1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CharInfo.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/Module.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Basic/Version.h" 39 #include "clang/Frontend/CodeGenOptions.h" 40 #include "clang/Sema/SemaDiagnostic.h" 41 #include "llvm/ADT/APSInt.h" 42 #include "llvm/ADT/Triple.h" 43 #include "llvm/IR/CallingConv.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/Support/CallSite.h" 49 #include "llvm/Support/ConvertUTF.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Target/Mangler.h" 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 static const char AnnotationSection[] = "llvm.metadata"; 57 58 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 59 switch (CGM.getTarget().getCXXABI().getKind()) { 60 case TargetCXXABI::GenericAArch64: 61 case TargetCXXABI::GenericARM: 62 case TargetCXXABI::iOS: 63 case TargetCXXABI::GenericItanium: 64 return *CreateItaniumCXXABI(CGM); 65 case TargetCXXABI::Microsoft: 66 return *CreateMicrosoftCXXABI(CGM); 67 } 68 69 llvm_unreachable("invalid C++ ABI kind"); 70 } 71 72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 73 llvm::Module &M, const llvm::DataLayout &TD, 74 DiagnosticsEngine &diags) 75 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 76 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 77 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 78 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 79 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 80 NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0), 81 ConstantStringClassRef(0), NSConstantStringType(0), 82 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 83 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 84 LifetimeStartFn(0), LifetimeEndFn(0), 85 SanitizerBlacklist( 86 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 87 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 88 : LangOpts.Sanitize) { 89 90 // Initialize the type cache. 91 llvm::LLVMContext &LLVMContext = M.getContext(); 92 VoidTy = llvm::Type::getVoidTy(LLVMContext); 93 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 94 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 95 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 96 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 97 FloatTy = llvm::Type::getFloatTy(LLVMContext); 98 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 99 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 100 PointerAlignInBytes = 101 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 102 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 103 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 104 Int8PtrTy = Int8Ty->getPointerTo(0); 105 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 106 107 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 108 109 if (LangOpts.ObjC1) 110 createObjCRuntime(); 111 if (LangOpts.OpenCL) 112 createOpenCLRuntime(); 113 if (LangOpts.CUDA) 114 createCUDARuntime(); 115 116 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 117 if (SanOpts.Thread || 118 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 119 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 120 ABI.getMangleContext()); 121 122 // If debug info or coverage generation is enabled, create the CGDebugInfo 123 // object. 124 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 125 CodeGenOpts.EmitGcovArcs || 126 CodeGenOpts.EmitGcovNotes) 127 DebugInfo = new CGDebugInfo(*this); 128 129 Block.GlobalUniqueCount = 0; 130 131 if (C.getLangOpts().ObjCAutoRefCount) 132 ARCData = new ARCEntrypoints(); 133 RRData = new RREntrypoints(); 134 } 135 136 CodeGenModule::~CodeGenModule() { 137 delete ObjCRuntime; 138 delete OpenCLRuntime; 139 delete CUDARuntime; 140 delete TheTargetCodeGenInfo; 141 delete &ABI; 142 delete TBAA; 143 delete DebugInfo; 144 delete ARCData; 145 delete RRData; 146 } 147 148 void CodeGenModule::createObjCRuntime() { 149 // This is just isGNUFamily(), but we want to force implementors of 150 // new ABIs to decide how best to do this. 151 switch (LangOpts.ObjCRuntime.getKind()) { 152 case ObjCRuntime::GNUstep: 153 case ObjCRuntime::GCC: 154 case ObjCRuntime::ObjFW: 155 ObjCRuntime = CreateGNUObjCRuntime(*this); 156 return; 157 158 case ObjCRuntime::FragileMacOSX: 159 case ObjCRuntime::MacOSX: 160 case ObjCRuntime::iOS: 161 ObjCRuntime = CreateMacObjCRuntime(*this); 162 return; 163 } 164 llvm_unreachable("bad runtime kind"); 165 } 166 167 void CodeGenModule::createOpenCLRuntime() { 168 OpenCLRuntime = new CGOpenCLRuntime(*this); 169 } 170 171 void CodeGenModule::createCUDARuntime() { 172 CUDARuntime = CreateNVCUDARuntime(*this); 173 } 174 175 void CodeGenModule::applyReplacements() { 176 for (ReplacementsTy::iterator I = Replacements.begin(), 177 E = Replacements.end(); 178 I != E; ++I) { 179 StringRef MangledName = I->first(); 180 llvm::Constant *Replacement = I->second; 181 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 182 if (!Entry) 183 continue; 184 llvm::Function *OldF = cast<llvm::Function>(Entry); 185 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 186 if (!NewF) { 187 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 188 assert(CE->getOpcode() == llvm::Instruction::BitCast || 189 CE->getOpcode() == llvm::Instruction::GetElementPtr); 190 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 191 } 192 193 // Replace old with new, but keep the old order. 194 OldF->replaceAllUsesWith(Replacement); 195 if (NewF) { 196 NewF->removeFromParent(); 197 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 198 } 199 OldF->eraseFromParent(); 200 } 201 } 202 203 void CodeGenModule::checkAliases() { 204 bool Error = false; 205 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 206 E = Aliases.end(); I != E; ++I) { 207 const GlobalDecl &GD = *I; 208 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 209 const AliasAttr *AA = D->getAttr<AliasAttr>(); 210 StringRef MangledName = getMangledName(GD); 211 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 212 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 213 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 214 if (GV->isDeclaration()) { 215 Error = true; 216 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 217 } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) { 218 Error = true; 219 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 220 } 221 } 222 if (!Error) 223 return; 224 225 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 226 E = Aliases.end(); I != E; ++I) { 227 const GlobalDecl &GD = *I; 228 StringRef MangledName = getMangledName(GD); 229 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 230 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 231 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 232 Alias->eraseFromParent(); 233 } 234 } 235 236 void CodeGenModule::Release() { 237 EmitDeferred(); 238 applyReplacements(); 239 checkAliases(); 240 EmitCXXGlobalInitFunc(); 241 EmitCXXGlobalDtorFunc(); 242 EmitCXXThreadLocalInitFunc(); 243 if (ObjCRuntime) 244 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 245 AddGlobalCtor(ObjCInitFunction); 246 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 247 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 248 EmitGlobalAnnotations(); 249 EmitStaticExternCAliases(); 250 EmitLLVMUsed(); 251 252 if (CodeGenOpts.Autolink && 253 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 254 EmitModuleLinkOptions(); 255 } 256 if (CodeGenOpts.DwarfVersion) 257 // We actually want the latest version when there are conflicts. 258 // We can change from Warning to Latest if such mode is supported. 259 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 260 CodeGenOpts.DwarfVersion); 261 if (DebugInfo) 262 // We support a single version in the linked module: error out when 263 // modules do not have the same version. We are going to implement dropping 264 // debug info when the version number is not up-to-date. Once that is 265 // done, the bitcode linker is not going to see modules with different 266 // version numbers. 267 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 268 llvm::DEBUG_METADATA_VERSION); 269 270 SimplifyPersonality(); 271 272 if (getCodeGenOpts().EmitDeclMetadata) 273 EmitDeclMetadata(); 274 275 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 276 EmitCoverageFile(); 277 278 if (DebugInfo) 279 DebugInfo->finalize(); 280 281 EmitVersionIdentMetadata(); 282 } 283 284 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 285 // Make sure that this type is translated. 286 Types.UpdateCompletedType(TD); 287 } 288 289 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 290 if (!TBAA) 291 return 0; 292 return TBAA->getTBAAInfo(QTy); 293 } 294 295 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 296 if (!TBAA) 297 return 0; 298 return TBAA->getTBAAInfoForVTablePtr(); 299 } 300 301 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 302 if (!TBAA) 303 return 0; 304 return TBAA->getTBAAStructInfo(QTy); 305 } 306 307 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 308 if (!TBAA) 309 return 0; 310 return TBAA->getTBAAStructTypeInfo(QTy); 311 } 312 313 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 314 llvm::MDNode *AccessN, 315 uint64_t O) { 316 if (!TBAA) 317 return 0; 318 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 319 } 320 321 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 322 /// and struct-path aware TBAA, the tag has the same format: 323 /// base type, access type and offset. 324 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 325 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 326 llvm::MDNode *TBAAInfo, 327 bool ConvertTypeToTag) { 328 if (ConvertTypeToTag && TBAA) 329 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 330 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 331 else 332 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 333 } 334 335 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 336 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 337 getDiags().Report(Context.getFullLoc(loc), diagID); 338 } 339 340 /// ErrorUnsupported - Print out an error that codegen doesn't support the 341 /// specified stmt yet. 342 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 343 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 344 "cannot compile this %0 yet"); 345 std::string Msg = Type; 346 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 347 << Msg << S->getSourceRange(); 348 } 349 350 /// ErrorUnsupported - Print out an error that codegen doesn't support the 351 /// specified decl yet. 352 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 353 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 354 "cannot compile this %0 yet"); 355 std::string Msg = Type; 356 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 357 } 358 359 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 360 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 361 } 362 363 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 364 const NamedDecl *D) const { 365 // Internal definitions always have default visibility. 366 if (GV->hasLocalLinkage()) { 367 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 368 return; 369 } 370 371 // Set visibility for definitions. 372 LinkageInfo LV = D->getLinkageAndVisibility(); 373 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 374 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 375 } 376 377 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 378 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 379 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 380 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 381 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 382 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 383 } 384 385 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 386 CodeGenOptions::TLSModel M) { 387 switch (M) { 388 case CodeGenOptions::GeneralDynamicTLSModel: 389 return llvm::GlobalVariable::GeneralDynamicTLSModel; 390 case CodeGenOptions::LocalDynamicTLSModel: 391 return llvm::GlobalVariable::LocalDynamicTLSModel; 392 case CodeGenOptions::InitialExecTLSModel: 393 return llvm::GlobalVariable::InitialExecTLSModel; 394 case CodeGenOptions::LocalExecTLSModel: 395 return llvm::GlobalVariable::LocalExecTLSModel; 396 } 397 llvm_unreachable("Invalid TLS model!"); 398 } 399 400 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 401 const VarDecl &D) const { 402 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 403 404 llvm::GlobalVariable::ThreadLocalMode TLM; 405 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 406 407 // Override the TLS model if it is explicitly specified. 408 if (D.hasAttr<TLSModelAttr>()) { 409 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 410 TLM = GetLLVMTLSModel(Attr->getModel()); 411 } 412 413 GV->setThreadLocalMode(TLM); 414 } 415 416 /// Set the symbol visibility of type information (vtable and RTTI) 417 /// associated with the given type. 418 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 419 const CXXRecordDecl *RD, 420 TypeVisibilityKind TVK) const { 421 setGlobalVisibility(GV, RD); 422 423 if (!CodeGenOpts.HiddenWeakVTables) 424 return; 425 426 // We never want to drop the visibility for RTTI names. 427 if (TVK == TVK_ForRTTIName) 428 return; 429 430 // We want to drop the visibility to hidden for weak type symbols. 431 // This isn't possible if there might be unresolved references 432 // elsewhere that rely on this symbol being visible. 433 434 // This should be kept roughly in sync with setThunkVisibility 435 // in CGVTables.cpp. 436 437 // Preconditions. 438 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 439 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 440 return; 441 442 // Don't override an explicit visibility attribute. 443 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType)) 444 return; 445 446 switch (RD->getTemplateSpecializationKind()) { 447 // We have to disable the optimization if this is an EI definition 448 // because there might be EI declarations in other shared objects. 449 case TSK_ExplicitInstantiationDefinition: 450 case TSK_ExplicitInstantiationDeclaration: 451 return; 452 453 // Every use of a non-template class's type information has to emit it. 454 case TSK_Undeclared: 455 break; 456 457 // In theory, implicit instantiations can ignore the possibility of 458 // an explicit instantiation declaration because there necessarily 459 // must be an EI definition somewhere with default visibility. In 460 // practice, it's possible to have an explicit instantiation for 461 // an arbitrary template class, and linkers aren't necessarily able 462 // to deal with mixed-visibility symbols. 463 case TSK_ExplicitSpecialization: 464 case TSK_ImplicitInstantiation: 465 return; 466 } 467 468 // If there's a key function, there may be translation units 469 // that don't have the key function's definition. But ignore 470 // this if we're emitting RTTI under -fno-rtti. 471 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 472 // FIXME: what should we do if we "lose" the key function during 473 // the emission of the file? 474 if (Context.getCurrentKeyFunction(RD)) 475 return; 476 } 477 478 // Otherwise, drop the visibility to hidden. 479 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 480 GV->setUnnamedAddr(true); 481 } 482 483 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 484 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 485 486 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 487 if (!Str.empty()) 488 return Str; 489 490 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 491 IdentifierInfo *II = ND->getIdentifier(); 492 assert(II && "Attempt to mangle unnamed decl."); 493 494 Str = II->getName(); 495 return Str; 496 } 497 498 SmallString<256> Buffer; 499 llvm::raw_svector_ostream Out(Buffer); 500 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 501 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 502 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 503 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 504 else 505 getCXXABI().getMangleContext().mangleName(ND, Out); 506 507 // Allocate space for the mangled name. 508 Out.flush(); 509 size_t Length = Buffer.size(); 510 char *Name = MangledNamesAllocator.Allocate<char>(Length); 511 std::copy(Buffer.begin(), Buffer.end(), Name); 512 513 Str = StringRef(Name, Length); 514 515 return Str; 516 } 517 518 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 519 const BlockDecl *BD) { 520 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 521 const Decl *D = GD.getDecl(); 522 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 523 if (D == 0) 524 MangleCtx.mangleGlobalBlock(BD, 525 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 526 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 527 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 528 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 529 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 530 else 531 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 532 } 533 534 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 535 return getModule().getNamedValue(Name); 536 } 537 538 /// AddGlobalCtor - Add a function to the list that will be called before 539 /// main() runs. 540 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 541 // FIXME: Type coercion of void()* types. 542 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 543 } 544 545 /// AddGlobalDtor - Add a function to the list that will be called 546 /// when the module is unloaded. 547 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 548 // FIXME: Type coercion of void()* types. 549 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 550 } 551 552 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 553 // Ctor function type is void()*. 554 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 555 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 556 557 // Get the type of a ctor entry, { i32, void ()* }. 558 llvm::StructType *CtorStructTy = 559 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 560 561 // Construct the constructor and destructor arrays. 562 SmallVector<llvm::Constant*, 8> Ctors; 563 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 564 llvm::Constant *S[] = { 565 llvm::ConstantInt::get(Int32Ty, I->second, false), 566 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 567 }; 568 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 569 } 570 571 if (!Ctors.empty()) { 572 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 573 new llvm::GlobalVariable(TheModule, AT, false, 574 llvm::GlobalValue::AppendingLinkage, 575 llvm::ConstantArray::get(AT, Ctors), 576 GlobalName); 577 } 578 } 579 580 llvm::GlobalValue::LinkageTypes 581 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 582 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 583 584 if (isa<CXXDestructorDecl>(D) && 585 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 586 GD.getDtorType())) 587 return llvm::Function::LinkOnceODRLinkage; 588 589 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 590 591 if (Linkage == GVA_Internal) 592 return llvm::Function::InternalLinkage; 593 594 if (D->hasAttr<DLLExportAttr>()) 595 return llvm::Function::DLLExportLinkage; 596 597 if (D->hasAttr<WeakAttr>()) 598 return llvm::Function::WeakAnyLinkage; 599 600 // In C99 mode, 'inline' functions are guaranteed to have a strong 601 // definition somewhere else, so we can use available_externally linkage. 602 if (Linkage == GVA_C99Inline) 603 return llvm::Function::AvailableExternallyLinkage; 604 605 // Note that Apple's kernel linker doesn't support symbol 606 // coalescing, so we need to avoid linkonce and weak linkages there. 607 // Normally, this means we just map to internal, but for explicit 608 // instantiations we'll map to external. 609 610 // In C++, the compiler has to emit a definition in every translation unit 611 // that references the function. We should use linkonce_odr because 612 // a) if all references in this translation unit are optimized away, we 613 // don't need to codegen it. b) if the function persists, it needs to be 614 // merged with other definitions. c) C++ has the ODR, so we know the 615 // definition is dependable. 616 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 617 return !Context.getLangOpts().AppleKext 618 ? llvm::Function::LinkOnceODRLinkage 619 : llvm::Function::InternalLinkage; 620 621 // An explicit instantiation of a template has weak linkage, since 622 // explicit instantiations can occur in multiple translation units 623 // and must all be equivalent. However, we are not allowed to 624 // throw away these explicit instantiations. 625 if (Linkage == GVA_ExplicitTemplateInstantiation) 626 return !Context.getLangOpts().AppleKext 627 ? llvm::Function::WeakODRLinkage 628 : llvm::Function::ExternalLinkage; 629 630 // Otherwise, we have strong external linkage. 631 assert(Linkage == GVA_StrongExternal); 632 return llvm::Function::ExternalLinkage; 633 } 634 635 636 /// SetFunctionDefinitionAttributes - Set attributes for a global. 637 /// 638 /// FIXME: This is currently only done for aliases and functions, but not for 639 /// variables (these details are set in EmitGlobalVarDefinition for variables). 640 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 641 llvm::GlobalValue *GV) { 642 SetCommonAttributes(D, GV); 643 } 644 645 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 646 const CGFunctionInfo &Info, 647 llvm::Function *F) { 648 unsigned CallingConv; 649 AttributeListType AttributeList; 650 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 651 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 652 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 653 } 654 655 /// Determines whether the language options require us to model 656 /// unwind exceptions. We treat -fexceptions as mandating this 657 /// except under the fragile ObjC ABI with only ObjC exceptions 658 /// enabled. This means, for example, that C with -fexceptions 659 /// enables this. 660 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 661 // If exceptions are completely disabled, obviously this is false. 662 if (!LangOpts.Exceptions) return false; 663 664 // If C++ exceptions are enabled, this is true. 665 if (LangOpts.CXXExceptions) return true; 666 667 // If ObjC exceptions are enabled, this depends on the ABI. 668 if (LangOpts.ObjCExceptions) { 669 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 670 } 671 672 return true; 673 } 674 675 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 676 llvm::Function *F) { 677 llvm::AttrBuilder B; 678 679 if (CodeGenOpts.UnwindTables) 680 B.addAttribute(llvm::Attribute::UWTable); 681 682 if (!hasUnwindExceptions(LangOpts)) 683 B.addAttribute(llvm::Attribute::NoUnwind); 684 685 if (D->hasAttr<NakedAttr>()) { 686 // Naked implies noinline: we should not be inlining such functions. 687 B.addAttribute(llvm::Attribute::Naked); 688 B.addAttribute(llvm::Attribute::NoInline); 689 } else if (D->hasAttr<NoInlineAttr>()) { 690 B.addAttribute(llvm::Attribute::NoInline); 691 } else if ((D->hasAttr<AlwaysInlineAttr>() || 692 D->hasAttr<ForceInlineAttr>()) && 693 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 694 llvm::Attribute::NoInline)) { 695 // (noinline wins over always_inline, and we can't specify both in IR) 696 B.addAttribute(llvm::Attribute::AlwaysInline); 697 } 698 699 if (D->hasAttr<ColdAttr>()) { 700 B.addAttribute(llvm::Attribute::OptimizeForSize); 701 B.addAttribute(llvm::Attribute::Cold); 702 } 703 704 if (D->hasAttr<MinSizeAttr>()) 705 B.addAttribute(llvm::Attribute::MinSize); 706 707 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 708 B.addAttribute(llvm::Attribute::StackProtect); 709 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 710 B.addAttribute(llvm::Attribute::StackProtectReq); 711 712 // Add sanitizer attributes if function is not blacklisted. 713 if (!SanitizerBlacklist->isIn(*F)) { 714 // When AddressSanitizer is enabled, set SanitizeAddress attribute 715 // unless __attribute__((no_sanitize_address)) is used. 716 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 717 B.addAttribute(llvm::Attribute::SanitizeAddress); 718 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 719 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 720 B.addAttribute(llvm::Attribute::SanitizeThread); 721 } 722 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 723 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 724 B.addAttribute(llvm::Attribute::SanitizeMemory); 725 } 726 727 F->addAttributes(llvm::AttributeSet::FunctionIndex, 728 llvm::AttributeSet::get( 729 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 730 731 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 732 F->setUnnamedAddr(true); 733 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 734 if (MD->isVirtual()) 735 F->setUnnamedAddr(true); 736 737 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 738 if (alignment) 739 F->setAlignment(alignment); 740 741 // C++ ABI requires 2-byte alignment for member functions. 742 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 743 F->setAlignment(2); 744 } 745 746 void CodeGenModule::SetCommonAttributes(const Decl *D, 747 llvm::GlobalValue *GV) { 748 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 749 setGlobalVisibility(GV, ND); 750 else 751 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 752 753 if (D->hasAttr<UsedAttr>()) 754 AddUsedGlobal(GV); 755 756 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 757 GV->setSection(SA->getName()); 758 759 // Alias cannot have attributes. Filter them here. 760 if (!isa<llvm::GlobalAlias>(GV)) 761 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 762 } 763 764 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 765 llvm::Function *F, 766 const CGFunctionInfo &FI) { 767 SetLLVMFunctionAttributes(D, FI, F); 768 SetLLVMFunctionAttributesForDefinition(D, F); 769 770 F->setLinkage(llvm::Function::InternalLinkage); 771 772 SetCommonAttributes(D, F); 773 } 774 775 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 776 llvm::Function *F, 777 bool IsIncompleteFunction) { 778 if (unsigned IID = F->getIntrinsicID()) { 779 // If this is an intrinsic function, set the function's attributes 780 // to the intrinsic's attributes. 781 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 782 (llvm::Intrinsic::ID)IID)); 783 return; 784 } 785 786 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 787 788 if (!IsIncompleteFunction) 789 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 790 791 if (getCXXABI().HasThisReturn(GD)) { 792 assert(!F->arg_empty() && 793 F->arg_begin()->getType() 794 ->canLosslesslyBitCastTo(F->getReturnType()) && 795 "unexpected this return"); 796 F->addAttribute(1, llvm::Attribute::Returned); 797 } 798 799 // Only a few attributes are set on declarations; these may later be 800 // overridden by a definition. 801 802 if (FD->hasAttr<DLLImportAttr>()) { 803 F->setLinkage(llvm::Function::DLLImportLinkage); 804 } else if (FD->hasAttr<WeakAttr>() || 805 FD->isWeakImported()) { 806 // "extern_weak" is overloaded in LLVM; we probably should have 807 // separate linkage types for this. 808 F->setLinkage(llvm::Function::ExternalWeakLinkage); 809 } else { 810 F->setLinkage(llvm::Function::ExternalLinkage); 811 812 LinkageInfo LV = FD->getLinkageAndVisibility(); 813 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 814 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 815 } 816 } 817 818 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 819 F->setSection(SA->getName()); 820 821 // A replaceable global allocation function does not act like a builtin by 822 // default, only if it is invoked by a new-expression or delete-expression. 823 if (FD->isReplaceableGlobalAllocationFunction()) 824 F->addAttribute(llvm::AttributeSet::FunctionIndex, 825 llvm::Attribute::NoBuiltin); 826 } 827 828 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 829 assert(!GV->isDeclaration() && 830 "Only globals with definition can force usage."); 831 LLVMUsed.push_back(GV); 832 } 833 834 void CodeGenModule::EmitLLVMUsed() { 835 // Don't create llvm.used if there is no need. 836 if (LLVMUsed.empty()) 837 return; 838 839 // Convert LLVMUsed to what ConstantArray needs. 840 SmallVector<llvm::Constant*, 8> UsedArray; 841 UsedArray.resize(LLVMUsed.size()); 842 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 843 UsedArray[i] = 844 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 845 Int8PtrTy); 846 } 847 848 if (UsedArray.empty()) 849 return; 850 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 851 852 llvm::GlobalVariable *GV = 853 new llvm::GlobalVariable(getModule(), ATy, false, 854 llvm::GlobalValue::AppendingLinkage, 855 llvm::ConstantArray::get(ATy, UsedArray), 856 "llvm.used"); 857 858 GV->setSection("llvm.metadata"); 859 } 860 861 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 862 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 863 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 864 } 865 866 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 867 llvm::SmallString<32> Opt; 868 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 869 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 870 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 871 } 872 873 void CodeGenModule::AddDependentLib(StringRef Lib) { 874 llvm::SmallString<24> Opt; 875 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 876 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 877 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 878 } 879 880 /// \brief Add link options implied by the given module, including modules 881 /// it depends on, using a postorder walk. 882 static void addLinkOptionsPostorder(CodeGenModule &CGM, 883 Module *Mod, 884 SmallVectorImpl<llvm::Value *> &Metadata, 885 llvm::SmallPtrSet<Module *, 16> &Visited) { 886 // Import this module's parent. 887 if (Mod->Parent && Visited.insert(Mod->Parent)) { 888 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 889 } 890 891 // Import this module's dependencies. 892 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 893 if (Visited.insert(Mod->Imports[I-1])) 894 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 895 } 896 897 // Add linker options to link against the libraries/frameworks 898 // described by this module. 899 llvm::LLVMContext &Context = CGM.getLLVMContext(); 900 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 901 // Link against a framework. Frameworks are currently Darwin only, so we 902 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 903 if (Mod->LinkLibraries[I-1].IsFramework) { 904 llvm::Value *Args[2] = { 905 llvm::MDString::get(Context, "-framework"), 906 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 907 }; 908 909 Metadata.push_back(llvm::MDNode::get(Context, Args)); 910 continue; 911 } 912 913 // Link against a library. 914 llvm::SmallString<24> Opt; 915 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 916 Mod->LinkLibraries[I-1].Library, Opt); 917 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 918 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 919 } 920 } 921 922 void CodeGenModule::EmitModuleLinkOptions() { 923 // Collect the set of all of the modules we want to visit to emit link 924 // options, which is essentially the imported modules and all of their 925 // non-explicit child modules. 926 llvm::SetVector<clang::Module *> LinkModules; 927 llvm::SmallPtrSet<clang::Module *, 16> Visited; 928 SmallVector<clang::Module *, 16> Stack; 929 930 // Seed the stack with imported modules. 931 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 932 MEnd = ImportedModules.end(); 933 M != MEnd; ++M) { 934 if (Visited.insert(*M)) 935 Stack.push_back(*M); 936 } 937 938 // Find all of the modules to import, making a little effort to prune 939 // non-leaf modules. 940 while (!Stack.empty()) { 941 clang::Module *Mod = Stack.pop_back_val(); 942 943 bool AnyChildren = false; 944 945 // Visit the submodules of this module. 946 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 947 SubEnd = Mod->submodule_end(); 948 Sub != SubEnd; ++Sub) { 949 // Skip explicit children; they need to be explicitly imported to be 950 // linked against. 951 if ((*Sub)->IsExplicit) 952 continue; 953 954 if (Visited.insert(*Sub)) { 955 Stack.push_back(*Sub); 956 AnyChildren = true; 957 } 958 } 959 960 // We didn't find any children, so add this module to the list of 961 // modules to link against. 962 if (!AnyChildren) { 963 LinkModules.insert(Mod); 964 } 965 } 966 967 // Add link options for all of the imported modules in reverse topological 968 // order. We don't do anything to try to order import link flags with respect 969 // to linker options inserted by things like #pragma comment(). 970 SmallVector<llvm::Value *, 16> MetadataArgs; 971 Visited.clear(); 972 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 973 MEnd = LinkModules.end(); 974 M != MEnd; ++M) { 975 if (Visited.insert(*M)) 976 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 977 } 978 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 979 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 980 981 // Add the linker options metadata flag. 982 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 983 llvm::MDNode::get(getLLVMContext(), 984 LinkerOptionsMetadata)); 985 } 986 987 void CodeGenModule::EmitDeferred() { 988 // Emit code for any potentially referenced deferred decls. Since a 989 // previously unused static decl may become used during the generation of code 990 // for a static function, iterate until no changes are made. 991 992 while (true) { 993 if (!DeferredVTables.empty()) { 994 EmitDeferredVTables(); 995 996 // Emitting a v-table doesn't directly cause more v-tables to 997 // become deferred, although it can cause functions to be 998 // emitted that then need those v-tables. 999 assert(DeferredVTables.empty()); 1000 } 1001 1002 // Stop if we're out of both deferred v-tables and deferred declarations. 1003 if (DeferredDeclsToEmit.empty()) break; 1004 1005 GlobalDecl D = DeferredDeclsToEmit.back(); 1006 DeferredDeclsToEmit.pop_back(); 1007 1008 // Check to see if we've already emitted this. This is necessary 1009 // for a couple of reasons: first, decls can end up in the 1010 // deferred-decls queue multiple times, and second, decls can end 1011 // up with definitions in unusual ways (e.g. by an extern inline 1012 // function acquiring a strong function redefinition). Just 1013 // ignore these cases. 1014 // 1015 // TODO: That said, looking this up multiple times is very wasteful. 1016 StringRef Name = getMangledName(D); 1017 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 1018 assert(CGRef && "Deferred decl wasn't referenced?"); 1019 1020 if (!CGRef->isDeclaration()) 1021 continue; 1022 1023 // Otherwise, emit the definition and move on to the next one. 1024 EmitGlobalDefinition(D); 1025 } 1026 } 1027 1028 void CodeGenModule::EmitGlobalAnnotations() { 1029 if (Annotations.empty()) 1030 return; 1031 1032 // Create a new global variable for the ConstantStruct in the Module. 1033 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1034 Annotations[0]->getType(), Annotations.size()), Annotations); 1035 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 1036 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 1037 "llvm.global.annotations"); 1038 gv->setSection(AnnotationSection); 1039 } 1040 1041 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1042 llvm::Constant *&AStr = AnnotationStrings[Str]; 1043 if (AStr) 1044 return AStr; 1045 1046 // Not found yet, create a new global. 1047 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1048 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1049 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1050 gv->setSection(AnnotationSection); 1051 gv->setUnnamedAddr(true); 1052 AStr = gv; 1053 return gv; 1054 } 1055 1056 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1057 SourceManager &SM = getContext().getSourceManager(); 1058 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1059 if (PLoc.isValid()) 1060 return EmitAnnotationString(PLoc.getFilename()); 1061 return EmitAnnotationString(SM.getBufferName(Loc)); 1062 } 1063 1064 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1065 SourceManager &SM = getContext().getSourceManager(); 1066 PresumedLoc PLoc = SM.getPresumedLoc(L); 1067 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1068 SM.getExpansionLineNumber(L); 1069 return llvm::ConstantInt::get(Int32Ty, LineNo); 1070 } 1071 1072 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1073 const AnnotateAttr *AA, 1074 SourceLocation L) { 1075 // Get the globals for file name, annotation, and the line number. 1076 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1077 *UnitGV = EmitAnnotationUnit(L), 1078 *LineNoCst = EmitAnnotationLineNo(L); 1079 1080 // Create the ConstantStruct for the global annotation. 1081 llvm::Constant *Fields[4] = { 1082 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1083 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1084 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1085 LineNoCst 1086 }; 1087 return llvm::ConstantStruct::getAnon(Fields); 1088 } 1089 1090 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1091 llvm::GlobalValue *GV) { 1092 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1093 // Get the struct elements for these annotations. 1094 for (specific_attr_iterator<AnnotateAttr> 1095 ai = D->specific_attr_begin<AnnotateAttr>(), 1096 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1097 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1098 } 1099 1100 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1101 // Never defer when EmitAllDecls is specified. 1102 if (LangOpts.EmitAllDecls) 1103 return false; 1104 1105 return !getContext().DeclMustBeEmitted(Global); 1106 } 1107 1108 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1109 const CXXUuidofExpr* E) { 1110 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1111 // well-formed. 1112 StringRef Uuid = E->getUuidAsStringRef(Context); 1113 std::string Name = "_GUID_" + Uuid.lower(); 1114 std::replace(Name.begin(), Name.end(), '-', '_'); 1115 1116 // Look for an existing global. 1117 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1118 return GV; 1119 1120 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1121 assert(Init && "failed to initialize as constant"); 1122 1123 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1124 getModule(), Init->getType(), 1125 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1126 return GV; 1127 } 1128 1129 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1130 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1131 assert(AA && "No alias?"); 1132 1133 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1134 1135 // See if there is already something with the target's name in the module. 1136 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1137 if (Entry) { 1138 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1139 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1140 } 1141 1142 llvm::Constant *Aliasee; 1143 if (isa<llvm::FunctionType>(DeclTy)) 1144 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1145 GlobalDecl(cast<FunctionDecl>(VD)), 1146 /*ForVTable=*/false); 1147 else 1148 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1149 llvm::PointerType::getUnqual(DeclTy), 0); 1150 1151 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1152 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1153 WeakRefReferences.insert(F); 1154 1155 return Aliasee; 1156 } 1157 1158 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1159 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1160 1161 // Weak references don't produce any output by themselves. 1162 if (Global->hasAttr<WeakRefAttr>()) 1163 return; 1164 1165 // If this is an alias definition (which otherwise looks like a declaration) 1166 // emit it now. 1167 if (Global->hasAttr<AliasAttr>()) 1168 return EmitAliasDefinition(GD); 1169 1170 // If this is CUDA, be selective about which declarations we emit. 1171 if (LangOpts.CUDA) { 1172 if (CodeGenOpts.CUDAIsDevice) { 1173 if (!Global->hasAttr<CUDADeviceAttr>() && 1174 !Global->hasAttr<CUDAGlobalAttr>() && 1175 !Global->hasAttr<CUDAConstantAttr>() && 1176 !Global->hasAttr<CUDASharedAttr>()) 1177 return; 1178 } else { 1179 if (!Global->hasAttr<CUDAHostAttr>() && ( 1180 Global->hasAttr<CUDADeviceAttr>() || 1181 Global->hasAttr<CUDAConstantAttr>() || 1182 Global->hasAttr<CUDASharedAttr>())) 1183 return; 1184 } 1185 } 1186 1187 // Ignore declarations, they will be emitted on their first use. 1188 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1189 // Forward declarations are emitted lazily on first use. 1190 if (!FD->doesThisDeclarationHaveABody()) { 1191 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1192 return; 1193 1194 const FunctionDecl *InlineDefinition = 0; 1195 FD->getBody(InlineDefinition); 1196 1197 StringRef MangledName = getMangledName(GD); 1198 DeferredDecls.erase(MangledName); 1199 EmitGlobalDefinition(InlineDefinition); 1200 return; 1201 } 1202 } else { 1203 const VarDecl *VD = cast<VarDecl>(Global); 1204 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1205 1206 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1207 return; 1208 } 1209 1210 // Defer code generation when possible if this is a static definition, inline 1211 // function etc. These we only want to emit if they are used. 1212 if (!MayDeferGeneration(Global)) { 1213 // Emit the definition if it can't be deferred. 1214 EmitGlobalDefinition(GD); 1215 return; 1216 } 1217 1218 // If we're deferring emission of a C++ variable with an 1219 // initializer, remember the order in which it appeared in the file. 1220 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1221 cast<VarDecl>(Global)->hasInit()) { 1222 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1223 CXXGlobalInits.push_back(0); 1224 } 1225 1226 // If the value has already been used, add it directly to the 1227 // DeferredDeclsToEmit list. 1228 StringRef MangledName = getMangledName(GD); 1229 if (GetGlobalValue(MangledName)) 1230 DeferredDeclsToEmit.push_back(GD); 1231 else { 1232 // Otherwise, remember that we saw a deferred decl with this name. The 1233 // first use of the mangled name will cause it to move into 1234 // DeferredDeclsToEmit. 1235 DeferredDecls[MangledName] = GD; 1236 } 1237 } 1238 1239 namespace { 1240 struct FunctionIsDirectlyRecursive : 1241 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1242 const StringRef Name; 1243 const Builtin::Context &BI; 1244 bool Result; 1245 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1246 Name(N), BI(C), Result(false) { 1247 } 1248 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1249 1250 bool TraverseCallExpr(CallExpr *E) { 1251 const FunctionDecl *FD = E->getDirectCallee(); 1252 if (!FD) 1253 return true; 1254 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1255 if (Attr && Name == Attr->getLabel()) { 1256 Result = true; 1257 return false; 1258 } 1259 unsigned BuiltinID = FD->getBuiltinID(); 1260 if (!BuiltinID) 1261 return true; 1262 StringRef BuiltinName = BI.GetName(BuiltinID); 1263 if (BuiltinName.startswith("__builtin_") && 1264 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1265 Result = true; 1266 return false; 1267 } 1268 return true; 1269 } 1270 }; 1271 } 1272 1273 // isTriviallyRecursive - Check if this function calls another 1274 // decl that, because of the asm attribute or the other decl being a builtin, 1275 // ends up pointing to itself. 1276 bool 1277 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1278 StringRef Name; 1279 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1280 // asm labels are a special kind of mangling we have to support. 1281 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1282 if (!Attr) 1283 return false; 1284 Name = Attr->getLabel(); 1285 } else { 1286 Name = FD->getName(); 1287 } 1288 1289 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1290 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1291 return Walker.Result; 1292 } 1293 1294 bool 1295 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1296 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1297 return true; 1298 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1299 if (CodeGenOpts.OptimizationLevel == 0 && 1300 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1301 return false; 1302 // PR9614. Avoid cases where the source code is lying to us. An available 1303 // externally function should have an equivalent function somewhere else, 1304 // but a function that calls itself is clearly not equivalent to the real 1305 // implementation. 1306 // This happens in glibc's btowc and in some configure checks. 1307 return !isTriviallyRecursive(F); 1308 } 1309 1310 /// If the type for the method's class was generated by 1311 /// CGDebugInfo::createContextChain(), the cache contains only a 1312 /// limited DIType without any declarations. Since EmitFunctionStart() 1313 /// needs to find the canonical declaration for each method, we need 1314 /// to construct the complete type prior to emitting the method. 1315 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1316 if (!D->isInstance()) 1317 return; 1318 1319 if (CGDebugInfo *DI = getModuleDebugInfo()) 1320 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1321 const PointerType *ThisPtr = 1322 cast<PointerType>(D->getThisType(getContext())); 1323 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1324 } 1325 } 1326 1327 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1328 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1329 1330 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1331 Context.getSourceManager(), 1332 "Generating code for declaration"); 1333 1334 if (isa<FunctionDecl>(D)) { 1335 // At -O0, don't generate IR for functions with available_externally 1336 // linkage. 1337 if (!shouldEmitFunction(GD)) 1338 return; 1339 1340 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1341 CompleteDIClassType(Method); 1342 // Make sure to emit the definition(s) before we emit the thunks. 1343 // This is necessary for the generation of certain thunks. 1344 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1345 EmitCXXConstructor(CD, GD.getCtorType()); 1346 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1347 EmitCXXDestructor(DD, GD.getDtorType()); 1348 else 1349 EmitGlobalFunctionDefinition(GD); 1350 1351 if (Method->isVirtual()) 1352 getVTables().EmitThunks(GD); 1353 1354 return; 1355 } 1356 1357 return EmitGlobalFunctionDefinition(GD); 1358 } 1359 1360 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1361 return EmitGlobalVarDefinition(VD); 1362 1363 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1364 } 1365 1366 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1367 /// module, create and return an llvm Function with the specified type. If there 1368 /// is something in the module with the specified name, return it potentially 1369 /// bitcasted to the right type. 1370 /// 1371 /// If D is non-null, it specifies a decl that correspond to this. This is used 1372 /// to set the attributes on the function when it is first created. 1373 llvm::Constant * 1374 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1375 llvm::Type *Ty, 1376 GlobalDecl GD, bool ForVTable, 1377 bool DontDefer, 1378 llvm::AttributeSet ExtraAttrs) { 1379 const Decl *D = GD.getDecl(); 1380 1381 // Lookup the entry, lazily creating it if necessary. 1382 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1383 if (Entry) { 1384 if (WeakRefReferences.erase(Entry)) { 1385 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1386 if (FD && !FD->hasAttr<WeakAttr>()) 1387 Entry->setLinkage(llvm::Function::ExternalLinkage); 1388 } 1389 1390 if (Entry->getType()->getElementType() == Ty) 1391 return Entry; 1392 1393 // Make sure the result is of the correct type. 1394 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1395 } 1396 1397 // This function doesn't have a complete type (for example, the return 1398 // type is an incomplete struct). Use a fake type instead, and make 1399 // sure not to try to set attributes. 1400 bool IsIncompleteFunction = false; 1401 1402 llvm::FunctionType *FTy; 1403 if (isa<llvm::FunctionType>(Ty)) { 1404 FTy = cast<llvm::FunctionType>(Ty); 1405 } else { 1406 FTy = llvm::FunctionType::get(VoidTy, false); 1407 IsIncompleteFunction = true; 1408 } 1409 1410 llvm::Function *F = llvm::Function::Create(FTy, 1411 llvm::Function::ExternalLinkage, 1412 MangledName, &getModule()); 1413 assert(F->getName() == MangledName && "name was uniqued!"); 1414 if (D) 1415 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1416 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1417 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1418 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1419 llvm::AttributeSet::get(VMContext, 1420 llvm::AttributeSet::FunctionIndex, 1421 B)); 1422 } 1423 1424 if (!DontDefer) { 1425 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1426 // each other bottoming out with the base dtor. Therefore we emit non-base 1427 // dtors on usage, even if there is no dtor definition in the TU. 1428 if (D && isa<CXXDestructorDecl>(D) && 1429 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1430 GD.getDtorType())) 1431 DeferredDeclsToEmit.push_back(GD); 1432 1433 // This is the first use or definition of a mangled name. If there is a 1434 // deferred decl with this name, remember that we need to emit it at the end 1435 // of the file. 1436 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1437 if (DDI != DeferredDecls.end()) { 1438 // Move the potentially referenced deferred decl to the 1439 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1440 // don't need it anymore). 1441 DeferredDeclsToEmit.push_back(DDI->second); 1442 DeferredDecls.erase(DDI); 1443 1444 // Otherwise, if this is a sized deallocation function, emit a weak 1445 // definition 1446 // for it at the end of the translation unit. 1447 } else if (D && cast<FunctionDecl>(D) 1448 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1449 DeferredDeclsToEmit.push_back(GD); 1450 1451 // Otherwise, there are cases we have to worry about where we're 1452 // using a declaration for which we must emit a definition but where 1453 // we might not find a top-level definition: 1454 // - member functions defined inline in their classes 1455 // - friend functions defined inline in some class 1456 // - special member functions with implicit definitions 1457 // If we ever change our AST traversal to walk into class methods, 1458 // this will be unnecessary. 1459 // 1460 // We also don't emit a definition for a function if it's going to be an 1461 // entry 1462 // in a vtable, unless it's already marked as used. 1463 } else if (getLangOpts().CPlusPlus && D) { 1464 // Look for a declaration that's lexically in a record. 1465 const FunctionDecl *FD = cast<FunctionDecl>(D); 1466 FD = FD->getMostRecentDecl(); 1467 do { 1468 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1469 if (FD->isImplicit() && !ForVTable) { 1470 assert(FD->isUsed() && 1471 "Sema didn't mark implicit function as used!"); 1472 DeferredDeclsToEmit.push_back(GD.getWithDecl(FD)); 1473 break; 1474 } else if (FD->doesThisDeclarationHaveABody()) { 1475 DeferredDeclsToEmit.push_back(GD.getWithDecl(FD)); 1476 break; 1477 } 1478 } 1479 FD = FD->getPreviousDecl(); 1480 } while (FD); 1481 } 1482 } 1483 1484 // Make sure the result is of the requested type. 1485 if (!IsIncompleteFunction) { 1486 assert(F->getType()->getElementType() == Ty); 1487 return F; 1488 } 1489 1490 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1491 return llvm::ConstantExpr::getBitCast(F, PTy); 1492 } 1493 1494 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1495 /// non-null, then this function will use the specified type if it has to 1496 /// create it (this occurs when we see a definition of the function). 1497 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1498 llvm::Type *Ty, 1499 bool ForVTable, 1500 bool DontDefer) { 1501 // If there was no specific requested type, just convert it now. 1502 if (!Ty) 1503 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1504 1505 StringRef MangledName = getMangledName(GD); 1506 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1507 } 1508 1509 /// CreateRuntimeFunction - Create a new runtime function with the specified 1510 /// type and name. 1511 llvm::Constant * 1512 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1513 StringRef Name, 1514 llvm::AttributeSet ExtraAttrs) { 1515 llvm::Constant *C = 1516 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1517 /*DontDefer=*/false, ExtraAttrs); 1518 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1519 if (F->empty()) 1520 F->setCallingConv(getRuntimeCC()); 1521 return C; 1522 } 1523 1524 /// isTypeConstant - Determine whether an object of this type can be emitted 1525 /// as a constant. 1526 /// 1527 /// If ExcludeCtor is true, the duration when the object's constructor runs 1528 /// will not be considered. The caller will need to verify that the object is 1529 /// not written to during its construction. 1530 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1531 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1532 return false; 1533 1534 if (Context.getLangOpts().CPlusPlus) { 1535 if (const CXXRecordDecl *Record 1536 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1537 return ExcludeCtor && !Record->hasMutableFields() && 1538 Record->hasTrivialDestructor(); 1539 } 1540 1541 return true; 1542 } 1543 1544 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1545 /// create and return an llvm GlobalVariable with the specified type. If there 1546 /// is something in the module with the specified name, return it potentially 1547 /// bitcasted to the right type. 1548 /// 1549 /// If D is non-null, it specifies a decl that correspond to this. This is used 1550 /// to set the attributes on the global when it is first created. 1551 llvm::Constant * 1552 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1553 llvm::PointerType *Ty, 1554 const VarDecl *D, 1555 bool UnnamedAddr) { 1556 // Lookup the entry, lazily creating it if necessary. 1557 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1558 if (Entry) { 1559 if (WeakRefReferences.erase(Entry)) { 1560 if (D && !D->hasAttr<WeakAttr>()) 1561 Entry->setLinkage(llvm::Function::ExternalLinkage); 1562 } 1563 1564 if (UnnamedAddr) 1565 Entry->setUnnamedAddr(true); 1566 1567 if (Entry->getType() == Ty) 1568 return Entry; 1569 1570 // Make sure the result is of the correct type. 1571 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1572 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1573 1574 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1575 } 1576 1577 // This is the first use or definition of a mangled name. If there is a 1578 // deferred decl with this name, remember that we need to emit it at the end 1579 // of the file. 1580 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1581 if (DDI != DeferredDecls.end()) { 1582 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1583 // list, and remove it from DeferredDecls (since we don't need it anymore). 1584 DeferredDeclsToEmit.push_back(DDI->second); 1585 DeferredDecls.erase(DDI); 1586 } 1587 1588 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1589 llvm::GlobalVariable *GV = 1590 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1591 llvm::GlobalValue::ExternalLinkage, 1592 0, MangledName, 0, 1593 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1594 1595 // Handle things which are present even on external declarations. 1596 if (D) { 1597 // FIXME: This code is overly simple and should be merged with other global 1598 // handling. 1599 GV->setConstant(isTypeConstant(D->getType(), false)); 1600 1601 // Set linkage and visibility in case we never see a definition. 1602 LinkageInfo LV = D->getLinkageAndVisibility(); 1603 if (LV.getLinkage() != ExternalLinkage) { 1604 // Don't set internal linkage on declarations. 1605 } else { 1606 if (D->hasAttr<DLLImportAttr>()) 1607 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1608 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1609 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1610 1611 // Set visibility on a declaration only if it's explicit. 1612 if (LV.isVisibilityExplicit()) 1613 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1614 } 1615 1616 if (D->getTLSKind()) { 1617 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1618 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1619 setTLSMode(GV, *D); 1620 } 1621 1622 // If required by the ABI, treat declarations of static data members with 1623 // inline initializers as definitions. 1624 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1625 D->isStaticDataMember() && D->hasInit() && 1626 !D->isThisDeclarationADefinition()) 1627 EmitGlobalVarDefinition(D); 1628 } 1629 1630 if (AddrSpace != Ty->getAddressSpace()) 1631 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1632 1633 return GV; 1634 } 1635 1636 1637 llvm::GlobalVariable * 1638 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1639 llvm::Type *Ty, 1640 llvm::GlobalValue::LinkageTypes Linkage) { 1641 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1642 llvm::GlobalVariable *OldGV = 0; 1643 1644 1645 if (GV) { 1646 // Check if the variable has the right type. 1647 if (GV->getType()->getElementType() == Ty) 1648 return GV; 1649 1650 // Because C++ name mangling, the only way we can end up with an already 1651 // existing global with the same name is if it has been declared extern "C". 1652 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1653 OldGV = GV; 1654 } 1655 1656 // Create a new variable. 1657 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1658 Linkage, 0, Name); 1659 1660 if (OldGV) { 1661 // Replace occurrences of the old variable if needed. 1662 GV->takeName(OldGV); 1663 1664 if (!OldGV->use_empty()) { 1665 llvm::Constant *NewPtrForOldDecl = 1666 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1667 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1668 } 1669 1670 OldGV->eraseFromParent(); 1671 } 1672 1673 return GV; 1674 } 1675 1676 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1677 /// given global variable. If Ty is non-null and if the global doesn't exist, 1678 /// then it will be created with the specified type instead of whatever the 1679 /// normal requested type would be. 1680 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1681 llvm::Type *Ty) { 1682 assert(D->hasGlobalStorage() && "Not a global variable"); 1683 QualType ASTTy = D->getType(); 1684 if (Ty == 0) 1685 Ty = getTypes().ConvertTypeForMem(ASTTy); 1686 1687 llvm::PointerType *PTy = 1688 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1689 1690 StringRef MangledName = getMangledName(D); 1691 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1692 } 1693 1694 /// CreateRuntimeVariable - Create a new runtime global variable with the 1695 /// specified type and name. 1696 llvm::Constant * 1697 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1698 StringRef Name) { 1699 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1700 true); 1701 } 1702 1703 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1704 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1705 1706 if (MayDeferGeneration(D)) { 1707 // If we have not seen a reference to this variable yet, place it 1708 // into the deferred declarations table to be emitted if needed 1709 // later. 1710 StringRef MangledName = getMangledName(D); 1711 if (!GetGlobalValue(MangledName)) { 1712 DeferredDecls[MangledName] = D; 1713 return; 1714 } 1715 } 1716 1717 // The tentative definition is the only definition. 1718 EmitGlobalVarDefinition(D); 1719 } 1720 1721 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1722 return Context.toCharUnitsFromBits( 1723 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1724 } 1725 1726 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1727 unsigned AddrSpace) { 1728 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1729 if (D->hasAttr<CUDAConstantAttr>()) 1730 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1731 else if (D->hasAttr<CUDASharedAttr>()) 1732 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1733 else 1734 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1735 } 1736 1737 return AddrSpace; 1738 } 1739 1740 template<typename SomeDecl> 1741 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1742 llvm::GlobalValue *GV) { 1743 if (!getLangOpts().CPlusPlus) 1744 return; 1745 1746 // Must have 'used' attribute, or else inline assembly can't rely on 1747 // the name existing. 1748 if (!D->template hasAttr<UsedAttr>()) 1749 return; 1750 1751 // Must have internal linkage and an ordinary name. 1752 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1753 return; 1754 1755 // Must be in an extern "C" context. Entities declared directly within 1756 // a record are not extern "C" even if the record is in such a context. 1757 const SomeDecl *First = D->getFirstDecl(); 1758 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1759 return; 1760 1761 // OK, this is an internal linkage entity inside an extern "C" linkage 1762 // specification. Make a note of that so we can give it the "expected" 1763 // mangled name if nothing else is using that name. 1764 std::pair<StaticExternCMap::iterator, bool> R = 1765 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1766 1767 // If we have multiple internal linkage entities with the same name 1768 // in extern "C" regions, none of them gets that name. 1769 if (!R.second) 1770 R.first->second = 0; 1771 } 1772 1773 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1774 llvm::Constant *Init = 0; 1775 QualType ASTTy = D->getType(); 1776 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1777 bool NeedsGlobalCtor = false; 1778 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1779 1780 const VarDecl *InitDecl; 1781 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1782 1783 if (!InitExpr) { 1784 // This is a tentative definition; tentative definitions are 1785 // implicitly initialized with { 0 }. 1786 // 1787 // Note that tentative definitions are only emitted at the end of 1788 // a translation unit, so they should never have incomplete 1789 // type. In addition, EmitTentativeDefinition makes sure that we 1790 // never attempt to emit a tentative definition if a real one 1791 // exists. A use may still exists, however, so we still may need 1792 // to do a RAUW. 1793 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1794 Init = EmitNullConstant(D->getType()); 1795 } else { 1796 initializedGlobalDecl = GlobalDecl(D); 1797 Init = EmitConstantInit(*InitDecl); 1798 1799 if (!Init) { 1800 QualType T = InitExpr->getType(); 1801 if (D->getType()->isReferenceType()) 1802 T = D->getType(); 1803 1804 if (getLangOpts().CPlusPlus) { 1805 Init = EmitNullConstant(T); 1806 NeedsGlobalCtor = true; 1807 } else { 1808 ErrorUnsupported(D, "static initializer"); 1809 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1810 } 1811 } else { 1812 // We don't need an initializer, so remove the entry for the delayed 1813 // initializer position (just in case this entry was delayed) if we 1814 // also don't need to register a destructor. 1815 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1816 DelayedCXXInitPosition.erase(D); 1817 } 1818 } 1819 1820 llvm::Type* InitType = Init->getType(); 1821 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1822 1823 // Strip off a bitcast if we got one back. 1824 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1825 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1826 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1827 // All zero index gep. 1828 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1829 Entry = CE->getOperand(0); 1830 } 1831 1832 // Entry is now either a Function or GlobalVariable. 1833 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1834 1835 // We have a definition after a declaration with the wrong type. 1836 // We must make a new GlobalVariable* and update everything that used OldGV 1837 // (a declaration or tentative definition) with the new GlobalVariable* 1838 // (which will be a definition). 1839 // 1840 // This happens if there is a prototype for a global (e.g. 1841 // "extern int x[];") and then a definition of a different type (e.g. 1842 // "int x[10];"). This also happens when an initializer has a different type 1843 // from the type of the global (this happens with unions). 1844 if (GV == 0 || 1845 GV->getType()->getElementType() != InitType || 1846 GV->getType()->getAddressSpace() != 1847 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1848 1849 // Move the old entry aside so that we'll create a new one. 1850 Entry->setName(StringRef()); 1851 1852 // Make a new global with the correct type, this is now guaranteed to work. 1853 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1854 1855 // Replace all uses of the old global with the new global 1856 llvm::Constant *NewPtrForOldDecl = 1857 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1858 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1859 1860 // Erase the old global, since it is no longer used. 1861 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1862 } 1863 1864 MaybeHandleStaticInExternC(D, GV); 1865 1866 if (D->hasAttr<AnnotateAttr>()) 1867 AddGlobalAnnotations(D, GV); 1868 1869 GV->setInitializer(Init); 1870 1871 // If it is safe to mark the global 'constant', do so now. 1872 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1873 isTypeConstant(D->getType(), true)); 1874 1875 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1876 1877 // Set the llvm linkage type as appropriate. 1878 llvm::GlobalValue::LinkageTypes Linkage = 1879 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1880 GV->setLinkage(Linkage); 1881 1882 // If required by the ABI, give definitions of static data members with inline 1883 // initializers linkonce_odr linkage. 1884 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1885 D->isStaticDataMember() && InitExpr && 1886 !InitDecl->isThisDeclarationADefinition()) 1887 GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage); 1888 1889 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1890 // common vars aren't constant even if declared const. 1891 GV->setConstant(false); 1892 1893 SetCommonAttributes(D, GV); 1894 1895 // Emit the initializer function if necessary. 1896 if (NeedsGlobalCtor || NeedsGlobalDtor) 1897 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1898 1899 // If we are compiling with ASan, add metadata indicating dynamically 1900 // initialized globals. 1901 if (SanOpts.Address && NeedsGlobalCtor) { 1902 llvm::Module &M = getModule(); 1903 1904 llvm::NamedMDNode *DynamicInitializers = 1905 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1906 llvm::Value *GlobalToAdd[] = { GV }; 1907 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1908 DynamicInitializers->addOperand(ThisGlobal); 1909 } 1910 1911 // Emit global variable debug information. 1912 if (CGDebugInfo *DI = getModuleDebugInfo()) 1913 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1914 DI->EmitGlobalVariable(GV, D); 1915 } 1916 1917 llvm::GlobalValue::LinkageTypes 1918 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1919 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1920 if (Linkage == GVA_Internal) 1921 return llvm::Function::InternalLinkage; 1922 else if (D->hasAttr<DLLImportAttr>()) 1923 return llvm::Function::DLLImportLinkage; 1924 else if (D->hasAttr<DLLExportAttr>()) 1925 return llvm::Function::DLLExportLinkage; 1926 else if (D->hasAttr<SelectAnyAttr>()) { 1927 // selectany symbols are externally visible, so use weak instead of 1928 // linkonce. MSVC optimizes away references to const selectany globals, so 1929 // all definitions should be the same and ODR linkage should be used. 1930 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1931 return llvm::GlobalVariable::WeakODRLinkage; 1932 } else if (D->hasAttr<WeakAttr>()) { 1933 if (isConstant) 1934 return llvm::GlobalVariable::WeakODRLinkage; 1935 else 1936 return llvm::GlobalVariable::WeakAnyLinkage; 1937 } else if (Linkage == GVA_TemplateInstantiation || 1938 Linkage == GVA_ExplicitTemplateInstantiation) 1939 return llvm::GlobalVariable::WeakODRLinkage; 1940 else if (!getLangOpts().CPlusPlus && 1941 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1942 D->getAttr<CommonAttr>()) && 1943 !D->hasExternalStorage() && !D->getInit() && 1944 !D->getAttr<SectionAttr>() && !D->getTLSKind() && 1945 !D->getAttr<WeakImportAttr>()) { 1946 // Thread local vars aren't considered common linkage. 1947 return llvm::GlobalVariable::CommonLinkage; 1948 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1949 getTarget().getTriple().isMacOSX()) 1950 // On Darwin, the backing variable for a C++11 thread_local variable always 1951 // has internal linkage; all accesses should just be calls to the 1952 // Itanium-specified entry point, which has the normal linkage of the 1953 // variable. 1954 return llvm::GlobalValue::InternalLinkage; 1955 return llvm::GlobalVariable::ExternalLinkage; 1956 } 1957 1958 /// Replace the uses of a function that was declared with a non-proto type. 1959 /// We want to silently drop extra arguments from call sites 1960 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1961 llvm::Function *newFn) { 1962 // Fast path. 1963 if (old->use_empty()) return; 1964 1965 llvm::Type *newRetTy = newFn->getReturnType(); 1966 SmallVector<llvm::Value*, 4> newArgs; 1967 1968 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1969 ui != ue; ) { 1970 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1971 llvm::User *user = *use; 1972 1973 // Recognize and replace uses of bitcasts. Most calls to 1974 // unprototyped functions will use bitcasts. 1975 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1976 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1977 replaceUsesOfNonProtoConstant(bitcast, newFn); 1978 continue; 1979 } 1980 1981 // Recognize calls to the function. 1982 llvm::CallSite callSite(user); 1983 if (!callSite) continue; 1984 if (!callSite.isCallee(use)) continue; 1985 1986 // If the return types don't match exactly, then we can't 1987 // transform this call unless it's dead. 1988 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1989 continue; 1990 1991 // Get the call site's attribute list. 1992 SmallVector<llvm::AttributeSet, 8> newAttrs; 1993 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1994 1995 // Collect any return attributes from the call. 1996 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1997 newAttrs.push_back( 1998 llvm::AttributeSet::get(newFn->getContext(), 1999 oldAttrs.getRetAttributes())); 2000 2001 // If the function was passed too few arguments, don't transform. 2002 unsigned newNumArgs = newFn->arg_size(); 2003 if (callSite.arg_size() < newNumArgs) continue; 2004 2005 // If extra arguments were passed, we silently drop them. 2006 // If any of the types mismatch, we don't transform. 2007 unsigned argNo = 0; 2008 bool dontTransform = false; 2009 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2010 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2011 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2012 dontTransform = true; 2013 break; 2014 } 2015 2016 // Add any parameter attributes. 2017 if (oldAttrs.hasAttributes(argNo + 1)) 2018 newAttrs. 2019 push_back(llvm:: 2020 AttributeSet::get(newFn->getContext(), 2021 oldAttrs.getParamAttributes(argNo + 1))); 2022 } 2023 if (dontTransform) 2024 continue; 2025 2026 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2027 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2028 oldAttrs.getFnAttributes())); 2029 2030 // Okay, we can transform this. Create the new call instruction and copy 2031 // over the required information. 2032 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2033 2034 llvm::CallSite newCall; 2035 if (callSite.isCall()) { 2036 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2037 callSite.getInstruction()); 2038 } else { 2039 llvm::InvokeInst *oldInvoke = 2040 cast<llvm::InvokeInst>(callSite.getInstruction()); 2041 newCall = llvm::InvokeInst::Create(newFn, 2042 oldInvoke->getNormalDest(), 2043 oldInvoke->getUnwindDest(), 2044 newArgs, "", 2045 callSite.getInstruction()); 2046 } 2047 newArgs.clear(); // for the next iteration 2048 2049 if (!newCall->getType()->isVoidTy()) 2050 newCall->takeName(callSite.getInstruction()); 2051 newCall.setAttributes( 2052 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2053 newCall.setCallingConv(callSite.getCallingConv()); 2054 2055 // Finally, remove the old call, replacing any uses with the new one. 2056 if (!callSite->use_empty()) 2057 callSite->replaceAllUsesWith(newCall.getInstruction()); 2058 2059 // Copy debug location attached to CI. 2060 if (!callSite->getDebugLoc().isUnknown()) 2061 newCall->setDebugLoc(callSite->getDebugLoc()); 2062 callSite->eraseFromParent(); 2063 } 2064 } 2065 2066 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2067 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2068 /// existing call uses of the old function in the module, this adjusts them to 2069 /// call the new function directly. 2070 /// 2071 /// This is not just a cleanup: the always_inline pass requires direct calls to 2072 /// functions to be able to inline them. If there is a bitcast in the way, it 2073 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2074 /// run at -O0. 2075 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2076 llvm::Function *NewFn) { 2077 // If we're redefining a global as a function, don't transform it. 2078 if (!isa<llvm::Function>(Old)) return; 2079 2080 replaceUsesOfNonProtoConstant(Old, NewFn); 2081 } 2082 2083 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2084 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2085 // If we have a definition, this might be a deferred decl. If the 2086 // instantiation is explicit, make sure we emit it at the end. 2087 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2088 GetAddrOfGlobalVar(VD); 2089 2090 EmitTopLevelDecl(VD); 2091 } 2092 2093 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 2094 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2095 2096 // Compute the function info and LLVM type. 2097 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2098 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2099 2100 // Get or create the prototype for the function. 2101 llvm::Constant *Entry = 2102 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2103 2104 // Strip off a bitcast if we got one back. 2105 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2106 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2107 Entry = CE->getOperand(0); 2108 } 2109 2110 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2111 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2112 return; 2113 } 2114 2115 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2116 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2117 2118 // If the types mismatch then we have to rewrite the definition. 2119 assert(OldFn->isDeclaration() && 2120 "Shouldn't replace non-declaration"); 2121 2122 // F is the Function* for the one with the wrong type, we must make a new 2123 // Function* and update everything that used F (a declaration) with the new 2124 // Function* (which will be a definition). 2125 // 2126 // This happens if there is a prototype for a function 2127 // (e.g. "int f()") and then a definition of a different type 2128 // (e.g. "int f(int x)"). Move the old function aside so that it 2129 // doesn't interfere with GetAddrOfFunction. 2130 OldFn->setName(StringRef()); 2131 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2132 2133 // This might be an implementation of a function without a 2134 // prototype, in which case, try to do special replacement of 2135 // calls which match the new prototype. The really key thing here 2136 // is that we also potentially drop arguments from the call site 2137 // so as to make a direct call, which makes the inliner happier 2138 // and suppresses a number of optimizer warnings (!) about 2139 // dropping arguments. 2140 if (!OldFn->use_empty()) { 2141 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2142 OldFn->removeDeadConstantUsers(); 2143 } 2144 2145 // Replace uses of F with the Function we will endow with a body. 2146 if (!Entry->use_empty()) { 2147 llvm::Constant *NewPtrForOldDecl = 2148 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2149 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2150 } 2151 2152 // Ok, delete the old function now, which is dead. 2153 OldFn->eraseFromParent(); 2154 2155 Entry = NewFn; 2156 } 2157 2158 // We need to set linkage and visibility on the function before 2159 // generating code for it because various parts of IR generation 2160 // want to propagate this information down (e.g. to local static 2161 // declarations). 2162 llvm::Function *Fn = cast<llvm::Function>(Entry); 2163 setFunctionLinkage(GD, Fn); 2164 2165 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2166 setGlobalVisibility(Fn, D); 2167 2168 MaybeHandleStaticInExternC(D, Fn); 2169 2170 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2171 2172 SetFunctionDefinitionAttributes(D, Fn); 2173 SetLLVMFunctionAttributesForDefinition(D, Fn); 2174 2175 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2176 AddGlobalCtor(Fn, CA->getPriority()); 2177 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2178 AddGlobalDtor(Fn, DA->getPriority()); 2179 if (D->hasAttr<AnnotateAttr>()) 2180 AddGlobalAnnotations(D, Fn); 2181 } 2182 2183 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2184 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2185 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2186 assert(AA && "Not an alias?"); 2187 2188 StringRef MangledName = getMangledName(GD); 2189 2190 // If there is a definition in the module, then it wins over the alias. 2191 // This is dubious, but allow it to be safe. Just ignore the alias. 2192 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2193 if (Entry && !Entry->isDeclaration()) 2194 return; 2195 2196 Aliases.push_back(GD); 2197 2198 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2199 2200 // Create a reference to the named value. This ensures that it is emitted 2201 // if a deferred decl. 2202 llvm::Constant *Aliasee; 2203 if (isa<llvm::FunctionType>(DeclTy)) 2204 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2205 /*ForVTable=*/false); 2206 else 2207 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2208 llvm::PointerType::getUnqual(DeclTy), 0); 2209 2210 // Create the new alias itself, but don't set a name yet. 2211 llvm::GlobalValue *GA = 2212 new llvm::GlobalAlias(Aliasee->getType(), 2213 llvm::Function::ExternalLinkage, 2214 "", Aliasee, &getModule()); 2215 2216 if (Entry) { 2217 assert(Entry->isDeclaration()); 2218 2219 // If there is a declaration in the module, then we had an extern followed 2220 // by the alias, as in: 2221 // extern int test6(); 2222 // ... 2223 // int test6() __attribute__((alias("test7"))); 2224 // 2225 // Remove it and replace uses of it with the alias. 2226 GA->takeName(Entry); 2227 2228 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2229 Entry->getType())); 2230 Entry->eraseFromParent(); 2231 } else { 2232 GA->setName(MangledName); 2233 } 2234 2235 // Set attributes which are particular to an alias; this is a 2236 // specialization of the attributes which may be set on a global 2237 // variable/function. 2238 if (D->hasAttr<DLLExportAttr>()) { 2239 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2240 // The dllexport attribute is ignored for undefined symbols. 2241 if (FD->hasBody()) 2242 GA->setLinkage(llvm::Function::DLLExportLinkage); 2243 } else { 2244 GA->setLinkage(llvm::Function::DLLExportLinkage); 2245 } 2246 } else if (D->hasAttr<WeakAttr>() || 2247 D->hasAttr<WeakRefAttr>() || 2248 D->isWeakImported()) { 2249 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2250 } 2251 2252 SetCommonAttributes(D, GA); 2253 } 2254 2255 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2256 ArrayRef<llvm::Type*> Tys) { 2257 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2258 Tys); 2259 } 2260 2261 static llvm::StringMapEntry<llvm::Constant*> & 2262 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2263 const StringLiteral *Literal, 2264 bool TargetIsLSB, 2265 bool &IsUTF16, 2266 unsigned &StringLength) { 2267 StringRef String = Literal->getString(); 2268 unsigned NumBytes = String.size(); 2269 2270 // Check for simple case. 2271 if (!Literal->containsNonAsciiOrNull()) { 2272 StringLength = NumBytes; 2273 return Map.GetOrCreateValue(String); 2274 } 2275 2276 // Otherwise, convert the UTF8 literals into a string of shorts. 2277 IsUTF16 = true; 2278 2279 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2280 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2281 UTF16 *ToPtr = &ToBuf[0]; 2282 2283 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2284 &ToPtr, ToPtr + NumBytes, 2285 strictConversion); 2286 2287 // ConvertUTF8toUTF16 returns the length in ToPtr. 2288 StringLength = ToPtr - &ToBuf[0]; 2289 2290 // Add an explicit null. 2291 *ToPtr = 0; 2292 return Map. 2293 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2294 (StringLength + 1) * 2)); 2295 } 2296 2297 static llvm::StringMapEntry<llvm::Constant*> & 2298 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2299 const StringLiteral *Literal, 2300 unsigned &StringLength) { 2301 StringRef String = Literal->getString(); 2302 StringLength = String.size(); 2303 return Map.GetOrCreateValue(String); 2304 } 2305 2306 llvm::Constant * 2307 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2308 unsigned StringLength = 0; 2309 bool isUTF16 = false; 2310 llvm::StringMapEntry<llvm::Constant*> &Entry = 2311 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2312 getDataLayout().isLittleEndian(), 2313 isUTF16, StringLength); 2314 2315 if (llvm::Constant *C = Entry.getValue()) 2316 return C; 2317 2318 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2319 llvm::Constant *Zeros[] = { Zero, Zero }; 2320 llvm::Value *V; 2321 2322 // If we don't already have it, get __CFConstantStringClassReference. 2323 if (!CFConstantStringClassRef) { 2324 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2325 Ty = llvm::ArrayType::get(Ty, 0); 2326 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2327 "__CFConstantStringClassReference"); 2328 // Decay array -> ptr 2329 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2330 CFConstantStringClassRef = V; 2331 } 2332 else 2333 V = CFConstantStringClassRef; 2334 2335 QualType CFTy = getContext().getCFConstantStringType(); 2336 2337 llvm::StructType *STy = 2338 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2339 2340 llvm::Constant *Fields[4]; 2341 2342 // Class pointer. 2343 Fields[0] = cast<llvm::ConstantExpr>(V); 2344 2345 // Flags. 2346 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2347 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2348 llvm::ConstantInt::get(Ty, 0x07C8); 2349 2350 // String pointer. 2351 llvm::Constant *C = 0; 2352 if (isUTF16) { 2353 ArrayRef<uint16_t> Arr = 2354 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2355 const_cast<char *>(Entry.getKey().data())), 2356 Entry.getKey().size() / 2); 2357 C = llvm::ConstantDataArray::get(VMContext, Arr); 2358 } else { 2359 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2360 } 2361 2362 llvm::GlobalValue::LinkageTypes Linkage; 2363 if (isUTF16) 2364 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2365 Linkage = llvm::GlobalValue::InternalLinkage; 2366 else 2367 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2368 // when using private linkage. It is not clear if this is a bug in ld 2369 // or a reasonable new restriction. 2370 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2371 2372 // Note: -fwritable-strings doesn't make the backing store strings of 2373 // CFStrings writable. (See <rdar://problem/10657500>) 2374 llvm::GlobalVariable *GV = 2375 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2376 Linkage, C, ".str"); 2377 GV->setUnnamedAddr(true); 2378 // Don't enforce the target's minimum global alignment, since the only use 2379 // of the string is via this class initializer. 2380 if (isUTF16) { 2381 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2382 GV->setAlignment(Align.getQuantity()); 2383 } else { 2384 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2385 GV->setAlignment(Align.getQuantity()); 2386 } 2387 2388 // String. 2389 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2390 2391 if (isUTF16) 2392 // Cast the UTF16 string to the correct type. 2393 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2394 2395 // String length. 2396 Ty = getTypes().ConvertType(getContext().LongTy); 2397 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2398 2399 // The struct. 2400 C = llvm::ConstantStruct::get(STy, Fields); 2401 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2402 llvm::GlobalVariable::PrivateLinkage, C, 2403 "_unnamed_cfstring_"); 2404 if (const char *Sect = getTarget().getCFStringSection()) 2405 GV->setSection(Sect); 2406 Entry.setValue(GV); 2407 2408 return GV; 2409 } 2410 2411 static RecordDecl * 2412 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2413 DeclContext *DC, IdentifierInfo *Id) { 2414 SourceLocation Loc; 2415 if (Ctx.getLangOpts().CPlusPlus) 2416 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2417 else 2418 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2419 } 2420 2421 llvm::Constant * 2422 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2423 unsigned StringLength = 0; 2424 llvm::StringMapEntry<llvm::Constant*> &Entry = 2425 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2426 2427 if (llvm::Constant *C = Entry.getValue()) 2428 return C; 2429 2430 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2431 llvm::Constant *Zeros[] = { Zero, Zero }; 2432 llvm::Value *V; 2433 // If we don't already have it, get _NSConstantStringClassReference. 2434 if (!ConstantStringClassRef) { 2435 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2436 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2437 llvm::Constant *GV; 2438 if (LangOpts.ObjCRuntime.isNonFragile()) { 2439 std::string str = 2440 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2441 : "OBJC_CLASS_$_" + StringClass; 2442 GV = getObjCRuntime().GetClassGlobal(str); 2443 // Make sure the result is of the correct type. 2444 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2445 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2446 ConstantStringClassRef = V; 2447 } else { 2448 std::string str = 2449 StringClass.empty() ? "_NSConstantStringClassReference" 2450 : "_" + StringClass + "ClassReference"; 2451 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2452 GV = CreateRuntimeVariable(PTy, str); 2453 // Decay array -> ptr 2454 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2455 ConstantStringClassRef = V; 2456 } 2457 } 2458 else 2459 V = ConstantStringClassRef; 2460 2461 if (!NSConstantStringType) { 2462 // Construct the type for a constant NSString. 2463 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2464 Context.getTranslationUnitDecl(), 2465 &Context.Idents.get("__builtin_NSString")); 2466 D->startDefinition(); 2467 2468 QualType FieldTypes[3]; 2469 2470 // const int *isa; 2471 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2472 // const char *str; 2473 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2474 // unsigned int length; 2475 FieldTypes[2] = Context.UnsignedIntTy; 2476 2477 // Create fields 2478 for (unsigned i = 0; i < 3; ++i) { 2479 FieldDecl *Field = FieldDecl::Create(Context, D, 2480 SourceLocation(), 2481 SourceLocation(), 0, 2482 FieldTypes[i], /*TInfo=*/0, 2483 /*BitWidth=*/0, 2484 /*Mutable=*/false, 2485 ICIS_NoInit); 2486 Field->setAccess(AS_public); 2487 D->addDecl(Field); 2488 } 2489 2490 D->completeDefinition(); 2491 QualType NSTy = Context.getTagDeclType(D); 2492 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2493 } 2494 2495 llvm::Constant *Fields[3]; 2496 2497 // Class pointer. 2498 Fields[0] = cast<llvm::ConstantExpr>(V); 2499 2500 // String pointer. 2501 llvm::Constant *C = 2502 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2503 2504 llvm::GlobalValue::LinkageTypes Linkage; 2505 bool isConstant; 2506 Linkage = llvm::GlobalValue::PrivateLinkage; 2507 isConstant = !LangOpts.WritableStrings; 2508 2509 llvm::GlobalVariable *GV = 2510 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2511 ".str"); 2512 GV->setUnnamedAddr(true); 2513 // Don't enforce the target's minimum global alignment, since the only use 2514 // of the string is via this class initializer. 2515 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2516 GV->setAlignment(Align.getQuantity()); 2517 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2518 2519 // String length. 2520 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2521 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2522 2523 // The struct. 2524 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2525 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2526 llvm::GlobalVariable::PrivateLinkage, C, 2527 "_unnamed_nsstring_"); 2528 // FIXME. Fix section. 2529 if (const char *Sect = 2530 LangOpts.ObjCRuntime.isNonFragile() 2531 ? getTarget().getNSStringNonFragileABISection() 2532 : getTarget().getNSStringSection()) 2533 GV->setSection(Sect); 2534 Entry.setValue(GV); 2535 2536 return GV; 2537 } 2538 2539 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2540 if (ObjCFastEnumerationStateType.isNull()) { 2541 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2542 Context.getTranslationUnitDecl(), 2543 &Context.Idents.get("__objcFastEnumerationState")); 2544 D->startDefinition(); 2545 2546 QualType FieldTypes[] = { 2547 Context.UnsignedLongTy, 2548 Context.getPointerType(Context.getObjCIdType()), 2549 Context.getPointerType(Context.UnsignedLongTy), 2550 Context.getConstantArrayType(Context.UnsignedLongTy, 2551 llvm::APInt(32, 5), ArrayType::Normal, 0) 2552 }; 2553 2554 for (size_t i = 0; i < 4; ++i) { 2555 FieldDecl *Field = FieldDecl::Create(Context, 2556 D, 2557 SourceLocation(), 2558 SourceLocation(), 0, 2559 FieldTypes[i], /*TInfo=*/0, 2560 /*BitWidth=*/0, 2561 /*Mutable=*/false, 2562 ICIS_NoInit); 2563 Field->setAccess(AS_public); 2564 D->addDecl(Field); 2565 } 2566 2567 D->completeDefinition(); 2568 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2569 } 2570 2571 return ObjCFastEnumerationStateType; 2572 } 2573 2574 llvm::Constant * 2575 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2576 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2577 2578 // Don't emit it as the address of the string, emit the string data itself 2579 // as an inline array. 2580 if (E->getCharByteWidth() == 1) { 2581 SmallString<64> Str(E->getString()); 2582 2583 // Resize the string to the right size, which is indicated by its type. 2584 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2585 Str.resize(CAT->getSize().getZExtValue()); 2586 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2587 } 2588 2589 llvm::ArrayType *AType = 2590 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2591 llvm::Type *ElemTy = AType->getElementType(); 2592 unsigned NumElements = AType->getNumElements(); 2593 2594 // Wide strings have either 2-byte or 4-byte elements. 2595 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2596 SmallVector<uint16_t, 32> Elements; 2597 Elements.reserve(NumElements); 2598 2599 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2600 Elements.push_back(E->getCodeUnit(i)); 2601 Elements.resize(NumElements); 2602 return llvm::ConstantDataArray::get(VMContext, Elements); 2603 } 2604 2605 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2606 SmallVector<uint32_t, 32> Elements; 2607 Elements.reserve(NumElements); 2608 2609 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2610 Elements.push_back(E->getCodeUnit(i)); 2611 Elements.resize(NumElements); 2612 return llvm::ConstantDataArray::get(VMContext, Elements); 2613 } 2614 2615 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2616 /// constant array for the given string literal. 2617 llvm::Constant * 2618 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2619 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2620 if (S->isAscii() || S->isUTF8()) { 2621 SmallString<64> Str(S->getString()); 2622 2623 // Resize the string to the right size, which is indicated by its type. 2624 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2625 Str.resize(CAT->getSize().getZExtValue()); 2626 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2627 } 2628 2629 // FIXME: the following does not memoize wide strings. 2630 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2631 llvm::GlobalVariable *GV = 2632 new llvm::GlobalVariable(getModule(),C->getType(), 2633 !LangOpts.WritableStrings, 2634 llvm::GlobalValue::PrivateLinkage, 2635 C,".str"); 2636 2637 GV->setAlignment(Align.getQuantity()); 2638 GV->setUnnamedAddr(true); 2639 return GV; 2640 } 2641 2642 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2643 /// array for the given ObjCEncodeExpr node. 2644 llvm::Constant * 2645 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2646 std::string Str; 2647 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2648 2649 return GetAddrOfConstantCString(Str); 2650 } 2651 2652 2653 /// GenerateWritableString -- Creates storage for a string literal. 2654 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2655 bool constant, 2656 CodeGenModule &CGM, 2657 const char *GlobalName, 2658 unsigned Alignment) { 2659 // Create Constant for this string literal. Don't add a '\0'. 2660 llvm::Constant *C = 2661 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2662 2663 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. 2664 unsigned AddrSpace = 0; 2665 if (CGM.getLangOpts().OpenCL) 2666 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2667 2668 // Create a global variable for this string 2669 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2670 CGM.getModule(), C->getType(), constant, 2671 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2672 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2673 GV->setAlignment(Alignment); 2674 GV->setUnnamedAddr(true); 2675 return GV; 2676 } 2677 2678 /// GetAddrOfConstantString - Returns a pointer to a character array 2679 /// containing the literal. This contents are exactly that of the 2680 /// given string, i.e. it will not be null terminated automatically; 2681 /// see GetAddrOfConstantCString. Note that whether the result is 2682 /// actually a pointer to an LLVM constant depends on 2683 /// Feature.WriteableStrings. 2684 /// 2685 /// The result has pointer to array type. 2686 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2687 const char *GlobalName, 2688 unsigned Alignment) { 2689 // Get the default prefix if a name wasn't specified. 2690 if (!GlobalName) 2691 GlobalName = ".str"; 2692 2693 if (Alignment == 0) 2694 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2695 .getQuantity(); 2696 2697 // Don't share any string literals if strings aren't constant. 2698 if (LangOpts.WritableStrings) 2699 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2700 2701 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2702 ConstantStringMap.GetOrCreateValue(Str); 2703 2704 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2705 if (Alignment > GV->getAlignment()) { 2706 GV->setAlignment(Alignment); 2707 } 2708 return GV; 2709 } 2710 2711 // Create a global variable for this. 2712 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2713 Alignment); 2714 Entry.setValue(GV); 2715 return GV; 2716 } 2717 2718 /// GetAddrOfConstantCString - Returns a pointer to a character 2719 /// array containing the literal and a terminating '\0' 2720 /// character. The result has pointer to array type. 2721 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2722 const char *GlobalName, 2723 unsigned Alignment) { 2724 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2725 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2726 } 2727 2728 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2729 const MaterializeTemporaryExpr *E, const Expr *Init) { 2730 assert((E->getStorageDuration() == SD_Static || 2731 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2732 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2733 2734 // If we're not materializing a subobject of the temporary, keep the 2735 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2736 QualType MaterializedType = Init->getType(); 2737 if (Init == E->GetTemporaryExpr()) 2738 MaterializedType = E->getType(); 2739 2740 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2741 if (Slot) 2742 return Slot; 2743 2744 // FIXME: If an externally-visible declaration extends multiple temporaries, 2745 // we need to give each temporary the same name in every translation unit (and 2746 // we also need to make the temporaries externally-visible). 2747 SmallString<256> Name; 2748 llvm::raw_svector_ostream Out(Name); 2749 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2750 Out.flush(); 2751 2752 APValue *Value = 0; 2753 if (E->getStorageDuration() == SD_Static) { 2754 // We might have a cached constant initializer for this temporary. Note 2755 // that this might have a different value from the value computed by 2756 // evaluating the initializer if the surrounding constant expression 2757 // modifies the temporary. 2758 Value = getContext().getMaterializedTemporaryValue(E, false); 2759 if (Value && Value->isUninit()) 2760 Value = 0; 2761 } 2762 2763 // Try evaluating it now, it might have a constant initializer. 2764 Expr::EvalResult EvalResult; 2765 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2766 !EvalResult.hasSideEffects()) 2767 Value = &EvalResult.Val; 2768 2769 llvm::Constant *InitialValue = 0; 2770 bool Constant = false; 2771 llvm::Type *Type; 2772 if (Value) { 2773 // The temporary has a constant initializer, use it. 2774 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2775 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2776 Type = InitialValue->getType(); 2777 } else { 2778 // No initializer, the initialization will be provided when we 2779 // initialize the declaration which performed lifetime extension. 2780 Type = getTypes().ConvertTypeForMem(MaterializedType); 2781 } 2782 2783 // Create a global variable for this lifetime-extended temporary. 2784 llvm::GlobalVariable *GV = 2785 new llvm::GlobalVariable(getModule(), Type, Constant, 2786 llvm::GlobalValue::PrivateLinkage, 2787 InitialValue, Name.c_str()); 2788 GV->setAlignment( 2789 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2790 if (VD->getTLSKind()) 2791 setTLSMode(GV, *VD); 2792 Slot = GV; 2793 return GV; 2794 } 2795 2796 /// EmitObjCPropertyImplementations - Emit information for synthesized 2797 /// properties for an implementation. 2798 void CodeGenModule::EmitObjCPropertyImplementations(const 2799 ObjCImplementationDecl *D) { 2800 for (ObjCImplementationDecl::propimpl_iterator 2801 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2802 ObjCPropertyImplDecl *PID = *i; 2803 2804 // Dynamic is just for type-checking. 2805 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2806 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2807 2808 // Determine which methods need to be implemented, some may have 2809 // been overridden. Note that ::isPropertyAccessor is not the method 2810 // we want, that just indicates if the decl came from a 2811 // property. What we want to know is if the method is defined in 2812 // this implementation. 2813 if (!D->getInstanceMethod(PD->getGetterName())) 2814 CodeGenFunction(*this).GenerateObjCGetter( 2815 const_cast<ObjCImplementationDecl *>(D), PID); 2816 if (!PD->isReadOnly() && 2817 !D->getInstanceMethod(PD->getSetterName())) 2818 CodeGenFunction(*this).GenerateObjCSetter( 2819 const_cast<ObjCImplementationDecl *>(D), PID); 2820 } 2821 } 2822 } 2823 2824 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2825 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2826 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2827 ivar; ivar = ivar->getNextIvar()) 2828 if (ivar->getType().isDestructedType()) 2829 return true; 2830 2831 return false; 2832 } 2833 2834 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2835 /// for an implementation. 2836 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2837 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2838 if (needsDestructMethod(D)) { 2839 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2840 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2841 ObjCMethodDecl *DTORMethod = 2842 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2843 cxxSelector, getContext().VoidTy, 0, D, 2844 /*isInstance=*/true, /*isVariadic=*/false, 2845 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2846 /*isDefined=*/false, ObjCMethodDecl::Required); 2847 D->addInstanceMethod(DTORMethod); 2848 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2849 D->setHasDestructors(true); 2850 } 2851 2852 // If the implementation doesn't have any ivar initializers, we don't need 2853 // a .cxx_construct. 2854 if (D->getNumIvarInitializers() == 0) 2855 return; 2856 2857 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2858 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2859 // The constructor returns 'self'. 2860 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2861 D->getLocation(), 2862 D->getLocation(), 2863 cxxSelector, 2864 getContext().getObjCIdType(), 0, 2865 D, /*isInstance=*/true, 2866 /*isVariadic=*/false, 2867 /*isPropertyAccessor=*/true, 2868 /*isImplicitlyDeclared=*/true, 2869 /*isDefined=*/false, 2870 ObjCMethodDecl::Required); 2871 D->addInstanceMethod(CTORMethod); 2872 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2873 D->setHasNonZeroConstructors(true); 2874 } 2875 2876 /// EmitNamespace - Emit all declarations in a namespace. 2877 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2878 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2879 I != E; ++I) { 2880 if (const VarDecl *VD = dyn_cast<VarDecl>(*I)) 2881 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2882 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2883 continue; 2884 EmitTopLevelDecl(*I); 2885 } 2886 } 2887 2888 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2889 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2890 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2891 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2892 ErrorUnsupported(LSD, "linkage spec"); 2893 return; 2894 } 2895 2896 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2897 I != E; ++I) { 2898 // Meta-data for ObjC class includes references to implemented methods. 2899 // Generate class's method definitions first. 2900 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2901 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2902 MEnd = OID->meth_end(); 2903 M != MEnd; ++M) 2904 EmitTopLevelDecl(*M); 2905 } 2906 EmitTopLevelDecl(*I); 2907 } 2908 } 2909 2910 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2911 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2912 // Ignore dependent declarations. 2913 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2914 return; 2915 2916 switch (D->getKind()) { 2917 case Decl::CXXConversion: 2918 case Decl::CXXMethod: 2919 case Decl::Function: 2920 // Skip function templates 2921 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2922 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2923 return; 2924 2925 EmitGlobal(cast<FunctionDecl>(D)); 2926 break; 2927 2928 case Decl::Var: 2929 // Skip variable templates 2930 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2931 return; 2932 case Decl::VarTemplateSpecialization: 2933 EmitGlobal(cast<VarDecl>(D)); 2934 break; 2935 2936 // Indirect fields from global anonymous structs and unions can be 2937 // ignored; only the actual variable requires IR gen support. 2938 case Decl::IndirectField: 2939 break; 2940 2941 // C++ Decls 2942 case Decl::Namespace: 2943 EmitNamespace(cast<NamespaceDecl>(D)); 2944 break; 2945 // No code generation needed. 2946 case Decl::UsingShadow: 2947 case Decl::Using: 2948 case Decl::ClassTemplate: 2949 case Decl::VarTemplate: 2950 case Decl::VarTemplatePartialSpecialization: 2951 case Decl::FunctionTemplate: 2952 case Decl::TypeAliasTemplate: 2953 case Decl::Block: 2954 case Decl::Empty: 2955 break; 2956 case Decl::NamespaceAlias: 2957 if (CGDebugInfo *DI = getModuleDebugInfo()) 2958 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2959 return; 2960 case Decl::UsingDirective: // using namespace X; [C++] 2961 if (CGDebugInfo *DI = getModuleDebugInfo()) 2962 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2963 return; 2964 case Decl::CXXConstructor: 2965 // Skip function templates 2966 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2967 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2968 return; 2969 2970 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2971 break; 2972 case Decl::CXXDestructor: 2973 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2974 return; 2975 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2976 break; 2977 2978 case Decl::StaticAssert: 2979 // Nothing to do. 2980 break; 2981 2982 // Objective-C Decls 2983 2984 // Forward declarations, no (immediate) code generation. 2985 case Decl::ObjCInterface: 2986 case Decl::ObjCCategory: 2987 break; 2988 2989 case Decl::ObjCProtocol: { 2990 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2991 if (Proto->isThisDeclarationADefinition()) 2992 ObjCRuntime->GenerateProtocol(Proto); 2993 break; 2994 } 2995 2996 case Decl::ObjCCategoryImpl: 2997 // Categories have properties but don't support synthesize so we 2998 // can ignore them here. 2999 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3000 break; 3001 3002 case Decl::ObjCImplementation: { 3003 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 3004 EmitObjCPropertyImplementations(OMD); 3005 EmitObjCIvarInitializations(OMD); 3006 ObjCRuntime->GenerateClass(OMD); 3007 // Emit global variable debug information. 3008 if (CGDebugInfo *DI = getModuleDebugInfo()) 3009 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3010 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3011 OMD->getClassInterface()), OMD->getLocation()); 3012 break; 3013 } 3014 case Decl::ObjCMethod: { 3015 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 3016 // If this is not a prototype, emit the body. 3017 if (OMD->getBody()) 3018 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3019 break; 3020 } 3021 case Decl::ObjCCompatibleAlias: 3022 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3023 break; 3024 3025 case Decl::LinkageSpec: 3026 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3027 break; 3028 3029 case Decl::FileScopeAsm: { 3030 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 3031 StringRef AsmString = AD->getAsmString()->getString(); 3032 3033 const std::string &S = getModule().getModuleInlineAsm(); 3034 if (S.empty()) 3035 getModule().setModuleInlineAsm(AsmString); 3036 else if (S.end()[-1] == '\n') 3037 getModule().setModuleInlineAsm(S + AsmString.str()); 3038 else 3039 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3040 break; 3041 } 3042 3043 case Decl::Import: { 3044 ImportDecl *Import = cast<ImportDecl>(D); 3045 3046 // Ignore import declarations that come from imported modules. 3047 if (clang::Module *Owner = Import->getOwningModule()) { 3048 if (getLangOpts().CurrentModule.empty() || 3049 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3050 break; 3051 } 3052 3053 ImportedModules.insert(Import->getImportedModule()); 3054 break; 3055 } 3056 3057 default: 3058 // Make sure we handled everything we should, every other kind is a 3059 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3060 // function. Need to recode Decl::Kind to do that easily. 3061 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3062 } 3063 } 3064 3065 /// Turns the given pointer into a constant. 3066 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3067 const void *Ptr) { 3068 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3069 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3070 return llvm::ConstantInt::get(i64, PtrInt); 3071 } 3072 3073 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3074 llvm::NamedMDNode *&GlobalMetadata, 3075 GlobalDecl D, 3076 llvm::GlobalValue *Addr) { 3077 if (!GlobalMetadata) 3078 GlobalMetadata = 3079 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3080 3081 // TODO: should we report variant information for ctors/dtors? 3082 llvm::Value *Ops[] = { 3083 Addr, 3084 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3085 }; 3086 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3087 } 3088 3089 /// For each function which is declared within an extern "C" region and marked 3090 /// as 'used', but has internal linkage, create an alias from the unmangled 3091 /// name to the mangled name if possible. People expect to be able to refer 3092 /// to such functions with an unmangled name from inline assembly within the 3093 /// same translation unit. 3094 void CodeGenModule::EmitStaticExternCAliases() { 3095 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3096 E = StaticExternCValues.end(); 3097 I != E; ++I) { 3098 IdentifierInfo *Name = I->first; 3099 llvm::GlobalValue *Val = I->second; 3100 if (Val && !getModule().getNamedValue(Name->getName())) 3101 AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3102 Name->getName(), Val, &getModule())); 3103 } 3104 } 3105 3106 /// Emits metadata nodes associating all the global values in the 3107 /// current module with the Decls they came from. This is useful for 3108 /// projects using IR gen as a subroutine. 3109 /// 3110 /// Since there's currently no way to associate an MDNode directly 3111 /// with an llvm::GlobalValue, we create a global named metadata 3112 /// with the name 'clang.global.decl.ptrs'. 3113 void CodeGenModule::EmitDeclMetadata() { 3114 llvm::NamedMDNode *GlobalMetadata = 0; 3115 3116 // StaticLocalDeclMap 3117 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3118 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3119 I != E; ++I) { 3120 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3121 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3122 } 3123 } 3124 3125 /// Emits metadata nodes for all the local variables in the current 3126 /// function. 3127 void CodeGenFunction::EmitDeclMetadata() { 3128 if (LocalDeclMap.empty()) return; 3129 3130 llvm::LLVMContext &Context = getLLVMContext(); 3131 3132 // Find the unique metadata ID for this name. 3133 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3134 3135 llvm::NamedMDNode *GlobalMetadata = 0; 3136 3137 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3138 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3139 const Decl *D = I->first; 3140 llvm::Value *Addr = I->second; 3141 3142 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3143 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3144 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3145 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3146 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3147 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3148 } 3149 } 3150 } 3151 3152 void CodeGenModule::EmitVersionIdentMetadata() { 3153 llvm::NamedMDNode *IdentMetadata = 3154 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3155 std::string Version = getClangFullVersion(); 3156 llvm::LLVMContext &Ctx = TheModule.getContext(); 3157 3158 llvm::Value *IdentNode[] = { 3159 llvm::MDString::get(Ctx, Version) 3160 }; 3161 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3162 } 3163 3164 void CodeGenModule::EmitCoverageFile() { 3165 if (!getCodeGenOpts().CoverageFile.empty()) { 3166 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3167 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3168 llvm::LLVMContext &Ctx = TheModule.getContext(); 3169 llvm::MDString *CoverageFile = 3170 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3171 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3172 llvm::MDNode *CU = CUNode->getOperand(i); 3173 llvm::Value *node[] = { CoverageFile, CU }; 3174 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3175 GCov->addOperand(N); 3176 } 3177 } 3178 } 3179 } 3180 3181 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3182 QualType GuidType) { 3183 // Sema has checked that all uuid strings are of the form 3184 // "12345678-1234-1234-1234-1234567890ab". 3185 assert(Uuid.size() == 36); 3186 for (unsigned i = 0; i < 36; ++i) { 3187 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3188 else assert(isHexDigit(Uuid[i])); 3189 } 3190 3191 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3192 3193 llvm::Constant *Field3[8]; 3194 for (unsigned Idx = 0; Idx < 8; ++Idx) 3195 Field3[Idx] = llvm::ConstantInt::get( 3196 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3197 3198 llvm::Constant *Fields[4] = { 3199 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3200 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3201 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3202 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3203 }; 3204 3205 return llvm::ConstantStruct::getAnon(Fields); 3206 } 3207