1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().Target.getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56 } 57 58 59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0), 74 BlockDescriptorType(0), GenericBlockLiteralType(0) { 75 if (Features.ObjC1) 76 createObjCRuntime(); 77 78 // Enable TBAA unless it's suppressed. 79 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 80 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 81 ABI.getMangleContext()); 82 83 // If debug info generation is enabled, create the CGDebugInfo object. 84 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 85 86 Block.GlobalUniqueCount = 0; 87 88 // Initialize the type cache. 89 llvm::LLVMContext &LLVMContext = M.getContext(); 90 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 91 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 92 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 93 PointerWidthInBits = C.Target.getPointerWidth(0); 94 PointerAlignInBytes = 95 C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity(); 96 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); 97 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 98 Int8PtrTy = Int8Ty->getPointerTo(0); 99 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 100 } 101 102 CodeGenModule::~CodeGenModule() { 103 delete Runtime; 104 delete &ABI; 105 delete TBAA; 106 delete DebugInfo; 107 } 108 109 void CodeGenModule::createObjCRuntime() { 110 if (!Features.NeXTRuntime) 111 Runtime = CreateGNUObjCRuntime(*this); 112 else 113 Runtime = CreateMacObjCRuntime(*this); 114 } 115 116 void CodeGenModule::Release() { 117 EmitDeferred(); 118 EmitCXXGlobalInitFunc(); 119 EmitCXXGlobalDtorFunc(); 120 if (Runtime) 121 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 122 AddGlobalCtor(ObjCInitFunction); 123 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 124 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 125 EmitAnnotations(); 126 EmitLLVMUsed(); 127 128 SimplifyPersonality(); 129 130 if (getCodeGenOpts().EmitDeclMetadata) 131 EmitDeclMetadata(); 132 } 133 134 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 135 // Make sure that this type is translated. 136 Types.UpdateCompletedType(TD); 137 if (DebugInfo) 138 DebugInfo->UpdateCompletedType(TD); 139 } 140 141 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 142 if (!TBAA) 143 return 0; 144 return TBAA->getTBAAInfo(QTy); 145 } 146 147 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 148 llvm::MDNode *TBAAInfo) { 149 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 150 } 151 152 bool CodeGenModule::isTargetDarwin() const { 153 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 154 } 155 156 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) { 157 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 158 getDiags().Report(Context.getFullLoc(loc), diagID); 159 } 160 161 /// ErrorUnsupported - Print out an error that codegen doesn't support the 162 /// specified stmt yet. 163 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 164 bool OmitOnError) { 165 if (OmitOnError && getDiags().hasErrorOccurred()) 166 return; 167 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 168 "cannot compile this %0 yet"); 169 std::string Msg = Type; 170 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 171 << Msg << S->getSourceRange(); 172 } 173 174 /// ErrorUnsupported - Print out an error that codegen doesn't support the 175 /// specified decl yet. 176 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 177 bool OmitOnError) { 178 if (OmitOnError && getDiags().hasErrorOccurred()) 179 return; 180 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 181 "cannot compile this %0 yet"); 182 std::string Msg = Type; 183 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 184 } 185 186 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 187 const NamedDecl *D) const { 188 // Internal definitions always have default visibility. 189 if (GV->hasLocalLinkage()) { 190 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 191 return; 192 } 193 194 // Set visibility for definitions. 195 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 196 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 197 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 198 } 199 200 /// Set the symbol visibility of type information (vtable and RTTI) 201 /// associated with the given type. 202 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 203 const CXXRecordDecl *RD, 204 TypeVisibilityKind TVK) const { 205 setGlobalVisibility(GV, RD); 206 207 if (!CodeGenOpts.HiddenWeakVTables) 208 return; 209 210 // We never want to drop the visibility for RTTI names. 211 if (TVK == TVK_ForRTTIName) 212 return; 213 214 // We want to drop the visibility to hidden for weak type symbols. 215 // This isn't possible if there might be unresolved references 216 // elsewhere that rely on this symbol being visible. 217 218 // This should be kept roughly in sync with setThunkVisibility 219 // in CGVTables.cpp. 220 221 // Preconditions. 222 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 223 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 224 return; 225 226 // Don't override an explicit visibility attribute. 227 if (RD->hasAttr<VisibilityAttr>()) 228 return; 229 230 switch (RD->getTemplateSpecializationKind()) { 231 // We have to disable the optimization if this is an EI definition 232 // because there might be EI declarations in other shared objects. 233 case TSK_ExplicitInstantiationDefinition: 234 case TSK_ExplicitInstantiationDeclaration: 235 return; 236 237 // Every use of a non-template class's type information has to emit it. 238 case TSK_Undeclared: 239 break; 240 241 // In theory, implicit instantiations can ignore the possibility of 242 // an explicit instantiation declaration because there necessarily 243 // must be an EI definition somewhere with default visibility. In 244 // practice, it's possible to have an explicit instantiation for 245 // an arbitrary template class, and linkers aren't necessarily able 246 // to deal with mixed-visibility symbols. 247 case TSK_ExplicitSpecialization: 248 case TSK_ImplicitInstantiation: 249 if (!CodeGenOpts.HiddenWeakTemplateVTables) 250 return; 251 break; 252 } 253 254 // If there's a key function, there may be translation units 255 // that don't have the key function's definition. But ignore 256 // this if we're emitting RTTI under -fno-rtti. 257 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 258 if (Context.getKeyFunction(RD)) 259 return; 260 } 261 262 // Otherwise, drop the visibility to hidden. 263 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 264 GV->setUnnamedAddr(true); 265 } 266 267 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 268 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 269 270 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 271 if (!Str.empty()) 272 return Str; 273 274 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 275 IdentifierInfo *II = ND->getIdentifier(); 276 assert(II && "Attempt to mangle unnamed decl."); 277 278 Str = II->getName(); 279 return Str; 280 } 281 282 llvm::SmallString<256> Buffer; 283 llvm::raw_svector_ostream Out(Buffer); 284 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 285 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 286 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 287 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 288 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 289 getCXXABI().getMangleContext().mangleBlock(BD, Out); 290 else 291 getCXXABI().getMangleContext().mangleName(ND, Out); 292 293 // Allocate space for the mangled name. 294 Out.flush(); 295 size_t Length = Buffer.size(); 296 char *Name = MangledNamesAllocator.Allocate<char>(Length); 297 std::copy(Buffer.begin(), Buffer.end(), Name); 298 299 Str = llvm::StringRef(Name, Length); 300 301 return Str; 302 } 303 304 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 305 const BlockDecl *BD) { 306 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 307 const Decl *D = GD.getDecl(); 308 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 309 if (D == 0) 310 MangleCtx.mangleGlobalBlock(BD, Out); 311 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 312 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 313 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 314 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 315 else 316 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 317 } 318 319 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 320 return getModule().getNamedValue(Name); 321 } 322 323 /// AddGlobalCtor - Add a function to the list that will be called before 324 /// main() runs. 325 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 326 // FIXME: Type coercion of void()* types. 327 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 328 } 329 330 /// AddGlobalDtor - Add a function to the list that will be called 331 /// when the module is unloaded. 332 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 333 // FIXME: Type coercion of void()* types. 334 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 335 } 336 337 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 338 // Ctor function type is void()*. 339 llvm::FunctionType* CtorFTy = 340 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 341 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 342 343 // Get the type of a ctor entry, { i32, void ()* }. 344 llvm::StructType* CtorStructTy = 345 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 346 llvm::PointerType::getUnqual(CtorFTy), NULL); 347 348 // Construct the constructor and destructor arrays. 349 std::vector<llvm::Constant*> Ctors; 350 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 351 std::vector<llvm::Constant*> S; 352 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 353 I->second, false)); 354 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 355 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 356 } 357 358 if (!Ctors.empty()) { 359 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 360 new llvm::GlobalVariable(TheModule, AT, false, 361 llvm::GlobalValue::AppendingLinkage, 362 llvm::ConstantArray::get(AT, Ctors), 363 GlobalName); 364 } 365 } 366 367 void CodeGenModule::EmitAnnotations() { 368 if (Annotations.empty()) 369 return; 370 371 // Create a new global variable for the ConstantStruct in the Module. 372 llvm::Constant *Array = 373 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 374 Annotations.size()), 375 Annotations); 376 llvm::GlobalValue *gv = 377 new llvm::GlobalVariable(TheModule, Array->getType(), false, 378 llvm::GlobalValue::AppendingLinkage, Array, 379 "llvm.global.annotations"); 380 gv->setSection("llvm.metadata"); 381 } 382 383 llvm::GlobalValue::LinkageTypes 384 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 385 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 386 387 if (Linkage == GVA_Internal) 388 return llvm::Function::InternalLinkage; 389 390 if (D->hasAttr<DLLExportAttr>()) 391 return llvm::Function::DLLExportLinkage; 392 393 if (D->hasAttr<WeakAttr>()) 394 return llvm::Function::WeakAnyLinkage; 395 396 // In C99 mode, 'inline' functions are guaranteed to have a strong 397 // definition somewhere else, so we can use available_externally linkage. 398 if (Linkage == GVA_C99Inline) 399 return llvm::Function::AvailableExternallyLinkage; 400 401 // In C++, the compiler has to emit a definition in every translation unit 402 // that references the function. We should use linkonce_odr because 403 // a) if all references in this translation unit are optimized away, we 404 // don't need to codegen it. b) if the function persists, it needs to be 405 // merged with other definitions. c) C++ has the ODR, so we know the 406 // definition is dependable. 407 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 408 return !Context.getLangOptions().AppleKext 409 ? llvm::Function::LinkOnceODRLinkage 410 : llvm::Function::InternalLinkage; 411 412 // An explicit instantiation of a template has weak linkage, since 413 // explicit instantiations can occur in multiple translation units 414 // and must all be equivalent. However, we are not allowed to 415 // throw away these explicit instantiations. 416 if (Linkage == GVA_ExplicitTemplateInstantiation) 417 return !Context.getLangOptions().AppleKext 418 ? llvm::Function::WeakODRLinkage 419 : llvm::Function::InternalLinkage; 420 421 // Otherwise, we have strong external linkage. 422 assert(Linkage == GVA_StrongExternal); 423 return llvm::Function::ExternalLinkage; 424 } 425 426 427 /// SetFunctionDefinitionAttributes - Set attributes for a global. 428 /// 429 /// FIXME: This is currently only done for aliases and functions, but not for 430 /// variables (these details are set in EmitGlobalVarDefinition for variables). 431 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 432 llvm::GlobalValue *GV) { 433 SetCommonAttributes(D, GV); 434 } 435 436 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 437 const CGFunctionInfo &Info, 438 llvm::Function *F) { 439 unsigned CallingConv; 440 AttributeListType AttributeList; 441 ConstructAttributeList(Info, D, AttributeList, CallingConv); 442 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 443 AttributeList.size())); 444 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 445 } 446 447 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 448 llvm::Function *F) { 449 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 450 F->addFnAttr(llvm::Attribute::NoUnwind); 451 452 if (D->hasAttr<AlwaysInlineAttr>()) 453 F->addFnAttr(llvm::Attribute::AlwaysInline); 454 455 if (D->hasAttr<NakedAttr>()) 456 F->addFnAttr(llvm::Attribute::Naked); 457 458 if (D->hasAttr<NoInlineAttr>()) 459 F->addFnAttr(llvm::Attribute::NoInline); 460 461 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 462 F->setUnnamedAddr(true); 463 464 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 465 F->addFnAttr(llvm::Attribute::StackProtect); 466 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 467 F->addFnAttr(llvm::Attribute::StackProtectReq); 468 469 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 470 if (alignment) 471 F->setAlignment(alignment); 472 473 // C++ ABI requires 2-byte alignment for member functions. 474 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 475 F->setAlignment(2); 476 } 477 478 void CodeGenModule::SetCommonAttributes(const Decl *D, 479 llvm::GlobalValue *GV) { 480 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 481 setGlobalVisibility(GV, ND); 482 else 483 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 484 485 if (D->hasAttr<UsedAttr>()) 486 AddUsedGlobal(GV); 487 488 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 489 GV->setSection(SA->getName()); 490 491 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 492 } 493 494 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 495 llvm::Function *F, 496 const CGFunctionInfo &FI) { 497 SetLLVMFunctionAttributes(D, FI, F); 498 SetLLVMFunctionAttributesForDefinition(D, F); 499 500 F->setLinkage(llvm::Function::InternalLinkage); 501 502 SetCommonAttributes(D, F); 503 } 504 505 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 506 llvm::Function *F, 507 bool IsIncompleteFunction) { 508 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 509 510 if (!IsIncompleteFunction) 511 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 512 513 // Only a few attributes are set on declarations; these may later be 514 // overridden by a definition. 515 516 if (FD->hasAttr<DLLImportAttr>()) { 517 F->setLinkage(llvm::Function::DLLImportLinkage); 518 } else if (FD->hasAttr<WeakAttr>() || 519 FD->isWeakImported()) { 520 // "extern_weak" is overloaded in LLVM; we probably should have 521 // separate linkage types for this. 522 F->setLinkage(llvm::Function::ExternalWeakLinkage); 523 } else { 524 F->setLinkage(llvm::Function::ExternalLinkage); 525 526 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 527 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 528 F->setVisibility(GetLLVMVisibility(LV.visibility())); 529 } 530 } 531 532 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 533 F->setSection(SA->getName()); 534 } 535 536 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 537 assert(!GV->isDeclaration() && 538 "Only globals with definition can force usage."); 539 LLVMUsed.push_back(GV); 540 } 541 542 void CodeGenModule::EmitLLVMUsed() { 543 // Don't create llvm.used if there is no need. 544 if (LLVMUsed.empty()) 545 return; 546 547 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 548 549 // Convert LLVMUsed to what ConstantArray needs. 550 std::vector<llvm::Constant*> UsedArray; 551 UsedArray.resize(LLVMUsed.size()); 552 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 553 UsedArray[i] = 554 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 555 i8PTy); 556 } 557 558 if (UsedArray.empty()) 559 return; 560 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 561 562 llvm::GlobalVariable *GV = 563 new llvm::GlobalVariable(getModule(), ATy, false, 564 llvm::GlobalValue::AppendingLinkage, 565 llvm::ConstantArray::get(ATy, UsedArray), 566 "llvm.used"); 567 568 GV->setSection("llvm.metadata"); 569 } 570 571 void CodeGenModule::EmitDeferred() { 572 // Emit code for any potentially referenced deferred decls. Since a 573 // previously unused static decl may become used during the generation of code 574 // for a static function, iterate until no changes are made. 575 576 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 577 if (!DeferredVTables.empty()) { 578 const CXXRecordDecl *RD = DeferredVTables.back(); 579 DeferredVTables.pop_back(); 580 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 581 continue; 582 } 583 584 GlobalDecl D = DeferredDeclsToEmit.back(); 585 DeferredDeclsToEmit.pop_back(); 586 587 // Check to see if we've already emitted this. This is necessary 588 // for a couple of reasons: first, decls can end up in the 589 // deferred-decls queue multiple times, and second, decls can end 590 // up with definitions in unusual ways (e.g. by an extern inline 591 // function acquiring a strong function redefinition). Just 592 // ignore these cases. 593 // 594 // TODO: That said, looking this up multiple times is very wasteful. 595 llvm::StringRef Name = getMangledName(D); 596 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 597 assert(CGRef && "Deferred decl wasn't referenced?"); 598 599 if (!CGRef->isDeclaration()) 600 continue; 601 602 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 603 // purposes an alias counts as a definition. 604 if (isa<llvm::GlobalAlias>(CGRef)) 605 continue; 606 607 // Otherwise, emit the definition and move on to the next one. 608 EmitGlobalDefinition(D); 609 } 610 } 611 612 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 613 /// annotation information for a given GlobalValue. The annotation struct is 614 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 615 /// GlobalValue being annotated. The second field is the constant string 616 /// created from the AnnotateAttr's annotation. The third field is a constant 617 /// string containing the name of the translation unit. The fourth field is 618 /// the line number in the file of the annotated value declaration. 619 /// 620 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 621 /// appears to. 622 /// 623 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 624 const AnnotateAttr *AA, 625 unsigned LineNo) { 626 llvm::Module *M = &getModule(); 627 628 // get [N x i8] constants for the annotation string, and the filename string 629 // which are the 2nd and 3rd elements of the global annotation structure. 630 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 631 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 632 AA->getAnnotation(), true); 633 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 634 M->getModuleIdentifier(), 635 true); 636 637 // Get the two global values corresponding to the ConstantArrays we just 638 // created to hold the bytes of the strings. 639 llvm::GlobalValue *annoGV = 640 new llvm::GlobalVariable(*M, anno->getType(), false, 641 llvm::GlobalValue::PrivateLinkage, anno, 642 GV->getName()); 643 // translation unit name string, emitted into the llvm.metadata section. 644 llvm::GlobalValue *unitGV = 645 new llvm::GlobalVariable(*M, unit->getType(), false, 646 llvm::GlobalValue::PrivateLinkage, unit, 647 ".str"); 648 unitGV->setUnnamedAddr(true); 649 650 // Create the ConstantStruct for the global annotation. 651 llvm::Constant *Fields[4] = { 652 llvm::ConstantExpr::getBitCast(GV, SBP), 653 llvm::ConstantExpr::getBitCast(annoGV, SBP), 654 llvm::ConstantExpr::getBitCast(unitGV, SBP), 655 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 656 }; 657 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 658 } 659 660 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 661 // Never defer when EmitAllDecls is specified. 662 if (Features.EmitAllDecls) 663 return false; 664 665 return !getContext().DeclMustBeEmitted(Global); 666 } 667 668 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 669 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 670 assert(AA && "No alias?"); 671 672 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 673 674 // See if there is already something with the target's name in the module. 675 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 676 677 llvm::Constant *Aliasee; 678 if (isa<llvm::FunctionType>(DeclTy)) 679 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 680 /*ForVTable=*/false); 681 else 682 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 683 llvm::PointerType::getUnqual(DeclTy), 0); 684 if (!Entry) { 685 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 686 F->setLinkage(llvm::Function::ExternalWeakLinkage); 687 WeakRefReferences.insert(F); 688 } 689 690 return Aliasee; 691 } 692 693 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 694 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 695 696 // Weak references don't produce any output by themselves. 697 if (Global->hasAttr<WeakRefAttr>()) 698 return; 699 700 // If this is an alias definition (which otherwise looks like a declaration) 701 // emit it now. 702 if (Global->hasAttr<AliasAttr>()) 703 return EmitAliasDefinition(GD); 704 705 // Ignore declarations, they will be emitted on their first use. 706 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 707 if (FD->getIdentifier()) { 708 llvm::StringRef Name = FD->getName(); 709 if (Name == "_Block_object_assign") { 710 BlockObjectAssignDecl = FD; 711 } else if (Name == "_Block_object_dispose") { 712 BlockObjectDisposeDecl = FD; 713 } 714 } 715 716 // Forward declarations are emitted lazily on first use. 717 if (!FD->isThisDeclarationADefinition()) 718 return; 719 } else { 720 const VarDecl *VD = cast<VarDecl>(Global); 721 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 722 723 if (VD->getIdentifier()) { 724 llvm::StringRef Name = VD->getName(); 725 if (Name == "_NSConcreteGlobalBlock") { 726 NSConcreteGlobalBlockDecl = VD; 727 } else if (Name == "_NSConcreteStackBlock") { 728 NSConcreteStackBlockDecl = VD; 729 } 730 } 731 732 733 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 734 return; 735 } 736 737 // Defer code generation when possible if this is a static definition, inline 738 // function etc. These we only want to emit if they are used. 739 if (!MayDeferGeneration(Global)) { 740 // Emit the definition if it can't be deferred. 741 EmitGlobalDefinition(GD); 742 return; 743 } 744 745 // If we're deferring emission of a C++ variable with an 746 // initializer, remember the order in which it appeared in the file. 747 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 748 cast<VarDecl>(Global)->hasInit()) { 749 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 750 CXXGlobalInits.push_back(0); 751 } 752 753 // If the value has already been used, add it directly to the 754 // DeferredDeclsToEmit list. 755 llvm::StringRef MangledName = getMangledName(GD); 756 if (GetGlobalValue(MangledName)) 757 DeferredDeclsToEmit.push_back(GD); 758 else { 759 // Otherwise, remember that we saw a deferred decl with this name. The 760 // first use of the mangled name will cause it to move into 761 // DeferredDeclsToEmit. 762 DeferredDecls[MangledName] = GD; 763 } 764 } 765 766 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 767 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 768 769 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 770 Context.getSourceManager(), 771 "Generating code for declaration"); 772 773 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 774 // At -O0, don't generate IR for functions with available_externally 775 // linkage. 776 if (CodeGenOpts.OptimizationLevel == 0 && 777 !Function->hasAttr<AlwaysInlineAttr>() && 778 getFunctionLinkage(Function) 779 == llvm::Function::AvailableExternallyLinkage) 780 return; 781 782 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 783 if (Method->isVirtual()) 784 getVTables().EmitThunks(GD); 785 786 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 787 return EmitCXXConstructor(CD, GD.getCtorType()); 788 789 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 790 return EmitCXXDestructor(DD, GD.getDtorType()); 791 } 792 793 return EmitGlobalFunctionDefinition(GD); 794 } 795 796 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 797 return EmitGlobalVarDefinition(VD); 798 799 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 800 } 801 802 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 803 /// module, create and return an llvm Function with the specified type. If there 804 /// is something in the module with the specified name, return it potentially 805 /// bitcasted to the right type. 806 /// 807 /// If D is non-null, it specifies a decl that correspond to this. This is used 808 /// to set the attributes on the function when it is first created. 809 llvm::Constant * 810 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 811 const llvm::Type *Ty, 812 GlobalDecl D, bool ForVTable) { 813 // Lookup the entry, lazily creating it if necessary. 814 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 815 if (Entry) { 816 if (WeakRefReferences.count(Entry)) { 817 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 818 if (FD && !FD->hasAttr<WeakAttr>()) 819 Entry->setLinkage(llvm::Function::ExternalLinkage); 820 821 WeakRefReferences.erase(Entry); 822 } 823 824 if (Entry->getType()->getElementType() == Ty) 825 return Entry; 826 827 // Make sure the result is of the correct type. 828 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 829 return llvm::ConstantExpr::getBitCast(Entry, PTy); 830 } 831 832 // This function doesn't have a complete type (for example, the return 833 // type is an incomplete struct). Use a fake type instead, and make 834 // sure not to try to set attributes. 835 bool IsIncompleteFunction = false; 836 837 const llvm::FunctionType *FTy; 838 if (isa<llvm::FunctionType>(Ty)) { 839 FTy = cast<llvm::FunctionType>(Ty); 840 } else { 841 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 842 IsIncompleteFunction = true; 843 } 844 845 llvm::Function *F = llvm::Function::Create(FTy, 846 llvm::Function::ExternalLinkage, 847 MangledName, &getModule()); 848 assert(F->getName() == MangledName && "name was uniqued!"); 849 if (D.getDecl()) 850 SetFunctionAttributes(D, F, IsIncompleteFunction); 851 852 // This is the first use or definition of a mangled name. If there is a 853 // deferred decl with this name, remember that we need to emit it at the end 854 // of the file. 855 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 856 if (DDI != DeferredDecls.end()) { 857 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 858 // list, and remove it from DeferredDecls (since we don't need it anymore). 859 DeferredDeclsToEmit.push_back(DDI->second); 860 DeferredDecls.erase(DDI); 861 862 // Otherwise, there are cases we have to worry about where we're 863 // using a declaration for which we must emit a definition but where 864 // we might not find a top-level definition: 865 // - member functions defined inline in their classes 866 // - friend functions defined inline in some class 867 // - special member functions with implicit definitions 868 // If we ever change our AST traversal to walk into class methods, 869 // this will be unnecessary. 870 // 871 // We also don't emit a definition for a function if it's going to be an entry 872 // in a vtable, unless it's already marked as used. 873 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 874 // Look for a declaration that's lexically in a record. 875 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 876 do { 877 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 878 if (FD->isImplicit() && !ForVTable) { 879 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 880 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 881 break; 882 } else if (FD->isThisDeclarationADefinition()) { 883 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 884 break; 885 } 886 } 887 FD = FD->getPreviousDeclaration(); 888 } while (FD); 889 } 890 891 // Make sure the result is of the requested type. 892 if (!IsIncompleteFunction) { 893 assert(F->getType()->getElementType() == Ty); 894 return F; 895 } 896 897 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 898 return llvm::ConstantExpr::getBitCast(F, PTy); 899 } 900 901 /// GetAddrOfFunction - Return the address of the given function. If Ty is 902 /// non-null, then this function will use the specified type if it has to 903 /// create it (this occurs when we see a definition of the function). 904 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 905 const llvm::Type *Ty, 906 bool ForVTable) { 907 // If there was no specific requested type, just convert it now. 908 if (!Ty) 909 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 910 911 llvm::StringRef MangledName = getMangledName(GD); 912 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 913 } 914 915 /// CreateRuntimeFunction - Create a new runtime function with the specified 916 /// type and name. 917 llvm::Constant * 918 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 919 llvm::StringRef Name) { 920 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false); 921 } 922 923 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 924 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 925 return false; 926 if (Context.getLangOptions().CPlusPlus && 927 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 928 // FIXME: We should do something fancier here! 929 return false; 930 } 931 return true; 932 } 933 934 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 935 /// create and return an llvm GlobalVariable with the specified type. If there 936 /// is something in the module with the specified name, return it potentially 937 /// bitcasted to the right type. 938 /// 939 /// If D is non-null, it specifies a decl that correspond to this. This is used 940 /// to set the attributes on the global when it is first created. 941 llvm::Constant * 942 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 943 const llvm::PointerType *Ty, 944 const VarDecl *D, 945 bool UnnamedAddr) { 946 // Lookup the entry, lazily creating it if necessary. 947 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 948 if (Entry) { 949 if (WeakRefReferences.count(Entry)) { 950 if (D && !D->hasAttr<WeakAttr>()) 951 Entry->setLinkage(llvm::Function::ExternalLinkage); 952 953 WeakRefReferences.erase(Entry); 954 } 955 956 if (UnnamedAddr) 957 Entry->setUnnamedAddr(true); 958 959 if (Entry->getType() == Ty) 960 return Entry; 961 962 // Make sure the result is of the correct type. 963 return llvm::ConstantExpr::getBitCast(Entry, Ty); 964 } 965 966 // This is the first use or definition of a mangled name. If there is a 967 // deferred decl with this name, remember that we need to emit it at the end 968 // of the file. 969 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 970 if (DDI != DeferredDecls.end()) { 971 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 972 // list, and remove it from DeferredDecls (since we don't need it anymore). 973 DeferredDeclsToEmit.push_back(DDI->second); 974 DeferredDecls.erase(DDI); 975 } 976 977 llvm::GlobalVariable *GV = 978 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 979 llvm::GlobalValue::ExternalLinkage, 980 0, MangledName, 0, 981 false, Ty->getAddressSpace()); 982 983 // Handle things which are present even on external declarations. 984 if (D) { 985 // FIXME: This code is overly simple and should be merged with other global 986 // handling. 987 GV->setConstant(DeclIsConstantGlobal(Context, D)); 988 989 // Set linkage and visibility in case we never see a definition. 990 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 991 if (LV.linkage() != ExternalLinkage) { 992 // Don't set internal linkage on declarations. 993 } else { 994 if (D->hasAttr<DLLImportAttr>()) 995 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 996 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 997 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 998 999 // Set visibility on a declaration only if it's explicit. 1000 if (LV.visibilityExplicit()) 1001 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1002 } 1003 1004 GV->setThreadLocal(D->isThreadSpecified()); 1005 } 1006 1007 return GV; 1008 } 1009 1010 1011 llvm::GlobalVariable * 1012 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 1013 const llvm::Type *Ty, 1014 llvm::GlobalValue::LinkageTypes Linkage) { 1015 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1016 llvm::GlobalVariable *OldGV = 0; 1017 1018 1019 if (GV) { 1020 // Check if the variable has the right type. 1021 if (GV->getType()->getElementType() == Ty) 1022 return GV; 1023 1024 // Because C++ name mangling, the only way we can end up with an already 1025 // existing global with the same name is if it has been declared extern "C". 1026 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1027 OldGV = GV; 1028 } 1029 1030 // Create a new variable. 1031 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1032 Linkage, 0, Name); 1033 1034 if (OldGV) { 1035 // Replace occurrences of the old variable if needed. 1036 GV->takeName(OldGV); 1037 1038 if (!OldGV->use_empty()) { 1039 llvm::Constant *NewPtrForOldDecl = 1040 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1041 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1042 } 1043 1044 OldGV->eraseFromParent(); 1045 } 1046 1047 return GV; 1048 } 1049 1050 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1051 /// given global variable. If Ty is non-null and if the global doesn't exist, 1052 /// then it will be greated with the specified type instead of whatever the 1053 /// normal requested type would be. 1054 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1055 const llvm::Type *Ty) { 1056 assert(D->hasGlobalStorage() && "Not a global variable"); 1057 QualType ASTTy = D->getType(); 1058 if (Ty == 0) 1059 Ty = getTypes().ConvertTypeForMem(ASTTy); 1060 1061 const llvm::PointerType *PTy = 1062 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1063 1064 llvm::StringRef MangledName = getMangledName(D); 1065 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1066 } 1067 1068 /// CreateRuntimeVariable - Create a new runtime global variable with the 1069 /// specified type and name. 1070 llvm::Constant * 1071 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1072 llvm::StringRef Name) { 1073 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1074 true); 1075 } 1076 1077 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1078 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1079 1080 if (MayDeferGeneration(D)) { 1081 // If we have not seen a reference to this variable yet, place it 1082 // into the deferred declarations table to be emitted if needed 1083 // later. 1084 llvm::StringRef MangledName = getMangledName(D); 1085 if (!GetGlobalValue(MangledName)) { 1086 DeferredDecls[MangledName] = D; 1087 return; 1088 } 1089 } 1090 1091 // The tentative definition is the only definition. 1092 EmitGlobalVarDefinition(D); 1093 } 1094 1095 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1096 if (DefinitionRequired) 1097 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1098 } 1099 1100 llvm::GlobalVariable::LinkageTypes 1101 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1102 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1103 return llvm::GlobalVariable::InternalLinkage; 1104 1105 if (const CXXMethodDecl *KeyFunction 1106 = RD->getASTContext().getKeyFunction(RD)) { 1107 // If this class has a key function, use that to determine the linkage of 1108 // the vtable. 1109 const FunctionDecl *Def = 0; 1110 if (KeyFunction->hasBody(Def)) 1111 KeyFunction = cast<CXXMethodDecl>(Def); 1112 1113 switch (KeyFunction->getTemplateSpecializationKind()) { 1114 case TSK_Undeclared: 1115 case TSK_ExplicitSpecialization: 1116 // When compiling with optimizations turned on, we emit all vtables, 1117 // even if the key function is not defined in the current translation 1118 // unit. If this is the case, use available_externally linkage. 1119 if (!Def && CodeGenOpts.OptimizationLevel) 1120 return llvm::GlobalVariable::AvailableExternallyLinkage; 1121 1122 if (KeyFunction->isInlined()) 1123 return !Context.getLangOptions().AppleKext ? 1124 llvm::GlobalVariable::LinkOnceODRLinkage : 1125 llvm::Function::InternalLinkage; 1126 1127 return llvm::GlobalVariable::ExternalLinkage; 1128 1129 case TSK_ImplicitInstantiation: 1130 return !Context.getLangOptions().AppleKext ? 1131 llvm::GlobalVariable::LinkOnceODRLinkage : 1132 llvm::Function::InternalLinkage; 1133 1134 case TSK_ExplicitInstantiationDefinition: 1135 return !Context.getLangOptions().AppleKext ? 1136 llvm::GlobalVariable::WeakODRLinkage : 1137 llvm::Function::InternalLinkage; 1138 1139 case TSK_ExplicitInstantiationDeclaration: 1140 // FIXME: Use available_externally linkage. However, this currently 1141 // breaks LLVM's build due to undefined symbols. 1142 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1143 return !Context.getLangOptions().AppleKext ? 1144 llvm::GlobalVariable::LinkOnceODRLinkage : 1145 llvm::Function::InternalLinkage; 1146 } 1147 } 1148 1149 if (Context.getLangOptions().AppleKext) 1150 return llvm::Function::InternalLinkage; 1151 1152 switch (RD->getTemplateSpecializationKind()) { 1153 case TSK_Undeclared: 1154 case TSK_ExplicitSpecialization: 1155 case TSK_ImplicitInstantiation: 1156 // FIXME: Use available_externally linkage. However, this currently 1157 // breaks LLVM's build due to undefined symbols. 1158 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1159 case TSK_ExplicitInstantiationDeclaration: 1160 return llvm::GlobalVariable::LinkOnceODRLinkage; 1161 1162 case TSK_ExplicitInstantiationDefinition: 1163 return llvm::GlobalVariable::WeakODRLinkage; 1164 } 1165 1166 // Silence GCC warning. 1167 return llvm::GlobalVariable::LinkOnceODRLinkage; 1168 } 1169 1170 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1171 return Context.toCharUnitsFromBits( 1172 TheTargetData.getTypeStoreSizeInBits(Ty)); 1173 } 1174 1175 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1176 llvm::Constant *Init = 0; 1177 QualType ASTTy = D->getType(); 1178 bool NonConstInit = false; 1179 1180 const Expr *InitExpr = D->getAnyInitializer(); 1181 1182 if (!InitExpr) { 1183 // This is a tentative definition; tentative definitions are 1184 // implicitly initialized with { 0 }. 1185 // 1186 // Note that tentative definitions are only emitted at the end of 1187 // a translation unit, so they should never have incomplete 1188 // type. In addition, EmitTentativeDefinition makes sure that we 1189 // never attempt to emit a tentative definition if a real one 1190 // exists. A use may still exists, however, so we still may need 1191 // to do a RAUW. 1192 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1193 Init = EmitNullConstant(D->getType()); 1194 } else { 1195 Init = EmitConstantExpr(InitExpr, D->getType()); 1196 if (!Init) { 1197 QualType T = InitExpr->getType(); 1198 if (D->getType()->isReferenceType()) 1199 T = D->getType(); 1200 1201 if (getLangOptions().CPlusPlus) { 1202 Init = EmitNullConstant(T); 1203 NonConstInit = true; 1204 } else { 1205 ErrorUnsupported(D, "static initializer"); 1206 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1207 } 1208 } else { 1209 // We don't need an initializer, so remove the entry for the delayed 1210 // initializer position (just in case this entry was delayed). 1211 if (getLangOptions().CPlusPlus) 1212 DelayedCXXInitPosition.erase(D); 1213 } 1214 } 1215 1216 const llvm::Type* InitType = Init->getType(); 1217 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1218 1219 // Strip off a bitcast if we got one back. 1220 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1221 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1222 // all zero index gep. 1223 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1224 Entry = CE->getOperand(0); 1225 } 1226 1227 // Entry is now either a Function or GlobalVariable. 1228 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1229 1230 // We have a definition after a declaration with the wrong type. 1231 // We must make a new GlobalVariable* and update everything that used OldGV 1232 // (a declaration or tentative definition) with the new GlobalVariable* 1233 // (which will be a definition). 1234 // 1235 // This happens if there is a prototype for a global (e.g. 1236 // "extern int x[];") and then a definition of a different type (e.g. 1237 // "int x[10];"). This also happens when an initializer has a different type 1238 // from the type of the global (this happens with unions). 1239 if (GV == 0 || 1240 GV->getType()->getElementType() != InitType || 1241 GV->getType()->getAddressSpace() != 1242 getContext().getTargetAddressSpace(ASTTy)) { 1243 1244 // Move the old entry aside so that we'll create a new one. 1245 Entry->setName(llvm::StringRef()); 1246 1247 // Make a new global with the correct type, this is now guaranteed to work. 1248 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1249 1250 // Replace all uses of the old global with the new global 1251 llvm::Constant *NewPtrForOldDecl = 1252 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1253 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1254 1255 // Erase the old global, since it is no longer used. 1256 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1257 } 1258 1259 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1260 SourceManager &SM = Context.getSourceManager(); 1261 AddAnnotation(EmitAnnotateAttr(GV, AA, 1262 SM.getInstantiationLineNumber(D->getLocation()))); 1263 } 1264 1265 GV->setInitializer(Init); 1266 1267 // If it is safe to mark the global 'constant', do so now. 1268 GV->setConstant(false); 1269 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1270 GV->setConstant(true); 1271 1272 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1273 1274 // Set the llvm linkage type as appropriate. 1275 llvm::GlobalValue::LinkageTypes Linkage = 1276 GetLLVMLinkageVarDefinition(D, GV); 1277 GV->setLinkage(Linkage); 1278 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1279 // common vars aren't constant even if declared const. 1280 GV->setConstant(false); 1281 1282 SetCommonAttributes(D, GV); 1283 1284 // Emit the initializer function if necessary. 1285 if (NonConstInit) 1286 EmitCXXGlobalVarDeclInitFunc(D, GV); 1287 1288 // Emit global variable debug information. 1289 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1290 DI->setLocation(D->getLocation()); 1291 DI->EmitGlobalVariable(GV, D); 1292 } 1293 } 1294 1295 llvm::GlobalValue::LinkageTypes 1296 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1297 llvm::GlobalVariable *GV) { 1298 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1299 if (Linkage == GVA_Internal) 1300 return llvm::Function::InternalLinkage; 1301 else if (D->hasAttr<DLLImportAttr>()) 1302 return llvm::Function::DLLImportLinkage; 1303 else if (D->hasAttr<DLLExportAttr>()) 1304 return llvm::Function::DLLExportLinkage; 1305 else if (D->hasAttr<WeakAttr>()) { 1306 if (GV->isConstant()) 1307 return llvm::GlobalVariable::WeakODRLinkage; 1308 else 1309 return llvm::GlobalVariable::WeakAnyLinkage; 1310 } else if (Linkage == GVA_TemplateInstantiation || 1311 Linkage == GVA_ExplicitTemplateInstantiation) 1312 // FIXME: It seems like we can provide more specific linkage here 1313 // (LinkOnceODR, WeakODR). 1314 return llvm::GlobalVariable::WeakAnyLinkage; 1315 else if (!getLangOptions().CPlusPlus && 1316 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1317 D->getAttr<CommonAttr>()) && 1318 !D->hasExternalStorage() && !D->getInit() && 1319 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1320 // Thread local vars aren't considered common linkage. 1321 return llvm::GlobalVariable::CommonLinkage; 1322 } 1323 return llvm::GlobalVariable::ExternalLinkage; 1324 } 1325 1326 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1327 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1328 /// existing call uses of the old function in the module, this adjusts them to 1329 /// call the new function directly. 1330 /// 1331 /// This is not just a cleanup: the always_inline pass requires direct calls to 1332 /// functions to be able to inline them. If there is a bitcast in the way, it 1333 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1334 /// run at -O0. 1335 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1336 llvm::Function *NewFn) { 1337 // If we're redefining a global as a function, don't transform it. 1338 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1339 if (OldFn == 0) return; 1340 1341 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1342 llvm::SmallVector<llvm::Value*, 4> ArgList; 1343 1344 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1345 UI != E; ) { 1346 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1347 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1348 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1349 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1350 llvm::CallSite CS(CI); 1351 if (!CI || !CS.isCallee(I)) continue; 1352 1353 // If the return types don't match exactly, and if the call isn't dead, then 1354 // we can't transform this call. 1355 if (CI->getType() != NewRetTy && !CI->use_empty()) 1356 continue; 1357 1358 // If the function was passed too few arguments, don't transform. If extra 1359 // arguments were passed, we silently drop them. If any of the types 1360 // mismatch, we don't transform. 1361 unsigned ArgNo = 0; 1362 bool DontTransform = false; 1363 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1364 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1365 if (CS.arg_size() == ArgNo || 1366 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1367 DontTransform = true; 1368 break; 1369 } 1370 } 1371 if (DontTransform) 1372 continue; 1373 1374 // Okay, we can transform this. Create the new call instruction and copy 1375 // over the required information. 1376 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1377 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1378 ArgList.end(), "", CI); 1379 ArgList.clear(); 1380 if (!NewCall->getType()->isVoidTy()) 1381 NewCall->takeName(CI); 1382 NewCall->setAttributes(CI->getAttributes()); 1383 NewCall->setCallingConv(CI->getCallingConv()); 1384 1385 // Finally, remove the old call, replacing any uses with the new one. 1386 if (!CI->use_empty()) 1387 CI->replaceAllUsesWith(NewCall); 1388 1389 // Copy debug location attached to CI. 1390 if (!CI->getDebugLoc().isUnknown()) 1391 NewCall->setDebugLoc(CI->getDebugLoc()); 1392 CI->eraseFromParent(); 1393 } 1394 } 1395 1396 1397 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1398 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1399 1400 // Compute the function info and LLVM type. 1401 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1402 bool variadic = false; 1403 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1404 variadic = fpt->isVariadic(); 1405 const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false); 1406 1407 // Get or create the prototype for the function. 1408 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1409 1410 // Strip off a bitcast if we got one back. 1411 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1412 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1413 Entry = CE->getOperand(0); 1414 } 1415 1416 1417 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1418 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1419 1420 // If the types mismatch then we have to rewrite the definition. 1421 assert(OldFn->isDeclaration() && 1422 "Shouldn't replace non-declaration"); 1423 1424 // F is the Function* for the one with the wrong type, we must make a new 1425 // Function* and update everything that used F (a declaration) with the new 1426 // Function* (which will be a definition). 1427 // 1428 // This happens if there is a prototype for a function 1429 // (e.g. "int f()") and then a definition of a different type 1430 // (e.g. "int f(int x)"). Move the old function aside so that it 1431 // doesn't interfere with GetAddrOfFunction. 1432 OldFn->setName(llvm::StringRef()); 1433 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1434 1435 // If this is an implementation of a function without a prototype, try to 1436 // replace any existing uses of the function (which may be calls) with uses 1437 // of the new function 1438 if (D->getType()->isFunctionNoProtoType()) { 1439 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1440 OldFn->removeDeadConstantUsers(); 1441 } 1442 1443 // Replace uses of F with the Function we will endow with a body. 1444 if (!Entry->use_empty()) { 1445 llvm::Constant *NewPtrForOldDecl = 1446 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1447 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1448 } 1449 1450 // Ok, delete the old function now, which is dead. 1451 OldFn->eraseFromParent(); 1452 1453 Entry = NewFn; 1454 } 1455 1456 // We need to set linkage and visibility on the function before 1457 // generating code for it because various parts of IR generation 1458 // want to propagate this information down (e.g. to local static 1459 // declarations). 1460 llvm::Function *Fn = cast<llvm::Function>(Entry); 1461 setFunctionLinkage(D, Fn); 1462 1463 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1464 setGlobalVisibility(Fn, D); 1465 1466 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1467 1468 SetFunctionDefinitionAttributes(D, Fn); 1469 SetLLVMFunctionAttributesForDefinition(D, Fn); 1470 1471 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1472 AddGlobalCtor(Fn, CA->getPriority()); 1473 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1474 AddGlobalDtor(Fn, DA->getPriority()); 1475 } 1476 1477 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1478 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1479 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1480 assert(AA && "Not an alias?"); 1481 1482 llvm::StringRef MangledName = getMangledName(GD); 1483 1484 // If there is a definition in the module, then it wins over the alias. 1485 // This is dubious, but allow it to be safe. Just ignore the alias. 1486 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1487 if (Entry && !Entry->isDeclaration()) 1488 return; 1489 1490 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1491 1492 // Create a reference to the named value. This ensures that it is emitted 1493 // if a deferred decl. 1494 llvm::Constant *Aliasee; 1495 if (isa<llvm::FunctionType>(DeclTy)) 1496 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1497 /*ForVTable=*/false); 1498 else 1499 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1500 llvm::PointerType::getUnqual(DeclTy), 0); 1501 1502 // Create the new alias itself, but don't set a name yet. 1503 llvm::GlobalValue *GA = 1504 new llvm::GlobalAlias(Aliasee->getType(), 1505 llvm::Function::ExternalLinkage, 1506 "", Aliasee, &getModule()); 1507 1508 if (Entry) { 1509 assert(Entry->isDeclaration()); 1510 1511 // If there is a declaration in the module, then we had an extern followed 1512 // by the alias, as in: 1513 // extern int test6(); 1514 // ... 1515 // int test6() __attribute__((alias("test7"))); 1516 // 1517 // Remove it and replace uses of it with the alias. 1518 GA->takeName(Entry); 1519 1520 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1521 Entry->getType())); 1522 Entry->eraseFromParent(); 1523 } else { 1524 GA->setName(MangledName); 1525 } 1526 1527 // Set attributes which are particular to an alias; this is a 1528 // specialization of the attributes which may be set on a global 1529 // variable/function. 1530 if (D->hasAttr<DLLExportAttr>()) { 1531 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1532 // The dllexport attribute is ignored for undefined symbols. 1533 if (FD->hasBody()) 1534 GA->setLinkage(llvm::Function::DLLExportLinkage); 1535 } else { 1536 GA->setLinkage(llvm::Function::DLLExportLinkage); 1537 } 1538 } else if (D->hasAttr<WeakAttr>() || 1539 D->hasAttr<WeakRefAttr>() || 1540 D->isWeakImported()) { 1541 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1542 } 1543 1544 SetCommonAttributes(D, GA); 1545 } 1546 1547 /// getBuiltinLibFunction - Given a builtin id for a function like 1548 /// "__builtin_fabsf", return a Function* for "fabsf". 1549 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1550 unsigned BuiltinID) { 1551 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1552 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1553 "isn't a lib fn"); 1554 1555 // Get the name, skip over the __builtin_ prefix (if necessary). 1556 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1557 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1558 Name += 10; 1559 1560 const llvm::FunctionType *Ty = 1561 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1562 1563 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false); 1564 } 1565 1566 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1567 unsigned NumTys) { 1568 return llvm::Intrinsic::getDeclaration(&getModule(), 1569 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1570 } 1571 1572 static llvm::StringMapEntry<llvm::Constant*> & 1573 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1574 const StringLiteral *Literal, 1575 bool TargetIsLSB, 1576 bool &IsUTF16, 1577 unsigned &StringLength) { 1578 llvm::StringRef String = Literal->getString(); 1579 unsigned NumBytes = String.size(); 1580 1581 // Check for simple case. 1582 if (!Literal->containsNonAsciiOrNull()) { 1583 StringLength = NumBytes; 1584 return Map.GetOrCreateValue(String); 1585 } 1586 1587 // Otherwise, convert the UTF8 literals into a byte string. 1588 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1589 const UTF8 *FromPtr = (UTF8 *)String.data(); 1590 UTF16 *ToPtr = &ToBuf[0]; 1591 1592 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1593 &ToPtr, ToPtr + NumBytes, 1594 strictConversion); 1595 1596 // ConvertUTF8toUTF16 returns the length in ToPtr. 1597 StringLength = ToPtr - &ToBuf[0]; 1598 1599 // Render the UTF-16 string into a byte array and convert to the target byte 1600 // order. 1601 // 1602 // FIXME: This isn't something we should need to do here. 1603 llvm::SmallString<128> AsBytes; 1604 AsBytes.reserve(StringLength * 2); 1605 for (unsigned i = 0; i != StringLength; ++i) { 1606 unsigned short Val = ToBuf[i]; 1607 if (TargetIsLSB) { 1608 AsBytes.push_back(Val & 0xFF); 1609 AsBytes.push_back(Val >> 8); 1610 } else { 1611 AsBytes.push_back(Val >> 8); 1612 AsBytes.push_back(Val & 0xFF); 1613 } 1614 } 1615 // Append one extra null character, the second is automatically added by our 1616 // caller. 1617 AsBytes.push_back(0); 1618 1619 IsUTF16 = true; 1620 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1621 } 1622 1623 llvm::Constant * 1624 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1625 unsigned StringLength = 0; 1626 bool isUTF16 = false; 1627 llvm::StringMapEntry<llvm::Constant*> &Entry = 1628 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1629 getTargetData().isLittleEndian(), 1630 isUTF16, StringLength); 1631 1632 if (llvm::Constant *C = Entry.getValue()) 1633 return C; 1634 1635 llvm::Constant *Zero = 1636 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1637 llvm::Constant *Zeros[] = { Zero, Zero }; 1638 1639 // If we don't already have it, get __CFConstantStringClassReference. 1640 if (!CFConstantStringClassRef) { 1641 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1642 Ty = llvm::ArrayType::get(Ty, 0); 1643 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1644 "__CFConstantStringClassReference"); 1645 // Decay array -> ptr 1646 CFConstantStringClassRef = 1647 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1648 } 1649 1650 QualType CFTy = getContext().getCFConstantStringType(); 1651 1652 const llvm::StructType *STy = 1653 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1654 1655 std::vector<llvm::Constant*> Fields(4); 1656 1657 // Class pointer. 1658 Fields[0] = CFConstantStringClassRef; 1659 1660 // Flags. 1661 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1662 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1663 llvm::ConstantInt::get(Ty, 0x07C8); 1664 1665 // String pointer. 1666 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1667 1668 llvm::GlobalValue::LinkageTypes Linkage; 1669 bool isConstant; 1670 if (isUTF16) { 1671 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1672 Linkage = llvm::GlobalValue::InternalLinkage; 1673 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1674 // does make plain ascii ones writable. 1675 isConstant = true; 1676 } else { 1677 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1678 // when using private linkage. It is not clear if this is a bug in ld 1679 // or a reasonable new restriction. 1680 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1681 isConstant = !Features.WritableStrings; 1682 } 1683 1684 llvm::GlobalVariable *GV = 1685 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1686 ".str"); 1687 GV->setUnnamedAddr(true); 1688 if (isUTF16) { 1689 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1690 GV->setAlignment(Align.getQuantity()); 1691 } 1692 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1693 1694 // String length. 1695 Ty = getTypes().ConvertType(getContext().LongTy); 1696 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1697 1698 // The struct. 1699 C = llvm::ConstantStruct::get(STy, Fields); 1700 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1701 llvm::GlobalVariable::PrivateLinkage, C, 1702 "_unnamed_cfstring_"); 1703 if (const char *Sect = getContext().Target.getCFStringSection()) 1704 GV->setSection(Sect); 1705 Entry.setValue(GV); 1706 1707 return GV; 1708 } 1709 1710 llvm::Constant * 1711 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1712 unsigned StringLength = 0; 1713 bool isUTF16 = false; 1714 llvm::StringMapEntry<llvm::Constant*> &Entry = 1715 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1716 getTargetData().isLittleEndian(), 1717 isUTF16, StringLength); 1718 1719 if (llvm::Constant *C = Entry.getValue()) 1720 return C; 1721 1722 llvm::Constant *Zero = 1723 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1724 llvm::Constant *Zeros[] = { Zero, Zero }; 1725 1726 // If we don't already have it, get _NSConstantStringClassReference. 1727 if (!ConstantStringClassRef) { 1728 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1729 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1730 Ty = llvm::ArrayType::get(Ty, 0); 1731 llvm::Constant *GV; 1732 if (StringClass.empty()) 1733 GV = CreateRuntimeVariable(Ty, 1734 Features.ObjCNonFragileABI ? 1735 "OBJC_CLASS_$_NSConstantString" : 1736 "_NSConstantStringClassReference"); 1737 else { 1738 std::string str; 1739 if (Features.ObjCNonFragileABI) 1740 str = "OBJC_CLASS_$_" + StringClass; 1741 else 1742 str = "_" + StringClass + "ClassReference"; 1743 GV = CreateRuntimeVariable(Ty, str); 1744 } 1745 // Decay array -> ptr 1746 ConstantStringClassRef = 1747 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1748 } 1749 1750 QualType NSTy = getContext().getNSConstantStringType(); 1751 1752 const llvm::StructType *STy = 1753 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1754 1755 std::vector<llvm::Constant*> Fields(3); 1756 1757 // Class pointer. 1758 Fields[0] = ConstantStringClassRef; 1759 1760 // String pointer. 1761 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1762 1763 llvm::GlobalValue::LinkageTypes Linkage; 1764 bool isConstant; 1765 if (isUTF16) { 1766 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1767 Linkage = llvm::GlobalValue::InternalLinkage; 1768 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1769 // does make plain ascii ones writable. 1770 isConstant = true; 1771 } else { 1772 Linkage = llvm::GlobalValue::PrivateLinkage; 1773 isConstant = !Features.WritableStrings; 1774 } 1775 1776 llvm::GlobalVariable *GV = 1777 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1778 ".str"); 1779 GV->setUnnamedAddr(true); 1780 if (isUTF16) { 1781 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1782 GV->setAlignment(Align.getQuantity()); 1783 } 1784 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1785 1786 // String length. 1787 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1788 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1789 1790 // The struct. 1791 C = llvm::ConstantStruct::get(STy, Fields); 1792 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1793 llvm::GlobalVariable::PrivateLinkage, C, 1794 "_unnamed_nsstring_"); 1795 // FIXME. Fix section. 1796 if (const char *Sect = 1797 Features.ObjCNonFragileABI 1798 ? getContext().Target.getNSStringNonFragileABISection() 1799 : getContext().Target.getNSStringSection()) 1800 GV->setSection(Sect); 1801 Entry.setValue(GV); 1802 1803 return GV; 1804 } 1805 1806 /// GetStringForStringLiteral - Return the appropriate bytes for a 1807 /// string literal, properly padded to match the literal type. 1808 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1809 const ASTContext &Context = getContext(); 1810 const ConstantArrayType *CAT = 1811 Context.getAsConstantArrayType(E->getType()); 1812 assert(CAT && "String isn't pointer or array!"); 1813 1814 // Resize the string to the right size. 1815 uint64_t RealLen = CAT->getSize().getZExtValue(); 1816 1817 if (E->isWide()) 1818 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1819 1820 std::string Str = E->getString().str(); 1821 Str.resize(RealLen, '\0'); 1822 1823 return Str; 1824 } 1825 1826 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1827 /// constant array for the given string literal. 1828 llvm::Constant * 1829 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1830 // FIXME: This can be more efficient. 1831 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1832 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1833 if (S->isWide()) { 1834 llvm::Type *DestTy = 1835 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1836 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1837 } 1838 return C; 1839 } 1840 1841 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1842 /// array for the given ObjCEncodeExpr node. 1843 llvm::Constant * 1844 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1845 std::string Str; 1846 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1847 1848 return GetAddrOfConstantCString(Str); 1849 } 1850 1851 1852 /// GenerateWritableString -- Creates storage for a string literal. 1853 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str, 1854 bool constant, 1855 CodeGenModule &CGM, 1856 const char *GlobalName) { 1857 // Create Constant for this string literal. Don't add a '\0'. 1858 llvm::Constant *C = 1859 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1860 1861 // Create a global variable for this string 1862 llvm::GlobalVariable *GV = 1863 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1864 llvm::GlobalValue::PrivateLinkage, 1865 C, GlobalName); 1866 GV->setUnnamedAddr(true); 1867 return GV; 1868 } 1869 1870 /// GetAddrOfConstantString - Returns a pointer to a character array 1871 /// containing the literal. This contents are exactly that of the 1872 /// given string, i.e. it will not be null terminated automatically; 1873 /// see GetAddrOfConstantCString. Note that whether the result is 1874 /// actually a pointer to an LLVM constant depends on 1875 /// Feature.WriteableStrings. 1876 /// 1877 /// The result has pointer to array type. 1878 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str, 1879 const char *GlobalName) { 1880 bool IsConstant = !Features.WritableStrings; 1881 1882 // Get the default prefix if a name wasn't specified. 1883 if (!GlobalName) 1884 GlobalName = ".str"; 1885 1886 // Don't share any string literals if strings aren't constant. 1887 if (!IsConstant) 1888 return GenerateStringLiteral(Str, false, *this, GlobalName); 1889 1890 llvm::StringMapEntry<llvm::Constant *> &Entry = 1891 ConstantStringMap.GetOrCreateValue(Str); 1892 1893 if (Entry.getValue()) 1894 return Entry.getValue(); 1895 1896 // Create a global variable for this. 1897 llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName); 1898 Entry.setValue(C); 1899 return C; 1900 } 1901 1902 /// GetAddrOfConstantCString - Returns a pointer to a character 1903 /// array containing the literal and a terminating '\0' 1904 /// character. The result has pointer to array type. 1905 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 1906 const char *GlobalName){ 1907 llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1); 1908 return GetAddrOfConstantString(StrWithNull, GlobalName); 1909 } 1910 1911 /// EmitObjCPropertyImplementations - Emit information for synthesized 1912 /// properties for an implementation. 1913 void CodeGenModule::EmitObjCPropertyImplementations(const 1914 ObjCImplementationDecl *D) { 1915 for (ObjCImplementationDecl::propimpl_iterator 1916 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1917 ObjCPropertyImplDecl *PID = *i; 1918 1919 // Dynamic is just for type-checking. 1920 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1921 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1922 1923 // Determine which methods need to be implemented, some may have 1924 // been overridden. Note that ::isSynthesized is not the method 1925 // we want, that just indicates if the decl came from a 1926 // property. What we want to know is if the method is defined in 1927 // this implementation. 1928 if (!D->getInstanceMethod(PD->getGetterName())) 1929 CodeGenFunction(*this).GenerateObjCGetter( 1930 const_cast<ObjCImplementationDecl *>(D), PID); 1931 if (!PD->isReadOnly() && 1932 !D->getInstanceMethod(PD->getSetterName())) 1933 CodeGenFunction(*this).GenerateObjCSetter( 1934 const_cast<ObjCImplementationDecl *>(D), PID); 1935 } 1936 } 1937 } 1938 1939 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 1940 ObjCInterfaceDecl *iface 1941 = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface()); 1942 for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1943 ivar; ivar = ivar->getNextIvar()) 1944 if (ivar->getType().isDestructedType()) 1945 return true; 1946 1947 return false; 1948 } 1949 1950 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1951 /// for an implementation. 1952 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1953 // We might need a .cxx_destruct even if we don't have any ivar initializers. 1954 if (needsDestructMethod(D)) { 1955 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1956 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1957 ObjCMethodDecl *DTORMethod = 1958 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 1959 cxxSelector, getContext().VoidTy, 0, D, true, 1960 false, true, false, ObjCMethodDecl::Required); 1961 D->addInstanceMethod(DTORMethod); 1962 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1963 } 1964 1965 // If the implementation doesn't have any ivar initializers, we don't need 1966 // a .cxx_construct. 1967 if (D->getNumIvarInitializers() == 0) 1968 return; 1969 1970 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 1971 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1972 // The constructor returns 'self'. 1973 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1974 D->getLocation(), 1975 D->getLocation(), cxxSelector, 1976 getContext().getObjCIdType(), 0, 1977 D, true, false, true, false, 1978 ObjCMethodDecl::Required); 1979 D->addInstanceMethod(CTORMethod); 1980 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1981 } 1982 1983 /// EmitNamespace - Emit all declarations in a namespace. 1984 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1985 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1986 I != E; ++I) 1987 EmitTopLevelDecl(*I); 1988 } 1989 1990 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1991 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1992 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1993 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1994 ErrorUnsupported(LSD, "linkage spec"); 1995 return; 1996 } 1997 1998 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1999 I != E; ++I) 2000 EmitTopLevelDecl(*I); 2001 } 2002 2003 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2004 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2005 // If an error has occurred, stop code generation, but continue 2006 // parsing and semantic analysis (to ensure all warnings and errors 2007 // are emitted). 2008 if (Diags.hasErrorOccurred()) 2009 return; 2010 2011 // Ignore dependent declarations. 2012 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2013 return; 2014 2015 switch (D->getKind()) { 2016 case Decl::CXXConversion: 2017 case Decl::CXXMethod: 2018 case Decl::Function: 2019 // Skip function templates 2020 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2021 return; 2022 2023 EmitGlobal(cast<FunctionDecl>(D)); 2024 break; 2025 2026 case Decl::Var: 2027 EmitGlobal(cast<VarDecl>(D)); 2028 break; 2029 2030 // C++ Decls 2031 case Decl::Namespace: 2032 EmitNamespace(cast<NamespaceDecl>(D)); 2033 break; 2034 // No code generation needed. 2035 case Decl::UsingShadow: 2036 case Decl::Using: 2037 case Decl::UsingDirective: 2038 case Decl::ClassTemplate: 2039 case Decl::FunctionTemplate: 2040 case Decl::NamespaceAlias: 2041 break; 2042 case Decl::CXXConstructor: 2043 // Skip function templates 2044 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2045 return; 2046 2047 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2048 break; 2049 case Decl::CXXDestructor: 2050 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2051 break; 2052 2053 case Decl::StaticAssert: 2054 // Nothing to do. 2055 break; 2056 2057 // Objective-C Decls 2058 2059 // Forward declarations, no (immediate) code generation. 2060 case Decl::ObjCClass: 2061 case Decl::ObjCForwardProtocol: 2062 case Decl::ObjCInterface: 2063 break; 2064 2065 case Decl::ObjCCategory: { 2066 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2067 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2068 Context.ResetObjCLayout(CD->getClassInterface()); 2069 break; 2070 } 2071 2072 2073 case Decl::ObjCProtocol: 2074 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2075 break; 2076 2077 case Decl::ObjCCategoryImpl: 2078 // Categories have properties but don't support synthesize so we 2079 // can ignore them here. 2080 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2081 break; 2082 2083 case Decl::ObjCImplementation: { 2084 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2085 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2086 Context.ResetObjCLayout(OMD->getClassInterface()); 2087 EmitObjCPropertyImplementations(OMD); 2088 EmitObjCIvarInitializations(OMD); 2089 Runtime->GenerateClass(OMD); 2090 break; 2091 } 2092 case Decl::ObjCMethod: { 2093 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2094 // If this is not a prototype, emit the body. 2095 if (OMD->getBody()) 2096 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2097 break; 2098 } 2099 case Decl::ObjCCompatibleAlias: 2100 // compatibility-alias is a directive and has no code gen. 2101 break; 2102 2103 case Decl::LinkageSpec: 2104 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2105 break; 2106 2107 case Decl::FileScopeAsm: { 2108 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2109 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2110 2111 const std::string &S = getModule().getModuleInlineAsm(); 2112 if (S.empty()) 2113 getModule().setModuleInlineAsm(AsmString); 2114 else 2115 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2116 break; 2117 } 2118 2119 default: 2120 // Make sure we handled everything we should, every other kind is a 2121 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2122 // function. Need to recode Decl::Kind to do that easily. 2123 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2124 } 2125 } 2126 2127 /// Turns the given pointer into a constant. 2128 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2129 const void *Ptr) { 2130 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2131 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2132 return llvm::ConstantInt::get(i64, PtrInt); 2133 } 2134 2135 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2136 llvm::NamedMDNode *&GlobalMetadata, 2137 GlobalDecl D, 2138 llvm::GlobalValue *Addr) { 2139 if (!GlobalMetadata) 2140 GlobalMetadata = 2141 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2142 2143 // TODO: should we report variant information for ctors/dtors? 2144 llvm::Value *Ops[] = { 2145 Addr, 2146 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2147 }; 2148 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2149 } 2150 2151 /// Emits metadata nodes associating all the global values in the 2152 /// current module with the Decls they came from. This is useful for 2153 /// projects using IR gen as a subroutine. 2154 /// 2155 /// Since there's currently no way to associate an MDNode directly 2156 /// with an llvm::GlobalValue, we create a global named metadata 2157 /// with the name 'clang.global.decl.ptrs'. 2158 void CodeGenModule::EmitDeclMetadata() { 2159 llvm::NamedMDNode *GlobalMetadata = 0; 2160 2161 // StaticLocalDeclMap 2162 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2163 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2164 I != E; ++I) { 2165 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2166 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2167 } 2168 } 2169 2170 /// Emits metadata nodes for all the local variables in the current 2171 /// function. 2172 void CodeGenFunction::EmitDeclMetadata() { 2173 if (LocalDeclMap.empty()) return; 2174 2175 llvm::LLVMContext &Context = getLLVMContext(); 2176 2177 // Find the unique metadata ID for this name. 2178 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2179 2180 llvm::NamedMDNode *GlobalMetadata = 0; 2181 2182 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2183 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2184 const Decl *D = I->first; 2185 llvm::Value *Addr = I->second; 2186 2187 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2188 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2189 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2190 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2191 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2192 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2193 } 2194 } 2195 } 2196 2197 ///@name Custom Runtime Function Interfaces 2198 ///@{ 2199 // 2200 // FIXME: These can be eliminated once we can have clients just get the required 2201 // AST nodes from the builtin tables. 2202 2203 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2204 if (BlockObjectDispose) 2205 return BlockObjectDispose; 2206 2207 // If we saw an explicit decl, use that. 2208 if (BlockObjectDisposeDecl) { 2209 return BlockObjectDispose = GetAddrOfFunction( 2210 BlockObjectDisposeDecl, 2211 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2212 } 2213 2214 // Otherwise construct the function by hand. 2215 const llvm::FunctionType *FTy; 2216 std::vector<const llvm::Type*> ArgTys; 2217 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2218 ArgTys.push_back(Int8PtrTy); 2219 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2220 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2221 return BlockObjectDispose = 2222 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2223 } 2224 2225 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2226 if (BlockObjectAssign) 2227 return BlockObjectAssign; 2228 2229 // If we saw an explicit decl, use that. 2230 if (BlockObjectAssignDecl) { 2231 return BlockObjectAssign = GetAddrOfFunction( 2232 BlockObjectAssignDecl, 2233 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2234 } 2235 2236 // Otherwise construct the function by hand. 2237 const llvm::FunctionType *FTy; 2238 std::vector<const llvm::Type*> ArgTys; 2239 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2240 ArgTys.push_back(Int8PtrTy); 2241 ArgTys.push_back(Int8PtrTy); 2242 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2243 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2244 return BlockObjectAssign = 2245 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2246 } 2247 2248 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2249 if (NSConcreteGlobalBlock) 2250 return NSConcreteGlobalBlock; 2251 2252 // If we saw an explicit decl, use that. 2253 if (NSConcreteGlobalBlockDecl) { 2254 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2255 NSConcreteGlobalBlockDecl, 2256 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2257 } 2258 2259 // Otherwise construct the variable by hand. 2260 return NSConcreteGlobalBlock = 2261 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2262 } 2263 2264 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2265 if (NSConcreteStackBlock) 2266 return NSConcreteStackBlock; 2267 2268 // If we saw an explicit decl, use that. 2269 if (NSConcreteStackBlockDecl) { 2270 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2271 NSConcreteStackBlockDecl, 2272 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2273 } 2274 2275 // Otherwise construct the variable by hand. 2276 return NSConcreteStackBlock = 2277 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2278 } 2279 2280 ///@} 2281