and aliases during codegen.
298   bool Error = false;
299   DiagnosticsEngine &Diags = getDiags();
300   for (const GlobalDecl &GD : Aliases) {
301     const auto *D = cast<ValueDecl>(GD.getDecl());
302     SourceLocation Location;
303     bool IsIFunc = D->hasAttr<IFuncAttr>();
304     if (const Attr *A = D->getDefiningAttr())
305       Location = A->getLocation();
306     else
307       llvm_unreachable("Not an alias or ifunc?");
308     StringRef MangledName = getMangledName(GD);
309     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
310     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
311     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
312     if (!GV) {
313       Error = true;
314       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
315     } else if (GV->isDeclaration()) {
316       Error = true;
317       Diags.Report(Location, diag::err_alias_to_undefined)
318           << IsIFunc << IsIFunc;
319     } else if (IsIFunc) {
320       // Check resolver function type.
321       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
322           GV->getType()->getPointerElementType());
323       assert(FTy);
324       if (!FTy->getReturnType()->isPointerTy())
325         Diags.Report(Location, diag::err_ifunc_resolver_return);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   registerGlobalDtorsWithAtExit();
402   EmitCXXThreadLocalInitFunc();
403   if (ObjCRuntime)
404     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
405       AddGlobalCtor(ObjCInitFunction);
406   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
407       CUDARuntime) {
408     if (llvm::Function *CudaCtorFunction =
409             CUDARuntime->makeModuleCtorFunction())
410       AddGlobalCtor(CudaCtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
414             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
415       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
416     }
417     if (llvm::Function *OpenMPRegistrationFunction =
418             OpenMPRuntime->emitRegistrationFunction()) {
419       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
420         OpenMPRegistrationFunction : nullptr;
421       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
422     }
423     OpenMPRuntime->clear();
424   }
425   if (PGOReader) {
426     getModule().setProfileSummary(
427         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
428         llvm::ProfileSummary::PSK_Instr);
429     if (PGOStats.hasDiagnostics())
430       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
431   }
432   EmitCtorList(GlobalCtors, "llvm.global_ctors");
433   EmitCtorList(GlobalDtors, "llvm.global_dtors");
434   EmitGlobalAnnotations();
435   EmitStaticExternCAliases();
436   EmitDeferredUnusedCoverageMappings();
437   if (CoverageMapping)
438     CoverageMapping->emit();
439   if (CodeGenOpts.SanitizeCfiCrossDso) {
440     CodeGenFunction(*this).EmitCfiCheckFail();
441     CodeGenFunction(*this).EmitCfiCheckStub();
442   }
443   emitAtAvailableLinkGuard();
444   emitLLVMUsed();
445   if (SanStats)
446     SanStats->finish();
447 
448   if (CodeGenOpts.Autolink &&
449       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
450     EmitModuleLinkOptions();
451   }
452 
453   // On ELF we pass the dependent library specifiers directly to the linker
454   // without manipulating them. This is in contrast to other platforms where
455   // they are mapped to a specific linker option by the compiler. This
456   // difference is a result of the greater variety of ELF linkers and the fact
457   // that ELF linkers tend to handle libraries in a more complicated fashion
458   // than on other platforms. This forces us to defer handling the dependent
459   // libs to the linker.
460   //
461   // CUDA/HIP device and host libraries are different. Currently there is no
462   // way to differentiate dependent libraries for host or device. Existing
463   // usage of #pragma comment(lib, *) is intended for host libraries on
464   // Windows. Therefore emit llvm.dependent-libraries only for host.
465   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
466     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
467     for (auto *MD : ELFDependentLibraries)
468       NMD->addOperand(MD);
469   }
470 
471   // Record mregparm value now so it is visible through rest of codegen.
472   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
473     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
474                               CodeGenOpts.NumRegisterParameters);
475 
476   if (CodeGenOpts.DwarfVersion) {
477     // We actually want the latest version when there are conflicts.
478     // We can change from Warning to Latest if such mode is supported.
479     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
480                               CodeGenOpts.DwarfVersion);
481   }
482   if (CodeGenOpts.EmitCodeView) {
483     // Indicate that we want CodeView in the metadata.
484     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
485   }
486   if (CodeGenOpts.CodeViewGHash) {
487     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
488   }
489   if (CodeGenOpts.ControlFlowGuard) {
490     // We want function ID tables for Control Flow Guard.
491     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
492   }
493   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
494     // We don't support LTO with 2 with different StrictVTablePointers
495     // FIXME: we could support it by stripping all the information introduced
496     // by StrictVTablePointers.
497 
498     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
499 
500     llvm::Metadata *Ops[2] = {
501               llvm::MDString::get(VMContext, "StrictVTablePointers"),
502               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
503                   llvm::Type::getInt32Ty(VMContext), 1))};
504 
505     getModule().addModuleFlag(llvm::Module::Require,
506                               "StrictVTablePointersRequirement",
507                               llvm::MDNode::get(VMContext, Ops));
508   }
509   if (DebugInfo)
510     // We support a single version in the linked module. The LLVM
511     // parser will drop debug info with a different version number
512     // (and warn about it, too).
513     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
514                               llvm::DEBUG_METADATA_VERSION);
515 
516   // We need to record the widths of enums and wchar_t, so that we can generate
517   // the correct build attributes in the ARM backend. wchar_size is also used by
518   // TargetLibraryInfo.
519   uint64_t WCharWidth =
520       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
521   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
522 
523   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
524   if (   Arch == llvm::Triple::arm
525       || Arch == llvm::Triple::armeb
526       || Arch == llvm::Triple::thumb
527       || Arch == llvm::Triple::thumbeb) {
528     // The minimum width of an enum in bytes
529     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
530     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
531   }
532 
533   if (CodeGenOpts.SanitizeCfiCrossDso) {
534     // Indicate that we want cross-DSO control flow integrity checks.
535     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
536   }
537 
538   if (CodeGenOpts.CFProtectionReturn &&
539       Target.checkCFProtectionReturnSupported(getDiags())) {
540     // Indicate that we want to instrument return control flow protection.
541     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
542                               1);
543   }
544 
545   if (CodeGenOpts.CFProtectionBranch &&
546       Target.checkCFProtectionBranchSupported(getDiags())) {
547     // Indicate that we want to instrument branch control flow protection.
548     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
549                               1);
550   }
551 
552   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
553     // Indicate whether __nvvm_reflect should be configured to flush denormal
554     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
555     // property.)
556     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
557                               CodeGenOpts.FlushDenorm ? 1 : 0);
558   }
559 
560   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
561   if (LangOpts.OpenCL) {
562     EmitOpenCLMetadata();
563     // Emit SPIR version.
564     if (getTriple().isSPIR()) {
565       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
566       // opencl.spir.version named metadata.
567       // C++ is backwards compatible with OpenCL v2.0.
568       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
569       llvm::Metadata *SPIRVerElts[] = {
570           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
571               Int32Ty, Version / 100)),
572           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
573               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
574       llvm::NamedMDNode *SPIRVerMD =
575           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
576       llvm::LLVMContext &Ctx = TheModule.getContext();
577       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
578     }
579   }
580 
581   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
582     assert(PLevel < 3 && "Invalid PIC Level");
583     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
584     if (Context.getLangOpts().PIE)
585       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
586   }
587 
588   if (getCodeGenOpts().CodeModel.size() > 0) {
589     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
590                   .Case("tiny", llvm::CodeModel::Tiny)
591                   .Case("small", llvm::CodeModel::Small)
592                   .Case("kernel", llvm::CodeModel::Kernel)
593                   .Case("medium", llvm::CodeModel::Medium)
594                   .Case("large", llvm::CodeModel::Large)
595                   .Default(~0u);
596     if (CM != ~0u) {
597       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
598       getModule().setCodeModel(codeModel);
599     }
600   }
601 
602   if (CodeGenOpts.NoPLT)
603     getModule().setRtLibUseGOT();
604 
605   SimplifyPersonality();
606 
607   if (getCodeGenOpts().EmitDeclMetadata)
608     EmitDeclMetadata();
609 
610   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
611     EmitCoverageFile();
612 
613   if (DebugInfo)
614     DebugInfo->finalize();
615 
616   if (getCodeGenOpts().EmitVersionIdentMetadata)
617     EmitVersionIdentMetadata();
618 
619   if (!getCodeGenOpts().RecordCommandLine.empty())
620     EmitCommandLineMetadata();
621 
622   EmitTargetMetadata();
623 }
624 
625 void CodeGenModule::EmitOpenCLMetadata() {
626   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
627   // opencl.ocl.version named metadata node.
628   // C++ is backwards compatible with OpenCL v2.0.
629   // FIXME: We might need to add CXX version at some point too?
630   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
631   llvm::Metadata *OCLVerElts[] = {
632       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
633           Int32Ty, Version / 100)),
634       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
635           Int32Ty, (Version % 100) / 10))};
636   llvm::NamedMDNode *OCLVerMD =
637       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
638   llvm::LLVMContext &Ctx = TheModule.getContext();
639   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
640 }
641 
642 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
643   // Make sure that this type is translated.
644   Types.UpdateCompletedType(TD);
645 }
646 
647 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
648   // Make sure that this type is translated.
649   Types.RefreshTypeCacheForClass(RD);
650 }
651 
652 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
653   if (!TBAA)
654     return nullptr;
655   return TBAA->getTypeInfo(QTy);
656 }
657 
658 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
659   if (!TBAA)
660     return TBAAAccessInfo();
661   return TBAA->getAccessInfo(AccessType);
662 }
663 
664 TBAAAccessInfo
665 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
666   if (!TBAA)
667     return TBAAAccessInfo();
668   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
669 }
670 
671 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
672   if (!TBAA)
673     return nullptr;
674   return TBAA->getTBAAStructInfo(QTy);
675 }
676 
677 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
678   if (!TBAA)
679     return nullptr;
680   return TBAA->getBaseTypeInfo(QTy);
681 }
682 
683 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
684   if (!TBAA)
685     return nullptr;
686   return TBAA->getAccessTagInfo(Info);
687 }
688 
689 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
690                                                    TBAAAccessInfo TargetInfo) {
691   if (!TBAA)
692     return TBAAAccessInfo();
693   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
694 }
695 
696 TBAAAccessInfo
697 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
698                                                    TBAAAccessInfo InfoB) {
699   if (!TBAA)
700     return TBAAAccessInfo();
701   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
702 }
703 
704 TBAAAccessInfo
705 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
706                                               TBAAAccessInfo SrcInfo) {
707   if (!TBAA)
708     return TBAAAccessInfo();
709   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
710 }
711 
712 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
713                                                 TBAAAccessInfo TBAAInfo) {
714   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
715     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
716 }
717 
718 void CodeGenModule::DecorateInstructionWithInvariantGroup(
719     llvm::Instruction *I, const CXXRecordDecl *RD) {
720   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
721                  llvm::MDNode::get(getLLVMContext(), {}));
722 }
723 
724 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
725   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
726   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
727 }
728 
729 /// ErrorUnsupported - Print out an error that codegen doesn't support the
730 /// specified stmt yet.
731 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
732   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
733                                                "cannot compile this %0 yet");
734   std::string Msg = Type;
735   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
736       << Msg << S->getSourceRange();
737 }
738 
739 /// ErrorUnsupported - Print out an error that codegen doesn't support the
740 /// specified decl yet.
741 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
742   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
743                                                "cannot compile this %0 yet");
744   std::string Msg = Type;
745   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
746 }
747 
748 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
749   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
750 }
751 
752 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
753                                         const NamedDecl *D) const {
754   if (GV->hasDLLImportStorageClass())
755     return;
756   // Internal definitions always have default visibility.
757   if (GV->hasLocalLinkage()) {
758     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
759     return;
760   }
761   if (!D)
762     return;
763   // Set visibility for definitions, and for declarations if requested globally
764   // or set explicitly.
765   LinkageInfo LV = D->getLinkageAndVisibility();
766   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
767       !GV->isDeclarationForLinker())
768     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
769 }
770 
771 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
772                                  llvm::GlobalValue *GV) {
773   if (GV->hasLocalLinkage())
774     return true;
775 
776   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
777     return true;
778 
779   // DLLImport explicitly marks the GV as external.
780   if (GV->hasDLLImportStorageClass())
781     return false;
782 
783   const llvm::Triple &TT = CGM.getTriple();
784   if (TT.isWindowsGNUEnvironment()) {
785     // In MinGW, variables without DLLImport can still be automatically
786     // imported from a DLL by the linker; don't mark variables that
787     // potentially could come from another DLL as DSO local.
788     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
789         !GV->isThreadLocal())
790       return false;
791   }
792 
793   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
794   // remain unresolved in the link, they can be resolved to zero, which is
795   // outside the current DSO.
796   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
797     return false;
798 
799   // Every other GV is local on COFF.
800   // Make an exception for windows OS in the triple: Some firmware builds use
801   // *-win32-macho triples. This (accidentally?) produced windows relocations
802   // without GOT tables in older clang versions; Keep this behaviour.
803   // FIXME: even thread local variables?
804   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
805     return true;
806 
807   // Only handle COFF and ELF for now.
808   if (!TT.isOSBinFormatELF())
809     return false;
810 
811   // If this is not an executable, don't assume anything is local.
812   const auto &CGOpts = CGM.getCodeGenOpts();
813   llvm::Reloc::Model RM = CGOpts.RelocationModel;
814   const auto &LOpts = CGM.getLangOpts();
815   if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
816     return false;
817 
818   // A definition cannot be preempted from an executable.
819   if (!GV->isDeclarationForLinker())
820     return true;
821 
822   // Most PIC code sequences that assume that a symbol is local cannot produce a
823   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
824   // depended, it seems worth it to handle it here.
825   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
826     return false;
827 
828   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
829   llvm::Triple::ArchType Arch = TT.getArch();
830   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
831       Arch == llvm::Triple::ppc64le)
832     return false;
833 
834   // If we can use copy relocations we can assume it is local.
835   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
836     if (!Var->isThreadLocal() &&
837         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
838       return true;
839 
840   // If we can use a plt entry as the symbol address we can assume it
841   // is local.
842   // FIXME: This should work for PIE, but the gold linker doesn't support it.
843   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
844     return true;
845 
846   // Otherwise don't assue it is local.
847   return false;
848 }
849 
850 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
851   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
852 }
853 
854 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
855                                           GlobalDecl GD) const {
856   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
857   // C++ destructors have a few C++ ABI specific special cases.
858   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
859     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
860     return;
861   }
862   setDLLImportDLLExport(GV, D);
863 }
864 
865 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
866                                           const NamedDecl *D) const {
867   if (D && D->isExternallyVisible()) {
868     if (D->hasAttr<DLLImportAttr>())
869       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
870     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
871       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
872   }
873 }
874 
875 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
876                                     GlobalDecl GD) const {
877   setDLLImportDLLExport(GV, GD);
878   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
879 }
880 
881 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
882                                     const NamedDecl *D) const {
883   setDLLImportDLLExport(GV, D);
884   setGVPropertiesAux(GV, D);
885 }
886 
887 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
888                                        const NamedDecl *D) const {
889   setGlobalVisibility(GV, D);
890   setDSOLocal(GV);
891   GV->setPartition(CodeGenOpts.SymbolPartition);
892 }
893 
894 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
895   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
896       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
897       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
898       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
899       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
900 }
901 
902 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
903     CodeGenOptions::TLSModel M) {
904   switch (M) {
905   case CodeGenOptions::GeneralDynamicTLSModel:
906     return llvm::GlobalVariable::GeneralDynamicTLSModel;
907   case CodeGenOptions::LocalDynamicTLSModel:
908     return llvm::GlobalVariable::LocalDynamicTLSModel;
909   case CodeGenOptions::InitialExecTLSModel:
910     return llvm::GlobalVariable::InitialExecTLSModel;
911   case CodeGenOptions::LocalExecTLSModel:
912     return llvm::GlobalVariable::LocalExecTLSModel;
913   }
914   llvm_unreachable("Invalid TLS model!");
915 }
916 
917 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
918   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
919 
920   llvm::GlobalValue::ThreadLocalMode TLM;
921   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
922 
923   // Override the TLS model if it is explicitly specified.
924   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
925     TLM = GetLLVMTLSModel(Attr->getModel());
926   }
927 
928   GV->setThreadLocalMode(TLM);
929 }
930 
931 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
932                                           StringRef Name) {
933   const TargetInfo &Target = CGM.getTarget();
934   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
935 }
936 
937 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
938                                                  const CPUSpecificAttr *Attr,
939                                                  unsigned CPUIndex,
940                                                  raw_ostream &Out) {
941   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
942   // supported.
943   if (Attr)
944     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
945   else if (CGM.getTarget().supportsIFunc())
946     Out << ".resolver";
947 }
948 
949 static void AppendTargetMangling(const CodeGenModule &CGM,
950                                  const TargetAttr *Attr, raw_ostream &Out) {
951   if (Attr->isDefaultVersion())
952     return;
953 
954   Out << '.';
955   const TargetInfo &Target = CGM.getTarget();
956   TargetAttr::ParsedTargetAttr Info =
957       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
958         // Multiversioning doesn't allow "no-${feature}", so we can
959         // only have "+" prefixes here.
960         assert(LHS.startswith("+") && RHS.startswith("+") &&
961                "Features should always have a prefix.");
962         return Target.multiVersionSortPriority(LHS.substr(1)) >
963                Target.multiVersionSortPriority(RHS.substr(1));
964       });
965 
966   bool IsFirst = true;
967 
968   if (!Info.Architecture.empty()) {
969     IsFirst = false;
970     Out << "arch_" << Info.Architecture;
971   }
972 
973   for (StringRef Feat : Info.Features) {
974     if (!IsFirst)
975       Out << '_';
976     IsFirst = false;
977     Out << Feat.substr(1);
978   }
979 }
980 
981 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
982                                       const NamedDecl *ND,
983                                       bool OmitMultiVersionMangling = false) {
984   SmallString<256> Buffer;
985   llvm::raw_svector_ostream Out(Buffer);
986   MangleContext &MC = CGM.getCXXABI().getMangleContext();
987   if (MC.shouldMangleDeclName(ND)) {
988     llvm::raw_svector_ostream Out(Buffer);
989     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
990       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
991     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
992       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
993     else
994       MC.mangleName(ND, Out);
995   } else {
996     IdentifierInfo *II = ND->getIdentifier();
997     assert(II && "Attempt to mangle unnamed decl.");
998     const auto *FD = dyn_cast<FunctionDecl>(ND);
999 
1000     if (FD &&
1001         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1002       llvm::raw_svector_ostream Out(Buffer);
1003       Out << "__regcall3__" << II->getName();
1004     } else {
1005       Out << II->getName();
1006     }
1007   }
1008 
1009   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1010     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1011       switch (FD->getMultiVersionKind()) {
1012       case MultiVersionKind::CPUDispatch:
1013       case MultiVersionKind::CPUSpecific:
1014         AppendCPUSpecificCPUDispatchMangling(CGM,
1015                                              FD->getAttr<CPUSpecificAttr>(),
1016                                              GD.getMultiVersionIndex(), Out);
1017         break;
1018       case MultiVersionKind::Target:
1019         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1020         break;
1021       case MultiVersionKind::None:
1022         llvm_unreachable("None multiversion type isn't valid here");
1023       }
1024     }
1025 
1026   return Out.str();
1027 }
1028 
1029 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1030                                             const FunctionDecl *FD) {
1031   if (!FD->isMultiVersion())
1032     return;
1033 
1034   // Get the name of what this would be without the 'target' attribute.  This
1035   // allows us to lookup the version that was emitted when this wasn't a
1036   // multiversion function.
1037   std::string NonTargetName =
1038       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1039   GlobalDecl OtherGD;
1040   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1041     assert(OtherGD.getCanonicalDecl()
1042                .getDecl()
1043                ->getAsFunction()
1044                ->isMultiVersion() &&
1045            "Other GD should now be a multiversioned function");
1046     // OtherFD is the version of this function that was mangled BEFORE
1047     // becoming a MultiVersion function.  It potentially needs to be updated.
1048     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1049                                       .getDecl()
1050                                       ->getAsFunction()
1051                                       ->getMostRecentDecl();
1052     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1053     // This is so that if the initial version was already the 'default'
1054     // version, we don't try to update it.
1055     if (OtherName != NonTargetName) {
1056       // Remove instead of erase, since others may have stored the StringRef
1057       // to this.
1058       const auto ExistingRecord = Manglings.find(NonTargetName);
1059       if (ExistingRecord != std::end(Manglings))
1060         Manglings.remove(&(*ExistingRecord));
1061       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1062       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1063       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1064         Entry->setName(OtherName);
1065     }
1066   }
1067 }
1068 
1069 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1070   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1071 
1072   // Some ABIs don't have constructor variants.  Make sure that base and
1073   // complete constructors get mangled the same.
1074   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1075     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1076       CXXCtorType OrigCtorType = GD.getCtorType();
1077       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1078       if (OrigCtorType == Ctor_Base)
1079         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1080     }
1081   }
1082 
1083   auto FoundName = MangledDeclNames.find(CanonicalGD);
1084   if (FoundName != MangledDeclNames.end())
1085     return FoundName->second;
1086 
1087   // Keep the first result in the case of a mangling collision.
1088   const auto *ND = cast<NamedDecl>(GD.getDecl());
1089   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1090 
1091   // Adjust kernel stub mangling as we may need to be able to differentiate
1092   // them from the kernel itself (e.g., for HIP).
1093   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1094     if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1095       MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1096 
1097   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1098   return MangledDeclNames[CanonicalGD] = Result.first->first();
1099 }
1100 
1101 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1102                                              const BlockDecl *BD) {
1103   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1104   const Decl *D = GD.getDecl();
1105 
1106   SmallString<256> Buffer;
1107   llvm::raw_svector_ostream Out(Buffer);
1108   if (!D)
1109     MangleCtx.mangleGlobalBlock(BD,
1110       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1111   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1112     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1113   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1114     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1115   else
1116     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1117 
1118   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1119   return Result.first->first();
1120 }
1121 
1122 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1123   return getModule().getNamedValue(Name);
1124 }
1125 
1126 /// AddGlobalCtor - Add a function to the list that will be called before
1127 /// main() runs.
1128 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1129                                   llvm::Constant *AssociatedData) {
1130   // FIXME: Type coercion of void()* types.
1131   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1132 }
1133 
1134 /// AddGlobalDtor - Add a function to the list that will be called
1135 /// when the module is unloaded.
1136 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1137   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1138     DtorsUsingAtExit[Priority].push_back(Dtor);
1139     return;
1140   }
1141 
1142   // FIXME: Type coercion of void()* types.
1143   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1144 }
1145 
1146 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1147   if (Fns.empty()) return;
1148 
1149   // Ctor function type is void()*.
1150   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1151   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1152       TheModule.getDataLayout().getProgramAddressSpace());
1153 
1154   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1155   llvm::StructType *CtorStructTy = llvm::StructType::get(
1156       Int32Ty, CtorPFTy, VoidPtrTy);
1157 
1158   // Construct the constructor and destructor arrays.
1159   ConstantInitBuilder builder(*this);
1160   auto ctors = builder.beginArray(CtorStructTy);
1161   for (const auto &I : Fns) {
1162     auto ctor = ctors.beginStruct(CtorStructTy);
1163     ctor.addInt(Int32Ty, I.Priority);
1164     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1165     if (I.AssociatedData)
1166       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1167     else
1168       ctor.addNullPointer(VoidPtrTy);
1169     ctor.finishAndAddTo(ctors);
1170   }
1171 
1172   auto list =
1173     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1174                                 /*constant*/ false,
1175                                 llvm::GlobalValue::AppendingLinkage);
1176 
1177   // The LTO linker doesn't seem to like it when we set an alignment
1178   // on appending variables.  Take it off as a workaround.
1179   list->setAlignment(0);
1180 
1181   Fns.clear();
1182 }
1183 
1184 llvm::GlobalValue::LinkageTypes
1185 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1186   const auto *D = cast<FunctionDecl>(GD.getDecl());
1187 
1188   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1189 
1190   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1191     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1192 
1193   if (isa<CXXConstructorDecl>(D) &&
1194       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1195       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1196     // Our approach to inheriting constructors is fundamentally different from
1197     // that used by the MS ABI, so keep our inheriting constructor thunks
1198     // internal rather than trying to pick an unambiguous mangling for them.
1199     return llvm::GlobalValue::InternalLinkage;
1200   }
1201 
1202   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1203 }
1204 
1205 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1206   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1207   if (!MDS) return nullptr;
1208 
1209   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1210 }
1211 
1212 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1213                                               const CGFunctionInfo &Info,
1214                                               llvm::Function *F) {
1215   unsigned CallingConv;
1216   llvm::AttributeList PAL;
1217   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1218   F->setAttributes(PAL);
1219   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1220 }
1221 
1222 static void removeImageAccessQualifier(std::string& TyName) {
1223   std::string ReadOnlyQual("__read_only");
1224   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1225   if (ReadOnlyPos != std::string::npos)
1226     // "+ 1" for the space after access qualifier.
1227     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1228   else {
1229     std::string WriteOnlyQual("__write_only");
1230     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1231     if (WriteOnlyPos != std::string::npos)
1232       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1233     else {
1234       std::string ReadWriteQual("__read_write");
1235       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1236       if (ReadWritePos != std::string::npos)
1237         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1238     }
1239   }
1240 }
1241 
1242 // Returns the address space id that should be produced to the
1243 // kernel_arg_addr_space metadata. This is always fixed to the ids
1244 // as specified in the SPIR 2.0 specification in order to differentiate
1245 // for example in clGetKernelArgInfo() implementation between the address
1246 // spaces with targets without unique mapping to the OpenCL address spaces
1247 // (basically all single AS CPUs).
1248 static unsigned ArgInfoAddressSpace(LangAS AS) {
1249   switch (AS) {
1250   case LangAS::opencl_global:   return 1;
1251   case LangAS::opencl_constant: return 2;
1252   case LangAS::opencl_local:    return 3;
1253   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1254   default:
1255     return 0; // Assume private.
1256   }
1257 }
1258 
1259 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1260                                          const FunctionDecl *FD,
1261                                          CodeGenFunction *CGF) {
1262   assert(((FD && CGF) || (!FD && !CGF)) &&
1263          "Incorrect use - FD and CGF should either be both null or not!");
1264   // Create MDNodes that represent the kernel arg metadata.
1265   // Each MDNode is a list in the form of "key", N number of values which is
1266   // the same number of values as their are kernel arguments.
1267 
1268   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1269 
1270   // MDNode for the kernel argument address space qualifiers.
1271   SmallVector<llvm::Metadata *, 8> addressQuals;
1272 
1273   // MDNode for the kernel argument access qualifiers (images only).
1274   SmallVector<llvm::Metadata *, 8> accessQuals;
1275 
1276   // MDNode for the kernel argument type names.
1277   SmallVector<llvm::Metadata *, 8> argTypeNames;
1278 
1279   // MDNode for the kernel argument base type names.
1280   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1281 
1282   // MDNode for the kernel argument type qualifiers.
1283   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1284 
1285   // MDNode for the kernel argument names.
1286   SmallVector<llvm::Metadata *, 8> argNames;
1287 
1288   if (FD && CGF)
1289     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1290       const ParmVarDecl *parm = FD->getParamDecl(i);
1291       QualType ty = parm->getType();
1292       std::string typeQuals;
1293 
1294       if (ty->isPointerType()) {
1295         QualType pointeeTy = ty->getPointeeType();
1296 
1297         // Get address qualifier.
1298         addressQuals.push_back(
1299             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1300                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1301 
1302         // Get argument type name.
1303         std::string typeName =
1304             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1305 
1306         // Turn "unsigned type" to "utype"
1307         std::string::size_type pos = typeName.find("unsigned");
1308         if (pointeeTy.isCanonical() && pos != std::string::npos)
1309           typeName.erase(pos + 1, 8);
1310 
1311         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1312 
1313         std::string baseTypeName =
1314             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1315                 Policy) +
1316             "*";
1317 
1318         // Turn "unsigned type" to "utype"
1319         pos = baseTypeName.find("unsigned");
1320         if (pos != std::string::npos)
1321           baseTypeName.erase(pos + 1, 8);
1322 
1323         argBaseTypeNames.push_back(
1324             llvm::MDString::get(VMContext, baseTypeName));
1325 
1326         // Get argument type qualifiers:
1327         if (ty.isRestrictQualified())
1328           typeQuals = "restrict";
1329         if (pointeeTy.isConstQualified() ||
1330             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1331           typeQuals += typeQuals.empty() ? "const" : " const";
1332         if (pointeeTy.isVolatileQualified())
1333           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1334       } else {
1335         uint32_t AddrSpc = 0;
1336         bool isPipe = ty->isPipeType();
1337         if (ty->isImageType() || isPipe)
1338           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1339 
1340         addressQuals.push_back(
1341             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1342 
1343         // Get argument type name.
1344         std::string typeName;
1345         if (isPipe)
1346           typeName = ty.getCanonicalType()
1347                          ->getAs<PipeType>()
1348                          ->getElementType()
1349                          .getAsString(Policy);
1350         else
1351           typeName = ty.getUnqualifiedType().getAsString(Policy);
1352 
1353         // Turn "unsigned type" to "utype"
1354         std::string::size_type pos = typeName.find("unsigned");
1355         if (ty.isCanonical() && pos != std::string::npos)
1356           typeName.erase(pos + 1, 8);
1357 
1358         std::string baseTypeName;
1359         if (isPipe)
1360           baseTypeName = ty.getCanonicalType()
1361                              ->getAs<PipeType>()
1362                              ->getElementType()
1363                              .getCanonicalType()
1364                              .getAsString(Policy);
1365         else
1366           baseTypeName =
1367               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1368 
1369         // Remove access qualifiers on images
1370         // (as they are inseparable from type in clang implementation,
1371         // but OpenCL spec provides a special query to get access qualifier
1372         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1373         if (ty->isImageType()) {
1374           removeImageAccessQualifier(typeName);
1375           removeImageAccessQualifier(baseTypeName);
1376         }
1377 
1378         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1379 
1380         // Turn "unsigned type" to "utype"
1381         pos = baseTypeName.find("unsigned");
1382         if (pos != std::string::npos)
1383           baseTypeName.erase(pos + 1, 8);
1384 
1385         argBaseTypeNames.push_back(
1386             llvm::MDString::get(VMContext, baseTypeName));
1387 
1388         if (isPipe)
1389           typeQuals = "pipe";
1390       }
1391 
1392       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1393 
1394       // Get image and pipe access qualifier:
1395       if (ty->isImageType() || ty->isPipeType()) {
1396         const Decl *PDecl = parm;
1397         if (auto *TD = dyn_cast<TypedefType>(ty))
1398           PDecl = TD->getDecl();
1399         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1400         if (A && A->isWriteOnly())
1401           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1402         else if (A && A->isReadWrite())
1403           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1404         else
1405           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1406       } else
1407         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1408 
1409       // Get argument name.
1410       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1411     }
1412 
1413   Fn->setMetadata("kernel_arg_addr_space",
1414                   llvm::MDNode::get(VMContext, addressQuals));
1415   Fn->setMetadata("kernel_arg_access_qual",
1416                   llvm::MDNode::get(VMContext, accessQuals));
1417   Fn->setMetadata("kernel_arg_type",
1418                   llvm::MDNode::get(VMContext, argTypeNames));
1419   Fn->setMetadata("kernel_arg_base_type",
1420                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1421   Fn->setMetadata("kernel_arg_type_qual",
1422                   llvm::MDNode::get(VMContext, argTypeQuals));
1423   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1424     Fn->setMetadata("kernel_arg_name",
1425                     llvm::MDNode::get(VMContext, argNames));
1426 }
1427 
1428 /// Determines whether the language options require us to model
1429 /// unwind exceptions.  We treat -fexceptions as mandating this
1430 /// except under the fragile ObjC ABI with only ObjC exceptions
1431 /// enabled.  This means, for example, that C with -fexceptions
1432 /// enables this.
1433 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1434   // If exceptions are completely disabled, obviously this is false.
1435   if (!LangOpts.Exceptions) return false;
1436 
1437   // If C++ exceptions are enabled, this is true.
1438   if (LangOpts.CXXExceptions) return true;
1439 
1440   // If ObjC exceptions are enabled, this depends on the ABI.
1441   if (LangOpts.ObjCExceptions) {
1442     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1443   }
1444 
1445   return true;
1446 }
1447 
1448 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1449                                                       const CXXMethodDecl *MD) {
1450   // Check that the type metadata can ever actually be used by a call.
1451   if (!CGM.getCodeGenOpts().LTOUnit ||
1452       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1453     return false;
1454 
1455   // Only functions whose address can be taken with a member function pointer
1456   // need this sort of type metadata.
1457   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1458          !isa<CXXDestructorDecl>(MD);
1459 }
1460 
1461 std::vector<const CXXRecordDecl *>
1462 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1463   llvm::SetVector<const CXXRecordDecl *> MostBases;
1464 
1465   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1466   CollectMostBases = [&](const CXXRecordDecl *RD) {
1467     if (RD->getNumBases() == 0)
1468       MostBases.insert(RD);
1469     for (const CXXBaseSpecifier &B : RD->bases())
1470       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1471   };
1472   CollectMostBases(RD);
1473   return MostBases.takeVector();
1474 }
1475 
1476 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1477                                                            llvm::Function *F) {
1478   llvm::AttrBuilder B;
1479 
1480   if (CodeGenOpts.UnwindTables)
1481     B.addAttribute(llvm::Attribute::UWTable);
1482 
1483   if (!hasUnwindExceptions(LangOpts))
1484     B.addAttribute(llvm::Attribute::NoUnwind);
1485 
1486   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1487     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1488       B.addAttribute(llvm::Attribute::StackProtect);
1489     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1490       B.addAttribute(llvm::Attribute::StackProtectStrong);
1491     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1492       B.addAttribute(llvm::Attribute::StackProtectReq);
1493   }
1494 
1495   if (!D) {
1496     // If we don't have a declaration to control inlining, the function isn't
1497     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1498     // disabled, mark the function as noinline.
1499     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1500         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1501       B.addAttribute(llvm::Attribute::NoInline);
1502 
1503     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1504     return;
1505   }
1506 
1507   // Track whether we need to add the optnone LLVM attribute,
1508   // starting with the default for this optimization level.
1509   bool ShouldAddOptNone =
1510       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1511   // We can't add optnone in the following cases, it won't pass the verifier.
1512   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1513   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1514   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1515 
1516   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1517     B.addAttribute(llvm::Attribute::OptimizeNone);
1518 
1519     // OptimizeNone implies noinline; we should not be inlining such functions.
1520     B.addAttribute(llvm::Attribute::NoInline);
1521     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1522            "OptimizeNone and AlwaysInline on same function!");
1523 
1524     // We still need to handle naked functions even though optnone subsumes
1525     // much of their semantics.
1526     if (D->hasAttr<NakedAttr>())
1527       B.addAttribute(llvm::Attribute::Naked);
1528 
1529     // OptimizeNone wins over OptimizeForSize and MinSize.
1530     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1531     F->removeFnAttr(llvm::Attribute::MinSize);
1532   } else if (D->hasAttr<NakedAttr>()) {
1533     // Naked implies noinline: we should not be inlining such functions.
1534     B.addAttribute(llvm::Attribute::Naked);
1535     B.addAttribute(llvm::Attribute::NoInline);
1536   } else if (D->hasAttr<NoDuplicateAttr>()) {
1537     B.addAttribute(llvm::Attribute::NoDuplicate);
1538   } else if (D->hasAttr<NoInlineAttr>()) {
1539     B.addAttribute(llvm::Attribute::NoInline);
1540   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1541              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1542     // (noinline wins over always_inline, and we can't specify both in IR)
1543     B.addAttribute(llvm::Attribute::AlwaysInline);
1544   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1545     // If we're not inlining, then force everything that isn't always_inline to
1546     // carry an explicit noinline attribute.
1547     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1548       B.addAttribute(llvm::Attribute::NoInline);
1549   } else {
1550     // Otherwise, propagate the inline hint attribute and potentially use its
1551     // absence to mark things as noinline.
1552     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1553       // Search function and template pattern redeclarations for inline.
1554       auto CheckForInline = [](const FunctionDecl *FD) {
1555         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1556           return Redecl->isInlineSpecified();
1557         };
1558         if (any_of(FD->redecls(), CheckRedeclForInline))
1559           return true;
1560         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1561         if (!Pattern)
1562           return false;
1563         return any_of(Pattern->redecls(), CheckRedeclForInline);
1564       };
1565       if (CheckForInline(FD)) {
1566         B.addAttribute(llvm::Attribute::InlineHint);
1567       } else if (CodeGenOpts.getInlining() ==
1568                      CodeGenOptions::OnlyHintInlining &&
1569                  !FD->isInlined() &&
1570                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1571         B.addAttribute(llvm::Attribute::NoInline);
1572       }
1573     }
1574   }
1575 
1576   // Add other optimization related attributes if we are optimizing this
1577   // function.
1578   if (!D->hasAttr<OptimizeNoneAttr>()) {
1579     if (D->hasAttr<ColdAttr>()) {
1580       if (!ShouldAddOptNone)
1581         B.addAttribute(llvm::Attribute::OptimizeForSize);
1582       B.addAttribute(llvm::Attribute::Cold);
1583     }
1584 
1585     if (D->hasAttr<MinSizeAttr>())
1586       B.addAttribute(llvm::Attribute::MinSize);
1587   }
1588 
1589   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1590 
1591   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1592   if (alignment)
1593     F->setAlignment(alignment);
1594 
1595   if (!D->hasAttr<AlignedAttr>())
1596     if (LangOpts.FunctionAlignment)
1597       F->setAlignment(1 << LangOpts.FunctionAlignment);
1598 
1599   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1600   // reserve a bit for differentiating between virtual and non-virtual member
1601   // functions. If the current target's C++ ABI requires this and this is a
1602   // member function, set its alignment accordingly.
1603   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1604     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1605       F->setAlignment(2);
1606   }
1607 
1608   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1609   if (CodeGenOpts.SanitizeCfiCrossDso)
1610     if (auto *FD = dyn_cast<FunctionDecl>(D))
1611       CreateFunctionTypeMetadataForIcall(FD, F);
1612 
1613   // Emit type metadata on member functions for member function pointer checks.
1614   // These are only ever necessary on definitions; we're guaranteed that the
1615   // definition will be present in the LTO unit as a result of LTO visibility.
1616   auto *MD = dyn_cast<CXXMethodDecl>(D);
1617   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1618     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1619       llvm::Metadata *Id =
1620           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1621               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1622       F->addTypeMetadata(0, Id);
1623     }
1624   }
1625 }
1626 
1627 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1628   const Decl *D = GD.getDecl();
1629   if (dyn_cast_or_null<NamedDecl>(D))
1630     setGVProperties(GV, GD);
1631   else
1632     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1633 
1634   if (D && D->hasAttr<UsedAttr>())
1635     addUsedGlobal(GV);
1636 
1637   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1638     const auto *VD = cast<VarDecl>(D);
1639     if (VD->getType().isConstQualified() &&
1640         VD->getStorageDuration() == SD_Static)
1641       addUsedGlobal(GV);
1642   }
1643 }
1644 
1645 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1646                                                 llvm::AttrBuilder &Attrs) {
1647   // Add target-cpu and target-features attributes to functions. If
1648   // we have a decl for the function and it has a target attribute then
1649   // parse that and add it to the feature set.
1650   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1651   std::vector<std::string> Features;
1652   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1653   FD = FD ? FD->getMostRecentDecl() : FD;
1654   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1655   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1656   bool AddedAttr = false;
1657   if (TD || SD) {
1658     llvm::StringMap<bool> FeatureMap;
1659     getFunctionFeatureMap(FeatureMap, GD);
1660 
1661     // Produce the canonical string for this set of features.
1662     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1663       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1664 
1665     // Now add the target-cpu and target-features to the function.
1666     // While we populated the feature map above, we still need to
1667     // get and parse the target attribute so we can get the cpu for
1668     // the function.
1669     if (TD) {
1670       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1671       if (ParsedAttr.Architecture != "" &&
1672           getTarget().isValidCPUName(ParsedAttr.Architecture))
1673         TargetCPU = ParsedAttr.Architecture;
1674     }
1675   } else {
1676     // Otherwise just add the existing target cpu and target features to the
1677     // function.
1678     Features = getTarget().getTargetOpts().Features;
1679   }
1680 
1681   if (TargetCPU != "") {
1682     Attrs.addAttribute("target-cpu", TargetCPU);
1683     AddedAttr = true;
1684   }
1685   if (!Features.empty()) {
1686     llvm::sort(Features);
1687     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1688     AddedAttr = true;
1689   }
1690 
1691   return AddedAttr;
1692 }
1693 
1694 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1695                                           llvm::GlobalObject *GO) {
1696   const Decl *D = GD.getDecl();
1697   SetCommonAttributes(GD, GO);
1698 
1699   if (D) {
1700     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1701       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1702         GV->addAttribute("bss-section", SA->getName());
1703       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1704         GV->addAttribute("data-section", SA->getName());
1705       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1706         GV->addAttribute("rodata-section", SA->getName());
1707     }
1708 
1709     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1710       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1711         if (!D->getAttr<SectionAttr>())
1712           F->addFnAttr("implicit-section-name", SA->getName());
1713 
1714       llvm::AttrBuilder Attrs;
1715       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1716         // We know that GetCPUAndFeaturesAttributes will always have the
1717         // newest set, since it has the newest possible FunctionDecl, so the
1718         // new ones should replace the old.
1719         F->removeFnAttr("target-cpu");
1720         F->removeFnAttr("target-features");
1721         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1722       }
1723     }
1724 
1725     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1726       GO->setSection(CSA->getName());
1727     else if (const auto *SA = D->getAttr<SectionAttr>())
1728       GO->setSection(SA->getName());
1729   }
1730 
1731   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1732 }
1733 
1734 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1735                                                   llvm::Function *F,
1736                                                   const CGFunctionInfo &FI) {
1737   const Decl *D = GD.getDecl();
1738   SetLLVMFunctionAttributes(GD, FI, F);
1739   SetLLVMFunctionAttributesForDefinition(D, F);
1740 
1741   F->setLinkage(llvm::Function::InternalLinkage);
1742 
1743   setNonAliasAttributes(GD, F);
1744 }
1745 
1746 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1747   // Set linkage and visibility in case we never see a definition.
1748   LinkageInfo LV = ND->getLinkageAndVisibility();
1749   // Don't set internal linkage on declarations.
1750   // "extern_weak" is overloaded in LLVM; we probably should have
1751   // separate linkage types for this.
1752   if (isExternallyVisible(LV.getLinkage()) &&
1753       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1754     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1755 }
1756 
1757 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1758                                                        llvm::Function *F) {
1759   // Only if we are checking indirect calls.
1760   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1761     return;
1762 
1763   // Non-static class methods are handled via vtable or member function pointer
1764   // checks elsewhere.
1765   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1766     return;
1767 
1768   // Additionally, if building with cross-DSO support...
1769   if (CodeGenOpts.SanitizeCfiCrossDso) {
1770     // Skip available_externally functions. They won't be codegen'ed in the
1771     // current module anyway.
1772     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1773       return;
1774   }
1775 
1776   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1777   F->addTypeMetadata(0, MD);
1778   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1779 
1780   // Emit a hash-based bit set entry for cross-DSO calls.
1781   if (CodeGenOpts.SanitizeCfiCrossDso)
1782     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1783       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1784 }
1785 
1786 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1787                                           bool IsIncompleteFunction,
1788                                           bool IsThunk) {
1789 
1790   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1791     // If this is an intrinsic function, set the function's attributes
1792     // to the intrinsic's attributes.
1793     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1794     return;
1795   }
1796 
1797   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1798 
1799   if (!IsIncompleteFunction)
1800     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1801 
1802   // Add the Returned attribute for "this", except for iOS 5 and earlier
1803   // where substantial code, including the libstdc++ dylib, was compiled with
1804   // GCC and does not actually return "this".
1805   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1806       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1807     assert(!F->arg_empty() &&
1808            F->arg_begin()->getType()
1809              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1810            "unexpected this return");
1811     F->addAttribute(1, llvm::Attribute::Returned);
1812   }
1813 
1814   // Only a few attributes are set on declarations; these may later be
1815   // overridden by a definition.
1816 
1817   setLinkageForGV(F, FD);
1818   setGVProperties(F, FD);
1819 
1820   // Setup target-specific attributes.
1821   if (!IsIncompleteFunction && F->isDeclaration())
1822     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1823 
1824   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1825     F->setSection(CSA->getName());
1826   else if (const auto *SA = FD->getAttr<SectionAttr>())
1827      F->setSection(SA->getName());
1828 
1829   if (FD->isReplaceableGlobalAllocationFunction()) {
1830     // A replaceable global allocation function does not act like a builtin by
1831     // default, only if it is invoked by a new-expression or delete-expression.
1832     F->addAttribute(llvm::AttributeList::FunctionIndex,
1833                     llvm::Attribute::NoBuiltin);
1834 
1835     // A sane operator new returns a non-aliasing pointer.
1836     // FIXME: Also add NonNull attribute to the return value
1837     // for the non-nothrow forms?
1838     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1839     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1840         (Kind == OO_New || Kind == OO_Array_New))
1841       F->addAttribute(llvm::AttributeList::ReturnIndex,
1842                       llvm::Attribute::NoAlias);
1843   }
1844 
1845   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1846     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1847   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1848     if (MD->isVirtual())
1849       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1850 
1851   // Don't emit entries for function declarations in the cross-DSO mode. This
1852   // is handled with better precision by the receiving DSO.
1853   if (!CodeGenOpts.SanitizeCfiCrossDso)
1854     CreateFunctionTypeMetadataForIcall(FD, F);
1855 
1856   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1857     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1858 
1859   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1860     // Annotate the callback behavior as metadata:
1861     //  - The callback callee (as argument number).
1862     //  - The callback payloads (as argument numbers).
1863     llvm::LLVMContext &Ctx = F->getContext();
1864     llvm::MDBuilder MDB(Ctx);
1865 
1866     // The payload indices are all but the first one in the encoding. The first
1867     // identifies the callback callee.
1868     int CalleeIdx = *CB->encoding_begin();
1869     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1870     F->addMetadata(llvm::LLVMContext::MD_callback,
1871                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1872                                                CalleeIdx, PayloadIndices,
1873                                                /* VarArgsArePassed */ false)}));
1874   }
1875 }
1876 
1877 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1878   assert(!GV->isDeclaration() &&
1879          "Only globals with definition can force usage.");
1880   LLVMUsed.emplace_back(GV);
1881 }
1882 
1883 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1884   assert(!GV->isDeclaration() &&
1885          "Only globals with definition can force usage.");
1886   LLVMCompilerUsed.emplace_back(GV);
1887 }
1888 
1889 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1890                      std::vector<llvm::WeakTrackingVH> &List) {
1891   // Don't create llvm.used if there is no need.
1892   if (List.empty())
1893     return;
1894 
1895   // Convert List to what ConstantArray needs.
1896   SmallVector<llvm::Constant*, 8> UsedArray;
1897   UsedArray.resize(List.size());
1898   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1899     UsedArray[i] =
1900         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1901             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1902   }
1903 
1904   if (UsedArray.empty())
1905     return;
1906   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1907 
1908   auto *GV = new llvm::GlobalVariable(
1909       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1910       llvm::ConstantArray::get(ATy, UsedArray), Name);
1911 
1912   GV->setSection("llvm.metadata");
1913 }
1914 
1915 void CodeGenModule::emitLLVMUsed() {
1916   emitUsed(*this, "llvm.used", LLVMUsed);
1917   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1918 }
1919 
1920 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1921   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1922   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1923 }
1924 
1925 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1926   llvm::SmallString<32> Opt;
1927   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1928   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1929   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1930 }
1931 
1932 void CodeGenModule::AddDependentLib(StringRef Lib) {
1933   auto &C = getLLVMContext();
1934   if (getTarget().getTriple().isOSBinFormatELF()) {
1935       ELFDependentLibraries.push_back(
1936         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1937     return;
1938   }
1939 
1940   llvm::SmallString<24> Opt;
1941   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1942   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1943   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1944 }
1945 
1946 /// Add link options implied by the given module, including modules
1947 /// it depends on, using a postorder walk.
1948 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1949                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1950                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1951   // Import this module's parent.
1952   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1953     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1954   }
1955 
1956   // Import this module's dependencies.
1957   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1958     if (Visited.insert(Mod->Imports[I - 1]).second)
1959       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1960   }
1961 
1962   // Add linker options to link against the libraries/frameworks
1963   // described by this module.
1964   llvm::LLVMContext &Context = CGM.getLLVMContext();
1965   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1966 
1967   // For modules that use export_as for linking, use that module
1968   // name instead.
1969   if (Mod->UseExportAsModuleLinkName)
1970     return;
1971 
1972   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1973     // Link against a framework.  Frameworks are currently Darwin only, so we
1974     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1975     if (Mod->LinkLibraries[I-1].IsFramework) {
1976       llvm::Metadata *Args[2] = {
1977           llvm::MDString::get(Context, "-framework"),
1978           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1979 
1980       Metadata.push_back(llvm::MDNode::get(Context, Args));
1981       continue;
1982     }
1983 
1984     // Link against a library.
1985     if (IsELF) {
1986       llvm::Metadata *Args[2] = {
1987           llvm::MDString::get(Context, "lib"),
1988           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1989       };
1990       Metadata.push_back(llvm::MDNode::get(Context, Args));
1991     } else {
1992       llvm::SmallString<24> Opt;
1993       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1994           Mod->LinkLibraries[I - 1].Library, Opt);
1995       auto *OptString = llvm::MDString::get(Context, Opt);
1996       Metadata.push_back(llvm::MDNode::get(Context, OptString));
1997     }
1998   }
1999 }
2000 
2001 void CodeGenModule::EmitModuleLinkOptions() {
2002   // Collect the set of all of the modules we want to visit to emit link
2003   // options, which is essentially the imported modules and all of their
2004   // non-explicit child modules.
2005   llvm::SetVector<clang::Module *> LinkModules;
2006   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2007   SmallVector<clang::Module *, 16> Stack;
2008 
2009   // Seed the stack with imported modules.
2010   for (Module *M : ImportedModules) {
2011     // Do not add any link flags when an implementation TU of a module imports
2012     // a header of that same module.
2013     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2014         !getLangOpts().isCompilingModule())
2015       continue;
2016     if (Visited.insert(M).second)
2017       Stack.push_back(M);
2018   }
2019 
2020   // Find all of the modules to import, making a little effort to prune
2021   // non-leaf modules.
2022   while (!Stack.empty()) {
2023     clang::Module *Mod = Stack.pop_back_val();
2024 
2025     bool AnyChildren = false;
2026 
2027     // Visit the submodules of this module.
2028     for (const auto &SM : Mod->submodules()) {
2029       // Skip explicit children; they need to be explicitly imported to be
2030       // linked against.
2031       if (SM->IsExplicit)
2032         continue;
2033 
2034       if (Visited.insert(SM).second) {
2035         Stack.push_back(SM);
2036         AnyChildren = true;
2037       }
2038     }
2039 
2040     // We didn't find any children, so add this module to the list of
2041     // modules to link against.
2042     if (!AnyChildren) {
2043       LinkModules.insert(Mod);
2044     }
2045   }
2046 
2047   // Add link options for all of the imported modules in reverse topological
2048   // order.  We don't do anything to try to order import link flags with respect
2049   // to linker options inserted by things like #pragma comment().
2050   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2051   Visited.clear();
2052   for (Module *M : LinkModules)
2053     if (Visited.insert(M).second)
2054       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2055   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2056   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2057 
2058   // Add the linker options metadata flag.
2059   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2060   for (auto *MD : LinkerOptionsMetadata)
2061     NMD->addOperand(MD);
2062 }
2063 
2064 void CodeGenModule::EmitDeferred() {
2065   // Emit deferred declare target declarations.
2066   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2067     getOpenMPRuntime().emitDeferredTargetDecls();
2068 
2069   // Emit code for any potentially referenced deferred decls.  Since a
2070   // previously unused static decl may become used during the generation of code
2071   // for a static function, iterate until no changes are made.
2072 
2073   if (!DeferredVTables.empty()) {
2074     EmitDeferredVTables();
2075 
2076     // Emitting a vtable doesn't directly cause more vtables to
2077     // become deferred, although it can cause functions to be
2078     // emitted that then need those vtables.
2079     assert(DeferredVTables.empty());
2080   }
2081 
2082   // Stop if we're out of both deferred vtables and deferred declarations.
2083   if (DeferredDeclsToEmit.empty())
2084     return;
2085 
2086   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2087   // work, it will not interfere with this.
2088   std::vector<GlobalDecl> CurDeclsToEmit;
2089   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2090 
2091   for (GlobalDecl &D : CurDeclsToEmit) {
2092     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2093     // to get GlobalValue with exactly the type we need, not something that
2094     // might had been created for another decl with the same mangled name but
2095     // different type.
2096     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2097         GetAddrOfGlobal(D, ForDefinition));
2098 
2099     // In case of different address spaces, we may still get a cast, even with
2100     // IsForDefinition equal to true. Query mangled names table to get
2101     // GlobalValue.
2102     if (!GV)
2103       GV = GetGlobalValue(getMangledName(D));
2104 
2105     // Make sure GetGlobalValue returned non-null.
2106     assert(GV);
2107 
2108     // Check to see if we've already emitted this.  This is necessary
2109     // for a couple of reasons: first, decls can end up in the
2110     // deferred-decls queue multiple times, and second, decls can end
2111     // up with definitions in unusual ways (e.g. by an extern inline
2112     // function acquiring a strong function redefinition).  Just
2113     // ignore these cases.
2114     if (!GV->isDeclaration())
2115       continue;
2116 
2117     // Otherwise, emit the definition and move on to the next one.
2118     EmitGlobalDefinition(D, GV);
2119 
2120     // If we found out that we need to emit more decls, do that recursively.
2121     // This has the advantage that the decls are emitted in a DFS and related
2122     // ones are close together, which is convenient for testing.
2123     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2124       EmitDeferred();
2125       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2126     }
2127   }
2128 }
2129 
2130 void CodeGenModule::EmitVTablesOpportunistically() {
2131   // Try to emit external vtables as available_externally if they have emitted
2132   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2133   // is not allowed to create new references to things that need to be emitted
2134   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2135 
2136   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2137          && "Only emit opportunistic vtables with optimizations");
2138 
2139   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2140     assert(getVTables().isVTableExternal(RD) &&
2141            "This queue should only contain external vtables");
2142     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2143       VTables.GenerateClassData(RD);
2144   }
2145   OpportunisticVTables.clear();
2146 }
2147 
2148 void CodeGenModule::EmitGlobalAnnotations() {
2149   if (Annotations.empty())
2150     return;
2151 
2152   // Create a new global variable for the ConstantStruct in the Module.
2153   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2154     Annotations[0]->getType(), Annotations.size()), Annotations);
2155   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2156                                       llvm::GlobalValue::AppendingLinkage,
2157                                       Array, "llvm.global.annotations");
2158   gv->setSection(AnnotationSection);
2159 }
2160 
2161 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2162   llvm::Constant *&AStr = AnnotationStrings[Str];
2163   if (AStr)
2164     return AStr;
2165 
2166   // Not found yet, create a new global.
2167   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2168   auto *gv =
2169       new llvm::GlobalVariable(getModule(), s->getType(), true,
2170                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2171   gv->setSection(AnnotationSection);
2172   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2173   AStr = gv;
2174   return gv;
2175 }
2176 
2177 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2178   SourceManager &SM = getContext().getSourceManager();
2179   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2180   if (PLoc.isValid())
2181     return EmitAnnotationString(PLoc.getFilename());
2182   return EmitAnnotationString(SM.getBufferName(Loc));
2183 }
2184 
2185 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2186   SourceManager &SM = getContext().getSourceManager();
2187   PresumedLoc PLoc = SM.getPresumedLoc(L);
2188   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2189     SM.getExpansionLineNumber(L);
2190   return llvm::ConstantInt::get(Int32Ty, LineNo);
2191 }
2192 
2193 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2194                                                 const AnnotateAttr *AA,
2195                                                 SourceLocation L) {
2196   // Get the globals for file name, annotation, and the line number.
2197   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2198                  *UnitGV = EmitAnnotationUnit(L),
2199                  *LineNoCst = EmitAnnotationLineNo(L);
2200 
2201   // Create the ConstantStruct for the global annotation.
2202   llvm::Constant *Fields[4] = {
2203     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2204     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2205     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2206     LineNoCst
2207   };
2208   return llvm::ConstantStruct::getAnon(Fields);
2209 }
2210 
2211 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2212                                          llvm::GlobalValue *GV) {
2213   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2214   // Get the struct elements for these annotations.
2215   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2216     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2217 }
2218 
2219 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2220                                            llvm::Function *Fn,
2221                                            SourceLocation Loc) const {
2222   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2223   // Blacklist by function name.
2224   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2225     return true;
2226   // Blacklist by location.
2227   if (Loc.isValid())
2228     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2229   // If location is unknown, this may be a compiler-generated function. Assume
2230   // it's located in the main file.
2231   auto &SM = Context.getSourceManager();
2232   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2233     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2234   }
2235   return false;
2236 }
2237 
2238 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2239                                            SourceLocation Loc, QualType Ty,
2240                                            StringRef Category) const {
2241   // For now globals can be blacklisted only in ASan and KASan.
2242   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
2243       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2244        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
2245   if (!EnabledAsanMask)
2246     return false;
2247   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2248   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2249     return true;
2250   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2251     return true;
2252   // Check global type.
2253   if (!Ty.isNull()) {
2254     // Drill down the array types: if global variable of a fixed type is
2255     // blacklisted, we also don't instrument arrays of them.
2256     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2257       Ty = AT->getElementType();
2258     Ty = Ty.getCanonicalType().getUnqualifiedType();
2259     // We allow to blacklist only record types (classes, structs etc.)
2260     if (Ty->isRecordType()) {
2261       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2262       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2263         return true;
2264     }
2265   }
2266   return false;
2267 }
2268 
2269 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2270                                    StringRef Category) const {
2271   const auto &XRayFilter = getContext().getXRayFilter();
2272   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2273   auto Attr = ImbueAttr::NONE;
2274   if (Loc.isValid())
2275     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2276   if (Attr == ImbueAttr::NONE)
2277     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2278   switch (Attr) {
2279   case ImbueAttr::NONE:
2280     return false;
2281   case ImbueAttr::ALWAYS:
2282     Fn->addFnAttr("function-instrument", "xray-always");
2283     break;
2284   case ImbueAttr::ALWAYS_ARG1:
2285     Fn->addFnAttr("function-instrument", "xray-always");
2286     Fn->addFnAttr("xray-log-args", "1");
2287     break;
2288   case ImbueAttr::NEVER:
2289     Fn->addFnAttr("function-instrument", "xray-never");
2290     break;
2291   }
2292   return true;
2293 }
2294 
2295 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2296   // Never defer when EmitAllDecls is specified.
2297   if (LangOpts.EmitAllDecls)
2298     return true;
2299 
2300   if (CodeGenOpts.KeepStaticConsts) {
2301     const auto *VD = dyn_cast<VarDecl>(Global);
2302     if (VD && VD->getType().isConstQualified() &&
2303         VD->getStorageDuration() == SD_Static)
2304       return true;
2305   }
2306 
2307   return getContext().DeclMustBeEmitted(Global);
2308 }
2309 
2310 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2311   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2312     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2313       // Implicit template instantiations may change linkage if they are later
2314       // explicitly instantiated, so they should not be emitted eagerly.
2315       return false;
2316   if (const auto *VD = dyn_cast<VarDecl>(Global))
2317     if (Context.getInlineVariableDefinitionKind(VD) ==
2318         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2319       // A definition of an inline constexpr static data member may change
2320       // linkage later if it's redeclared outside the class.
2321       return false;
2322   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2323   // codegen for global variables, because they may be marked as threadprivate.
2324   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2325       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2326       !isTypeConstant(Global->getType(), false) &&
2327       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2328     return false;
2329 
2330   return true;
2331 }
2332 
2333 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2334     const CXXUuidofExpr* E) {
2335   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2336   // well-formed.
2337   StringRef Uuid = E->getUuidStr();
2338   std::string Name = "_GUID_" + Uuid.lower();
2339   std::replace(Name.begin(), Name.end(), '-', '_');
2340 
2341   // The UUID descriptor should be pointer aligned.
2342   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2343 
2344   // Look for an existing global.
2345   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2346     return ConstantAddress(GV, Alignment);
2347 
2348   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2349   assert(Init && "failed to initialize as constant");
2350 
2351   auto *GV = new llvm::GlobalVariable(
2352       getModule(), Init->getType(),
2353       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2354   if (supportsCOMDAT())
2355     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2356   setDSOLocal(GV);
2357   return ConstantAddress(GV, Alignment);
2358 }
2359 
2360 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2361   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2362   assert(AA && "No alias?");
2363 
2364   CharUnits Alignment = getContext().getDeclAlign(VD);
2365   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2366 
2367   // See if there is already something with the target's name in the module.
2368   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2369   if (Entry) {
2370     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2371     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2372     return ConstantAddress(Ptr, Alignment);
2373   }
2374 
2375   llvm::Constant *Aliasee;
2376   if (isa<llvm::FunctionType>(DeclTy))
2377     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2378                                       GlobalDecl(cast<FunctionDecl>(VD)),
2379                                       /*ForVTable=*/false);
2380   else
2381     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2382                                     llvm::PointerType::getUnqual(DeclTy),
2383                                     nullptr);
2384 
2385   auto *F = cast<llvm::GlobalValue>(Aliasee);
2386   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2387   WeakRefReferences.insert(F);
2388 
2389   return ConstantAddress(Aliasee, Alignment);
2390 }
2391 
2392 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2393   const auto *Global = cast<ValueDecl>(GD.getDecl());
2394 
2395   // Weak references don't produce any output by themselves.
2396   if (Global->hasAttr<WeakRefAttr>())
2397     return;
2398 
2399   // If this is an alias definition (which otherwise looks like a declaration)
2400   // emit it now.
2401   if (Global->hasAttr<AliasAttr>())
2402     return EmitAliasDefinition(GD);
2403 
2404   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2405   if (Global->hasAttr<IFuncAttr>())
2406     return emitIFuncDefinition(GD);
2407 
2408   // If this is a cpu_dispatch multiversion function, emit the resolver.
2409   if (Global->hasAttr<CPUDispatchAttr>())
2410     return emitCPUDispatchDefinition(GD);
2411 
2412   // If this is CUDA, be selective about which declarations we emit.
2413   if (LangOpts.CUDA) {
2414     if (LangOpts.CUDAIsDevice) {
2415       if (!Global->hasAttr<CUDADeviceAttr>() &&
2416           !Global->hasAttr<CUDAGlobalAttr>() &&
2417           !Global->hasAttr<CUDAConstantAttr>() &&
2418           !Global->hasAttr<CUDASharedAttr>() &&
2419           !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2420         return;
2421     } else {
2422       // We need to emit host-side 'shadows' for all global
2423       // device-side variables because the CUDA runtime needs their
2424       // size and host-side address in order to provide access to
2425       // their device-side incarnations.
2426 
2427       // So device-only functions are the only things we skip.
2428       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2429           Global->hasAttr<CUDADeviceAttr>())
2430         return;
2431 
2432       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2433              "Expected Variable or Function");
2434     }
2435   }
2436 
2437   if (LangOpts.OpenMP) {
2438     // If this is OpenMP device, check if it is legal to emit this global
2439     // normally.
2440     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2441       return;
2442     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2443       if (MustBeEmitted(Global))
2444         EmitOMPDeclareReduction(DRD);
2445       return;
2446     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2447       if (MustBeEmitted(Global))
2448         EmitOMPDeclareMapper(DMD);
2449       return;
2450     }
2451   }
2452 
2453   // Ignore declarations, they will be emitted on their first use.
2454   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2455     // Forward declarations are emitted lazily on first use.
2456     if (!FD->doesThisDeclarationHaveABody()) {
2457       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2458         return;
2459 
2460       StringRef MangledName = getMangledName(GD);
2461 
2462       // Compute the function info and LLVM type.
2463       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2464       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2465 
2466       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2467                               /*DontDefer=*/false);
2468       return;
2469     }
2470   } else {
2471     const auto *VD = cast<VarDecl>(Global);
2472     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2473     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2474         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2475       if (LangOpts.OpenMP) {
2476         // Emit declaration of the must-be-emitted declare target variable.
2477         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2478                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2479           bool UnifiedMemoryEnabled =
2480               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2481           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2482               !UnifiedMemoryEnabled) {
2483             (void)GetAddrOfGlobalVar(VD);
2484           } else {
2485             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2486                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2487                      UnifiedMemoryEnabled)) &&
2488                    "Link clause or to clause with unified memory expected.");
2489             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2490           }
2491 
2492           return;
2493         }
2494       }
2495       // If this declaration may have caused an inline variable definition to
2496       // change linkage, make sure that it's emitted.
2497       if (Context.getInlineVariableDefinitionKind(VD) ==
2498           ASTContext::InlineVariableDefinitionKind::Strong)
2499         GetAddrOfGlobalVar(VD);
2500       return;
2501     }
2502   }
2503 
2504   // Defer code generation to first use when possible, e.g. if this is an inline
2505   // function. If the global must always be emitted, do it eagerly if possible
2506   // to benefit from cache locality.
2507   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2508     // Emit the definition if it can't be deferred.
2509     EmitGlobalDefinition(GD);
2510     return;
2511   }
2512 
2513   // If we're deferring emission of a C++ variable with an
2514   // initializer, remember the order in which it appeared in the file.
2515   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2516       cast<VarDecl>(Global)->hasInit()) {
2517     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2518     CXXGlobalInits.push_back(nullptr);
2519   }
2520 
2521   StringRef MangledName = getMangledName(GD);
2522   if (GetGlobalValue(MangledName) != nullptr) {
2523     // The value has already been used and should therefore be emitted.
2524     addDeferredDeclToEmit(GD);
2525   } else if (MustBeEmitted(Global)) {
2526     // The value must be emitted, but cannot be emitted eagerly.
2527     assert(!MayBeEmittedEagerly(Global));
2528     addDeferredDeclToEmit(GD);
2529   } else {
2530     // Otherwise, remember that we saw a deferred decl with this name.  The
2531     // first use of the mangled name will cause it to move into
2532     // DeferredDeclsToEmit.
2533     DeferredDecls[MangledName] = GD;
2534   }
2535 }
2536 
2537 // Check if T is a class type with a destructor that's not dllimport.
2538 static bool HasNonDllImportDtor(QualType T) {
2539   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2540     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2541       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2542         return true;
2543 
2544   return false;
2545 }
2546 
2547 namespace {
2548   struct FunctionIsDirectlyRecursive
2549       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2550     const StringRef Name;
2551     const Builtin::Context &BI;
2552     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2553         : Name(N), BI(C) {}
2554 
2555     bool VisitCallExpr(const CallExpr *E) {
2556       const FunctionDecl *FD = E->getDirectCallee();
2557       if (!FD)
2558         return false;
2559       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2560       if (Attr && Name == Attr->getLabel())
2561         return true;
2562       unsigned BuiltinID = FD->getBuiltinID();
2563       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2564         return false;
2565       StringRef BuiltinName = BI.getName(BuiltinID);
2566       if (BuiltinName.startswith("__builtin_") &&
2567           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2568         return true;
2569       }
2570       return false;
2571     }
2572 
2573     bool VisitStmt(const Stmt *S) {
2574       for (const Stmt *Child : S->children())
2575         if (Child && this->Visit(Child))
2576           return true;
2577       return false;
2578     }
2579   };
2580 
2581   // Make sure we're not referencing non-imported vars or functions.
2582   struct DLLImportFunctionVisitor
2583       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2584     bool SafeToInline = true;
2585 
2586     bool shouldVisitImplicitCode() const { return true; }
2587 
2588     bool VisitVarDecl(VarDecl *VD) {
2589       if (VD->getTLSKind()) {
2590         // A thread-local variable cannot be imported.
2591         SafeToInline = false;
2592         return SafeToInline;
2593       }
2594 
2595       // A variable definition might imply a destructor call.
2596       if (VD->isThisDeclarationADefinition())
2597         SafeToInline = !HasNonDllImportDtor(VD->getType());
2598 
2599       return SafeToInline;
2600     }
2601 
2602     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2603       if (const auto *D = E->getTemporary()->getDestructor())
2604         SafeToInline = D->hasAttr<DLLImportAttr>();
2605       return SafeToInline;
2606     }
2607 
2608     bool VisitDeclRefExpr(DeclRefExpr *E) {
2609       ValueDecl *VD = E->getDecl();
2610       if (isa<FunctionDecl>(VD))
2611         SafeToInline = VD->hasAttr<DLLImportAttr>();
2612       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2613         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2614       return SafeToInline;
2615     }
2616 
2617     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2618       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2619       return SafeToInline;
2620     }
2621 
2622     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2623       CXXMethodDecl *M = E->getMethodDecl();
2624       if (!M) {
2625         // Call through a pointer to member function. This is safe to inline.
2626         SafeToInline = true;
2627       } else {
2628         SafeToInline = M->hasAttr<DLLImportAttr>();
2629       }
2630       return SafeToInline;
2631     }
2632 
2633     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2634       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2635       return SafeToInline;
2636     }
2637 
2638     bool VisitCXXNewExpr(CXXNewExpr *E) {
2639       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2640       return SafeToInline;
2641     }
2642   };
2643 }
2644 
2645 // isTriviallyRecursive - Check if this function calls another
2646 // decl that, because of the asm attribute or the other decl being a builtin,
2647 // ends up pointing to itself.
2648 bool
2649 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2650   StringRef Name;
2651   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2652     // asm labels are a special kind of mangling we have to support.
2653     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2654     if (!Attr)
2655       return false;
2656     Name = Attr->getLabel();
2657   } else {
2658     Name = FD->getName();
2659   }
2660 
2661   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2662   const Stmt *Body = FD->getBody();
2663   return Body ? Walker.Visit(Body) : false;
2664 }
2665 
2666 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2667   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2668     return true;
2669   const auto *F = cast<FunctionDecl>(GD.getDecl());
2670   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2671     return false;
2672 
2673   if (F->hasAttr<DLLImportAttr>()) {
2674     // Check whether it would be safe to inline this dllimport function.
2675     DLLImportFunctionVisitor Visitor;
2676     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2677     if (!Visitor.SafeToInline)
2678       return false;
2679 
2680     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2681       // Implicit destructor invocations aren't captured in the AST, so the
2682       // check above can't see them. Check for them manually here.
2683       for (const Decl *Member : Dtor->getParent()->decls())
2684         if (isa<FieldDecl>(Member))
2685           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2686             return false;
2687       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2688         if (HasNonDllImportDtor(B.getType()))
2689           return false;
2690     }
2691   }
2692 
2693   // PR9614. Avoid cases where the source code is lying to us. An available
2694   // externally function should have an equivalent function somewhere else,
2695   // but a function that calls itself is clearly not equivalent to the real
2696   // implementation.
2697   // This happens in glibc's btowc and in some configure checks.
2698   return !isTriviallyRecursive(F);
2699 }
2700 
2701 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2702   return CodeGenOpts.OptimizationLevel > 0;
2703 }
2704 
2705 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2706                                                        llvm::GlobalValue *GV) {
2707   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2708 
2709   if (FD->isCPUSpecificMultiVersion()) {
2710     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2711     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2712       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2713     // Requires multiple emits.
2714   } else
2715     EmitGlobalFunctionDefinition(GD, GV);
2716 }
2717 
2718 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2719   const auto *D = cast<ValueDecl>(GD.getDecl());
2720 
2721   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2722                                  Context.getSourceManager(),
2723                                  "Generating code for declaration");
2724 
2725   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2726     // At -O0, don't generate IR for functions with available_externally
2727     // linkage.
2728     if (!shouldEmitFunction(GD))
2729       return;
2730 
2731     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2732       std::string Name;
2733       llvm::raw_string_ostream OS(Name);
2734       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2735                                /*Qualified=*/true);
2736       return Name;
2737     });
2738 
2739     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2740       // Make sure to emit the definition(s) before we emit the thunks.
2741       // This is necessary for the generation of certain thunks.
2742       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2743         ABI->emitCXXStructor(GD);
2744       else if (FD->isMultiVersion())
2745         EmitMultiVersionFunctionDefinition(GD, GV);
2746       else
2747         EmitGlobalFunctionDefinition(GD, GV);
2748 
2749       if (Method->isVirtual())
2750         getVTables().EmitThunks(GD);
2751 
2752       return;
2753     }
2754 
2755     if (FD->isMultiVersion())
2756       return EmitMultiVersionFunctionDefinition(GD, GV);
2757     return EmitGlobalFunctionDefinition(GD, GV);
2758   }
2759 
2760   if (const auto *VD = dyn_cast<VarDecl>(D))
2761     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2762 
2763   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2764 }
2765 
2766 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2767                                                       llvm::Function *NewFn);
2768 
2769 static unsigned
2770 TargetMVPriority(const TargetInfo &TI,
2771                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2772   unsigned Priority = 0;
2773   for (StringRef Feat : RO.Conditions.Features)
2774     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2775 
2776   if (!RO.Conditions.Architecture.empty())
2777     Priority = std::max(
2778         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2779   return Priority;
2780 }
2781 
2782 void CodeGenModule::emitMultiVersionFunctions() {
2783   for (GlobalDecl GD : MultiVersionFuncs) {
2784     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2785     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2786     getContext().forEachMultiversionedFunctionVersion(
2787         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2788           GlobalDecl CurGD{
2789               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2790           StringRef MangledName = getMangledName(CurGD);
2791           llvm::Constant *Func = GetGlobalValue(MangledName);
2792           if (!Func) {
2793             if (CurFD->isDefined()) {
2794               EmitGlobalFunctionDefinition(CurGD, nullptr);
2795               Func = GetGlobalValue(MangledName);
2796             } else {
2797               const CGFunctionInfo &FI =
2798                   getTypes().arrangeGlobalDeclaration(GD);
2799               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2800               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2801                                        /*DontDefer=*/false, ForDefinition);
2802             }
2803             assert(Func && "This should have just been created");
2804           }
2805 
2806           const auto *TA = CurFD->getAttr<TargetAttr>();
2807           llvm::SmallVector<StringRef, 8> Feats;
2808           TA->getAddedFeatures(Feats);
2809 
2810           Options.emplace_back(cast<llvm::Function>(Func),
2811                                TA->getArchitecture(), Feats);
2812         });
2813 
2814     llvm::Function *ResolverFunc;
2815     const TargetInfo &TI = getTarget();
2816 
2817     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2818       ResolverFunc = cast<llvm::Function>(
2819           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2820     else
2821       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2822 
2823     if (supportsCOMDAT())
2824       ResolverFunc->setComdat(
2825           getModule().getOrInsertComdat(ResolverFunc->getName()));
2826 
2827     llvm::stable_sort(
2828         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2829                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2830           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2831         });
2832     CodeGenFunction CGF(*this);
2833     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2834   }
2835 }
2836 
2837 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2838   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2839   assert(FD && "Not a FunctionDecl?");
2840   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2841   assert(DD && "Not a cpu_dispatch Function?");
2842   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2843 
2844   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2845     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2846     DeclTy = getTypes().GetFunctionType(FInfo);
2847   }
2848 
2849   StringRef ResolverName = getMangledName(GD);
2850 
2851   llvm::Type *ResolverType;
2852   GlobalDecl ResolverGD;
2853   if (getTarget().supportsIFunc())
2854     ResolverType = llvm::FunctionType::get(
2855         llvm::PointerType::get(DeclTy,
2856                                Context.getTargetAddressSpace(FD->getType())),
2857         false);
2858   else {
2859     ResolverType = DeclTy;
2860     ResolverGD = GD;
2861   }
2862 
2863   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2864       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2865 
2866   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2867   const TargetInfo &Target = getTarget();
2868   unsigned Index = 0;
2869   for (const IdentifierInfo *II : DD->cpus()) {
2870     // Get the name of the target function so we can look it up/create it.
2871     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2872                               getCPUSpecificMangling(*this, II->getName());
2873 
2874     llvm::Constant *Func = GetGlobalValue(MangledName);
2875 
2876     if (!Func) {
2877       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2878       if (ExistingDecl.getDecl() &&
2879           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2880         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2881         Func = GetGlobalValue(MangledName);
2882       } else {
2883         if (!ExistingDecl.getDecl())
2884           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2885 
2886       Func = GetOrCreateLLVMFunction(
2887           MangledName, DeclTy, ExistingDecl,
2888           /*ForVTable=*/false, /*DontDefer=*/true,
2889           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2890       }
2891     }
2892 
2893     llvm::SmallVector<StringRef, 32> Features;
2894     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2895     llvm::transform(Features, Features.begin(),
2896                     [](StringRef Str) { return Str.substr(1); });
2897     Features.erase(std::remove_if(
2898         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2899           return !Target.validateCpuSupports(Feat);
2900         }), Features.end());
2901     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2902     ++Index;
2903   }
2904 
2905   llvm::sort(
2906       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2907                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2908         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2909                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2910       });
2911 
2912   // If the list contains multiple 'default' versions, such as when it contains
2913   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2914   // always run on at least a 'pentium'). We do this by deleting the 'least
2915   // advanced' (read, lowest mangling letter).
2916   while (Options.size() > 1 &&
2917          CodeGenFunction::GetX86CpuSupportsMask(
2918              (Options.end() - 2)->Conditions.Features) == 0) {
2919     StringRef LHSName = (Options.end() - 2)->Function->getName();
2920     StringRef RHSName = (Options.end() - 1)->Function->getName();
2921     if (LHSName.compare(RHSName) < 0)
2922       Options.erase(Options.end() - 2);
2923     else
2924       Options.erase(Options.end() - 1);
2925   }
2926 
2927   CodeGenFunction CGF(*this);
2928   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2929 }
2930 
2931 /// If a dispatcher for the specified mangled name is not in the module, create
2932 /// and return an llvm Function with the specified type.
2933 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2934     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2935   std::string MangledName =
2936       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2937 
2938   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2939   // a separate resolver).
2940   std::string ResolverName = MangledName;
2941   if (getTarget().supportsIFunc())
2942     ResolverName += ".ifunc";
2943   else if (FD->isTargetMultiVersion())
2944     ResolverName += ".resolver";
2945 
2946   // If this already exists, just return that one.
2947   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2948     return ResolverGV;
2949 
2950   // Since this is the first time we've created this IFunc, make sure
2951   // that we put this multiversioned function into the list to be
2952   // replaced later if necessary (target multiversioning only).
2953   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2954     MultiVersionFuncs.push_back(GD);
2955 
2956   if (getTarget().supportsIFunc()) {
2957     llvm::Type *ResolverType = llvm::FunctionType::get(
2958         llvm::PointerType::get(
2959             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2960         false);
2961     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2962         MangledName + ".resolver", ResolverType, GlobalDecl{},
2963         /*ForVTable=*/false);
2964     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2965         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2966     GIF->setName(ResolverName);
2967     SetCommonAttributes(FD, GIF);
2968 
2969     return GIF;
2970   }
2971 
2972   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2973       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2974   assert(isa<llvm::GlobalValue>(Resolver) &&
2975          "Resolver should be created for the first time");
2976   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2977   return Resolver;
2978 }
2979 
2980 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2981 /// module, create and return an llvm Function with the specified type. If there
2982 /// is something in the module with the specified name, return it potentially
2983 /// bitcasted to the right type.
2984 ///
2985 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2986 /// to set the attributes on the function when it is first created.
2987 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2988     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2989     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2990     ForDefinition_t IsForDefinition) {
2991   const Decl *D = GD.getDecl();
2992 
2993   // Any attempts to use a MultiVersion function should result in retrieving
2994   // the iFunc instead. Name Mangling will handle the rest of the changes.
2995   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2996     // For the device mark the function as one that should be emitted.
2997     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2998         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2999         !DontDefer && !IsForDefinition) {
3000       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3001         GlobalDecl GDDef;
3002         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3003           GDDef = GlobalDecl(CD, GD.getCtorType());
3004         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3005           GDDef = GlobalDecl(DD, GD.getDtorType());
3006         else
3007           GDDef = GlobalDecl(FDDef);
3008         EmitGlobal(GDDef);
3009       }
3010     }
3011 
3012     if (FD->isMultiVersion()) {
3013       const auto *TA = FD->getAttr<TargetAttr>();
3014       if (TA && TA->isDefaultVersion())
3015         UpdateMultiVersionNames(GD, FD);
3016       if (!IsForDefinition)
3017         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3018     }
3019   }
3020 
3021   // Lookup the entry, lazily creating it if necessary.
3022   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3023   if (Entry) {
3024     if (WeakRefReferences.erase(Entry)) {
3025       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3026       if (FD && !FD->hasAttr<WeakAttr>())
3027         Entry->setLinkage(llvm::Function::ExternalLinkage);
3028     }
3029 
3030     // Handle dropped DLL attributes.
3031     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3032       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3033       setDSOLocal(Entry);
3034     }
3035 
3036     // If there are two attempts to define the same mangled name, issue an
3037     // error.
3038     if (IsForDefinition && !Entry->isDeclaration()) {
3039       GlobalDecl OtherGD;
3040       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3041       // to make sure that we issue an error only once.
3042       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3043           (GD.getCanonicalDecl().getDecl() !=
3044            OtherGD.getCanonicalDecl().getDecl()) &&
3045           DiagnosedConflictingDefinitions.insert(GD).second) {
3046         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3047             << MangledName;
3048         getDiags().Report(OtherGD.getDecl()->getLocation(),
3049                           diag::note_previous_definition);
3050       }
3051     }
3052 
3053     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3054         (Entry->getType()->getElementType() == Ty)) {
3055       return Entry;
3056     }
3057 
3058     // Make sure the result is of the correct type.
3059     // (If function is requested for a definition, we always need to create a new
3060     // function, not just return a bitcast.)
3061     if (!IsForDefinition)
3062       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3063   }
3064 
3065   // This function doesn't have a complete type (for example, the return
3066   // type is an incomplete struct). Use a fake type instead, and make
3067   // sure not to try to set attributes.
3068   bool IsIncompleteFunction = false;
3069 
3070   llvm::FunctionType *FTy;
3071   if (isa<llvm::FunctionType>(Ty)) {
3072     FTy = cast<llvm::FunctionType>(Ty);
3073   } else {
3074     FTy = llvm::FunctionType::get(VoidTy, false);
3075     IsIncompleteFunction = true;
3076   }
3077 
3078   llvm::Function *F =
3079       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3080                              Entry ? StringRef() : MangledName, &getModule());
3081 
3082   // If we already created a function with the same mangled name (but different
3083   // type) before, take its name and add it to the list of functions to be
3084   // replaced with F at the end of CodeGen.
3085   //
3086   // This happens if there is a prototype for a function (e.g. "int f()") and
3087   // then a definition of a different type (e.g. "int f(int x)").
3088   if (Entry) {
3089     F->takeName(Entry);
3090 
3091     // This might be an implementation of a function without a prototype, in
3092     // which case, try to do special replacement of calls which match the new
3093     // prototype.  The really key thing here is that we also potentially drop
3094     // arguments from the call site so as to make a direct call, which makes the
3095     // inliner happier and suppresses a number of optimizer warnings (!) about
3096     // dropping arguments.
3097     if (!Entry->use_empty()) {
3098       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3099       Entry->removeDeadConstantUsers();
3100     }
3101 
3102     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3103         F, Entry->getType()->getElementType()->getPointerTo());
3104     addGlobalValReplacement(Entry, BC);
3105   }
3106 
3107   assert(F->getName() == MangledName && "name was uniqued!");
3108   if (D)
3109     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3110   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3111     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3112     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3113   }
3114 
3115   if (!DontDefer) {
3116     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3117     // each other bottoming out with the base dtor.  Therefore we emit non-base
3118     // dtors on usage, even if there is no dtor definition in the TU.
3119     if (D && isa<CXXDestructorDecl>(D) &&
3120         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3121                                            GD.getDtorType()))
3122       addDeferredDeclToEmit(GD);
3123 
3124     // This is the first use or definition of a mangled name.  If there is a
3125     // deferred decl with this name, remember that we need to emit it at the end
3126     // of the file.
3127     auto DDI = DeferredDecls.find(MangledName);
3128     if (DDI != DeferredDecls.end()) {
3129       // Move the potentially referenced deferred decl to the
3130       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3131       // don't need it anymore).
3132       addDeferredDeclToEmit(DDI->second);
3133       DeferredDecls.erase(DDI);
3134 
3135       // Otherwise, there are cases we have to worry about where we're
3136       // using a declaration for which we must emit a definition but where
3137       // we might not find a top-level definition:
3138       //   - member functions defined inline in their classes
3139       //   - friend functions defined inline in some class
3140       //   - special member functions with implicit definitions
3141       // If we ever change our AST traversal to walk into class methods,
3142       // this will be unnecessary.
3143       //
3144       // We also don't emit a definition for a function if it's going to be an
3145       // entry in a vtable, unless it's already marked as used.
3146     } else if (getLangOpts().CPlusPlus && D) {
3147       // Look for a declaration that's lexically in a record.
3148       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3149            FD = FD->getPreviousDecl()) {
3150         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3151           if (FD->doesThisDeclarationHaveABody()) {
3152             addDeferredDeclToEmit(GD.getWithDecl(FD));
3153             break;
3154           }
3155         }
3156       }
3157     }
3158   }
3159 
3160   // Make sure the result is of the requested type.
3161   if (!IsIncompleteFunction) {
3162     assert(F->getType()->getElementType() == Ty);
3163     return F;
3164   }
3165 
3166   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3167   return llvm::ConstantExpr::getBitCast(F, PTy);
3168 }
3169 
3170 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3171 /// non-null, then this function will use the specified type if it has to
3172 /// create it (this occurs when we see a definition of the function).
3173 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3174                                                  llvm::Type *Ty,
3175                                                  bool ForVTable,
3176                                                  bool DontDefer,
3177                                               ForDefinition_t IsForDefinition) {
3178   // If there was no specific requested type, just convert it now.
3179   if (!Ty) {
3180     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3181     Ty = getTypes().ConvertType(FD->getType());
3182   }
3183 
3184   // Devirtualized destructor calls may come through here instead of via
3185   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3186   // of the complete destructor when necessary.
3187   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3188     if (getTarget().getCXXABI().isMicrosoft() &&
3189         GD.getDtorType() == Dtor_Complete &&
3190         DD->getParent()->getNumVBases() == 0)
3191       GD = GlobalDecl(DD, Dtor_Base);
3192   }
3193 
3194   StringRef MangledName = getMangledName(GD);
3195   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3196                                  /*IsThunk=*/false, llvm::AttributeList(),
3197                                  IsForDefinition);
3198 }
3199 
3200 static const FunctionDecl *
3201 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3202   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3203   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3204 
3205   IdentifierInfo &CII = C.Idents.get(Name);
3206   for (const auto &Result : DC->lookup(&CII))
3207     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3208       return FD;
3209 
3210   if (!C.getLangOpts().CPlusPlus)
3211     return nullptr;
3212 
3213   // Demangle the premangled name from getTerminateFn()
3214   IdentifierInfo &CXXII =
3215       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3216           ? C.Idents.get("terminate")
3217           : C.Idents.get(Name);
3218 
3219   for (const auto &N : {"__cxxabiv1", "std"}) {
3220     IdentifierInfo &NS = C.Idents.get(N);
3221     for (const auto &Result : DC->lookup(&NS)) {
3222       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3223       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3224         for (const auto &Result : LSD->lookup(&NS))
3225           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3226             break;
3227 
3228       if (ND)
3229         for (const auto &Result : ND->lookup(&CXXII))
3230           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3231             return FD;
3232     }
3233   }
3234 
3235   return nullptr;
3236 }
3237 
3238 /// CreateRuntimeFunction - Create a new runtime function with the specified
3239 /// type and name.
3240 llvm::FunctionCallee
3241 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3242                                      llvm::AttributeList ExtraAttrs,
3243                                      bool Local) {
3244   llvm::Constant *C =
3245       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3246                               /*DontDefer=*/false, /*IsThunk=*/false,
3247                               ExtraAttrs);
3248 
3249   if (auto *F = dyn_cast<llvm::Function>(C)) {
3250     if (F->empty()) {
3251       F->setCallingConv(getRuntimeCC());
3252 
3253       // In Windows Itanium environments, try to mark runtime functions
3254       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3255       // will link their standard library statically or dynamically. Marking
3256       // functions imported when they are not imported can cause linker errors
3257       // and warnings.
3258       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3259           !getCodeGenOpts().LTOVisibilityPublicStd) {
3260         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3261         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3262           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3263           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3264         }
3265       }
3266       setDSOLocal(F);
3267     }
3268   }
3269 
3270   return {FTy, C};
3271 }
3272 
3273 /// isTypeConstant - Determine whether an object of this type can be emitted
3274 /// as a constant.
3275 ///
3276 /// If ExcludeCtor is true, the duration when the object's constructor runs
3277 /// will not be considered. The caller will need to verify that the object is
3278 /// not written to during its construction.
3279 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3280   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3281     return false;
3282 
3283   if (Context.getLangOpts().CPlusPlus) {
3284     if (const CXXRecordDecl *Record
3285           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3286       return ExcludeCtor && !Record->hasMutableFields() &&
3287              Record->hasTrivialDestructor();
3288   }
3289 
3290   return true;
3291 }
3292 
3293 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3294 /// create and return an llvm GlobalVariable with the specified type.  If there
3295 /// is something in the module with the specified name, return it potentially
3296 /// bitcasted to the right type.
3297 ///
3298 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3299 /// to set the attributes on the global when it is first created.
3300 ///
3301 /// If IsForDefinition is true, it is guaranteed that an actual global with
3302 /// type Ty will be returned, not conversion of a variable with the same
3303 /// mangled name but some other type.
3304 llvm::Constant *
3305 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3306                                      llvm::PointerType *Ty,
3307                                      const VarDecl *D,
3308                                      ForDefinition_t IsForDefinition) {
3309   // Lookup the entry, lazily creating it if necessary.
3310   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3311   if (Entry) {
3312     if (WeakRefReferences.erase(Entry)) {
3313       if (D && !D->hasAttr<WeakAttr>())
3314         Entry->setLinkage(llvm::Function::ExternalLinkage);
3315     }
3316 
3317     // Handle dropped DLL attributes.
3318     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3319       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3320 
3321     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3322       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3323 
3324     if (Entry->getType() == Ty)
3325       return Entry;
3326 
3327     // If there are two attempts to define the same mangled name, issue an
3328     // error.
3329     if (IsForDefinition && !Entry->isDeclaration()) {
3330       GlobalDecl OtherGD;
3331       const VarDecl *OtherD;
3332 
3333       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3334       // to make sure that we issue an error only once.
3335       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3336           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3337           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3338           OtherD->hasInit() &&
3339           DiagnosedConflictingDefinitions.insert(D).second) {
3340         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3341             << MangledName;
3342         getDiags().Report(OtherGD.getDecl()->getLocation(),
3343                           diag::note_previous_definition);
3344       }
3345     }
3346 
3347     // Make sure the result is of the correct type.
3348     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3349       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3350 
3351     // (If global is requested for a definition, we always need to create a new
3352     // global, not just return a bitcast.)
3353     if (!IsForDefinition)
3354       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3355   }
3356 
3357   auto AddrSpace = GetGlobalVarAddressSpace(D);
3358   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3359 
3360   auto *GV = new llvm::GlobalVariable(
3361       getModule(), Ty->getElementType(), false,
3362       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3363       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3364 
3365   // If we already created a global with the same mangled name (but different
3366   // type) before, take its name and remove it from its parent.
3367   if (Entry) {
3368     GV->takeName(Entry);
3369 
3370     if (!Entry->use_empty()) {
3371       llvm::Constant *NewPtrForOldDecl =
3372           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3373       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3374     }
3375 
3376     Entry->eraseFromParent();
3377   }
3378 
3379   // This is the first use or definition of a mangled name.  If there is a
3380   // deferred decl with this name, remember that we need to emit it at the end
3381   // of the file.
3382   auto DDI = DeferredDecls.find(MangledName);
3383   if (DDI != DeferredDecls.end()) {
3384     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3385     // list, and remove it from DeferredDecls (since we don't need it anymore).
3386     addDeferredDeclToEmit(DDI->second);
3387     DeferredDecls.erase(DDI);
3388   }
3389 
3390   // Handle things which are present even on external declarations.
3391   if (D) {
3392     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3393       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3394 
3395     // FIXME: This code is overly simple and should be merged with other global
3396     // handling.
3397     GV->setConstant(isTypeConstant(D->getType(), false));
3398 
3399     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3400 
3401     setLinkageForGV(GV, D);
3402 
3403     if (D->getTLSKind()) {
3404       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3405         CXXThreadLocals.push_back(D);
3406       setTLSMode(GV, *D);
3407     }
3408 
3409     setGVProperties(GV, D);
3410 
3411     // If required by the ABI, treat declarations of static data members with
3412     // inline initializers as definitions.
3413     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3414       EmitGlobalVarDefinition(D);
3415     }
3416 
3417     // Emit section information for extern variables.
3418     if (D->hasExternalStorage()) {
3419       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3420         GV->setSection(SA->getName());
3421     }
3422 
3423     // Handle XCore specific ABI requirements.
3424     if (getTriple().getArch() == llvm::Triple::xcore &&
3425         D->getLanguageLinkage() == CLanguageLinkage &&
3426         D->getType().isConstant(Context) &&
3427         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3428       GV->setSection(".cp.rodata");
3429 
3430     // Check if we a have a const declaration with an initializer, we may be
3431     // able to emit it as available_externally to expose it's value to the
3432     // optimizer.
3433     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3434         D->getType().isConstQualified() && !GV->hasInitializer() &&
3435         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3436       const auto *Record =
3437           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3438       bool HasMutableFields = Record && Record->hasMutableFields();
3439       if (!HasMutableFields) {
3440         const VarDecl *InitDecl;
3441         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3442         if (InitExpr) {
3443           ConstantEmitter emitter(*this);
3444           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3445           if (Init) {
3446             auto *InitType = Init->getType();
3447             if (GV->getType()->getElementType() != InitType) {
3448               // The type of the initializer does not match the definition.
3449               // This happens when an initializer has a different type from
3450               // the type of the global (because of padding at the end of a
3451               // structure for instance).
3452               GV->setName(StringRef());
3453               // Make a new global with the correct type, this is now guaranteed
3454               // to work.
3455               auto *NewGV = cast<llvm::GlobalVariable>(
3456                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3457 
3458               // Erase the old global, since it is no longer used.
3459               GV->eraseFromParent();
3460               GV = NewGV;
3461             } else {
3462               GV->setInitializer(Init);
3463               GV->setConstant(true);
3464               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3465             }
3466             emitter.finalize(GV);
3467           }
3468         }
3469       }
3470     }
3471   }
3472 
3473   LangAS ExpectedAS =
3474       D ? D->getType().getAddressSpace()
3475         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3476   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3477          Ty->getPointerAddressSpace());
3478   if (AddrSpace != ExpectedAS)
3479     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3480                                                        ExpectedAS, Ty);
3481 
3482   if (GV->isDeclaration())
3483     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3484 
3485   return GV;
3486 }
3487 
3488 llvm::Constant *
3489 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3490                                ForDefinition_t IsForDefinition) {
3491   const Decl *D = GD.getDecl();
3492   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3493     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3494                                 /*DontDefer=*/false, IsForDefinition);
3495   else if (isa<CXXMethodDecl>(D)) {
3496     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3497         cast<CXXMethodDecl>(D));
3498     auto Ty = getTypes().GetFunctionType(*FInfo);
3499     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3500                              IsForDefinition);
3501   } else if (isa<FunctionDecl>(D)) {
3502     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3503     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3504     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3505                              IsForDefinition);
3506   } else
3507     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3508                               IsForDefinition);
3509 }
3510 
3511 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3512     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3513     unsigned Alignment) {
3514   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3515   llvm::GlobalVariable *OldGV = nullptr;
3516 
3517   if (GV) {
3518     // Check if the variable has the right type.
3519     if (GV->getType()->getElementType() == Ty)
3520       return GV;
3521 
3522     // Because C++ name mangling, the only way we can end up with an already
3523     // existing global with the same name is if it has been declared extern "C".
3524     assert(GV->isDeclaration() && "Declaration has wrong type!");
3525     OldGV = GV;
3526   }
3527 
3528   // Create a new variable.
3529   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3530                                 Linkage, nullptr, Name);
3531 
3532   if (OldGV) {
3533     // Replace occurrences of the old variable if needed.
3534     GV->takeName(OldGV);
3535 
3536     if (!OldGV->use_empty()) {
3537       llvm::Constant *NewPtrForOldDecl =
3538       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3539       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3540     }
3541 
3542     OldGV->eraseFromParent();
3543   }
3544 
3545   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3546       !GV->hasAvailableExternallyLinkage())
3547     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3548 
3549   GV->setAlignment(Alignment);
3550 
3551   return GV;
3552 }
3553 
3554 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3555 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3556 /// then it will be created with the specified type instead of whatever the
3557 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3558 /// that an actual global with type Ty will be returned, not conversion of a
3559 /// variable with the same mangled name but some other type.
3560 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3561                                                   llvm::Type *Ty,
3562                                            ForDefinition_t IsForDefinition) {
3563   assert(D->hasGlobalStorage() && "Not a global variable");
3564   QualType ASTTy = D->getType();
3565   if (!Ty)
3566     Ty = getTypes().ConvertTypeForMem(ASTTy);
3567 
3568   llvm::PointerType *PTy =
3569     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3570 
3571   StringRef MangledName = getMangledName(D);
3572   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3573 }
3574 
3575 /// CreateRuntimeVariable - Create a new runtime global variable with the
3576 /// specified type and name.
3577 llvm::Constant *
3578 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3579                                      StringRef Name) {
3580   auto PtrTy =
3581       getContext().getLangOpts().OpenCL
3582           ? llvm::PointerType::get(
3583                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3584           : llvm::PointerType::getUnqual(Ty);
3585   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3586   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3587   return Ret;
3588 }
3589 
3590 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3591   assert(!D->getInit() && "Cannot emit definite definitions here!");
3592 
3593   StringRef MangledName = getMangledName(D);
3594   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3595 
3596   // We already have a definition, not declaration, with the same mangled name.
3597   // Emitting of declaration is not required (and actually overwrites emitted
3598   // definition).
3599   if (GV && !GV->isDeclaration())
3600     return;
3601 
3602   // If we have not seen a reference to this variable yet, place it into the
3603   // deferred declarations table to be emitted if needed later.
3604   if (!MustBeEmitted(D) && !GV) {
3605       DeferredDecls[MangledName] = D;
3606       return;
3607   }
3608 
3609   // The tentative definition is the only definition.
3610   EmitGlobalVarDefinition(D);
3611 }
3612 
3613 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3614   return Context.toCharUnitsFromBits(
3615       getDataLayout().getTypeStoreSizeInBits(Ty));
3616 }
3617 
3618 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3619   LangAS AddrSpace = LangAS::Default;
3620   if (LangOpts.OpenCL) {
3621     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3622     assert(AddrSpace == LangAS::opencl_global ||
3623            AddrSpace == LangAS::opencl_constant ||
3624            AddrSpace == LangAS::opencl_local ||
3625            AddrSpace >= LangAS::FirstTargetAddressSpace);
3626     return AddrSpace;
3627   }
3628 
3629   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3630     if (D && D->hasAttr<CUDAConstantAttr>())
3631       return LangAS::cuda_constant;
3632     else if (D && D->hasAttr<CUDASharedAttr>())
3633       return LangAS::cuda_shared;
3634     else if (D && D->hasAttr<CUDADeviceAttr>())
3635       return LangAS::cuda_device;
3636     else if (D && D->getType().isConstQualified())
3637       return LangAS::cuda_constant;
3638     else
3639       return LangAS::cuda_device;
3640   }
3641 
3642   if (LangOpts.OpenMP) {
3643     LangAS AS;
3644     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3645       return AS;
3646   }
3647   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3648 }
3649 
3650 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3651   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3652   if (LangOpts.OpenCL)
3653     return LangAS::opencl_constant;
3654   if (auto AS = getTarget().getConstantAddressSpace())
3655     return AS.getValue();
3656   return LangAS::Default;
3657 }
3658 
3659 // In address space agnostic languages, string literals are in default address
3660 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3661 // emitted in constant address space in LLVM IR. To be consistent with other
3662 // parts of AST, string literal global variables in constant address space
3663 // need to be casted to default address space before being put into address
3664 // map and referenced by other part of CodeGen.
3665 // In OpenCL, string literals are in constant address space in AST, therefore
3666 // they should not be casted to default address space.
3667 static llvm::Constant *
3668 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3669                                        llvm::GlobalVariable *GV) {
3670   llvm::Constant *Cast = GV;
3671   if (!CGM.getLangOpts().OpenCL) {
3672     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3673       if (AS != LangAS::Default)
3674         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3675             CGM, GV, AS.getValue(), LangAS::Default,
3676             GV->getValueType()->getPointerTo(
3677                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3678     }
3679   }
3680   return Cast;
3681 }
3682 
3683 template<typename SomeDecl>
3684 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3685                                                llvm::GlobalValue *GV) {
3686   if (!getLangOpts().CPlusPlus)
3687     return;
3688 
3689   // Must have 'used' attribute, or else inline assembly can't rely on
3690   // the name existing.
3691   if (!D->template hasAttr<UsedAttr>())
3692     return;
3693 
3694   // Must have internal linkage and an ordinary name.
3695   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3696     return;
3697 
3698   // Must be in an extern "C" context. Entities declared directly within
3699   // a record are not extern "C" even if the record is in such a context.
3700   const SomeDecl *First = D->getFirstDecl();
3701   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3702     return;
3703 
3704   // OK, this is an internal linkage entity inside an extern "C" linkage
3705   // specification. Make a note of that so we can give it the "expected"
3706   // mangled name if nothing else is using that name.
3707   std::pair<StaticExternCMap::iterator, bool> R =
3708       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3709 
3710   // If we have multiple internal linkage entities with the same name
3711   // in extern "C" regions, none of them gets that name.
3712   if (!R.second)
3713     R.first->second = nullptr;
3714 }
3715 
3716 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3717   if (!CGM.supportsCOMDAT())
3718     return false;
3719 
3720   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3721   // them being "merged" by the COMDAT Folding linker optimization.
3722   if (D.hasAttr<CUDAGlobalAttr>())
3723     return false;
3724 
3725   if (D.hasAttr<SelectAnyAttr>())
3726     return true;
3727 
3728   GVALinkage Linkage;
3729   if (auto *VD = dyn_cast<VarDecl>(&D))
3730     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3731   else
3732     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3733 
3734   switch (Linkage) {
3735   case GVA_Internal:
3736   case GVA_AvailableExternally:
3737   case GVA_StrongExternal:
3738     return false;
3739   case GVA_DiscardableODR:
3740   case GVA_StrongODR:
3741     return true;
3742   }
3743   llvm_unreachable("No such linkage");
3744 }
3745 
3746 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3747                                           llvm::GlobalObject &GO) {
3748   if (!shouldBeInCOMDAT(*this, D))
3749     return;
3750   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3751 }
3752 
3753 /// Pass IsTentative as true if you want to create a tentative definition.
3754 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3755                                             bool IsTentative) {
3756   // OpenCL global variables of sampler type are translated to function calls,
3757   // therefore no need to be translated.
3758   QualType ASTTy = D->getType();
3759   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3760     return;
3761 
3762   // If this is OpenMP device, check if it is legal to emit this global
3763   // normally.
3764   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3765       OpenMPRuntime->emitTargetGlobalVariable(D))
3766     return;
3767 
3768   llvm::Constant *Init = nullptr;
3769   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3770   bool NeedsGlobalCtor = false;
3771   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3772 
3773   const VarDecl *InitDecl;
3774   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3775 
3776   Optional<ConstantEmitter> emitter;
3777 
3778   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3779   // as part of their declaration."  Sema has already checked for
3780   // error cases, so we just need to set Init to UndefValue.
3781   bool IsCUDASharedVar =
3782       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3783   // Shadows of initialized device-side global variables are also left
3784   // undefined.
3785   bool IsCUDAShadowVar =
3786       !getLangOpts().CUDAIsDevice &&
3787       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3788        D->hasAttr<CUDASharedAttr>());
3789   // HIP pinned shadow of initialized host-side global variables are also
3790   // left undefined.
3791   bool IsHIPPinnedShadowVar =
3792       getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3793   if (getLangOpts().CUDA &&
3794       (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3795     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3796   else if (!InitExpr) {
3797     // This is a tentative definition; tentative definitions are
3798     // implicitly initialized with { 0 }.
3799     //
3800     // Note that tentative definitions are only emitted at the end of
3801     // a translation unit, so they should never have incomplete
3802     // type. In addition, EmitTentativeDefinition makes sure that we
3803     // never attempt to emit a tentative definition if a real one
3804     // exists. A use may still exists, however, so we still may need
3805     // to do a RAUW.
3806     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3807     Init = EmitNullConstant(D->getType());
3808   } else {
3809     initializedGlobalDecl = GlobalDecl(D);
3810     emitter.emplace(*this);
3811     Init = emitter->tryEmitForInitializer(*InitDecl);
3812 
3813     if (!Init) {
3814       QualType T = InitExpr->getType();
3815       if (D->getType()->isReferenceType())
3816         T = D->getType();
3817 
3818       if (getLangOpts().CPlusPlus) {
3819         Init = EmitNullConstant(T);
3820         NeedsGlobalCtor = true;
3821       } else {
3822         ErrorUnsupported(D, "static initializer");
3823         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3824       }
3825     } else {
3826       // We don't need an initializer, so remove the entry for the delayed
3827       // initializer position (just in case this entry was delayed) if we
3828       // also don't need to register a destructor.
3829       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3830         DelayedCXXInitPosition.erase(D);
3831     }
3832   }
3833 
3834   llvm::Type* InitType = Init->getType();
3835   llvm::Constant *Entry =
3836       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3837 
3838   // Strip off a bitcast if we got one back.
3839   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3840     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3841            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3842            // All zero index gep.
3843            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3844     Entry = CE->getOperand(0);
3845   }
3846 
3847   // Entry is now either a Function or GlobalVariable.
3848   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3849 
3850   // We have a definition after a declaration with the wrong type.
3851   // We must make a new GlobalVariable* and update everything that used OldGV
3852   // (a declaration or tentative definition) with the new GlobalVariable*
3853   // (which will be a definition).
3854   //
3855   // This happens if there is a prototype for a global (e.g.
3856   // "extern int x[];") and then a definition of a different type (e.g.
3857   // "int x[10];"). This also happens when an initializer has a different type
3858   // from the type of the global (this happens with unions).
3859   if (!GV || GV->getType()->getElementType() != InitType ||
3860       GV->getType()->getAddressSpace() !=
3861           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3862 
3863     // Move the old entry aside so that we'll create a new one.
3864     Entry->setName(StringRef());
3865 
3866     // Make a new global with the correct type, this is now guaranteed to work.
3867     GV = cast<llvm::GlobalVariable>(
3868         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3869 
3870     // Replace all uses of the old global with the new global
3871     llvm::Constant *NewPtrForOldDecl =
3872         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3873     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3874 
3875     // Erase the old global, since it is no longer used.
3876     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3877   }
3878 
3879   MaybeHandleStaticInExternC(D, GV);
3880 
3881   if (D->hasAttr<AnnotateAttr>())
3882     AddGlobalAnnotations(D, GV);
3883 
3884   // Set the llvm linkage type as appropriate.
3885   llvm::GlobalValue::LinkageTypes Linkage =
3886       getLLVMLinkageVarDefinition(D, GV->isConstant());
3887 
3888   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3889   // the device. [...]"
3890   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3891   // __device__, declares a variable that: [...]
3892   // Is accessible from all the threads within the grid and from the host
3893   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3894   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3895   if (GV && LangOpts.CUDA) {
3896     if (LangOpts.CUDAIsDevice) {
3897       if (Linkage != llvm::GlobalValue::InternalLinkage &&
3898           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
3899         GV->setExternallyInitialized(true);
3900     } else {
3901       // Host-side shadows of external declarations of device-side
3902       // global variables become internal definitions. These have to
3903       // be internal in order to prevent name conflicts with global
3904       // host variables with the same name in a different TUs.
3905       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
3906           D->hasAttr<HIPPinnedShadowAttr>()) {
3907         Linkage = llvm::GlobalValue::InternalLinkage;
3908 
3909         // Shadow variables and their properties must be registered
3910         // with CUDA runtime.
3911         unsigned Flags = 0;
3912         if (!D->hasDefinition())
3913           Flags |= CGCUDARuntime::ExternDeviceVar;
3914         if (D->hasAttr<CUDAConstantAttr>())
3915           Flags |= CGCUDARuntime::ConstantDeviceVar;
3916         // Extern global variables will be registered in the TU where they are
3917         // defined.
3918         if (!D->hasExternalStorage())
3919           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
3920       } else if (D->hasAttr<CUDASharedAttr>())
3921         // __shared__ variables are odd. Shadows do get created, but
3922         // they are not registered with the CUDA runtime, so they
3923         // can't really be used to access their device-side
3924         // counterparts. It's not clear yet whether it's nvcc's bug or
3925         // a feature, but we've got to do the same for compatibility.
3926         Linkage = llvm::GlobalValue::InternalLinkage;
3927     }
3928   }
3929 
3930   if (!IsHIPPinnedShadowVar)
3931     GV->setInitializer(Init);
3932   if (emitter) emitter->finalize(GV);
3933 
3934   // If it is safe to mark the global 'constant', do so now.
3935   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3936                   isTypeConstant(D->getType(), true));
3937 
3938   // If it is in a read-only section, mark it 'constant'.
3939   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3940     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3941     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3942       GV->setConstant(true);
3943   }
3944 
3945   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3946 
3947 
3948   // On Darwin, if the normal linkage of a C++ thread_local variable is
3949   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3950   // copies within a linkage unit; otherwise, the backing variable has
3951   // internal linkage and all accesses should just be calls to the
3952   // Itanium-specified entry point, which has the normal linkage of the
3953   // variable. This is to preserve the ability to change the implementation
3954   // behind the scenes.
3955   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3956       Context.getTargetInfo().getTriple().isOSDarwin() &&
3957       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3958       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3959     Linkage = llvm::GlobalValue::InternalLinkage;
3960 
3961   GV->setLinkage(Linkage);
3962   if (D->hasAttr<DLLImportAttr>())
3963     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3964   else if (D->hasAttr<DLLExportAttr>())
3965     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3966   else
3967     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3968 
3969   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3970     // common vars aren't constant even if declared const.
3971     GV->setConstant(false);
3972     // Tentative definition of global variables may be initialized with
3973     // non-zero null pointers. In this case they should have weak linkage
3974     // since common linkage must have zero initializer and must not have
3975     // explicit section therefore cannot have non-zero initial value.
3976     if (!GV->getInitializer()->isNullValue())
3977       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3978   }
3979 
3980   setNonAliasAttributes(D, GV);
3981 
3982   if (D->getTLSKind() && !GV->isThreadLocal()) {
3983     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3984       CXXThreadLocals.push_back(D);
3985     setTLSMode(GV, *D);
3986   }
3987 
3988   maybeSetTrivialComdat(*D, *GV);
3989 
3990   // Emit the initializer function if necessary.
3991   if (NeedsGlobalCtor || NeedsGlobalDtor)
3992     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3993 
3994   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3995 
3996   // Emit global variable debug information.
3997   if (CGDebugInfo *DI = getModuleDebugInfo())
3998     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3999       DI->EmitGlobalVariable(GV, D);
4000 }
4001 
4002 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4003                                       CodeGenModule &CGM, const VarDecl *D,
4004                                       bool NoCommon) {
4005   // Don't give variables common linkage if -fno-common was specified unless it
4006   // was overridden by a NoCommon attribute.
4007   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4008     return true;
4009 
4010   // C11 6.9.2/2:
4011   //   A declaration of an identifier for an object that has file scope without
4012   //   an initializer, and without a storage-class specifier or with the
4013   //   storage-class specifier static, constitutes a tentative definition.
4014   if (D->getInit() || D->hasExternalStorage())
4015     return true;
4016 
4017   // A variable cannot be both common and exist in a section.
4018   if (D->hasAttr<SectionAttr>())
4019     return true;
4020 
4021   // A variable cannot be both common and exist in a section.
4022   // We don't try to determine which is the right section in the front-end.
4023   // If no specialized section name is applicable, it will resort to default.
4024   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4025       D->hasAttr<PragmaClangDataSectionAttr>() ||
4026       D->hasAttr<PragmaClangRodataSectionAttr>())
4027     return true;
4028 
4029   // Thread local vars aren't considered common linkage.
4030   if (D->getTLSKind())
4031     return true;
4032 
4033   // Tentative definitions marked with WeakImportAttr are true definitions.
4034   if (D->hasAttr<WeakImportAttr>())
4035     return true;
4036 
4037   // A variable cannot be both common and exist in a comdat.
4038   if (shouldBeInCOMDAT(CGM, *D))
4039     return true;
4040 
4041   // Declarations with a required alignment do not have common linkage in MSVC
4042   // mode.
4043   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4044     if (D->hasAttr<AlignedAttr>())
4045       return true;
4046     QualType VarType = D->getType();
4047     if (Context.isAlignmentRequired(VarType))
4048       return true;
4049 
4050     if (const auto *RT = VarType->getAs<RecordType>()) {
4051       const RecordDecl *RD = RT->getDecl();
4052       for (const FieldDecl *FD : RD->fields()) {
4053         if (FD->isBitField())
4054           continue;
4055         if (FD->hasAttr<AlignedAttr>())
4056           return true;
4057         if (Context.isAlignmentRequired(FD->getType()))
4058           return true;
4059       }
4060     }
4061   }
4062 
4063   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4064   // common symbols, so symbols with greater alignment requirements cannot be
4065   // common.
4066   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4067   // alignments for common symbols via the aligncomm directive, so this
4068   // restriction only applies to MSVC environments.
4069   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4070       Context.getTypeAlignIfKnown(D->getType()) >
4071           Context.toBits(CharUnits::fromQuantity(32)))
4072     return true;
4073 
4074   return false;
4075 }
4076 
4077 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4078     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4079   if (Linkage == GVA_Internal)
4080     return llvm::Function::InternalLinkage;
4081 
4082   if (D->hasAttr<WeakAttr>()) {
4083     if (IsConstantVariable)
4084       return llvm::GlobalVariable::WeakODRLinkage;
4085     else
4086       return llvm::GlobalVariable::WeakAnyLinkage;
4087   }
4088 
4089   if (const auto *FD = D->getAsFunction())
4090     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4091       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4092 
4093   // We are guaranteed to have a strong definition somewhere else,
4094   // so we can use available_externally linkage.
4095   if (Linkage == GVA_AvailableExternally)
4096     return llvm::GlobalValue::AvailableExternallyLinkage;
4097 
4098   // Note that Apple's kernel linker doesn't support symbol
4099   // coalescing, so we need to avoid linkonce and weak linkages there.
4100   // Normally, this means we just map to internal, but for explicit
4101   // instantiations we'll map to external.
4102 
4103   // In C++, the compiler has to emit a definition in every translation unit
4104   // that references the function.  We should use linkonce_odr because
4105   // a) if all references in this translation unit are optimized away, we
4106   // don't need to codegen it.  b) if the function persists, it needs to be
4107   // merged with other definitions. c) C++ has the ODR, so we know the
4108   // definition is dependable.
4109   if (Linkage == GVA_DiscardableODR)
4110     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4111                                             : llvm::Function::InternalLinkage;
4112 
4113   // An explicit instantiation of a template has weak linkage, since
4114   // explicit instantiations can occur in multiple translation units
4115   // and must all be equivalent. However, we are not allowed to
4116   // throw away these explicit instantiations.
4117   //
4118   // We don't currently support CUDA device code spread out across multiple TUs,
4119   // so say that CUDA templates are either external (for kernels) or internal.
4120   // This lets llvm perform aggressive inter-procedural optimizations.
4121   if (Linkage == GVA_StrongODR) {
4122     if (Context.getLangOpts().AppleKext)
4123       return llvm::Function::ExternalLinkage;
4124     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4125       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4126                                           : llvm::Function::InternalLinkage;
4127     return llvm::Function::WeakODRLinkage;
4128   }
4129 
4130   // C++ doesn't have tentative definitions and thus cannot have common
4131   // linkage.
4132   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4133       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4134                                  CodeGenOpts.NoCommon))
4135     return llvm::GlobalVariable::CommonLinkage;
4136 
4137   // selectany symbols are externally visible, so use weak instead of
4138   // linkonce.  MSVC optimizes away references to const selectany globals, so
4139   // all definitions should be the same and ODR linkage should be used.
4140   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4141   if (D->hasAttr<SelectAnyAttr>())
4142     return llvm::GlobalVariable::WeakODRLinkage;
4143 
4144   // Otherwise, we have strong external linkage.
4145   assert(Linkage == GVA_StrongExternal);
4146   return llvm::GlobalVariable::ExternalLinkage;
4147 }
4148 
4149 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4150     const VarDecl *VD, bool IsConstant) {
4151   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4152   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4153 }
4154 
4155 /// Replace the uses of a function that was declared with a non-proto type.
4156 /// We want to silently drop extra arguments from call sites
4157 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4158                                           llvm::Function *newFn) {
4159   // Fast path.
4160   if (old->use_empty()) return;
4161 
4162   llvm::Type *newRetTy = newFn->getReturnType();
4163   SmallVector<llvm::Value*, 4> newArgs;
4164   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4165 
4166   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4167          ui != ue; ) {
4168     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4169     llvm::User *user = use->getUser();
4170 
4171     // Recognize and replace uses of bitcasts.  Most calls to
4172     // unprototyped functions will use bitcasts.
4173     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4174       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4175         replaceUsesOfNonProtoConstant(bitcast, newFn);
4176       continue;
4177     }
4178 
4179     // Recognize calls to the function.
4180     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4181     if (!callSite) continue;
4182     if (!callSite->isCallee(&*use))
4183       continue;
4184 
4185     // If the return types don't match exactly, then we can't
4186     // transform this call unless it's dead.
4187     if (callSite->getType() != newRetTy && !callSite->use_empty())
4188       continue;
4189 
4190     // Get the call site's attribute list.
4191     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4192     llvm::AttributeList oldAttrs = callSite->getAttributes();
4193 
4194     // If the function was passed too few arguments, don't transform.
4195     unsigned newNumArgs = newFn->arg_size();
4196     if (callSite->arg_size() < newNumArgs)
4197       continue;
4198 
4199     // If extra arguments were passed, we silently drop them.
4200     // If any of the types mismatch, we don't transform.
4201     unsigned argNo = 0;
4202     bool dontTransform = false;
4203     for (llvm::Argument &A : newFn->args()) {
4204       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4205         dontTransform = true;
4206         break;
4207       }
4208 
4209       // Add any parameter attributes.
4210       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4211       argNo++;
4212     }
4213     if (dontTransform)
4214       continue;
4215 
4216     // Okay, we can transform this.  Create the new call instruction and copy
4217     // over the required information.
4218     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4219 
4220     // Copy over any operand bundles.
4221     callSite->getOperandBundlesAsDefs(newBundles);
4222 
4223     llvm::CallBase *newCall;
4224     if (dyn_cast<llvm::CallInst>(callSite)) {
4225       newCall =
4226           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4227     } else {
4228       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4229       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4230                                          oldInvoke->getUnwindDest(), newArgs,
4231                                          newBundles, "", callSite);
4232     }
4233     newArgs.clear(); // for the next iteration
4234 
4235     if (!newCall->getType()->isVoidTy())
4236       newCall->takeName(callSite);
4237     newCall->setAttributes(llvm::AttributeList::get(
4238         newFn->getContext(), oldAttrs.getFnAttributes(),
4239         oldAttrs.getRetAttributes(), newArgAttrs));
4240     newCall->setCallingConv(callSite->getCallingConv());
4241 
4242     // Finally, remove the old call, replacing any uses with the new one.
4243     if (!callSite->use_empty())
4244       callSite->replaceAllUsesWith(newCall);
4245 
4246     // Copy debug location attached to CI.
4247     if (callSite->getDebugLoc())
4248       newCall->setDebugLoc(callSite->getDebugLoc());
4249 
4250     callSite->eraseFromParent();
4251   }
4252 }
4253 
4254 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4255 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4256 /// existing call uses of the old function in the module, this adjusts them to
4257 /// call the new function directly.
4258 ///
4259 /// This is not just a cleanup: the always_inline pass requires direct calls to
4260 /// functions to be able to inline them.  If there is a bitcast in the way, it
4261 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4262 /// run at -O0.
4263 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4264                                                       llvm::Function *NewFn) {
4265   // If we're redefining a global as a function, don't transform it.
4266   if (!isa<llvm::Function>(Old)) return;
4267 
4268   replaceUsesOfNonProtoConstant(Old, NewFn);
4269 }
4270 
4271 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4272   auto DK = VD->isThisDeclarationADefinition();
4273   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4274     return;
4275 
4276   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4277   // If we have a definition, this might be a deferred decl. If the
4278   // instantiation is explicit, make sure we emit it at the end.
4279   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4280     GetAddrOfGlobalVar(VD);
4281 
4282   EmitTopLevelDecl(VD);
4283 }
4284 
4285 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4286                                                  llvm::GlobalValue *GV) {
4287   const auto *D = cast<FunctionDecl>(GD.getDecl());
4288 
4289   // Compute the function info and LLVM type.
4290   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4291   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4292 
4293   // Get or create the prototype for the function.
4294   if (!GV || (GV->getType()->getElementType() != Ty))
4295     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4296                                                    /*DontDefer=*/true,
4297                                                    ForDefinition));
4298 
4299   // Already emitted.
4300   if (!GV->isDeclaration())
4301     return;
4302 
4303   // We need to set linkage and visibility on the function before
4304   // generating code for it because various parts of IR generation
4305   // want to propagate this information down (e.g. to local static
4306   // declarations).
4307   auto *Fn = cast<llvm::Function>(GV);
4308   setFunctionLinkage(GD, Fn);
4309 
4310   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4311   setGVProperties(Fn, GD);
4312 
4313   MaybeHandleStaticInExternC(D, Fn);
4314 
4315 
4316   maybeSetTrivialComdat(*D, *Fn);
4317 
4318   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4319 
4320   setNonAliasAttributes(GD, Fn);
4321   SetLLVMFunctionAttributesForDefinition(D, Fn);
4322 
4323   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4324     AddGlobalCtor(Fn, CA->getPriority());
4325   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4326     AddGlobalDtor(Fn, DA->getPriority());
4327   if (D->hasAttr<AnnotateAttr>())
4328     AddGlobalAnnotations(D, Fn);
4329 }
4330 
4331 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4332   const auto *D = cast<ValueDecl>(GD.getDecl());
4333   const AliasAttr *AA = D->getAttr<AliasAttr>();
4334   assert(AA && "Not an alias?");
4335 
4336   StringRef MangledName = getMangledName(GD);
4337 
4338   if (AA->getAliasee() == MangledName) {
4339     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4340     return;
4341   }
4342 
4343   // If there is a definition in the module, then it wins over the alias.
4344   // This is dubious, but allow it to be safe.  Just ignore the alias.
4345   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4346   if (Entry && !Entry->isDeclaration())
4347     return;
4348 
4349   Aliases.push_back(GD);
4350 
4351   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4352 
4353   // Create a reference to the named value.  This ensures that it is emitted
4354   // if a deferred decl.
4355   llvm::Constant *Aliasee;
4356   if (isa<llvm::FunctionType>(DeclTy))
4357     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4358                                       /*ForVTable=*/false);
4359   else
4360     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4361                                     llvm::PointerType::getUnqual(DeclTy),
4362                                     /*D=*/nullptr);
4363 
4364   // Create the new alias itself, but don't set a name yet.
4365   auto *GA = llvm::GlobalAlias::create(
4366       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4367 
4368   if (Entry) {
4369     if (GA->getAliasee() == Entry) {
4370       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4371       return;
4372     }
4373 
4374     assert(Entry->isDeclaration());
4375 
4376     // If there is a declaration in the module, then we had an extern followed
4377     // by the alias, as in:
4378     //   extern int test6();
4379     //   ...
4380     //   int test6() __attribute__((alias("test7")));
4381     //
4382     // Remove it and replace uses of it with the alias.
4383     GA->takeName(Entry);
4384 
4385     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4386                                                           Entry->getType()));
4387     Entry->eraseFromParent();
4388   } else {
4389     GA->setName(MangledName);
4390   }
4391 
4392   // Set attributes which are particular to an alias; this is a
4393   // specialization of the attributes which may be set on a global
4394   // variable/function.
4395   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4396       D->isWeakImported()) {
4397     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4398   }
4399 
4400   if (const auto *VD = dyn_cast<VarDecl>(D))
4401     if (VD->getTLSKind())
4402       setTLSMode(GA, *VD);
4403 
4404   SetCommonAttributes(GD, GA);
4405 }
4406 
4407 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4408   const auto *D = cast<ValueDecl>(GD.getDecl());
4409   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4410   assert(IFA && "Not an ifunc?");
4411 
4412   StringRef MangledName = getMangledName(GD);
4413 
4414   if (IFA->getResolver() == MangledName) {
4415     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4416     return;
4417   }
4418 
4419   // Report an error if some definition overrides ifunc.
4420   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4421   if (Entry && !Entry->isDeclaration()) {
4422     GlobalDecl OtherGD;
4423     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4424         DiagnosedConflictingDefinitions.insert(GD).second) {
4425       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4426           << MangledName;
4427       Diags.Report(OtherGD.getDecl()->getLocation(),
4428                    diag::note_previous_definition);
4429     }
4430     return;
4431   }
4432 
4433   Aliases.push_back(GD);
4434 
4435   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4436   llvm::Constant *Resolver =
4437       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4438                               /*ForVTable=*/false);
4439   llvm::GlobalIFunc *GIF =
4440       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4441                                 "", Resolver, &getModule());
4442   if (Entry) {
4443     if (GIF->getResolver() == Entry) {
4444       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4445       return;
4446     }
4447     assert(Entry->isDeclaration());
4448 
4449     // If there is a declaration in the module, then we had an extern followed
4450     // by the ifunc, as in:
4451     //   extern int test();
4452     //   ...
4453     //   int test() __attribute__((ifunc("resolver")));
4454     //
4455     // Remove it and replace uses of it with the ifunc.
4456     GIF->takeName(Entry);
4457 
4458     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4459                                                           Entry->getType()));
4460     Entry->eraseFromParent();
4461   } else
4462     GIF->setName(MangledName);
4463 
4464   SetCommonAttributes(GD, GIF);
4465 }
4466 
4467 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4468                                             ArrayRef<llvm::Type*> Tys) {
4469   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4470                                          Tys);
4471 }
4472 
4473 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4474 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4475                          const StringLiteral *Literal, bool TargetIsLSB,
4476                          bool &IsUTF16, unsigned &StringLength) {
4477   StringRef String = Literal->getString();
4478   unsigned NumBytes = String.size();
4479 
4480   // Check for simple case.
4481   if (!Literal->containsNonAsciiOrNull()) {
4482     StringLength = NumBytes;
4483     return *Map.insert(std::make_pair(String, nullptr)).first;
4484   }
4485 
4486   // Otherwise, convert the UTF8 literals into a string of shorts.
4487   IsUTF16 = true;
4488 
4489   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4490   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4491   llvm::UTF16 *ToPtr = &ToBuf[0];
4492 
4493   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4494                                  ToPtr + NumBytes, llvm::strictConversion);
4495 
4496   // ConvertUTF8toUTF16 returns the length in ToPtr.
4497   StringLength = ToPtr - &ToBuf[0];
4498 
4499   // Add an explicit null.
4500   *ToPtr = 0;
4501   return *Map.insert(std::make_pair(
4502                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4503                                    (StringLength + 1) * 2),
4504                          nullptr)).first;
4505 }
4506 
4507 ConstantAddress
4508 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4509   unsigned StringLength = 0;
4510   bool isUTF16 = false;
4511   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4512       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4513                                getDataLayout().isLittleEndian(), isUTF16,
4514                                StringLength);
4515 
4516   if (auto *C = Entry.second)
4517     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4518 
4519   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4520   llvm::Constant *Zeros[] = { Zero, Zero };
4521 
4522   const ASTContext &Context = getContext();
4523   const llvm::Triple &Triple = getTriple();
4524 
4525   const auto CFRuntime = getLangOpts().CFRuntime;
4526   const bool IsSwiftABI =
4527       static_cast<unsigned>(CFRuntime) >=
4528       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4529   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4530 
4531   // If we don't already have it, get __CFConstantStringClassReference.
4532   if (!CFConstantStringClassRef) {
4533     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4534     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4535     Ty = llvm::ArrayType::get(Ty, 0);
4536 
4537     switch (CFRuntime) {
4538     default: break;
4539     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4540     case LangOptions::CoreFoundationABI::Swift5_0:
4541       CFConstantStringClassName =
4542           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4543                               : "$s10Foundation19_NSCFConstantStringCN";
4544       Ty = IntPtrTy;
4545       break;
4546     case LangOptions::CoreFoundationABI::Swift4_2:
4547       CFConstantStringClassName =
4548           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4549                               : "$S10Foundation19_NSCFConstantStringCN";
4550       Ty = IntPtrTy;
4551       break;
4552     case LangOptions::CoreFoundationABI::Swift4_1:
4553       CFConstantStringClassName =
4554           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4555                               : "__T010Foundation19_NSCFConstantStringCN";
4556       Ty = IntPtrTy;
4557       break;
4558     }
4559 
4560     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4561 
4562     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4563       llvm::GlobalValue *GV = nullptr;
4564 
4565       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4566         IdentifierInfo &II = Context.Idents.get(GV->getName());
4567         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4568         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4569 
4570         const VarDecl *VD = nullptr;
4571         for (const auto &Result : DC->lookup(&II))
4572           if ((VD = dyn_cast<VarDecl>(Result)))
4573             break;
4574 
4575         if (Triple.isOSBinFormatELF()) {
4576           if (!VD)
4577             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4578         } else {
4579           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4580           if (!VD || !VD->hasAttr<DLLExportAttr>())
4581             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4582           else
4583             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4584         }
4585 
4586         setDSOLocal(GV);
4587       }
4588     }
4589 
4590     // Decay array -> ptr
4591     CFConstantStringClassRef =
4592         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4593                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4594   }
4595 
4596   QualType CFTy = Context.getCFConstantStringType();
4597 
4598   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4599 
4600   ConstantInitBuilder Builder(*this);
4601   auto Fields = Builder.beginStruct(STy);
4602 
4603   // Class pointer.
4604   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4605 
4606   // Flags.
4607   if (IsSwiftABI) {
4608     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4609     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4610   } else {
4611     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4612   }
4613 
4614   // String pointer.
4615   llvm::Constant *C = nullptr;
4616   if (isUTF16) {
4617     auto Arr = llvm::makeArrayRef(
4618         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4619         Entry.first().size() / 2);
4620     C = llvm::ConstantDataArray::get(VMContext, Arr);
4621   } else {
4622     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4623   }
4624 
4625   // Note: -fwritable-strings doesn't make the backing store strings of
4626   // CFStrings writable. (See <rdar://problem/10657500>)
4627   auto *GV =
4628       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4629                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4630   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4631   // Don't enforce the target's minimum global alignment, since the only use
4632   // of the string is via this class initializer.
4633   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4634                             : Context.getTypeAlignInChars(Context.CharTy);
4635   GV->setAlignment(Align.getQuantity());
4636 
4637   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4638   // Without it LLVM can merge the string with a non unnamed_addr one during
4639   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4640   if (Triple.isOSBinFormatMachO())
4641     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4642                            : "__TEXT,__cstring,cstring_literals");
4643   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4644   // the static linker to adjust permissions to read-only later on.
4645   else if (Triple.isOSBinFormatELF())
4646     GV->setSection(".rodata");
4647 
4648   // String.
4649   llvm::Constant *Str =
4650       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4651 
4652   if (isUTF16)
4653     // Cast the UTF16 string to the correct type.
4654     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4655   Fields.add(Str);
4656 
4657   // String length.
4658   llvm::IntegerType *LengthTy =
4659       llvm::IntegerType::get(getModule().getContext(),
4660                              Context.getTargetInfo().getLongWidth());
4661   if (IsSwiftABI) {
4662     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4663         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4664       LengthTy = Int32Ty;
4665     else
4666       LengthTy = IntPtrTy;
4667   }
4668   Fields.addInt(LengthTy, StringLength);
4669 
4670   CharUnits Alignment = getPointerAlign();
4671 
4672   // The struct.
4673   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4674                                     /*isConstant=*/false,
4675                                     llvm::GlobalVariable::PrivateLinkage);
4676   GV->addAttribute("objc_arc_inert");
4677   switch (Triple.getObjectFormat()) {
4678   case llvm::Triple::UnknownObjectFormat:
4679     llvm_unreachable("unknown file format");
4680   case llvm::Triple::XCOFF:
4681     llvm_unreachable("XCOFF is not yet implemented");
4682   case llvm::Triple::COFF:
4683   case llvm::Triple::ELF:
4684   case llvm::Triple::Wasm:
4685     GV->setSection("cfstring");
4686     break;
4687   case llvm::Triple::MachO:
4688     GV->setSection("__DATA,__cfstring");
4689     break;
4690   }
4691   Entry.second = GV;
4692 
4693   return ConstantAddress(GV, Alignment);
4694 }
4695 
4696 bool CodeGenModule::getExpressionLocationsEnabled() const {
4697   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4698 }
4699 
4700 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4701   if (ObjCFastEnumerationStateType.isNull()) {
4702     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4703     D->startDefinition();
4704 
4705     QualType FieldTypes[] = {
4706       Context.UnsignedLongTy,
4707       Context.getPointerType(Context.getObjCIdType()),
4708       Context.getPointerType(Context.UnsignedLongTy),
4709       Context.getConstantArrayType(Context.UnsignedLongTy,
4710                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4711     };
4712 
4713     for (size_t i = 0; i < 4; ++i) {
4714       FieldDecl *Field = FieldDecl::Create(Context,
4715                                            D,
4716                                            SourceLocation(),
4717                                            SourceLocation(), nullptr,
4718                                            FieldTypes[i], /*TInfo=*/nullptr,
4719                                            /*BitWidth=*/nullptr,
4720                                            /*Mutable=*/false,
4721                                            ICIS_NoInit);
4722       Field->setAccess(AS_public);
4723       D->addDecl(Field);
4724     }
4725 
4726     D->completeDefinition();
4727     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4728   }
4729 
4730   return ObjCFastEnumerationStateType;
4731 }
4732 
4733 llvm::Constant *
4734 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4735   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4736 
4737   // Don't emit it as the address of the string, emit the string data itself
4738   // as an inline array.
4739   if (E->getCharByteWidth() == 1) {
4740     SmallString<64> Str(E->getString());
4741 
4742     // Resize the string to the right size, which is indicated by its type.
4743     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4744     Str.resize(CAT->getSize().getZExtValue());
4745     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4746   }
4747 
4748   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4749   llvm::Type *ElemTy = AType->getElementType();
4750   unsigned NumElements = AType->getNumElements();
4751 
4752   // Wide strings have either 2-byte or 4-byte elements.
4753   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4754     SmallVector<uint16_t, 32> Elements;
4755     Elements.reserve(NumElements);
4756 
4757     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4758       Elements.push_back(E->getCodeUnit(i));
4759     Elements.resize(NumElements);
4760     return llvm::ConstantDataArray::get(VMContext, Elements);
4761   }
4762 
4763   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4764   SmallVector<uint32_t, 32> Elements;
4765   Elements.reserve(NumElements);
4766 
4767   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4768     Elements.push_back(E->getCodeUnit(i));
4769   Elements.resize(NumElements);
4770   return llvm::ConstantDataArray::get(VMContext, Elements);
4771 }
4772 
4773 static llvm::GlobalVariable *
4774 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4775                       CodeGenModule &CGM, StringRef GlobalName,
4776                       CharUnits Alignment) {
4777   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4778       CGM.getStringLiteralAddressSpace());
4779 
4780   llvm::Module &M = CGM.getModule();
4781   // Create a global variable for this string
4782   auto *GV = new llvm::GlobalVariable(
4783       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4784       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4785   GV->setAlignment(Alignment.getQuantity());
4786   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4787   if (GV->isWeakForLinker()) {
4788     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4789     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4790   }
4791   CGM.setDSOLocal(GV);
4792 
4793   return GV;
4794 }
4795 
4796 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4797 /// constant array for the given string literal.
4798 ConstantAddress
4799 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4800                                                   StringRef Name) {
4801   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4802 
4803   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4804   llvm::GlobalVariable **Entry = nullptr;
4805   if (!LangOpts.WritableStrings) {
4806     Entry = &ConstantStringMap[C];
4807     if (auto GV = *Entry) {
4808       if (Alignment.getQuantity() > GV->getAlignment())
4809         GV->setAlignment(Alignment.getQuantity());
4810       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4811                              Alignment);
4812     }
4813   }
4814 
4815   SmallString<256> MangledNameBuffer;
4816   StringRef GlobalVariableName;
4817   llvm::GlobalValue::LinkageTypes LT;
4818 
4819   // Mangle the string literal if that's how the ABI merges duplicate strings.
4820   // Don't do it if they are writable, since we don't want writes in one TU to
4821   // affect strings in another.
4822   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4823       !LangOpts.WritableStrings) {
4824     llvm::raw_svector_ostream Out(MangledNameBuffer);
4825     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4826     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4827     GlobalVariableName = MangledNameBuffer;
4828   } else {
4829     LT = llvm::GlobalValue::PrivateLinkage;
4830     GlobalVariableName = Name;
4831   }
4832 
4833   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4834   if (Entry)
4835     *Entry = GV;
4836 
4837   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4838                                   QualType());
4839 
4840   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4841                          Alignment);
4842 }
4843 
4844 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4845 /// array for the given ObjCEncodeExpr node.
4846 ConstantAddress
4847 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4848   std::string Str;
4849   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4850 
4851   return GetAddrOfConstantCString(Str);
4852 }
4853 
4854 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4855 /// the literal and a terminating '\0' character.
4856 /// The result has pointer to array type.
4857 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4858     const std::string &Str, const char *GlobalName) {
4859   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4860   CharUnits Alignment =
4861     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4862 
4863   llvm::Constant *C =
4864       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4865 
4866   // Don't share any string literals if strings aren't constant.
4867   llvm::GlobalVariable **Entry = nullptr;
4868   if (!LangOpts.WritableStrings) {
4869     Entry = &ConstantStringMap[C];
4870     if (auto GV = *Entry) {
4871       if (Alignment.getQuantity() > GV->getAlignment())
4872         GV->setAlignment(Alignment.getQuantity());
4873       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4874                              Alignment);
4875     }
4876   }
4877 
4878   // Get the default prefix if a name wasn't specified.
4879   if (!GlobalName)
4880     GlobalName = ".str";
4881   // Create a global variable for this.
4882   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4883                                   GlobalName, Alignment);
4884   if (Entry)
4885     *Entry = GV;
4886 
4887   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4888                          Alignment);
4889 }
4890 
4891 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4892     const MaterializeTemporaryExpr *E, const Expr *Init) {
4893   assert((E->getStorageDuration() == SD_Static ||
4894           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4895   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4896 
4897   // If we're not materializing a subobject of the temporary, keep the
4898   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4899   QualType MaterializedType = Init->getType();
4900   if (Init == E->GetTemporaryExpr())
4901     MaterializedType = E->getType();
4902 
4903   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4904 
4905   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4906     return ConstantAddress(Slot, Align);
4907 
4908   // FIXME: If an externally-visible declaration extends multiple temporaries,
4909   // we need to give each temporary the same name in every translation unit (and
4910   // we also need to make the temporaries externally-visible).
4911   SmallString<256> Name;
4912   llvm::raw_svector_ostream Out(Name);
4913   getCXXABI().getMangleContext().mangleReferenceTemporary(
4914       VD, E->getManglingNumber(), Out);
4915 
4916   APValue *Value = nullptr;
4917   if (E->getStorageDuration() == SD_Static) {
4918     // We might have a cached constant initializer for this temporary. Note
4919     // that this might have a different value from the value computed by
4920     // evaluating the initializer if the surrounding constant expression
4921     // modifies the temporary.
4922     Value = getContext().getMaterializedTemporaryValue(E, false);
4923     if (Value && Value->isAbsent())
4924       Value = nullptr;
4925   }
4926 
4927   // Try evaluating it now, it might have a constant initializer.
4928   Expr::EvalResult EvalResult;
4929   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4930       !EvalResult.hasSideEffects())
4931     Value = &EvalResult.Val;
4932 
4933   LangAS AddrSpace =
4934       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4935 
4936   Optional<ConstantEmitter> emitter;
4937   llvm::Constant *InitialValue = nullptr;
4938   bool Constant = false;
4939   llvm::Type *Type;
4940   if (Value) {
4941     // The temporary has a constant initializer, use it.
4942     emitter.emplace(*this);
4943     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4944                                                MaterializedType);
4945     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4946     Type = InitialValue->getType();
4947   } else {
4948     // No initializer, the initialization will be provided when we
4949     // initialize the declaration which performed lifetime extension.
4950     Type = getTypes().ConvertTypeForMem(MaterializedType);
4951   }
4952 
4953   // Create a global variable for this lifetime-extended temporary.
4954   llvm::GlobalValue::LinkageTypes Linkage =
4955       getLLVMLinkageVarDefinition(VD, Constant);
4956   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4957     const VarDecl *InitVD;
4958     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4959         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4960       // Temporaries defined inside a class get linkonce_odr linkage because the
4961       // class can be defined in multiple translation units.
4962       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4963     } else {
4964       // There is no need for this temporary to have external linkage if the
4965       // VarDecl has external linkage.
4966       Linkage = llvm::GlobalVariable::InternalLinkage;
4967     }
4968   }
4969   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4970   auto *GV = new llvm::GlobalVariable(
4971       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4972       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4973   if (emitter) emitter->finalize(GV);
4974   setGVProperties(GV, VD);
4975   GV->setAlignment(Align.getQuantity());
4976   if (supportsCOMDAT() && GV->isWeakForLinker())
4977     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4978   if (VD->getTLSKind())
4979     setTLSMode(GV, *VD);
4980   llvm::Constant *CV = GV;
4981   if (AddrSpace != LangAS::Default)
4982     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4983         *this, GV, AddrSpace, LangAS::Default,
4984         Type->getPointerTo(
4985             getContext().getTargetAddressSpace(LangAS::Default)));
4986   MaterializedGlobalTemporaryMap[E] = CV;
4987   return ConstantAddress(CV, Align);
4988 }
4989 
4990 /// EmitObjCPropertyImplementations - Emit information for synthesized
4991 /// properties for an implementation.
4992 void CodeGenModule::EmitObjCPropertyImplementations(const
4993                                                     ObjCImplementationDecl *D) {
4994   for (const auto *PID : D->property_impls()) {
4995     // Dynamic is just for type-checking.
4996     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4997       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4998 
4999       // Determine which methods need to be implemented, some may have
5000       // been overridden. Note that ::isPropertyAccessor is not the method
5001       // we want, that just indicates if the decl came from a
5002       // property. What we want to know is if the method is defined in
5003       // this implementation.
5004       if (!D->getInstanceMethod(PD->getGetterName()))
5005         CodeGenFunction(*this).GenerateObjCGetter(
5006                                  const_cast<ObjCImplementationDecl *>(D), PID);
5007       if (!PD->isReadOnly() &&
5008           !D->getInstanceMethod(PD->getSetterName()))
5009         CodeGenFunction(*this).GenerateObjCSetter(
5010                                  const_cast<ObjCImplementationDecl *>(D), PID);
5011     }
5012   }
5013 }
5014 
5015 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5016   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5017   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5018        ivar; ivar = ivar->getNextIvar())
5019     if (ivar->getType().isDestructedType())
5020       return true;
5021 
5022   return false;
5023 }
5024 
5025 static bool AllTrivialInitializers(CodeGenModule &CGM,
5026                                    ObjCImplementationDecl *D) {
5027   CodeGenFunction CGF(CGM);
5028   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5029        E = D->init_end(); B != E; ++B) {
5030     CXXCtorInitializer *CtorInitExp = *B;
5031     Expr *Init = CtorInitExp->getInit();
5032     if (!CGF.isTrivialInitializer(Init))
5033       return false;
5034   }
5035   return true;
5036 }
5037 
5038 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5039 /// for an implementation.
5040 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5041   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5042   if (needsDestructMethod(D)) {
5043     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5044     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5045     ObjCMethodDecl *DTORMethod =
5046       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
5047                              cxxSelector, getContext().VoidTy, nullptr, D,
5048                              /*isInstance=*/true, /*isVariadic=*/false,
5049                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
5050                              /*isDefined=*/false, ObjCMethodDecl::Required);
5051     D->addInstanceMethod(DTORMethod);
5052     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5053     D->setHasDestructors(true);
5054   }
5055 
5056   // If the implementation doesn't have any ivar initializers, we don't need
5057   // a .cxx_construct.
5058   if (D->getNumIvarInitializers() == 0 ||
5059       AllTrivialInitializers(*this, D))
5060     return;
5061 
5062   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5063   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5064   // The constructor returns 'self'.
5065   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
5066                                                 D->getLocation(),
5067                                                 D->getLocation(),
5068                                                 cxxSelector,
5069                                                 getContext().getObjCIdType(),
5070                                                 nullptr, D, /*isInstance=*/true,
5071                                                 /*isVariadic=*/false,
5072                                                 /*isPropertyAccessor=*/true,
5073                                                 /*isImplicitlyDeclared=*/true,
5074                                                 /*isDefined=*/false,
5075                                                 ObjCMethodDecl::Required);
5076   D->addInstanceMethod(CTORMethod);
5077   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5078   D->setHasNonZeroConstructors(true);
5079 }
5080 
5081 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5082 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5083   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5084       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5085     ErrorUnsupported(LSD, "linkage spec");
5086     return;
5087   }
5088 
5089   EmitDeclContext(LSD);
5090 }
5091 
5092 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5093   for (auto *I : DC->decls()) {
5094     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5095     // are themselves considered "top-level", so EmitTopLevelDecl on an
5096     // ObjCImplDecl does not recursively visit them. We need to do that in
5097     // case they're nested inside another construct (LinkageSpecDecl /
5098     // ExportDecl) that does stop them from being considered "top-level".
5099     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5100       for (auto *M : OID->methods())
5101         EmitTopLevelDecl(M);
5102     }
5103 
5104     EmitTopLevelDecl(I);
5105   }
5106 }
5107 
5108 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5109 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5110   // Ignore dependent declarations.
5111   if (D->isTemplated())
5112     return;
5113 
5114   switch (D->getKind()) {
5115   case Decl::CXXConversion:
5116   case Decl::CXXMethod:
5117   case Decl::Function:
5118     EmitGlobal(cast<FunctionDecl>(D));
5119     // Always provide some coverage mapping
5120     // even for the functions that aren't emitted.
5121     AddDeferredUnusedCoverageMapping(D);
5122     break;
5123 
5124   case Decl::CXXDeductionGuide:
5125     // Function-like, but does not result in code emission.
5126     break;
5127 
5128   case Decl::Var:
5129   case Decl::Decomposition:
5130   case Decl::VarTemplateSpecialization:
5131     EmitGlobal(cast<VarDecl>(D));
5132     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5133       for (auto *B : DD->bindings())
5134         if (auto *HD = B->getHoldingVar())
5135           EmitGlobal(HD);
5136     break;
5137 
5138   // Indirect fields from global anonymous structs and unions can be
5139   // ignored; only the actual variable requires IR gen support.
5140   case Decl::IndirectField:
5141     break;
5142 
5143   // C++ Decls
5144   case Decl::Namespace:
5145     EmitDeclContext(cast<NamespaceDecl>(D));
5146     break;
5147   case Decl::ClassTemplateSpecialization: {
5148     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5149     if (DebugInfo &&
5150         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5151         Spec->hasDefinition())
5152       DebugInfo->completeTemplateDefinition(*Spec);
5153   } LLVM_FALLTHROUGH;
5154   case Decl::CXXRecord:
5155     if (DebugInfo) {
5156       if (auto *ES = D->getASTContext().getExternalSource())
5157         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5158           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5159     }
5160     // Emit any static data members, they may be definitions.
5161     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5162       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5163         EmitTopLevelDecl(I);
5164     break;
5165     // No code generation needed.
5166   case Decl::UsingShadow:
5167   case Decl::ClassTemplate:
5168   case Decl::VarTemplate:
5169   case Decl::Concept:
5170   case Decl::VarTemplatePartialSpecialization:
5171   case Decl::FunctionTemplate:
5172   case Decl::TypeAliasTemplate:
5173   case Decl::Block:
5174   case Decl::Empty:
5175   case Decl::Binding:
5176     break;
5177   case Decl::Using:          // using X; [C++]
5178     if (CGDebugInfo *DI = getModuleDebugInfo())
5179         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5180     return;
5181   case Decl::NamespaceAlias:
5182     if (CGDebugInfo *DI = getModuleDebugInfo())
5183         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5184     return;
5185   case Decl::UsingDirective: // using namespace X; [C++]
5186     if (CGDebugInfo *DI = getModuleDebugInfo())
5187       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5188     return;
5189   case Decl::CXXConstructor:
5190     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5191     break;
5192   case Decl::CXXDestructor:
5193     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5194     break;
5195 
5196   case Decl::StaticAssert:
5197     // Nothing to do.
5198     break;
5199 
5200   // Objective-C Decls
5201 
5202   // Forward declarations, no (immediate) code generation.
5203   case Decl::ObjCInterface:
5204   case Decl::ObjCCategory:
5205     break;
5206 
5207   case Decl::ObjCProtocol: {
5208     auto *Proto = cast<ObjCProtocolDecl>(D);
5209     if (Proto->isThisDeclarationADefinition())
5210       ObjCRuntime->GenerateProtocol(Proto);
5211     break;
5212   }
5213 
5214   case Decl::ObjCCategoryImpl:
5215     // Categories have properties but don't support synthesize so we
5216     // can ignore them here.
5217     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5218     break;
5219 
5220   case Decl::ObjCImplementation: {
5221     auto *OMD = cast<ObjCImplementationDecl>(D);
5222     EmitObjCPropertyImplementations(OMD);
5223     EmitObjCIvarInitializations(OMD);
5224     ObjCRuntime->GenerateClass(OMD);
5225     // Emit global variable debug information.
5226     if (CGDebugInfo *DI = getModuleDebugInfo())
5227       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5228         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5229             OMD->getClassInterface()), OMD->getLocation());
5230     break;
5231   }
5232   case Decl::ObjCMethod: {
5233     auto *OMD = cast<ObjCMethodDecl>(D);
5234     // If this is not a prototype, emit the body.
5235     if (OMD->getBody())
5236       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5237     break;
5238   }
5239   case Decl::ObjCCompatibleAlias:
5240     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5241     break;
5242 
5243   case Decl::PragmaComment: {
5244     const auto *PCD = cast<PragmaCommentDecl>(D);
5245     switch (PCD->getCommentKind()) {
5246     case PCK_Unknown:
5247       llvm_unreachable("unexpected pragma comment kind");
5248     case PCK_Linker:
5249       AppendLinkerOptions(PCD->getArg());
5250       break;
5251     case PCK_Lib:
5252         AddDependentLib(PCD->getArg());
5253       break;
5254     case PCK_Compiler:
5255     case PCK_ExeStr:
5256     case PCK_User:
5257       break; // We ignore all of these.
5258     }
5259     break;
5260   }
5261 
5262   case Decl::PragmaDetectMismatch: {
5263     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5264     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5265     break;
5266   }
5267 
5268   case Decl::LinkageSpec:
5269     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5270     break;
5271 
5272   case Decl::FileScopeAsm: {
5273     // File-scope asm is ignored during device-side CUDA compilation.
5274     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5275       break;
5276     // File-scope asm is ignored during device-side OpenMP compilation.
5277     if (LangOpts.OpenMPIsDevice)
5278       break;
5279     auto *AD = cast<FileScopeAsmDecl>(D);
5280     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5281     break;
5282   }
5283 
5284   case Decl::Import: {
5285     auto *Import = cast<ImportDecl>(D);
5286 
5287     // If we've already imported this module, we're done.
5288     if (!ImportedModules.insert(Import->getImportedModule()))
5289       break;
5290 
5291     // Emit debug information for direct imports.
5292     if (!Import->getImportedOwningModule()) {
5293       if (CGDebugInfo *DI = getModuleDebugInfo())
5294         DI->EmitImportDecl(*Import);
5295     }
5296 
5297     // Find all of the submodules and emit the module initializers.
5298     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5299     SmallVector<clang::Module *, 16> Stack;
5300     Visited.insert(Import->getImportedModule());
5301     Stack.push_back(Import->getImportedModule());
5302 
5303     while (!Stack.empty()) {
5304       clang::Module *Mod = Stack.pop_back_val();
5305       if (!EmittedModuleInitializers.insert(Mod).second)
5306         continue;
5307 
5308       for (auto *D : Context.getModuleInitializers(Mod))
5309         EmitTopLevelDecl(D);
5310 
5311       // Visit the submodules of this module.
5312       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5313                                              SubEnd = Mod->submodule_end();
5314            Sub != SubEnd; ++Sub) {
5315         // Skip explicit children; they need to be explicitly imported to emit
5316         // the initializers.
5317         if ((*Sub)->IsExplicit)
5318           continue;
5319 
5320         if (Visited.insert(*Sub).second)
5321           Stack.push_back(*Sub);
5322       }
5323     }
5324     break;
5325   }
5326 
5327   case Decl::Export:
5328     EmitDeclContext(cast<ExportDecl>(D));
5329     break;
5330 
5331   case Decl::OMPThreadPrivate:
5332     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5333     break;
5334 
5335   case Decl::OMPAllocate:
5336     break;
5337 
5338   case Decl::OMPDeclareReduction:
5339     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5340     break;
5341 
5342   case Decl::OMPDeclareMapper:
5343     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5344     break;
5345 
5346   case Decl::OMPRequires:
5347     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5348     break;
5349 
5350   default:
5351     // Make sure we handled everything we should, every other kind is a
5352     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5353     // function. Need to recode Decl::Kind to do that easily.
5354     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5355     break;
5356   }
5357 }
5358 
5359 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5360   // Do we need to generate coverage mapping?
5361   if (!CodeGenOpts.CoverageMapping)
5362     return;
5363   switch (D->getKind()) {
5364   case Decl::CXXConversion:
5365   case Decl::CXXMethod:
5366   case Decl::Function:
5367   case Decl::ObjCMethod:
5368   case Decl::CXXConstructor:
5369   case Decl::CXXDestructor: {
5370     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5371       return;
5372     SourceManager &SM = getContext().getSourceManager();
5373     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5374       return;
5375     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5376     if (I == DeferredEmptyCoverageMappingDecls.end())
5377       DeferredEmptyCoverageMappingDecls[D] = true;
5378     break;
5379   }
5380   default:
5381     break;
5382   };
5383 }
5384 
5385 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5386   // Do we need to generate coverage mapping?
5387   if (!CodeGenOpts.CoverageMapping)
5388     return;
5389   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5390     if (Fn->isTemplateInstantiation())
5391       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5392   }
5393   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5394   if (I == DeferredEmptyCoverageMappingDecls.end())
5395     DeferredEmptyCoverageMappingDecls[D] = false;
5396   else
5397     I->second = false;
5398 }
5399 
5400 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5401   // We call takeVector() here to avoid use-after-free.
5402   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5403   // we deserialize function bodies to emit coverage info for them, and that
5404   // deserializes more declarations. How should we handle that case?
5405   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5406     if (!Entry.second)
5407       continue;
5408     const Decl *D = Entry.first;
5409     switch (D->getKind()) {
5410     case Decl::CXXConversion:
5411     case Decl::CXXMethod:
5412     case Decl::Function:
5413     case Decl::ObjCMethod: {
5414       CodeGenPGO PGO(*this);
5415       GlobalDecl GD(cast<FunctionDecl>(D));
5416       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5417                                   getFunctionLinkage(GD));
5418       break;
5419     }
5420     case Decl::CXXConstructor: {
5421       CodeGenPGO PGO(*this);
5422       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5423       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5424                                   getFunctionLinkage(GD));
5425       break;
5426     }
5427     case Decl::CXXDestructor: {
5428       CodeGenPGO PGO(*this);
5429       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5430       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5431                                   getFunctionLinkage(GD));
5432       break;
5433     }
5434     default:
5435       break;
5436     };
5437   }
5438 }
5439 
5440 /// Turns the given pointer into a constant.
5441 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5442                                           const void *Ptr) {
5443   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5444   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5445   return llvm::ConstantInt::get(i64, PtrInt);
5446 }
5447 
5448 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5449                                    llvm::NamedMDNode *&GlobalMetadata,
5450                                    GlobalDecl D,
5451                                    llvm::GlobalValue *Addr) {
5452   if (!GlobalMetadata)
5453     GlobalMetadata =
5454       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5455 
5456   // TODO: should we report variant information for ctors/dtors?
5457   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5458                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5459                                CGM.getLLVMContext(), D.getDecl()))};
5460   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5461 }
5462 
5463 /// For each function which is declared within an extern "C" region and marked
5464 /// as 'used', but has internal linkage, create an alias from the unmangled
5465 /// name to the mangled name if possible. People expect to be able to refer
5466 /// to such functions with an unmangled name from inline assembly within the
5467 /// same translation unit.
5468 void CodeGenModule::EmitStaticExternCAliases() {
5469   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5470     return;
5471   for (auto &I : StaticExternCValues) {
5472     IdentifierInfo *Name = I.first;
5473     llvm::GlobalValue *Val = I.second;
5474     if (Val && !getModule().getNamedValue(Name->getName()))
5475       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5476   }
5477 }
5478 
5479 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5480                                              GlobalDecl &Result) const {
5481   auto Res = Manglings.find(MangledName);
5482   if (Res == Manglings.end())
5483     return false;
5484   Result = Res->getValue();
5485   return true;
5486 }
5487 
5488 /// Emits metadata nodes associating all the global values in the
5489 /// current module with the Decls they came from.  This is useful for
5490 /// projects using IR gen as a subroutine.
5491 ///
5492 /// Since there's currently no way to associate an MDNode directly
5493 /// with an llvm::GlobalValue, we create a global named metadata
5494 /// with the name 'clang.global.decl.ptrs'.
5495 void CodeGenModule::EmitDeclMetadata() {
5496   llvm::NamedMDNode *GlobalMetadata = nullptr;
5497 
5498   for (auto &I : MangledDeclNames) {
5499     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5500     // Some mangled names don't necessarily have an associated GlobalValue
5501     // in this module, e.g. if we mangled it for DebugInfo.
5502     if (Addr)
5503       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5504   }
5505 }
5506 
5507 /// Emits metadata nodes for all the local variables in the current
5508 /// function.
5509 void CodeGenFunction::EmitDeclMetadata() {
5510   if (LocalDeclMap.empty()) return;
5511 
5512   llvm::LLVMContext &Context = getLLVMContext();
5513 
5514   // Find the unique metadata ID for this name.
5515   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5516 
5517   llvm::NamedMDNode *GlobalMetadata = nullptr;
5518 
5519   for (auto &I : LocalDeclMap) {
5520     const Decl *D = I.first;
5521     llvm::Value *Addr = I.second.getPointer();
5522     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5523       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5524       Alloca->setMetadata(
5525           DeclPtrKind, llvm::MDNode::get(
5526                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5527     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5528       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5529       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5530     }
5531   }
5532 }
5533 
5534 void CodeGenModule::EmitVersionIdentMetadata() {
5535   llvm::NamedMDNode *IdentMetadata =
5536     TheModule.getOrInsertNamedMetadata("llvm.ident");
5537   std::string Version = getClangFullVersion();
5538   llvm::LLVMContext &Ctx = TheModule.getContext();
5539 
5540   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5541   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5542 }
5543 
5544 void CodeGenModule::EmitCommandLineMetadata() {
5545   llvm::NamedMDNode *CommandLineMetadata =
5546     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5547   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5548   llvm::LLVMContext &Ctx = TheModule.getContext();
5549 
5550   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5551   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5552 }
5553 
5554 void CodeGenModule::EmitTargetMetadata() {
5555   // Warning, new MangledDeclNames may be appended within this loop.
5556   // We rely on MapVector insertions adding new elements to the end
5557   // of the container.
5558   // FIXME: Move this loop into the one target that needs it, and only
5559   // loop over those declarations for which we couldn't emit the target
5560   // metadata when we emitted the declaration.
5561   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5562     auto Val = *(MangledDeclNames.begin() + I);
5563     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5564     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5565     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5566   }
5567 }
5568 
5569 void CodeGenModule::EmitCoverageFile() {
5570   if (getCodeGenOpts().CoverageDataFile.empty() &&
5571       getCodeGenOpts().CoverageNotesFile.empty())
5572     return;
5573 
5574   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5575   if (!CUNode)
5576     return;
5577 
5578   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5579   llvm::LLVMContext &Ctx = TheModule.getContext();
5580   auto *CoverageDataFile =
5581       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5582   auto *CoverageNotesFile =
5583       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5584   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5585     llvm::MDNode *CU = CUNode->getOperand(i);
5586     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5587     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5588   }
5589 }
5590 
5591 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5592   // Sema has checked that all uuid strings are of the form
5593   // "12345678-1234-1234-1234-1234567890ab".
5594   assert(Uuid.size() == 36);
5595   for (unsigned i = 0; i < 36; ++i) {
5596     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5597     else                                         assert(isHexDigit(Uuid[i]));
5598   }
5599 
5600   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5601   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5602 
5603   llvm::Constant *Field3[8];
5604   for (unsigned Idx = 0; Idx < 8; ++Idx)
5605     Field3[Idx] = llvm::ConstantInt::get(
5606         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5607 
5608   llvm::Constant *Fields[4] = {
5609     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5610     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5611     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5612     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5613   };
5614 
5615   return llvm::ConstantStruct::getAnon(Fields);
5616 }
5617 
5618 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5619                                                        bool ForEH) {
5620   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5621   // FIXME: should we even be calling this method if RTTI is disabled
5622   // and it's not for EH?
5623   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5624     return llvm::Constant::getNullValue(Int8PtrTy);
5625 
5626   if (ForEH && Ty->isObjCObjectPointerType() &&
5627       LangOpts.ObjCRuntime.isGNUFamily())
5628     return ObjCRuntime->GetEHType(Ty);
5629 
5630   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5631 }
5632 
5633 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5634   // Do not emit threadprivates in simd-only mode.
5635   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5636     return;
5637   for (auto RefExpr : D->varlists()) {
5638     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5639     bool PerformInit =
5640         VD->getAnyInitializer() &&
5641         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5642                                                         /*ForRef=*/false);
5643 
5644     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5645     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5646             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5647       CXXGlobalInits.push_back(InitFunction);
5648   }
5649 }
5650 
5651 llvm::Metadata *
5652 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5653                                             StringRef Suffix) {
5654   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5655   if (InternalId)
5656     return InternalId;
5657 
5658   if (isExternallyVisible(T->getLinkage())) {
5659     std::string OutName;
5660     llvm::raw_string_ostream Out(OutName);
5661     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5662     Out << Suffix;
5663 
5664     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5665   } else {
5666     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5667                                            llvm::ArrayRef<llvm::Metadata *>());
5668   }
5669 
5670   return InternalId;
5671 }
5672 
5673 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5674   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5675 }
5676 
5677 llvm::Metadata *
5678 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5679   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5680 }
5681 
5682 // Generalize pointer types to a void pointer with the qualifiers of the
5683 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5684 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5685 // 'void *'.
5686 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5687   if (!Ty->isPointerType())
5688     return Ty;
5689 
5690   return Ctx.getPointerType(
5691       QualType(Ctx.VoidTy).withCVRQualifiers(
5692           Ty->getPointeeType().getCVRQualifiers()));
5693 }
5694 
5695 // Apply type generalization to a FunctionType's return and argument types
5696 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5697   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5698     SmallVector<QualType, 8> GeneralizedParams;
5699     for (auto &Param : FnType->param_types())
5700       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5701 
5702     return Ctx.getFunctionType(
5703         GeneralizeType(Ctx, FnType->getReturnType()),
5704         GeneralizedParams, FnType->getExtProtoInfo());
5705   }
5706 
5707   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5708     return Ctx.getFunctionNoProtoType(
5709         GeneralizeType(Ctx, FnType->getReturnType()));
5710 
5711   llvm_unreachable("Encountered unknown FunctionType");
5712 }
5713 
5714 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5715   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5716                                       GeneralizedMetadataIdMap, ".generalized");
5717 }
5718 
5719 /// Returns whether this module needs the "all-vtables" type identifier.
5720 bool CodeGenModule::NeedAllVtablesTypeId() const {
5721   // Returns true if at least one of vtable-based CFI checkers is enabled and
5722   // is not in the trapping mode.
5723   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5724            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5725           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5726            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5727           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5728            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5729           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5730            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5731 }
5732 
5733 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5734                                           CharUnits Offset,
5735                                           const CXXRecordDecl *RD) {
5736   llvm::Metadata *MD =
5737       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5738   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5739 
5740   if (CodeGenOpts.SanitizeCfiCrossDso)
5741     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5742       VTable->addTypeMetadata(Offset.getQuantity(),
5743                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5744 
5745   if (NeedAllVtablesTypeId()) {
5746     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5747     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5748   }
5749 }
5750 
5751 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5752   assert(TD != nullptr);
5753   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5754 
5755   ParsedAttr.Features.erase(
5756       llvm::remove_if(ParsedAttr.Features,
5757                       [&](const std::string &Feat) {
5758                         return !Target.isValidFeatureName(
5759                             StringRef{Feat}.substr(1));
5760                       }),
5761       ParsedAttr.Features.end());
5762   return ParsedAttr;
5763 }
5764 
5765 
5766 // Fills in the supplied string map with the set of target features for the
5767 // passed in function.
5768 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5769                                           GlobalDecl GD) {
5770   StringRef TargetCPU = Target.getTargetOpts().CPU;
5771   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5772   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5773     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5774 
5775     // Make a copy of the features as passed on the command line into the
5776     // beginning of the additional features from the function to override.
5777     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5778                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5779                             Target.getTargetOpts().FeaturesAsWritten.end());
5780 
5781     if (ParsedAttr.Architecture != "" &&
5782         Target.isValidCPUName(ParsedAttr.Architecture))
5783       TargetCPU = ParsedAttr.Architecture;
5784 
5785     // Now populate the feature map, first with the TargetCPU which is either
5786     // the default or a new one from the target attribute string. Then we'll use
5787     // the passed in features (FeaturesAsWritten) along with the new ones from
5788     // the attribute.
5789     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5790                           ParsedAttr.Features);
5791   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5792     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5793     Target.getCPUSpecificCPUDispatchFeatures(
5794         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5795     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5796     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5797   } else {
5798     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5799                           Target.getTargetOpts().Features);
5800   }
5801 }
5802 
5803 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5804   if (!SanStats)
5805     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5806 
5807   return *SanStats;
5808 }
5809 llvm::Value *
5810 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5811                                                   CodeGenFunction &CGF) {
5812   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5813   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5814   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5815   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5816                                 "__translate_sampler_initializer"),
5817                                 {C});
5818 }
5819