1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MD5.h" 57 58 using namespace clang; 59 using namespace CodeGen; 60 61 static const char AnnotationSection[] = "llvm.metadata"; 62 63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 64 switch (CGM.getTarget().getCXXABI().getKind()) { 65 case TargetCXXABI::GenericAArch64: 66 case TargetCXXABI::GenericARM: 67 case TargetCXXABI::iOS: 68 case TargetCXXABI::iOS64: 69 case TargetCXXABI::WatchOS: 70 case TargetCXXABI::GenericMIPS: 71 case TargetCXXABI::GenericItanium: 72 case TargetCXXABI::WebAssembly: 73 return CreateItaniumCXXABI(CGM); 74 case TargetCXXABI::Microsoft: 75 return CreateMicrosoftCXXABI(CGM); 76 } 77 78 llvm_unreachable("invalid C++ ABI kind"); 79 } 80 81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 82 const PreprocessorOptions &PPO, 83 const CodeGenOptions &CGO, llvm::Module &M, 84 DiagnosticsEngine &diags, 85 CoverageSourceInfo *CoverageInfo) 86 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 87 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 88 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 89 VMContext(M.getContext()), Types(*this), VTables(*this), 90 SanitizerMD(new SanitizerMetadata(*this)) { 91 92 // Initialize the type cache. 93 llvm::LLVMContext &LLVMContext = M.getContext(); 94 VoidTy = llvm::Type::getVoidTy(LLVMContext); 95 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 96 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 97 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 98 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 99 FloatTy = llvm::Type::getFloatTy(LLVMContext); 100 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 101 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 104 SizeSizeInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 106 IntAlignInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 108 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 109 IntPtrTy = llvm::IntegerType::get(LLVMContext, 110 C.getTargetInfo().getMaxPointerWidth()); 111 Int8PtrTy = Int8Ty->getPointerTo(0); 112 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 113 114 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 115 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 116 117 if (LangOpts.ObjC1) 118 createObjCRuntime(); 119 if (LangOpts.OpenCL) 120 createOpenCLRuntime(); 121 if (LangOpts.OpenMP) 122 createOpenMPRuntime(); 123 if (LangOpts.CUDA) 124 createCUDARuntime(); 125 126 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 127 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 128 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 129 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 130 getCXXABI().getMangleContext())); 131 132 // If debug info or coverage generation is enabled, create the CGDebugInfo 133 // object. 134 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 135 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 136 DebugInfo.reset(new CGDebugInfo(*this)); 137 138 Block.GlobalUniqueCount = 0; 139 140 if (C.getLangOpts().ObjC1) 141 ObjCData.reset(new ObjCEntrypoints()); 142 143 if (CodeGenOpts.hasProfileClangUse()) { 144 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 145 CodeGenOpts.ProfileInstrumentUsePath); 146 if (auto E = ReaderOrErr.takeError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile %0: %1"); 149 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 150 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 151 << EI.message(); 152 }); 153 } else 154 PGOReader = std::move(ReaderOrErr.get()); 155 } 156 157 // If coverage mapping generation is enabled, create the 158 // CoverageMappingModuleGen object. 159 if (CodeGenOpts.CoverageMapping) 160 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 161 } 162 163 CodeGenModule::~CodeGenModule() {} 164 165 void CodeGenModule::createObjCRuntime() { 166 // This is just isGNUFamily(), but we want to force implementors of 167 // new ABIs to decide how best to do this. 168 switch (LangOpts.ObjCRuntime.getKind()) { 169 case ObjCRuntime::GNUstep: 170 case ObjCRuntime::GCC: 171 case ObjCRuntime::ObjFW: 172 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 173 return; 174 175 case ObjCRuntime::FragileMacOSX: 176 case ObjCRuntime::MacOSX: 177 case ObjCRuntime::iOS: 178 case ObjCRuntime::WatchOS: 179 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 180 return; 181 } 182 llvm_unreachable("bad runtime kind"); 183 } 184 185 void CodeGenModule::createOpenCLRuntime() { 186 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 187 } 188 189 void CodeGenModule::createOpenMPRuntime() { 190 // Select a specialized code generation class based on the target, if any. 191 // If it does not exist use the default implementation. 192 switch (getTarget().getTriple().getArch()) { 193 194 case llvm::Triple::nvptx: 195 case llvm::Triple::nvptx64: 196 assert(getLangOpts().OpenMPIsDevice && 197 "OpenMP NVPTX is only prepared to deal with device code."); 198 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 199 break; 200 default: 201 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 202 break; 203 } 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 239 NewF); 240 } 241 OldF->eraseFromParent(); 242 } 243 } 244 245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 246 GlobalValReplacements.push_back(std::make_pair(GV, C)); 247 } 248 249 void CodeGenModule::applyGlobalValReplacements() { 250 for (auto &I : GlobalValReplacements) { 251 llvm::GlobalValue *GV = I.first; 252 llvm::Constant *C = I.second; 253 254 GV->replaceAllUsesWith(C); 255 GV->eraseFromParent(); 256 } 257 } 258 259 // This is only used in aliases that we created and we know they have a 260 // linear structure. 261 static const llvm::GlobalObject *getAliasedGlobal( 262 const llvm::GlobalIndirectSymbol &GIS) { 263 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 264 const llvm::Constant *C = &GIS; 265 for (;;) { 266 C = C->stripPointerCasts(); 267 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 268 return GO; 269 // stripPointerCasts will not walk over weak aliases. 270 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 271 if (!GIS2) 272 return nullptr; 273 if (!Visited.insert(GIS2).second) 274 return nullptr; 275 C = GIS2->getIndirectSymbol(); 276 } 277 } 278 279 void CodeGenModule::checkAliases() { 280 // Check if the constructed aliases are well formed. It is really unfortunate 281 // that we have to do this in CodeGen, but we only construct mangled names 282 // and aliases during codegen. 283 bool Error = false; 284 DiagnosticsEngine &Diags = getDiags(); 285 for (const GlobalDecl &GD : Aliases) { 286 const auto *D = cast<ValueDecl>(GD.getDecl()); 287 SourceLocation Location; 288 bool IsIFunc = D->hasAttr<IFuncAttr>(); 289 if (const Attr *A = D->getDefiningAttr()) 290 Location = A->getLocation(); 291 else 292 llvm_unreachable("Not an alias or ifunc?"); 293 StringRef MangledName = getMangledName(GD); 294 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 295 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 296 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 297 if (!GV) { 298 Error = true; 299 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 300 } else if (GV->isDeclaration()) { 301 Error = true; 302 Diags.Report(Location, diag::err_alias_to_undefined) 303 << IsIFunc << IsIFunc; 304 } else if (IsIFunc) { 305 // Check resolver function type. 306 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 307 GV->getType()->getPointerElementType()); 308 assert(FTy); 309 if (!FTy->getReturnType()->isPointerTy()) 310 Diags.Report(Location, diag::err_ifunc_resolver_return); 311 if (FTy->getNumParams()) 312 Diags.Report(Location, diag::err_ifunc_resolver_params); 313 } 314 315 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 316 llvm::GlobalValue *AliaseeGV; 317 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 318 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 319 else 320 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 321 322 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 323 StringRef AliasSection = SA->getName(); 324 if (AliasSection != AliaseeGV->getSection()) 325 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 326 << AliasSection << IsIFunc << IsIFunc; 327 } 328 329 // We have to handle alias to weak aliases in here. LLVM itself disallows 330 // this since the object semantics would not match the IL one. For 331 // compatibility with gcc we implement it by just pointing the alias 332 // to its aliasee's aliasee. We also warn, since the user is probably 333 // expecting the link to be weak. 334 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 335 if (GA->isInterposable()) { 336 Diags.Report(Location, diag::warn_alias_to_weak_alias) 337 << GV->getName() << GA->getName() << IsIFunc; 338 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 339 GA->getIndirectSymbol(), Alias->getType()); 340 Alias->setIndirectSymbol(Aliasee); 341 } 342 } 343 } 344 if (!Error) 345 return; 346 347 for (const GlobalDecl &GD : Aliases) { 348 StringRef MangledName = getMangledName(GD); 349 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 350 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 351 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 352 Alias->eraseFromParent(); 353 } 354 } 355 356 void CodeGenModule::clear() { 357 DeferredDeclsToEmit.clear(); 358 if (OpenMPRuntime) 359 OpenMPRuntime->clear(); 360 } 361 362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 363 StringRef MainFile) { 364 if (!hasDiagnostics()) 365 return; 366 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 367 if (MainFile.empty()) 368 MainFile = "<stdin>"; 369 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 370 } else 371 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 372 << Mismatched; 373 } 374 375 void CodeGenModule::Release() { 376 EmitDeferred(); 377 applyGlobalValReplacements(); 378 applyReplacements(); 379 checkAliases(); 380 EmitCXXGlobalInitFunc(); 381 EmitCXXGlobalDtorFunc(); 382 EmitCXXThreadLocalInitFunc(); 383 if (ObjCRuntime) 384 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 385 AddGlobalCtor(ObjCInitFunction); 386 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 387 CUDARuntime) { 388 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 389 AddGlobalCtor(CudaCtorFunction); 390 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 391 AddGlobalDtor(CudaDtorFunction); 392 } 393 if (OpenMPRuntime) 394 if (llvm::Function *OpenMPRegistrationFunction = 395 OpenMPRuntime->emitRegistrationFunction()) 396 AddGlobalCtor(OpenMPRegistrationFunction, 0); 397 if (PGOReader) { 398 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 399 if (PGOStats.hasDiagnostics()) 400 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 401 } 402 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 403 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 404 EmitGlobalAnnotations(); 405 EmitStaticExternCAliases(); 406 EmitDeferredUnusedCoverageMappings(); 407 if (CoverageMapping) 408 CoverageMapping->emit(); 409 if (CodeGenOpts.SanitizeCfiCrossDso) 410 CodeGenFunction(*this).EmitCfiCheckFail(); 411 emitLLVMUsed(); 412 if (SanStats) 413 SanStats->finish(); 414 415 if (CodeGenOpts.Autolink && 416 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 417 EmitModuleLinkOptions(); 418 } 419 if (CodeGenOpts.DwarfVersion) { 420 // We actually want the latest version when there are conflicts. 421 // We can change from Warning to Latest if such mode is supported. 422 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 423 CodeGenOpts.DwarfVersion); 424 } 425 if (CodeGenOpts.EmitCodeView) { 426 // Indicate that we want CodeView in the metadata. 427 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 428 } 429 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 430 // We don't support LTO with 2 with different StrictVTablePointers 431 // FIXME: we could support it by stripping all the information introduced 432 // by StrictVTablePointers. 433 434 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 435 436 llvm::Metadata *Ops[2] = { 437 llvm::MDString::get(VMContext, "StrictVTablePointers"), 438 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 439 llvm::Type::getInt32Ty(VMContext), 1))}; 440 441 getModule().addModuleFlag(llvm::Module::Require, 442 "StrictVTablePointersRequirement", 443 llvm::MDNode::get(VMContext, Ops)); 444 } 445 if (DebugInfo) 446 // We support a single version in the linked module. The LLVM 447 // parser will drop debug info with a different version number 448 // (and warn about it, too). 449 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 450 llvm::DEBUG_METADATA_VERSION); 451 452 // We need to record the widths of enums and wchar_t, so that we can generate 453 // the correct build attributes in the ARM backend. 454 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 455 if ( Arch == llvm::Triple::arm 456 || Arch == llvm::Triple::armeb 457 || Arch == llvm::Triple::thumb 458 || Arch == llvm::Triple::thumbeb) { 459 // Width of wchar_t in bytes 460 uint64_t WCharWidth = 461 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 462 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 463 464 // The minimum width of an enum in bytes 465 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 466 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 467 } 468 469 if (CodeGenOpts.SanitizeCfiCrossDso) { 470 // Indicate that we want cross-DSO control flow integrity checks. 471 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 472 } 473 474 if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) { 475 // Indicate whether __nvvm_reflect should be configured to flush denormal 476 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 477 // property.) 478 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 479 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 480 } 481 482 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 483 assert(PLevel < 3 && "Invalid PIC Level"); 484 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 485 if (Context.getLangOpts().PIE) 486 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 487 } 488 489 SimplifyPersonality(); 490 491 if (getCodeGenOpts().EmitDeclMetadata) 492 EmitDeclMetadata(); 493 494 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 495 EmitCoverageFile(); 496 497 if (DebugInfo) 498 DebugInfo->finalize(); 499 500 EmitVersionIdentMetadata(); 501 502 EmitTargetMetadata(); 503 504 // Emit any deferred diagnostics gathered during codegen. We didn't emit them 505 // when we first discovered them because that would have halted codegen, 506 // preventing us from gathering other deferred diags. 507 for (const PartialDiagnosticAt &DiagAt : DeferredDiags) { 508 SourceLocation Loc = DiagAt.first; 509 const PartialDiagnostic &PD = DiagAt.second; 510 DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID())); 511 PD.Emit(Builder); 512 } 513 } 514 515 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 516 // Make sure that this type is translated. 517 Types.UpdateCompletedType(TD); 518 } 519 520 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 521 // Make sure that this type is translated. 522 Types.RefreshTypeCacheForClass(RD); 523 } 524 525 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 526 if (!TBAA) 527 return nullptr; 528 return TBAA->getTBAAInfo(QTy); 529 } 530 531 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 532 if (!TBAA) 533 return nullptr; 534 return TBAA->getTBAAInfoForVTablePtr(); 535 } 536 537 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 538 if (!TBAA) 539 return nullptr; 540 return TBAA->getTBAAStructInfo(QTy); 541 } 542 543 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 544 llvm::MDNode *AccessN, 545 uint64_t O) { 546 if (!TBAA) 547 return nullptr; 548 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 549 } 550 551 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 552 /// and struct-path aware TBAA, the tag has the same format: 553 /// base type, access type and offset. 554 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 555 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 556 llvm::MDNode *TBAAInfo, 557 bool ConvertTypeToTag) { 558 if (ConvertTypeToTag && TBAA) 559 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 560 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 561 else 562 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 563 } 564 565 void CodeGenModule::DecorateInstructionWithInvariantGroup( 566 llvm::Instruction *I, const CXXRecordDecl *RD) { 567 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 568 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 569 // Check if we have to wrap MDString in MDNode. 570 if (!MetaDataNode) 571 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 572 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 573 } 574 575 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 576 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 577 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 578 } 579 580 /// ErrorUnsupported - Print out an error that codegen doesn't support the 581 /// specified stmt yet. 582 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 583 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 584 "cannot compile this %0 yet"); 585 std::string Msg = Type; 586 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 587 << Msg << S->getSourceRange(); 588 } 589 590 /// ErrorUnsupported - Print out an error that codegen doesn't support the 591 /// specified decl yet. 592 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 593 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 594 "cannot compile this %0 yet"); 595 std::string Msg = Type; 596 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 597 } 598 599 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 600 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 601 } 602 603 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 604 const NamedDecl *D) const { 605 // Internal definitions always have default visibility. 606 if (GV->hasLocalLinkage()) { 607 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 608 return; 609 } 610 611 // Set visibility for definitions. 612 LinkageInfo LV = D->getLinkageAndVisibility(); 613 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 614 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 615 } 616 617 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 618 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 619 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 620 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 621 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 622 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 623 } 624 625 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 626 CodeGenOptions::TLSModel M) { 627 switch (M) { 628 case CodeGenOptions::GeneralDynamicTLSModel: 629 return llvm::GlobalVariable::GeneralDynamicTLSModel; 630 case CodeGenOptions::LocalDynamicTLSModel: 631 return llvm::GlobalVariable::LocalDynamicTLSModel; 632 case CodeGenOptions::InitialExecTLSModel: 633 return llvm::GlobalVariable::InitialExecTLSModel; 634 case CodeGenOptions::LocalExecTLSModel: 635 return llvm::GlobalVariable::LocalExecTLSModel; 636 } 637 llvm_unreachable("Invalid TLS model!"); 638 } 639 640 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 641 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 642 643 llvm::GlobalValue::ThreadLocalMode TLM; 644 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 645 646 // Override the TLS model if it is explicitly specified. 647 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 648 TLM = GetLLVMTLSModel(Attr->getModel()); 649 } 650 651 GV->setThreadLocalMode(TLM); 652 } 653 654 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 655 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 656 657 // Some ABIs don't have constructor variants. Make sure that base and 658 // complete constructors get mangled the same. 659 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 660 if (!getTarget().getCXXABI().hasConstructorVariants()) { 661 CXXCtorType OrigCtorType = GD.getCtorType(); 662 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 663 if (OrigCtorType == Ctor_Base) 664 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 665 } 666 } 667 668 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 669 if (!FoundStr.empty()) 670 return FoundStr; 671 672 const auto *ND = cast<NamedDecl>(GD.getDecl()); 673 SmallString<256> Buffer; 674 StringRef Str; 675 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 676 llvm::raw_svector_ostream Out(Buffer); 677 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 678 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 679 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 680 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 681 else 682 getCXXABI().getMangleContext().mangleName(ND, Out); 683 Str = Out.str(); 684 } else { 685 IdentifierInfo *II = ND->getIdentifier(); 686 assert(II && "Attempt to mangle unnamed decl."); 687 Str = II->getName(); 688 } 689 690 // Keep the first result in the case of a mangling collision. 691 auto Result = Manglings.insert(std::make_pair(Str, GD)); 692 return FoundStr = Result.first->first(); 693 } 694 695 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 696 const BlockDecl *BD) { 697 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 698 const Decl *D = GD.getDecl(); 699 700 SmallString<256> Buffer; 701 llvm::raw_svector_ostream Out(Buffer); 702 if (!D) 703 MangleCtx.mangleGlobalBlock(BD, 704 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 705 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 706 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 707 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 708 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 709 else 710 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 711 712 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 713 return Result.first->first(); 714 } 715 716 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 717 return getModule().getNamedValue(Name); 718 } 719 720 /// AddGlobalCtor - Add a function to the list that will be called before 721 /// main() runs. 722 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 723 llvm::Constant *AssociatedData) { 724 // FIXME: Type coercion of void()* types. 725 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 726 } 727 728 /// AddGlobalDtor - Add a function to the list that will be called 729 /// when the module is unloaded. 730 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 731 // FIXME: Type coercion of void()* types. 732 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 733 } 734 735 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 736 // Ctor function type is void()*. 737 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 738 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 739 740 // Get the type of a ctor entry, { i32, void ()*, i8* }. 741 llvm::StructType *CtorStructTy = llvm::StructType::get( 742 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 743 744 // Construct the constructor and destructor arrays. 745 SmallVector<llvm::Constant *, 8> Ctors; 746 for (const auto &I : Fns) { 747 llvm::Constant *S[] = { 748 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 749 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 750 (I.AssociatedData 751 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 752 : llvm::Constant::getNullValue(VoidPtrTy))}; 753 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 754 } 755 756 if (!Ctors.empty()) { 757 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 758 new llvm::GlobalVariable(TheModule, AT, false, 759 llvm::GlobalValue::AppendingLinkage, 760 llvm::ConstantArray::get(AT, Ctors), 761 GlobalName); 762 } 763 } 764 765 llvm::GlobalValue::LinkageTypes 766 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 767 const auto *D = cast<FunctionDecl>(GD.getDecl()); 768 769 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 770 771 if (isa<CXXDestructorDecl>(D) && 772 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 773 GD.getDtorType())) { 774 // Destructor variants in the Microsoft C++ ABI are always internal or 775 // linkonce_odr thunks emitted on an as-needed basis. 776 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 777 : llvm::GlobalValue::LinkOnceODRLinkage; 778 } 779 780 if (isa<CXXConstructorDecl>(D) && 781 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 782 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 783 // Our approach to inheriting constructors is fundamentally different from 784 // that used by the MS ABI, so keep our inheriting constructor thunks 785 // internal rather than trying to pick an unambiguous mangling for them. 786 return llvm::GlobalValue::InternalLinkage; 787 } 788 789 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 790 } 791 792 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 793 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 794 795 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 796 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 797 // Don't dllexport/import destructor thunks. 798 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 799 return; 800 } 801 } 802 803 if (FD->hasAttr<DLLImportAttr>()) 804 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 805 else if (FD->hasAttr<DLLExportAttr>()) 806 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 807 else 808 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 809 } 810 811 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 812 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 813 if (!MDS) return nullptr; 814 815 llvm::MD5 md5; 816 llvm::MD5::MD5Result result; 817 md5.update(MDS->getString()); 818 md5.final(result); 819 uint64_t id = 0; 820 for (int i = 0; i < 8; ++i) 821 id |= static_cast<uint64_t>(result[i]) << (i * 8); 822 return llvm::ConstantInt::get(Int64Ty, id); 823 } 824 825 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 826 llvm::Function *F) { 827 setNonAliasAttributes(D, F); 828 } 829 830 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 831 const CGFunctionInfo &Info, 832 llvm::Function *F) { 833 unsigned CallingConv; 834 AttributeListType AttributeList; 835 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 836 false); 837 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 838 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 839 } 840 841 /// Determines whether the language options require us to model 842 /// unwind exceptions. We treat -fexceptions as mandating this 843 /// except under the fragile ObjC ABI with only ObjC exceptions 844 /// enabled. This means, for example, that C with -fexceptions 845 /// enables this. 846 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 847 // If exceptions are completely disabled, obviously this is false. 848 if (!LangOpts.Exceptions) return false; 849 850 // If C++ exceptions are enabled, this is true. 851 if (LangOpts.CXXExceptions) return true; 852 853 // If ObjC exceptions are enabled, this depends on the ABI. 854 if (LangOpts.ObjCExceptions) { 855 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 856 } 857 858 return true; 859 } 860 861 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 862 llvm::Function *F) { 863 llvm::AttrBuilder B; 864 865 if (CodeGenOpts.UnwindTables) 866 B.addAttribute(llvm::Attribute::UWTable); 867 868 if (!hasUnwindExceptions(LangOpts)) 869 B.addAttribute(llvm::Attribute::NoUnwind); 870 871 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 872 B.addAttribute(llvm::Attribute::StackProtect); 873 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 874 B.addAttribute(llvm::Attribute::StackProtectStrong); 875 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 876 B.addAttribute(llvm::Attribute::StackProtectReq); 877 878 if (!D) { 879 F->addAttributes(llvm::AttributeSet::FunctionIndex, 880 llvm::AttributeSet::get( 881 F->getContext(), 882 llvm::AttributeSet::FunctionIndex, B)); 883 return; 884 } 885 886 if (D->hasAttr<NakedAttr>()) { 887 // Naked implies noinline: we should not be inlining such functions. 888 B.addAttribute(llvm::Attribute::Naked); 889 B.addAttribute(llvm::Attribute::NoInline); 890 } else if (D->hasAttr<NoDuplicateAttr>()) { 891 B.addAttribute(llvm::Attribute::NoDuplicate); 892 } else if (D->hasAttr<NoInlineAttr>()) { 893 B.addAttribute(llvm::Attribute::NoInline); 894 } else if (D->hasAttr<AlwaysInlineAttr>() && 895 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 896 llvm::Attribute::NoInline)) { 897 // (noinline wins over always_inline, and we can't specify both in IR) 898 B.addAttribute(llvm::Attribute::AlwaysInline); 899 } 900 901 if (D->hasAttr<ColdAttr>()) { 902 if (!D->hasAttr<OptimizeNoneAttr>()) 903 B.addAttribute(llvm::Attribute::OptimizeForSize); 904 B.addAttribute(llvm::Attribute::Cold); 905 } 906 907 if (D->hasAttr<MinSizeAttr>()) 908 B.addAttribute(llvm::Attribute::MinSize); 909 910 F->addAttributes(llvm::AttributeSet::FunctionIndex, 911 llvm::AttributeSet::get( 912 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 913 914 if (D->hasAttr<OptimizeNoneAttr>()) { 915 // OptimizeNone implies noinline; we should not be inlining such functions. 916 F->addFnAttr(llvm::Attribute::OptimizeNone); 917 F->addFnAttr(llvm::Attribute::NoInline); 918 919 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 920 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 921 F->removeFnAttr(llvm::Attribute::MinSize); 922 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 923 "OptimizeNone and AlwaysInline on same function!"); 924 925 // Attribute 'inlinehint' has no effect on 'optnone' functions. 926 // Explicitly remove it from the set of function attributes. 927 F->removeFnAttr(llvm::Attribute::InlineHint); 928 } 929 930 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 931 if (alignment) 932 F->setAlignment(alignment); 933 934 // Some C++ ABIs require 2-byte alignment for member functions, in order to 935 // reserve a bit for differentiating between virtual and non-virtual member 936 // functions. If the current target's C++ ABI requires this and this is a 937 // member function, set its alignment accordingly. 938 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 939 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 940 F->setAlignment(2); 941 } 942 } 943 944 void CodeGenModule::SetCommonAttributes(const Decl *D, 945 llvm::GlobalValue *GV) { 946 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 947 setGlobalVisibility(GV, ND); 948 else 949 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 950 951 if (D && D->hasAttr<UsedAttr>()) 952 addUsedGlobal(GV); 953 } 954 955 void CodeGenModule::setAliasAttributes(const Decl *D, 956 llvm::GlobalValue *GV) { 957 SetCommonAttributes(D, GV); 958 959 // Process the dllexport attribute based on whether the original definition 960 // (not necessarily the aliasee) was exported. 961 if (D->hasAttr<DLLExportAttr>()) 962 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 963 } 964 965 void CodeGenModule::setNonAliasAttributes(const Decl *D, 966 llvm::GlobalObject *GO) { 967 SetCommonAttributes(D, GO); 968 969 if (D) 970 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 971 GO->setSection(SA->getName()); 972 973 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 974 } 975 976 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 977 llvm::Function *F, 978 const CGFunctionInfo &FI) { 979 SetLLVMFunctionAttributes(D, FI, F); 980 SetLLVMFunctionAttributesForDefinition(D, F); 981 982 F->setLinkage(llvm::Function::InternalLinkage); 983 984 setNonAliasAttributes(D, F); 985 } 986 987 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 988 const NamedDecl *ND) { 989 // Set linkage and visibility in case we never see a definition. 990 LinkageInfo LV = ND->getLinkageAndVisibility(); 991 if (LV.getLinkage() != ExternalLinkage) { 992 // Don't set internal linkage on declarations. 993 } else { 994 if (ND->hasAttr<DLLImportAttr>()) { 995 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 996 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 997 } else if (ND->hasAttr<DLLExportAttr>()) { 998 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 999 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1000 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1001 // "extern_weak" is overloaded in LLVM; we probably should have 1002 // separate linkage types for this. 1003 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1004 } 1005 1006 // Set visibility on a declaration only if it's explicit. 1007 if (LV.isVisibilityExplicit()) 1008 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1009 } 1010 } 1011 1012 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1013 llvm::Function *F) { 1014 // Only if we are checking indirect calls. 1015 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1016 return; 1017 1018 // Non-static class methods are handled via vtable pointer checks elsewhere. 1019 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1020 return; 1021 1022 // Additionally, if building with cross-DSO support... 1023 if (CodeGenOpts.SanitizeCfiCrossDso) { 1024 // Don't emit entries for function declarations. In cross-DSO mode these are 1025 // handled with better precision at run time. 1026 if (!FD->hasBody()) 1027 return; 1028 // Skip available_externally functions. They won't be codegen'ed in the 1029 // current module anyway. 1030 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1031 return; 1032 } 1033 1034 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1035 F->addTypeMetadata(0, MD); 1036 1037 // Emit a hash-based bit set entry for cross-DSO calls. 1038 if (CodeGenOpts.SanitizeCfiCrossDso) 1039 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1040 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1041 } 1042 1043 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1044 bool IsIncompleteFunction, 1045 bool IsThunk) { 1046 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1047 // If this is an intrinsic function, set the function's attributes 1048 // to the intrinsic's attributes. 1049 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1050 return; 1051 } 1052 1053 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1054 1055 if (!IsIncompleteFunction) 1056 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1057 1058 // Add the Returned attribute for "this", except for iOS 5 and earlier 1059 // where substantial code, including the libstdc++ dylib, was compiled with 1060 // GCC and does not actually return "this". 1061 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1062 !(getTarget().getTriple().isiOS() && 1063 getTarget().getTriple().isOSVersionLT(6))) { 1064 assert(!F->arg_empty() && 1065 F->arg_begin()->getType() 1066 ->canLosslesslyBitCastTo(F->getReturnType()) && 1067 "unexpected this return"); 1068 F->addAttribute(1, llvm::Attribute::Returned); 1069 } 1070 1071 // Only a few attributes are set on declarations; these may later be 1072 // overridden by a definition. 1073 1074 setLinkageAndVisibilityForGV(F, FD); 1075 1076 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1077 F->setSection(SA->getName()); 1078 1079 if (FD->isReplaceableGlobalAllocationFunction()) { 1080 // A replaceable global allocation function does not act like a builtin by 1081 // default, only if it is invoked by a new-expression or delete-expression. 1082 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1083 llvm::Attribute::NoBuiltin); 1084 1085 // A sane operator new returns a non-aliasing pointer. 1086 // FIXME: Also add NonNull attribute to the return value 1087 // for the non-nothrow forms? 1088 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1089 if (getCodeGenOpts().AssumeSaneOperatorNew && 1090 (Kind == OO_New || Kind == OO_Array_New)) 1091 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1092 llvm::Attribute::NoAlias); 1093 } 1094 1095 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1096 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1097 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1098 if (MD->isVirtual()) 1099 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1100 1101 CreateFunctionTypeMetadata(FD, F); 1102 } 1103 1104 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1105 assert(!GV->isDeclaration() && 1106 "Only globals with definition can force usage."); 1107 LLVMUsed.emplace_back(GV); 1108 } 1109 1110 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1111 assert(!GV->isDeclaration() && 1112 "Only globals with definition can force usage."); 1113 LLVMCompilerUsed.emplace_back(GV); 1114 } 1115 1116 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1117 std::vector<llvm::WeakVH> &List) { 1118 // Don't create llvm.used if there is no need. 1119 if (List.empty()) 1120 return; 1121 1122 // Convert List to what ConstantArray needs. 1123 SmallVector<llvm::Constant*, 8> UsedArray; 1124 UsedArray.resize(List.size()); 1125 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1126 UsedArray[i] = 1127 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1128 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1129 } 1130 1131 if (UsedArray.empty()) 1132 return; 1133 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1134 1135 auto *GV = new llvm::GlobalVariable( 1136 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1137 llvm::ConstantArray::get(ATy, UsedArray), Name); 1138 1139 GV->setSection("llvm.metadata"); 1140 } 1141 1142 void CodeGenModule::emitLLVMUsed() { 1143 emitUsed(*this, "llvm.used", LLVMUsed); 1144 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1145 } 1146 1147 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1148 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1149 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1150 } 1151 1152 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1153 llvm::SmallString<32> Opt; 1154 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1155 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1156 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1157 } 1158 1159 void CodeGenModule::AddDependentLib(StringRef Lib) { 1160 llvm::SmallString<24> Opt; 1161 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1162 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1163 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1164 } 1165 1166 /// \brief Add link options implied by the given module, including modules 1167 /// it depends on, using a postorder walk. 1168 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1169 SmallVectorImpl<llvm::Metadata *> &Metadata, 1170 llvm::SmallPtrSet<Module *, 16> &Visited) { 1171 // Import this module's parent. 1172 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1173 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1174 } 1175 1176 // Import this module's dependencies. 1177 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1178 if (Visited.insert(Mod->Imports[I - 1]).second) 1179 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1180 } 1181 1182 // Add linker options to link against the libraries/frameworks 1183 // described by this module. 1184 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1185 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1186 // Link against a framework. Frameworks are currently Darwin only, so we 1187 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1188 if (Mod->LinkLibraries[I-1].IsFramework) { 1189 llvm::Metadata *Args[2] = { 1190 llvm::MDString::get(Context, "-framework"), 1191 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1192 1193 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1194 continue; 1195 } 1196 1197 // Link against a library. 1198 llvm::SmallString<24> Opt; 1199 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1200 Mod->LinkLibraries[I-1].Library, Opt); 1201 auto *OptString = llvm::MDString::get(Context, Opt); 1202 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1203 } 1204 } 1205 1206 void CodeGenModule::EmitModuleLinkOptions() { 1207 // Collect the set of all of the modules we want to visit to emit link 1208 // options, which is essentially the imported modules and all of their 1209 // non-explicit child modules. 1210 llvm::SetVector<clang::Module *> LinkModules; 1211 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1212 SmallVector<clang::Module *, 16> Stack; 1213 1214 // Seed the stack with imported modules. 1215 for (Module *M : ImportedModules) 1216 if (Visited.insert(M).second) 1217 Stack.push_back(M); 1218 1219 // Find all of the modules to import, making a little effort to prune 1220 // non-leaf modules. 1221 while (!Stack.empty()) { 1222 clang::Module *Mod = Stack.pop_back_val(); 1223 1224 bool AnyChildren = false; 1225 1226 // Visit the submodules of this module. 1227 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1228 SubEnd = Mod->submodule_end(); 1229 Sub != SubEnd; ++Sub) { 1230 // Skip explicit children; they need to be explicitly imported to be 1231 // linked against. 1232 if ((*Sub)->IsExplicit) 1233 continue; 1234 1235 if (Visited.insert(*Sub).second) { 1236 Stack.push_back(*Sub); 1237 AnyChildren = true; 1238 } 1239 } 1240 1241 // We didn't find any children, so add this module to the list of 1242 // modules to link against. 1243 if (!AnyChildren) { 1244 LinkModules.insert(Mod); 1245 } 1246 } 1247 1248 // Add link options for all of the imported modules in reverse topological 1249 // order. We don't do anything to try to order import link flags with respect 1250 // to linker options inserted by things like #pragma comment(). 1251 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1252 Visited.clear(); 1253 for (Module *M : LinkModules) 1254 if (Visited.insert(M).second) 1255 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1256 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1257 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1258 1259 // Add the linker options metadata flag. 1260 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1261 llvm::MDNode::get(getLLVMContext(), 1262 LinkerOptionsMetadata)); 1263 } 1264 1265 void CodeGenModule::EmitDeferred() { 1266 // Emit code for any potentially referenced deferred decls. Since a 1267 // previously unused static decl may become used during the generation of code 1268 // for a static function, iterate until no changes are made. 1269 1270 if (!DeferredVTables.empty()) { 1271 EmitDeferredVTables(); 1272 1273 // Emitting a vtable doesn't directly cause more vtables to 1274 // become deferred, although it can cause functions to be 1275 // emitted that then need those vtables. 1276 assert(DeferredVTables.empty()); 1277 } 1278 1279 // Stop if we're out of both deferred vtables and deferred declarations. 1280 if (DeferredDeclsToEmit.empty()) 1281 return; 1282 1283 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1284 // work, it will not interfere with this. 1285 std::vector<DeferredGlobal> CurDeclsToEmit; 1286 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1287 1288 for (DeferredGlobal &G : CurDeclsToEmit) { 1289 GlobalDecl D = G.GD; 1290 G.GV = nullptr; 1291 1292 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1293 // to get GlobalValue with exactly the type we need, not something that 1294 // might had been created for another decl with the same mangled name but 1295 // different type. 1296 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1297 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1298 1299 // In case of different address spaces, we may still get a cast, even with 1300 // IsForDefinition equal to true. Query mangled names table to get 1301 // GlobalValue. 1302 if (!GV) 1303 GV = GetGlobalValue(getMangledName(D)); 1304 1305 // Make sure GetGlobalValue returned non-null. 1306 assert(GV); 1307 1308 // Check to see if we've already emitted this. This is necessary 1309 // for a couple of reasons: first, decls can end up in the 1310 // deferred-decls queue multiple times, and second, decls can end 1311 // up with definitions in unusual ways (e.g. by an extern inline 1312 // function acquiring a strong function redefinition). Just 1313 // ignore these cases. 1314 if (!GV->isDeclaration()) 1315 continue; 1316 1317 // Otherwise, emit the definition and move on to the next one. 1318 EmitGlobalDefinition(D, GV); 1319 1320 // If we found out that we need to emit more decls, do that recursively. 1321 // This has the advantage that the decls are emitted in a DFS and related 1322 // ones are close together, which is convenient for testing. 1323 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1324 EmitDeferred(); 1325 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1326 } 1327 } 1328 } 1329 1330 void CodeGenModule::EmitGlobalAnnotations() { 1331 if (Annotations.empty()) 1332 return; 1333 1334 // Create a new global variable for the ConstantStruct in the Module. 1335 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1336 Annotations[0]->getType(), Annotations.size()), Annotations); 1337 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1338 llvm::GlobalValue::AppendingLinkage, 1339 Array, "llvm.global.annotations"); 1340 gv->setSection(AnnotationSection); 1341 } 1342 1343 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1344 llvm::Constant *&AStr = AnnotationStrings[Str]; 1345 if (AStr) 1346 return AStr; 1347 1348 // Not found yet, create a new global. 1349 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1350 auto *gv = 1351 new llvm::GlobalVariable(getModule(), s->getType(), true, 1352 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1353 gv->setSection(AnnotationSection); 1354 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1355 AStr = gv; 1356 return gv; 1357 } 1358 1359 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1360 SourceManager &SM = getContext().getSourceManager(); 1361 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1362 if (PLoc.isValid()) 1363 return EmitAnnotationString(PLoc.getFilename()); 1364 return EmitAnnotationString(SM.getBufferName(Loc)); 1365 } 1366 1367 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1368 SourceManager &SM = getContext().getSourceManager(); 1369 PresumedLoc PLoc = SM.getPresumedLoc(L); 1370 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1371 SM.getExpansionLineNumber(L); 1372 return llvm::ConstantInt::get(Int32Ty, LineNo); 1373 } 1374 1375 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1376 const AnnotateAttr *AA, 1377 SourceLocation L) { 1378 // Get the globals for file name, annotation, and the line number. 1379 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1380 *UnitGV = EmitAnnotationUnit(L), 1381 *LineNoCst = EmitAnnotationLineNo(L); 1382 1383 // Create the ConstantStruct for the global annotation. 1384 llvm::Constant *Fields[4] = { 1385 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1386 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1387 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1388 LineNoCst 1389 }; 1390 return llvm::ConstantStruct::getAnon(Fields); 1391 } 1392 1393 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1394 llvm::GlobalValue *GV) { 1395 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1396 // Get the struct elements for these annotations. 1397 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1398 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1399 } 1400 1401 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1402 SourceLocation Loc) const { 1403 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1404 // Blacklist by function name. 1405 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1406 return true; 1407 // Blacklist by location. 1408 if (Loc.isValid()) 1409 return SanitizerBL.isBlacklistedLocation(Loc); 1410 // If location is unknown, this may be a compiler-generated function. Assume 1411 // it's located in the main file. 1412 auto &SM = Context.getSourceManager(); 1413 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1414 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1415 } 1416 return false; 1417 } 1418 1419 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1420 SourceLocation Loc, QualType Ty, 1421 StringRef Category) const { 1422 // For now globals can be blacklisted only in ASan and KASan. 1423 if (!LangOpts.Sanitize.hasOneOf( 1424 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1425 return false; 1426 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1427 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1428 return true; 1429 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1430 return true; 1431 // Check global type. 1432 if (!Ty.isNull()) { 1433 // Drill down the array types: if global variable of a fixed type is 1434 // blacklisted, we also don't instrument arrays of them. 1435 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1436 Ty = AT->getElementType(); 1437 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1438 // We allow to blacklist only record types (classes, structs etc.) 1439 if (Ty->isRecordType()) { 1440 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1441 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1442 return true; 1443 } 1444 } 1445 return false; 1446 } 1447 1448 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1449 // Never defer when EmitAllDecls is specified. 1450 if (LangOpts.EmitAllDecls) 1451 return true; 1452 1453 return getContext().DeclMustBeEmitted(Global); 1454 } 1455 1456 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1457 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1458 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1459 // Implicit template instantiations may change linkage if they are later 1460 // explicitly instantiated, so they should not be emitted eagerly. 1461 return false; 1462 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1463 if (Context.getInlineVariableDefinitionKind(VD) == 1464 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1465 // A definition of an inline constexpr static data member may change 1466 // linkage later if it's redeclared outside the class. 1467 return false; 1468 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1469 // codegen for global variables, because they may be marked as threadprivate. 1470 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1471 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1472 return false; 1473 1474 return true; 1475 } 1476 1477 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1478 const CXXUuidofExpr* E) { 1479 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1480 // well-formed. 1481 StringRef Uuid = E->getUuidStr(); 1482 std::string Name = "_GUID_" + Uuid.lower(); 1483 std::replace(Name.begin(), Name.end(), '-', '_'); 1484 1485 // The UUID descriptor should be pointer aligned. 1486 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1487 1488 // Look for an existing global. 1489 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1490 return ConstantAddress(GV, Alignment); 1491 1492 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1493 assert(Init && "failed to initialize as constant"); 1494 1495 auto *GV = new llvm::GlobalVariable( 1496 getModule(), Init->getType(), 1497 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1498 if (supportsCOMDAT()) 1499 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1500 return ConstantAddress(GV, Alignment); 1501 } 1502 1503 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1504 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1505 assert(AA && "No alias?"); 1506 1507 CharUnits Alignment = getContext().getDeclAlign(VD); 1508 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1509 1510 // See if there is already something with the target's name in the module. 1511 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1512 if (Entry) { 1513 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1514 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1515 return ConstantAddress(Ptr, Alignment); 1516 } 1517 1518 llvm::Constant *Aliasee; 1519 if (isa<llvm::FunctionType>(DeclTy)) 1520 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1521 GlobalDecl(cast<FunctionDecl>(VD)), 1522 /*ForVTable=*/false); 1523 else 1524 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1525 llvm::PointerType::getUnqual(DeclTy), 1526 nullptr); 1527 1528 auto *F = cast<llvm::GlobalValue>(Aliasee); 1529 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1530 WeakRefReferences.insert(F); 1531 1532 return ConstantAddress(Aliasee, Alignment); 1533 } 1534 1535 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1536 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1537 1538 // Weak references don't produce any output by themselves. 1539 if (Global->hasAttr<WeakRefAttr>()) 1540 return; 1541 1542 // If this is an alias definition (which otherwise looks like a declaration) 1543 // emit it now. 1544 if (Global->hasAttr<AliasAttr>()) 1545 return EmitAliasDefinition(GD); 1546 1547 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1548 if (Global->hasAttr<IFuncAttr>()) 1549 return emitIFuncDefinition(GD); 1550 1551 // If this is CUDA, be selective about which declarations we emit. 1552 if (LangOpts.CUDA) { 1553 if (LangOpts.CUDAIsDevice) { 1554 if (!Global->hasAttr<CUDADeviceAttr>() && 1555 !Global->hasAttr<CUDAGlobalAttr>() && 1556 !Global->hasAttr<CUDAConstantAttr>() && 1557 !Global->hasAttr<CUDASharedAttr>()) 1558 return; 1559 } else { 1560 // We need to emit host-side 'shadows' for all global 1561 // device-side variables because the CUDA runtime needs their 1562 // size and host-side address in order to provide access to 1563 // their device-side incarnations. 1564 1565 // So device-only functions are the only things we skip. 1566 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1567 Global->hasAttr<CUDADeviceAttr>()) 1568 return; 1569 1570 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1571 "Expected Variable or Function"); 1572 } 1573 } 1574 1575 if (LangOpts.OpenMP) { 1576 // If this is OpenMP device, check if it is legal to emit this global 1577 // normally. 1578 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1579 return; 1580 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1581 if (MustBeEmitted(Global)) 1582 EmitOMPDeclareReduction(DRD); 1583 return; 1584 } 1585 } 1586 1587 // Ignore declarations, they will be emitted on their first use. 1588 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1589 // Forward declarations are emitted lazily on first use. 1590 if (!FD->doesThisDeclarationHaveABody()) { 1591 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1592 return; 1593 1594 StringRef MangledName = getMangledName(GD); 1595 1596 // Compute the function info and LLVM type. 1597 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1598 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1599 1600 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1601 /*DontDefer=*/false); 1602 return; 1603 } 1604 } else { 1605 const auto *VD = cast<VarDecl>(Global); 1606 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1607 // We need to emit device-side global CUDA variables even if a 1608 // variable does not have a definition -- we still need to define 1609 // host-side shadow for it. 1610 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1611 !VD->hasDefinition() && 1612 (VD->hasAttr<CUDAConstantAttr>() || 1613 VD->hasAttr<CUDADeviceAttr>()); 1614 if (!MustEmitForCuda && 1615 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1616 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1617 // If this declaration may have caused an inline variable definition to 1618 // change linkage, make sure that it's emitted. 1619 if (Context.getInlineVariableDefinitionKind(VD) == 1620 ASTContext::InlineVariableDefinitionKind::Strong) 1621 GetAddrOfGlobalVar(VD); 1622 return; 1623 } 1624 } 1625 1626 // Defer code generation to first use when possible, e.g. if this is an inline 1627 // function. If the global must always be emitted, do it eagerly if possible 1628 // to benefit from cache locality. 1629 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1630 // Emit the definition if it can't be deferred. 1631 EmitGlobalDefinition(GD); 1632 return; 1633 } 1634 1635 // If we're deferring emission of a C++ variable with an 1636 // initializer, remember the order in which it appeared in the file. 1637 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1638 cast<VarDecl>(Global)->hasInit()) { 1639 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1640 CXXGlobalInits.push_back(nullptr); 1641 } 1642 1643 StringRef MangledName = getMangledName(GD); 1644 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1645 // The value has already been used and should therefore be emitted. 1646 addDeferredDeclToEmit(GV, GD); 1647 } else if (MustBeEmitted(Global)) { 1648 // The value must be emitted, but cannot be emitted eagerly. 1649 assert(!MayBeEmittedEagerly(Global)); 1650 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1651 } else { 1652 // Otherwise, remember that we saw a deferred decl with this name. The 1653 // first use of the mangled name will cause it to move into 1654 // DeferredDeclsToEmit. 1655 DeferredDecls[MangledName] = GD; 1656 } 1657 } 1658 1659 namespace { 1660 struct FunctionIsDirectlyRecursive : 1661 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1662 const StringRef Name; 1663 const Builtin::Context &BI; 1664 bool Result; 1665 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1666 Name(N), BI(C), Result(false) { 1667 } 1668 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1669 1670 bool TraverseCallExpr(CallExpr *E) { 1671 const FunctionDecl *FD = E->getDirectCallee(); 1672 if (!FD) 1673 return true; 1674 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1675 if (Attr && Name == Attr->getLabel()) { 1676 Result = true; 1677 return false; 1678 } 1679 unsigned BuiltinID = FD->getBuiltinID(); 1680 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1681 return true; 1682 StringRef BuiltinName = BI.getName(BuiltinID); 1683 if (BuiltinName.startswith("__builtin_") && 1684 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1685 Result = true; 1686 return false; 1687 } 1688 return true; 1689 } 1690 }; 1691 1692 struct DLLImportFunctionVisitor 1693 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1694 bool SafeToInline = true; 1695 1696 bool VisitVarDecl(VarDecl *VD) { 1697 // A thread-local variable cannot be imported. 1698 SafeToInline = !VD->getTLSKind(); 1699 return SafeToInline; 1700 } 1701 1702 // Make sure we're not referencing non-imported vars or functions. 1703 bool VisitDeclRefExpr(DeclRefExpr *E) { 1704 ValueDecl *VD = E->getDecl(); 1705 if (isa<FunctionDecl>(VD)) 1706 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1707 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1708 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1709 return SafeToInline; 1710 } 1711 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1712 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1713 return SafeToInline; 1714 } 1715 bool VisitCXXNewExpr(CXXNewExpr *E) { 1716 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1717 return SafeToInline; 1718 } 1719 }; 1720 } 1721 1722 // isTriviallyRecursive - Check if this function calls another 1723 // decl that, because of the asm attribute or the other decl being a builtin, 1724 // ends up pointing to itself. 1725 bool 1726 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1727 StringRef Name; 1728 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1729 // asm labels are a special kind of mangling we have to support. 1730 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1731 if (!Attr) 1732 return false; 1733 Name = Attr->getLabel(); 1734 } else { 1735 Name = FD->getName(); 1736 } 1737 1738 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1739 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1740 return Walker.Result; 1741 } 1742 1743 // Check if T is a class type with a destructor that's not dllimport. 1744 static bool HasNonDllImportDtor(QualType T) { 1745 if (const RecordType *RT = dyn_cast<RecordType>(T)) 1746 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1747 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1748 return true; 1749 1750 return false; 1751 } 1752 1753 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1754 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1755 return true; 1756 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1757 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1758 return false; 1759 1760 if (F->hasAttr<DLLImportAttr>()) { 1761 // Check whether it would be safe to inline this dllimport function. 1762 DLLImportFunctionVisitor Visitor; 1763 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1764 if (!Visitor.SafeToInline) 1765 return false; 1766 1767 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1768 // Implicit destructor invocations aren't captured in the AST, so the 1769 // check above can't see them. Check for them manually here. 1770 for (const Decl *Member : Dtor->getParent()->decls()) 1771 if (isa<FieldDecl>(Member)) 1772 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1773 return false; 1774 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1775 if (HasNonDllImportDtor(B.getType())) 1776 return false; 1777 } 1778 } 1779 1780 // PR9614. Avoid cases where the source code is lying to us. An available 1781 // externally function should have an equivalent function somewhere else, 1782 // but a function that calls itself is clearly not equivalent to the real 1783 // implementation. 1784 // This happens in glibc's btowc and in some configure checks. 1785 return !isTriviallyRecursive(F); 1786 } 1787 1788 /// If the type for the method's class was generated by 1789 /// CGDebugInfo::createContextChain(), the cache contains only a 1790 /// limited DIType without any declarations. Since EmitFunctionStart() 1791 /// needs to find the canonical declaration for each method, we need 1792 /// to construct the complete type prior to emitting the method. 1793 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1794 if (!D->isInstance()) 1795 return; 1796 1797 if (CGDebugInfo *DI = getModuleDebugInfo()) 1798 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1799 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1800 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1801 } 1802 } 1803 1804 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1805 const auto *D = cast<ValueDecl>(GD.getDecl()); 1806 1807 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1808 Context.getSourceManager(), 1809 "Generating code for declaration"); 1810 1811 if (isa<FunctionDecl>(D)) { 1812 // At -O0, don't generate IR for functions with available_externally 1813 // linkage. 1814 if (!shouldEmitFunction(GD)) 1815 return; 1816 1817 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1818 CompleteDIClassType(Method); 1819 // Make sure to emit the definition(s) before we emit the thunks. 1820 // This is necessary for the generation of certain thunks. 1821 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1822 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1823 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1824 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1825 else 1826 EmitGlobalFunctionDefinition(GD, GV); 1827 1828 if (Method->isVirtual()) 1829 getVTables().EmitThunks(GD); 1830 1831 return; 1832 } 1833 1834 return EmitGlobalFunctionDefinition(GD, GV); 1835 } 1836 1837 if (const auto *VD = dyn_cast<VarDecl>(D)) 1838 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1839 1840 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1841 } 1842 1843 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1844 llvm::Function *NewFn); 1845 1846 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1847 /// module, create and return an llvm Function with the specified type. If there 1848 /// is something in the module with the specified name, return it potentially 1849 /// bitcasted to the right type. 1850 /// 1851 /// If D is non-null, it specifies a decl that correspond to this. This is used 1852 /// to set the attributes on the function when it is first created. 1853 llvm::Constant * 1854 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1855 llvm::Type *Ty, 1856 GlobalDecl GD, bool ForVTable, 1857 bool DontDefer, bool IsThunk, 1858 llvm::AttributeSet ExtraAttrs, 1859 bool IsForDefinition) { 1860 const Decl *D = GD.getDecl(); 1861 1862 // Lookup the entry, lazily creating it if necessary. 1863 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1864 if (Entry) { 1865 if (WeakRefReferences.erase(Entry)) { 1866 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1867 if (FD && !FD->hasAttr<WeakAttr>()) 1868 Entry->setLinkage(llvm::Function::ExternalLinkage); 1869 } 1870 1871 // Handle dropped DLL attributes. 1872 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1873 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1874 1875 // If there are two attempts to define the same mangled name, issue an 1876 // error. 1877 if (IsForDefinition && !Entry->isDeclaration()) { 1878 GlobalDecl OtherGD; 1879 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1880 // to make sure that we issue an error only once. 1881 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1882 (GD.getCanonicalDecl().getDecl() != 1883 OtherGD.getCanonicalDecl().getDecl()) && 1884 DiagnosedConflictingDefinitions.insert(GD).second) { 1885 getDiags().Report(D->getLocation(), 1886 diag::err_duplicate_mangled_name); 1887 getDiags().Report(OtherGD.getDecl()->getLocation(), 1888 diag::note_previous_definition); 1889 } 1890 } 1891 1892 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1893 (Entry->getType()->getElementType() == Ty)) { 1894 return Entry; 1895 } 1896 1897 // Make sure the result is of the correct type. 1898 // (If function is requested for a definition, we always need to create a new 1899 // function, not just return a bitcast.) 1900 if (!IsForDefinition) 1901 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1902 } 1903 1904 // This function doesn't have a complete type (for example, the return 1905 // type is an incomplete struct). Use a fake type instead, and make 1906 // sure not to try to set attributes. 1907 bool IsIncompleteFunction = false; 1908 1909 llvm::FunctionType *FTy; 1910 if (isa<llvm::FunctionType>(Ty)) { 1911 FTy = cast<llvm::FunctionType>(Ty); 1912 } else { 1913 FTy = llvm::FunctionType::get(VoidTy, false); 1914 IsIncompleteFunction = true; 1915 } 1916 1917 llvm::Function *F = 1918 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1919 Entry ? StringRef() : MangledName, &getModule()); 1920 1921 // If we already created a function with the same mangled name (but different 1922 // type) before, take its name and add it to the list of functions to be 1923 // replaced with F at the end of CodeGen. 1924 // 1925 // This happens if there is a prototype for a function (e.g. "int f()") and 1926 // then a definition of a different type (e.g. "int f(int x)"). 1927 if (Entry) { 1928 F->takeName(Entry); 1929 1930 // This might be an implementation of a function without a prototype, in 1931 // which case, try to do special replacement of calls which match the new 1932 // prototype. The really key thing here is that we also potentially drop 1933 // arguments from the call site so as to make a direct call, which makes the 1934 // inliner happier and suppresses a number of optimizer warnings (!) about 1935 // dropping arguments. 1936 if (!Entry->use_empty()) { 1937 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1938 Entry->removeDeadConstantUsers(); 1939 } 1940 1941 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1942 F, Entry->getType()->getElementType()->getPointerTo()); 1943 addGlobalValReplacement(Entry, BC); 1944 } 1945 1946 assert(F->getName() == MangledName && "name was uniqued!"); 1947 if (D) 1948 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1949 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1950 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1951 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1952 llvm::AttributeSet::get(VMContext, 1953 llvm::AttributeSet::FunctionIndex, 1954 B)); 1955 } 1956 1957 if (!DontDefer) { 1958 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1959 // each other bottoming out with the base dtor. Therefore we emit non-base 1960 // dtors on usage, even if there is no dtor definition in the TU. 1961 if (D && isa<CXXDestructorDecl>(D) && 1962 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1963 GD.getDtorType())) 1964 addDeferredDeclToEmit(F, GD); 1965 1966 // This is the first use or definition of a mangled name. If there is a 1967 // deferred decl with this name, remember that we need to emit it at the end 1968 // of the file. 1969 auto DDI = DeferredDecls.find(MangledName); 1970 if (DDI != DeferredDecls.end()) { 1971 // Move the potentially referenced deferred decl to the 1972 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1973 // don't need it anymore). 1974 addDeferredDeclToEmit(F, DDI->second); 1975 DeferredDecls.erase(DDI); 1976 1977 // Otherwise, there are cases we have to worry about where we're 1978 // using a declaration for which we must emit a definition but where 1979 // we might not find a top-level definition: 1980 // - member functions defined inline in their classes 1981 // - friend functions defined inline in some class 1982 // - special member functions with implicit definitions 1983 // If we ever change our AST traversal to walk into class methods, 1984 // this will be unnecessary. 1985 // 1986 // We also don't emit a definition for a function if it's going to be an 1987 // entry in a vtable, unless it's already marked as used. 1988 } else if (getLangOpts().CPlusPlus && D) { 1989 // Look for a declaration that's lexically in a record. 1990 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1991 FD = FD->getPreviousDecl()) { 1992 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1993 if (FD->doesThisDeclarationHaveABody()) { 1994 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1995 break; 1996 } 1997 } 1998 } 1999 } 2000 } 2001 2002 // Make sure the result is of the requested type. 2003 if (!IsIncompleteFunction) { 2004 assert(F->getType()->getElementType() == Ty); 2005 return F; 2006 } 2007 2008 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2009 return llvm::ConstantExpr::getBitCast(F, PTy); 2010 } 2011 2012 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2013 /// non-null, then this function will use the specified type if it has to 2014 /// create it (this occurs when we see a definition of the function). 2015 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2016 llvm::Type *Ty, 2017 bool ForVTable, 2018 bool DontDefer, 2019 bool IsForDefinition) { 2020 // If there was no specific requested type, just convert it now. 2021 if (!Ty) { 2022 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2023 auto CanonTy = Context.getCanonicalType(FD->getType()); 2024 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2025 } 2026 2027 StringRef MangledName = getMangledName(GD); 2028 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2029 /*IsThunk=*/false, llvm::AttributeSet(), 2030 IsForDefinition); 2031 } 2032 2033 /// CreateRuntimeFunction - Create a new runtime function with the specified 2034 /// type and name. 2035 llvm::Constant * 2036 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 2037 StringRef Name, 2038 llvm::AttributeSet ExtraAttrs) { 2039 llvm::Constant *C = 2040 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2041 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2042 if (auto *F = dyn_cast<llvm::Function>(C)) 2043 if (F->empty()) 2044 F->setCallingConv(getRuntimeCC()); 2045 return C; 2046 } 2047 2048 /// CreateBuiltinFunction - Create a new builtin function with the specified 2049 /// type and name. 2050 llvm::Constant * 2051 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2052 StringRef Name, 2053 llvm::AttributeSet ExtraAttrs) { 2054 llvm::Constant *C = 2055 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2056 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2057 if (auto *F = dyn_cast<llvm::Function>(C)) 2058 if (F->empty()) 2059 F->setCallingConv(getBuiltinCC()); 2060 return C; 2061 } 2062 2063 /// isTypeConstant - Determine whether an object of this type can be emitted 2064 /// as a constant. 2065 /// 2066 /// If ExcludeCtor is true, the duration when the object's constructor runs 2067 /// will not be considered. The caller will need to verify that the object is 2068 /// not written to during its construction. 2069 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2070 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2071 return false; 2072 2073 if (Context.getLangOpts().CPlusPlus) { 2074 if (const CXXRecordDecl *Record 2075 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2076 return ExcludeCtor && !Record->hasMutableFields() && 2077 Record->hasTrivialDestructor(); 2078 } 2079 2080 return true; 2081 } 2082 2083 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2084 /// create and return an llvm GlobalVariable with the specified type. If there 2085 /// is something in the module with the specified name, return it potentially 2086 /// bitcasted to the right type. 2087 /// 2088 /// If D is non-null, it specifies a decl that correspond to this. This is used 2089 /// to set the attributes on the global when it is first created. 2090 /// 2091 /// If IsForDefinition is true, it is guranteed that an actual global with 2092 /// type Ty will be returned, not conversion of a variable with the same 2093 /// mangled name but some other type. 2094 llvm::Constant * 2095 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2096 llvm::PointerType *Ty, 2097 const VarDecl *D, 2098 bool IsForDefinition) { 2099 // Lookup the entry, lazily creating it if necessary. 2100 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2101 if (Entry) { 2102 if (WeakRefReferences.erase(Entry)) { 2103 if (D && !D->hasAttr<WeakAttr>()) 2104 Entry->setLinkage(llvm::Function::ExternalLinkage); 2105 } 2106 2107 // Handle dropped DLL attributes. 2108 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2109 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2110 2111 if (Entry->getType() == Ty) 2112 return Entry; 2113 2114 // If there are two attempts to define the same mangled name, issue an 2115 // error. 2116 if (IsForDefinition && !Entry->isDeclaration()) { 2117 GlobalDecl OtherGD; 2118 const VarDecl *OtherD; 2119 2120 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2121 // to make sure that we issue an error only once. 2122 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2123 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2124 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2125 OtherD->hasInit() && 2126 DiagnosedConflictingDefinitions.insert(D).second) { 2127 getDiags().Report(D->getLocation(), 2128 diag::err_duplicate_mangled_name); 2129 getDiags().Report(OtherGD.getDecl()->getLocation(), 2130 diag::note_previous_definition); 2131 } 2132 } 2133 2134 // Make sure the result is of the correct type. 2135 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2136 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2137 2138 // (If global is requested for a definition, we always need to create a new 2139 // global, not just return a bitcast.) 2140 if (!IsForDefinition) 2141 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2142 } 2143 2144 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2145 auto *GV = new llvm::GlobalVariable( 2146 getModule(), Ty->getElementType(), false, 2147 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2148 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2149 2150 // If we already created a global with the same mangled name (but different 2151 // type) before, take its name and remove it from its parent. 2152 if (Entry) { 2153 GV->takeName(Entry); 2154 2155 if (!Entry->use_empty()) { 2156 llvm::Constant *NewPtrForOldDecl = 2157 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2158 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2159 } 2160 2161 Entry->eraseFromParent(); 2162 } 2163 2164 // This is the first use or definition of a mangled name. If there is a 2165 // deferred decl with this name, remember that we need to emit it at the end 2166 // of the file. 2167 auto DDI = DeferredDecls.find(MangledName); 2168 if (DDI != DeferredDecls.end()) { 2169 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2170 // list, and remove it from DeferredDecls (since we don't need it anymore). 2171 addDeferredDeclToEmit(GV, DDI->second); 2172 DeferredDecls.erase(DDI); 2173 } 2174 2175 // Handle things which are present even on external declarations. 2176 if (D) { 2177 // FIXME: This code is overly simple and should be merged with other global 2178 // handling. 2179 GV->setConstant(isTypeConstant(D->getType(), false)); 2180 2181 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2182 2183 setLinkageAndVisibilityForGV(GV, D); 2184 2185 if (D->getTLSKind()) { 2186 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2187 CXXThreadLocals.push_back(D); 2188 setTLSMode(GV, *D); 2189 } 2190 2191 // If required by the ABI, treat declarations of static data members with 2192 // inline initializers as definitions. 2193 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2194 EmitGlobalVarDefinition(D); 2195 } 2196 2197 // Handle XCore specific ABI requirements. 2198 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2199 D->getLanguageLinkage() == CLanguageLinkage && 2200 D->getType().isConstant(Context) && 2201 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2202 GV->setSection(".cp.rodata"); 2203 } 2204 2205 if (AddrSpace != Ty->getAddressSpace()) 2206 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2207 2208 return GV; 2209 } 2210 2211 llvm::Constant * 2212 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2213 bool IsForDefinition) { 2214 if (isa<CXXConstructorDecl>(GD.getDecl())) 2215 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2216 getFromCtorType(GD.getCtorType()), 2217 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2218 /*DontDefer=*/false, IsForDefinition); 2219 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2220 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2221 getFromDtorType(GD.getDtorType()), 2222 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2223 /*DontDefer=*/false, IsForDefinition); 2224 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2225 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2226 cast<CXXMethodDecl>(GD.getDecl())); 2227 auto Ty = getTypes().GetFunctionType(*FInfo); 2228 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2229 IsForDefinition); 2230 } else if (isa<FunctionDecl>(GD.getDecl())) { 2231 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2232 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2233 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2234 IsForDefinition); 2235 } else 2236 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2237 IsForDefinition); 2238 } 2239 2240 llvm::GlobalVariable * 2241 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2242 llvm::Type *Ty, 2243 llvm::GlobalValue::LinkageTypes Linkage) { 2244 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2245 llvm::GlobalVariable *OldGV = nullptr; 2246 2247 if (GV) { 2248 // Check if the variable has the right type. 2249 if (GV->getType()->getElementType() == Ty) 2250 return GV; 2251 2252 // Because C++ name mangling, the only way we can end up with an already 2253 // existing global with the same name is if it has been declared extern "C". 2254 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2255 OldGV = GV; 2256 } 2257 2258 // Create a new variable. 2259 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2260 Linkage, nullptr, Name); 2261 2262 if (OldGV) { 2263 // Replace occurrences of the old variable if needed. 2264 GV->takeName(OldGV); 2265 2266 if (!OldGV->use_empty()) { 2267 llvm::Constant *NewPtrForOldDecl = 2268 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2269 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2270 } 2271 2272 OldGV->eraseFromParent(); 2273 } 2274 2275 if (supportsCOMDAT() && GV->isWeakForLinker() && 2276 !GV->hasAvailableExternallyLinkage()) 2277 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2278 2279 return GV; 2280 } 2281 2282 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2283 /// given global variable. If Ty is non-null and if the global doesn't exist, 2284 /// then it will be created with the specified type instead of whatever the 2285 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2286 /// that an actual global with type Ty will be returned, not conversion of a 2287 /// variable with the same mangled name but some other type. 2288 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2289 llvm::Type *Ty, 2290 bool IsForDefinition) { 2291 assert(D->hasGlobalStorage() && "Not a global variable"); 2292 QualType ASTTy = D->getType(); 2293 if (!Ty) 2294 Ty = getTypes().ConvertTypeForMem(ASTTy); 2295 2296 llvm::PointerType *PTy = 2297 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2298 2299 StringRef MangledName = getMangledName(D); 2300 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2301 } 2302 2303 /// CreateRuntimeVariable - Create a new runtime global variable with the 2304 /// specified type and name. 2305 llvm::Constant * 2306 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2307 StringRef Name) { 2308 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2309 } 2310 2311 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2312 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2313 2314 StringRef MangledName = getMangledName(D); 2315 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2316 2317 // We already have a definition, not declaration, with the same mangled name. 2318 // Emitting of declaration is not required (and actually overwrites emitted 2319 // definition). 2320 if (GV && !GV->isDeclaration()) 2321 return; 2322 2323 // If we have not seen a reference to this variable yet, place it into the 2324 // deferred declarations table to be emitted if needed later. 2325 if (!MustBeEmitted(D) && !GV) { 2326 DeferredDecls[MangledName] = D; 2327 return; 2328 } 2329 2330 // The tentative definition is the only definition. 2331 EmitGlobalVarDefinition(D); 2332 } 2333 2334 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2335 return Context.toCharUnitsFromBits( 2336 getDataLayout().getTypeStoreSizeInBits(Ty)); 2337 } 2338 2339 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2340 unsigned AddrSpace) { 2341 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2342 if (D->hasAttr<CUDAConstantAttr>()) 2343 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2344 else if (D->hasAttr<CUDASharedAttr>()) 2345 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2346 else 2347 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2348 } 2349 2350 return AddrSpace; 2351 } 2352 2353 template<typename SomeDecl> 2354 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2355 llvm::GlobalValue *GV) { 2356 if (!getLangOpts().CPlusPlus) 2357 return; 2358 2359 // Must have 'used' attribute, or else inline assembly can't rely on 2360 // the name existing. 2361 if (!D->template hasAttr<UsedAttr>()) 2362 return; 2363 2364 // Must have internal linkage and an ordinary name. 2365 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2366 return; 2367 2368 // Must be in an extern "C" context. Entities declared directly within 2369 // a record are not extern "C" even if the record is in such a context. 2370 const SomeDecl *First = D->getFirstDecl(); 2371 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2372 return; 2373 2374 // OK, this is an internal linkage entity inside an extern "C" linkage 2375 // specification. Make a note of that so we can give it the "expected" 2376 // mangled name if nothing else is using that name. 2377 std::pair<StaticExternCMap::iterator, bool> R = 2378 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2379 2380 // If we have multiple internal linkage entities with the same name 2381 // in extern "C" regions, none of them gets that name. 2382 if (!R.second) 2383 R.first->second = nullptr; 2384 } 2385 2386 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2387 if (!CGM.supportsCOMDAT()) 2388 return false; 2389 2390 if (D.hasAttr<SelectAnyAttr>()) 2391 return true; 2392 2393 GVALinkage Linkage; 2394 if (auto *VD = dyn_cast<VarDecl>(&D)) 2395 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2396 else 2397 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2398 2399 switch (Linkage) { 2400 case GVA_Internal: 2401 case GVA_AvailableExternally: 2402 case GVA_StrongExternal: 2403 return false; 2404 case GVA_DiscardableODR: 2405 case GVA_StrongODR: 2406 return true; 2407 } 2408 llvm_unreachable("No such linkage"); 2409 } 2410 2411 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2412 llvm::GlobalObject &GO) { 2413 if (!shouldBeInCOMDAT(*this, D)) 2414 return; 2415 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2416 } 2417 2418 /// Pass IsTentative as true if you want to create a tentative definition. 2419 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2420 bool IsTentative) { 2421 // OpenCL global variables of sampler type are translated to function calls, 2422 // therefore no need to be translated. 2423 QualType ASTTy = D->getType(); 2424 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2425 return; 2426 2427 llvm::Constant *Init = nullptr; 2428 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2429 bool NeedsGlobalCtor = false; 2430 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2431 2432 const VarDecl *InitDecl; 2433 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2434 2435 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2436 // as part of their declaration." Sema has already checked for 2437 // error cases, so we just need to set Init to UndefValue. 2438 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2439 D->hasAttr<CUDASharedAttr>()) 2440 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2441 else if (!InitExpr) { 2442 // This is a tentative definition; tentative definitions are 2443 // implicitly initialized with { 0 }. 2444 // 2445 // Note that tentative definitions are only emitted at the end of 2446 // a translation unit, so they should never have incomplete 2447 // type. In addition, EmitTentativeDefinition makes sure that we 2448 // never attempt to emit a tentative definition if a real one 2449 // exists. A use may still exists, however, so we still may need 2450 // to do a RAUW. 2451 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2452 Init = EmitNullConstant(D->getType()); 2453 } else { 2454 initializedGlobalDecl = GlobalDecl(D); 2455 Init = EmitConstantInit(*InitDecl); 2456 2457 if (!Init) { 2458 QualType T = InitExpr->getType(); 2459 if (D->getType()->isReferenceType()) 2460 T = D->getType(); 2461 2462 if (getLangOpts().CPlusPlus) { 2463 Init = EmitNullConstant(T); 2464 NeedsGlobalCtor = true; 2465 } else { 2466 ErrorUnsupported(D, "static initializer"); 2467 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2468 } 2469 } else { 2470 // We don't need an initializer, so remove the entry for the delayed 2471 // initializer position (just in case this entry was delayed) if we 2472 // also don't need to register a destructor. 2473 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2474 DelayedCXXInitPosition.erase(D); 2475 } 2476 } 2477 2478 llvm::Type* InitType = Init->getType(); 2479 llvm::Constant *Entry = 2480 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2481 2482 // Strip off a bitcast if we got one back. 2483 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2484 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2485 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2486 // All zero index gep. 2487 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2488 Entry = CE->getOperand(0); 2489 } 2490 2491 // Entry is now either a Function or GlobalVariable. 2492 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2493 2494 // We have a definition after a declaration with the wrong type. 2495 // We must make a new GlobalVariable* and update everything that used OldGV 2496 // (a declaration or tentative definition) with the new GlobalVariable* 2497 // (which will be a definition). 2498 // 2499 // This happens if there is a prototype for a global (e.g. 2500 // "extern int x[];") and then a definition of a different type (e.g. 2501 // "int x[10];"). This also happens when an initializer has a different type 2502 // from the type of the global (this happens with unions). 2503 if (!GV || 2504 GV->getType()->getElementType() != InitType || 2505 GV->getType()->getAddressSpace() != 2506 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2507 2508 // Move the old entry aside so that we'll create a new one. 2509 Entry->setName(StringRef()); 2510 2511 // Make a new global with the correct type, this is now guaranteed to work. 2512 GV = cast<llvm::GlobalVariable>( 2513 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2514 2515 // Replace all uses of the old global with the new global 2516 llvm::Constant *NewPtrForOldDecl = 2517 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2518 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2519 2520 // Erase the old global, since it is no longer used. 2521 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2522 } 2523 2524 MaybeHandleStaticInExternC(D, GV); 2525 2526 if (D->hasAttr<AnnotateAttr>()) 2527 AddGlobalAnnotations(D, GV); 2528 2529 // Set the llvm linkage type as appropriate. 2530 llvm::GlobalValue::LinkageTypes Linkage = 2531 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2532 2533 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2534 // the device. [...]" 2535 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2536 // __device__, declares a variable that: [...] 2537 // Is accessible from all the threads within the grid and from the host 2538 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2539 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2540 if (GV && LangOpts.CUDA) { 2541 if (LangOpts.CUDAIsDevice) { 2542 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2543 GV->setExternallyInitialized(true); 2544 } else { 2545 // Host-side shadows of external declarations of device-side 2546 // global variables become internal definitions. These have to 2547 // be internal in order to prevent name conflicts with global 2548 // host variables with the same name in a different TUs. 2549 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2550 Linkage = llvm::GlobalValue::InternalLinkage; 2551 2552 // Shadow variables and their properties must be registered 2553 // with CUDA runtime. 2554 unsigned Flags = 0; 2555 if (!D->hasDefinition()) 2556 Flags |= CGCUDARuntime::ExternDeviceVar; 2557 if (D->hasAttr<CUDAConstantAttr>()) 2558 Flags |= CGCUDARuntime::ConstantDeviceVar; 2559 getCUDARuntime().registerDeviceVar(*GV, Flags); 2560 } else if (D->hasAttr<CUDASharedAttr>()) 2561 // __shared__ variables are odd. Shadows do get created, but 2562 // they are not registered with the CUDA runtime, so they 2563 // can't really be used to access their device-side 2564 // counterparts. It's not clear yet whether it's nvcc's bug or 2565 // a feature, but we've got to do the same for compatibility. 2566 Linkage = llvm::GlobalValue::InternalLinkage; 2567 } 2568 } 2569 GV->setInitializer(Init); 2570 2571 // If it is safe to mark the global 'constant', do so now. 2572 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2573 isTypeConstant(D->getType(), true)); 2574 2575 // If it is in a read-only section, mark it 'constant'. 2576 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2577 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2578 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2579 GV->setConstant(true); 2580 } 2581 2582 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2583 2584 2585 // On Darwin, if the normal linkage of a C++ thread_local variable is 2586 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2587 // copies within a linkage unit; otherwise, the backing variable has 2588 // internal linkage and all accesses should just be calls to the 2589 // Itanium-specified entry point, which has the normal linkage of the 2590 // variable. This is to preserve the ability to change the implementation 2591 // behind the scenes. 2592 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2593 Context.getTargetInfo().getTriple().isOSDarwin() && 2594 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2595 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2596 Linkage = llvm::GlobalValue::InternalLinkage; 2597 2598 GV->setLinkage(Linkage); 2599 if (D->hasAttr<DLLImportAttr>()) 2600 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2601 else if (D->hasAttr<DLLExportAttr>()) 2602 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2603 else 2604 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2605 2606 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2607 // common vars aren't constant even if declared const. 2608 GV->setConstant(false); 2609 2610 setNonAliasAttributes(D, GV); 2611 2612 if (D->getTLSKind() && !GV->isThreadLocal()) { 2613 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2614 CXXThreadLocals.push_back(D); 2615 setTLSMode(GV, *D); 2616 } 2617 2618 maybeSetTrivialComdat(*D, *GV); 2619 2620 // Emit the initializer function if necessary. 2621 if (NeedsGlobalCtor || NeedsGlobalDtor) 2622 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2623 2624 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2625 2626 // Emit global variable debug information. 2627 if (CGDebugInfo *DI = getModuleDebugInfo()) 2628 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2629 DI->EmitGlobalVariable(GV, D); 2630 } 2631 2632 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2633 CodeGenModule &CGM, const VarDecl *D, 2634 bool NoCommon) { 2635 // Don't give variables common linkage if -fno-common was specified unless it 2636 // was overridden by a NoCommon attribute. 2637 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2638 return true; 2639 2640 // C11 6.9.2/2: 2641 // A declaration of an identifier for an object that has file scope without 2642 // an initializer, and without a storage-class specifier or with the 2643 // storage-class specifier static, constitutes a tentative definition. 2644 if (D->getInit() || D->hasExternalStorage()) 2645 return true; 2646 2647 // A variable cannot be both common and exist in a section. 2648 if (D->hasAttr<SectionAttr>()) 2649 return true; 2650 2651 // Thread local vars aren't considered common linkage. 2652 if (D->getTLSKind()) 2653 return true; 2654 2655 // Tentative definitions marked with WeakImportAttr are true definitions. 2656 if (D->hasAttr<WeakImportAttr>()) 2657 return true; 2658 2659 // A variable cannot be both common and exist in a comdat. 2660 if (shouldBeInCOMDAT(CGM, *D)) 2661 return true; 2662 2663 // Declarations with a required alignment do not have common linkage in MSVC 2664 // mode. 2665 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2666 if (D->hasAttr<AlignedAttr>()) 2667 return true; 2668 QualType VarType = D->getType(); 2669 if (Context.isAlignmentRequired(VarType)) 2670 return true; 2671 2672 if (const auto *RT = VarType->getAs<RecordType>()) { 2673 const RecordDecl *RD = RT->getDecl(); 2674 for (const FieldDecl *FD : RD->fields()) { 2675 if (FD->isBitField()) 2676 continue; 2677 if (FD->hasAttr<AlignedAttr>()) 2678 return true; 2679 if (Context.isAlignmentRequired(FD->getType())) 2680 return true; 2681 } 2682 } 2683 } 2684 2685 return false; 2686 } 2687 2688 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2689 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2690 if (Linkage == GVA_Internal) 2691 return llvm::Function::InternalLinkage; 2692 2693 if (D->hasAttr<WeakAttr>()) { 2694 if (IsConstantVariable) 2695 return llvm::GlobalVariable::WeakODRLinkage; 2696 else 2697 return llvm::GlobalVariable::WeakAnyLinkage; 2698 } 2699 2700 // We are guaranteed to have a strong definition somewhere else, 2701 // so we can use available_externally linkage. 2702 if (Linkage == GVA_AvailableExternally) 2703 return llvm::Function::AvailableExternallyLinkage; 2704 2705 // Note that Apple's kernel linker doesn't support symbol 2706 // coalescing, so we need to avoid linkonce and weak linkages there. 2707 // Normally, this means we just map to internal, but for explicit 2708 // instantiations we'll map to external. 2709 2710 // In C++, the compiler has to emit a definition in every translation unit 2711 // that references the function. We should use linkonce_odr because 2712 // a) if all references in this translation unit are optimized away, we 2713 // don't need to codegen it. b) if the function persists, it needs to be 2714 // merged with other definitions. c) C++ has the ODR, so we know the 2715 // definition is dependable. 2716 if (Linkage == GVA_DiscardableODR) 2717 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2718 : llvm::Function::InternalLinkage; 2719 2720 // An explicit instantiation of a template has weak linkage, since 2721 // explicit instantiations can occur in multiple translation units 2722 // and must all be equivalent. However, we are not allowed to 2723 // throw away these explicit instantiations. 2724 // 2725 // We don't currently support CUDA device code spread out across multiple TUs, 2726 // so say that CUDA templates are either external (for kernels) or internal. 2727 // This lets llvm perform aggressive inter-procedural optimizations. 2728 if (Linkage == GVA_StrongODR) { 2729 if (Context.getLangOpts().AppleKext) 2730 return llvm::Function::ExternalLinkage; 2731 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2732 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2733 : llvm::Function::InternalLinkage; 2734 return llvm::Function::WeakODRLinkage; 2735 } 2736 2737 // C++ doesn't have tentative definitions and thus cannot have common 2738 // linkage. 2739 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2740 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2741 CodeGenOpts.NoCommon)) 2742 return llvm::GlobalVariable::CommonLinkage; 2743 2744 // selectany symbols are externally visible, so use weak instead of 2745 // linkonce. MSVC optimizes away references to const selectany globals, so 2746 // all definitions should be the same and ODR linkage should be used. 2747 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2748 if (D->hasAttr<SelectAnyAttr>()) 2749 return llvm::GlobalVariable::WeakODRLinkage; 2750 2751 // Otherwise, we have strong external linkage. 2752 assert(Linkage == GVA_StrongExternal); 2753 return llvm::GlobalVariable::ExternalLinkage; 2754 } 2755 2756 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2757 const VarDecl *VD, bool IsConstant) { 2758 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2759 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2760 } 2761 2762 /// Replace the uses of a function that was declared with a non-proto type. 2763 /// We want to silently drop extra arguments from call sites 2764 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2765 llvm::Function *newFn) { 2766 // Fast path. 2767 if (old->use_empty()) return; 2768 2769 llvm::Type *newRetTy = newFn->getReturnType(); 2770 SmallVector<llvm::Value*, 4> newArgs; 2771 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2772 2773 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2774 ui != ue; ) { 2775 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2776 llvm::User *user = use->getUser(); 2777 2778 // Recognize and replace uses of bitcasts. Most calls to 2779 // unprototyped functions will use bitcasts. 2780 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2781 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2782 replaceUsesOfNonProtoConstant(bitcast, newFn); 2783 continue; 2784 } 2785 2786 // Recognize calls to the function. 2787 llvm::CallSite callSite(user); 2788 if (!callSite) continue; 2789 if (!callSite.isCallee(&*use)) continue; 2790 2791 // If the return types don't match exactly, then we can't 2792 // transform this call unless it's dead. 2793 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2794 continue; 2795 2796 // Get the call site's attribute list. 2797 SmallVector<llvm::AttributeSet, 8> newAttrs; 2798 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2799 2800 // Collect any return attributes from the call. 2801 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2802 newAttrs.push_back( 2803 llvm::AttributeSet::get(newFn->getContext(), 2804 oldAttrs.getRetAttributes())); 2805 2806 // If the function was passed too few arguments, don't transform. 2807 unsigned newNumArgs = newFn->arg_size(); 2808 if (callSite.arg_size() < newNumArgs) continue; 2809 2810 // If extra arguments were passed, we silently drop them. 2811 // If any of the types mismatch, we don't transform. 2812 unsigned argNo = 0; 2813 bool dontTransform = false; 2814 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2815 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2816 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2817 dontTransform = true; 2818 break; 2819 } 2820 2821 // Add any parameter attributes. 2822 if (oldAttrs.hasAttributes(argNo + 1)) 2823 newAttrs. 2824 push_back(llvm:: 2825 AttributeSet::get(newFn->getContext(), 2826 oldAttrs.getParamAttributes(argNo + 1))); 2827 } 2828 if (dontTransform) 2829 continue; 2830 2831 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2832 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2833 oldAttrs.getFnAttributes())); 2834 2835 // Okay, we can transform this. Create the new call instruction and copy 2836 // over the required information. 2837 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2838 2839 // Copy over any operand bundles. 2840 callSite.getOperandBundlesAsDefs(newBundles); 2841 2842 llvm::CallSite newCall; 2843 if (callSite.isCall()) { 2844 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2845 callSite.getInstruction()); 2846 } else { 2847 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2848 newCall = llvm::InvokeInst::Create(newFn, 2849 oldInvoke->getNormalDest(), 2850 oldInvoke->getUnwindDest(), 2851 newArgs, newBundles, "", 2852 callSite.getInstruction()); 2853 } 2854 newArgs.clear(); // for the next iteration 2855 2856 if (!newCall->getType()->isVoidTy()) 2857 newCall->takeName(callSite.getInstruction()); 2858 newCall.setAttributes( 2859 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2860 newCall.setCallingConv(callSite.getCallingConv()); 2861 2862 // Finally, remove the old call, replacing any uses with the new one. 2863 if (!callSite->use_empty()) 2864 callSite->replaceAllUsesWith(newCall.getInstruction()); 2865 2866 // Copy debug location attached to CI. 2867 if (callSite->getDebugLoc()) 2868 newCall->setDebugLoc(callSite->getDebugLoc()); 2869 2870 callSite->eraseFromParent(); 2871 } 2872 } 2873 2874 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2875 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2876 /// existing call uses of the old function in the module, this adjusts them to 2877 /// call the new function directly. 2878 /// 2879 /// This is not just a cleanup: the always_inline pass requires direct calls to 2880 /// functions to be able to inline them. If there is a bitcast in the way, it 2881 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2882 /// run at -O0. 2883 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2884 llvm::Function *NewFn) { 2885 // If we're redefining a global as a function, don't transform it. 2886 if (!isa<llvm::Function>(Old)) return; 2887 2888 replaceUsesOfNonProtoConstant(Old, NewFn); 2889 } 2890 2891 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2892 auto DK = VD->isThisDeclarationADefinition(); 2893 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 2894 return; 2895 2896 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2897 // If we have a definition, this might be a deferred decl. If the 2898 // instantiation is explicit, make sure we emit it at the end. 2899 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2900 GetAddrOfGlobalVar(VD); 2901 2902 EmitTopLevelDecl(VD); 2903 } 2904 2905 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2906 llvm::GlobalValue *GV) { 2907 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2908 2909 // Emit this function's deferred diagnostics, if none of them are errors. If 2910 // any of them are errors, don't codegen the function, but also don't emit any 2911 // of the diagnostics just yet. Emitting an error during codegen stops 2912 // further codegen, and we want to display as many deferred diags as possible. 2913 // We'll emit the now twice-deferred diags at the very end of codegen. 2914 // 2915 // (If a function has both error and non-error diags, we don't emit the 2916 // non-error diags here, because order can be significant, e.g. with notes 2917 // that follow errors.) 2918 auto Diags = D->takeDeferredDiags(); 2919 bool HasError = llvm::any_of(Diags, [this](const PartialDiagnosticAt &PDAt) { 2920 return getDiags().getDiagnosticLevel(PDAt.second.getDiagID(), PDAt.first) >= 2921 DiagnosticsEngine::Error; 2922 }); 2923 if (HasError) { 2924 DeferredDiags.insert(DeferredDiags.end(), 2925 std::make_move_iterator(Diags.begin()), 2926 std::make_move_iterator(Diags.end())); 2927 return; 2928 } 2929 for (PartialDiagnosticAt &PDAt : Diags) { 2930 const SourceLocation &Loc = PDAt.first; 2931 const PartialDiagnostic &PD = PDAt.second; 2932 DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID())); 2933 PD.Emit(Builder); 2934 } 2935 2936 // Compute the function info and LLVM type. 2937 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2938 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2939 2940 // Get or create the prototype for the function. 2941 if (!GV || (GV->getType()->getElementType() != Ty)) 2942 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2943 /*DontDefer=*/true, 2944 /*IsForDefinition=*/true)); 2945 2946 // Already emitted. 2947 if (!GV->isDeclaration()) 2948 return; 2949 2950 // We need to set linkage and visibility on the function before 2951 // generating code for it because various parts of IR generation 2952 // want to propagate this information down (e.g. to local static 2953 // declarations). 2954 auto *Fn = cast<llvm::Function>(GV); 2955 setFunctionLinkage(GD, Fn); 2956 setFunctionDLLStorageClass(GD, Fn); 2957 2958 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2959 setGlobalVisibility(Fn, D); 2960 2961 MaybeHandleStaticInExternC(D, Fn); 2962 2963 maybeSetTrivialComdat(*D, *Fn); 2964 2965 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2966 2967 setFunctionDefinitionAttributes(D, Fn); 2968 SetLLVMFunctionAttributesForDefinition(D, Fn); 2969 2970 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2971 AddGlobalCtor(Fn, CA->getPriority()); 2972 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2973 AddGlobalDtor(Fn, DA->getPriority()); 2974 if (D->hasAttr<AnnotateAttr>()) 2975 AddGlobalAnnotations(D, Fn); 2976 } 2977 2978 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2979 const auto *D = cast<ValueDecl>(GD.getDecl()); 2980 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2981 assert(AA && "Not an alias?"); 2982 2983 StringRef MangledName = getMangledName(GD); 2984 2985 if (AA->getAliasee() == MangledName) { 2986 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2987 return; 2988 } 2989 2990 // If there is a definition in the module, then it wins over the alias. 2991 // This is dubious, but allow it to be safe. Just ignore the alias. 2992 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2993 if (Entry && !Entry->isDeclaration()) 2994 return; 2995 2996 Aliases.push_back(GD); 2997 2998 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2999 3000 // Create a reference to the named value. This ensures that it is emitted 3001 // if a deferred decl. 3002 llvm::Constant *Aliasee; 3003 if (isa<llvm::FunctionType>(DeclTy)) 3004 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3005 /*ForVTable=*/false); 3006 else 3007 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3008 llvm::PointerType::getUnqual(DeclTy), 3009 /*D=*/nullptr); 3010 3011 // Create the new alias itself, but don't set a name yet. 3012 auto *GA = llvm::GlobalAlias::create( 3013 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3014 3015 if (Entry) { 3016 if (GA->getAliasee() == Entry) { 3017 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3018 return; 3019 } 3020 3021 assert(Entry->isDeclaration()); 3022 3023 // If there is a declaration in the module, then we had an extern followed 3024 // by the alias, as in: 3025 // extern int test6(); 3026 // ... 3027 // int test6() __attribute__((alias("test7"))); 3028 // 3029 // Remove it and replace uses of it with the alias. 3030 GA->takeName(Entry); 3031 3032 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3033 Entry->getType())); 3034 Entry->eraseFromParent(); 3035 } else { 3036 GA->setName(MangledName); 3037 } 3038 3039 // Set attributes which are particular to an alias; this is a 3040 // specialization of the attributes which may be set on a global 3041 // variable/function. 3042 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3043 D->isWeakImported()) { 3044 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3045 } 3046 3047 if (const auto *VD = dyn_cast<VarDecl>(D)) 3048 if (VD->getTLSKind()) 3049 setTLSMode(GA, *VD); 3050 3051 setAliasAttributes(D, GA); 3052 } 3053 3054 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3055 const auto *D = cast<ValueDecl>(GD.getDecl()); 3056 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3057 assert(IFA && "Not an ifunc?"); 3058 3059 StringRef MangledName = getMangledName(GD); 3060 3061 if (IFA->getResolver() == MangledName) { 3062 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3063 return; 3064 } 3065 3066 // Report an error if some definition overrides ifunc. 3067 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3068 if (Entry && !Entry->isDeclaration()) { 3069 GlobalDecl OtherGD; 3070 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3071 DiagnosedConflictingDefinitions.insert(GD).second) { 3072 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3073 Diags.Report(OtherGD.getDecl()->getLocation(), 3074 diag::note_previous_definition); 3075 } 3076 return; 3077 } 3078 3079 Aliases.push_back(GD); 3080 3081 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3082 llvm::Constant *Resolver = 3083 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3084 /*ForVTable=*/false); 3085 llvm::GlobalIFunc *GIF = 3086 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3087 "", Resolver, &getModule()); 3088 if (Entry) { 3089 if (GIF->getResolver() == Entry) { 3090 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3091 return; 3092 } 3093 assert(Entry->isDeclaration()); 3094 3095 // If there is a declaration in the module, then we had an extern followed 3096 // by the ifunc, as in: 3097 // extern int test(); 3098 // ... 3099 // int test() __attribute__((ifunc("resolver"))); 3100 // 3101 // Remove it and replace uses of it with the ifunc. 3102 GIF->takeName(Entry); 3103 3104 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3105 Entry->getType())); 3106 Entry->eraseFromParent(); 3107 } else 3108 GIF->setName(MangledName); 3109 3110 SetCommonAttributes(D, GIF); 3111 } 3112 3113 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3114 ArrayRef<llvm::Type*> Tys) { 3115 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3116 Tys); 3117 } 3118 3119 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3120 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3121 const StringLiteral *Literal, bool TargetIsLSB, 3122 bool &IsUTF16, unsigned &StringLength) { 3123 StringRef String = Literal->getString(); 3124 unsigned NumBytes = String.size(); 3125 3126 // Check for simple case. 3127 if (!Literal->containsNonAsciiOrNull()) { 3128 StringLength = NumBytes; 3129 return *Map.insert(std::make_pair(String, nullptr)).first; 3130 } 3131 3132 // Otherwise, convert the UTF8 literals into a string of shorts. 3133 IsUTF16 = true; 3134 3135 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3136 const UTF8 *FromPtr = (const UTF8 *)String.data(); 3137 UTF16 *ToPtr = &ToBuf[0]; 3138 3139 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 3140 &ToPtr, ToPtr + NumBytes, 3141 strictConversion); 3142 3143 // ConvertUTF8toUTF16 returns the length in ToPtr. 3144 StringLength = ToPtr - &ToBuf[0]; 3145 3146 // Add an explicit null. 3147 *ToPtr = 0; 3148 return *Map.insert(std::make_pair( 3149 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3150 (StringLength + 1) * 2), 3151 nullptr)).first; 3152 } 3153 3154 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3155 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3156 const StringLiteral *Literal, unsigned &StringLength) { 3157 StringRef String = Literal->getString(); 3158 StringLength = String.size(); 3159 return *Map.insert(std::make_pair(String, nullptr)).first; 3160 } 3161 3162 ConstantAddress 3163 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3164 unsigned StringLength = 0; 3165 bool isUTF16 = false; 3166 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3167 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3168 getDataLayout().isLittleEndian(), isUTF16, 3169 StringLength); 3170 3171 if (auto *C = Entry.second) 3172 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3173 3174 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3175 llvm::Constant *Zeros[] = { Zero, Zero }; 3176 3177 // If we don't already have it, get __CFConstantStringClassReference. 3178 if (!CFConstantStringClassRef) { 3179 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3180 Ty = llvm::ArrayType::get(Ty, 0); 3181 llvm::Constant *GV = 3182 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3183 3184 if (getTarget().getTriple().isOSBinFormatCOFF()) { 3185 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3186 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3187 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3188 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3189 3190 const VarDecl *VD = nullptr; 3191 for (const auto &Result : DC->lookup(&II)) 3192 if ((VD = dyn_cast<VarDecl>(Result))) 3193 break; 3194 3195 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3196 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3197 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3198 } else { 3199 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3200 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3201 } 3202 } 3203 3204 // Decay array -> ptr 3205 CFConstantStringClassRef = 3206 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3207 } 3208 3209 QualType CFTy = getContext().getCFConstantStringType(); 3210 3211 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3212 3213 llvm::Constant *Fields[4]; 3214 3215 // Class pointer. 3216 Fields[0] = cast<llvm::ConstantExpr>(CFConstantStringClassRef); 3217 3218 // Flags. 3219 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3220 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 3221 : llvm::ConstantInt::get(Ty, 0x07C8); 3222 3223 // String pointer. 3224 llvm::Constant *C = nullptr; 3225 if (isUTF16) { 3226 auto Arr = llvm::makeArrayRef( 3227 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3228 Entry.first().size() / 2); 3229 C = llvm::ConstantDataArray::get(VMContext, Arr); 3230 } else { 3231 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3232 } 3233 3234 // Note: -fwritable-strings doesn't make the backing store strings of 3235 // CFStrings writable. (See <rdar://problem/10657500>) 3236 auto *GV = 3237 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3238 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3239 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3240 // Don't enforce the target's minimum global alignment, since the only use 3241 // of the string is via this class initializer. 3242 CharUnits Align = isUTF16 3243 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3244 : getContext().getTypeAlignInChars(getContext().CharTy); 3245 GV->setAlignment(Align.getQuantity()); 3246 3247 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3248 // Without it LLVM can merge the string with a non unnamed_addr one during 3249 // LTO. Doing that changes the section it ends in, which surprises ld64. 3250 if (getTarget().getTriple().isOSBinFormatMachO()) 3251 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3252 : "__TEXT,__cstring,cstring_literals"); 3253 3254 // String. 3255 Fields[2] = 3256 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3257 3258 if (isUTF16) 3259 // Cast the UTF16 string to the correct type. 3260 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3261 3262 // String length. 3263 Ty = getTypes().ConvertType(getContext().LongTy); 3264 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3265 3266 CharUnits Alignment = getPointerAlign(); 3267 3268 // The struct. 3269 C = llvm::ConstantStruct::get(STy, Fields); 3270 GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/false, 3271 llvm::GlobalVariable::PrivateLinkage, C, 3272 "_unnamed_cfstring_"); 3273 GV->setAlignment(Alignment.getQuantity()); 3274 switch (getTarget().getTriple().getObjectFormat()) { 3275 case llvm::Triple::UnknownObjectFormat: 3276 llvm_unreachable("unknown file format"); 3277 case llvm::Triple::COFF: 3278 case llvm::Triple::ELF: 3279 GV->setSection("cfstring"); 3280 break; 3281 case llvm::Triple::MachO: 3282 GV->setSection("__DATA,__cfstring"); 3283 break; 3284 } 3285 Entry.second = GV; 3286 3287 return ConstantAddress(GV, Alignment); 3288 } 3289 3290 ConstantAddress 3291 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3292 unsigned StringLength = 0; 3293 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3294 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3295 3296 if (auto *C = Entry.second) 3297 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3298 3299 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3300 llvm::Constant *Zeros[] = { Zero, Zero }; 3301 llvm::Value *V; 3302 // If we don't already have it, get _NSConstantStringClassReference. 3303 if (!ConstantStringClassRef) { 3304 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3305 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3306 llvm::Constant *GV; 3307 if (LangOpts.ObjCRuntime.isNonFragile()) { 3308 std::string str = 3309 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3310 : "OBJC_CLASS_$_" + StringClass; 3311 GV = getObjCRuntime().GetClassGlobal(str); 3312 // Make sure the result is of the correct type. 3313 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3314 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3315 ConstantStringClassRef = V; 3316 } else { 3317 std::string str = 3318 StringClass.empty() ? "_NSConstantStringClassReference" 3319 : "_" + StringClass + "ClassReference"; 3320 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3321 GV = CreateRuntimeVariable(PTy, str); 3322 // Decay array -> ptr 3323 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3324 ConstantStringClassRef = V; 3325 } 3326 } else 3327 V = ConstantStringClassRef; 3328 3329 if (!NSConstantStringType) { 3330 // Construct the type for a constant NSString. 3331 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3332 D->startDefinition(); 3333 3334 QualType FieldTypes[3]; 3335 3336 // const int *isa; 3337 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3338 // const char *str; 3339 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3340 // unsigned int length; 3341 FieldTypes[2] = Context.UnsignedIntTy; 3342 3343 // Create fields 3344 for (unsigned i = 0; i < 3; ++i) { 3345 FieldDecl *Field = FieldDecl::Create(Context, D, 3346 SourceLocation(), 3347 SourceLocation(), nullptr, 3348 FieldTypes[i], /*TInfo=*/nullptr, 3349 /*BitWidth=*/nullptr, 3350 /*Mutable=*/false, 3351 ICIS_NoInit); 3352 Field->setAccess(AS_public); 3353 D->addDecl(Field); 3354 } 3355 3356 D->completeDefinition(); 3357 QualType NSTy = Context.getTagDeclType(D); 3358 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3359 } 3360 3361 llvm::Constant *Fields[3]; 3362 3363 // Class pointer. 3364 Fields[0] = cast<llvm::ConstantExpr>(V); 3365 3366 // String pointer. 3367 llvm::Constant *C = 3368 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3369 3370 llvm::GlobalValue::LinkageTypes Linkage; 3371 bool isConstant; 3372 Linkage = llvm::GlobalValue::PrivateLinkage; 3373 isConstant = !LangOpts.WritableStrings; 3374 3375 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3376 Linkage, C, ".str"); 3377 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3378 // Don't enforce the target's minimum global alignment, since the only use 3379 // of the string is via this class initializer. 3380 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3381 GV->setAlignment(Align.getQuantity()); 3382 Fields[1] = 3383 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3384 3385 // String length. 3386 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3387 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3388 3389 // The struct. 3390 CharUnits Alignment = getPointerAlign(); 3391 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3392 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3393 llvm::GlobalVariable::PrivateLinkage, C, 3394 "_unnamed_nsstring_"); 3395 GV->setAlignment(Alignment.getQuantity()); 3396 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3397 const char *NSStringNonFragileABISection = 3398 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3399 // FIXME. Fix section. 3400 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3401 ? NSStringNonFragileABISection 3402 : NSStringSection); 3403 Entry.second = GV; 3404 3405 return ConstantAddress(GV, Alignment); 3406 } 3407 3408 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3409 if (ObjCFastEnumerationStateType.isNull()) { 3410 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3411 D->startDefinition(); 3412 3413 QualType FieldTypes[] = { 3414 Context.UnsignedLongTy, 3415 Context.getPointerType(Context.getObjCIdType()), 3416 Context.getPointerType(Context.UnsignedLongTy), 3417 Context.getConstantArrayType(Context.UnsignedLongTy, 3418 llvm::APInt(32, 5), ArrayType::Normal, 0) 3419 }; 3420 3421 for (size_t i = 0; i < 4; ++i) { 3422 FieldDecl *Field = FieldDecl::Create(Context, 3423 D, 3424 SourceLocation(), 3425 SourceLocation(), nullptr, 3426 FieldTypes[i], /*TInfo=*/nullptr, 3427 /*BitWidth=*/nullptr, 3428 /*Mutable=*/false, 3429 ICIS_NoInit); 3430 Field->setAccess(AS_public); 3431 D->addDecl(Field); 3432 } 3433 3434 D->completeDefinition(); 3435 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3436 } 3437 3438 return ObjCFastEnumerationStateType; 3439 } 3440 3441 llvm::Constant * 3442 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3443 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3444 3445 // Don't emit it as the address of the string, emit the string data itself 3446 // as an inline array. 3447 if (E->getCharByteWidth() == 1) { 3448 SmallString<64> Str(E->getString()); 3449 3450 // Resize the string to the right size, which is indicated by its type. 3451 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3452 Str.resize(CAT->getSize().getZExtValue()); 3453 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3454 } 3455 3456 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3457 llvm::Type *ElemTy = AType->getElementType(); 3458 unsigned NumElements = AType->getNumElements(); 3459 3460 // Wide strings have either 2-byte or 4-byte elements. 3461 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3462 SmallVector<uint16_t, 32> Elements; 3463 Elements.reserve(NumElements); 3464 3465 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3466 Elements.push_back(E->getCodeUnit(i)); 3467 Elements.resize(NumElements); 3468 return llvm::ConstantDataArray::get(VMContext, Elements); 3469 } 3470 3471 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3472 SmallVector<uint32_t, 32> Elements; 3473 Elements.reserve(NumElements); 3474 3475 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3476 Elements.push_back(E->getCodeUnit(i)); 3477 Elements.resize(NumElements); 3478 return llvm::ConstantDataArray::get(VMContext, Elements); 3479 } 3480 3481 static llvm::GlobalVariable * 3482 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3483 CodeGenModule &CGM, StringRef GlobalName, 3484 CharUnits Alignment) { 3485 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3486 unsigned AddrSpace = 0; 3487 if (CGM.getLangOpts().OpenCL) 3488 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3489 3490 llvm::Module &M = CGM.getModule(); 3491 // Create a global variable for this string 3492 auto *GV = new llvm::GlobalVariable( 3493 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3494 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3495 GV->setAlignment(Alignment.getQuantity()); 3496 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3497 if (GV->isWeakForLinker()) { 3498 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3499 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3500 } 3501 3502 return GV; 3503 } 3504 3505 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3506 /// constant array for the given string literal. 3507 ConstantAddress 3508 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3509 StringRef Name) { 3510 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3511 3512 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3513 llvm::GlobalVariable **Entry = nullptr; 3514 if (!LangOpts.WritableStrings) { 3515 Entry = &ConstantStringMap[C]; 3516 if (auto GV = *Entry) { 3517 if (Alignment.getQuantity() > GV->getAlignment()) 3518 GV->setAlignment(Alignment.getQuantity()); 3519 return ConstantAddress(GV, Alignment); 3520 } 3521 } 3522 3523 SmallString<256> MangledNameBuffer; 3524 StringRef GlobalVariableName; 3525 llvm::GlobalValue::LinkageTypes LT; 3526 3527 // Mangle the string literal if the ABI allows for it. However, we cannot 3528 // do this if we are compiling with ASan or -fwritable-strings because they 3529 // rely on strings having normal linkage. 3530 if (!LangOpts.WritableStrings && 3531 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3532 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3533 llvm::raw_svector_ostream Out(MangledNameBuffer); 3534 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3535 3536 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3537 GlobalVariableName = MangledNameBuffer; 3538 } else { 3539 LT = llvm::GlobalValue::PrivateLinkage; 3540 GlobalVariableName = Name; 3541 } 3542 3543 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3544 if (Entry) 3545 *Entry = GV; 3546 3547 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3548 QualType()); 3549 return ConstantAddress(GV, Alignment); 3550 } 3551 3552 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3553 /// array for the given ObjCEncodeExpr node. 3554 ConstantAddress 3555 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3556 std::string Str; 3557 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3558 3559 return GetAddrOfConstantCString(Str); 3560 } 3561 3562 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3563 /// the literal and a terminating '\0' character. 3564 /// The result has pointer to array type. 3565 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3566 const std::string &Str, const char *GlobalName) { 3567 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3568 CharUnits Alignment = 3569 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3570 3571 llvm::Constant *C = 3572 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3573 3574 // Don't share any string literals if strings aren't constant. 3575 llvm::GlobalVariable **Entry = nullptr; 3576 if (!LangOpts.WritableStrings) { 3577 Entry = &ConstantStringMap[C]; 3578 if (auto GV = *Entry) { 3579 if (Alignment.getQuantity() > GV->getAlignment()) 3580 GV->setAlignment(Alignment.getQuantity()); 3581 return ConstantAddress(GV, Alignment); 3582 } 3583 } 3584 3585 // Get the default prefix if a name wasn't specified. 3586 if (!GlobalName) 3587 GlobalName = ".str"; 3588 // Create a global variable for this. 3589 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3590 GlobalName, Alignment); 3591 if (Entry) 3592 *Entry = GV; 3593 return ConstantAddress(GV, Alignment); 3594 } 3595 3596 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3597 const MaterializeTemporaryExpr *E, const Expr *Init) { 3598 assert((E->getStorageDuration() == SD_Static || 3599 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3600 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3601 3602 // If we're not materializing a subobject of the temporary, keep the 3603 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3604 QualType MaterializedType = Init->getType(); 3605 if (Init == E->GetTemporaryExpr()) 3606 MaterializedType = E->getType(); 3607 3608 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3609 3610 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3611 return ConstantAddress(Slot, Align); 3612 3613 // FIXME: If an externally-visible declaration extends multiple temporaries, 3614 // we need to give each temporary the same name in every translation unit (and 3615 // we also need to make the temporaries externally-visible). 3616 SmallString<256> Name; 3617 llvm::raw_svector_ostream Out(Name); 3618 getCXXABI().getMangleContext().mangleReferenceTemporary( 3619 VD, E->getManglingNumber(), Out); 3620 3621 APValue *Value = nullptr; 3622 if (E->getStorageDuration() == SD_Static) { 3623 // We might have a cached constant initializer for this temporary. Note 3624 // that this might have a different value from the value computed by 3625 // evaluating the initializer if the surrounding constant expression 3626 // modifies the temporary. 3627 Value = getContext().getMaterializedTemporaryValue(E, false); 3628 if (Value && Value->isUninit()) 3629 Value = nullptr; 3630 } 3631 3632 // Try evaluating it now, it might have a constant initializer. 3633 Expr::EvalResult EvalResult; 3634 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3635 !EvalResult.hasSideEffects()) 3636 Value = &EvalResult.Val; 3637 3638 llvm::Constant *InitialValue = nullptr; 3639 bool Constant = false; 3640 llvm::Type *Type; 3641 if (Value) { 3642 // The temporary has a constant initializer, use it. 3643 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3644 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3645 Type = InitialValue->getType(); 3646 } else { 3647 // No initializer, the initialization will be provided when we 3648 // initialize the declaration which performed lifetime extension. 3649 Type = getTypes().ConvertTypeForMem(MaterializedType); 3650 } 3651 3652 // Create a global variable for this lifetime-extended temporary. 3653 llvm::GlobalValue::LinkageTypes Linkage = 3654 getLLVMLinkageVarDefinition(VD, Constant); 3655 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3656 const VarDecl *InitVD; 3657 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3658 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3659 // Temporaries defined inside a class get linkonce_odr linkage because the 3660 // class can be defined in multipe translation units. 3661 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3662 } else { 3663 // There is no need for this temporary to have external linkage if the 3664 // VarDecl has external linkage. 3665 Linkage = llvm::GlobalVariable::InternalLinkage; 3666 } 3667 } 3668 unsigned AddrSpace = GetGlobalVarAddressSpace( 3669 VD, getContext().getTargetAddressSpace(MaterializedType)); 3670 auto *GV = new llvm::GlobalVariable( 3671 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3672 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3673 AddrSpace); 3674 setGlobalVisibility(GV, VD); 3675 GV->setAlignment(Align.getQuantity()); 3676 if (supportsCOMDAT() && GV->isWeakForLinker()) 3677 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3678 if (VD->getTLSKind()) 3679 setTLSMode(GV, *VD); 3680 MaterializedGlobalTemporaryMap[E] = GV; 3681 return ConstantAddress(GV, Align); 3682 } 3683 3684 /// EmitObjCPropertyImplementations - Emit information for synthesized 3685 /// properties for an implementation. 3686 void CodeGenModule::EmitObjCPropertyImplementations(const 3687 ObjCImplementationDecl *D) { 3688 for (const auto *PID : D->property_impls()) { 3689 // Dynamic is just for type-checking. 3690 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3691 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3692 3693 // Determine which methods need to be implemented, some may have 3694 // been overridden. Note that ::isPropertyAccessor is not the method 3695 // we want, that just indicates if the decl came from a 3696 // property. What we want to know is if the method is defined in 3697 // this implementation. 3698 if (!D->getInstanceMethod(PD->getGetterName())) 3699 CodeGenFunction(*this).GenerateObjCGetter( 3700 const_cast<ObjCImplementationDecl *>(D), PID); 3701 if (!PD->isReadOnly() && 3702 !D->getInstanceMethod(PD->getSetterName())) 3703 CodeGenFunction(*this).GenerateObjCSetter( 3704 const_cast<ObjCImplementationDecl *>(D), PID); 3705 } 3706 } 3707 } 3708 3709 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3710 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3711 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3712 ivar; ivar = ivar->getNextIvar()) 3713 if (ivar->getType().isDestructedType()) 3714 return true; 3715 3716 return false; 3717 } 3718 3719 static bool AllTrivialInitializers(CodeGenModule &CGM, 3720 ObjCImplementationDecl *D) { 3721 CodeGenFunction CGF(CGM); 3722 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3723 E = D->init_end(); B != E; ++B) { 3724 CXXCtorInitializer *CtorInitExp = *B; 3725 Expr *Init = CtorInitExp->getInit(); 3726 if (!CGF.isTrivialInitializer(Init)) 3727 return false; 3728 } 3729 return true; 3730 } 3731 3732 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3733 /// for an implementation. 3734 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3735 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3736 if (needsDestructMethod(D)) { 3737 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3738 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3739 ObjCMethodDecl *DTORMethod = 3740 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3741 cxxSelector, getContext().VoidTy, nullptr, D, 3742 /*isInstance=*/true, /*isVariadic=*/false, 3743 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3744 /*isDefined=*/false, ObjCMethodDecl::Required); 3745 D->addInstanceMethod(DTORMethod); 3746 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3747 D->setHasDestructors(true); 3748 } 3749 3750 // If the implementation doesn't have any ivar initializers, we don't need 3751 // a .cxx_construct. 3752 if (D->getNumIvarInitializers() == 0 || 3753 AllTrivialInitializers(*this, D)) 3754 return; 3755 3756 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3757 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3758 // The constructor returns 'self'. 3759 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3760 D->getLocation(), 3761 D->getLocation(), 3762 cxxSelector, 3763 getContext().getObjCIdType(), 3764 nullptr, D, /*isInstance=*/true, 3765 /*isVariadic=*/false, 3766 /*isPropertyAccessor=*/true, 3767 /*isImplicitlyDeclared=*/true, 3768 /*isDefined=*/false, 3769 ObjCMethodDecl::Required); 3770 D->addInstanceMethod(CTORMethod); 3771 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3772 D->setHasNonZeroConstructors(true); 3773 } 3774 3775 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3776 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3777 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3778 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3779 ErrorUnsupported(LSD, "linkage spec"); 3780 return; 3781 } 3782 3783 EmitDeclContext(LSD); 3784 } 3785 3786 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3787 for (auto *I : DC->decls()) { 3788 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3789 // are themselves considered "top-level", so EmitTopLevelDecl on an 3790 // ObjCImplDecl does not recursively visit them. We need to do that in 3791 // case they're nested inside another construct (LinkageSpecDecl / 3792 // ExportDecl) that does stop them from being considered "top-level". 3793 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3794 for (auto *M : OID->methods()) 3795 EmitTopLevelDecl(M); 3796 } 3797 3798 EmitTopLevelDecl(I); 3799 } 3800 } 3801 3802 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3803 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3804 // Ignore dependent declarations. 3805 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3806 return; 3807 3808 switch (D->getKind()) { 3809 case Decl::CXXConversion: 3810 case Decl::CXXMethod: 3811 case Decl::Function: 3812 // Skip function templates 3813 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3814 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3815 return; 3816 3817 EmitGlobal(cast<FunctionDecl>(D)); 3818 // Always provide some coverage mapping 3819 // even for the functions that aren't emitted. 3820 AddDeferredUnusedCoverageMapping(D); 3821 break; 3822 3823 case Decl::Var: 3824 case Decl::Decomposition: 3825 // Skip variable templates 3826 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3827 return; 3828 case Decl::VarTemplateSpecialization: 3829 EmitGlobal(cast<VarDecl>(D)); 3830 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3831 for (auto *B : DD->bindings()) 3832 if (auto *HD = B->getHoldingVar()) 3833 EmitGlobal(HD); 3834 break; 3835 3836 // Indirect fields from global anonymous structs and unions can be 3837 // ignored; only the actual variable requires IR gen support. 3838 case Decl::IndirectField: 3839 break; 3840 3841 // C++ Decls 3842 case Decl::Namespace: 3843 EmitDeclContext(cast<NamespaceDecl>(D)); 3844 break; 3845 case Decl::CXXRecord: 3846 // Emit any static data members, they may be definitions. 3847 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3848 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3849 EmitTopLevelDecl(I); 3850 break; 3851 // No code generation needed. 3852 case Decl::UsingShadow: 3853 case Decl::ClassTemplate: 3854 case Decl::VarTemplate: 3855 case Decl::VarTemplatePartialSpecialization: 3856 case Decl::FunctionTemplate: 3857 case Decl::TypeAliasTemplate: 3858 case Decl::Block: 3859 case Decl::Empty: 3860 break; 3861 case Decl::Using: // using X; [C++] 3862 if (CGDebugInfo *DI = getModuleDebugInfo()) 3863 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3864 return; 3865 case Decl::NamespaceAlias: 3866 if (CGDebugInfo *DI = getModuleDebugInfo()) 3867 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3868 return; 3869 case Decl::UsingDirective: // using namespace X; [C++] 3870 if (CGDebugInfo *DI = getModuleDebugInfo()) 3871 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3872 return; 3873 case Decl::CXXConstructor: 3874 // Skip function templates 3875 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3876 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3877 return; 3878 3879 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3880 break; 3881 case Decl::CXXDestructor: 3882 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3883 return; 3884 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3885 break; 3886 3887 case Decl::StaticAssert: 3888 // Nothing to do. 3889 break; 3890 3891 // Objective-C Decls 3892 3893 // Forward declarations, no (immediate) code generation. 3894 case Decl::ObjCInterface: 3895 case Decl::ObjCCategory: 3896 break; 3897 3898 case Decl::ObjCProtocol: { 3899 auto *Proto = cast<ObjCProtocolDecl>(D); 3900 if (Proto->isThisDeclarationADefinition()) 3901 ObjCRuntime->GenerateProtocol(Proto); 3902 break; 3903 } 3904 3905 case Decl::ObjCCategoryImpl: 3906 // Categories have properties but don't support synthesize so we 3907 // can ignore them here. 3908 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3909 break; 3910 3911 case Decl::ObjCImplementation: { 3912 auto *OMD = cast<ObjCImplementationDecl>(D); 3913 EmitObjCPropertyImplementations(OMD); 3914 EmitObjCIvarInitializations(OMD); 3915 ObjCRuntime->GenerateClass(OMD); 3916 // Emit global variable debug information. 3917 if (CGDebugInfo *DI = getModuleDebugInfo()) 3918 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3919 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3920 OMD->getClassInterface()), OMD->getLocation()); 3921 break; 3922 } 3923 case Decl::ObjCMethod: { 3924 auto *OMD = cast<ObjCMethodDecl>(D); 3925 // If this is not a prototype, emit the body. 3926 if (OMD->getBody()) 3927 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3928 break; 3929 } 3930 case Decl::ObjCCompatibleAlias: 3931 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3932 break; 3933 3934 case Decl::PragmaComment: { 3935 const auto *PCD = cast<PragmaCommentDecl>(D); 3936 switch (PCD->getCommentKind()) { 3937 case PCK_Unknown: 3938 llvm_unreachable("unexpected pragma comment kind"); 3939 case PCK_Linker: 3940 AppendLinkerOptions(PCD->getArg()); 3941 break; 3942 case PCK_Lib: 3943 AddDependentLib(PCD->getArg()); 3944 break; 3945 case PCK_Compiler: 3946 case PCK_ExeStr: 3947 case PCK_User: 3948 break; // We ignore all of these. 3949 } 3950 break; 3951 } 3952 3953 case Decl::PragmaDetectMismatch: { 3954 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3955 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3956 break; 3957 } 3958 3959 case Decl::LinkageSpec: 3960 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3961 break; 3962 3963 case Decl::FileScopeAsm: { 3964 // File-scope asm is ignored during device-side CUDA compilation. 3965 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3966 break; 3967 // File-scope asm is ignored during device-side OpenMP compilation. 3968 if (LangOpts.OpenMPIsDevice) 3969 break; 3970 auto *AD = cast<FileScopeAsmDecl>(D); 3971 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3972 break; 3973 } 3974 3975 case Decl::Import: { 3976 auto *Import = cast<ImportDecl>(D); 3977 3978 // If we've already imported this module, we're done. 3979 if (!ImportedModules.insert(Import->getImportedModule())) 3980 break; 3981 3982 // Emit debug information for direct imports. 3983 if (!Import->getImportedOwningModule()) { 3984 if (CGDebugInfo *DI = getModuleDebugInfo()) 3985 DI->EmitImportDecl(*Import); 3986 } 3987 3988 // Emit the module initializers. 3989 for (auto *D : Context.getModuleInitializers(Import->getImportedModule())) 3990 EmitTopLevelDecl(D); 3991 break; 3992 } 3993 3994 case Decl::Export: 3995 EmitDeclContext(cast<ExportDecl>(D)); 3996 break; 3997 3998 case Decl::OMPThreadPrivate: 3999 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4000 break; 4001 4002 case Decl::ClassTemplateSpecialization: { 4003 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4004 if (DebugInfo && 4005 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4006 Spec->hasDefinition()) 4007 DebugInfo->completeTemplateDefinition(*Spec); 4008 break; 4009 } 4010 4011 case Decl::OMPDeclareReduction: 4012 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4013 break; 4014 4015 default: 4016 // Make sure we handled everything we should, every other kind is a 4017 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4018 // function. Need to recode Decl::Kind to do that easily. 4019 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4020 break; 4021 } 4022 } 4023 4024 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4025 // Do we need to generate coverage mapping? 4026 if (!CodeGenOpts.CoverageMapping) 4027 return; 4028 switch (D->getKind()) { 4029 case Decl::CXXConversion: 4030 case Decl::CXXMethod: 4031 case Decl::Function: 4032 case Decl::ObjCMethod: 4033 case Decl::CXXConstructor: 4034 case Decl::CXXDestructor: { 4035 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4036 return; 4037 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4038 if (I == DeferredEmptyCoverageMappingDecls.end()) 4039 DeferredEmptyCoverageMappingDecls[D] = true; 4040 break; 4041 } 4042 default: 4043 break; 4044 }; 4045 } 4046 4047 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4048 // Do we need to generate coverage mapping? 4049 if (!CodeGenOpts.CoverageMapping) 4050 return; 4051 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4052 if (Fn->isTemplateInstantiation()) 4053 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4054 } 4055 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4056 if (I == DeferredEmptyCoverageMappingDecls.end()) 4057 DeferredEmptyCoverageMappingDecls[D] = false; 4058 else 4059 I->second = false; 4060 } 4061 4062 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4063 std::vector<const Decl *> DeferredDecls; 4064 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4065 if (!I.second) 4066 continue; 4067 DeferredDecls.push_back(I.first); 4068 } 4069 // Sort the declarations by their location to make sure that the tests get a 4070 // predictable order for the coverage mapping for the unused declarations. 4071 if (CodeGenOpts.DumpCoverageMapping) 4072 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4073 [] (const Decl *LHS, const Decl *RHS) { 4074 return LHS->getLocStart() < RHS->getLocStart(); 4075 }); 4076 for (const auto *D : DeferredDecls) { 4077 switch (D->getKind()) { 4078 case Decl::CXXConversion: 4079 case Decl::CXXMethod: 4080 case Decl::Function: 4081 case Decl::ObjCMethod: { 4082 CodeGenPGO PGO(*this); 4083 GlobalDecl GD(cast<FunctionDecl>(D)); 4084 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4085 getFunctionLinkage(GD)); 4086 break; 4087 } 4088 case Decl::CXXConstructor: { 4089 CodeGenPGO PGO(*this); 4090 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4091 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4092 getFunctionLinkage(GD)); 4093 break; 4094 } 4095 case Decl::CXXDestructor: { 4096 CodeGenPGO PGO(*this); 4097 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4098 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4099 getFunctionLinkage(GD)); 4100 break; 4101 } 4102 default: 4103 break; 4104 }; 4105 } 4106 } 4107 4108 /// Turns the given pointer into a constant. 4109 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4110 const void *Ptr) { 4111 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4112 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4113 return llvm::ConstantInt::get(i64, PtrInt); 4114 } 4115 4116 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4117 llvm::NamedMDNode *&GlobalMetadata, 4118 GlobalDecl D, 4119 llvm::GlobalValue *Addr) { 4120 if (!GlobalMetadata) 4121 GlobalMetadata = 4122 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4123 4124 // TODO: should we report variant information for ctors/dtors? 4125 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4126 llvm::ConstantAsMetadata::get(GetPointerConstant( 4127 CGM.getLLVMContext(), D.getDecl()))}; 4128 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4129 } 4130 4131 /// For each function which is declared within an extern "C" region and marked 4132 /// as 'used', but has internal linkage, create an alias from the unmangled 4133 /// name to the mangled name if possible. People expect to be able to refer 4134 /// to such functions with an unmangled name from inline assembly within the 4135 /// same translation unit. 4136 void CodeGenModule::EmitStaticExternCAliases() { 4137 // Don't do anything if we're generating CUDA device code -- the NVPTX 4138 // assembly target doesn't support aliases. 4139 if (Context.getTargetInfo().getTriple().isNVPTX()) 4140 return; 4141 for (auto &I : StaticExternCValues) { 4142 IdentifierInfo *Name = I.first; 4143 llvm::GlobalValue *Val = I.second; 4144 if (Val && !getModule().getNamedValue(Name->getName())) 4145 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4146 } 4147 } 4148 4149 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4150 GlobalDecl &Result) const { 4151 auto Res = Manglings.find(MangledName); 4152 if (Res == Manglings.end()) 4153 return false; 4154 Result = Res->getValue(); 4155 return true; 4156 } 4157 4158 /// Emits metadata nodes associating all the global values in the 4159 /// current module with the Decls they came from. This is useful for 4160 /// projects using IR gen as a subroutine. 4161 /// 4162 /// Since there's currently no way to associate an MDNode directly 4163 /// with an llvm::GlobalValue, we create a global named metadata 4164 /// with the name 'clang.global.decl.ptrs'. 4165 void CodeGenModule::EmitDeclMetadata() { 4166 llvm::NamedMDNode *GlobalMetadata = nullptr; 4167 4168 for (auto &I : MangledDeclNames) { 4169 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4170 // Some mangled names don't necessarily have an associated GlobalValue 4171 // in this module, e.g. if we mangled it for DebugInfo. 4172 if (Addr) 4173 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4174 } 4175 } 4176 4177 /// Emits metadata nodes for all the local variables in the current 4178 /// function. 4179 void CodeGenFunction::EmitDeclMetadata() { 4180 if (LocalDeclMap.empty()) return; 4181 4182 llvm::LLVMContext &Context = getLLVMContext(); 4183 4184 // Find the unique metadata ID for this name. 4185 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4186 4187 llvm::NamedMDNode *GlobalMetadata = nullptr; 4188 4189 for (auto &I : LocalDeclMap) { 4190 const Decl *D = I.first; 4191 llvm::Value *Addr = I.second.getPointer(); 4192 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4193 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4194 Alloca->setMetadata( 4195 DeclPtrKind, llvm::MDNode::get( 4196 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4197 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4198 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4199 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4200 } 4201 } 4202 } 4203 4204 void CodeGenModule::EmitVersionIdentMetadata() { 4205 llvm::NamedMDNode *IdentMetadata = 4206 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4207 std::string Version = getClangFullVersion(); 4208 llvm::LLVMContext &Ctx = TheModule.getContext(); 4209 4210 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4211 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4212 } 4213 4214 void CodeGenModule::EmitTargetMetadata() { 4215 // Warning, new MangledDeclNames may be appended within this loop. 4216 // We rely on MapVector insertions adding new elements to the end 4217 // of the container. 4218 // FIXME: Move this loop into the one target that needs it, and only 4219 // loop over those declarations for which we couldn't emit the target 4220 // metadata when we emitted the declaration. 4221 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4222 auto Val = *(MangledDeclNames.begin() + I); 4223 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4224 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4225 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4226 } 4227 } 4228 4229 void CodeGenModule::EmitCoverageFile() { 4230 if (getCodeGenOpts().CoverageDataFile.empty() && 4231 getCodeGenOpts().CoverageNotesFile.empty()) 4232 return; 4233 4234 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4235 if (!CUNode) 4236 return; 4237 4238 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4239 llvm::LLVMContext &Ctx = TheModule.getContext(); 4240 auto *CoverageDataFile = 4241 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4242 auto *CoverageNotesFile = 4243 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4244 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4245 llvm::MDNode *CU = CUNode->getOperand(i); 4246 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4247 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4248 } 4249 } 4250 4251 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4252 // Sema has checked that all uuid strings are of the form 4253 // "12345678-1234-1234-1234-1234567890ab". 4254 assert(Uuid.size() == 36); 4255 for (unsigned i = 0; i < 36; ++i) { 4256 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4257 else assert(isHexDigit(Uuid[i])); 4258 } 4259 4260 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4261 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4262 4263 llvm::Constant *Field3[8]; 4264 for (unsigned Idx = 0; Idx < 8; ++Idx) 4265 Field3[Idx] = llvm::ConstantInt::get( 4266 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4267 4268 llvm::Constant *Fields[4] = { 4269 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4270 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4271 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4272 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4273 }; 4274 4275 return llvm::ConstantStruct::getAnon(Fields); 4276 } 4277 4278 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4279 bool ForEH) { 4280 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4281 // FIXME: should we even be calling this method if RTTI is disabled 4282 // and it's not for EH? 4283 if (!ForEH && !getLangOpts().RTTI) 4284 return llvm::Constant::getNullValue(Int8PtrTy); 4285 4286 if (ForEH && Ty->isObjCObjectPointerType() && 4287 LangOpts.ObjCRuntime.isGNUFamily()) 4288 return ObjCRuntime->GetEHType(Ty); 4289 4290 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4291 } 4292 4293 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4294 for (auto RefExpr : D->varlists()) { 4295 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4296 bool PerformInit = 4297 VD->getAnyInitializer() && 4298 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4299 /*ForRef=*/false); 4300 4301 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4302 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4303 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4304 CXXGlobalInits.push_back(InitFunction); 4305 } 4306 } 4307 4308 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4309 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4310 if (InternalId) 4311 return InternalId; 4312 4313 if (isExternallyVisible(T->getLinkage())) { 4314 std::string OutName; 4315 llvm::raw_string_ostream Out(OutName); 4316 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4317 4318 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4319 } else { 4320 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4321 llvm::ArrayRef<llvm::Metadata *>()); 4322 } 4323 4324 return InternalId; 4325 } 4326 4327 /// Returns whether this module needs the "all-vtables" type identifier. 4328 bool CodeGenModule::NeedAllVtablesTypeId() const { 4329 // Returns true if at least one of vtable-based CFI checkers is enabled and 4330 // is not in the trapping mode. 4331 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4332 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4333 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4334 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4335 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4336 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4337 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4338 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4339 } 4340 4341 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4342 CharUnits Offset, 4343 const CXXRecordDecl *RD) { 4344 llvm::Metadata *MD = 4345 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4346 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4347 4348 if (CodeGenOpts.SanitizeCfiCrossDso) 4349 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4350 VTable->addTypeMetadata(Offset.getQuantity(), 4351 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4352 4353 if (NeedAllVtablesTypeId()) { 4354 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4355 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4356 } 4357 } 4358 4359 // Fills in the supplied string map with the set of target features for the 4360 // passed in function. 4361 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4362 const FunctionDecl *FD) { 4363 StringRef TargetCPU = Target.getTargetOpts().CPU; 4364 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4365 // If we have a TargetAttr build up the feature map based on that. 4366 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4367 4368 // Make a copy of the features as passed on the command line into the 4369 // beginning of the additional features from the function to override. 4370 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4371 Target.getTargetOpts().FeaturesAsWritten.begin(), 4372 Target.getTargetOpts().FeaturesAsWritten.end()); 4373 4374 if (ParsedAttr.second != "") 4375 TargetCPU = ParsedAttr.second; 4376 4377 // Now populate the feature map, first with the TargetCPU which is either 4378 // the default or a new one from the target attribute string. Then we'll use 4379 // the passed in features (FeaturesAsWritten) along with the new ones from 4380 // the attribute. 4381 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4382 } else { 4383 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4384 Target.getTargetOpts().Features); 4385 } 4386 } 4387 4388 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4389 if (!SanStats) 4390 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4391 4392 return *SanStats; 4393 } 4394 llvm::Value * 4395 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4396 CodeGenFunction &CGF) { 4397 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4398 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4399 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4400 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4401 "__translate_sampler_initializer"), 4402 {C}); 4403 } 4404