xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 94a76b64e066020aa819f821d972f90b8b1c4c6a)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193   if (CodeGenOpts.DwarfVersion)
194     // We actually want the latest version when there are conflicts.
195     // We can change from Warning to Latest if such mode is supported.
196     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
197                               CodeGenOpts.DwarfVersion);
198 
199   SimplifyPersonality();
200 
201   if (getCodeGenOpts().EmitDeclMetadata)
202     EmitDeclMetadata();
203 
204   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
205     EmitCoverageFile();
206 
207   if (DebugInfo)
208     DebugInfo->finalize();
209 }
210 
211 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
212   // Make sure that this type is translated.
213   Types.UpdateCompletedType(TD);
214 }
215 
216 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
217   if (!TBAA)
218     return 0;
219   return TBAA->getTBAAInfo(QTy);
220 }
221 
222 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
223   if (!TBAA)
224     return 0;
225   return TBAA->getTBAAInfoForVTablePtr();
226 }
227 
228 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
229   if (!TBAA)
230     return 0;
231   return TBAA->getTBAAStructInfo(QTy);
232 }
233 
234 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
235   if (!TBAA)
236     return 0;
237   return TBAA->getTBAAStructTypeInfo(QTy);
238 }
239 
240 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
241                                                   llvm::MDNode *AccessN,
242                                                   uint64_t O) {
243   if (!TBAA)
244     return 0;
245   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
246 }
247 
248 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
249 /// is the same as the type. For struct-path aware TBAA, the tag
250 /// is different from the type: base type, access type and offset.
251 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
252 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
253                                         llvm::MDNode *TBAAInfo,
254                                         bool ConvertTypeToTag) {
255   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
256     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
257                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
258   else
259     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
260 }
261 
262 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
263   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
264   getDiags().Report(Context.getFullLoc(loc), diagID);
265 }
266 
267 /// ErrorUnsupported - Print out an error that codegen doesn't support the
268 /// specified stmt yet.
269 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
270                                      bool OmitOnError) {
271   if (OmitOnError && getDiags().hasErrorOccurred())
272     return;
273   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
274                                                "cannot compile this %0 yet");
275   std::string Msg = Type;
276   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
277     << Msg << S->getSourceRange();
278 }
279 
280 /// ErrorUnsupported - Print out an error that codegen doesn't support the
281 /// specified decl yet.
282 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
283                                      bool OmitOnError) {
284   if (OmitOnError && getDiags().hasErrorOccurred())
285     return;
286   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
287                                                "cannot compile this %0 yet");
288   std::string Msg = Type;
289   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
290 }
291 
292 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
293   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
294 }
295 
296 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
297                                         const NamedDecl *D) const {
298   // Internal definitions always have default visibility.
299   if (GV->hasLocalLinkage()) {
300     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
301     return;
302   }
303 
304   // Set visibility for definitions.
305   LinkageInfo LV = D->getLinkageAndVisibility();
306   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
307     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
308 }
309 
310 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
311   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
312       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
313       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
314       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
315       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
316 }
317 
318 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
319     CodeGenOptions::TLSModel M) {
320   switch (M) {
321   case CodeGenOptions::GeneralDynamicTLSModel:
322     return llvm::GlobalVariable::GeneralDynamicTLSModel;
323   case CodeGenOptions::LocalDynamicTLSModel:
324     return llvm::GlobalVariable::LocalDynamicTLSModel;
325   case CodeGenOptions::InitialExecTLSModel:
326     return llvm::GlobalVariable::InitialExecTLSModel;
327   case CodeGenOptions::LocalExecTLSModel:
328     return llvm::GlobalVariable::LocalExecTLSModel;
329   }
330   llvm_unreachable("Invalid TLS model!");
331 }
332 
333 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
334                                const VarDecl &D) const {
335   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
336 
337   llvm::GlobalVariable::ThreadLocalMode TLM;
338   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
339 
340   // Override the TLS model if it is explicitly specified.
341   if (D.hasAttr<TLSModelAttr>()) {
342     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
343     TLM = GetLLVMTLSModel(Attr->getModel());
344   }
345 
346   GV->setThreadLocalMode(TLM);
347 }
348 
349 /// Set the symbol visibility of type information (vtable and RTTI)
350 /// associated with the given type.
351 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
352                                       const CXXRecordDecl *RD,
353                                       TypeVisibilityKind TVK) const {
354   setGlobalVisibility(GV, RD);
355 
356   if (!CodeGenOpts.HiddenWeakVTables)
357     return;
358 
359   // We never want to drop the visibility for RTTI names.
360   if (TVK == TVK_ForRTTIName)
361     return;
362 
363   // We want to drop the visibility to hidden for weak type symbols.
364   // This isn't possible if there might be unresolved references
365   // elsewhere that rely on this symbol being visible.
366 
367   // This should be kept roughly in sync with setThunkVisibility
368   // in CGVTables.cpp.
369 
370   // Preconditions.
371   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
372       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
373     return;
374 
375   // Don't override an explicit visibility attribute.
376   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
377     return;
378 
379   switch (RD->getTemplateSpecializationKind()) {
380   // We have to disable the optimization if this is an EI definition
381   // because there might be EI declarations in other shared objects.
382   case TSK_ExplicitInstantiationDefinition:
383   case TSK_ExplicitInstantiationDeclaration:
384     return;
385 
386   // Every use of a non-template class's type information has to emit it.
387   case TSK_Undeclared:
388     break;
389 
390   // In theory, implicit instantiations can ignore the possibility of
391   // an explicit instantiation declaration because there necessarily
392   // must be an EI definition somewhere with default visibility.  In
393   // practice, it's possible to have an explicit instantiation for
394   // an arbitrary template class, and linkers aren't necessarily able
395   // to deal with mixed-visibility symbols.
396   case TSK_ExplicitSpecialization:
397   case TSK_ImplicitInstantiation:
398     return;
399   }
400 
401   // If there's a key function, there may be translation units
402   // that don't have the key function's definition.  But ignore
403   // this if we're emitting RTTI under -fno-rtti.
404   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
405     // FIXME: what should we do if we "lose" the key function during
406     // the emission of the file?
407     if (Context.getCurrentKeyFunction(RD))
408       return;
409   }
410 
411   // Otherwise, drop the visibility to hidden.
412   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
413   GV->setUnnamedAddr(true);
414 }
415 
416 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
417   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
418 
419   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
420   if (!Str.empty())
421     return Str;
422 
423   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
424     IdentifierInfo *II = ND->getIdentifier();
425     assert(II && "Attempt to mangle unnamed decl.");
426 
427     Str = II->getName();
428     return Str;
429   }
430 
431   SmallString<256> Buffer;
432   llvm::raw_svector_ostream Out(Buffer);
433   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
434     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
435   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
436     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
437   else
438     getCXXABI().getMangleContext().mangleName(ND, Out);
439 
440   // Allocate space for the mangled name.
441   Out.flush();
442   size_t Length = Buffer.size();
443   char *Name = MangledNamesAllocator.Allocate<char>(Length);
444   std::copy(Buffer.begin(), Buffer.end(), Name);
445 
446   Str = StringRef(Name, Length);
447 
448   return Str;
449 }
450 
451 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
452                                         const BlockDecl *BD) {
453   MangleContext &MangleCtx = getCXXABI().getMangleContext();
454   const Decl *D = GD.getDecl();
455   llvm::raw_svector_ostream Out(Buffer.getBuffer());
456   if (D == 0)
457     MangleCtx.mangleGlobalBlock(BD,
458       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
459   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
460     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
461   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
462     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
463   else
464     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
465 }
466 
467 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
468   return getModule().getNamedValue(Name);
469 }
470 
471 /// AddGlobalCtor - Add a function to the list that will be called before
472 /// main() runs.
473 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
474   // FIXME: Type coercion of void()* types.
475   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
476 }
477 
478 /// AddGlobalDtor - Add a function to the list that will be called
479 /// when the module is unloaded.
480 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
481   // FIXME: Type coercion of void()* types.
482   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
483 }
484 
485 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
486   // Ctor function type is void()*.
487   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
488   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
489 
490   // Get the type of a ctor entry, { i32, void ()* }.
491   llvm::StructType *CtorStructTy =
492     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
493 
494   // Construct the constructor and destructor arrays.
495   SmallVector<llvm::Constant*, 8> Ctors;
496   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
497     llvm::Constant *S[] = {
498       llvm::ConstantInt::get(Int32Ty, I->second, false),
499       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
500     };
501     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
502   }
503 
504   if (!Ctors.empty()) {
505     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
506     new llvm::GlobalVariable(TheModule, AT, false,
507                              llvm::GlobalValue::AppendingLinkage,
508                              llvm::ConstantArray::get(AT, Ctors),
509                              GlobalName);
510   }
511 }
512 
513 llvm::GlobalValue::LinkageTypes
514 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
515   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
516 
517   if (isa<CXXDestructorDecl>(D) &&
518       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
519                                          GD.getDtorType()))
520     return llvm::Function::LinkOnceODRLinkage;
521 
522   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
523 
524   if (Linkage == GVA_Internal)
525     return llvm::Function::InternalLinkage;
526 
527   if (D->hasAttr<DLLExportAttr>())
528     return llvm::Function::DLLExportLinkage;
529 
530   if (D->hasAttr<WeakAttr>())
531     return llvm::Function::WeakAnyLinkage;
532 
533   // In C99 mode, 'inline' functions are guaranteed to have a strong
534   // definition somewhere else, so we can use available_externally linkage.
535   if (Linkage == GVA_C99Inline)
536     return llvm::Function::AvailableExternallyLinkage;
537 
538   // Note that Apple's kernel linker doesn't support symbol
539   // coalescing, so we need to avoid linkonce and weak linkages there.
540   // Normally, this means we just map to internal, but for explicit
541   // instantiations we'll map to external.
542 
543   // In C++, the compiler has to emit a definition in every translation unit
544   // that references the function.  We should use linkonce_odr because
545   // a) if all references in this translation unit are optimized away, we
546   // don't need to codegen it.  b) if the function persists, it needs to be
547   // merged with other definitions. c) C++ has the ODR, so we know the
548   // definition is dependable.
549   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
550     return !Context.getLangOpts().AppleKext
551              ? llvm::Function::LinkOnceODRLinkage
552              : llvm::Function::InternalLinkage;
553 
554   // An explicit instantiation of a template has weak linkage, since
555   // explicit instantiations can occur in multiple translation units
556   // and must all be equivalent. However, we are not allowed to
557   // throw away these explicit instantiations.
558   if (Linkage == GVA_ExplicitTemplateInstantiation)
559     return !Context.getLangOpts().AppleKext
560              ? llvm::Function::WeakODRLinkage
561              : llvm::Function::ExternalLinkage;
562 
563   // Otherwise, we have strong external linkage.
564   assert(Linkage == GVA_StrongExternal);
565   return llvm::Function::ExternalLinkage;
566 }
567 
568 
569 /// SetFunctionDefinitionAttributes - Set attributes for a global.
570 ///
571 /// FIXME: This is currently only done for aliases and functions, but not for
572 /// variables (these details are set in EmitGlobalVarDefinition for variables).
573 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
574                                                     llvm::GlobalValue *GV) {
575   SetCommonAttributes(D, GV);
576 }
577 
578 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
579                                               const CGFunctionInfo &Info,
580                                               llvm::Function *F) {
581   unsigned CallingConv;
582   AttributeListType AttributeList;
583   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
584   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
585   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
586 }
587 
588 /// Determines whether the language options require us to model
589 /// unwind exceptions.  We treat -fexceptions as mandating this
590 /// except under the fragile ObjC ABI with only ObjC exceptions
591 /// enabled.  This means, for example, that C with -fexceptions
592 /// enables this.
593 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
594   // If exceptions are completely disabled, obviously this is false.
595   if (!LangOpts.Exceptions) return false;
596 
597   // If C++ exceptions are enabled, this is true.
598   if (LangOpts.CXXExceptions) return true;
599 
600   // If ObjC exceptions are enabled, this depends on the ABI.
601   if (LangOpts.ObjCExceptions) {
602     return LangOpts.ObjCRuntime.hasUnwindExceptions();
603   }
604 
605   return true;
606 }
607 
608 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
609                                                            llvm::Function *F) {
610   llvm::AttrBuilder B;
611 
612   if (CodeGenOpts.UnwindTables)
613     B.addAttribute(llvm::Attribute::UWTable);
614 
615   if (!hasUnwindExceptions(LangOpts))
616     B.addAttribute(llvm::Attribute::NoUnwind);
617 
618   if (D->hasAttr<NakedAttr>()) {
619     // Naked implies noinline: we should not be inlining such functions.
620     B.addAttribute(llvm::Attribute::Naked);
621     B.addAttribute(llvm::Attribute::NoInline);
622   } else if (D->hasAttr<NoInlineAttr>()) {
623     B.addAttribute(llvm::Attribute::NoInline);
624   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
625               D->hasAttr<ForceInlineAttr>()) &&
626              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
627                                               llvm::Attribute::NoInline)) {
628     // (noinline wins over always_inline, and we can't specify both in IR)
629     B.addAttribute(llvm::Attribute::AlwaysInline);
630   }
631 
632   if (D->hasAttr<ColdAttr>()) {
633     B.addAttribute(llvm::Attribute::OptimizeForSize);
634     B.addAttribute(llvm::Attribute::Cold);
635   }
636 
637   if (D->hasAttr<MinSizeAttr>())
638     B.addAttribute(llvm::Attribute::MinSize);
639 
640   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
641     B.addAttribute(llvm::Attribute::StackProtect);
642   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
643     B.addAttribute(llvm::Attribute::StackProtectReq);
644 
645   // Add sanitizer attributes if function is not blacklisted.
646   if (!SanitizerBlacklist.isIn(*F)) {
647     // When AddressSanitizer is enabled, set SanitizeAddress attribute
648     // unless __attribute__((no_sanitize_address)) is used.
649     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
650       B.addAttribute(llvm::Attribute::SanitizeAddress);
651     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
652     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
653       B.addAttribute(llvm::Attribute::SanitizeThread);
654     }
655     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
656     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
657       B.addAttribute(llvm::Attribute::SanitizeMemory);
658   }
659 
660   F->addAttributes(llvm::AttributeSet::FunctionIndex,
661                    llvm::AttributeSet::get(
662                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
663 
664   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
665     F->setUnnamedAddr(true);
666   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
667     if (MD->isVirtual())
668       F->setUnnamedAddr(true);
669 
670   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
671   if (alignment)
672     F->setAlignment(alignment);
673 
674   // C++ ABI requires 2-byte alignment for member functions.
675   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
676     F->setAlignment(2);
677 }
678 
679 void CodeGenModule::SetCommonAttributes(const Decl *D,
680                                         llvm::GlobalValue *GV) {
681   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
682     setGlobalVisibility(GV, ND);
683   else
684     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
685 
686   if (D->hasAttr<UsedAttr>())
687     AddUsedGlobal(GV);
688 
689   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
690     GV->setSection(SA->getName());
691 
692   // Alias cannot have attributes. Filter them here.
693   if (!isa<llvm::GlobalAlias>(GV))
694     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
695 }
696 
697 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
698                                                   llvm::Function *F,
699                                                   const CGFunctionInfo &FI) {
700   SetLLVMFunctionAttributes(D, FI, F);
701   SetLLVMFunctionAttributesForDefinition(D, F);
702 
703   F->setLinkage(llvm::Function::InternalLinkage);
704 
705   SetCommonAttributes(D, F);
706 }
707 
708 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
709                                           llvm::Function *F,
710                                           bool IsIncompleteFunction) {
711   if (unsigned IID = F->getIntrinsicID()) {
712     // If this is an intrinsic function, set the function's attributes
713     // to the intrinsic's attributes.
714     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
715                                                     (llvm::Intrinsic::ID)IID));
716     return;
717   }
718 
719   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
720 
721   if (!IsIncompleteFunction)
722     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
723 
724   if (getCXXABI().HasThisReturn(GD)) {
725     assert(!F->arg_empty() &&
726            F->arg_begin()->getType()
727              ->canLosslesslyBitCastTo(F->getReturnType()) &&
728            "unexpected this return");
729     F->addAttribute(1, llvm::Attribute::Returned);
730   }
731 
732   // Only a few attributes are set on declarations; these may later be
733   // overridden by a definition.
734 
735   if (FD->hasAttr<DLLImportAttr>()) {
736     F->setLinkage(llvm::Function::DLLImportLinkage);
737   } else if (FD->hasAttr<WeakAttr>() ||
738              FD->isWeakImported()) {
739     // "extern_weak" is overloaded in LLVM; we probably should have
740     // separate linkage types for this.
741     F->setLinkage(llvm::Function::ExternalWeakLinkage);
742   } else {
743     F->setLinkage(llvm::Function::ExternalLinkage);
744 
745     LinkageInfo LV = FD->getLinkageAndVisibility();
746     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
747       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
748     }
749   }
750 
751   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
752     F->setSection(SA->getName());
753 
754   // A replaceable global allocation function does not act like a builtin by
755   // default, only if it is invoked by a new-expression or delete-expression.
756   if (FD->isReplaceableGlobalAllocationFunction())
757     F->addAttribute(llvm::AttributeSet::FunctionIndex,
758                     llvm::Attribute::NoBuiltin);
759 }
760 
761 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
762   assert(!GV->isDeclaration() &&
763          "Only globals with definition can force usage.");
764   LLVMUsed.push_back(GV);
765 }
766 
767 void CodeGenModule::EmitLLVMUsed() {
768   // Don't create llvm.used if there is no need.
769   if (LLVMUsed.empty())
770     return;
771 
772   // Convert LLVMUsed to what ConstantArray needs.
773   SmallVector<llvm::Constant*, 8> UsedArray;
774   UsedArray.resize(LLVMUsed.size());
775   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
776     UsedArray[i] =
777      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
778                                     Int8PtrTy);
779   }
780 
781   if (UsedArray.empty())
782     return;
783   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
784 
785   llvm::GlobalVariable *GV =
786     new llvm::GlobalVariable(getModule(), ATy, false,
787                              llvm::GlobalValue::AppendingLinkage,
788                              llvm::ConstantArray::get(ATy, UsedArray),
789                              "llvm.used");
790 
791   GV->setSection("llvm.metadata");
792 }
793 
794 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
795   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
796   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
797 }
798 
799 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
800   llvm::SmallString<32> Opt;
801   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
802   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
803   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
804 }
805 
806 void CodeGenModule::AddDependentLib(StringRef Lib) {
807   llvm::SmallString<24> Opt;
808   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
809   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
810   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
811 }
812 
813 /// \brief Add link options implied by the given module, including modules
814 /// it depends on, using a postorder walk.
815 static void addLinkOptionsPostorder(CodeGenModule &CGM,
816                                     Module *Mod,
817                                     SmallVectorImpl<llvm::Value *> &Metadata,
818                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
819   // Import this module's parent.
820   if (Mod->Parent && Visited.insert(Mod->Parent)) {
821     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
822   }
823 
824   // Import this module's dependencies.
825   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
826     if (Visited.insert(Mod->Imports[I-1]))
827       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
828   }
829 
830   // Add linker options to link against the libraries/frameworks
831   // described by this module.
832   llvm::LLVMContext &Context = CGM.getLLVMContext();
833   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
834     // Link against a framework.  Frameworks are currently Darwin only, so we
835     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
836     if (Mod->LinkLibraries[I-1].IsFramework) {
837       llvm::Value *Args[2] = {
838         llvm::MDString::get(Context, "-framework"),
839         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
840       };
841 
842       Metadata.push_back(llvm::MDNode::get(Context, Args));
843       continue;
844     }
845 
846     // Link against a library.
847     llvm::SmallString<24> Opt;
848     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
849       Mod->LinkLibraries[I-1].Library, Opt);
850     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
851     Metadata.push_back(llvm::MDNode::get(Context, OptString));
852   }
853 }
854 
855 void CodeGenModule::EmitModuleLinkOptions() {
856   // Collect the set of all of the modules we want to visit to emit link
857   // options, which is essentially the imported modules and all of their
858   // non-explicit child modules.
859   llvm::SetVector<clang::Module *> LinkModules;
860   llvm::SmallPtrSet<clang::Module *, 16> Visited;
861   SmallVector<clang::Module *, 16> Stack;
862 
863   // Seed the stack with imported modules.
864   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
865                                                MEnd = ImportedModules.end();
866        M != MEnd; ++M) {
867     if (Visited.insert(*M))
868       Stack.push_back(*M);
869   }
870 
871   // Find all of the modules to import, making a little effort to prune
872   // non-leaf modules.
873   while (!Stack.empty()) {
874     clang::Module *Mod = Stack.back();
875     Stack.pop_back();
876 
877     bool AnyChildren = false;
878 
879     // Visit the submodules of this module.
880     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
881                                         SubEnd = Mod->submodule_end();
882          Sub != SubEnd; ++Sub) {
883       // Skip explicit children; they need to be explicitly imported to be
884       // linked against.
885       if ((*Sub)->IsExplicit)
886         continue;
887 
888       if (Visited.insert(*Sub)) {
889         Stack.push_back(*Sub);
890         AnyChildren = true;
891       }
892     }
893 
894     // We didn't find any children, so add this module to the list of
895     // modules to link against.
896     if (!AnyChildren) {
897       LinkModules.insert(Mod);
898     }
899   }
900 
901   // Add link options for all of the imported modules in reverse topological
902   // order.  We don't do anything to try to order import link flags with respect
903   // to linker options inserted by things like #pragma comment().
904   SmallVector<llvm::Value *, 16> MetadataArgs;
905   Visited.clear();
906   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
907                                                MEnd = LinkModules.end();
908        M != MEnd; ++M) {
909     if (Visited.insert(*M))
910       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
911   }
912   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
913   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
914 
915   // Add the linker options metadata flag.
916   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
917                             llvm::MDNode::get(getLLVMContext(),
918                                               LinkerOptionsMetadata));
919 }
920 
921 void CodeGenModule::EmitDeferred() {
922   // Emit code for any potentially referenced deferred decls.  Since a
923   // previously unused static decl may become used during the generation of code
924   // for a static function, iterate until no changes are made.
925 
926   while (true) {
927     if (!DeferredVTables.empty()) {
928       EmitDeferredVTables();
929 
930       // Emitting a v-table doesn't directly cause more v-tables to
931       // become deferred, although it can cause functions to be
932       // emitted that then need those v-tables.
933       assert(DeferredVTables.empty());
934     }
935 
936     // Stop if we're out of both deferred v-tables and deferred declarations.
937     if (DeferredDeclsToEmit.empty()) break;
938 
939     GlobalDecl D = DeferredDeclsToEmit.back();
940     DeferredDeclsToEmit.pop_back();
941 
942     // Check to see if we've already emitted this.  This is necessary
943     // for a couple of reasons: first, decls can end up in the
944     // deferred-decls queue multiple times, and second, decls can end
945     // up with definitions in unusual ways (e.g. by an extern inline
946     // function acquiring a strong function redefinition).  Just
947     // ignore these cases.
948     //
949     // TODO: That said, looking this up multiple times is very wasteful.
950     StringRef Name = getMangledName(D);
951     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
952     assert(CGRef && "Deferred decl wasn't referenced?");
953 
954     if (!CGRef->isDeclaration())
955       continue;
956 
957     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
958     // purposes an alias counts as a definition.
959     if (isa<llvm::GlobalAlias>(CGRef))
960       continue;
961 
962     // Otherwise, emit the definition and move on to the next one.
963     EmitGlobalDefinition(D);
964   }
965 }
966 
967 void CodeGenModule::EmitGlobalAnnotations() {
968   if (Annotations.empty())
969     return;
970 
971   // Create a new global variable for the ConstantStruct in the Module.
972   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
973     Annotations[0]->getType(), Annotations.size()), Annotations);
974   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
975     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
976     "llvm.global.annotations");
977   gv->setSection(AnnotationSection);
978 }
979 
980 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
981   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
982   if (i != AnnotationStrings.end())
983     return i->second;
984 
985   // Not found yet, create a new global.
986   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
987   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
988     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
989   gv->setSection(AnnotationSection);
990   gv->setUnnamedAddr(true);
991   AnnotationStrings[Str] = gv;
992   return gv;
993 }
994 
995 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
996   SourceManager &SM = getContext().getSourceManager();
997   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
998   if (PLoc.isValid())
999     return EmitAnnotationString(PLoc.getFilename());
1000   return EmitAnnotationString(SM.getBufferName(Loc));
1001 }
1002 
1003 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1004   SourceManager &SM = getContext().getSourceManager();
1005   PresumedLoc PLoc = SM.getPresumedLoc(L);
1006   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1007     SM.getExpansionLineNumber(L);
1008   return llvm::ConstantInt::get(Int32Ty, LineNo);
1009 }
1010 
1011 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1012                                                 const AnnotateAttr *AA,
1013                                                 SourceLocation L) {
1014   // Get the globals for file name, annotation, and the line number.
1015   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1016                  *UnitGV = EmitAnnotationUnit(L),
1017                  *LineNoCst = EmitAnnotationLineNo(L);
1018 
1019   // Create the ConstantStruct for the global annotation.
1020   llvm::Constant *Fields[4] = {
1021     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1022     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1023     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1024     LineNoCst
1025   };
1026   return llvm::ConstantStruct::getAnon(Fields);
1027 }
1028 
1029 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1030                                          llvm::GlobalValue *GV) {
1031   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1032   // Get the struct elements for these annotations.
1033   for (specific_attr_iterator<AnnotateAttr>
1034        ai = D->specific_attr_begin<AnnotateAttr>(),
1035        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1036     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1037 }
1038 
1039 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1040   // Never defer when EmitAllDecls is specified.
1041   if (LangOpts.EmitAllDecls)
1042     return false;
1043 
1044   return !getContext().DeclMustBeEmitted(Global);
1045 }
1046 
1047 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1048     const CXXUuidofExpr* E) {
1049   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1050   // well-formed.
1051   StringRef Uuid;
1052   if (E->isTypeOperand())
1053     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1054   else {
1055     // Special case: __uuidof(0) means an all-zero GUID.
1056     Expr *Op = E->getExprOperand();
1057     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1058       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1059     else
1060       Uuid = "00000000-0000-0000-0000-000000000000";
1061   }
1062   std::string Name = "_GUID_" + Uuid.lower();
1063   std::replace(Name.begin(), Name.end(), '-', '_');
1064 
1065   // Look for an existing global.
1066   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1067     return GV;
1068 
1069   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1070   assert(Init && "failed to initialize as constant");
1071 
1072   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1073   // first field is declared as "long", which for many targets is 8 bytes.
1074   // Those architectures are not supported. (With the MS abi, long is always 4
1075   // bytes.)
1076   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1077   if (Init->getType() != GuidType) {
1078     DiagnosticsEngine &Diags = getDiags();
1079     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1080         "__uuidof codegen is not supported on this architecture");
1081     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1082     Init = llvm::UndefValue::get(GuidType);
1083   }
1084 
1085   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1086       /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, Init, Name);
1087   GV->setUnnamedAddr(true);
1088   return GV;
1089 }
1090 
1091 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1092   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1093   assert(AA && "No alias?");
1094 
1095   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1096 
1097   // See if there is already something with the target's name in the module.
1098   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1099   if (Entry) {
1100     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1101     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1102   }
1103 
1104   llvm::Constant *Aliasee;
1105   if (isa<llvm::FunctionType>(DeclTy))
1106     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1107                                       GlobalDecl(cast<FunctionDecl>(VD)),
1108                                       /*ForVTable=*/false);
1109   else
1110     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1111                                     llvm::PointerType::getUnqual(DeclTy), 0);
1112 
1113   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1114   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1115   WeakRefReferences.insert(F);
1116 
1117   return Aliasee;
1118 }
1119 
1120 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1121   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1122 
1123   // Weak references don't produce any output by themselves.
1124   if (Global->hasAttr<WeakRefAttr>())
1125     return;
1126 
1127   // If this is an alias definition (which otherwise looks like a declaration)
1128   // emit it now.
1129   if (Global->hasAttr<AliasAttr>())
1130     return EmitAliasDefinition(GD);
1131 
1132   // If this is CUDA, be selective about which declarations we emit.
1133   if (LangOpts.CUDA) {
1134     if (CodeGenOpts.CUDAIsDevice) {
1135       if (!Global->hasAttr<CUDADeviceAttr>() &&
1136           !Global->hasAttr<CUDAGlobalAttr>() &&
1137           !Global->hasAttr<CUDAConstantAttr>() &&
1138           !Global->hasAttr<CUDASharedAttr>())
1139         return;
1140     } else {
1141       if (!Global->hasAttr<CUDAHostAttr>() && (
1142             Global->hasAttr<CUDADeviceAttr>() ||
1143             Global->hasAttr<CUDAConstantAttr>() ||
1144             Global->hasAttr<CUDASharedAttr>()))
1145         return;
1146     }
1147   }
1148 
1149   // Ignore declarations, they will be emitted on their first use.
1150   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1151     // Forward declarations are emitted lazily on first use.
1152     if (!FD->doesThisDeclarationHaveABody()) {
1153       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1154         return;
1155 
1156       const FunctionDecl *InlineDefinition = 0;
1157       FD->getBody(InlineDefinition);
1158 
1159       StringRef MangledName = getMangledName(GD);
1160       DeferredDecls.erase(MangledName);
1161       EmitGlobalDefinition(InlineDefinition);
1162       return;
1163     }
1164   } else {
1165     const VarDecl *VD = cast<VarDecl>(Global);
1166     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1167 
1168     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1169       return;
1170   }
1171 
1172   // Defer code generation when possible if this is a static definition, inline
1173   // function etc.  These we only want to emit if they are used.
1174   if (!MayDeferGeneration(Global)) {
1175     // Emit the definition if it can't be deferred.
1176     EmitGlobalDefinition(GD);
1177     return;
1178   }
1179 
1180   // If we're deferring emission of a C++ variable with an
1181   // initializer, remember the order in which it appeared in the file.
1182   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1183       cast<VarDecl>(Global)->hasInit()) {
1184     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1185     CXXGlobalInits.push_back(0);
1186   }
1187 
1188   // If the value has already been used, add it directly to the
1189   // DeferredDeclsToEmit list.
1190   StringRef MangledName = getMangledName(GD);
1191   if (GetGlobalValue(MangledName))
1192     DeferredDeclsToEmit.push_back(GD);
1193   else {
1194     // Otherwise, remember that we saw a deferred decl with this name.  The
1195     // first use of the mangled name will cause it to move into
1196     // DeferredDeclsToEmit.
1197     DeferredDecls[MangledName] = GD;
1198   }
1199 }
1200 
1201 namespace {
1202   struct FunctionIsDirectlyRecursive :
1203     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1204     const StringRef Name;
1205     const Builtin::Context &BI;
1206     bool Result;
1207     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1208       Name(N), BI(C), Result(false) {
1209     }
1210     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1211 
1212     bool TraverseCallExpr(CallExpr *E) {
1213       const FunctionDecl *FD = E->getDirectCallee();
1214       if (!FD)
1215         return true;
1216       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1217       if (Attr && Name == Attr->getLabel()) {
1218         Result = true;
1219         return false;
1220       }
1221       unsigned BuiltinID = FD->getBuiltinID();
1222       if (!BuiltinID)
1223         return true;
1224       StringRef BuiltinName = BI.GetName(BuiltinID);
1225       if (BuiltinName.startswith("__builtin_") &&
1226           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1227         Result = true;
1228         return false;
1229       }
1230       return true;
1231     }
1232   };
1233 }
1234 
1235 // isTriviallyRecursive - Check if this function calls another
1236 // decl that, because of the asm attribute or the other decl being a builtin,
1237 // ends up pointing to itself.
1238 bool
1239 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1240   StringRef Name;
1241   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1242     // asm labels are a special kind of mangling we have to support.
1243     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1244     if (!Attr)
1245       return false;
1246     Name = Attr->getLabel();
1247   } else {
1248     Name = FD->getName();
1249   }
1250 
1251   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1252   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1253   return Walker.Result;
1254 }
1255 
1256 bool
1257 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1258   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1259     return true;
1260   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1261   if (CodeGenOpts.OptimizationLevel == 0 &&
1262       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1263     return false;
1264   // PR9614. Avoid cases where the source code is lying to us. An available
1265   // externally function should have an equivalent function somewhere else,
1266   // but a function that calls itself is clearly not equivalent to the real
1267   // implementation.
1268   // This happens in glibc's btowc and in some configure checks.
1269   return !isTriviallyRecursive(F);
1270 }
1271 
1272 /// If the type for the method's class was generated by
1273 /// CGDebugInfo::createContextChain(), the cache contains only a
1274 /// limited DIType without any declarations. Since EmitFunctionStart()
1275 /// needs to find the canonical declaration for each method, we need
1276 /// to construct the complete type prior to emitting the method.
1277 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1278   if (!D->isInstance())
1279     return;
1280 
1281   if (CGDebugInfo *DI = getModuleDebugInfo())
1282     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1283       const PointerType *ThisPtr =
1284         cast<PointerType>(D->getThisType(getContext()));
1285       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1286     }
1287 }
1288 
1289 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1290   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1291 
1292   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1293                                  Context.getSourceManager(),
1294                                  "Generating code for declaration");
1295 
1296   if (isa<FunctionDecl>(D)) {
1297     // At -O0, don't generate IR for functions with available_externally
1298     // linkage.
1299     if (!shouldEmitFunction(GD))
1300       return;
1301 
1302     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1303       CompleteDIClassType(Method);
1304       // Make sure to emit the definition(s) before we emit the thunks.
1305       // This is necessary for the generation of certain thunks.
1306       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1307         EmitCXXConstructor(CD, GD.getCtorType());
1308       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1309         EmitCXXDestructor(DD, GD.getDtorType());
1310       else
1311         EmitGlobalFunctionDefinition(GD);
1312 
1313       if (Method->isVirtual())
1314         getVTables().EmitThunks(GD);
1315 
1316       return;
1317     }
1318 
1319     return EmitGlobalFunctionDefinition(GD);
1320   }
1321 
1322   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1323     return EmitGlobalVarDefinition(VD);
1324 
1325   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1326 }
1327 
1328 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1329 /// module, create and return an llvm Function with the specified type. If there
1330 /// is something in the module with the specified name, return it potentially
1331 /// bitcasted to the right type.
1332 ///
1333 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1334 /// to set the attributes on the function when it is first created.
1335 llvm::Constant *
1336 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1337                                        llvm::Type *Ty,
1338                                        GlobalDecl GD, bool ForVTable,
1339                                        llvm::AttributeSet ExtraAttrs) {
1340   const Decl *D = GD.getDecl();
1341 
1342   // Lookup the entry, lazily creating it if necessary.
1343   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1344   if (Entry) {
1345     if (WeakRefReferences.erase(Entry)) {
1346       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1347       if (FD && !FD->hasAttr<WeakAttr>())
1348         Entry->setLinkage(llvm::Function::ExternalLinkage);
1349     }
1350 
1351     if (Entry->getType()->getElementType() == Ty)
1352       return Entry;
1353 
1354     // Make sure the result is of the correct type.
1355     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1356   }
1357 
1358   // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1359   // each other bottoming out with the base dtor.  Therefore we emit non-base
1360   // dtors on usage, even if there is no dtor definition in the TU.
1361   if (D && isa<CXXDestructorDecl>(D) &&
1362       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1363                                          GD.getDtorType()))
1364     DeferredDeclsToEmit.push_back(GD);
1365 
1366   // This function doesn't have a complete type (for example, the return
1367   // type is an incomplete struct). Use a fake type instead, and make
1368   // sure not to try to set attributes.
1369   bool IsIncompleteFunction = false;
1370 
1371   llvm::FunctionType *FTy;
1372   if (isa<llvm::FunctionType>(Ty)) {
1373     FTy = cast<llvm::FunctionType>(Ty);
1374   } else {
1375     FTy = llvm::FunctionType::get(VoidTy, false);
1376     IsIncompleteFunction = true;
1377   }
1378 
1379   llvm::Function *F = llvm::Function::Create(FTy,
1380                                              llvm::Function::ExternalLinkage,
1381                                              MangledName, &getModule());
1382   assert(F->getName() == MangledName && "name was uniqued!");
1383   if (D)
1384     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1385   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1386     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1387     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1388                      llvm::AttributeSet::get(VMContext,
1389                                              llvm::AttributeSet::FunctionIndex,
1390                                              B));
1391   }
1392 
1393   // This is the first use or definition of a mangled name.  If there is a
1394   // deferred decl with this name, remember that we need to emit it at the end
1395   // of the file.
1396   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1397   if (DDI != DeferredDecls.end()) {
1398     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1399     // list, and remove it from DeferredDecls (since we don't need it anymore).
1400     DeferredDeclsToEmit.push_back(DDI->second);
1401     DeferredDecls.erase(DDI);
1402 
1403   // Otherwise, there are cases we have to worry about where we're
1404   // using a declaration for which we must emit a definition but where
1405   // we might not find a top-level definition:
1406   //   - member functions defined inline in their classes
1407   //   - friend functions defined inline in some class
1408   //   - special member functions with implicit definitions
1409   // If we ever change our AST traversal to walk into class methods,
1410   // this will be unnecessary.
1411   //
1412   // We also don't emit a definition for a function if it's going to be an entry
1413   // in a vtable, unless it's already marked as used.
1414   } else if (getLangOpts().CPlusPlus && D) {
1415     // Look for a declaration that's lexically in a record.
1416     const FunctionDecl *FD = cast<FunctionDecl>(D);
1417     FD = FD->getMostRecentDecl();
1418     do {
1419       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1420         if (FD->isImplicit() && !ForVTable) {
1421           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1422           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1423           break;
1424         } else if (FD->doesThisDeclarationHaveABody()) {
1425           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1426           break;
1427         }
1428       }
1429       FD = FD->getPreviousDecl();
1430     } while (FD);
1431   }
1432 
1433   // Make sure the result is of the requested type.
1434   if (!IsIncompleteFunction) {
1435     assert(F->getType()->getElementType() == Ty);
1436     return F;
1437   }
1438 
1439   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1440   return llvm::ConstantExpr::getBitCast(F, PTy);
1441 }
1442 
1443 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1444 /// non-null, then this function will use the specified type if it has to
1445 /// create it (this occurs when we see a definition of the function).
1446 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1447                                                  llvm::Type *Ty,
1448                                                  bool ForVTable) {
1449   // If there was no specific requested type, just convert it now.
1450   if (!Ty)
1451     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1452 
1453   StringRef MangledName = getMangledName(GD);
1454   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1455 }
1456 
1457 /// CreateRuntimeFunction - Create a new runtime function with the specified
1458 /// type and name.
1459 llvm::Constant *
1460 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1461                                      StringRef Name,
1462                                      llvm::AttributeSet ExtraAttrs) {
1463   llvm::Constant *C
1464     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1465                               ExtraAttrs);
1466   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1467     if (F->empty())
1468       F->setCallingConv(getRuntimeCC());
1469   return C;
1470 }
1471 
1472 /// isTypeConstant - Determine whether an object of this type can be emitted
1473 /// as a constant.
1474 ///
1475 /// If ExcludeCtor is true, the duration when the object's constructor runs
1476 /// will not be considered. The caller will need to verify that the object is
1477 /// not written to during its construction.
1478 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1479   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1480     return false;
1481 
1482   if (Context.getLangOpts().CPlusPlus) {
1483     if (const CXXRecordDecl *Record
1484           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1485       return ExcludeCtor && !Record->hasMutableFields() &&
1486              Record->hasTrivialDestructor();
1487   }
1488 
1489   return true;
1490 }
1491 
1492 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1493 /// create and return an llvm GlobalVariable with the specified type.  If there
1494 /// is something in the module with the specified name, return it potentially
1495 /// bitcasted to the right type.
1496 ///
1497 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1498 /// to set the attributes on the global when it is first created.
1499 llvm::Constant *
1500 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1501                                      llvm::PointerType *Ty,
1502                                      const VarDecl *D,
1503                                      bool UnnamedAddr) {
1504   // Lookup the entry, lazily creating it if necessary.
1505   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1506   if (Entry) {
1507     if (WeakRefReferences.erase(Entry)) {
1508       if (D && !D->hasAttr<WeakAttr>())
1509         Entry->setLinkage(llvm::Function::ExternalLinkage);
1510     }
1511 
1512     if (UnnamedAddr)
1513       Entry->setUnnamedAddr(true);
1514 
1515     if (Entry->getType() == Ty)
1516       return Entry;
1517 
1518     // Make sure the result is of the correct type.
1519     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1520   }
1521 
1522   // This is the first use or definition of a mangled name.  If there is a
1523   // deferred decl with this name, remember that we need to emit it at the end
1524   // of the file.
1525   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1526   if (DDI != DeferredDecls.end()) {
1527     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1528     // list, and remove it from DeferredDecls (since we don't need it anymore).
1529     DeferredDeclsToEmit.push_back(DDI->second);
1530     DeferredDecls.erase(DDI);
1531   }
1532 
1533   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1534   llvm::GlobalVariable *GV =
1535     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1536                              llvm::GlobalValue::ExternalLinkage,
1537                              0, MangledName, 0,
1538                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1539 
1540   // Handle things which are present even on external declarations.
1541   if (D) {
1542     // FIXME: This code is overly simple and should be merged with other global
1543     // handling.
1544     GV->setConstant(isTypeConstant(D->getType(), false));
1545 
1546     // Set linkage and visibility in case we never see a definition.
1547     LinkageInfo LV = D->getLinkageAndVisibility();
1548     if (LV.getLinkage() != ExternalLinkage) {
1549       // Don't set internal linkage on declarations.
1550     } else {
1551       if (D->hasAttr<DLLImportAttr>())
1552         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1553       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1554         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1555 
1556       // Set visibility on a declaration only if it's explicit.
1557       if (LV.isVisibilityExplicit())
1558         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1559     }
1560 
1561     if (D->getTLSKind()) {
1562       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1563         CXXThreadLocals.push_back(std::make_pair(D, GV));
1564       setTLSMode(GV, *D);
1565     }
1566   }
1567 
1568   if (AddrSpace != Ty->getAddressSpace())
1569     return llvm::ConstantExpr::getBitCast(GV, Ty);
1570   else
1571     return GV;
1572 }
1573 
1574 
1575 llvm::GlobalVariable *
1576 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1577                                       llvm::Type *Ty,
1578                                       llvm::GlobalValue::LinkageTypes Linkage) {
1579   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1580   llvm::GlobalVariable *OldGV = 0;
1581 
1582 
1583   if (GV) {
1584     // Check if the variable has the right type.
1585     if (GV->getType()->getElementType() == Ty)
1586       return GV;
1587 
1588     // Because C++ name mangling, the only way we can end up with an already
1589     // existing global with the same name is if it has been declared extern "C".
1590     assert(GV->isDeclaration() && "Declaration has wrong type!");
1591     OldGV = GV;
1592   }
1593 
1594   // Create a new variable.
1595   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1596                                 Linkage, 0, Name);
1597 
1598   if (OldGV) {
1599     // Replace occurrences of the old variable if needed.
1600     GV->takeName(OldGV);
1601 
1602     if (!OldGV->use_empty()) {
1603       llvm::Constant *NewPtrForOldDecl =
1604       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1605       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1606     }
1607 
1608     OldGV->eraseFromParent();
1609   }
1610 
1611   return GV;
1612 }
1613 
1614 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1615 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1616 /// then it will be created with the specified type instead of whatever the
1617 /// normal requested type would be.
1618 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1619                                                   llvm::Type *Ty) {
1620   assert(D->hasGlobalStorage() && "Not a global variable");
1621   QualType ASTTy = D->getType();
1622   if (Ty == 0)
1623     Ty = getTypes().ConvertTypeForMem(ASTTy);
1624 
1625   llvm::PointerType *PTy =
1626     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1627 
1628   StringRef MangledName = getMangledName(D);
1629   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1630 }
1631 
1632 /// CreateRuntimeVariable - Create a new runtime global variable with the
1633 /// specified type and name.
1634 llvm::Constant *
1635 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1636                                      StringRef Name) {
1637   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1638                                true);
1639 }
1640 
1641 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1642   assert(!D->getInit() && "Cannot emit definite definitions here!");
1643 
1644   if (MayDeferGeneration(D)) {
1645     // If we have not seen a reference to this variable yet, place it
1646     // into the deferred declarations table to be emitted if needed
1647     // later.
1648     StringRef MangledName = getMangledName(D);
1649     if (!GetGlobalValue(MangledName)) {
1650       DeferredDecls[MangledName] = D;
1651       return;
1652     }
1653   }
1654 
1655   // The tentative definition is the only definition.
1656   EmitGlobalVarDefinition(D);
1657 }
1658 
1659 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1660     return Context.toCharUnitsFromBits(
1661       TheDataLayout.getTypeStoreSizeInBits(Ty));
1662 }
1663 
1664 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1665                                                  unsigned AddrSpace) {
1666   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1667     if (D->hasAttr<CUDAConstantAttr>())
1668       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1669     else if (D->hasAttr<CUDASharedAttr>())
1670       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1671     else
1672       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1673   }
1674 
1675   return AddrSpace;
1676 }
1677 
1678 template<typename SomeDecl>
1679 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1680                                                llvm::GlobalValue *GV) {
1681   if (!getLangOpts().CPlusPlus)
1682     return;
1683 
1684   // Must have 'used' attribute, or else inline assembly can't rely on
1685   // the name existing.
1686   if (!D->template hasAttr<UsedAttr>())
1687     return;
1688 
1689   // Must have internal linkage and an ordinary name.
1690   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1691     return;
1692 
1693   // Must be in an extern "C" context. Entities declared directly within
1694   // a record are not extern "C" even if the record is in such a context.
1695   const SomeDecl *First = D->getFirstDeclaration();
1696   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1697     return;
1698 
1699   // OK, this is an internal linkage entity inside an extern "C" linkage
1700   // specification. Make a note of that so we can give it the "expected"
1701   // mangled name if nothing else is using that name.
1702   std::pair<StaticExternCMap::iterator, bool> R =
1703       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1704 
1705   // If we have multiple internal linkage entities with the same name
1706   // in extern "C" regions, none of them gets that name.
1707   if (!R.second)
1708     R.first->second = 0;
1709 }
1710 
1711 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1712   llvm::Constant *Init = 0;
1713   QualType ASTTy = D->getType();
1714   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1715   bool NeedsGlobalCtor = false;
1716   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1717 
1718   const VarDecl *InitDecl;
1719   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1720 
1721   if (!InitExpr) {
1722     // This is a tentative definition; tentative definitions are
1723     // implicitly initialized with { 0 }.
1724     //
1725     // Note that tentative definitions are only emitted at the end of
1726     // a translation unit, so they should never have incomplete
1727     // type. In addition, EmitTentativeDefinition makes sure that we
1728     // never attempt to emit a tentative definition if a real one
1729     // exists. A use may still exists, however, so we still may need
1730     // to do a RAUW.
1731     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1732     Init = EmitNullConstant(D->getType());
1733   } else {
1734     initializedGlobalDecl = GlobalDecl(D);
1735     Init = EmitConstantInit(*InitDecl);
1736 
1737     if (!Init) {
1738       QualType T = InitExpr->getType();
1739       if (D->getType()->isReferenceType())
1740         T = D->getType();
1741 
1742       if (getLangOpts().CPlusPlus) {
1743         Init = EmitNullConstant(T);
1744         NeedsGlobalCtor = true;
1745       } else {
1746         ErrorUnsupported(D, "static initializer");
1747         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1748       }
1749     } else {
1750       // We don't need an initializer, so remove the entry for the delayed
1751       // initializer position (just in case this entry was delayed) if we
1752       // also don't need to register a destructor.
1753       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1754         DelayedCXXInitPosition.erase(D);
1755     }
1756   }
1757 
1758   llvm::Type* InitType = Init->getType();
1759   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1760 
1761   // Strip off a bitcast if we got one back.
1762   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1763     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1764            // all zero index gep.
1765            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1766     Entry = CE->getOperand(0);
1767   }
1768 
1769   // Entry is now either a Function or GlobalVariable.
1770   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1771 
1772   // We have a definition after a declaration with the wrong type.
1773   // We must make a new GlobalVariable* and update everything that used OldGV
1774   // (a declaration or tentative definition) with the new GlobalVariable*
1775   // (which will be a definition).
1776   //
1777   // This happens if there is a prototype for a global (e.g.
1778   // "extern int x[];") and then a definition of a different type (e.g.
1779   // "int x[10];"). This also happens when an initializer has a different type
1780   // from the type of the global (this happens with unions).
1781   if (GV == 0 ||
1782       GV->getType()->getElementType() != InitType ||
1783       GV->getType()->getAddressSpace() !=
1784        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1785 
1786     // Move the old entry aside so that we'll create a new one.
1787     Entry->setName(StringRef());
1788 
1789     // Make a new global with the correct type, this is now guaranteed to work.
1790     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1791 
1792     // Replace all uses of the old global with the new global
1793     llvm::Constant *NewPtrForOldDecl =
1794         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1795     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1796 
1797     // Erase the old global, since it is no longer used.
1798     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1799   }
1800 
1801   MaybeHandleStaticInExternC(D, GV);
1802 
1803   if (D->hasAttr<AnnotateAttr>())
1804     AddGlobalAnnotations(D, GV);
1805 
1806   GV->setInitializer(Init);
1807 
1808   // If it is safe to mark the global 'constant', do so now.
1809   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1810                   isTypeConstant(D->getType(), true));
1811 
1812   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1813 
1814   // Set the llvm linkage type as appropriate.
1815   llvm::GlobalValue::LinkageTypes Linkage =
1816     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1817   GV->setLinkage(Linkage);
1818   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1819     // common vars aren't constant even if declared const.
1820     GV->setConstant(false);
1821 
1822   SetCommonAttributes(D, GV);
1823 
1824   // Emit the initializer function if necessary.
1825   if (NeedsGlobalCtor || NeedsGlobalDtor)
1826     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1827 
1828   // If we are compiling with ASan, add metadata indicating dynamically
1829   // initialized globals.
1830   if (SanOpts.Address && NeedsGlobalCtor) {
1831     llvm::Module &M = getModule();
1832 
1833     llvm::NamedMDNode *DynamicInitializers =
1834         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1835     llvm::Value *GlobalToAdd[] = { GV };
1836     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1837     DynamicInitializers->addOperand(ThisGlobal);
1838   }
1839 
1840   // Emit global variable debug information.
1841   if (CGDebugInfo *DI = getModuleDebugInfo())
1842     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1843       DI->EmitGlobalVariable(GV, D);
1844 }
1845 
1846 llvm::GlobalValue::LinkageTypes
1847 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1848   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1849   if (Linkage == GVA_Internal)
1850     return llvm::Function::InternalLinkage;
1851   else if (D->hasAttr<DLLImportAttr>())
1852     return llvm::Function::DLLImportLinkage;
1853   else if (D->hasAttr<DLLExportAttr>())
1854     return llvm::Function::DLLExportLinkage;
1855   else if (D->hasAttr<SelectAnyAttr>()) {
1856     // selectany symbols are externally visible, so use weak instead of
1857     // linkonce.  MSVC optimizes away references to const selectany globals, so
1858     // all definitions should be the same and ODR linkage should be used.
1859     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1860     return llvm::GlobalVariable::WeakODRLinkage;
1861   } else if (D->hasAttr<WeakAttr>()) {
1862     if (isConstant)
1863       return llvm::GlobalVariable::WeakODRLinkage;
1864     else
1865       return llvm::GlobalVariable::WeakAnyLinkage;
1866   } else if (Linkage == GVA_TemplateInstantiation ||
1867              Linkage == GVA_ExplicitTemplateInstantiation)
1868     return llvm::GlobalVariable::WeakODRLinkage;
1869   else if (!getLangOpts().CPlusPlus &&
1870            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1871              D->getAttr<CommonAttr>()) &&
1872            !D->hasExternalStorage() && !D->getInit() &&
1873            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1874            !D->getAttr<WeakImportAttr>()) {
1875     // Thread local vars aren't considered common linkage.
1876     return llvm::GlobalVariable::CommonLinkage;
1877   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1878              getTarget().getTriple().isMacOSX())
1879     // On Darwin, the backing variable for a C++11 thread_local variable always
1880     // has internal linkage; all accesses should just be calls to the
1881     // Itanium-specified entry point, which has the normal linkage of the
1882     // variable.
1883     return llvm::GlobalValue::InternalLinkage;
1884   return llvm::GlobalVariable::ExternalLinkage;
1885 }
1886 
1887 /// Replace the uses of a function that was declared with a non-proto type.
1888 /// We want to silently drop extra arguments from call sites
1889 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1890                                           llvm::Function *newFn) {
1891   // Fast path.
1892   if (old->use_empty()) return;
1893 
1894   llvm::Type *newRetTy = newFn->getReturnType();
1895   SmallVector<llvm::Value*, 4> newArgs;
1896 
1897   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1898          ui != ue; ) {
1899     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1900     llvm::User *user = *use;
1901 
1902     // Recognize and replace uses of bitcasts.  Most calls to
1903     // unprototyped functions will use bitcasts.
1904     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1905       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1906         replaceUsesOfNonProtoConstant(bitcast, newFn);
1907       continue;
1908     }
1909 
1910     // Recognize calls to the function.
1911     llvm::CallSite callSite(user);
1912     if (!callSite) continue;
1913     if (!callSite.isCallee(use)) continue;
1914 
1915     // If the return types don't match exactly, then we can't
1916     // transform this call unless it's dead.
1917     if (callSite->getType() != newRetTy && !callSite->use_empty())
1918       continue;
1919 
1920     // Get the call site's attribute list.
1921     SmallVector<llvm::AttributeSet, 8> newAttrs;
1922     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1923 
1924     // Collect any return attributes from the call.
1925     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1926       newAttrs.push_back(
1927         llvm::AttributeSet::get(newFn->getContext(),
1928                                 oldAttrs.getRetAttributes()));
1929 
1930     // If the function was passed too few arguments, don't transform.
1931     unsigned newNumArgs = newFn->arg_size();
1932     if (callSite.arg_size() < newNumArgs) continue;
1933 
1934     // If extra arguments were passed, we silently drop them.
1935     // If any of the types mismatch, we don't transform.
1936     unsigned argNo = 0;
1937     bool dontTransform = false;
1938     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1939            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1940       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1941         dontTransform = true;
1942         break;
1943       }
1944 
1945       // Add any parameter attributes.
1946       if (oldAttrs.hasAttributes(argNo + 1))
1947         newAttrs.
1948           push_back(llvm::
1949                     AttributeSet::get(newFn->getContext(),
1950                                       oldAttrs.getParamAttributes(argNo + 1)));
1951     }
1952     if (dontTransform)
1953       continue;
1954 
1955     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1956       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1957                                                  oldAttrs.getFnAttributes()));
1958 
1959     // Okay, we can transform this.  Create the new call instruction and copy
1960     // over the required information.
1961     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1962 
1963     llvm::CallSite newCall;
1964     if (callSite.isCall()) {
1965       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1966                                        callSite.getInstruction());
1967     } else {
1968       llvm::InvokeInst *oldInvoke =
1969         cast<llvm::InvokeInst>(callSite.getInstruction());
1970       newCall = llvm::InvokeInst::Create(newFn,
1971                                          oldInvoke->getNormalDest(),
1972                                          oldInvoke->getUnwindDest(),
1973                                          newArgs, "",
1974                                          callSite.getInstruction());
1975     }
1976     newArgs.clear(); // for the next iteration
1977 
1978     if (!newCall->getType()->isVoidTy())
1979       newCall->takeName(callSite.getInstruction());
1980     newCall.setAttributes(
1981                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1982     newCall.setCallingConv(callSite.getCallingConv());
1983 
1984     // Finally, remove the old call, replacing any uses with the new one.
1985     if (!callSite->use_empty())
1986       callSite->replaceAllUsesWith(newCall.getInstruction());
1987 
1988     // Copy debug location attached to CI.
1989     if (!callSite->getDebugLoc().isUnknown())
1990       newCall->setDebugLoc(callSite->getDebugLoc());
1991     callSite->eraseFromParent();
1992   }
1993 }
1994 
1995 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1996 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1997 /// existing call uses of the old function in the module, this adjusts them to
1998 /// call the new function directly.
1999 ///
2000 /// This is not just a cleanup: the always_inline pass requires direct calls to
2001 /// functions to be able to inline them.  If there is a bitcast in the way, it
2002 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2003 /// run at -O0.
2004 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2005                                                       llvm::Function *NewFn) {
2006   // If we're redefining a global as a function, don't transform it.
2007   if (!isa<llvm::Function>(Old)) return;
2008 
2009   replaceUsesOfNonProtoConstant(Old, NewFn);
2010 }
2011 
2012 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2013   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2014   // If we have a definition, this might be a deferred decl. If the
2015   // instantiation is explicit, make sure we emit it at the end.
2016   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2017     GetAddrOfGlobalVar(VD);
2018 
2019   EmitTopLevelDecl(VD);
2020 }
2021 
2022 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2023   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2024 
2025   // Compute the function info and LLVM type.
2026   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2027   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2028 
2029   // Get or create the prototype for the function.
2030   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2031 
2032   // Strip off a bitcast if we got one back.
2033   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2034     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2035     Entry = CE->getOperand(0);
2036   }
2037 
2038 
2039   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2040     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2041 
2042     // If the types mismatch then we have to rewrite the definition.
2043     assert(OldFn->isDeclaration() &&
2044            "Shouldn't replace non-declaration");
2045 
2046     // F is the Function* for the one with the wrong type, we must make a new
2047     // Function* and update everything that used F (a declaration) with the new
2048     // Function* (which will be a definition).
2049     //
2050     // This happens if there is a prototype for a function
2051     // (e.g. "int f()") and then a definition of a different type
2052     // (e.g. "int f(int x)").  Move the old function aside so that it
2053     // doesn't interfere with GetAddrOfFunction.
2054     OldFn->setName(StringRef());
2055     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2056 
2057     // This might be an implementation of a function without a
2058     // prototype, in which case, try to do special replacement of
2059     // calls which match the new prototype.  The really key thing here
2060     // is that we also potentially drop arguments from the call site
2061     // so as to make a direct call, which makes the inliner happier
2062     // and suppresses a number of optimizer warnings (!) about
2063     // dropping arguments.
2064     if (!OldFn->use_empty()) {
2065       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2066       OldFn->removeDeadConstantUsers();
2067     }
2068 
2069     // Replace uses of F with the Function we will endow with a body.
2070     if (!Entry->use_empty()) {
2071       llvm::Constant *NewPtrForOldDecl =
2072         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2073       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2074     }
2075 
2076     // Ok, delete the old function now, which is dead.
2077     OldFn->eraseFromParent();
2078 
2079     Entry = NewFn;
2080   }
2081 
2082   // We need to set linkage and visibility on the function before
2083   // generating code for it because various parts of IR generation
2084   // want to propagate this information down (e.g. to local static
2085   // declarations).
2086   llvm::Function *Fn = cast<llvm::Function>(Entry);
2087   setFunctionLinkage(GD, Fn);
2088 
2089   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2090   setGlobalVisibility(Fn, D);
2091 
2092   MaybeHandleStaticInExternC(D, Fn);
2093 
2094   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2095 
2096   SetFunctionDefinitionAttributes(D, Fn);
2097   SetLLVMFunctionAttributesForDefinition(D, Fn);
2098 
2099   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2100     AddGlobalCtor(Fn, CA->getPriority());
2101   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2102     AddGlobalDtor(Fn, DA->getPriority());
2103   if (D->hasAttr<AnnotateAttr>())
2104     AddGlobalAnnotations(D, Fn);
2105 }
2106 
2107 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2108   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2109   const AliasAttr *AA = D->getAttr<AliasAttr>();
2110   assert(AA && "Not an alias?");
2111 
2112   StringRef MangledName = getMangledName(GD);
2113 
2114   // If there is a definition in the module, then it wins over the alias.
2115   // This is dubious, but allow it to be safe.  Just ignore the alias.
2116   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2117   if (Entry && !Entry->isDeclaration())
2118     return;
2119 
2120   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2121 
2122   // Create a reference to the named value.  This ensures that it is emitted
2123   // if a deferred decl.
2124   llvm::Constant *Aliasee;
2125   if (isa<llvm::FunctionType>(DeclTy))
2126     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2127                                       /*ForVTable=*/false);
2128   else
2129     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2130                                     llvm::PointerType::getUnqual(DeclTy), 0);
2131 
2132   // Create the new alias itself, but don't set a name yet.
2133   llvm::GlobalValue *GA =
2134     new llvm::GlobalAlias(Aliasee->getType(),
2135                           llvm::Function::ExternalLinkage,
2136                           "", Aliasee, &getModule());
2137 
2138   if (Entry) {
2139     assert(Entry->isDeclaration());
2140 
2141     // If there is a declaration in the module, then we had an extern followed
2142     // by the alias, as in:
2143     //   extern int test6();
2144     //   ...
2145     //   int test6() __attribute__((alias("test7")));
2146     //
2147     // Remove it and replace uses of it with the alias.
2148     GA->takeName(Entry);
2149 
2150     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2151                                                           Entry->getType()));
2152     Entry->eraseFromParent();
2153   } else {
2154     GA->setName(MangledName);
2155   }
2156 
2157   // Set attributes which are particular to an alias; this is a
2158   // specialization of the attributes which may be set on a global
2159   // variable/function.
2160   if (D->hasAttr<DLLExportAttr>()) {
2161     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2162       // The dllexport attribute is ignored for undefined symbols.
2163       if (FD->hasBody())
2164         GA->setLinkage(llvm::Function::DLLExportLinkage);
2165     } else {
2166       GA->setLinkage(llvm::Function::DLLExportLinkage);
2167     }
2168   } else if (D->hasAttr<WeakAttr>() ||
2169              D->hasAttr<WeakRefAttr>() ||
2170              D->isWeakImported()) {
2171     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2172   }
2173 
2174   SetCommonAttributes(D, GA);
2175 }
2176 
2177 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2178                                             ArrayRef<llvm::Type*> Tys) {
2179   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2180                                          Tys);
2181 }
2182 
2183 static llvm::StringMapEntry<llvm::Constant*> &
2184 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2185                          const StringLiteral *Literal,
2186                          bool TargetIsLSB,
2187                          bool &IsUTF16,
2188                          unsigned &StringLength) {
2189   StringRef String = Literal->getString();
2190   unsigned NumBytes = String.size();
2191 
2192   // Check for simple case.
2193   if (!Literal->containsNonAsciiOrNull()) {
2194     StringLength = NumBytes;
2195     return Map.GetOrCreateValue(String);
2196   }
2197 
2198   // Otherwise, convert the UTF8 literals into a string of shorts.
2199   IsUTF16 = true;
2200 
2201   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2202   const UTF8 *FromPtr = (const UTF8 *)String.data();
2203   UTF16 *ToPtr = &ToBuf[0];
2204 
2205   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2206                            &ToPtr, ToPtr + NumBytes,
2207                            strictConversion);
2208 
2209   // ConvertUTF8toUTF16 returns the length in ToPtr.
2210   StringLength = ToPtr - &ToBuf[0];
2211 
2212   // Add an explicit null.
2213   *ToPtr = 0;
2214   return Map.
2215     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2216                                (StringLength + 1) * 2));
2217 }
2218 
2219 static llvm::StringMapEntry<llvm::Constant*> &
2220 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2221                        const StringLiteral *Literal,
2222                        unsigned &StringLength) {
2223   StringRef String = Literal->getString();
2224   StringLength = String.size();
2225   return Map.GetOrCreateValue(String);
2226 }
2227 
2228 llvm::Constant *
2229 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2230   unsigned StringLength = 0;
2231   bool isUTF16 = false;
2232   llvm::StringMapEntry<llvm::Constant*> &Entry =
2233     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2234                              getDataLayout().isLittleEndian(),
2235                              isUTF16, StringLength);
2236 
2237   if (llvm::Constant *C = Entry.getValue())
2238     return C;
2239 
2240   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2241   llvm::Constant *Zeros[] = { Zero, Zero };
2242   llvm::Value *V;
2243 
2244   // If we don't already have it, get __CFConstantStringClassReference.
2245   if (!CFConstantStringClassRef) {
2246     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2247     Ty = llvm::ArrayType::get(Ty, 0);
2248     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2249                                            "__CFConstantStringClassReference");
2250     // Decay array -> ptr
2251     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2252     CFConstantStringClassRef = V;
2253   }
2254   else
2255     V = CFConstantStringClassRef;
2256 
2257   QualType CFTy = getContext().getCFConstantStringType();
2258 
2259   llvm::StructType *STy =
2260     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2261 
2262   llvm::Constant *Fields[4];
2263 
2264   // Class pointer.
2265   Fields[0] = cast<llvm::ConstantExpr>(V);
2266 
2267   // Flags.
2268   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2269   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2270     llvm::ConstantInt::get(Ty, 0x07C8);
2271 
2272   // String pointer.
2273   llvm::Constant *C = 0;
2274   if (isUTF16) {
2275     ArrayRef<uint16_t> Arr =
2276       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2277                                      const_cast<char *>(Entry.getKey().data())),
2278                                    Entry.getKey().size() / 2);
2279     C = llvm::ConstantDataArray::get(VMContext, Arr);
2280   } else {
2281     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2282   }
2283 
2284   llvm::GlobalValue::LinkageTypes Linkage;
2285   if (isUTF16)
2286     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2287     Linkage = llvm::GlobalValue::InternalLinkage;
2288   else
2289     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2290     // when using private linkage. It is not clear if this is a bug in ld
2291     // or a reasonable new restriction.
2292     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2293 
2294   // Note: -fwritable-strings doesn't make the backing store strings of
2295   // CFStrings writable. (See <rdar://problem/10657500>)
2296   llvm::GlobalVariable *GV =
2297     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2298                              Linkage, C, ".str");
2299   GV->setUnnamedAddr(true);
2300   // Don't enforce the target's minimum global alignment, since the only use
2301   // of the string is via this class initializer.
2302   if (isUTF16) {
2303     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2304     GV->setAlignment(Align.getQuantity());
2305   } else {
2306     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2307     GV->setAlignment(Align.getQuantity());
2308   }
2309 
2310   // String.
2311   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2312 
2313   if (isUTF16)
2314     // Cast the UTF16 string to the correct type.
2315     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2316 
2317   // String length.
2318   Ty = getTypes().ConvertType(getContext().LongTy);
2319   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2320 
2321   // The struct.
2322   C = llvm::ConstantStruct::get(STy, Fields);
2323   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2324                                 llvm::GlobalVariable::PrivateLinkage, C,
2325                                 "_unnamed_cfstring_");
2326   if (const char *Sect = getTarget().getCFStringSection())
2327     GV->setSection(Sect);
2328   Entry.setValue(GV);
2329 
2330   return GV;
2331 }
2332 
2333 static RecordDecl *
2334 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2335                  DeclContext *DC, IdentifierInfo *Id) {
2336   SourceLocation Loc;
2337   if (Ctx.getLangOpts().CPlusPlus)
2338     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2339   else
2340     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2341 }
2342 
2343 llvm::Constant *
2344 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2345   unsigned StringLength = 0;
2346   llvm::StringMapEntry<llvm::Constant*> &Entry =
2347     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2348 
2349   if (llvm::Constant *C = Entry.getValue())
2350     return C;
2351 
2352   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2353   llvm::Constant *Zeros[] = { Zero, Zero };
2354   llvm::Value *V;
2355   // If we don't already have it, get _NSConstantStringClassReference.
2356   if (!ConstantStringClassRef) {
2357     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2358     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2359     llvm::Constant *GV;
2360     if (LangOpts.ObjCRuntime.isNonFragile()) {
2361       std::string str =
2362         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2363                             : "OBJC_CLASS_$_" + StringClass;
2364       GV = getObjCRuntime().GetClassGlobal(str);
2365       // Make sure the result is of the correct type.
2366       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2367       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2368       ConstantStringClassRef = V;
2369     } else {
2370       std::string str =
2371         StringClass.empty() ? "_NSConstantStringClassReference"
2372                             : "_" + StringClass + "ClassReference";
2373       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2374       GV = CreateRuntimeVariable(PTy, str);
2375       // Decay array -> ptr
2376       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2377       ConstantStringClassRef = V;
2378     }
2379   }
2380   else
2381     V = ConstantStringClassRef;
2382 
2383   if (!NSConstantStringType) {
2384     // Construct the type for a constant NSString.
2385     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2386                                      Context.getTranslationUnitDecl(),
2387                                    &Context.Idents.get("__builtin_NSString"));
2388     D->startDefinition();
2389 
2390     QualType FieldTypes[3];
2391 
2392     // const int *isa;
2393     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2394     // const char *str;
2395     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2396     // unsigned int length;
2397     FieldTypes[2] = Context.UnsignedIntTy;
2398 
2399     // Create fields
2400     for (unsigned i = 0; i < 3; ++i) {
2401       FieldDecl *Field = FieldDecl::Create(Context, D,
2402                                            SourceLocation(),
2403                                            SourceLocation(), 0,
2404                                            FieldTypes[i], /*TInfo=*/0,
2405                                            /*BitWidth=*/0,
2406                                            /*Mutable=*/false,
2407                                            ICIS_NoInit);
2408       Field->setAccess(AS_public);
2409       D->addDecl(Field);
2410     }
2411 
2412     D->completeDefinition();
2413     QualType NSTy = Context.getTagDeclType(D);
2414     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2415   }
2416 
2417   llvm::Constant *Fields[3];
2418 
2419   // Class pointer.
2420   Fields[0] = cast<llvm::ConstantExpr>(V);
2421 
2422   // String pointer.
2423   llvm::Constant *C =
2424     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2425 
2426   llvm::GlobalValue::LinkageTypes Linkage;
2427   bool isConstant;
2428   Linkage = llvm::GlobalValue::PrivateLinkage;
2429   isConstant = !LangOpts.WritableStrings;
2430 
2431   llvm::GlobalVariable *GV =
2432   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2433                            ".str");
2434   GV->setUnnamedAddr(true);
2435   // Don't enforce the target's minimum global alignment, since the only use
2436   // of the string is via this class initializer.
2437   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2438   GV->setAlignment(Align.getQuantity());
2439   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2440 
2441   // String length.
2442   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2443   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2444 
2445   // The struct.
2446   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2447   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2448                                 llvm::GlobalVariable::PrivateLinkage, C,
2449                                 "_unnamed_nsstring_");
2450   // FIXME. Fix section.
2451   if (const char *Sect =
2452         LangOpts.ObjCRuntime.isNonFragile()
2453           ? getTarget().getNSStringNonFragileABISection()
2454           : getTarget().getNSStringSection())
2455     GV->setSection(Sect);
2456   Entry.setValue(GV);
2457 
2458   return GV;
2459 }
2460 
2461 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2462   if (ObjCFastEnumerationStateType.isNull()) {
2463     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2464                                      Context.getTranslationUnitDecl(),
2465                       &Context.Idents.get("__objcFastEnumerationState"));
2466     D->startDefinition();
2467 
2468     QualType FieldTypes[] = {
2469       Context.UnsignedLongTy,
2470       Context.getPointerType(Context.getObjCIdType()),
2471       Context.getPointerType(Context.UnsignedLongTy),
2472       Context.getConstantArrayType(Context.UnsignedLongTy,
2473                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2474     };
2475 
2476     for (size_t i = 0; i < 4; ++i) {
2477       FieldDecl *Field = FieldDecl::Create(Context,
2478                                            D,
2479                                            SourceLocation(),
2480                                            SourceLocation(), 0,
2481                                            FieldTypes[i], /*TInfo=*/0,
2482                                            /*BitWidth=*/0,
2483                                            /*Mutable=*/false,
2484                                            ICIS_NoInit);
2485       Field->setAccess(AS_public);
2486       D->addDecl(Field);
2487     }
2488 
2489     D->completeDefinition();
2490     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2491   }
2492 
2493   return ObjCFastEnumerationStateType;
2494 }
2495 
2496 llvm::Constant *
2497 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2498   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2499 
2500   // Don't emit it as the address of the string, emit the string data itself
2501   // as an inline array.
2502   if (E->getCharByteWidth() == 1) {
2503     SmallString<64> Str(E->getString());
2504 
2505     // Resize the string to the right size, which is indicated by its type.
2506     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2507     Str.resize(CAT->getSize().getZExtValue());
2508     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2509   }
2510 
2511   llvm::ArrayType *AType =
2512     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2513   llvm::Type *ElemTy = AType->getElementType();
2514   unsigned NumElements = AType->getNumElements();
2515 
2516   // Wide strings have either 2-byte or 4-byte elements.
2517   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2518     SmallVector<uint16_t, 32> Elements;
2519     Elements.reserve(NumElements);
2520 
2521     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2522       Elements.push_back(E->getCodeUnit(i));
2523     Elements.resize(NumElements);
2524     return llvm::ConstantDataArray::get(VMContext, Elements);
2525   }
2526 
2527   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2528   SmallVector<uint32_t, 32> Elements;
2529   Elements.reserve(NumElements);
2530 
2531   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2532     Elements.push_back(E->getCodeUnit(i));
2533   Elements.resize(NumElements);
2534   return llvm::ConstantDataArray::get(VMContext, Elements);
2535 }
2536 
2537 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2538 /// constant array for the given string literal.
2539 llvm::Constant *
2540 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2541   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2542   if (S->isAscii() || S->isUTF8()) {
2543     SmallString<64> Str(S->getString());
2544 
2545     // Resize the string to the right size, which is indicated by its type.
2546     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2547     Str.resize(CAT->getSize().getZExtValue());
2548     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2549   }
2550 
2551   // FIXME: the following does not memoize wide strings.
2552   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2553   llvm::GlobalVariable *GV =
2554     new llvm::GlobalVariable(getModule(),C->getType(),
2555                              !LangOpts.WritableStrings,
2556                              llvm::GlobalValue::PrivateLinkage,
2557                              C,".str");
2558 
2559   GV->setAlignment(Align.getQuantity());
2560   GV->setUnnamedAddr(true);
2561   return GV;
2562 }
2563 
2564 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2565 /// array for the given ObjCEncodeExpr node.
2566 llvm::Constant *
2567 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2568   std::string Str;
2569   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2570 
2571   return GetAddrOfConstantCString(Str);
2572 }
2573 
2574 
2575 /// GenerateWritableString -- Creates storage for a string literal.
2576 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2577                                              bool constant,
2578                                              CodeGenModule &CGM,
2579                                              const char *GlobalName,
2580                                              unsigned Alignment) {
2581   // Create Constant for this string literal. Don't add a '\0'.
2582   llvm::Constant *C =
2583       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2584 
2585   // Create a global variable for this string
2586   llvm::GlobalVariable *GV =
2587     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2588                              llvm::GlobalValue::PrivateLinkage,
2589                              C, GlobalName);
2590   GV->setAlignment(Alignment);
2591   GV->setUnnamedAddr(true);
2592   return GV;
2593 }
2594 
2595 /// GetAddrOfConstantString - Returns a pointer to a character array
2596 /// containing the literal. This contents are exactly that of the
2597 /// given string, i.e. it will not be null terminated automatically;
2598 /// see GetAddrOfConstantCString. Note that whether the result is
2599 /// actually a pointer to an LLVM constant depends on
2600 /// Feature.WriteableStrings.
2601 ///
2602 /// The result has pointer to array type.
2603 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2604                                                        const char *GlobalName,
2605                                                        unsigned Alignment) {
2606   // Get the default prefix if a name wasn't specified.
2607   if (!GlobalName)
2608     GlobalName = ".str";
2609 
2610   if (Alignment == 0)
2611     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2612       .getQuantity();
2613 
2614   // Don't share any string literals if strings aren't constant.
2615   if (LangOpts.WritableStrings)
2616     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2617 
2618   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2619     ConstantStringMap.GetOrCreateValue(Str);
2620 
2621   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2622     if (Alignment > GV->getAlignment()) {
2623       GV->setAlignment(Alignment);
2624     }
2625     return GV;
2626   }
2627 
2628   // Create a global variable for this.
2629   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2630                                                    Alignment);
2631   Entry.setValue(GV);
2632   return GV;
2633 }
2634 
2635 /// GetAddrOfConstantCString - Returns a pointer to a character
2636 /// array containing the literal and a terminating '\0'
2637 /// character. The result has pointer to array type.
2638 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2639                                                         const char *GlobalName,
2640                                                         unsigned Alignment) {
2641   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2642   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2643 }
2644 
2645 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2646     const MaterializeTemporaryExpr *E, const Expr *Init) {
2647   assert((E->getStorageDuration() == SD_Static ||
2648           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2649   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2650 
2651   // If we're not materializing a subobject of the temporary, keep the
2652   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2653   QualType MaterializedType = Init->getType();
2654   if (Init == E->GetTemporaryExpr())
2655     MaterializedType = E->getType();
2656 
2657   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2658   if (Slot)
2659     return Slot;
2660 
2661   // FIXME: If an externally-visible declaration extends multiple temporaries,
2662   // we need to give each temporary the same name in every translation unit (and
2663   // we also need to make the temporaries externally-visible).
2664   SmallString<256> Name;
2665   llvm::raw_svector_ostream Out(Name);
2666   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2667   Out.flush();
2668 
2669   APValue *Value = 0;
2670   if (E->getStorageDuration() == SD_Static) {
2671     // We might have a cached constant initializer for this temporary. Note
2672     // that this might have a different value from the value computed by
2673     // evaluating the initializer if the surrounding constant expression
2674     // modifies the temporary.
2675     Value = getContext().getMaterializedTemporaryValue(E, false);
2676     if (Value && Value->isUninit())
2677       Value = 0;
2678   }
2679 
2680   // Try evaluating it now, it might have a constant initializer.
2681   Expr::EvalResult EvalResult;
2682   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2683       !EvalResult.hasSideEffects())
2684     Value = &EvalResult.Val;
2685 
2686   llvm::Constant *InitialValue = 0;
2687   bool Constant = false;
2688   llvm::Type *Type;
2689   if (Value) {
2690     // The temporary has a constant initializer, use it.
2691     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2692     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2693     Type = InitialValue->getType();
2694   } else {
2695     // No initializer, the initialization will be provided when we
2696     // initialize the declaration which performed lifetime extension.
2697     Type = getTypes().ConvertTypeForMem(MaterializedType);
2698   }
2699 
2700   // Create a global variable for this lifetime-extended temporary.
2701   llvm::GlobalVariable *GV =
2702     new llvm::GlobalVariable(getModule(), Type, Constant,
2703                              llvm::GlobalValue::PrivateLinkage,
2704                              InitialValue, Name.c_str());
2705   GV->setAlignment(
2706       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2707   if (VD->getTLSKind())
2708     setTLSMode(GV, *VD);
2709   Slot = GV;
2710   return GV;
2711 }
2712 
2713 /// EmitObjCPropertyImplementations - Emit information for synthesized
2714 /// properties for an implementation.
2715 void CodeGenModule::EmitObjCPropertyImplementations(const
2716                                                     ObjCImplementationDecl *D) {
2717   for (ObjCImplementationDecl::propimpl_iterator
2718          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2719     ObjCPropertyImplDecl *PID = *i;
2720 
2721     // Dynamic is just for type-checking.
2722     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2723       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2724 
2725       // Determine which methods need to be implemented, some may have
2726       // been overridden. Note that ::isPropertyAccessor is not the method
2727       // we want, that just indicates if the decl came from a
2728       // property. What we want to know is if the method is defined in
2729       // this implementation.
2730       if (!D->getInstanceMethod(PD->getGetterName()))
2731         CodeGenFunction(*this).GenerateObjCGetter(
2732                                  const_cast<ObjCImplementationDecl *>(D), PID);
2733       if (!PD->isReadOnly() &&
2734           !D->getInstanceMethod(PD->getSetterName()))
2735         CodeGenFunction(*this).GenerateObjCSetter(
2736                                  const_cast<ObjCImplementationDecl *>(D), PID);
2737     }
2738   }
2739 }
2740 
2741 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2742   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2743   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2744        ivar; ivar = ivar->getNextIvar())
2745     if (ivar->getType().isDestructedType())
2746       return true;
2747 
2748   return false;
2749 }
2750 
2751 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2752 /// for an implementation.
2753 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2754   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2755   if (needsDestructMethod(D)) {
2756     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2757     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2758     ObjCMethodDecl *DTORMethod =
2759       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2760                              cxxSelector, getContext().VoidTy, 0, D,
2761                              /*isInstance=*/true, /*isVariadic=*/false,
2762                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2763                              /*isDefined=*/false, ObjCMethodDecl::Required);
2764     D->addInstanceMethod(DTORMethod);
2765     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2766     D->setHasDestructors(true);
2767   }
2768 
2769   // If the implementation doesn't have any ivar initializers, we don't need
2770   // a .cxx_construct.
2771   if (D->getNumIvarInitializers() == 0)
2772     return;
2773 
2774   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2775   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2776   // The constructor returns 'self'.
2777   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2778                                                 D->getLocation(),
2779                                                 D->getLocation(),
2780                                                 cxxSelector,
2781                                                 getContext().getObjCIdType(), 0,
2782                                                 D, /*isInstance=*/true,
2783                                                 /*isVariadic=*/false,
2784                                                 /*isPropertyAccessor=*/true,
2785                                                 /*isImplicitlyDeclared=*/true,
2786                                                 /*isDefined=*/false,
2787                                                 ObjCMethodDecl::Required);
2788   D->addInstanceMethod(CTORMethod);
2789   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2790   D->setHasNonZeroConstructors(true);
2791 }
2792 
2793 /// EmitNamespace - Emit all declarations in a namespace.
2794 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2795   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2796        I != E; ++I)
2797     EmitTopLevelDecl(*I);
2798 }
2799 
2800 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2801 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2802   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2803       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2804     ErrorUnsupported(LSD, "linkage spec");
2805     return;
2806   }
2807 
2808   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2809        I != E; ++I) {
2810     // Meta-data for ObjC class includes references to implemented methods.
2811     // Generate class's method definitions first.
2812     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2813       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2814            MEnd = OID->meth_end();
2815            M != MEnd; ++M)
2816         EmitTopLevelDecl(*M);
2817     }
2818     EmitTopLevelDecl(*I);
2819   }
2820 }
2821 
2822 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2823 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2824   // If an error has occurred, stop code generation, but continue
2825   // parsing and semantic analysis (to ensure all warnings and errors
2826   // are emitted).
2827   if (Diags.hasErrorOccurred())
2828     return;
2829 
2830   // Ignore dependent declarations.
2831   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2832     return;
2833 
2834   switch (D->getKind()) {
2835   case Decl::CXXConversion:
2836   case Decl::CXXMethod:
2837   case Decl::Function:
2838     // Skip function templates
2839     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2840         cast<FunctionDecl>(D)->isLateTemplateParsed())
2841       return;
2842 
2843     EmitGlobal(cast<FunctionDecl>(D));
2844     break;
2845 
2846   case Decl::Var:
2847     // Skip variable templates
2848     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2849       return;
2850   case Decl::VarTemplateSpecialization:
2851     EmitGlobal(cast<VarDecl>(D));
2852     break;
2853 
2854   // Indirect fields from global anonymous structs and unions can be
2855   // ignored; only the actual variable requires IR gen support.
2856   case Decl::IndirectField:
2857     break;
2858 
2859   // C++ Decls
2860   case Decl::Namespace:
2861     EmitNamespace(cast<NamespaceDecl>(D));
2862     break;
2863     // No code generation needed.
2864   case Decl::UsingShadow:
2865   case Decl::Using:
2866   case Decl::ClassTemplate:
2867   case Decl::VarTemplate:
2868   case Decl::VarTemplatePartialSpecialization:
2869   case Decl::FunctionTemplate:
2870   case Decl::TypeAliasTemplate:
2871   case Decl::Block:
2872   case Decl::Empty:
2873     break;
2874   case Decl::NamespaceAlias:
2875     if (CGDebugInfo *DI = getModuleDebugInfo())
2876         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2877     return;
2878   case Decl::UsingDirective: // using namespace X; [C++]
2879     if (CGDebugInfo *DI = getModuleDebugInfo())
2880       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2881     return;
2882   case Decl::CXXConstructor:
2883     // Skip function templates
2884     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2885         cast<FunctionDecl>(D)->isLateTemplateParsed())
2886       return;
2887 
2888     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2889     break;
2890   case Decl::CXXDestructor:
2891     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2892       return;
2893     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2894     break;
2895 
2896   case Decl::StaticAssert:
2897     // Nothing to do.
2898     break;
2899 
2900   // Objective-C Decls
2901 
2902   // Forward declarations, no (immediate) code generation.
2903   case Decl::ObjCInterface:
2904   case Decl::ObjCCategory:
2905     break;
2906 
2907   case Decl::ObjCProtocol: {
2908     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2909     if (Proto->isThisDeclarationADefinition())
2910       ObjCRuntime->GenerateProtocol(Proto);
2911     break;
2912   }
2913 
2914   case Decl::ObjCCategoryImpl:
2915     // Categories have properties but don't support synthesize so we
2916     // can ignore them here.
2917     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2918     break;
2919 
2920   case Decl::ObjCImplementation: {
2921     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2922     EmitObjCPropertyImplementations(OMD);
2923     EmitObjCIvarInitializations(OMD);
2924     ObjCRuntime->GenerateClass(OMD);
2925     // Emit global variable debug information.
2926     if (CGDebugInfo *DI = getModuleDebugInfo())
2927       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2928         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2929             OMD->getClassInterface()), OMD->getLocation());
2930     break;
2931   }
2932   case Decl::ObjCMethod: {
2933     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2934     // If this is not a prototype, emit the body.
2935     if (OMD->getBody())
2936       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2937     break;
2938   }
2939   case Decl::ObjCCompatibleAlias:
2940     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2941     break;
2942 
2943   case Decl::LinkageSpec:
2944     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2945     break;
2946 
2947   case Decl::FileScopeAsm: {
2948     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2949     StringRef AsmString = AD->getAsmString()->getString();
2950 
2951     const std::string &S = getModule().getModuleInlineAsm();
2952     if (S.empty())
2953       getModule().setModuleInlineAsm(AsmString);
2954     else if (S.end()[-1] == '\n')
2955       getModule().setModuleInlineAsm(S + AsmString.str());
2956     else
2957       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2958     break;
2959   }
2960 
2961   case Decl::Import: {
2962     ImportDecl *Import = cast<ImportDecl>(D);
2963 
2964     // Ignore import declarations that come from imported modules.
2965     if (clang::Module *Owner = Import->getOwningModule()) {
2966       if (getLangOpts().CurrentModule.empty() ||
2967           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2968         break;
2969     }
2970 
2971     ImportedModules.insert(Import->getImportedModule());
2972     break;
2973  }
2974 
2975   default:
2976     // Make sure we handled everything we should, every other kind is a
2977     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2978     // function. Need to recode Decl::Kind to do that easily.
2979     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2980   }
2981 }
2982 
2983 /// Turns the given pointer into a constant.
2984 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2985                                           const void *Ptr) {
2986   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2987   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2988   return llvm::ConstantInt::get(i64, PtrInt);
2989 }
2990 
2991 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2992                                    llvm::NamedMDNode *&GlobalMetadata,
2993                                    GlobalDecl D,
2994                                    llvm::GlobalValue *Addr) {
2995   if (!GlobalMetadata)
2996     GlobalMetadata =
2997       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2998 
2999   // TODO: should we report variant information for ctors/dtors?
3000   llvm::Value *Ops[] = {
3001     Addr,
3002     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3003   };
3004   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3005 }
3006 
3007 /// For each function which is declared within an extern "C" region and marked
3008 /// as 'used', but has internal linkage, create an alias from the unmangled
3009 /// name to the mangled name if possible. People expect to be able to refer
3010 /// to such functions with an unmangled name from inline assembly within the
3011 /// same translation unit.
3012 void CodeGenModule::EmitStaticExternCAliases() {
3013   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3014                                   E = StaticExternCValues.end();
3015        I != E; ++I) {
3016     IdentifierInfo *Name = I->first;
3017     llvm::GlobalValue *Val = I->second;
3018     if (Val && !getModule().getNamedValue(Name->getName()))
3019       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3020                                           Name->getName(), Val, &getModule()));
3021   }
3022 }
3023 
3024 /// Emits metadata nodes associating all the global values in the
3025 /// current module with the Decls they came from.  This is useful for
3026 /// projects using IR gen as a subroutine.
3027 ///
3028 /// Since there's currently no way to associate an MDNode directly
3029 /// with an llvm::GlobalValue, we create a global named metadata
3030 /// with the name 'clang.global.decl.ptrs'.
3031 void CodeGenModule::EmitDeclMetadata() {
3032   llvm::NamedMDNode *GlobalMetadata = 0;
3033 
3034   // StaticLocalDeclMap
3035   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3036          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3037        I != E; ++I) {
3038     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3039     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3040   }
3041 }
3042 
3043 /// Emits metadata nodes for all the local variables in the current
3044 /// function.
3045 void CodeGenFunction::EmitDeclMetadata() {
3046   if (LocalDeclMap.empty()) return;
3047 
3048   llvm::LLVMContext &Context = getLLVMContext();
3049 
3050   // Find the unique metadata ID for this name.
3051   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3052 
3053   llvm::NamedMDNode *GlobalMetadata = 0;
3054 
3055   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3056          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3057     const Decl *D = I->first;
3058     llvm::Value *Addr = I->second;
3059 
3060     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3061       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3062       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3063     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3064       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3065       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3066     }
3067   }
3068 }
3069 
3070 void CodeGenModule::EmitCoverageFile() {
3071   if (!getCodeGenOpts().CoverageFile.empty()) {
3072     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3073       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3074       llvm::LLVMContext &Ctx = TheModule.getContext();
3075       llvm::MDString *CoverageFile =
3076           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3077       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3078         llvm::MDNode *CU = CUNode->getOperand(i);
3079         llvm::Value *node[] = { CoverageFile, CU };
3080         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3081         GCov->addOperand(N);
3082       }
3083     }
3084   }
3085 }
3086 
3087 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3088                                                      QualType GuidType) {
3089   // Sema has checked that all uuid strings are of the form
3090   // "12345678-1234-1234-1234-1234567890ab".
3091   assert(Uuid.size() == 36);
3092   const char *Uuidstr = Uuid.data();
3093   for (int i = 0; i < 36; ++i) {
3094     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3095     else                                         assert(isHexDigit(Uuidstr[i]));
3096   }
3097 
3098   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3099   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3100   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3101   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3102 
3103   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3104   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3105   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3106   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3107   APValue& Arr = InitStruct.getStructField(3);
3108   Arr = APValue(APValue::UninitArray(), 8, 8);
3109   for (int t = 0; t < 8; ++t)
3110     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3111           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3112 
3113   return EmitConstantValue(InitStruct, GuidType);
3114 }
3115