xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 947c9af77497a67a6ee079e3afd1ec82059b5186)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "Mangle.h"
22 #include "TargetInfo.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : BlockModule(C, M, TD, Types, *this), Context(C),
62     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0){
74 
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions());
87 
88   // If debug info generation is enabled, create the CGDebugInfo object.
89   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
90 }
91 
92 CodeGenModule::~CodeGenModule() {
93   delete Runtime;
94   delete &ABI;
95   delete DebugInfo;
96 }
97 
98 void CodeGenModule::createObjCRuntime() {
99   if (!Features.NeXTRuntime)
100     Runtime = CreateGNUObjCRuntime(*this);
101   else if (Features.ObjCNonFragileABI)
102     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
103   else
104     Runtime = CreateMacObjCRuntime(*this);
105 }
106 
107 void CodeGenModule::Release() {
108   EmitDeferred();
109   EmitCXXGlobalInitFunc();
110   EmitCXXGlobalDtorFunc();
111   if (Runtime)
112     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
113       AddGlobalCtor(ObjCInitFunction);
114   EmitCtorList(GlobalCtors, "llvm.global_ctors");
115   EmitCtorList(GlobalDtors, "llvm.global_dtors");
116   EmitAnnotations();
117   EmitLLVMUsed();
118 
119   SimplifyPersonality();
120 
121   if (getCodeGenOpts().EmitDeclMetadata)
122     EmitDeclMetadata();
123 }
124 
125 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
126   if (!TBAA)
127     return 0;
128   return TBAA->getTBAAInfo(QTy);
129 }
130 
131 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
132                                         llvm::MDNode *TBAAInfo) {
133   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
134 }
135 
136 bool CodeGenModule::isTargetDarwin() const {
137   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
138 }
139 
140 /// ErrorUnsupported - Print out an error that codegen doesn't support the
141 /// specified stmt yet.
142 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
143                                      bool OmitOnError) {
144   if (OmitOnError && getDiags().hasErrorOccurred())
145     return;
146   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
147                                                "cannot compile this %0 yet");
148   std::string Msg = Type;
149   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
150     << Msg << S->getSourceRange();
151 }
152 
153 /// ErrorUnsupported - Print out an error that codegen doesn't support the
154 /// specified decl yet.
155 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
156                                      bool OmitOnError) {
157   if (OmitOnError && getDiags().hasErrorOccurred())
158     return;
159   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
160                                                "cannot compile this %0 yet");
161   std::string Msg = Type;
162   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
163 }
164 
165 LangOptions::VisibilityMode
166 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
167   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
168     if (VD->getStorageClass() == SC_PrivateExtern)
169       return LangOptions::Hidden;
170 
171   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
172     switch (attr->getVisibility()) {
173     default: assert(0 && "Unknown visibility!");
174     case VisibilityAttr::Default:
175       return LangOptions::Default;
176     case VisibilityAttr::Hidden:
177       return LangOptions::Hidden;
178     case VisibilityAttr::Protected:
179       return LangOptions::Protected;
180     }
181   }
182 
183   if (getLangOptions().CPlusPlus) {
184     // Entities subject to an explicit instantiation declaration get default
185     // visibility.
186     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
187       if (Function->getTemplateSpecializationKind()
188                                         == TSK_ExplicitInstantiationDeclaration)
189         return LangOptions::Default;
190     } else if (const ClassTemplateSpecializationDecl *ClassSpec
191                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
192       if (ClassSpec->getSpecializationKind()
193                                         == TSK_ExplicitInstantiationDeclaration)
194         return LangOptions::Default;
195     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
196       if (Record->getTemplateSpecializationKind()
197                                         == TSK_ExplicitInstantiationDeclaration)
198         return LangOptions::Default;
199     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
200       if (Var->isStaticDataMember() &&
201           (Var->getTemplateSpecializationKind()
202                                       == TSK_ExplicitInstantiationDeclaration))
203         return LangOptions::Default;
204     }
205 
206     // If -fvisibility-inlines-hidden was provided, then inline C++ member
207     // functions get "hidden" visibility by default.
208     if (getLangOptions().InlineVisibilityHidden)
209       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
210         if (Method->isInlined())
211           return LangOptions::Hidden;
212   }
213 
214   // If this decl is contained in a class, it should have the same visibility
215   // as the parent class.
216   if (const DeclContext *DC = D->getDeclContext())
217     if (DC->isRecord())
218       return getDeclVisibilityMode(cast<Decl>(DC));
219 
220   return getLangOptions().getVisibilityMode();
221 }
222 
223 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
224                                         const Decl *D) const {
225   // Internal definitions always have default visibility.
226   if (GV->hasLocalLinkage()) {
227     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
228     return;
229   }
230 
231   switch (getDeclVisibilityMode(D)) {
232   default: assert(0 && "Unknown visibility!");
233   case LangOptions::Default:
234     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
235   case LangOptions::Hidden:
236     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
237   case LangOptions::Protected:
238     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
239   }
240 }
241 
242 /// Set the symbol visibility of type information (vtable and RTTI)
243 /// associated with the given type.
244 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
245                                       const CXXRecordDecl *RD,
246                                       bool IsForRTTI) const {
247   setGlobalVisibility(GV, RD);
248 
249   if (!CodeGenOpts.HiddenWeakVTables)
250     return;
251 
252   // We want to drop the visibility to hidden for weak type symbols.
253   // This isn't possible if there might be unresolved references
254   // elsewhere that rely on this symbol being visible.
255 
256   // This should be kept roughly in sync with setThunkVisibility
257   // in CGVTables.cpp.
258 
259   // Preconditions.
260   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
261       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
262     return;
263 
264   // Don't override an explicit visibility attribute.
265   if (RD->hasAttr<VisibilityAttr>())
266     return;
267 
268   switch (RD->getTemplateSpecializationKind()) {
269   // We have to disable the optimization if this is an EI definition
270   // because there might be EI declarations in other shared objects.
271   case TSK_ExplicitInstantiationDefinition:
272   case TSK_ExplicitInstantiationDeclaration:
273     return;
274 
275   // Every use of a non-template class's type information has to emit it.
276   case TSK_Undeclared:
277     break;
278 
279   // In theory, implicit instantiations can ignore the possibility of
280   // an explicit instantiation declaration because there necessarily
281   // must be an EI definition somewhere with default visibility.  In
282   // practice, it's possible to have an explicit instantiation for
283   // an arbitrary template class, and linkers aren't necessarily able
284   // to deal with mixed-visibility symbols.
285   case TSK_ExplicitSpecialization:
286   case TSK_ImplicitInstantiation:
287     if (!CodeGenOpts.HiddenWeakTemplateVTables)
288       return;
289     break;
290   }
291 
292   // If there's a key function, there may be translation units
293   // that don't have the key function's definition.  But ignore
294   // this if we're emitting RTTI under -fno-rtti.
295   if (!IsForRTTI || Features.RTTI)
296     if (Context.getKeyFunction(RD))
297       return;
298 
299   // Otherwise, drop the visibility to hidden.
300   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
301 }
302 
303 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
304   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
305 
306   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
307   if (!Str.empty())
308     return Str;
309 
310   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
311     IdentifierInfo *II = ND->getIdentifier();
312     assert(II && "Attempt to mangle unnamed decl.");
313 
314     Str = II->getName();
315     return Str;
316   }
317 
318   llvm::SmallString<256> Buffer;
319   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
320     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
321   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
322     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
323   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
324     getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer);
325   else
326     getCXXABI().getMangleContext().mangleName(ND, Buffer);
327 
328   // Allocate space for the mangled name.
329   size_t Length = Buffer.size();
330   char *Name = MangledNamesAllocator.Allocate<char>(Length);
331   std::copy(Buffer.begin(), Buffer.end(), Name);
332 
333   Str = llvm::StringRef(Name, Length);
334 
335   return Str;
336 }
337 
338 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
339                                    const BlockDecl *BD) {
340   getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
341 }
342 
343 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
344   return getModule().getNamedValue(Name);
345 }
346 
347 /// AddGlobalCtor - Add a function to the list that will be called before
348 /// main() runs.
349 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
350   // FIXME: Type coercion of void()* types.
351   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
352 }
353 
354 /// AddGlobalDtor - Add a function to the list that will be called
355 /// when the module is unloaded.
356 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
357   // FIXME: Type coercion of void()* types.
358   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
359 }
360 
361 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
362   // Ctor function type is void()*.
363   llvm::FunctionType* CtorFTy =
364     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
365                             std::vector<const llvm::Type*>(),
366                             false);
367   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
368 
369   // Get the type of a ctor entry, { i32, void ()* }.
370   llvm::StructType* CtorStructTy =
371     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
372                           llvm::PointerType::getUnqual(CtorFTy), NULL);
373 
374   // Construct the constructor and destructor arrays.
375   std::vector<llvm::Constant*> Ctors;
376   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
377     std::vector<llvm::Constant*> S;
378     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
379                 I->second, false));
380     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
381     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
382   }
383 
384   if (!Ctors.empty()) {
385     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
386     new llvm::GlobalVariable(TheModule, AT, false,
387                              llvm::GlobalValue::AppendingLinkage,
388                              llvm::ConstantArray::get(AT, Ctors),
389                              GlobalName);
390   }
391 }
392 
393 void CodeGenModule::EmitAnnotations() {
394   if (Annotations.empty())
395     return;
396 
397   // Create a new global variable for the ConstantStruct in the Module.
398   llvm::Constant *Array =
399   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
400                                                 Annotations.size()),
401                            Annotations);
402   llvm::GlobalValue *gv =
403   new llvm::GlobalVariable(TheModule, Array->getType(), false,
404                            llvm::GlobalValue::AppendingLinkage, Array,
405                            "llvm.global.annotations");
406   gv->setSection("llvm.metadata");
407 }
408 
409 llvm::GlobalValue::LinkageTypes
410 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
411   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
412 
413   if (Linkage == GVA_Internal)
414     return llvm::Function::InternalLinkage;
415 
416   if (D->hasAttr<DLLExportAttr>())
417     return llvm::Function::DLLExportLinkage;
418 
419   if (D->hasAttr<WeakAttr>())
420     return llvm::Function::WeakAnyLinkage;
421 
422   // In C99 mode, 'inline' functions are guaranteed to have a strong
423   // definition somewhere else, so we can use available_externally linkage.
424   if (Linkage == GVA_C99Inline)
425     return llvm::Function::AvailableExternallyLinkage;
426 
427   // In C++, the compiler has to emit a definition in every translation unit
428   // that references the function.  We should use linkonce_odr because
429   // a) if all references in this translation unit are optimized away, we
430   // don't need to codegen it.  b) if the function persists, it needs to be
431   // merged with other definitions. c) C++ has the ODR, so we know the
432   // definition is dependable.
433   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
434     return llvm::Function::LinkOnceODRLinkage;
435 
436   // An explicit instantiation of a template has weak linkage, since
437   // explicit instantiations can occur in multiple translation units
438   // and must all be equivalent. However, we are not allowed to
439   // throw away these explicit instantiations.
440   if (Linkage == GVA_ExplicitTemplateInstantiation)
441     return llvm::Function::WeakODRLinkage;
442 
443   // Otherwise, we have strong external linkage.
444   assert(Linkage == GVA_StrongExternal);
445   return llvm::Function::ExternalLinkage;
446 }
447 
448 
449 /// SetFunctionDefinitionAttributes - Set attributes for a global.
450 ///
451 /// FIXME: This is currently only done for aliases and functions, but not for
452 /// variables (these details are set in EmitGlobalVarDefinition for variables).
453 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
454                                                     llvm::GlobalValue *GV) {
455   SetCommonAttributes(D, GV);
456 }
457 
458 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
459                                               const CGFunctionInfo &Info,
460                                               llvm::Function *F) {
461   unsigned CallingConv;
462   AttributeListType AttributeList;
463   ConstructAttributeList(Info, D, AttributeList, CallingConv);
464   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
465                                           AttributeList.size()));
466   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
467 }
468 
469 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
470                                                            llvm::Function *F) {
471   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
472     F->addFnAttr(llvm::Attribute::NoUnwind);
473 
474   if (D->hasAttr<AlwaysInlineAttr>())
475     F->addFnAttr(llvm::Attribute::AlwaysInline);
476 
477   if (D->hasAttr<NakedAttr>())
478     F->addFnAttr(llvm::Attribute::Naked);
479 
480   if (D->hasAttr<NoInlineAttr>())
481     F->addFnAttr(llvm::Attribute::NoInline);
482 
483   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
484     F->addFnAttr(llvm::Attribute::StackProtect);
485   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
486     F->addFnAttr(llvm::Attribute::StackProtectReq);
487 
488   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
489   if (alignment)
490     F->setAlignment(alignment);
491 
492   // C++ ABI requires 2-byte alignment for member functions.
493   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
494     F->setAlignment(2);
495 }
496 
497 void CodeGenModule::SetCommonAttributes(const Decl *D,
498                                         llvm::GlobalValue *GV) {
499   setGlobalVisibility(GV, D);
500 
501   if (D->hasAttr<UsedAttr>())
502     AddUsedGlobal(GV);
503 
504   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
505     GV->setSection(SA->getName());
506 
507   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
508 }
509 
510 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
511                                                   llvm::Function *F,
512                                                   const CGFunctionInfo &FI) {
513   SetLLVMFunctionAttributes(D, FI, F);
514   SetLLVMFunctionAttributesForDefinition(D, F);
515 
516   F->setLinkage(llvm::Function::InternalLinkage);
517 
518   SetCommonAttributes(D, F);
519 }
520 
521 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
522                                           llvm::Function *F,
523                                           bool IsIncompleteFunction) {
524   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
525 
526   if (!IsIncompleteFunction)
527     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
528 
529   // Only a few attributes are set on declarations; these may later be
530   // overridden by a definition.
531 
532   if (FD->hasAttr<DLLImportAttr>()) {
533     F->setLinkage(llvm::Function::DLLImportLinkage);
534   } else if (FD->hasAttr<WeakAttr>() ||
535              FD->hasAttr<WeakImportAttr>()) {
536     // "extern_weak" is overloaded in LLVM; we probably should have
537     // separate linkage types for this.
538     F->setLinkage(llvm::Function::ExternalWeakLinkage);
539   } else {
540     F->setLinkage(llvm::Function::ExternalLinkage);
541   }
542 
543   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
544     F->setSection(SA->getName());
545 }
546 
547 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
548   assert(!GV->isDeclaration() &&
549          "Only globals with definition can force usage.");
550   LLVMUsed.push_back(GV);
551 }
552 
553 void CodeGenModule::EmitLLVMUsed() {
554   // Don't create llvm.used if there is no need.
555   if (LLVMUsed.empty())
556     return;
557 
558   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
559 
560   // Convert LLVMUsed to what ConstantArray needs.
561   std::vector<llvm::Constant*> UsedArray;
562   UsedArray.resize(LLVMUsed.size());
563   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
564     UsedArray[i] =
565      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
566                                       i8PTy);
567   }
568 
569   if (UsedArray.empty())
570     return;
571   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
572 
573   llvm::GlobalVariable *GV =
574     new llvm::GlobalVariable(getModule(), ATy, false,
575                              llvm::GlobalValue::AppendingLinkage,
576                              llvm::ConstantArray::get(ATy, UsedArray),
577                              "llvm.used");
578 
579   GV->setSection("llvm.metadata");
580 }
581 
582 void CodeGenModule::EmitDeferred() {
583   // Emit code for any potentially referenced deferred decls.  Since a
584   // previously unused static decl may become used during the generation of code
585   // for a static function, iterate until no  changes are made.
586 
587   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
588     if (!DeferredVTables.empty()) {
589       const CXXRecordDecl *RD = DeferredVTables.back();
590       DeferredVTables.pop_back();
591       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
592       continue;
593     }
594 
595     GlobalDecl D = DeferredDeclsToEmit.back();
596     DeferredDeclsToEmit.pop_back();
597 
598     // Check to see if we've already emitted this.  This is necessary
599     // for a couple of reasons: first, decls can end up in the
600     // deferred-decls queue multiple times, and second, decls can end
601     // up with definitions in unusual ways (e.g. by an extern inline
602     // function acquiring a strong function redefinition).  Just
603     // ignore these cases.
604     //
605     // TODO: That said, looking this up multiple times is very wasteful.
606     llvm::StringRef Name = getMangledName(D);
607     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
608     assert(CGRef && "Deferred decl wasn't referenced?");
609 
610     if (!CGRef->isDeclaration())
611       continue;
612 
613     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
614     // purposes an alias counts as a definition.
615     if (isa<llvm::GlobalAlias>(CGRef))
616       continue;
617 
618     // Otherwise, emit the definition and move on to the next one.
619     EmitGlobalDefinition(D);
620   }
621 }
622 
623 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
624 /// annotation information for a given GlobalValue.  The annotation struct is
625 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
626 /// GlobalValue being annotated.  The second field is the constant string
627 /// created from the AnnotateAttr's annotation.  The third field is a constant
628 /// string containing the name of the translation unit.  The fourth field is
629 /// the line number in the file of the annotated value declaration.
630 ///
631 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
632 ///        appears to.
633 ///
634 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
635                                                 const AnnotateAttr *AA,
636                                                 unsigned LineNo) {
637   llvm::Module *M = &getModule();
638 
639   // get [N x i8] constants for the annotation string, and the filename string
640   // which are the 2nd and 3rd elements of the global annotation structure.
641   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
642   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
643                                                   AA->getAnnotation(), true);
644   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
645                                                   M->getModuleIdentifier(),
646                                                   true);
647 
648   // Get the two global values corresponding to the ConstantArrays we just
649   // created to hold the bytes of the strings.
650   llvm::GlobalValue *annoGV =
651     new llvm::GlobalVariable(*M, anno->getType(), false,
652                              llvm::GlobalValue::PrivateLinkage, anno,
653                              GV->getName());
654   // translation unit name string, emitted into the llvm.metadata section.
655   llvm::GlobalValue *unitGV =
656     new llvm::GlobalVariable(*M, unit->getType(), false,
657                              llvm::GlobalValue::PrivateLinkage, unit,
658                              ".str");
659 
660   // Create the ConstantStruct for the global annotation.
661   llvm::Constant *Fields[4] = {
662     llvm::ConstantExpr::getBitCast(GV, SBP),
663     llvm::ConstantExpr::getBitCast(annoGV, SBP),
664     llvm::ConstantExpr::getBitCast(unitGV, SBP),
665     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
666   };
667   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
668 }
669 
670 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
671   // Never defer when EmitAllDecls is specified.
672   if (Features.EmitAllDecls)
673     return false;
674 
675   return !getContext().DeclMustBeEmitted(Global);
676 }
677 
678 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
679   const AliasAttr *AA = VD->getAttr<AliasAttr>();
680   assert(AA && "No alias?");
681 
682   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
683 
684   // See if there is already something with the target's name in the module.
685   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
686 
687   llvm::Constant *Aliasee;
688   if (isa<llvm::FunctionType>(DeclTy))
689     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
690   else
691     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
692                                     llvm::PointerType::getUnqual(DeclTy), 0);
693   if (!Entry) {
694     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
695     F->setLinkage(llvm::Function::ExternalWeakLinkage);
696     WeakRefReferences.insert(F);
697   }
698 
699   return Aliasee;
700 }
701 
702 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
703   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
704 
705   // Weak references don't produce any output by themselves.
706   if (Global->hasAttr<WeakRefAttr>())
707     return;
708 
709   // If this is an alias definition (which otherwise looks like a declaration)
710   // emit it now.
711   if (Global->hasAttr<AliasAttr>())
712     return EmitAliasDefinition(GD);
713 
714   // Ignore declarations, they will be emitted on their first use.
715   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
716     if (FD->getIdentifier()) {
717       llvm::StringRef Name = FD->getName();
718       if (Name == "_Block_object_assign") {
719         BlockObjectAssignDecl = FD;
720       } else if (Name == "_Block_object_dispose") {
721         BlockObjectDisposeDecl = FD;
722       }
723     }
724 
725     // Forward declarations are emitted lazily on first use.
726     if (!FD->isThisDeclarationADefinition())
727       return;
728   } else {
729     const VarDecl *VD = cast<VarDecl>(Global);
730     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
731 
732     if (VD->getIdentifier()) {
733       llvm::StringRef Name = VD->getName();
734       if (Name == "_NSConcreteGlobalBlock") {
735         NSConcreteGlobalBlockDecl = VD;
736       } else if (Name == "_NSConcreteStackBlock") {
737         NSConcreteStackBlockDecl = VD;
738       }
739     }
740 
741 
742     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
743       return;
744   }
745 
746   // Defer code generation when possible if this is a static definition, inline
747   // function etc.  These we only want to emit if they are used.
748   if (!MayDeferGeneration(Global)) {
749     // Emit the definition if it can't be deferred.
750     EmitGlobalDefinition(GD);
751     return;
752   }
753 
754   // If we're deferring emission of a C++ variable with an
755   // initializer, remember the order in which it appeared in the file.
756   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
757       cast<VarDecl>(Global)->hasInit()) {
758     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
759     CXXGlobalInits.push_back(0);
760   }
761 
762   // If the value has already been used, add it directly to the
763   // DeferredDeclsToEmit list.
764   llvm::StringRef MangledName = getMangledName(GD);
765   if (GetGlobalValue(MangledName))
766     DeferredDeclsToEmit.push_back(GD);
767   else {
768     // Otherwise, remember that we saw a deferred decl with this name.  The
769     // first use of the mangled name will cause it to move into
770     // DeferredDeclsToEmit.
771     DeferredDecls[MangledName] = GD;
772   }
773 }
774 
775 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
776   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
777 
778   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
779                                  Context.getSourceManager(),
780                                  "Generating code for declaration");
781 
782   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
783     // At -O0, don't generate IR for functions with available_externally
784     // linkage.
785     if (CodeGenOpts.OptimizationLevel == 0 &&
786         !Function->hasAttr<AlwaysInlineAttr>() &&
787         getFunctionLinkage(Function)
788                                   == llvm::Function::AvailableExternallyLinkage)
789       return;
790 
791     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
792       if (Method->isVirtual())
793         getVTables().EmitThunks(GD);
794 
795       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
796         return EmitCXXConstructor(CD, GD.getCtorType());
797 
798       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
799         return EmitCXXDestructor(DD, GD.getDtorType());
800     }
801 
802     return EmitGlobalFunctionDefinition(GD);
803   }
804 
805   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
806     return EmitGlobalVarDefinition(VD);
807 
808   assert(0 && "Invalid argument to EmitGlobalDefinition()");
809 }
810 
811 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
812 /// module, create and return an llvm Function with the specified type. If there
813 /// is something in the module with the specified name, return it potentially
814 /// bitcasted to the right type.
815 ///
816 /// If D is non-null, it specifies a decl that correspond to this.  This is used
817 /// to set the attributes on the function when it is first created.
818 llvm::Constant *
819 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
820                                        const llvm::Type *Ty,
821                                        GlobalDecl D) {
822   // Lookup the entry, lazily creating it if necessary.
823   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
824   if (Entry) {
825     if (WeakRefReferences.count(Entry)) {
826       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
827       if (FD && !FD->hasAttr<WeakAttr>())
828         Entry->setLinkage(llvm::Function::ExternalLinkage);
829 
830       WeakRefReferences.erase(Entry);
831     }
832 
833     if (Entry->getType()->getElementType() == Ty)
834       return Entry;
835 
836     // Make sure the result is of the correct type.
837     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
838     return llvm::ConstantExpr::getBitCast(Entry, PTy);
839   }
840 
841   // This function doesn't have a complete type (for example, the return
842   // type is an incomplete struct). Use a fake type instead, and make
843   // sure not to try to set attributes.
844   bool IsIncompleteFunction = false;
845 
846   const llvm::FunctionType *FTy;
847   if (isa<llvm::FunctionType>(Ty)) {
848     FTy = cast<llvm::FunctionType>(Ty);
849   } else {
850     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
851                                   std::vector<const llvm::Type*>(), false);
852     IsIncompleteFunction = true;
853   }
854 
855   llvm::Function *F = llvm::Function::Create(FTy,
856                                              llvm::Function::ExternalLinkage,
857                                              MangledName, &getModule());
858   assert(F->getName() == MangledName && "name was uniqued!");
859   if (D.getDecl())
860     SetFunctionAttributes(D, F, IsIncompleteFunction);
861 
862   // This is the first use or definition of a mangled name.  If there is a
863   // deferred decl with this name, remember that we need to emit it at the end
864   // of the file.
865   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
866   if (DDI != DeferredDecls.end()) {
867     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
868     // list, and remove it from DeferredDecls (since we don't need it anymore).
869     DeferredDeclsToEmit.push_back(DDI->second);
870     DeferredDecls.erase(DDI);
871   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
872     // If this the first reference to a C++ inline function in a class, queue up
873     // the deferred function body for emission.  These are not seen as
874     // top-level declarations.
875     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
876       DeferredDeclsToEmit.push_back(D);
877     // A called constructor which has no definition or declaration need be
878     // synthesized.
879     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
880       if (CD->isImplicit()) {
881         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
882         DeferredDeclsToEmit.push_back(D);
883       }
884     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
885       if (DD->isImplicit()) {
886         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
887         DeferredDeclsToEmit.push_back(D);
888       }
889     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
890       if (MD->isImplicit() && MD->isCopyAssignmentOperator()) {
891         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
892         DeferredDeclsToEmit.push_back(D);
893       }
894     }
895   }
896 
897   // Make sure the result is of the requested type.
898   if (!IsIncompleteFunction) {
899     assert(F->getType()->getElementType() == Ty);
900     return F;
901   }
902 
903   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
904   return llvm::ConstantExpr::getBitCast(F, PTy);
905 }
906 
907 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
908 /// non-null, then this function will use the specified type if it has to
909 /// create it (this occurs when we see a definition of the function).
910 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
911                                                  const llvm::Type *Ty) {
912   // If there was no specific requested type, just convert it now.
913   if (!Ty)
914     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
915 
916   llvm::StringRef MangledName = getMangledName(GD);
917   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
918 }
919 
920 /// CreateRuntimeFunction - Create a new runtime function with the specified
921 /// type and name.
922 llvm::Constant *
923 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
924                                      llvm::StringRef Name) {
925   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
926 }
927 
928 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
929   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
930     return false;
931   if (Context.getLangOptions().CPlusPlus &&
932       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
933     // FIXME: We should do something fancier here!
934     return false;
935   }
936   return true;
937 }
938 
939 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
940 /// create and return an llvm GlobalVariable with the specified type.  If there
941 /// is something in the module with the specified name, return it potentially
942 /// bitcasted to the right type.
943 ///
944 /// If D is non-null, it specifies a decl that correspond to this.  This is used
945 /// to set the attributes on the global when it is first created.
946 llvm::Constant *
947 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
948                                      const llvm::PointerType *Ty,
949                                      const VarDecl *D) {
950   // Lookup the entry, lazily creating it if necessary.
951   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
952   if (Entry) {
953     if (WeakRefReferences.count(Entry)) {
954       if (D && !D->hasAttr<WeakAttr>())
955         Entry->setLinkage(llvm::Function::ExternalLinkage);
956 
957       WeakRefReferences.erase(Entry);
958     }
959 
960     if (Entry->getType() == Ty)
961       return Entry;
962 
963     // Make sure the result is of the correct type.
964     return llvm::ConstantExpr::getBitCast(Entry, Ty);
965   }
966 
967   // This is the first use or definition of a mangled name.  If there is a
968   // deferred decl with this name, remember that we need to emit it at the end
969   // of the file.
970   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
971   if (DDI != DeferredDecls.end()) {
972     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
973     // list, and remove it from DeferredDecls (since we don't need it anymore).
974     DeferredDeclsToEmit.push_back(DDI->second);
975     DeferredDecls.erase(DDI);
976   }
977 
978   llvm::GlobalVariable *GV =
979     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
980                              llvm::GlobalValue::ExternalLinkage,
981                              0, MangledName, 0,
982                              false, Ty->getAddressSpace());
983 
984   // Handle things which are present even on external declarations.
985   if (D) {
986     // FIXME: This code is overly simple and should be merged with other global
987     // handling.
988     GV->setConstant(DeclIsConstantGlobal(Context, D));
989 
990     // FIXME: Merge with other attribute handling code.
991     if (D->getStorageClass() == SC_PrivateExtern)
992       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
993 
994     if (D->hasAttr<DLLImportAttr>())
995       GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
996     else if (D->hasAttr<WeakAttr>() ||
997         D->hasAttr<WeakImportAttr>())
998       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
999 
1000     GV->setThreadLocal(D->isThreadSpecified());
1001   }
1002 
1003   return GV;
1004 }
1005 
1006 
1007 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1008 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1009 /// then it will be greated with the specified type instead of whatever the
1010 /// normal requested type would be.
1011 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1012                                                   const llvm::Type *Ty) {
1013   assert(D->hasGlobalStorage() && "Not a global variable");
1014   QualType ASTTy = D->getType();
1015   if (Ty == 0)
1016     Ty = getTypes().ConvertTypeForMem(ASTTy);
1017 
1018   const llvm::PointerType *PTy =
1019     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1020 
1021   llvm::StringRef MangledName = getMangledName(D);
1022   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1023 }
1024 
1025 /// CreateRuntimeVariable - Create a new runtime global variable with the
1026 /// specified type and name.
1027 llvm::Constant *
1028 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1029                                      llvm::StringRef Name) {
1030   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1031 }
1032 
1033 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1034   assert(!D->getInit() && "Cannot emit definite definitions here!");
1035 
1036   if (MayDeferGeneration(D)) {
1037     // If we have not seen a reference to this variable yet, place it
1038     // into the deferred declarations table to be emitted if needed
1039     // later.
1040     llvm::StringRef MangledName = getMangledName(D);
1041     if (!GetGlobalValue(MangledName)) {
1042       DeferredDecls[MangledName] = D;
1043       return;
1044     }
1045   }
1046 
1047   // The tentative definition is the only definition.
1048   EmitGlobalVarDefinition(D);
1049 }
1050 
1051 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1052   if (DefinitionRequired)
1053     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1054 }
1055 
1056 llvm::GlobalVariable::LinkageTypes
1057 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1058   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1059     return llvm::GlobalVariable::InternalLinkage;
1060 
1061   if (const CXXMethodDecl *KeyFunction
1062                                     = RD->getASTContext().getKeyFunction(RD)) {
1063     // If this class has a key function, use that to determine the linkage of
1064     // the vtable.
1065     const FunctionDecl *Def = 0;
1066     if (KeyFunction->hasBody(Def))
1067       KeyFunction = cast<CXXMethodDecl>(Def);
1068 
1069     switch (KeyFunction->getTemplateSpecializationKind()) {
1070       case TSK_Undeclared:
1071       case TSK_ExplicitSpecialization:
1072         if (KeyFunction->isInlined())
1073           return llvm::GlobalVariable::WeakODRLinkage;
1074 
1075         return llvm::GlobalVariable::ExternalLinkage;
1076 
1077       case TSK_ImplicitInstantiation:
1078       case TSK_ExplicitInstantiationDefinition:
1079         return llvm::GlobalVariable::WeakODRLinkage;
1080 
1081       case TSK_ExplicitInstantiationDeclaration:
1082         // FIXME: Use available_externally linkage. However, this currently
1083         // breaks LLVM's build due to undefined symbols.
1084         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1085         return llvm::GlobalVariable::WeakODRLinkage;
1086     }
1087   }
1088 
1089   switch (RD->getTemplateSpecializationKind()) {
1090   case TSK_Undeclared:
1091   case TSK_ExplicitSpecialization:
1092   case TSK_ImplicitInstantiation:
1093   case TSK_ExplicitInstantiationDefinition:
1094     return llvm::GlobalVariable::WeakODRLinkage;
1095 
1096   case TSK_ExplicitInstantiationDeclaration:
1097     // FIXME: Use available_externally linkage. However, this currently
1098     // breaks LLVM's build due to undefined symbols.
1099     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1100     return llvm::GlobalVariable::WeakODRLinkage;
1101   }
1102 
1103   // Silence GCC warning.
1104   return llvm::GlobalVariable::WeakODRLinkage;
1105 }
1106 
1107 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1108     return CharUnits::fromQuantity(
1109       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1110 }
1111 
1112 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1113   llvm::Constant *Init = 0;
1114   QualType ASTTy = D->getType();
1115   bool NonConstInit = false;
1116 
1117   const Expr *InitExpr = D->getAnyInitializer();
1118 
1119   if (!InitExpr) {
1120     // This is a tentative definition; tentative definitions are
1121     // implicitly initialized with { 0 }.
1122     //
1123     // Note that tentative definitions are only emitted at the end of
1124     // a translation unit, so they should never have incomplete
1125     // type. In addition, EmitTentativeDefinition makes sure that we
1126     // never attempt to emit a tentative definition if a real one
1127     // exists. A use may still exists, however, so we still may need
1128     // to do a RAUW.
1129     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1130     Init = EmitNullConstant(D->getType());
1131   } else {
1132     Init = EmitConstantExpr(InitExpr, D->getType());
1133     if (!Init) {
1134       QualType T = InitExpr->getType();
1135       if (D->getType()->isReferenceType())
1136         T = D->getType();
1137 
1138       if (getLangOptions().CPlusPlus) {
1139         EmitCXXGlobalVarDeclInitFunc(D);
1140         Init = EmitNullConstant(T);
1141         NonConstInit = true;
1142       } else {
1143         ErrorUnsupported(D, "static initializer");
1144         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1145       }
1146     } else {
1147       // We don't need an initializer, so remove the entry for the delayed
1148       // initializer position (just in case this entry was delayed).
1149       if (getLangOptions().CPlusPlus)
1150         DelayedCXXInitPosition.erase(D);
1151     }
1152   }
1153 
1154   const llvm::Type* InitType = Init->getType();
1155   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1156 
1157   // Strip off a bitcast if we got one back.
1158   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1159     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1160            // all zero index gep.
1161            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1162     Entry = CE->getOperand(0);
1163   }
1164 
1165   // Entry is now either a Function or GlobalVariable.
1166   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1167 
1168   // We have a definition after a declaration with the wrong type.
1169   // We must make a new GlobalVariable* and update everything that used OldGV
1170   // (a declaration or tentative definition) with the new GlobalVariable*
1171   // (which will be a definition).
1172   //
1173   // This happens if there is a prototype for a global (e.g.
1174   // "extern int x[];") and then a definition of a different type (e.g.
1175   // "int x[10];"). This also happens when an initializer has a different type
1176   // from the type of the global (this happens with unions).
1177   if (GV == 0 ||
1178       GV->getType()->getElementType() != InitType ||
1179       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1180 
1181     // Move the old entry aside so that we'll create a new one.
1182     Entry->setName(llvm::StringRef());
1183 
1184     // Make a new global with the correct type, this is now guaranteed to work.
1185     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1186 
1187     // Replace all uses of the old global with the new global
1188     llvm::Constant *NewPtrForOldDecl =
1189         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1190     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1191 
1192     // Erase the old global, since it is no longer used.
1193     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1194   }
1195 
1196   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1197     SourceManager &SM = Context.getSourceManager();
1198     AddAnnotation(EmitAnnotateAttr(GV, AA,
1199                               SM.getInstantiationLineNumber(D->getLocation())));
1200   }
1201 
1202   GV->setInitializer(Init);
1203 
1204   // If it is safe to mark the global 'constant', do so now.
1205   GV->setConstant(false);
1206   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1207     GV->setConstant(true);
1208 
1209   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1210 
1211   // Set the llvm linkage type as appropriate.
1212   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1213   if (Linkage == GVA_Internal)
1214     GV->setLinkage(llvm::Function::InternalLinkage);
1215   else if (D->hasAttr<DLLImportAttr>())
1216     GV->setLinkage(llvm::Function::DLLImportLinkage);
1217   else if (D->hasAttr<DLLExportAttr>())
1218     GV->setLinkage(llvm::Function::DLLExportLinkage);
1219   else if (D->hasAttr<WeakAttr>()) {
1220     if (GV->isConstant())
1221       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1222     else
1223       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1224   } else if (Linkage == GVA_TemplateInstantiation ||
1225              Linkage == GVA_ExplicitTemplateInstantiation)
1226     // FIXME: It seems like we can provide more specific linkage here
1227     // (LinkOnceODR, WeakODR).
1228     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1229   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1230            !D->hasExternalStorage() && !D->getInit() &&
1231            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1232     // Thread local vars aren't considered common linkage.
1233     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1234     // common vars aren't constant even if declared const.
1235     GV->setConstant(false);
1236   } else
1237     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1238 
1239   SetCommonAttributes(D, GV);
1240 
1241   // Emit global variable debug information.
1242   if (CGDebugInfo *DI = getDebugInfo()) {
1243     DI->setLocation(D->getLocation());
1244     DI->EmitGlobalVariable(GV, D);
1245   }
1246 }
1247 
1248 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1249 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1250 /// existing call uses of the old function in the module, this adjusts them to
1251 /// call the new function directly.
1252 ///
1253 /// This is not just a cleanup: the always_inline pass requires direct calls to
1254 /// functions to be able to inline them.  If there is a bitcast in the way, it
1255 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1256 /// run at -O0.
1257 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1258                                                       llvm::Function *NewFn) {
1259   // If we're redefining a global as a function, don't transform it.
1260   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1261   if (OldFn == 0) return;
1262 
1263   const llvm::Type *NewRetTy = NewFn->getReturnType();
1264   llvm::SmallVector<llvm::Value*, 4> ArgList;
1265 
1266   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1267        UI != E; ) {
1268     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1269     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1270     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1271     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1272     llvm::CallSite CS(CI);
1273     if (!CI || !CS.isCallee(I)) continue;
1274 
1275     // If the return types don't match exactly, and if the call isn't dead, then
1276     // we can't transform this call.
1277     if (CI->getType() != NewRetTy && !CI->use_empty())
1278       continue;
1279 
1280     // If the function was passed too few arguments, don't transform.  If extra
1281     // arguments were passed, we silently drop them.  If any of the types
1282     // mismatch, we don't transform.
1283     unsigned ArgNo = 0;
1284     bool DontTransform = false;
1285     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1286          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1287       if (CS.arg_size() == ArgNo ||
1288           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1289         DontTransform = true;
1290         break;
1291       }
1292     }
1293     if (DontTransform)
1294       continue;
1295 
1296     // Okay, we can transform this.  Create the new call instruction and copy
1297     // over the required information.
1298     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1299     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1300                                                      ArgList.end(), "", CI);
1301     ArgList.clear();
1302     if (!NewCall->getType()->isVoidTy())
1303       NewCall->takeName(CI);
1304     NewCall->setAttributes(CI->getAttributes());
1305     NewCall->setCallingConv(CI->getCallingConv());
1306 
1307     // Finally, remove the old call, replacing any uses with the new one.
1308     if (!CI->use_empty())
1309       CI->replaceAllUsesWith(NewCall);
1310 
1311     // Copy debug location attached to CI.
1312     if (!CI->getDebugLoc().isUnknown())
1313       NewCall->setDebugLoc(CI->getDebugLoc());
1314     CI->eraseFromParent();
1315   }
1316 }
1317 
1318 
1319 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1320   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1321   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1322   getCXXABI().getMangleContext().mangleInitDiscriminator();
1323   // Get or create the prototype for the function.
1324   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1325 
1326   // Strip off a bitcast if we got one back.
1327   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1328     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1329     Entry = CE->getOperand(0);
1330   }
1331 
1332 
1333   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1334     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1335 
1336     // If the types mismatch then we have to rewrite the definition.
1337     assert(OldFn->isDeclaration() &&
1338            "Shouldn't replace non-declaration");
1339 
1340     // F is the Function* for the one with the wrong type, we must make a new
1341     // Function* and update everything that used F (a declaration) with the new
1342     // Function* (which will be a definition).
1343     //
1344     // This happens if there is a prototype for a function
1345     // (e.g. "int f()") and then a definition of a different type
1346     // (e.g. "int f(int x)").  Move the old function aside so that it
1347     // doesn't interfere with GetAddrOfFunction.
1348     OldFn->setName(llvm::StringRef());
1349     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1350 
1351     // If this is an implementation of a function without a prototype, try to
1352     // replace any existing uses of the function (which may be calls) with uses
1353     // of the new function
1354     if (D->getType()->isFunctionNoProtoType()) {
1355       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1356       OldFn->removeDeadConstantUsers();
1357     }
1358 
1359     // Replace uses of F with the Function we will endow with a body.
1360     if (!Entry->use_empty()) {
1361       llvm::Constant *NewPtrForOldDecl =
1362         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1363       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1364     }
1365 
1366     // Ok, delete the old function now, which is dead.
1367     OldFn->eraseFromParent();
1368 
1369     Entry = NewFn;
1370   }
1371 
1372   llvm::Function *Fn = cast<llvm::Function>(Entry);
1373   setFunctionLinkage(D, Fn);
1374 
1375   CodeGenFunction(*this).GenerateCode(D, Fn);
1376 
1377   SetFunctionDefinitionAttributes(D, Fn);
1378   SetLLVMFunctionAttributesForDefinition(D, Fn);
1379 
1380   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1381     AddGlobalCtor(Fn, CA->getPriority());
1382   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1383     AddGlobalDtor(Fn, DA->getPriority());
1384 }
1385 
1386 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1387   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1388   const AliasAttr *AA = D->getAttr<AliasAttr>();
1389   assert(AA && "Not an alias?");
1390 
1391   llvm::StringRef MangledName = getMangledName(GD);
1392 
1393   // If there is a definition in the module, then it wins over the alias.
1394   // This is dubious, but allow it to be safe.  Just ignore the alias.
1395   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1396   if (Entry && !Entry->isDeclaration())
1397     return;
1398 
1399   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1400 
1401   // Create a reference to the named value.  This ensures that it is emitted
1402   // if a deferred decl.
1403   llvm::Constant *Aliasee;
1404   if (isa<llvm::FunctionType>(DeclTy))
1405     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1406   else
1407     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1408                                     llvm::PointerType::getUnqual(DeclTy), 0);
1409 
1410   // Create the new alias itself, but don't set a name yet.
1411   llvm::GlobalValue *GA =
1412     new llvm::GlobalAlias(Aliasee->getType(),
1413                           llvm::Function::ExternalLinkage,
1414                           "", Aliasee, &getModule());
1415 
1416   if (Entry) {
1417     assert(Entry->isDeclaration());
1418 
1419     // If there is a declaration in the module, then we had an extern followed
1420     // by the alias, as in:
1421     //   extern int test6();
1422     //   ...
1423     //   int test6() __attribute__((alias("test7")));
1424     //
1425     // Remove it and replace uses of it with the alias.
1426     GA->takeName(Entry);
1427 
1428     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1429                                                           Entry->getType()));
1430     Entry->eraseFromParent();
1431   } else {
1432     GA->setName(MangledName);
1433   }
1434 
1435   // Set attributes which are particular to an alias; this is a
1436   // specialization of the attributes which may be set on a global
1437   // variable/function.
1438   if (D->hasAttr<DLLExportAttr>()) {
1439     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1440       // The dllexport attribute is ignored for undefined symbols.
1441       if (FD->hasBody())
1442         GA->setLinkage(llvm::Function::DLLExportLinkage);
1443     } else {
1444       GA->setLinkage(llvm::Function::DLLExportLinkage);
1445     }
1446   } else if (D->hasAttr<WeakAttr>() ||
1447              D->hasAttr<WeakRefAttr>() ||
1448              D->hasAttr<WeakImportAttr>()) {
1449     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1450   }
1451 
1452   SetCommonAttributes(D, GA);
1453 }
1454 
1455 /// getBuiltinLibFunction - Given a builtin id for a function like
1456 /// "__builtin_fabsf", return a Function* for "fabsf".
1457 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1458                                                   unsigned BuiltinID) {
1459   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1460           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1461          "isn't a lib fn");
1462 
1463   // Get the name, skip over the __builtin_ prefix (if necessary).
1464   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1465   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1466     Name += 10;
1467 
1468   const llvm::FunctionType *Ty =
1469     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1470 
1471   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1472 }
1473 
1474 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1475                                             unsigned NumTys) {
1476   return llvm::Intrinsic::getDeclaration(&getModule(),
1477                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1478 }
1479 
1480 
1481 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1482                                            const llvm::Type *SrcType,
1483                                            const llvm::Type *SizeType) {
1484   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1485   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1486 }
1487 
1488 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1489                                             const llvm::Type *SrcType,
1490                                             const llvm::Type *SizeType) {
1491   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1492   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1493 }
1494 
1495 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1496                                            const llvm::Type *SizeType) {
1497   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1498   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1499 }
1500 
1501 static llvm::StringMapEntry<llvm::Constant*> &
1502 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1503                          const StringLiteral *Literal,
1504                          bool TargetIsLSB,
1505                          bool &IsUTF16,
1506                          unsigned &StringLength) {
1507   llvm::StringRef String = Literal->getString();
1508   unsigned NumBytes = String.size();
1509 
1510   // Check for simple case.
1511   if (!Literal->containsNonAsciiOrNull()) {
1512     StringLength = NumBytes;
1513     return Map.GetOrCreateValue(String);
1514   }
1515 
1516   // Otherwise, convert the UTF8 literals into a byte string.
1517   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1518   const UTF8 *FromPtr = (UTF8 *)String.data();
1519   UTF16 *ToPtr = &ToBuf[0];
1520 
1521   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1522                            &ToPtr, ToPtr + NumBytes,
1523                            strictConversion);
1524 
1525   // ConvertUTF8toUTF16 returns the length in ToPtr.
1526   StringLength = ToPtr - &ToBuf[0];
1527 
1528   // Render the UTF-16 string into a byte array and convert to the target byte
1529   // order.
1530   //
1531   // FIXME: This isn't something we should need to do here.
1532   llvm::SmallString<128> AsBytes;
1533   AsBytes.reserve(StringLength * 2);
1534   for (unsigned i = 0; i != StringLength; ++i) {
1535     unsigned short Val = ToBuf[i];
1536     if (TargetIsLSB) {
1537       AsBytes.push_back(Val & 0xFF);
1538       AsBytes.push_back(Val >> 8);
1539     } else {
1540       AsBytes.push_back(Val >> 8);
1541       AsBytes.push_back(Val & 0xFF);
1542     }
1543   }
1544   // Append one extra null character, the second is automatically added by our
1545   // caller.
1546   AsBytes.push_back(0);
1547 
1548   IsUTF16 = true;
1549   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1550 }
1551 
1552 llvm::Constant *
1553 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1554   unsigned StringLength = 0;
1555   bool isUTF16 = false;
1556   llvm::StringMapEntry<llvm::Constant*> &Entry =
1557     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1558                              getTargetData().isLittleEndian(),
1559                              isUTF16, StringLength);
1560 
1561   if (llvm::Constant *C = Entry.getValue())
1562     return C;
1563 
1564   llvm::Constant *Zero =
1565       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1566   llvm::Constant *Zeros[] = { Zero, Zero };
1567 
1568   // If we don't already have it, get __CFConstantStringClassReference.
1569   if (!CFConstantStringClassRef) {
1570     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1571     Ty = llvm::ArrayType::get(Ty, 0);
1572     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1573                                            "__CFConstantStringClassReference");
1574     // Decay array -> ptr
1575     CFConstantStringClassRef =
1576       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1577   }
1578 
1579   QualType CFTy = getContext().getCFConstantStringType();
1580 
1581   const llvm::StructType *STy =
1582     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1583 
1584   std::vector<llvm::Constant*> Fields(4);
1585 
1586   // Class pointer.
1587   Fields[0] = CFConstantStringClassRef;
1588 
1589   // Flags.
1590   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1591   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1592     llvm::ConstantInt::get(Ty, 0x07C8);
1593 
1594   // String pointer.
1595   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1596 
1597   llvm::GlobalValue::LinkageTypes Linkage;
1598   bool isConstant;
1599   if (isUTF16) {
1600     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1601     Linkage = llvm::GlobalValue::InternalLinkage;
1602     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1603     // does make plain ascii ones writable.
1604     isConstant = true;
1605   } else {
1606     Linkage = llvm::GlobalValue::PrivateLinkage;
1607     isConstant = !Features.WritableStrings;
1608   }
1609 
1610   llvm::GlobalVariable *GV =
1611     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1612                              ".str");
1613   if (isUTF16) {
1614     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1615     GV->setAlignment(Align.getQuantity());
1616   }
1617   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1618 
1619   // String length.
1620   Ty = getTypes().ConvertType(getContext().LongTy);
1621   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1622 
1623   // The struct.
1624   C = llvm::ConstantStruct::get(STy, Fields);
1625   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1626                                 llvm::GlobalVariable::PrivateLinkage, C,
1627                                 "_unnamed_cfstring_");
1628   if (const char *Sect = getContext().Target.getCFStringSection())
1629     GV->setSection(Sect);
1630   Entry.setValue(GV);
1631 
1632   return GV;
1633 }
1634 
1635 llvm::Constant *
1636 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1637   unsigned StringLength = 0;
1638   bool isUTF16 = false;
1639   llvm::StringMapEntry<llvm::Constant*> &Entry =
1640     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1641                              getTargetData().isLittleEndian(),
1642                              isUTF16, StringLength);
1643 
1644   if (llvm::Constant *C = Entry.getValue())
1645     return C;
1646 
1647   llvm::Constant *Zero =
1648   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1649   llvm::Constant *Zeros[] = { Zero, Zero };
1650 
1651   // If we don't already have it, get _NSConstantStringClassReference.
1652   if (!NSConstantStringClassRef) {
1653     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1654     Ty = llvm::ArrayType::get(Ty, 0);
1655     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1656                                         Features.ObjCNonFragileABI ?
1657                                         "OBJC_CLASS_$_NSConstantString" :
1658                                         "_NSConstantStringClassReference");
1659     // Decay array -> ptr
1660     NSConstantStringClassRef =
1661       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1662   }
1663 
1664   QualType NSTy = getContext().getNSConstantStringType();
1665 
1666   const llvm::StructType *STy =
1667   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1668 
1669   std::vector<llvm::Constant*> Fields(3);
1670 
1671   // Class pointer.
1672   Fields[0] = NSConstantStringClassRef;
1673 
1674   // String pointer.
1675   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1676 
1677   llvm::GlobalValue::LinkageTypes Linkage;
1678   bool isConstant;
1679   if (isUTF16) {
1680     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1681     Linkage = llvm::GlobalValue::InternalLinkage;
1682     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1683     // does make plain ascii ones writable.
1684     isConstant = true;
1685   } else {
1686     Linkage = llvm::GlobalValue::PrivateLinkage;
1687     isConstant = !Features.WritableStrings;
1688   }
1689 
1690   llvm::GlobalVariable *GV =
1691   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1692                            ".str");
1693   if (isUTF16) {
1694     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1695     GV->setAlignment(Align.getQuantity());
1696   }
1697   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1698 
1699   // String length.
1700   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1701   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1702 
1703   // The struct.
1704   C = llvm::ConstantStruct::get(STy, Fields);
1705   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1706                                 llvm::GlobalVariable::PrivateLinkage, C,
1707                                 "_unnamed_nsstring_");
1708   // FIXME. Fix section.
1709   if (const char *Sect =
1710         Features.ObjCNonFragileABI
1711           ? getContext().Target.getNSStringNonFragileABISection()
1712           : getContext().Target.getNSStringSection())
1713     GV->setSection(Sect);
1714   Entry.setValue(GV);
1715 
1716   return GV;
1717 }
1718 
1719 /// GetStringForStringLiteral - Return the appropriate bytes for a
1720 /// string literal, properly padded to match the literal type.
1721 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1722   const ConstantArrayType *CAT =
1723     getContext().getAsConstantArrayType(E->getType());
1724   assert(CAT && "String isn't pointer or array!");
1725 
1726   // Resize the string to the right size.
1727   uint64_t RealLen = CAT->getSize().getZExtValue();
1728 
1729   if (E->isWide())
1730     RealLen *= getContext().Target.getWCharWidth()/8;
1731 
1732   std::string Str = E->getString().str();
1733   Str.resize(RealLen, '\0');
1734 
1735   return Str;
1736 }
1737 
1738 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1739 /// constant array for the given string literal.
1740 llvm::Constant *
1741 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1742   // FIXME: This can be more efficient.
1743   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1744   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1745   if (S->isWide()) {
1746     llvm::Type *DestTy =
1747         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1748     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1749   }
1750   return C;
1751 }
1752 
1753 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1754 /// array for the given ObjCEncodeExpr node.
1755 llvm::Constant *
1756 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1757   std::string Str;
1758   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1759 
1760   return GetAddrOfConstantCString(Str);
1761 }
1762 
1763 
1764 /// GenerateWritableString -- Creates storage for a string literal.
1765 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1766                                              bool constant,
1767                                              CodeGenModule &CGM,
1768                                              const char *GlobalName) {
1769   // Create Constant for this string literal. Don't add a '\0'.
1770   llvm::Constant *C =
1771       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1772 
1773   // Create a global variable for this string
1774   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1775                                   llvm::GlobalValue::PrivateLinkage,
1776                                   C, GlobalName);
1777 }
1778 
1779 /// GetAddrOfConstantString - Returns a pointer to a character array
1780 /// containing the literal. This contents are exactly that of the
1781 /// given string, i.e. it will not be null terminated automatically;
1782 /// see GetAddrOfConstantCString. Note that whether the result is
1783 /// actually a pointer to an LLVM constant depends on
1784 /// Feature.WriteableStrings.
1785 ///
1786 /// The result has pointer to array type.
1787 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1788                                                        const char *GlobalName) {
1789   bool IsConstant = !Features.WritableStrings;
1790 
1791   // Get the default prefix if a name wasn't specified.
1792   if (!GlobalName)
1793     GlobalName = ".str";
1794 
1795   // Don't share any string literals if strings aren't constant.
1796   if (!IsConstant)
1797     return GenerateStringLiteral(str, false, *this, GlobalName);
1798 
1799   llvm::StringMapEntry<llvm::Constant *> &Entry =
1800     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1801 
1802   if (Entry.getValue())
1803     return Entry.getValue();
1804 
1805   // Create a global variable for this.
1806   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1807   Entry.setValue(C);
1808   return C;
1809 }
1810 
1811 /// GetAddrOfConstantCString - Returns a pointer to a character
1812 /// array containing the literal and a terminating '\-'
1813 /// character. The result has pointer to array type.
1814 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1815                                                         const char *GlobalName){
1816   return GetAddrOfConstantString(str + '\0', GlobalName);
1817 }
1818 
1819 /// EmitObjCPropertyImplementations - Emit information for synthesized
1820 /// properties for an implementation.
1821 void CodeGenModule::EmitObjCPropertyImplementations(const
1822                                                     ObjCImplementationDecl *D) {
1823   for (ObjCImplementationDecl::propimpl_iterator
1824          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1825     ObjCPropertyImplDecl *PID = *i;
1826 
1827     // Dynamic is just for type-checking.
1828     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1829       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1830 
1831       // Determine which methods need to be implemented, some may have
1832       // been overridden. Note that ::isSynthesized is not the method
1833       // we want, that just indicates if the decl came from a
1834       // property. What we want to know is if the method is defined in
1835       // this implementation.
1836       if (!D->getInstanceMethod(PD->getGetterName()))
1837         CodeGenFunction(*this).GenerateObjCGetter(
1838                                  const_cast<ObjCImplementationDecl *>(D), PID);
1839       if (!PD->isReadOnly() &&
1840           !D->getInstanceMethod(PD->getSetterName()))
1841         CodeGenFunction(*this).GenerateObjCSetter(
1842                                  const_cast<ObjCImplementationDecl *>(D), PID);
1843     }
1844   }
1845 }
1846 
1847 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1848 /// for an implementation.
1849 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1850   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1851     return;
1852   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1853   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1854   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1855   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1856   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1857                                                   D->getLocation(),
1858                                                   D->getLocation(), cxxSelector,
1859                                                   getContext().VoidTy, 0,
1860                                                   DC, true, false, true, false,
1861                                                   ObjCMethodDecl::Required);
1862   D->addInstanceMethod(DTORMethod);
1863   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1864 
1865   II = &getContext().Idents.get(".cxx_construct");
1866   cxxSelector = getContext().Selectors.getSelector(0, &II);
1867   // The constructor returns 'self'.
1868   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1869                                                 D->getLocation(),
1870                                                 D->getLocation(), cxxSelector,
1871                                                 getContext().getObjCIdType(), 0,
1872                                                 DC, true, false, true, false,
1873                                                 ObjCMethodDecl::Required);
1874   D->addInstanceMethod(CTORMethod);
1875   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1876 
1877 
1878 }
1879 
1880 /// EmitNamespace - Emit all declarations in a namespace.
1881 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1882   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1883        I != E; ++I)
1884     EmitTopLevelDecl(*I);
1885 }
1886 
1887 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1888 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1889   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1890       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1891     ErrorUnsupported(LSD, "linkage spec");
1892     return;
1893   }
1894 
1895   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1896        I != E; ++I)
1897     EmitTopLevelDecl(*I);
1898 }
1899 
1900 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1901 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1902   // If an error has occurred, stop code generation, but continue
1903   // parsing and semantic analysis (to ensure all warnings and errors
1904   // are emitted).
1905   if (Diags.hasErrorOccurred())
1906     return;
1907 
1908   // Ignore dependent declarations.
1909   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1910     return;
1911 
1912   switch (D->getKind()) {
1913   case Decl::CXXConversion:
1914   case Decl::CXXMethod:
1915   case Decl::Function:
1916     // Skip function templates
1917     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1918       return;
1919 
1920     EmitGlobal(cast<FunctionDecl>(D));
1921     break;
1922 
1923   case Decl::Var:
1924     EmitGlobal(cast<VarDecl>(D));
1925     break;
1926 
1927   // C++ Decls
1928   case Decl::Namespace:
1929     EmitNamespace(cast<NamespaceDecl>(D));
1930     break;
1931     // No code generation needed.
1932   case Decl::UsingShadow:
1933   case Decl::Using:
1934   case Decl::UsingDirective:
1935   case Decl::ClassTemplate:
1936   case Decl::FunctionTemplate:
1937   case Decl::NamespaceAlias:
1938     break;
1939   case Decl::CXXConstructor:
1940     // Skip function templates
1941     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1942       return;
1943 
1944     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1945     break;
1946   case Decl::CXXDestructor:
1947     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1948     break;
1949 
1950   case Decl::StaticAssert:
1951     // Nothing to do.
1952     break;
1953 
1954   // Objective-C Decls
1955 
1956   // Forward declarations, no (immediate) code generation.
1957   case Decl::ObjCClass:
1958   case Decl::ObjCForwardProtocol:
1959   case Decl::ObjCInterface:
1960     break;
1961 
1962     case Decl::ObjCCategory: {
1963       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1964       if (CD->IsClassExtension() && CD->hasSynthBitfield())
1965         Context.ResetObjCLayout(CD->getClassInterface());
1966       break;
1967     }
1968 
1969 
1970   case Decl::ObjCProtocol:
1971     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1972     break;
1973 
1974   case Decl::ObjCCategoryImpl:
1975     // Categories have properties but don't support synthesize so we
1976     // can ignore them here.
1977     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1978     break;
1979 
1980   case Decl::ObjCImplementation: {
1981     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1982     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1983       Context.ResetObjCLayout(OMD->getClassInterface());
1984     EmitObjCPropertyImplementations(OMD);
1985     EmitObjCIvarInitializations(OMD);
1986     Runtime->GenerateClass(OMD);
1987     break;
1988   }
1989   case Decl::ObjCMethod: {
1990     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1991     // If this is not a prototype, emit the body.
1992     if (OMD->getBody())
1993       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1994     break;
1995   }
1996   case Decl::ObjCCompatibleAlias:
1997     // compatibility-alias is a directive and has no code gen.
1998     break;
1999 
2000   case Decl::LinkageSpec:
2001     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2002     break;
2003 
2004   case Decl::FileScopeAsm: {
2005     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2006     llvm::StringRef AsmString = AD->getAsmString()->getString();
2007 
2008     const std::string &S = getModule().getModuleInlineAsm();
2009     if (S.empty())
2010       getModule().setModuleInlineAsm(AsmString);
2011     else
2012       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2013     break;
2014   }
2015 
2016   default:
2017     // Make sure we handled everything we should, every other kind is a
2018     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2019     // function. Need to recode Decl::Kind to do that easily.
2020     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2021   }
2022 }
2023 
2024 /// Turns the given pointer into a constant.
2025 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2026                                           const void *Ptr) {
2027   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2028   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2029   return llvm::ConstantInt::get(i64, PtrInt);
2030 }
2031 
2032 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2033                                    llvm::NamedMDNode *&GlobalMetadata,
2034                                    GlobalDecl D,
2035                                    llvm::GlobalValue *Addr) {
2036   if (!GlobalMetadata)
2037     GlobalMetadata =
2038       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2039 
2040   // TODO: should we report variant information for ctors/dtors?
2041   llvm::Value *Ops[] = {
2042     Addr,
2043     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2044   };
2045   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2046 }
2047 
2048 /// Emits metadata nodes associating all the global values in the
2049 /// current module with the Decls they came from.  This is useful for
2050 /// projects using IR gen as a subroutine.
2051 ///
2052 /// Since there's currently no way to associate an MDNode directly
2053 /// with an llvm::GlobalValue, we create a global named metadata
2054 /// with the name 'clang.global.decl.ptrs'.
2055 void CodeGenModule::EmitDeclMetadata() {
2056   llvm::NamedMDNode *GlobalMetadata = 0;
2057 
2058   // StaticLocalDeclMap
2059   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2060          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2061        I != E; ++I) {
2062     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2063     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2064   }
2065 }
2066 
2067 /// Emits metadata nodes for all the local variables in the current
2068 /// function.
2069 void CodeGenFunction::EmitDeclMetadata() {
2070   if (LocalDeclMap.empty()) return;
2071 
2072   llvm::LLVMContext &Context = getLLVMContext();
2073 
2074   // Find the unique metadata ID for this name.
2075   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2076 
2077   llvm::NamedMDNode *GlobalMetadata = 0;
2078 
2079   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2080          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2081     const Decl *D = I->first;
2082     llvm::Value *Addr = I->second;
2083 
2084     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2085       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2086       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2087     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2088       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2089       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2090     }
2091   }
2092 }
2093 
2094 ///@name Custom Runtime Function Interfaces
2095 ///@{
2096 //
2097 // FIXME: These can be eliminated once we can have clients just get the required
2098 // AST nodes from the builtin tables.
2099 
2100 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2101   if (BlockObjectDispose)
2102     return BlockObjectDispose;
2103 
2104   // If we saw an explicit decl, use that.
2105   if (BlockObjectDisposeDecl) {
2106     return BlockObjectDispose = GetAddrOfFunction(
2107       BlockObjectDisposeDecl,
2108       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2109   }
2110 
2111   // Otherwise construct the function by hand.
2112   const llvm::FunctionType *FTy;
2113   std::vector<const llvm::Type*> ArgTys;
2114   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2115   ArgTys.push_back(PtrToInt8Ty);
2116   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2117   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2118   return BlockObjectDispose =
2119     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2120 }
2121 
2122 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2123   if (BlockObjectAssign)
2124     return BlockObjectAssign;
2125 
2126   // If we saw an explicit decl, use that.
2127   if (BlockObjectAssignDecl) {
2128     return BlockObjectAssign = GetAddrOfFunction(
2129       BlockObjectAssignDecl,
2130       getTypes().GetFunctionType(BlockObjectAssignDecl));
2131   }
2132 
2133   // Otherwise construct the function by hand.
2134   const llvm::FunctionType *FTy;
2135   std::vector<const llvm::Type*> ArgTys;
2136   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2137   ArgTys.push_back(PtrToInt8Ty);
2138   ArgTys.push_back(PtrToInt8Ty);
2139   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2140   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2141   return BlockObjectAssign =
2142     CreateRuntimeFunction(FTy, "_Block_object_assign");
2143 }
2144 
2145 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2146   if (NSConcreteGlobalBlock)
2147     return NSConcreteGlobalBlock;
2148 
2149   // If we saw an explicit decl, use that.
2150   if (NSConcreteGlobalBlockDecl) {
2151     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2152       NSConcreteGlobalBlockDecl,
2153       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2154   }
2155 
2156   // Otherwise construct the variable by hand.
2157   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2158     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2159 }
2160 
2161 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2162   if (NSConcreteStackBlock)
2163     return NSConcreteStackBlock;
2164 
2165   // If we saw an explicit decl, use that.
2166   if (NSConcreteStackBlockDecl) {
2167     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2168       NSConcreteStackBlockDecl,
2169       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2170   }
2171 
2172   // Otherwise construct the variable by hand.
2173   return NSConcreteStackBlock = CreateRuntimeVariable(
2174     PtrToInt8Ty, "_NSConcreteStackBlock");
2175 }
2176 
2177 ///@}
2178