xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 95a546ee4dbdc997e9898c9839f3851f46a78b5c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/CallSite.h"
39 #include "llvm/Support/ErrorHandling.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 
44 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
45                              llvm::Module &M, const llvm::TargetData &TD,
46                              Diagnostic &diags)
47   : BlockModule(C, M, TD, Types, *this), Context(C),
48     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
49     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
50     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
51     VTables(*this), Runtime(0), ABI(0),
52     CFConstantStringClassRef(0),
53     NSConstantStringClassRef(0),
54     VMContext(M.getContext()) {
55 
56   if (!Features.ObjC1)
57     Runtime = 0;
58   else if (!Features.NeXTRuntime)
59     Runtime = CreateGNUObjCRuntime(*this);
60   else if (Features.ObjCNonFragileABI)
61     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
62   else
63     Runtime = CreateMacObjCRuntime(*this);
64 
65   if (!Features.CPlusPlus)
66     ABI = 0;
67   else createCXXABI();
68 
69   // If debug info generation is enabled, create the CGDebugInfo object.
70   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
71 }
72 
73 CodeGenModule::~CodeGenModule() {
74   delete Runtime;
75   delete ABI;
76   delete DebugInfo;
77 }
78 
79 void CodeGenModule::createObjCRuntime() {
80   if (!Features.NeXTRuntime)
81     Runtime = CreateGNUObjCRuntime(*this);
82   else if (Features.ObjCNonFragileABI)
83     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
84   else
85     Runtime = CreateMacObjCRuntime(*this);
86 }
87 
88 void CodeGenModule::createCXXABI() {
89   if (Context.Target.getCXXABI() == "microsoft")
90     ABI = CreateMicrosoftCXXABI(*this);
91   else
92     ABI = CreateItaniumCXXABI(*this);
93 }
94 
95 void CodeGenModule::Release() {
96   EmitDeferred();
97   EmitCXXGlobalInitFunc();
98   EmitCXXGlobalDtorFunc();
99   if (Runtime)
100     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
101       AddGlobalCtor(ObjCInitFunction);
102   EmitCtorList(GlobalCtors, "llvm.global_ctors");
103   EmitCtorList(GlobalDtors, "llvm.global_dtors");
104   EmitAnnotations();
105   EmitLLVMUsed();
106 }
107 
108 bool CodeGenModule::isTargetDarwin() const {
109   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
110 }
111 
112 /// ErrorUnsupported - Print out an error that codegen doesn't support the
113 /// specified stmt yet.
114 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
115                                      bool OmitOnError) {
116   if (OmitOnError && getDiags().hasErrorOccurred())
117     return;
118   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
119                                                "cannot compile this %0 yet");
120   std::string Msg = Type;
121   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
122     << Msg << S->getSourceRange();
123 }
124 
125 /// ErrorUnsupported - Print out an error that codegen doesn't support the
126 /// specified decl yet.
127 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
128                                      bool OmitOnError) {
129   if (OmitOnError && getDiags().hasErrorOccurred())
130     return;
131   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
132                                                "cannot compile this %0 yet");
133   std::string Msg = Type;
134   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
135 }
136 
137 LangOptions::VisibilityMode
138 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
139   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
140     if (VD->getStorageClass() == VarDecl::PrivateExtern)
141       return LangOptions::Hidden;
142 
143   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
144     switch (attr->getVisibility()) {
145     default: assert(0 && "Unknown visibility!");
146     case VisibilityAttr::DefaultVisibility:
147       return LangOptions::Default;
148     case VisibilityAttr::HiddenVisibility:
149       return LangOptions::Hidden;
150     case VisibilityAttr::ProtectedVisibility:
151       return LangOptions::Protected;
152     }
153   }
154 
155   // This decl should have the same visibility as its parent.
156   if (const DeclContext *DC = D->getDeclContext())
157     return getDeclVisibilityMode(cast<Decl>(DC));
158 
159   return getLangOptions().getVisibilityMode();
160 }
161 
162 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
163                                         const Decl *D) const {
164   // Internal definitions always have default visibility.
165   if (GV->hasLocalLinkage()) {
166     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
167     return;
168   }
169 
170   switch (getDeclVisibilityMode(D)) {
171   default: assert(0 && "Unknown visibility!");
172   case LangOptions::Default:
173     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
174   case LangOptions::Hidden:
175     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
176   case LangOptions::Protected:
177     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
178   }
179 }
180 
181 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
182   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
183 
184   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
185     return getMangleContext().mangleCXXCtor(D, GD.getCtorType(),
186                                             Buffer.getBuffer());
187   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
188     return getMangleContext().mangleCXXDtor(D, GD.getDtorType(),
189                                             Buffer.getBuffer());
190 
191   if (!getMangleContext().shouldMangleDeclName(ND)) {
192     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
193     Buffer.setString(ND->getNameAsCString());
194     return;
195   }
196 
197   getMangleContext().mangleName(ND, Buffer.getBuffer());
198 }
199 
200 void CodeGenModule::getMangledName(MangleBuffer &Buffer, const BlockDecl *BD) {
201   getMangleContext().mangleBlock(BD, Buffer.getBuffer());
202 }
203 
204 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
205   return getModule().getNamedValue(Name);
206 }
207 
208 /// AddGlobalCtor - Add a function to the list that will be called before
209 /// main() runs.
210 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
211   // FIXME: Type coercion of void()* types.
212   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
213 }
214 
215 /// AddGlobalDtor - Add a function to the list that will be called
216 /// when the module is unloaded.
217 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
218   // FIXME: Type coercion of void()* types.
219   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
220 }
221 
222 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
223   // Ctor function type is void()*.
224   llvm::FunctionType* CtorFTy =
225     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
226                             std::vector<const llvm::Type*>(),
227                             false);
228   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
229 
230   // Get the type of a ctor entry, { i32, void ()* }.
231   llvm::StructType* CtorStructTy =
232     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
233                           llvm::PointerType::getUnqual(CtorFTy), NULL);
234 
235   // Construct the constructor and destructor arrays.
236   std::vector<llvm::Constant*> Ctors;
237   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
238     std::vector<llvm::Constant*> S;
239     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
240                 I->second, false));
241     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
242     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
243   }
244 
245   if (!Ctors.empty()) {
246     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
247     new llvm::GlobalVariable(TheModule, AT, false,
248                              llvm::GlobalValue::AppendingLinkage,
249                              llvm::ConstantArray::get(AT, Ctors),
250                              GlobalName);
251   }
252 }
253 
254 void CodeGenModule::EmitAnnotations() {
255   if (Annotations.empty())
256     return;
257 
258   // Create a new global variable for the ConstantStruct in the Module.
259   llvm::Constant *Array =
260   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
261                                                 Annotations.size()),
262                            Annotations);
263   llvm::GlobalValue *gv =
264   new llvm::GlobalVariable(TheModule, Array->getType(), false,
265                            llvm::GlobalValue::AppendingLinkage, Array,
266                            "llvm.global.annotations");
267   gv->setSection("llvm.metadata");
268 }
269 
270 static CodeGenModule::GVALinkage
271 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
272                       const LangOptions &Features) {
273   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
274 
275   Linkage L = FD->getLinkage();
276   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
277       FD->getType()->getLinkage() == UniqueExternalLinkage)
278     L = UniqueExternalLinkage;
279 
280   switch (L) {
281   case NoLinkage:
282   case InternalLinkage:
283   case UniqueExternalLinkage:
284     return CodeGenModule::GVA_Internal;
285 
286   case ExternalLinkage:
287     switch (FD->getTemplateSpecializationKind()) {
288     case TSK_Undeclared:
289     case TSK_ExplicitSpecialization:
290       External = CodeGenModule::GVA_StrongExternal;
291       break;
292 
293     case TSK_ExplicitInstantiationDefinition:
294       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
295 
296     case TSK_ExplicitInstantiationDeclaration:
297     case TSK_ImplicitInstantiation:
298       External = CodeGenModule::GVA_TemplateInstantiation;
299       break;
300     }
301   }
302 
303   if (!FD->isInlined())
304     return External;
305 
306   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
307     // GNU or C99 inline semantics. Determine whether this symbol should be
308     // externally visible.
309     if (FD->isInlineDefinitionExternallyVisible())
310       return External;
311 
312     // C99 inline semantics, where the symbol is not externally visible.
313     return CodeGenModule::GVA_C99Inline;
314   }
315 
316   // C++0x [temp.explicit]p9:
317   //   [ Note: The intent is that an inline function that is the subject of
318   //   an explicit instantiation declaration will still be implicitly
319   //   instantiated when used so that the body can be considered for
320   //   inlining, but that no out-of-line copy of the inline function would be
321   //   generated in the translation unit. -- end note ]
322   if (FD->getTemplateSpecializationKind()
323                                        == TSK_ExplicitInstantiationDeclaration)
324     return CodeGenModule::GVA_C99Inline;
325 
326   return CodeGenModule::GVA_CXXInline;
327 }
328 
329 llvm::GlobalValue::LinkageTypes
330 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
331   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
332 
333   if (Linkage == GVA_Internal) {
334     return llvm::Function::InternalLinkage;
335   } else if (D->hasAttr<DLLExportAttr>()) {
336     return llvm::Function::DLLExportLinkage;
337   } else if (D->hasAttr<WeakAttr>()) {
338     return llvm::Function::WeakAnyLinkage;
339   } else if (Linkage == GVA_C99Inline) {
340     // In C99 mode, 'inline' functions are guaranteed to have a strong
341     // definition somewhere else, so we can use available_externally linkage.
342     return llvm::Function::AvailableExternallyLinkage;
343   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
344     // In C++, the compiler has to emit a definition in every translation unit
345     // that references the function.  We should use linkonce_odr because
346     // a) if all references in this translation unit are optimized away, we
347     // don't need to codegen it.  b) if the function persists, it needs to be
348     // merged with other definitions. c) C++ has the ODR, so we know the
349     // definition is dependable.
350     return llvm::Function::LinkOnceODRLinkage;
351   } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
352     // An explicit instantiation of a template has weak linkage, since
353     // explicit instantiations can occur in multiple translation units
354     // and must all be equivalent. However, we are not allowed to
355     // throw away these explicit instantiations.
356     return llvm::Function::WeakODRLinkage;
357   } else {
358     assert(Linkage == GVA_StrongExternal);
359     // Otherwise, we have strong external linkage.
360     return llvm::Function::ExternalLinkage;
361   }
362 }
363 
364 
365 /// SetFunctionDefinitionAttributes - Set attributes for a global.
366 ///
367 /// FIXME: This is currently only done for aliases and functions, but not for
368 /// variables (these details are set in EmitGlobalVarDefinition for variables).
369 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
370                                                     llvm::GlobalValue *GV) {
371   SetCommonAttributes(D, GV);
372 }
373 
374 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
375                                               const CGFunctionInfo &Info,
376                                               llvm::Function *F) {
377   unsigned CallingConv;
378   AttributeListType AttributeList;
379   ConstructAttributeList(Info, D, AttributeList, CallingConv);
380   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
381                                           AttributeList.size()));
382   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
383 }
384 
385 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
386                                                            llvm::Function *F) {
387   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
388     F->addFnAttr(llvm::Attribute::NoUnwind);
389 
390   if (D->hasAttr<AlwaysInlineAttr>())
391     F->addFnAttr(llvm::Attribute::AlwaysInline);
392 
393   if (D->hasAttr<NoInlineAttr>())
394     F->addFnAttr(llvm::Attribute::NoInline);
395 
396   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
397     F->addFnAttr(llvm::Attribute::StackProtect);
398   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
399     F->addFnAttr(llvm::Attribute::StackProtectReq);
400 
401   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
402     unsigned width = Context.Target.getCharWidth();
403     F->setAlignment(AA->getAlignment() / width);
404     while ((AA = AA->getNext<AlignedAttr>()))
405       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
406   }
407   // C++ ABI requires 2-byte alignment for member functions.
408   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
409     F->setAlignment(2);
410 }
411 
412 void CodeGenModule::SetCommonAttributes(const Decl *D,
413                                         llvm::GlobalValue *GV) {
414   setGlobalVisibility(GV, D);
415 
416   if (D->hasAttr<UsedAttr>())
417     AddUsedGlobal(GV);
418 
419   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
420     GV->setSection(SA->getName());
421 
422   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
423 }
424 
425 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
426                                                   llvm::Function *F,
427                                                   const CGFunctionInfo &FI) {
428   SetLLVMFunctionAttributes(D, FI, F);
429   SetLLVMFunctionAttributesForDefinition(D, F);
430 
431   F->setLinkage(llvm::Function::InternalLinkage);
432 
433   SetCommonAttributes(D, F);
434 }
435 
436 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
437                                           llvm::Function *F,
438                                           bool IsIncompleteFunction) {
439   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
440 
441   if (!IsIncompleteFunction)
442     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
443 
444   // Only a few attributes are set on declarations; these may later be
445   // overridden by a definition.
446 
447   if (FD->hasAttr<DLLImportAttr>()) {
448     F->setLinkage(llvm::Function::DLLImportLinkage);
449   } else if (FD->hasAttr<WeakAttr>() ||
450              FD->hasAttr<WeakImportAttr>()) {
451     // "extern_weak" is overloaded in LLVM; we probably should have
452     // separate linkage types for this.
453     F->setLinkage(llvm::Function::ExternalWeakLinkage);
454   } else {
455     F->setLinkage(llvm::Function::ExternalLinkage);
456   }
457 
458   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
459     F->setSection(SA->getName());
460 }
461 
462 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
463   assert(!GV->isDeclaration() &&
464          "Only globals with definition can force usage.");
465   LLVMUsed.push_back(GV);
466 }
467 
468 void CodeGenModule::EmitLLVMUsed() {
469   // Don't create llvm.used if there is no need.
470   if (LLVMUsed.empty())
471     return;
472 
473   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
474 
475   // Convert LLVMUsed to what ConstantArray needs.
476   std::vector<llvm::Constant*> UsedArray;
477   UsedArray.resize(LLVMUsed.size());
478   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
479     UsedArray[i] =
480      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
481                                       i8PTy);
482   }
483 
484   if (UsedArray.empty())
485     return;
486   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
487 
488   llvm::GlobalVariable *GV =
489     new llvm::GlobalVariable(getModule(), ATy, false,
490                              llvm::GlobalValue::AppendingLinkage,
491                              llvm::ConstantArray::get(ATy, UsedArray),
492                              "llvm.used");
493 
494   GV->setSection("llvm.metadata");
495 }
496 
497 void CodeGenModule::EmitDeferred() {
498   // Emit code for any potentially referenced deferred decls.  Since a
499   // previously unused static decl may become used during the generation of code
500   // for a static function, iterate until no  changes are made.
501 
502   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
503     if (!DeferredVTables.empty()) {
504       const CXXRecordDecl *RD = DeferredVTables.back();
505       DeferredVTables.pop_back();
506       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
507       continue;
508     }
509 
510     GlobalDecl D = DeferredDeclsToEmit.back();
511     DeferredDeclsToEmit.pop_back();
512 
513     // Check to see if we've already emitted this.  This is necessary
514     // for a couple of reasons: first, decls can end up in the
515     // deferred-decls queue multiple times, and second, decls can end
516     // up with definitions in unusual ways (e.g. by an extern inline
517     // function acquiring a strong function redefinition).  Just
518     // ignore these cases.
519     //
520     // TODO: That said, looking this up multiple times is very wasteful.
521     MangleBuffer Name;
522     getMangledName(Name, D);
523     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
524     assert(CGRef && "Deferred decl wasn't referenced?");
525 
526     if (!CGRef->isDeclaration())
527       continue;
528 
529     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
530     // purposes an alias counts as a definition.
531     if (isa<llvm::GlobalAlias>(CGRef))
532       continue;
533 
534     // Otherwise, emit the definition and move on to the next one.
535     EmitGlobalDefinition(D);
536   }
537 }
538 
539 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
540 /// annotation information for a given GlobalValue.  The annotation struct is
541 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
542 /// GlobalValue being annotated.  The second field is the constant string
543 /// created from the AnnotateAttr's annotation.  The third field is a constant
544 /// string containing the name of the translation unit.  The fourth field is
545 /// the line number in the file of the annotated value declaration.
546 ///
547 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
548 ///        appears to.
549 ///
550 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
551                                                 const AnnotateAttr *AA,
552                                                 unsigned LineNo) {
553   llvm::Module *M = &getModule();
554 
555   // get [N x i8] constants for the annotation string, and the filename string
556   // which are the 2nd and 3rd elements of the global annotation structure.
557   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
558   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
559                                                   AA->getAnnotation(), true);
560   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
561                                                   M->getModuleIdentifier(),
562                                                   true);
563 
564   // Get the two global values corresponding to the ConstantArrays we just
565   // created to hold the bytes of the strings.
566   llvm::GlobalValue *annoGV =
567     new llvm::GlobalVariable(*M, anno->getType(), false,
568                              llvm::GlobalValue::PrivateLinkage, anno,
569                              GV->getName());
570   // translation unit name string, emitted into the llvm.metadata section.
571   llvm::GlobalValue *unitGV =
572     new llvm::GlobalVariable(*M, unit->getType(), false,
573                              llvm::GlobalValue::PrivateLinkage, unit,
574                              ".str");
575 
576   // Create the ConstantStruct for the global annotation.
577   llvm::Constant *Fields[4] = {
578     llvm::ConstantExpr::getBitCast(GV, SBP),
579     llvm::ConstantExpr::getBitCast(annoGV, SBP),
580     llvm::ConstantExpr::getBitCast(unitGV, SBP),
581     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
582   };
583   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
584 }
585 
586 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
587   // Never defer when EmitAllDecls is specified or the decl has
588   // attribute used.
589   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
590     return false;
591 
592   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
593     // Constructors and destructors should never be deferred.
594     if (FD->hasAttr<ConstructorAttr>() ||
595         FD->hasAttr<DestructorAttr>())
596       return false;
597 
598     // The key function for a class must never be deferred.
599     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
600       const CXXRecordDecl *RD = MD->getParent();
601       if (MD->isOutOfLine() && RD->isDynamicClass()) {
602         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
603         if (KeyFunction &&
604             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
605           return false;
606       }
607     }
608 
609     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
610 
611     // static, static inline, always_inline, and extern inline functions can
612     // always be deferred.  Normal inline functions can be deferred in C99/C++.
613     // Implicit template instantiations can also be deferred in C++.
614     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
615         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
616       return true;
617     return false;
618   }
619 
620   const VarDecl *VD = cast<VarDecl>(Global);
621   assert(VD->isFileVarDecl() && "Invalid decl");
622 
623   // We never want to defer structs that have non-trivial constructors or
624   // destructors.
625 
626   // FIXME: Handle references.
627   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
628     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
629       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
630         return false;
631     }
632   }
633 
634   // Static data may be deferred, but out-of-line static data members
635   // cannot be.
636   Linkage L = VD->getLinkage();
637   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
638       VD->getType()->getLinkage() == UniqueExternalLinkage)
639     L = UniqueExternalLinkage;
640 
641   switch (L) {
642   case NoLinkage:
643   case InternalLinkage:
644   case UniqueExternalLinkage:
645     // Initializer has side effects?
646     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
647       return false;
648     return !(VD->isStaticDataMember() && VD->isOutOfLine());
649 
650   case ExternalLinkage:
651     break;
652   }
653 
654   return false;
655 }
656 
657 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
658   const AliasAttr *AA = VD->getAttr<AliasAttr>();
659   assert(AA && "No alias?");
660 
661   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
662 
663   // See if there is already something with the target's name in the module.
664   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
665 
666   llvm::Constant *Aliasee;
667   if (isa<llvm::FunctionType>(DeclTy))
668     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
669   else
670     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
671                                     llvm::PointerType::getUnqual(DeclTy), 0);
672   if (!Entry) {
673     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
674     F->setLinkage(llvm::Function::ExternalWeakLinkage);
675     WeakRefReferences.insert(F);
676   }
677 
678   return Aliasee;
679 }
680 
681 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
682   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
683 
684   // Weak references don't produce any output by themselves.
685   if (Global->hasAttr<WeakRefAttr>())
686     return;
687 
688   // If this is an alias definition (which otherwise looks like a declaration)
689   // emit it now.
690   if (Global->hasAttr<AliasAttr>())
691     return EmitAliasDefinition(GD);
692 
693   // Ignore declarations, they will be emitted on their first use.
694   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
695     // Forward declarations are emitted lazily on first use.
696     if (!FD->isThisDeclarationADefinition())
697       return;
698   } else {
699     const VarDecl *VD = cast<VarDecl>(Global);
700     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
701 
702     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
703       return;
704   }
705 
706   // Defer code generation when possible if this is a static definition, inline
707   // function etc.  These we only want to emit if they are used.
708   if (!MayDeferGeneration(Global)) {
709     // Emit the definition if it can't be deferred.
710     EmitGlobalDefinition(GD);
711     return;
712   }
713 
714   // If the value has already been used, add it directly to the
715   // DeferredDeclsToEmit list.
716   MangleBuffer MangledName;
717   getMangledName(MangledName, GD);
718   if (GetGlobalValue(MangledName))
719     DeferredDeclsToEmit.push_back(GD);
720   else {
721     // Otherwise, remember that we saw a deferred decl with this name.  The
722     // first use of the mangled name will cause it to move into
723     // DeferredDeclsToEmit.
724     DeferredDecls[MangledName] = GD;
725   }
726 }
727 
728 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
729   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
730 
731   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
732                                  Context.getSourceManager(),
733                                  "Generating code for declaration");
734 
735   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
736     if (Method->isVirtual())
737       getVTables().EmitThunks(GD);
738 
739   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
740     return EmitCXXConstructor(CD, GD.getCtorType());
741 
742   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
743     return EmitCXXDestructor(DD, GD.getDtorType());
744 
745   if (isa<FunctionDecl>(D))
746     return EmitGlobalFunctionDefinition(GD);
747 
748   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
749     return EmitGlobalVarDefinition(VD);
750 
751   assert(0 && "Invalid argument to EmitGlobalDefinition()");
752 }
753 
754 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
755 /// module, create and return an llvm Function with the specified type. If there
756 /// is something in the module with the specified name, return it potentially
757 /// bitcasted to the right type.
758 ///
759 /// If D is non-null, it specifies a decl that correspond to this.  This is used
760 /// to set the attributes on the function when it is first created.
761 llvm::Constant *
762 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
763                                        const llvm::Type *Ty,
764                                        GlobalDecl D) {
765   // Lookup the entry, lazily creating it if necessary.
766   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
767   if (Entry) {
768     if (WeakRefReferences.count(Entry)) {
769       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
770       if (FD && !FD->hasAttr<WeakAttr>())
771         Entry->setLinkage(llvm::Function::ExternalLinkage);
772 
773       WeakRefReferences.erase(Entry);
774     }
775 
776     if (Entry->getType()->getElementType() == Ty)
777       return Entry;
778 
779     // Make sure the result is of the correct type.
780     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
781     return llvm::ConstantExpr::getBitCast(Entry, PTy);
782   }
783 
784   // This function doesn't have a complete type (for example, the return
785   // type is an incomplete struct). Use a fake type instead, and make
786   // sure not to try to set attributes.
787   bool IsIncompleteFunction = false;
788 
789   const llvm::FunctionType *FTy;
790   if (isa<llvm::FunctionType>(Ty)) {
791     FTy = cast<llvm::FunctionType>(Ty);
792   } else {
793     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
794                                   std::vector<const llvm::Type*>(), false);
795     IsIncompleteFunction = true;
796   }
797   llvm::Function *F = llvm::Function::Create(FTy,
798                                              llvm::Function::ExternalLinkage,
799                                              MangledName, &getModule());
800   assert(F->getName() == MangledName && "name was uniqued!");
801   if (D.getDecl())
802     SetFunctionAttributes(D, F, IsIncompleteFunction);
803 
804   // This is the first use or definition of a mangled name.  If there is a
805   // deferred decl with this name, remember that we need to emit it at the end
806   // of the file.
807   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
808   if (DDI != DeferredDecls.end()) {
809     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
810     // list, and remove it from DeferredDecls (since we don't need it anymore).
811     DeferredDeclsToEmit.push_back(DDI->second);
812     DeferredDecls.erase(DDI);
813   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
814     // If this the first reference to a C++ inline function in a class, queue up
815     // the deferred function body for emission.  These are not seen as
816     // top-level declarations.
817     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
818       DeferredDeclsToEmit.push_back(D);
819     // A called constructor which has no definition or declaration need be
820     // synthesized.
821     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
822       if (CD->isImplicit()) {
823         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
824         DeferredDeclsToEmit.push_back(D);
825       }
826     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
827       if (DD->isImplicit()) {
828         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
829         DeferredDeclsToEmit.push_back(D);
830       }
831     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
832       if (MD->isCopyAssignment() && MD->isImplicit()) {
833         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
834         DeferredDeclsToEmit.push_back(D);
835       }
836     }
837   }
838 
839   // Make sure the result is of the requested type.
840   if (!IsIncompleteFunction) {
841     assert(F->getType()->getElementType() == Ty);
842     return F;
843   }
844 
845   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
846   return llvm::ConstantExpr::getBitCast(F, PTy);
847 }
848 
849 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
850 /// non-null, then this function will use the specified type if it has to
851 /// create it (this occurs when we see a definition of the function).
852 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
853                                                  const llvm::Type *Ty) {
854   // If there was no specific requested type, just convert it now.
855   if (!Ty)
856     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
857   MangleBuffer MangledName;
858   getMangledName(MangledName, GD);
859   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
860 }
861 
862 /// CreateRuntimeFunction - Create a new runtime function with the specified
863 /// type and name.
864 llvm::Constant *
865 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
866                                      llvm::StringRef Name) {
867   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
868 }
869 
870 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
871   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
872     return false;
873   if (Context.getLangOptions().CPlusPlus &&
874       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
875     // FIXME: We should do something fancier here!
876     return false;
877   }
878   return true;
879 }
880 
881 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
882 /// create and return an llvm GlobalVariable with the specified type.  If there
883 /// is something in the module with the specified name, return it potentially
884 /// bitcasted to the right type.
885 ///
886 /// If D is non-null, it specifies a decl that correspond to this.  This is used
887 /// to set the attributes on the global when it is first created.
888 llvm::Constant *
889 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
890                                      const llvm::PointerType *Ty,
891                                      const VarDecl *D) {
892   // Lookup the entry, lazily creating it if necessary.
893   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
894   if (Entry) {
895     if (WeakRefReferences.count(Entry)) {
896       if (D && !D->hasAttr<WeakAttr>())
897         Entry->setLinkage(llvm::Function::ExternalLinkage);
898 
899       WeakRefReferences.erase(Entry);
900     }
901 
902     if (Entry->getType() == Ty)
903       return Entry;
904 
905     // Make sure the result is of the correct type.
906     return llvm::ConstantExpr::getBitCast(Entry, Ty);
907   }
908 
909   // This is the first use or definition of a mangled name.  If there is a
910   // deferred decl with this name, remember that we need to emit it at the end
911   // of the file.
912   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
913   if (DDI != DeferredDecls.end()) {
914     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
915     // list, and remove it from DeferredDecls (since we don't need it anymore).
916     DeferredDeclsToEmit.push_back(DDI->second);
917     DeferredDecls.erase(DDI);
918   }
919 
920   llvm::GlobalVariable *GV =
921     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
922                              llvm::GlobalValue::ExternalLinkage,
923                              0, MangledName, 0,
924                              false, Ty->getAddressSpace());
925 
926   // Handle things which are present even on external declarations.
927   if (D) {
928     // FIXME: This code is overly simple and should be merged with other global
929     // handling.
930     GV->setConstant(DeclIsConstantGlobal(Context, D));
931 
932     // FIXME: Merge with other attribute handling code.
933     if (D->getStorageClass() == VarDecl::PrivateExtern)
934       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
935 
936     if (D->hasAttr<WeakAttr>() ||
937         D->hasAttr<WeakImportAttr>())
938       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
939 
940     GV->setThreadLocal(D->isThreadSpecified());
941   }
942 
943   return GV;
944 }
945 
946 
947 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
948 /// given global variable.  If Ty is non-null and if the global doesn't exist,
949 /// then it will be greated with the specified type instead of whatever the
950 /// normal requested type would be.
951 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
952                                                   const llvm::Type *Ty) {
953   assert(D->hasGlobalStorage() && "Not a global variable");
954   QualType ASTTy = D->getType();
955   if (Ty == 0)
956     Ty = getTypes().ConvertTypeForMem(ASTTy);
957 
958   const llvm::PointerType *PTy =
959     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
960 
961   MangleBuffer MangledName;
962   getMangledName(MangledName, D);
963   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
964 }
965 
966 /// CreateRuntimeVariable - Create a new runtime global variable with the
967 /// specified type and name.
968 llvm::Constant *
969 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
970                                      llvm::StringRef Name) {
971   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
972 }
973 
974 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
975   assert(!D->getInit() && "Cannot emit definite definitions here!");
976 
977   if (MayDeferGeneration(D)) {
978     // If we have not seen a reference to this variable yet, place it
979     // into the deferred declarations table to be emitted if needed
980     // later.
981     MangleBuffer MangledName;
982     getMangledName(MangledName, D);
983     if (!GetGlobalValue(MangledName)) {
984       DeferredDecls[MangledName] = D;
985       return;
986     }
987   }
988 
989   // The tentative definition is the only definition.
990   EmitGlobalVarDefinition(D);
991 }
992 
993 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
994   if (DefinitionRequired)
995     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
996 }
997 
998 llvm::GlobalVariable::LinkageTypes
999 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1000   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1001     return llvm::GlobalVariable::InternalLinkage;
1002 
1003   if (const CXXMethodDecl *KeyFunction
1004                                     = RD->getASTContext().getKeyFunction(RD)) {
1005     // If this class has a key function, use that to determine the linkage of
1006     // the vtable.
1007     const FunctionDecl *Def = 0;
1008     if (KeyFunction->getBody(Def))
1009       KeyFunction = cast<CXXMethodDecl>(Def);
1010 
1011     switch (KeyFunction->getTemplateSpecializationKind()) {
1012       case TSK_Undeclared:
1013       case TSK_ExplicitSpecialization:
1014         if (KeyFunction->isInlined())
1015           return llvm::GlobalVariable::WeakODRLinkage;
1016 
1017         return llvm::GlobalVariable::ExternalLinkage;
1018 
1019       case TSK_ImplicitInstantiation:
1020       case TSK_ExplicitInstantiationDefinition:
1021         return llvm::GlobalVariable::WeakODRLinkage;
1022 
1023       case TSK_ExplicitInstantiationDeclaration:
1024         // FIXME: Use available_externally linkage. However, this currently
1025         // breaks LLVM's build due to undefined symbols.
1026         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1027         return llvm::GlobalVariable::WeakODRLinkage;
1028     }
1029   }
1030 
1031   switch (RD->getTemplateSpecializationKind()) {
1032   case TSK_Undeclared:
1033   case TSK_ExplicitSpecialization:
1034   case TSK_ImplicitInstantiation:
1035   case TSK_ExplicitInstantiationDefinition:
1036     return llvm::GlobalVariable::WeakODRLinkage;
1037 
1038   case TSK_ExplicitInstantiationDeclaration:
1039     // FIXME: Use available_externally linkage. However, this currently
1040     // breaks LLVM's build due to undefined symbols.
1041     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1042     return llvm::GlobalVariable::WeakODRLinkage;
1043   }
1044 
1045   // Silence GCC warning.
1046   return llvm::GlobalVariable::WeakODRLinkage;
1047 }
1048 
1049 static CodeGenModule::GVALinkage
1050 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1051   // If this is a static data member, compute the kind of template
1052   // specialization. Otherwise, this variable is not part of a
1053   // template.
1054   TemplateSpecializationKind TSK = TSK_Undeclared;
1055   if (VD->isStaticDataMember())
1056     TSK = VD->getTemplateSpecializationKind();
1057 
1058   Linkage L = VD->getLinkage();
1059   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1060       VD->getType()->getLinkage() == UniqueExternalLinkage)
1061     L = UniqueExternalLinkage;
1062 
1063   switch (L) {
1064   case NoLinkage:
1065   case InternalLinkage:
1066   case UniqueExternalLinkage:
1067     return CodeGenModule::GVA_Internal;
1068 
1069   case ExternalLinkage:
1070     switch (TSK) {
1071     case TSK_Undeclared:
1072     case TSK_ExplicitSpecialization:
1073       return CodeGenModule::GVA_StrongExternal;
1074 
1075     case TSK_ExplicitInstantiationDeclaration:
1076       llvm_unreachable("Variable should not be instantiated");
1077       // Fall through to treat this like any other instantiation.
1078 
1079     case TSK_ExplicitInstantiationDefinition:
1080       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1081 
1082     case TSK_ImplicitInstantiation:
1083       return CodeGenModule::GVA_TemplateInstantiation;
1084     }
1085   }
1086 
1087   return CodeGenModule::GVA_StrongExternal;
1088 }
1089 
1090 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1091     return CharUnits::fromQuantity(
1092       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1093 }
1094 
1095 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1096   llvm::Constant *Init = 0;
1097   QualType ASTTy = D->getType();
1098   bool NonConstInit = false;
1099 
1100   const Expr *InitExpr = D->getAnyInitializer();
1101 
1102   if (!InitExpr) {
1103     // This is a tentative definition; tentative definitions are
1104     // implicitly initialized with { 0 }.
1105     //
1106     // Note that tentative definitions are only emitted at the end of
1107     // a translation unit, so they should never have incomplete
1108     // type. In addition, EmitTentativeDefinition makes sure that we
1109     // never attempt to emit a tentative definition if a real one
1110     // exists. A use may still exists, however, so we still may need
1111     // to do a RAUW.
1112     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1113     Init = EmitNullConstant(D->getType());
1114   } else {
1115     Init = EmitConstantExpr(InitExpr, D->getType());
1116     if (!Init) {
1117       QualType T = InitExpr->getType();
1118       if (D->getType()->isReferenceType())
1119         T = D->getType();
1120 
1121       if (getLangOptions().CPlusPlus) {
1122         EmitCXXGlobalVarDeclInitFunc(D);
1123         Init = EmitNullConstant(T);
1124         NonConstInit = true;
1125       } else {
1126         ErrorUnsupported(D, "static initializer");
1127         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1128       }
1129     }
1130   }
1131 
1132   const llvm::Type* InitType = Init->getType();
1133   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1134 
1135   // Strip off a bitcast if we got one back.
1136   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1137     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1138            // all zero index gep.
1139            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1140     Entry = CE->getOperand(0);
1141   }
1142 
1143   // Entry is now either a Function or GlobalVariable.
1144   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1145 
1146   // We have a definition after a declaration with the wrong type.
1147   // We must make a new GlobalVariable* and update everything that used OldGV
1148   // (a declaration or tentative definition) with the new GlobalVariable*
1149   // (which will be a definition).
1150   //
1151   // This happens if there is a prototype for a global (e.g.
1152   // "extern int x[];") and then a definition of a different type (e.g.
1153   // "int x[10];"). This also happens when an initializer has a different type
1154   // from the type of the global (this happens with unions).
1155   if (GV == 0 ||
1156       GV->getType()->getElementType() != InitType ||
1157       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1158 
1159     // Move the old entry aside so that we'll create a new one.
1160     Entry->setName(llvm::StringRef());
1161 
1162     // Make a new global with the correct type, this is now guaranteed to work.
1163     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1164 
1165     // Replace all uses of the old global with the new global
1166     llvm::Constant *NewPtrForOldDecl =
1167         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1168     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1169 
1170     // Erase the old global, since it is no longer used.
1171     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1172   }
1173 
1174   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1175     SourceManager &SM = Context.getSourceManager();
1176     AddAnnotation(EmitAnnotateAttr(GV, AA,
1177                               SM.getInstantiationLineNumber(D->getLocation())));
1178   }
1179 
1180   GV->setInitializer(Init);
1181 
1182   // If it is safe to mark the global 'constant', do so now.
1183   GV->setConstant(false);
1184   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1185     GV->setConstant(true);
1186 
1187   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1188 
1189   // Set the llvm linkage type as appropriate.
1190   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1191   if (Linkage == GVA_Internal)
1192     GV->setLinkage(llvm::Function::InternalLinkage);
1193   else if (D->hasAttr<DLLImportAttr>())
1194     GV->setLinkage(llvm::Function::DLLImportLinkage);
1195   else if (D->hasAttr<DLLExportAttr>())
1196     GV->setLinkage(llvm::Function::DLLExportLinkage);
1197   else if (D->hasAttr<WeakAttr>()) {
1198     if (GV->isConstant())
1199       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1200     else
1201       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1202   } else if (Linkage == GVA_TemplateInstantiation ||
1203              Linkage == GVA_ExplicitTemplateInstantiation)
1204     // FIXME: It seems like we can provide more specific linkage here
1205     // (LinkOnceODR, WeakODR).
1206     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1207   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1208            !D->hasExternalStorage() && !D->getInit() &&
1209            !D->getAttr<SectionAttr>()) {
1210     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1211     // common vars aren't constant even if declared const.
1212     GV->setConstant(false);
1213   } else
1214     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1215 
1216   SetCommonAttributes(D, GV);
1217 
1218   // Emit global variable debug information.
1219   if (CGDebugInfo *DI = getDebugInfo()) {
1220     DI->setLocation(D->getLocation());
1221     DI->EmitGlobalVariable(GV, D);
1222   }
1223 }
1224 
1225 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1226 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1227 /// existing call uses of the old function in the module, this adjusts them to
1228 /// call the new function directly.
1229 ///
1230 /// This is not just a cleanup: the always_inline pass requires direct calls to
1231 /// functions to be able to inline them.  If there is a bitcast in the way, it
1232 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1233 /// run at -O0.
1234 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1235                                                       llvm::Function *NewFn) {
1236   // If we're redefining a global as a function, don't transform it.
1237   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1238   if (OldFn == 0) return;
1239 
1240   const llvm::Type *NewRetTy = NewFn->getReturnType();
1241   llvm::SmallVector<llvm::Value*, 4> ArgList;
1242 
1243   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1244        UI != E; ) {
1245     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1246     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1247     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1248     llvm::CallSite CS(CI);
1249     if (!CI || !CS.isCallee(I)) continue;
1250 
1251     // If the return types don't match exactly, and if the call isn't dead, then
1252     // we can't transform this call.
1253     if (CI->getType() != NewRetTy && !CI->use_empty())
1254       continue;
1255 
1256     // If the function was passed too few arguments, don't transform.  If extra
1257     // arguments were passed, we silently drop them.  If any of the types
1258     // mismatch, we don't transform.
1259     unsigned ArgNo = 0;
1260     bool DontTransform = false;
1261     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1262          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1263       if (CS.arg_size() == ArgNo ||
1264           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1265         DontTransform = true;
1266         break;
1267       }
1268     }
1269     if (DontTransform)
1270       continue;
1271 
1272     // Okay, we can transform this.  Create the new call instruction and copy
1273     // over the required information.
1274     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1275     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1276                                                      ArgList.end(), "", CI);
1277     ArgList.clear();
1278     if (!NewCall->getType()->isVoidTy())
1279       NewCall->takeName(CI);
1280     NewCall->setAttributes(CI->getAttributes());
1281     NewCall->setCallingConv(CI->getCallingConv());
1282 
1283     // Finally, remove the old call, replacing any uses with the new one.
1284     if (!CI->use_empty())
1285       CI->replaceAllUsesWith(NewCall);
1286 
1287     // Copy debug location attached to CI.
1288     if (!CI->getDebugLoc().isUnknown())
1289       NewCall->setDebugLoc(CI->getDebugLoc());
1290     CI->eraseFromParent();
1291   }
1292 }
1293 
1294 
1295 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1296   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1297   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1298   getMangleContext().mangleInitDiscriminator();
1299   // Get or create the prototype for the function.
1300   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1301 
1302   // Strip off a bitcast if we got one back.
1303   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1304     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1305     Entry = CE->getOperand(0);
1306   }
1307 
1308 
1309   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1310     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1311 
1312     // If the types mismatch then we have to rewrite the definition.
1313     assert(OldFn->isDeclaration() &&
1314            "Shouldn't replace non-declaration");
1315 
1316     // F is the Function* for the one with the wrong type, we must make a new
1317     // Function* and update everything that used F (a declaration) with the new
1318     // Function* (which will be a definition).
1319     //
1320     // This happens if there is a prototype for a function
1321     // (e.g. "int f()") and then a definition of a different type
1322     // (e.g. "int f(int x)").  Move the old function aside so that it
1323     // doesn't interfere with GetAddrOfFunction.
1324     OldFn->setName(llvm::StringRef());
1325     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1326 
1327     // If this is an implementation of a function without a prototype, try to
1328     // replace any existing uses of the function (which may be calls) with uses
1329     // of the new function
1330     if (D->getType()->isFunctionNoProtoType()) {
1331       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1332       OldFn->removeDeadConstantUsers();
1333     }
1334 
1335     // Replace uses of F with the Function we will endow with a body.
1336     if (!Entry->use_empty()) {
1337       llvm::Constant *NewPtrForOldDecl =
1338         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1339       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1340     }
1341 
1342     // Ok, delete the old function now, which is dead.
1343     OldFn->eraseFromParent();
1344 
1345     Entry = NewFn;
1346   }
1347 
1348   llvm::Function *Fn = cast<llvm::Function>(Entry);
1349   setFunctionLinkage(D, Fn);
1350 
1351   CodeGenFunction(*this).GenerateCode(D, Fn);
1352 
1353   SetFunctionDefinitionAttributes(D, Fn);
1354   SetLLVMFunctionAttributesForDefinition(D, Fn);
1355 
1356   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1357     AddGlobalCtor(Fn, CA->getPriority());
1358   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1359     AddGlobalDtor(Fn, DA->getPriority());
1360 }
1361 
1362 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1363   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1364   const AliasAttr *AA = D->getAttr<AliasAttr>();
1365   assert(AA && "Not an alias?");
1366 
1367   MangleBuffer MangledName;
1368   getMangledName(MangledName, GD);
1369 
1370   // If there is a definition in the module, then it wins over the alias.
1371   // This is dubious, but allow it to be safe.  Just ignore the alias.
1372   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1373   if (Entry && !Entry->isDeclaration())
1374     return;
1375 
1376   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1377 
1378   // Create a reference to the named value.  This ensures that it is emitted
1379   // if a deferred decl.
1380   llvm::Constant *Aliasee;
1381   if (isa<llvm::FunctionType>(DeclTy))
1382     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1383   else
1384     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1385                                     llvm::PointerType::getUnqual(DeclTy), 0);
1386 
1387   // Create the new alias itself, but don't set a name yet.
1388   llvm::GlobalValue *GA =
1389     new llvm::GlobalAlias(Aliasee->getType(),
1390                           llvm::Function::ExternalLinkage,
1391                           "", Aliasee, &getModule());
1392 
1393   if (Entry) {
1394     assert(Entry->isDeclaration());
1395 
1396     // If there is a declaration in the module, then we had an extern followed
1397     // by the alias, as in:
1398     //   extern int test6();
1399     //   ...
1400     //   int test6() __attribute__((alias("test7")));
1401     //
1402     // Remove it and replace uses of it with the alias.
1403     GA->takeName(Entry);
1404 
1405     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1406                                                           Entry->getType()));
1407     Entry->eraseFromParent();
1408   } else {
1409     GA->setName(MangledName.getString());
1410   }
1411 
1412   // Set attributes which are particular to an alias; this is a
1413   // specialization of the attributes which may be set on a global
1414   // variable/function.
1415   if (D->hasAttr<DLLExportAttr>()) {
1416     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1417       // The dllexport attribute is ignored for undefined symbols.
1418       if (FD->getBody())
1419         GA->setLinkage(llvm::Function::DLLExportLinkage);
1420     } else {
1421       GA->setLinkage(llvm::Function::DLLExportLinkage);
1422     }
1423   } else if (D->hasAttr<WeakAttr>() ||
1424              D->hasAttr<WeakRefAttr>() ||
1425              D->hasAttr<WeakImportAttr>()) {
1426     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1427   }
1428 
1429   SetCommonAttributes(D, GA);
1430 }
1431 
1432 /// getBuiltinLibFunction - Given a builtin id for a function like
1433 /// "__builtin_fabsf", return a Function* for "fabsf".
1434 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1435                                                   unsigned BuiltinID) {
1436   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1437           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1438          "isn't a lib fn");
1439 
1440   // Get the name, skip over the __builtin_ prefix (if necessary).
1441   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1442   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1443     Name += 10;
1444 
1445   const llvm::FunctionType *Ty =
1446     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1447 
1448   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1449 }
1450 
1451 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1452                                             unsigned NumTys) {
1453   return llvm::Intrinsic::getDeclaration(&getModule(),
1454                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1455 }
1456 
1457 
1458 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1459                                            const llvm::Type *SrcType,
1460                                            const llvm::Type *SizeType) {
1461   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1462   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1463 }
1464 
1465 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1466                                             const llvm::Type *SrcType,
1467                                             const llvm::Type *SizeType) {
1468   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1469   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1470 }
1471 
1472 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1473                                            const llvm::Type *SizeType) {
1474   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1475   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1476 }
1477 
1478 static llvm::StringMapEntry<llvm::Constant*> &
1479 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1480                          const StringLiteral *Literal,
1481                          bool TargetIsLSB,
1482                          bool &IsUTF16,
1483                          unsigned &StringLength) {
1484   unsigned NumBytes = Literal->getByteLength();
1485 
1486   // Check for simple case.
1487   if (!Literal->containsNonAsciiOrNull()) {
1488     StringLength = NumBytes;
1489     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1490                                                 StringLength));
1491   }
1492 
1493   // Otherwise, convert the UTF8 literals into a byte string.
1494   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1495   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1496   UTF16 *ToPtr = &ToBuf[0];
1497 
1498   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1499                                                &ToPtr, ToPtr + NumBytes,
1500                                                strictConversion);
1501 
1502   // Check for conversion failure.
1503   if (Result != conversionOK) {
1504     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1505     // this duplicate code.
1506     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1507     StringLength = NumBytes;
1508     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1509                                                 StringLength));
1510   }
1511 
1512   // ConvertUTF8toUTF16 returns the length in ToPtr.
1513   StringLength = ToPtr - &ToBuf[0];
1514 
1515   // Render the UTF-16 string into a byte array and convert to the target byte
1516   // order.
1517   //
1518   // FIXME: This isn't something we should need to do here.
1519   llvm::SmallString<128> AsBytes;
1520   AsBytes.reserve(StringLength * 2);
1521   for (unsigned i = 0; i != StringLength; ++i) {
1522     unsigned short Val = ToBuf[i];
1523     if (TargetIsLSB) {
1524       AsBytes.push_back(Val & 0xFF);
1525       AsBytes.push_back(Val >> 8);
1526     } else {
1527       AsBytes.push_back(Val >> 8);
1528       AsBytes.push_back(Val & 0xFF);
1529     }
1530   }
1531   // Append one extra null character, the second is automatically added by our
1532   // caller.
1533   AsBytes.push_back(0);
1534 
1535   IsUTF16 = true;
1536   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1537 }
1538 
1539 llvm::Constant *
1540 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1541   unsigned StringLength = 0;
1542   bool isUTF16 = false;
1543   llvm::StringMapEntry<llvm::Constant*> &Entry =
1544     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1545                              getTargetData().isLittleEndian(),
1546                              isUTF16, StringLength);
1547 
1548   if (llvm::Constant *C = Entry.getValue())
1549     return C;
1550 
1551   llvm::Constant *Zero =
1552       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1553   llvm::Constant *Zeros[] = { Zero, Zero };
1554 
1555   // If we don't already have it, get __CFConstantStringClassReference.
1556   if (!CFConstantStringClassRef) {
1557     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1558     Ty = llvm::ArrayType::get(Ty, 0);
1559     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1560                                            "__CFConstantStringClassReference");
1561     // Decay array -> ptr
1562     CFConstantStringClassRef =
1563       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1564   }
1565 
1566   QualType CFTy = getContext().getCFConstantStringType();
1567 
1568   const llvm::StructType *STy =
1569     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1570 
1571   std::vector<llvm::Constant*> Fields(4);
1572 
1573   // Class pointer.
1574   Fields[0] = CFConstantStringClassRef;
1575 
1576   // Flags.
1577   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1578   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1579     llvm::ConstantInt::get(Ty, 0x07C8);
1580 
1581   // String pointer.
1582   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1583 
1584   llvm::GlobalValue::LinkageTypes Linkage;
1585   bool isConstant;
1586   if (isUTF16) {
1587     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1588     Linkage = llvm::GlobalValue::InternalLinkage;
1589     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1590     // does make plain ascii ones writable.
1591     isConstant = true;
1592   } else {
1593     Linkage = llvm::GlobalValue::PrivateLinkage;
1594     isConstant = !Features.WritableStrings;
1595   }
1596 
1597   llvm::GlobalVariable *GV =
1598     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1599                              ".str");
1600   if (isUTF16) {
1601     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1602     GV->setAlignment(Align.getQuantity());
1603   }
1604   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1605 
1606   // String length.
1607   Ty = getTypes().ConvertType(getContext().LongTy);
1608   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1609 
1610   // The struct.
1611   C = llvm::ConstantStruct::get(STy, Fields);
1612   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1613                                 llvm::GlobalVariable::PrivateLinkage, C,
1614                                 "_unnamed_cfstring_");
1615   if (const char *Sect = getContext().Target.getCFStringSection())
1616     GV->setSection(Sect);
1617   Entry.setValue(GV);
1618 
1619   return GV;
1620 }
1621 
1622 llvm::Constant *
1623 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1624   unsigned StringLength = 0;
1625   bool isUTF16 = false;
1626   llvm::StringMapEntry<llvm::Constant*> &Entry =
1627     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1628                              getTargetData().isLittleEndian(),
1629                              isUTF16, StringLength);
1630 
1631   if (llvm::Constant *C = Entry.getValue())
1632     return C;
1633 
1634   llvm::Constant *Zero =
1635   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1636   llvm::Constant *Zeros[] = { Zero, Zero };
1637 
1638   // If we don't already have it, get _NSConstantStringClassReference.
1639   if (!NSConstantStringClassRef) {
1640     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1641     Ty = llvm::ArrayType::get(Ty, 0);
1642     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1643                                         Features.ObjCNonFragileABI ?
1644                                         "OBJC_CLASS_$_NSConstantString" :
1645                                         "_NSConstantStringClassReference");
1646     // Decay array -> ptr
1647     NSConstantStringClassRef =
1648       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1649   }
1650 
1651   QualType NSTy = getContext().getNSConstantStringType();
1652 
1653   const llvm::StructType *STy =
1654   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1655 
1656   std::vector<llvm::Constant*> Fields(3);
1657 
1658   // Class pointer.
1659   Fields[0] = NSConstantStringClassRef;
1660 
1661   // String pointer.
1662   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1663 
1664   llvm::GlobalValue::LinkageTypes Linkage;
1665   bool isConstant;
1666   if (isUTF16) {
1667     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1668     Linkage = llvm::GlobalValue::InternalLinkage;
1669     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1670     // does make plain ascii ones writable.
1671     isConstant = true;
1672   } else {
1673     Linkage = llvm::GlobalValue::PrivateLinkage;
1674     isConstant = !Features.WritableStrings;
1675   }
1676 
1677   llvm::GlobalVariable *GV =
1678   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1679                            ".str");
1680   if (isUTF16) {
1681     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1682     GV->setAlignment(Align.getQuantity());
1683   }
1684   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1685 
1686   // String length.
1687   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1688   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1689 
1690   // The struct.
1691   C = llvm::ConstantStruct::get(STy, Fields);
1692   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1693                                 llvm::GlobalVariable::PrivateLinkage, C,
1694                                 "_unnamed_nsstring_");
1695   // FIXME. Fix section.
1696   if (const char *Sect =
1697         Features.ObjCNonFragileABI
1698           ? getContext().Target.getNSStringNonFragileABISection()
1699           : getContext().Target.getNSStringSection())
1700     GV->setSection(Sect);
1701   Entry.setValue(GV);
1702 
1703   return GV;
1704 }
1705 
1706 /// GetStringForStringLiteral - Return the appropriate bytes for a
1707 /// string literal, properly padded to match the literal type.
1708 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1709   const char *StrData = E->getStrData();
1710   unsigned Len = E->getByteLength();
1711 
1712   const ConstantArrayType *CAT =
1713     getContext().getAsConstantArrayType(E->getType());
1714   assert(CAT && "String isn't pointer or array!");
1715 
1716   // Resize the string to the right size.
1717   std::string Str(StrData, StrData+Len);
1718   uint64_t RealLen = CAT->getSize().getZExtValue();
1719 
1720   if (E->isWide())
1721     RealLen *= getContext().Target.getWCharWidth()/8;
1722 
1723   Str.resize(RealLen, '\0');
1724 
1725   return Str;
1726 }
1727 
1728 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1729 /// constant array for the given string literal.
1730 llvm::Constant *
1731 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1732   // FIXME: This can be more efficient.
1733   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1734   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1735   if (S->isWide()) {
1736     llvm::Type *DestTy =
1737         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1738     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1739   }
1740   return C;
1741 }
1742 
1743 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1744 /// array for the given ObjCEncodeExpr node.
1745 llvm::Constant *
1746 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1747   std::string Str;
1748   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1749 
1750   return GetAddrOfConstantCString(Str);
1751 }
1752 
1753 
1754 /// GenerateWritableString -- Creates storage for a string literal.
1755 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1756                                              bool constant,
1757                                              CodeGenModule &CGM,
1758                                              const char *GlobalName) {
1759   // Create Constant for this string literal. Don't add a '\0'.
1760   llvm::Constant *C =
1761       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1762 
1763   // Create a global variable for this string
1764   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1765                                   llvm::GlobalValue::PrivateLinkage,
1766                                   C, GlobalName);
1767 }
1768 
1769 /// GetAddrOfConstantString - Returns a pointer to a character array
1770 /// containing the literal. This contents are exactly that of the
1771 /// given string, i.e. it will not be null terminated automatically;
1772 /// see GetAddrOfConstantCString. Note that whether the result is
1773 /// actually a pointer to an LLVM constant depends on
1774 /// Feature.WriteableStrings.
1775 ///
1776 /// The result has pointer to array type.
1777 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1778                                                        const char *GlobalName) {
1779   bool IsConstant = !Features.WritableStrings;
1780 
1781   // Get the default prefix if a name wasn't specified.
1782   if (!GlobalName)
1783     GlobalName = ".str";
1784 
1785   // Don't share any string literals if strings aren't constant.
1786   if (!IsConstant)
1787     return GenerateStringLiteral(str, false, *this, GlobalName);
1788 
1789   llvm::StringMapEntry<llvm::Constant *> &Entry =
1790     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1791 
1792   if (Entry.getValue())
1793     return Entry.getValue();
1794 
1795   // Create a global variable for this.
1796   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1797   Entry.setValue(C);
1798   return C;
1799 }
1800 
1801 /// GetAddrOfConstantCString - Returns a pointer to a character
1802 /// array containing the literal and a terminating '\-'
1803 /// character. The result has pointer to array type.
1804 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1805                                                         const char *GlobalName){
1806   return GetAddrOfConstantString(str + '\0', GlobalName);
1807 }
1808 
1809 /// EmitObjCPropertyImplementations - Emit information for synthesized
1810 /// properties for an implementation.
1811 void CodeGenModule::EmitObjCPropertyImplementations(const
1812                                                     ObjCImplementationDecl *D) {
1813   for (ObjCImplementationDecl::propimpl_iterator
1814          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1815     ObjCPropertyImplDecl *PID = *i;
1816 
1817     // Dynamic is just for type-checking.
1818     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1819       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1820 
1821       // Determine which methods need to be implemented, some may have
1822       // been overridden. Note that ::isSynthesized is not the method
1823       // we want, that just indicates if the decl came from a
1824       // property. What we want to know is if the method is defined in
1825       // this implementation.
1826       if (!D->getInstanceMethod(PD->getGetterName()))
1827         CodeGenFunction(*this).GenerateObjCGetter(
1828                                  const_cast<ObjCImplementationDecl *>(D), PID);
1829       if (!PD->isReadOnly() &&
1830           !D->getInstanceMethod(PD->getSetterName()))
1831         CodeGenFunction(*this).GenerateObjCSetter(
1832                                  const_cast<ObjCImplementationDecl *>(D), PID);
1833     }
1834   }
1835 }
1836 
1837 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1838 /// for an implementation.
1839 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1840   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1841     return;
1842   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1843   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1844   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1845   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1846   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1847                                                   D->getLocation(),
1848                                                   D->getLocation(), cxxSelector,
1849                                                   getContext().VoidTy, 0,
1850                                                   DC, true, false, true,
1851                                                   ObjCMethodDecl::Required);
1852   D->addInstanceMethod(DTORMethod);
1853   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1854 
1855   II = &getContext().Idents.get(".cxx_construct");
1856   cxxSelector = getContext().Selectors.getSelector(0, &II);
1857   // The constructor returns 'self'.
1858   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1859                                                 D->getLocation(),
1860                                                 D->getLocation(), cxxSelector,
1861                                                 getContext().getObjCIdType(), 0,
1862                                                 DC, true, false, true,
1863                                                 ObjCMethodDecl::Required);
1864   D->addInstanceMethod(CTORMethod);
1865   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1866 
1867 
1868 }
1869 
1870 /// EmitNamespace - Emit all declarations in a namespace.
1871 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1872   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1873        I != E; ++I)
1874     EmitTopLevelDecl(*I);
1875 }
1876 
1877 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1878 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1879   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1880       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1881     ErrorUnsupported(LSD, "linkage spec");
1882     return;
1883   }
1884 
1885   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1886        I != E; ++I)
1887     EmitTopLevelDecl(*I);
1888 }
1889 
1890 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1891 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1892   // If an error has occurred, stop code generation, but continue
1893   // parsing and semantic analysis (to ensure all warnings and errors
1894   // are emitted).
1895   if (Diags.hasErrorOccurred())
1896     return;
1897 
1898   // Ignore dependent declarations.
1899   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1900     return;
1901 
1902   switch (D->getKind()) {
1903   case Decl::CXXConversion:
1904   case Decl::CXXMethod:
1905   case Decl::Function:
1906     // Skip function templates
1907     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1908       return;
1909 
1910     EmitGlobal(cast<FunctionDecl>(D));
1911     break;
1912 
1913   case Decl::Var:
1914     EmitGlobal(cast<VarDecl>(D));
1915     break;
1916 
1917   // C++ Decls
1918   case Decl::Namespace:
1919     EmitNamespace(cast<NamespaceDecl>(D));
1920     break;
1921     // No code generation needed.
1922   case Decl::UsingShadow:
1923   case Decl::Using:
1924   case Decl::UsingDirective:
1925   case Decl::ClassTemplate:
1926   case Decl::FunctionTemplate:
1927   case Decl::NamespaceAlias:
1928     break;
1929   case Decl::CXXConstructor:
1930     // Skip function templates
1931     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1932       return;
1933 
1934     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1935     break;
1936   case Decl::CXXDestructor:
1937     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1938     break;
1939 
1940   case Decl::StaticAssert:
1941     // Nothing to do.
1942     break;
1943 
1944   // Objective-C Decls
1945 
1946   // Forward declarations, no (immediate) code generation.
1947   case Decl::ObjCClass:
1948   case Decl::ObjCForwardProtocol:
1949   case Decl::ObjCCategory:
1950   case Decl::ObjCInterface:
1951     break;
1952 
1953   case Decl::ObjCProtocol:
1954     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1955     break;
1956 
1957   case Decl::ObjCCategoryImpl:
1958     // Categories have properties but don't support synthesize so we
1959     // can ignore them here.
1960     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1961     break;
1962 
1963   case Decl::ObjCImplementation: {
1964     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1965     EmitObjCPropertyImplementations(OMD);
1966     EmitObjCIvarInitializations(OMD);
1967     Runtime->GenerateClass(OMD);
1968     break;
1969   }
1970   case Decl::ObjCMethod: {
1971     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1972     // If this is not a prototype, emit the body.
1973     if (OMD->getBody())
1974       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1975     break;
1976   }
1977   case Decl::ObjCCompatibleAlias:
1978     // compatibility-alias is a directive and has no code gen.
1979     break;
1980 
1981   case Decl::LinkageSpec:
1982     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1983     break;
1984 
1985   case Decl::FileScopeAsm: {
1986     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1987     llvm::StringRef AsmString = AD->getAsmString()->getString();
1988 
1989     const std::string &S = getModule().getModuleInlineAsm();
1990     if (S.empty())
1991       getModule().setModuleInlineAsm(AsmString);
1992     else
1993       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1994     break;
1995   }
1996 
1997   default:
1998     // Make sure we handled everything we should, every other kind is a
1999     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2000     // function. Need to recode Decl::Kind to do that easily.
2001     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2002   }
2003 }
2004