xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 93e58667ee1030f36affff0cc5c43e404be19523)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.ControlFlowGuard) {
461     // We want function ID tables for Control Flow Guard.
462     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463   }
464   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465     // We don't support LTO with 2 with different StrictVTablePointers
466     // FIXME: we could support it by stripping all the information introduced
467     // by StrictVTablePointers.
468 
469     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470 
471     llvm::Metadata *Ops[2] = {
472               llvm::MDString::get(VMContext, "StrictVTablePointers"),
473               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474                   llvm::Type::getInt32Ty(VMContext), 1))};
475 
476     getModule().addModuleFlag(llvm::Module::Require,
477                               "StrictVTablePointersRequirement",
478                               llvm::MDNode::get(VMContext, Ops));
479   }
480   if (DebugInfo)
481     // We support a single version in the linked module. The LLVM
482     // parser will drop debug info with a different version number
483     // (and warn about it, too).
484     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485                               llvm::DEBUG_METADATA_VERSION);
486 
487   // We need to record the widths of enums and wchar_t, so that we can generate
488   // the correct build attributes in the ARM backend. wchar_size is also used by
489   // TargetLibraryInfo.
490   uint64_t WCharWidth =
491       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493 
494   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495   if (   Arch == llvm::Triple::arm
496       || Arch == llvm::Triple::armeb
497       || Arch == llvm::Triple::thumb
498       || Arch == llvm::Triple::thumbeb) {
499     // The minimum width of an enum in bytes
500     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502   }
503 
504   if (CodeGenOpts.SanitizeCfiCrossDso) {
505     // Indicate that we want cross-DSO control flow integrity checks.
506     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507   }
508 
509   if (CodeGenOpts.CFProtectionReturn &&
510       Target.checkCFProtectionReturnSupported(getDiags())) {
511     // Indicate that we want to instrument return control flow protection.
512     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513                               1);
514   }
515 
516   if (CodeGenOpts.CFProtectionBranch &&
517       Target.checkCFProtectionBranchSupported(getDiags())) {
518     // Indicate that we want to instrument branch control flow protection.
519     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520                               1);
521   }
522 
523   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524     // Indicate whether __nvvm_reflect should be configured to flush denormal
525     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
526     // property.)
527     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529   }
530 
531   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532   if (LangOpts.OpenCL) {
533     EmitOpenCLMetadata();
534     // Emit SPIR version.
535     if (getTriple().getArch() == llvm::Triple::spir ||
536         getTriple().getArch() == llvm::Triple::spir64) {
537       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538       // opencl.spir.version named metadata.
539       llvm::Metadata *SPIRVerElts[] = {
540           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541               Int32Ty, LangOpts.OpenCLVersion / 100)),
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544       llvm::NamedMDNode *SPIRVerMD =
545           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546       llvm::LLVMContext &Ctx = TheModule.getContext();
547       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548     }
549   }
550 
551   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552     assert(PLevel < 3 && "Invalid PIC Level");
553     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554     if (Context.getLangOpts().PIE)
555       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556   }
557 
558   SimplifyPersonality();
559 
560   if (getCodeGenOpts().EmitDeclMetadata)
561     EmitDeclMetadata();
562 
563   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
564     EmitCoverageFile();
565 
566   if (DebugInfo)
567     DebugInfo->finalize();
568 
569   EmitVersionIdentMetadata();
570 
571   EmitTargetMetadata();
572 }
573 
574 void CodeGenModule::EmitOpenCLMetadata() {
575   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
576   // opencl.ocl.version named metadata node.
577   llvm::Metadata *OCLVerElts[] = {
578       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579           Int32Ty, LangOpts.OpenCLVersion / 100)),
580       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
581           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
582   llvm::NamedMDNode *OCLVerMD =
583       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
584   llvm::LLVMContext &Ctx = TheModule.getContext();
585   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
586 }
587 
588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
589   // Make sure that this type is translated.
590   Types.UpdateCompletedType(TD);
591 }
592 
593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
594   // Make sure that this type is translated.
595   Types.RefreshTypeCacheForClass(RD);
596 }
597 
598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
599   if (!TBAA)
600     return nullptr;
601   return TBAA->getTypeInfo(QTy);
602 }
603 
604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
605   // Pointee values may have incomplete types, but they shall never be
606   // dereferenced.
607   if (AccessType->isIncompleteType())
608     return TBAAAccessInfo::getIncompleteInfo();
609 
610   uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
611   return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size);
612 }
613 
614 TBAAAccessInfo
615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616   if (!TBAA)
617     return TBAAAccessInfo();
618   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619 }
620 
621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622   if (!TBAA)
623     return nullptr;
624   return TBAA->getTBAAStructInfo(QTy);
625 }
626 
627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628   if (!TBAA)
629     return nullptr;
630   return TBAA->getBaseTypeInfo(QTy);
631 }
632 
633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634   if (!TBAA)
635     return nullptr;
636   return TBAA->getAccessTagInfo(Info);
637 }
638 
639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640                                                    TBAAAccessInfo TargetInfo) {
641   if (!TBAA)
642     return TBAAAccessInfo();
643   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644 }
645 
646 TBAAAccessInfo
647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648                                                    TBAAAccessInfo InfoB) {
649   if (!TBAA)
650     return TBAAAccessInfo();
651   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652 }
653 
654 TBAAAccessInfo
655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
656                                               TBAAAccessInfo SrcInfo) {
657   if (!TBAA)
658     return TBAAAccessInfo();
659   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
660 }
661 
662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
663                                                 TBAAAccessInfo TBAAInfo) {
664   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
665     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
666 }
667 
668 void CodeGenModule::DecorateInstructionWithInvariantGroup(
669     llvm::Instruction *I, const CXXRecordDecl *RD) {
670   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
671                  llvm::MDNode::get(getLLVMContext(), {}));
672 }
673 
674 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
675   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
676   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
677 }
678 
679 /// ErrorUnsupported - Print out an error that codegen doesn't support the
680 /// specified stmt yet.
681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
682   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
683                                                "cannot compile this %0 yet");
684   std::string Msg = Type;
685   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
686     << Msg << S->getSourceRange();
687 }
688 
689 /// ErrorUnsupported - Print out an error that codegen doesn't support the
690 /// specified decl yet.
691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
692   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
693                                                "cannot compile this %0 yet");
694   std::string Msg = Type;
695   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
696 }
697 
698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
699   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
700 }
701 
702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
703                                         const NamedDecl *D) const {
704   if (GV->hasDLLImportStorageClass())
705     return;
706   // Internal definitions always have default visibility.
707   if (GV->hasLocalLinkage()) {
708     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
709     return;
710   }
711 
712   // Set visibility for definitions.
713   LinkageInfo LV = D->getLinkageAndVisibility();
714   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
715     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
716 }
717 
718 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
719                                  llvm::GlobalValue *GV, const NamedDecl *D) {
720   const llvm::Triple &TT = CGM.getTriple();
721   // Only handle ELF for now.
722   if (!TT.isOSBinFormatELF())
723     return false;
724 
725   // If this is not an executable, don't assume anything is local.
726   const auto &CGOpts = CGM.getCodeGenOpts();
727   llvm::Reloc::Model RM = CGOpts.RelocationModel;
728   const auto &LOpts = CGM.getLangOpts();
729   if (RM != llvm::Reloc::Static && !LOpts.PIE)
730     return false;
731 
732   // A definition cannot be preempted from an executable.
733   if (!GV->isDeclarationForLinker())
734     return true;
735 
736   // Most PIC code sequences that assume that a symbol is local cannot produce a
737   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
738   // depended, it seems worth it to handle it here.
739   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
740     return false;
741 
742   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
743   llvm::Triple::ArchType Arch = TT.getArch();
744   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
745       Arch == llvm::Triple::ppc64le)
746     return false;
747 
748   // If we can use copy relocations we can assume it is local.
749   if (auto *VD = dyn_cast<VarDecl>(D))
750     if (VD->getTLSKind() == VarDecl::TLS_None &&
751         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
752       return true;
753 
754   // If we can use a plt entry as the symbol address we can assume it
755   // is local.
756   // FIXME: This should work for PIE, but the gold linker doesn't support it.
757   if (isa<FunctionDecl>(D) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
758     return true;
759 
760   // Otherwise don't assue it is local.
761   return false;
762 }
763 
764 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV,
765                                 const NamedDecl *D) const {
766   if (shouldAssumeDSOLocal(*this, GV, D))
767     GV->setDSOLocal(true);
768 }
769 
770 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
771                                     const NamedDecl *D) const {
772   setGlobalVisibility(GV, D);
773   setDSOLocal(GV, D);
774 }
775 
776 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
777   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
778       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
779       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
780       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
781       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
782 }
783 
784 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
785     CodeGenOptions::TLSModel M) {
786   switch (M) {
787   case CodeGenOptions::GeneralDynamicTLSModel:
788     return llvm::GlobalVariable::GeneralDynamicTLSModel;
789   case CodeGenOptions::LocalDynamicTLSModel:
790     return llvm::GlobalVariable::LocalDynamicTLSModel;
791   case CodeGenOptions::InitialExecTLSModel:
792     return llvm::GlobalVariable::InitialExecTLSModel;
793   case CodeGenOptions::LocalExecTLSModel:
794     return llvm::GlobalVariable::LocalExecTLSModel;
795   }
796   llvm_unreachable("Invalid TLS model!");
797 }
798 
799 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
800   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
801 
802   llvm::GlobalValue::ThreadLocalMode TLM;
803   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
804 
805   // Override the TLS model if it is explicitly specified.
806   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
807     TLM = GetLLVMTLSModel(Attr->getModel());
808   }
809 
810   GV->setThreadLocalMode(TLM);
811 }
812 
813 static void AppendTargetMangling(const CodeGenModule &CGM,
814                                  const TargetAttr *Attr, raw_ostream &Out) {
815   if (Attr->isDefaultVersion())
816     return;
817 
818   Out << '.';
819   const auto &Target = CGM.getTarget();
820   TargetAttr::ParsedTargetAttr Info =
821       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
822                     // Multiversioning doesn't allow "no-${feature}", so we can
823                     // only have "+" prefixes here.
824                     assert(LHS.startswith("+") && RHS.startswith("+") &&
825                            "Features should always have a prefix.");
826                     return Target.multiVersionSortPriority(LHS.substr(1)) >
827                            Target.multiVersionSortPriority(RHS.substr(1));
828                   });
829 
830   bool IsFirst = true;
831 
832   if (!Info.Architecture.empty()) {
833     IsFirst = false;
834     Out << "arch_" << Info.Architecture;
835   }
836 
837   for (StringRef Feat : Info.Features) {
838     if (!IsFirst)
839       Out << '_';
840     IsFirst = false;
841     Out << Feat.substr(1);
842   }
843 }
844 
845 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
846                                       const NamedDecl *ND,
847                                       bool OmitTargetMangling = false) {
848   SmallString<256> Buffer;
849   llvm::raw_svector_ostream Out(Buffer);
850   MangleContext &MC = CGM.getCXXABI().getMangleContext();
851   if (MC.shouldMangleDeclName(ND)) {
852     llvm::raw_svector_ostream Out(Buffer);
853     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
854       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
855     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
856       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
857     else
858       MC.mangleName(ND, Out);
859   } else {
860     IdentifierInfo *II = ND->getIdentifier();
861     assert(II && "Attempt to mangle unnamed decl.");
862     const auto *FD = dyn_cast<FunctionDecl>(ND);
863 
864     if (FD &&
865         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
866       llvm::raw_svector_ostream Out(Buffer);
867       Out << "__regcall3__" << II->getName();
868     } else {
869       Out << II->getName();
870     }
871   }
872 
873   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
874     if (FD->isMultiVersion() && !OmitTargetMangling)
875       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
876   return Out.str();
877 }
878 
879 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
880                                             const FunctionDecl *FD) {
881   if (!FD->isMultiVersion())
882     return;
883 
884   // Get the name of what this would be without the 'target' attribute.  This
885   // allows us to lookup the version that was emitted when this wasn't a
886   // multiversion function.
887   std::string NonTargetName =
888       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
889   GlobalDecl OtherGD;
890   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
891     assert(OtherGD.getCanonicalDecl()
892                .getDecl()
893                ->getAsFunction()
894                ->isMultiVersion() &&
895            "Other GD should now be a multiversioned function");
896     // OtherFD is the version of this function that was mangled BEFORE
897     // becoming a MultiVersion function.  It potentially needs to be updated.
898     const FunctionDecl *OtherFD =
899         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
900     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
901     // This is so that if the initial version was already the 'default'
902     // version, we don't try to update it.
903     if (OtherName != NonTargetName) {
904       // Remove instead of erase, since others may have stored the StringRef
905       // to this.
906       const auto ExistingRecord = Manglings.find(NonTargetName);
907       if (ExistingRecord != std::end(Manglings))
908         Manglings.remove(&(*ExistingRecord));
909       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
910       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
911       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
912         Entry->setName(OtherName);
913     }
914   }
915 }
916 
917 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
918   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
919 
920   // Some ABIs don't have constructor variants.  Make sure that base and
921   // complete constructors get mangled the same.
922   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
923     if (!getTarget().getCXXABI().hasConstructorVariants()) {
924       CXXCtorType OrigCtorType = GD.getCtorType();
925       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
926       if (OrigCtorType == Ctor_Base)
927         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
928     }
929   }
930 
931   auto FoundName = MangledDeclNames.find(CanonicalGD);
932   if (FoundName != MangledDeclNames.end())
933     return FoundName->second;
934 
935 
936   // Keep the first result in the case of a mangling collision.
937   const auto *ND = cast<NamedDecl>(GD.getDecl());
938   auto Result =
939       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
940   return MangledDeclNames[CanonicalGD] = Result.first->first();
941 }
942 
943 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
944                                              const BlockDecl *BD) {
945   MangleContext &MangleCtx = getCXXABI().getMangleContext();
946   const Decl *D = GD.getDecl();
947 
948   SmallString<256> Buffer;
949   llvm::raw_svector_ostream Out(Buffer);
950   if (!D)
951     MangleCtx.mangleGlobalBlock(BD,
952       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
953   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
954     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
955   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
956     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
957   else
958     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
959 
960   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
961   return Result.first->first();
962 }
963 
964 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
965   return getModule().getNamedValue(Name);
966 }
967 
968 /// AddGlobalCtor - Add a function to the list that will be called before
969 /// main() runs.
970 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
971                                   llvm::Constant *AssociatedData) {
972   // FIXME: Type coercion of void()* types.
973   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
974 }
975 
976 /// AddGlobalDtor - Add a function to the list that will be called
977 /// when the module is unloaded.
978 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
979   // FIXME: Type coercion of void()* types.
980   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
981 }
982 
983 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
984   if (Fns.empty()) return;
985 
986   // Ctor function type is void()*.
987   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
988   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
989 
990   // Get the type of a ctor entry, { i32, void ()*, i8* }.
991   llvm::StructType *CtorStructTy = llvm::StructType::get(
992       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
993 
994   // Construct the constructor and destructor arrays.
995   ConstantInitBuilder builder(*this);
996   auto ctors = builder.beginArray(CtorStructTy);
997   for (const auto &I : Fns) {
998     auto ctor = ctors.beginStruct(CtorStructTy);
999     ctor.addInt(Int32Ty, I.Priority);
1000     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1001     if (I.AssociatedData)
1002       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1003     else
1004       ctor.addNullPointer(VoidPtrTy);
1005     ctor.finishAndAddTo(ctors);
1006   }
1007 
1008   auto list =
1009     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1010                                 /*constant*/ false,
1011                                 llvm::GlobalValue::AppendingLinkage);
1012 
1013   // The LTO linker doesn't seem to like it when we set an alignment
1014   // on appending variables.  Take it off as a workaround.
1015   list->setAlignment(0);
1016 
1017   Fns.clear();
1018 }
1019 
1020 llvm::GlobalValue::LinkageTypes
1021 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1022   const auto *D = cast<FunctionDecl>(GD.getDecl());
1023 
1024   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1025 
1026   if (isa<CXXDestructorDecl>(D) &&
1027       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1028                                          GD.getDtorType())) {
1029     // Destructor variants in the Microsoft C++ ABI are always internal or
1030     // linkonce_odr thunks emitted on an as-needed basis.
1031     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
1032                                    : llvm::GlobalValue::LinkOnceODRLinkage;
1033   }
1034 
1035   if (isa<CXXConstructorDecl>(D) &&
1036       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1037       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1038     // Our approach to inheriting constructors is fundamentally different from
1039     // that used by the MS ABI, so keep our inheriting constructor thunks
1040     // internal rather than trying to pick an unambiguous mangling for them.
1041     return llvm::GlobalValue::InternalLinkage;
1042   }
1043 
1044   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1045 }
1046 
1047 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
1048   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1049 
1050   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
1051     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
1052       // Don't dllexport/import destructor thunks.
1053       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1054       return;
1055     }
1056   }
1057 
1058   if (FD->hasAttr<DLLImportAttr>())
1059     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1060   else if (FD->hasAttr<DLLExportAttr>())
1061     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1062   else
1063     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
1064 }
1065 
1066 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1067   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1068   if (!MDS) return nullptr;
1069 
1070   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1071 }
1072 
1073 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
1074                                                     llvm::Function *F) {
1075   setNonAliasAttributes(D, F);
1076 }
1077 
1078 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1079                                               const CGFunctionInfo &Info,
1080                                               llvm::Function *F) {
1081   unsigned CallingConv;
1082   llvm::AttributeList PAL;
1083   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1084   F->setAttributes(PAL);
1085   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1086 }
1087 
1088 /// Determines whether the language options require us to model
1089 /// unwind exceptions.  We treat -fexceptions as mandating this
1090 /// except under the fragile ObjC ABI with only ObjC exceptions
1091 /// enabled.  This means, for example, that C with -fexceptions
1092 /// enables this.
1093 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1094   // If exceptions are completely disabled, obviously this is false.
1095   if (!LangOpts.Exceptions) return false;
1096 
1097   // If C++ exceptions are enabled, this is true.
1098   if (LangOpts.CXXExceptions) return true;
1099 
1100   // If ObjC exceptions are enabled, this depends on the ABI.
1101   if (LangOpts.ObjCExceptions) {
1102     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1103   }
1104 
1105   return true;
1106 }
1107 
1108 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1109                                                            llvm::Function *F) {
1110   llvm::AttrBuilder B;
1111 
1112   if (CodeGenOpts.UnwindTables)
1113     B.addAttribute(llvm::Attribute::UWTable);
1114 
1115   if (!hasUnwindExceptions(LangOpts))
1116     B.addAttribute(llvm::Attribute::NoUnwind);
1117 
1118   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1119     B.addAttribute(llvm::Attribute::StackProtect);
1120   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1121     B.addAttribute(llvm::Attribute::StackProtectStrong);
1122   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1123     B.addAttribute(llvm::Attribute::StackProtectReq);
1124 
1125   if (!D) {
1126     // If we don't have a declaration to control inlining, the function isn't
1127     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1128     // disabled, mark the function as noinline.
1129     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1130         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1131       B.addAttribute(llvm::Attribute::NoInline);
1132 
1133     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1134     return;
1135   }
1136 
1137   // Track whether we need to add the optnone LLVM attribute,
1138   // starting with the default for this optimization level.
1139   bool ShouldAddOptNone =
1140       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1141   // We can't add optnone in the following cases, it won't pass the verifier.
1142   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1143   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1144   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1145 
1146   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1147     B.addAttribute(llvm::Attribute::OptimizeNone);
1148 
1149     // OptimizeNone implies noinline; we should not be inlining such functions.
1150     B.addAttribute(llvm::Attribute::NoInline);
1151     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1152            "OptimizeNone and AlwaysInline on same function!");
1153 
1154     // We still need to handle naked functions even though optnone subsumes
1155     // much of their semantics.
1156     if (D->hasAttr<NakedAttr>())
1157       B.addAttribute(llvm::Attribute::Naked);
1158 
1159     // OptimizeNone wins over OptimizeForSize and MinSize.
1160     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1161     F->removeFnAttr(llvm::Attribute::MinSize);
1162   } else if (D->hasAttr<NakedAttr>()) {
1163     // Naked implies noinline: we should not be inlining such functions.
1164     B.addAttribute(llvm::Attribute::Naked);
1165     B.addAttribute(llvm::Attribute::NoInline);
1166   } else if (D->hasAttr<NoDuplicateAttr>()) {
1167     B.addAttribute(llvm::Attribute::NoDuplicate);
1168   } else if (D->hasAttr<NoInlineAttr>()) {
1169     B.addAttribute(llvm::Attribute::NoInline);
1170   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1171              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1172     // (noinline wins over always_inline, and we can't specify both in IR)
1173     B.addAttribute(llvm::Attribute::AlwaysInline);
1174   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1175     // If we're not inlining, then force everything that isn't always_inline to
1176     // carry an explicit noinline attribute.
1177     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1178       B.addAttribute(llvm::Attribute::NoInline);
1179   } else {
1180     // Otherwise, propagate the inline hint attribute and potentially use its
1181     // absence to mark things as noinline.
1182     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1183       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1184             return Redecl->isInlineSpecified();
1185           })) {
1186         B.addAttribute(llvm::Attribute::InlineHint);
1187       } else if (CodeGenOpts.getInlining() ==
1188                      CodeGenOptions::OnlyHintInlining &&
1189                  !FD->isInlined() &&
1190                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1191         B.addAttribute(llvm::Attribute::NoInline);
1192       }
1193     }
1194   }
1195 
1196   // Add other optimization related attributes if we are optimizing this
1197   // function.
1198   if (!D->hasAttr<OptimizeNoneAttr>()) {
1199     if (D->hasAttr<ColdAttr>()) {
1200       if (!ShouldAddOptNone)
1201         B.addAttribute(llvm::Attribute::OptimizeForSize);
1202       B.addAttribute(llvm::Attribute::Cold);
1203     }
1204 
1205     if (D->hasAttr<MinSizeAttr>())
1206       B.addAttribute(llvm::Attribute::MinSize);
1207   }
1208 
1209   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1210 
1211   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1212   if (alignment)
1213     F->setAlignment(alignment);
1214 
1215   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1216   // reserve a bit for differentiating between virtual and non-virtual member
1217   // functions. If the current target's C++ ABI requires this and this is a
1218   // member function, set its alignment accordingly.
1219   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1220     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1221       F->setAlignment(2);
1222   }
1223 
1224   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1225   if (CodeGenOpts.SanitizeCfiCrossDso)
1226     if (auto *FD = dyn_cast<FunctionDecl>(D))
1227       CreateFunctionTypeMetadata(FD, F);
1228 }
1229 
1230 void CodeGenModule::SetCommonAttributes(const Decl *D,
1231                                         llvm::GlobalValue *GV) {
1232   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1233     setGVProperties(GV, ND);
1234   else
1235     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1236 
1237   if (D && D->hasAttr<UsedAttr>())
1238     addUsedGlobal(GV);
1239 }
1240 
1241 void CodeGenModule::setAliasAttributes(const Decl *D,
1242                                        llvm::GlobalValue *GV) {
1243   SetCommonAttributes(D, GV);
1244 
1245   // Process the dllexport attribute based on whether the original definition
1246   // (not necessarily the aliasee) was exported.
1247   if (D->hasAttr<DLLExportAttr>())
1248     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1249 }
1250 
1251 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1252                                                 llvm::AttrBuilder &Attrs) {
1253   // Add target-cpu and target-features attributes to functions. If
1254   // we have a decl for the function and it has a target attribute then
1255   // parse that and add it to the feature set.
1256   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1257   std::vector<std::string> Features;
1258   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1259   FD = FD ? FD->getMostRecentDecl() : FD;
1260   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1261   bool AddedAttr = false;
1262   if (TD) {
1263     llvm::StringMap<bool> FeatureMap;
1264     getFunctionFeatureMap(FeatureMap, FD);
1265 
1266     // Produce the canonical string for this set of features.
1267     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1268       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1269 
1270     // Now add the target-cpu and target-features to the function.
1271     // While we populated the feature map above, we still need to
1272     // get and parse the target attribute so we can get the cpu for
1273     // the function.
1274     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1275     if (ParsedAttr.Architecture != "" &&
1276         getTarget().isValidCPUName(ParsedAttr.Architecture))
1277       TargetCPU = ParsedAttr.Architecture;
1278   } else {
1279     // Otherwise just add the existing target cpu and target features to the
1280     // function.
1281     Features = getTarget().getTargetOpts().Features;
1282   }
1283 
1284   if (TargetCPU != "") {
1285     Attrs.addAttribute("target-cpu", TargetCPU);
1286     AddedAttr = true;
1287   }
1288   if (!Features.empty()) {
1289     std::sort(Features.begin(), Features.end());
1290     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1291     AddedAttr = true;
1292   }
1293 
1294   return AddedAttr;
1295 }
1296 
1297 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1298                                           llvm::GlobalObject *GO) {
1299   SetCommonAttributes(D, GO);
1300 
1301   if (D) {
1302     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1303       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1304         GV->addAttribute("bss-section", SA->getName());
1305       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1306         GV->addAttribute("data-section", SA->getName());
1307       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1308         GV->addAttribute("rodata-section", SA->getName());
1309     }
1310 
1311     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1312       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1313         if (!D->getAttr<SectionAttr>())
1314           F->addFnAttr("implicit-section-name", SA->getName());
1315 
1316       llvm::AttrBuilder Attrs;
1317       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1318         // We know that GetCPUAndFeaturesAttributes will always have the
1319         // newest set, since it has the newest possible FunctionDecl, so the
1320         // new ones should replace the old.
1321         F->removeFnAttr("target-cpu");
1322         F->removeFnAttr("target-features");
1323         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1324       }
1325     }
1326 
1327     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1328       GO->setSection(SA->getName());
1329   }
1330 
1331   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1332 }
1333 
1334 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1335                                                   llvm::Function *F,
1336                                                   const CGFunctionInfo &FI) {
1337   SetLLVMFunctionAttributes(D, FI, F);
1338   SetLLVMFunctionAttributesForDefinition(D, F);
1339 
1340   F->setLinkage(llvm::Function::InternalLinkage);
1341 
1342   setNonAliasAttributes(D, F);
1343 }
1344 
1345 static void setLinkageForGV(llvm::GlobalValue *GV,
1346                             const NamedDecl *ND) {
1347   // Set linkage and visibility in case we never see a definition.
1348   LinkageInfo LV = ND->getLinkageAndVisibility();
1349   if (!isExternallyVisible(LV.getLinkage())) {
1350     // Don't set internal linkage on declarations.
1351   } else {
1352     if (ND->hasAttr<DLLImportAttr>()) {
1353       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1354       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1355     } else if (ND->hasAttr<DLLExportAttr>()) {
1356       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1357     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1358       // "extern_weak" is overloaded in LLVM; we probably should have
1359       // separate linkage types for this.
1360       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1361     }
1362   }
1363 }
1364 
1365 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1366                                                llvm::Function *F) {
1367   // Only if we are checking indirect calls.
1368   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1369     return;
1370 
1371   // Non-static class methods are handled via vtable pointer checks elsewhere.
1372   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1373     return;
1374 
1375   // Additionally, if building with cross-DSO support...
1376   if (CodeGenOpts.SanitizeCfiCrossDso) {
1377     // Skip available_externally functions. They won't be codegen'ed in the
1378     // current module anyway.
1379     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1380       return;
1381   }
1382 
1383   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1384   F->addTypeMetadata(0, MD);
1385   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1386 
1387   // Emit a hash-based bit set entry for cross-DSO calls.
1388   if (CodeGenOpts.SanitizeCfiCrossDso)
1389     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1390       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1391 }
1392 
1393 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1394                                           bool IsIncompleteFunction,
1395                                           bool IsThunk) {
1396 
1397   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1398     // If this is an intrinsic function, set the function's attributes
1399     // to the intrinsic's attributes.
1400     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1401     return;
1402   }
1403 
1404   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1405 
1406   if (!IsIncompleteFunction) {
1407     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1408     // Setup target-specific attributes.
1409     if (F->isDeclaration())
1410       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1411   }
1412 
1413   // Add the Returned attribute for "this", except for iOS 5 and earlier
1414   // where substantial code, including the libstdc++ dylib, was compiled with
1415   // GCC and does not actually return "this".
1416   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1417       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1418     assert(!F->arg_empty() &&
1419            F->arg_begin()->getType()
1420              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1421            "unexpected this return");
1422     F->addAttribute(1, llvm::Attribute::Returned);
1423   }
1424 
1425   // Only a few attributes are set on declarations; these may later be
1426   // overridden by a definition.
1427 
1428   setLinkageForGV(F, FD);
1429   setGVProperties(F, FD);
1430 
1431   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1432     F->addFnAttr("implicit-section-name");
1433   }
1434 
1435   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1436     F->setSection(SA->getName());
1437 
1438   if (FD->isReplaceableGlobalAllocationFunction()) {
1439     // A replaceable global allocation function does not act like a builtin by
1440     // default, only if it is invoked by a new-expression or delete-expression.
1441     F->addAttribute(llvm::AttributeList::FunctionIndex,
1442                     llvm::Attribute::NoBuiltin);
1443 
1444     // A sane operator new returns a non-aliasing pointer.
1445     // FIXME: Also add NonNull attribute to the return value
1446     // for the non-nothrow forms?
1447     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1448     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1449         (Kind == OO_New || Kind == OO_Array_New))
1450       F->addAttribute(llvm::AttributeList::ReturnIndex,
1451                       llvm::Attribute::NoAlias);
1452   }
1453 
1454   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1455     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1456   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1457     if (MD->isVirtual())
1458       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1459 
1460   // Don't emit entries for function declarations in the cross-DSO mode. This
1461   // is handled with better precision by the receiving DSO.
1462   if (!CodeGenOpts.SanitizeCfiCrossDso)
1463     CreateFunctionTypeMetadata(FD, F);
1464 
1465   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1466     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1467 }
1468 
1469 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1470   assert(!GV->isDeclaration() &&
1471          "Only globals with definition can force usage.");
1472   LLVMUsed.emplace_back(GV);
1473 }
1474 
1475 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1476   assert(!GV->isDeclaration() &&
1477          "Only globals with definition can force usage.");
1478   LLVMCompilerUsed.emplace_back(GV);
1479 }
1480 
1481 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1482                      std::vector<llvm::WeakTrackingVH> &List) {
1483   // Don't create llvm.used if there is no need.
1484   if (List.empty())
1485     return;
1486 
1487   // Convert List to what ConstantArray needs.
1488   SmallVector<llvm::Constant*, 8> UsedArray;
1489   UsedArray.resize(List.size());
1490   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1491     UsedArray[i] =
1492         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1493             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1494   }
1495 
1496   if (UsedArray.empty())
1497     return;
1498   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1499 
1500   auto *GV = new llvm::GlobalVariable(
1501       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1502       llvm::ConstantArray::get(ATy, UsedArray), Name);
1503 
1504   GV->setSection("llvm.metadata");
1505 }
1506 
1507 void CodeGenModule::emitLLVMUsed() {
1508   emitUsed(*this, "llvm.used", LLVMUsed);
1509   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1510 }
1511 
1512 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1513   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1514   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1515 }
1516 
1517 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1518   llvm::SmallString<32> Opt;
1519   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1520   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1521   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1522 }
1523 
1524 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1525   auto &C = getLLVMContext();
1526   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1527       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1528 }
1529 
1530 void CodeGenModule::AddDependentLib(StringRef Lib) {
1531   llvm::SmallString<24> Opt;
1532   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1533   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1534   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1535 }
1536 
1537 /// \brief Add link options implied by the given module, including modules
1538 /// it depends on, using a postorder walk.
1539 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1540                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1541                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1542   // Import this module's parent.
1543   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1544     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1545   }
1546 
1547   // Import this module's dependencies.
1548   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1549     if (Visited.insert(Mod->Imports[I - 1]).second)
1550       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1551   }
1552 
1553   // Add linker options to link against the libraries/frameworks
1554   // described by this module.
1555   llvm::LLVMContext &Context = CGM.getLLVMContext();
1556   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1557     // Link against a framework.  Frameworks are currently Darwin only, so we
1558     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1559     if (Mod->LinkLibraries[I-1].IsFramework) {
1560       llvm::Metadata *Args[2] = {
1561           llvm::MDString::get(Context, "-framework"),
1562           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1563 
1564       Metadata.push_back(llvm::MDNode::get(Context, Args));
1565       continue;
1566     }
1567 
1568     // Link against a library.
1569     llvm::SmallString<24> Opt;
1570     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1571       Mod->LinkLibraries[I-1].Library, Opt);
1572     auto *OptString = llvm::MDString::get(Context, Opt);
1573     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1574   }
1575 }
1576 
1577 void CodeGenModule::EmitModuleLinkOptions() {
1578   // Collect the set of all of the modules we want to visit to emit link
1579   // options, which is essentially the imported modules and all of their
1580   // non-explicit child modules.
1581   llvm::SetVector<clang::Module *> LinkModules;
1582   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1583   SmallVector<clang::Module *, 16> Stack;
1584 
1585   // Seed the stack with imported modules.
1586   for (Module *M : ImportedModules) {
1587     // Do not add any link flags when an implementation TU of a module imports
1588     // a header of that same module.
1589     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1590         !getLangOpts().isCompilingModule())
1591       continue;
1592     if (Visited.insert(M).second)
1593       Stack.push_back(M);
1594   }
1595 
1596   // Find all of the modules to import, making a little effort to prune
1597   // non-leaf modules.
1598   while (!Stack.empty()) {
1599     clang::Module *Mod = Stack.pop_back_val();
1600 
1601     bool AnyChildren = false;
1602 
1603     // Visit the submodules of this module.
1604     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1605                                         SubEnd = Mod->submodule_end();
1606          Sub != SubEnd; ++Sub) {
1607       // Skip explicit children; they need to be explicitly imported to be
1608       // linked against.
1609       if ((*Sub)->IsExplicit)
1610         continue;
1611 
1612       if (Visited.insert(*Sub).second) {
1613         Stack.push_back(*Sub);
1614         AnyChildren = true;
1615       }
1616     }
1617 
1618     // We didn't find any children, so add this module to the list of
1619     // modules to link against.
1620     if (!AnyChildren) {
1621       LinkModules.insert(Mod);
1622     }
1623   }
1624 
1625   // Add link options for all of the imported modules in reverse topological
1626   // order.  We don't do anything to try to order import link flags with respect
1627   // to linker options inserted by things like #pragma comment().
1628   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1629   Visited.clear();
1630   for (Module *M : LinkModules)
1631     if (Visited.insert(M).second)
1632       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1633   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1634   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1635 
1636   // Add the linker options metadata flag.
1637   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1638   for (auto *MD : LinkerOptionsMetadata)
1639     NMD->addOperand(MD);
1640 }
1641 
1642 void CodeGenModule::EmitDeferred() {
1643   // Emit code for any potentially referenced deferred decls.  Since a
1644   // previously unused static decl may become used during the generation of code
1645   // for a static function, iterate until no changes are made.
1646 
1647   if (!DeferredVTables.empty()) {
1648     EmitDeferredVTables();
1649 
1650     // Emitting a vtable doesn't directly cause more vtables to
1651     // become deferred, although it can cause functions to be
1652     // emitted that then need those vtables.
1653     assert(DeferredVTables.empty());
1654   }
1655 
1656   // Stop if we're out of both deferred vtables and deferred declarations.
1657   if (DeferredDeclsToEmit.empty())
1658     return;
1659 
1660   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1661   // work, it will not interfere with this.
1662   std::vector<GlobalDecl> CurDeclsToEmit;
1663   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1664 
1665   for (GlobalDecl &D : CurDeclsToEmit) {
1666     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1667     // to get GlobalValue with exactly the type we need, not something that
1668     // might had been created for another decl with the same mangled name but
1669     // different type.
1670     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1671         GetAddrOfGlobal(D, ForDefinition));
1672 
1673     // In case of different address spaces, we may still get a cast, even with
1674     // IsForDefinition equal to true. Query mangled names table to get
1675     // GlobalValue.
1676     if (!GV)
1677       GV = GetGlobalValue(getMangledName(D));
1678 
1679     // Make sure GetGlobalValue returned non-null.
1680     assert(GV);
1681 
1682     // Check to see if we've already emitted this.  This is necessary
1683     // for a couple of reasons: first, decls can end up in the
1684     // deferred-decls queue multiple times, and second, decls can end
1685     // up with definitions in unusual ways (e.g. by an extern inline
1686     // function acquiring a strong function redefinition).  Just
1687     // ignore these cases.
1688     if (!GV->isDeclaration())
1689       continue;
1690 
1691     // Otherwise, emit the definition and move on to the next one.
1692     EmitGlobalDefinition(D, GV);
1693 
1694     // If we found out that we need to emit more decls, do that recursively.
1695     // This has the advantage that the decls are emitted in a DFS and related
1696     // ones are close together, which is convenient for testing.
1697     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1698       EmitDeferred();
1699       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1700     }
1701   }
1702 }
1703 
1704 void CodeGenModule::EmitVTablesOpportunistically() {
1705   // Try to emit external vtables as available_externally if they have emitted
1706   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1707   // is not allowed to create new references to things that need to be emitted
1708   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1709 
1710   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1711          && "Only emit opportunistic vtables with optimizations");
1712 
1713   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1714     assert(getVTables().isVTableExternal(RD) &&
1715            "This queue should only contain external vtables");
1716     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1717       VTables.GenerateClassData(RD);
1718   }
1719   OpportunisticVTables.clear();
1720 }
1721 
1722 void CodeGenModule::EmitGlobalAnnotations() {
1723   if (Annotations.empty())
1724     return;
1725 
1726   // Create a new global variable for the ConstantStruct in the Module.
1727   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1728     Annotations[0]->getType(), Annotations.size()), Annotations);
1729   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1730                                       llvm::GlobalValue::AppendingLinkage,
1731                                       Array, "llvm.global.annotations");
1732   gv->setSection(AnnotationSection);
1733 }
1734 
1735 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1736   llvm::Constant *&AStr = AnnotationStrings[Str];
1737   if (AStr)
1738     return AStr;
1739 
1740   // Not found yet, create a new global.
1741   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1742   auto *gv =
1743       new llvm::GlobalVariable(getModule(), s->getType(), true,
1744                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1745   gv->setSection(AnnotationSection);
1746   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1747   AStr = gv;
1748   return gv;
1749 }
1750 
1751 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1752   SourceManager &SM = getContext().getSourceManager();
1753   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1754   if (PLoc.isValid())
1755     return EmitAnnotationString(PLoc.getFilename());
1756   return EmitAnnotationString(SM.getBufferName(Loc));
1757 }
1758 
1759 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1760   SourceManager &SM = getContext().getSourceManager();
1761   PresumedLoc PLoc = SM.getPresumedLoc(L);
1762   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1763     SM.getExpansionLineNumber(L);
1764   return llvm::ConstantInt::get(Int32Ty, LineNo);
1765 }
1766 
1767 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1768                                                 const AnnotateAttr *AA,
1769                                                 SourceLocation L) {
1770   // Get the globals for file name, annotation, and the line number.
1771   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1772                  *UnitGV = EmitAnnotationUnit(L),
1773                  *LineNoCst = EmitAnnotationLineNo(L);
1774 
1775   // Create the ConstantStruct for the global annotation.
1776   llvm::Constant *Fields[4] = {
1777     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1778     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1779     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1780     LineNoCst
1781   };
1782   return llvm::ConstantStruct::getAnon(Fields);
1783 }
1784 
1785 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1786                                          llvm::GlobalValue *GV) {
1787   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1788   // Get the struct elements for these annotations.
1789   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1790     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1791 }
1792 
1793 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1794                                            llvm::Function *Fn,
1795                                            SourceLocation Loc) const {
1796   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1797   // Blacklist by function name.
1798   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1799     return true;
1800   // Blacklist by location.
1801   if (Loc.isValid())
1802     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1803   // If location is unknown, this may be a compiler-generated function. Assume
1804   // it's located in the main file.
1805   auto &SM = Context.getSourceManager();
1806   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1807     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1808   }
1809   return false;
1810 }
1811 
1812 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1813                                            SourceLocation Loc, QualType Ty,
1814                                            StringRef Category) const {
1815   // For now globals can be blacklisted only in ASan and KASan.
1816   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1817       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1818   if (!EnabledAsanMask)
1819     return false;
1820   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1821   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1822     return true;
1823   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1824     return true;
1825   // Check global type.
1826   if (!Ty.isNull()) {
1827     // Drill down the array types: if global variable of a fixed type is
1828     // blacklisted, we also don't instrument arrays of them.
1829     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1830       Ty = AT->getElementType();
1831     Ty = Ty.getCanonicalType().getUnqualifiedType();
1832     // We allow to blacklist only record types (classes, structs etc.)
1833     if (Ty->isRecordType()) {
1834       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1835       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1836         return true;
1837     }
1838   }
1839   return false;
1840 }
1841 
1842 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1843                                    StringRef Category) const {
1844   if (!LangOpts.XRayInstrument)
1845     return false;
1846   const auto &XRayFilter = getContext().getXRayFilter();
1847   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1848   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1849   if (Loc.isValid())
1850     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1851   if (Attr == ImbueAttr::NONE)
1852     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1853   switch (Attr) {
1854   case ImbueAttr::NONE:
1855     return false;
1856   case ImbueAttr::ALWAYS:
1857     Fn->addFnAttr("function-instrument", "xray-always");
1858     break;
1859   case ImbueAttr::ALWAYS_ARG1:
1860     Fn->addFnAttr("function-instrument", "xray-always");
1861     Fn->addFnAttr("xray-log-args", "1");
1862     break;
1863   case ImbueAttr::NEVER:
1864     Fn->addFnAttr("function-instrument", "xray-never");
1865     break;
1866   }
1867   return true;
1868 }
1869 
1870 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1871   // Never defer when EmitAllDecls is specified.
1872   if (LangOpts.EmitAllDecls)
1873     return true;
1874 
1875   return getContext().DeclMustBeEmitted(Global);
1876 }
1877 
1878 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1879   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1880     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1881       // Implicit template instantiations may change linkage if they are later
1882       // explicitly instantiated, so they should not be emitted eagerly.
1883       return false;
1884   if (const auto *VD = dyn_cast<VarDecl>(Global))
1885     if (Context.getInlineVariableDefinitionKind(VD) ==
1886         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1887       // A definition of an inline constexpr static data member may change
1888       // linkage later if it's redeclared outside the class.
1889       return false;
1890   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1891   // codegen for global variables, because they may be marked as threadprivate.
1892   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1893       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1894     return false;
1895 
1896   return true;
1897 }
1898 
1899 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1900     const CXXUuidofExpr* E) {
1901   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1902   // well-formed.
1903   StringRef Uuid = E->getUuidStr();
1904   std::string Name = "_GUID_" + Uuid.lower();
1905   std::replace(Name.begin(), Name.end(), '-', '_');
1906 
1907   // The UUID descriptor should be pointer aligned.
1908   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1909 
1910   // Look for an existing global.
1911   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1912     return ConstantAddress(GV, Alignment);
1913 
1914   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1915   assert(Init && "failed to initialize as constant");
1916 
1917   auto *GV = new llvm::GlobalVariable(
1918       getModule(), Init->getType(),
1919       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1920   if (supportsCOMDAT())
1921     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1922   return ConstantAddress(GV, Alignment);
1923 }
1924 
1925 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1926   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1927   assert(AA && "No alias?");
1928 
1929   CharUnits Alignment = getContext().getDeclAlign(VD);
1930   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1931 
1932   // See if there is already something with the target's name in the module.
1933   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1934   if (Entry) {
1935     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1936     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1937     return ConstantAddress(Ptr, Alignment);
1938   }
1939 
1940   llvm::Constant *Aliasee;
1941   if (isa<llvm::FunctionType>(DeclTy))
1942     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1943                                       GlobalDecl(cast<FunctionDecl>(VD)),
1944                                       /*ForVTable=*/false);
1945   else
1946     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1947                                     llvm::PointerType::getUnqual(DeclTy),
1948                                     nullptr);
1949 
1950   auto *F = cast<llvm::GlobalValue>(Aliasee);
1951   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1952   WeakRefReferences.insert(F);
1953 
1954   return ConstantAddress(Aliasee, Alignment);
1955 }
1956 
1957 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1958   const auto *Global = cast<ValueDecl>(GD.getDecl());
1959 
1960   // Weak references don't produce any output by themselves.
1961   if (Global->hasAttr<WeakRefAttr>())
1962     return;
1963 
1964   // If this is an alias definition (which otherwise looks like a declaration)
1965   // emit it now.
1966   if (Global->hasAttr<AliasAttr>())
1967     return EmitAliasDefinition(GD);
1968 
1969   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1970   if (Global->hasAttr<IFuncAttr>())
1971     return emitIFuncDefinition(GD);
1972 
1973   // If this is CUDA, be selective about which declarations we emit.
1974   if (LangOpts.CUDA) {
1975     if (LangOpts.CUDAIsDevice) {
1976       if (!Global->hasAttr<CUDADeviceAttr>() &&
1977           !Global->hasAttr<CUDAGlobalAttr>() &&
1978           !Global->hasAttr<CUDAConstantAttr>() &&
1979           !Global->hasAttr<CUDASharedAttr>())
1980         return;
1981     } else {
1982       // We need to emit host-side 'shadows' for all global
1983       // device-side variables because the CUDA runtime needs their
1984       // size and host-side address in order to provide access to
1985       // their device-side incarnations.
1986 
1987       // So device-only functions are the only things we skip.
1988       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1989           Global->hasAttr<CUDADeviceAttr>())
1990         return;
1991 
1992       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1993              "Expected Variable or Function");
1994     }
1995   }
1996 
1997   if (LangOpts.OpenMP) {
1998     // If this is OpenMP device, check if it is legal to emit this global
1999     // normally.
2000     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2001       return;
2002     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2003       if (MustBeEmitted(Global))
2004         EmitOMPDeclareReduction(DRD);
2005       return;
2006     }
2007   }
2008 
2009   // Ignore declarations, they will be emitted on their first use.
2010   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2011     // Forward declarations are emitted lazily on first use.
2012     if (!FD->doesThisDeclarationHaveABody()) {
2013       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2014         return;
2015 
2016       StringRef MangledName = getMangledName(GD);
2017 
2018       // Compute the function info and LLVM type.
2019       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2020       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2021 
2022       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2023                               /*DontDefer=*/false);
2024       return;
2025     }
2026   } else {
2027     const auto *VD = cast<VarDecl>(Global);
2028     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2029     // We need to emit device-side global CUDA variables even if a
2030     // variable does not have a definition -- we still need to define
2031     // host-side shadow for it.
2032     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2033                            !VD->hasDefinition() &&
2034                            (VD->hasAttr<CUDAConstantAttr>() ||
2035                             VD->hasAttr<CUDADeviceAttr>());
2036     if (!MustEmitForCuda &&
2037         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2038         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2039       // If this declaration may have caused an inline variable definition to
2040       // change linkage, make sure that it's emitted.
2041       if (Context.getInlineVariableDefinitionKind(VD) ==
2042           ASTContext::InlineVariableDefinitionKind::Strong)
2043         GetAddrOfGlobalVar(VD);
2044       return;
2045     }
2046   }
2047 
2048   // Defer code generation to first use when possible, e.g. if this is an inline
2049   // function. If the global must always be emitted, do it eagerly if possible
2050   // to benefit from cache locality.
2051   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2052     // Emit the definition if it can't be deferred.
2053     EmitGlobalDefinition(GD);
2054     return;
2055   }
2056 
2057   // If we're deferring emission of a C++ variable with an
2058   // initializer, remember the order in which it appeared in the file.
2059   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2060       cast<VarDecl>(Global)->hasInit()) {
2061     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2062     CXXGlobalInits.push_back(nullptr);
2063   }
2064 
2065   StringRef MangledName = getMangledName(GD);
2066   if (GetGlobalValue(MangledName) != nullptr) {
2067     // The value has already been used and should therefore be emitted.
2068     addDeferredDeclToEmit(GD);
2069   } else if (MustBeEmitted(Global)) {
2070     // The value must be emitted, but cannot be emitted eagerly.
2071     assert(!MayBeEmittedEagerly(Global));
2072     addDeferredDeclToEmit(GD);
2073   } else {
2074     // Otherwise, remember that we saw a deferred decl with this name.  The
2075     // first use of the mangled name will cause it to move into
2076     // DeferredDeclsToEmit.
2077     DeferredDecls[MangledName] = GD;
2078   }
2079 }
2080 
2081 // Check if T is a class type with a destructor that's not dllimport.
2082 static bool HasNonDllImportDtor(QualType T) {
2083   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2084     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2085       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2086         return true;
2087 
2088   return false;
2089 }
2090 
2091 namespace {
2092   struct FunctionIsDirectlyRecursive :
2093     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2094     const StringRef Name;
2095     const Builtin::Context &BI;
2096     bool Result;
2097     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2098       Name(N), BI(C), Result(false) {
2099     }
2100     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2101 
2102     bool TraverseCallExpr(CallExpr *E) {
2103       const FunctionDecl *FD = E->getDirectCallee();
2104       if (!FD)
2105         return true;
2106       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2107       if (Attr && Name == Attr->getLabel()) {
2108         Result = true;
2109         return false;
2110       }
2111       unsigned BuiltinID = FD->getBuiltinID();
2112       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2113         return true;
2114       StringRef BuiltinName = BI.getName(BuiltinID);
2115       if (BuiltinName.startswith("__builtin_") &&
2116           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2117         Result = true;
2118         return false;
2119       }
2120       return true;
2121     }
2122   };
2123 
2124   // Make sure we're not referencing non-imported vars or functions.
2125   struct DLLImportFunctionVisitor
2126       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2127     bool SafeToInline = true;
2128 
2129     bool shouldVisitImplicitCode() const { return true; }
2130 
2131     bool VisitVarDecl(VarDecl *VD) {
2132       if (VD->getTLSKind()) {
2133         // A thread-local variable cannot be imported.
2134         SafeToInline = false;
2135         return SafeToInline;
2136       }
2137 
2138       // A variable definition might imply a destructor call.
2139       if (VD->isThisDeclarationADefinition())
2140         SafeToInline = !HasNonDllImportDtor(VD->getType());
2141 
2142       return SafeToInline;
2143     }
2144 
2145     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2146       if (const auto *D = E->getTemporary()->getDestructor())
2147         SafeToInline = D->hasAttr<DLLImportAttr>();
2148       return SafeToInline;
2149     }
2150 
2151     bool VisitDeclRefExpr(DeclRefExpr *E) {
2152       ValueDecl *VD = E->getDecl();
2153       if (isa<FunctionDecl>(VD))
2154         SafeToInline = VD->hasAttr<DLLImportAttr>();
2155       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2156         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2157       return SafeToInline;
2158     }
2159 
2160     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2161       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2162       return SafeToInline;
2163     }
2164 
2165     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2166       CXXMethodDecl *M = E->getMethodDecl();
2167       if (!M) {
2168         // Call through a pointer to member function. This is safe to inline.
2169         SafeToInline = true;
2170       } else {
2171         SafeToInline = M->hasAttr<DLLImportAttr>();
2172       }
2173       return SafeToInline;
2174     }
2175 
2176     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2177       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2178       return SafeToInline;
2179     }
2180 
2181     bool VisitCXXNewExpr(CXXNewExpr *E) {
2182       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2183       return SafeToInline;
2184     }
2185   };
2186 }
2187 
2188 // isTriviallyRecursive - Check if this function calls another
2189 // decl that, because of the asm attribute or the other decl being a builtin,
2190 // ends up pointing to itself.
2191 bool
2192 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2193   StringRef Name;
2194   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2195     // asm labels are a special kind of mangling we have to support.
2196     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2197     if (!Attr)
2198       return false;
2199     Name = Attr->getLabel();
2200   } else {
2201     Name = FD->getName();
2202   }
2203 
2204   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2205   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2206   return Walker.Result;
2207 }
2208 
2209 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2210   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2211     return true;
2212   const auto *F = cast<FunctionDecl>(GD.getDecl());
2213   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2214     return false;
2215 
2216   if (F->hasAttr<DLLImportAttr>()) {
2217     // Check whether it would be safe to inline this dllimport function.
2218     DLLImportFunctionVisitor Visitor;
2219     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2220     if (!Visitor.SafeToInline)
2221       return false;
2222 
2223     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2224       // Implicit destructor invocations aren't captured in the AST, so the
2225       // check above can't see them. Check for them manually here.
2226       for (const Decl *Member : Dtor->getParent()->decls())
2227         if (isa<FieldDecl>(Member))
2228           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2229             return false;
2230       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2231         if (HasNonDllImportDtor(B.getType()))
2232           return false;
2233     }
2234   }
2235 
2236   // PR9614. Avoid cases where the source code is lying to us. An available
2237   // externally function should have an equivalent function somewhere else,
2238   // but a function that calls itself is clearly not equivalent to the real
2239   // implementation.
2240   // This happens in glibc's btowc and in some configure checks.
2241   return !isTriviallyRecursive(F);
2242 }
2243 
2244 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2245   return CodeGenOpts.OptimizationLevel > 0;
2246 }
2247 
2248 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2249   const auto *D = cast<ValueDecl>(GD.getDecl());
2250 
2251   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2252                                  Context.getSourceManager(),
2253                                  "Generating code for declaration");
2254 
2255   if (isa<FunctionDecl>(D)) {
2256     // At -O0, don't generate IR for functions with available_externally
2257     // linkage.
2258     if (!shouldEmitFunction(GD))
2259       return;
2260 
2261     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2262       // Make sure to emit the definition(s) before we emit the thunks.
2263       // This is necessary for the generation of certain thunks.
2264       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2265         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2266       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2267         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2268       else
2269         EmitGlobalFunctionDefinition(GD, GV);
2270 
2271       if (Method->isVirtual())
2272         getVTables().EmitThunks(GD);
2273 
2274       return;
2275     }
2276 
2277     return EmitGlobalFunctionDefinition(GD, GV);
2278   }
2279 
2280   if (const auto *VD = dyn_cast<VarDecl>(D))
2281     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2282 
2283   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2284 }
2285 
2286 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2287                                                       llvm::Function *NewFn);
2288 
2289 void CodeGenModule::emitMultiVersionFunctions() {
2290   for (GlobalDecl GD : MultiVersionFuncs) {
2291     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2292     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2293     getContext().forEachMultiversionedFunctionVersion(
2294         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2295           GlobalDecl CurGD{
2296               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2297           StringRef MangledName = getMangledName(CurGD);
2298           llvm::Constant *Func = GetGlobalValue(MangledName);
2299           if (!Func) {
2300             if (CurFD->isDefined()) {
2301               EmitGlobalFunctionDefinition(CurGD, nullptr);
2302               Func = GetGlobalValue(MangledName);
2303             } else {
2304               const CGFunctionInfo &FI =
2305                   getTypes().arrangeGlobalDeclaration(GD);
2306               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2307               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2308                                        /*DontDefer=*/false, ForDefinition);
2309             }
2310             assert(Func && "This should have just been created");
2311           }
2312           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2313                                CurFD->getAttr<TargetAttr>()->parse());
2314         });
2315 
2316     llvm::Function *ResolverFunc = cast<llvm::Function>(
2317         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2318     if (supportsCOMDAT())
2319       ResolverFunc->setComdat(
2320           getModule().getOrInsertComdat(ResolverFunc->getName()));
2321     std::stable_sort(
2322         Options.begin(), Options.end(),
2323         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2324     CodeGenFunction CGF(*this);
2325     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2326   }
2327 }
2328 
2329 /// If an ifunc for the specified mangled name is not in the module, create and
2330 /// return an llvm IFunc Function with the specified type.
2331 llvm::Constant *
2332 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2333                                             StringRef MangledName,
2334                                             const FunctionDecl *FD) {
2335   std::string IFuncName = (MangledName + ".ifunc").str();
2336   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2337     return IFuncGV;
2338 
2339   // Since this is the first time we've created this IFunc, make sure
2340   // that we put this multiversioned function into the list to be
2341   // replaced later.
2342   MultiVersionFuncs.push_back(GD);
2343 
2344   std::string ResolverName = (MangledName + ".resolver").str();
2345   llvm::Type *ResolverType = llvm::FunctionType::get(
2346       llvm::PointerType::get(DeclTy,
2347                              Context.getTargetAddressSpace(FD->getType())),
2348       false);
2349   llvm::Constant *Resolver =
2350       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2351                               /*ForVTable=*/false);
2352   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2353       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2354   GIF->setName(IFuncName);
2355   SetCommonAttributes(FD, GIF);
2356 
2357   return GIF;
2358 }
2359 
2360 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2361 /// module, create and return an llvm Function with the specified type. If there
2362 /// is something in the module with the specified name, return it potentially
2363 /// bitcasted to the right type.
2364 ///
2365 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2366 /// to set the attributes on the function when it is first created.
2367 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2368     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2369     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2370     ForDefinition_t IsForDefinition) {
2371   const Decl *D = GD.getDecl();
2372 
2373   // Any attempts to use a MultiVersion function should result in retrieving
2374   // the iFunc instead. Name Mangling will handle the rest of the changes.
2375   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2376     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2377       UpdateMultiVersionNames(GD, FD);
2378       if (!IsForDefinition)
2379         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2380     }
2381   }
2382 
2383   // Lookup the entry, lazily creating it if necessary.
2384   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2385   if (Entry) {
2386     if (WeakRefReferences.erase(Entry)) {
2387       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2388       if (FD && !FD->hasAttr<WeakAttr>())
2389         Entry->setLinkage(llvm::Function::ExternalLinkage);
2390     }
2391 
2392     // Handle dropped DLL attributes.
2393     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2394       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2395 
2396     // If there are two attempts to define the same mangled name, issue an
2397     // error.
2398     if (IsForDefinition && !Entry->isDeclaration()) {
2399       GlobalDecl OtherGD;
2400       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2401       // to make sure that we issue an error only once.
2402       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2403           (GD.getCanonicalDecl().getDecl() !=
2404            OtherGD.getCanonicalDecl().getDecl()) &&
2405           DiagnosedConflictingDefinitions.insert(GD).second) {
2406         getDiags().Report(D->getLocation(),
2407                           diag::err_duplicate_mangled_name);
2408         getDiags().Report(OtherGD.getDecl()->getLocation(),
2409                           diag::note_previous_definition);
2410       }
2411     }
2412 
2413     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2414         (Entry->getType()->getElementType() == Ty)) {
2415       return Entry;
2416     }
2417 
2418     // Make sure the result is of the correct type.
2419     // (If function is requested for a definition, we always need to create a new
2420     // function, not just return a bitcast.)
2421     if (!IsForDefinition)
2422       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2423   }
2424 
2425   // This function doesn't have a complete type (for example, the return
2426   // type is an incomplete struct). Use a fake type instead, and make
2427   // sure not to try to set attributes.
2428   bool IsIncompleteFunction = false;
2429 
2430   llvm::FunctionType *FTy;
2431   if (isa<llvm::FunctionType>(Ty)) {
2432     FTy = cast<llvm::FunctionType>(Ty);
2433   } else {
2434     FTy = llvm::FunctionType::get(VoidTy, false);
2435     IsIncompleteFunction = true;
2436   }
2437 
2438   llvm::Function *F =
2439       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2440                              Entry ? StringRef() : MangledName, &getModule());
2441 
2442   // If we already created a function with the same mangled name (but different
2443   // type) before, take its name and add it to the list of functions to be
2444   // replaced with F at the end of CodeGen.
2445   //
2446   // This happens if there is a prototype for a function (e.g. "int f()") and
2447   // then a definition of a different type (e.g. "int f(int x)").
2448   if (Entry) {
2449     F->takeName(Entry);
2450 
2451     // This might be an implementation of a function without a prototype, in
2452     // which case, try to do special replacement of calls which match the new
2453     // prototype.  The really key thing here is that we also potentially drop
2454     // arguments from the call site so as to make a direct call, which makes the
2455     // inliner happier and suppresses a number of optimizer warnings (!) about
2456     // dropping arguments.
2457     if (!Entry->use_empty()) {
2458       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2459       Entry->removeDeadConstantUsers();
2460     }
2461 
2462     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2463         F, Entry->getType()->getElementType()->getPointerTo());
2464     addGlobalValReplacement(Entry, BC);
2465   }
2466 
2467   assert(F->getName() == MangledName && "name was uniqued!");
2468   if (D)
2469     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2470   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2471     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2472     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2473   }
2474 
2475   if (!DontDefer) {
2476     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2477     // each other bottoming out with the base dtor.  Therefore we emit non-base
2478     // dtors on usage, even if there is no dtor definition in the TU.
2479     if (D && isa<CXXDestructorDecl>(D) &&
2480         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2481                                            GD.getDtorType()))
2482       addDeferredDeclToEmit(GD);
2483 
2484     // This is the first use or definition of a mangled name.  If there is a
2485     // deferred decl with this name, remember that we need to emit it at the end
2486     // of the file.
2487     auto DDI = DeferredDecls.find(MangledName);
2488     if (DDI != DeferredDecls.end()) {
2489       // Move the potentially referenced deferred decl to the
2490       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2491       // don't need it anymore).
2492       addDeferredDeclToEmit(DDI->second);
2493       DeferredDecls.erase(DDI);
2494 
2495       // Otherwise, there are cases we have to worry about where we're
2496       // using a declaration for which we must emit a definition but where
2497       // we might not find a top-level definition:
2498       //   - member functions defined inline in their classes
2499       //   - friend functions defined inline in some class
2500       //   - special member functions with implicit definitions
2501       // If we ever change our AST traversal to walk into class methods,
2502       // this will be unnecessary.
2503       //
2504       // We also don't emit a definition for a function if it's going to be an
2505       // entry in a vtable, unless it's already marked as used.
2506     } else if (getLangOpts().CPlusPlus && D) {
2507       // Look for a declaration that's lexically in a record.
2508       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2509            FD = FD->getPreviousDecl()) {
2510         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2511           if (FD->doesThisDeclarationHaveABody()) {
2512             addDeferredDeclToEmit(GD.getWithDecl(FD));
2513             break;
2514           }
2515         }
2516       }
2517     }
2518   }
2519 
2520   // Make sure the result is of the requested type.
2521   if (!IsIncompleteFunction) {
2522     assert(F->getType()->getElementType() == Ty);
2523     return F;
2524   }
2525 
2526   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2527   return llvm::ConstantExpr::getBitCast(F, PTy);
2528 }
2529 
2530 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2531 /// non-null, then this function will use the specified type if it has to
2532 /// create it (this occurs when we see a definition of the function).
2533 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2534                                                  llvm::Type *Ty,
2535                                                  bool ForVTable,
2536                                                  bool DontDefer,
2537                                               ForDefinition_t IsForDefinition) {
2538   // If there was no specific requested type, just convert it now.
2539   if (!Ty) {
2540     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2541     auto CanonTy = Context.getCanonicalType(FD->getType());
2542     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2543   }
2544 
2545   StringRef MangledName = getMangledName(GD);
2546   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2547                                  /*IsThunk=*/false, llvm::AttributeList(),
2548                                  IsForDefinition);
2549 }
2550 
2551 static const FunctionDecl *
2552 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2553   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2554   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2555 
2556   IdentifierInfo &CII = C.Idents.get(Name);
2557   for (const auto &Result : DC->lookup(&CII))
2558     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2559       return FD;
2560 
2561   if (!C.getLangOpts().CPlusPlus)
2562     return nullptr;
2563 
2564   // Demangle the premangled name from getTerminateFn()
2565   IdentifierInfo &CXXII =
2566       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2567           ? C.Idents.get("terminate")
2568           : C.Idents.get(Name);
2569 
2570   for (const auto &N : {"__cxxabiv1", "std"}) {
2571     IdentifierInfo &NS = C.Idents.get(N);
2572     for (const auto &Result : DC->lookup(&NS)) {
2573       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2574       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2575         for (const auto &Result : LSD->lookup(&NS))
2576           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2577             break;
2578 
2579       if (ND)
2580         for (const auto &Result : ND->lookup(&CXXII))
2581           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2582             return FD;
2583     }
2584   }
2585 
2586   return nullptr;
2587 }
2588 
2589 /// CreateRuntimeFunction - Create a new runtime function with the specified
2590 /// type and name.
2591 llvm::Constant *
2592 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2593                                      llvm::AttributeList ExtraAttrs,
2594                                      bool Local) {
2595   llvm::Constant *C =
2596       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2597                               /*DontDefer=*/false, /*IsThunk=*/false,
2598                               ExtraAttrs);
2599 
2600   if (auto *F = dyn_cast<llvm::Function>(C)) {
2601     if (F->empty()) {
2602       F->setCallingConv(getRuntimeCC());
2603 
2604       if (!Local && getTriple().isOSBinFormatCOFF() &&
2605           !getCodeGenOpts().LTOVisibilityPublicStd &&
2606           !getTriple().isWindowsGNUEnvironment()) {
2607         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2608         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2609           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2610           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2611         }
2612       }
2613     }
2614   }
2615 
2616   return C;
2617 }
2618 
2619 /// CreateBuiltinFunction - Create a new builtin function with the specified
2620 /// type and name.
2621 llvm::Constant *
2622 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2623                                      llvm::AttributeList ExtraAttrs) {
2624   llvm::Constant *C =
2625       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2626                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2627   if (auto *F = dyn_cast<llvm::Function>(C))
2628     if (F->empty())
2629       F->setCallingConv(getBuiltinCC());
2630   return C;
2631 }
2632 
2633 /// isTypeConstant - Determine whether an object of this type can be emitted
2634 /// as a constant.
2635 ///
2636 /// If ExcludeCtor is true, the duration when the object's constructor runs
2637 /// will not be considered. The caller will need to verify that the object is
2638 /// not written to during its construction.
2639 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2640   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2641     return false;
2642 
2643   if (Context.getLangOpts().CPlusPlus) {
2644     if (const CXXRecordDecl *Record
2645           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2646       return ExcludeCtor && !Record->hasMutableFields() &&
2647              Record->hasTrivialDestructor();
2648   }
2649 
2650   return true;
2651 }
2652 
2653 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2654 /// create and return an llvm GlobalVariable with the specified type.  If there
2655 /// is something in the module with the specified name, return it potentially
2656 /// bitcasted to the right type.
2657 ///
2658 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2659 /// to set the attributes on the global when it is first created.
2660 ///
2661 /// If IsForDefinition is true, it is guranteed that an actual global with
2662 /// type Ty will be returned, not conversion of a variable with the same
2663 /// mangled name but some other type.
2664 llvm::Constant *
2665 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2666                                      llvm::PointerType *Ty,
2667                                      const VarDecl *D,
2668                                      ForDefinition_t IsForDefinition) {
2669   // Lookup the entry, lazily creating it if necessary.
2670   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2671   if (Entry) {
2672     if (WeakRefReferences.erase(Entry)) {
2673       if (D && !D->hasAttr<WeakAttr>())
2674         Entry->setLinkage(llvm::Function::ExternalLinkage);
2675     }
2676 
2677     // Handle dropped DLL attributes.
2678     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2679       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2680 
2681     if (Entry->getType() == Ty)
2682       return Entry;
2683 
2684     // If there are two attempts to define the same mangled name, issue an
2685     // error.
2686     if (IsForDefinition && !Entry->isDeclaration()) {
2687       GlobalDecl OtherGD;
2688       const VarDecl *OtherD;
2689 
2690       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2691       // to make sure that we issue an error only once.
2692       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2693           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2694           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2695           OtherD->hasInit() &&
2696           DiagnosedConflictingDefinitions.insert(D).second) {
2697         getDiags().Report(D->getLocation(),
2698                           diag::err_duplicate_mangled_name);
2699         getDiags().Report(OtherGD.getDecl()->getLocation(),
2700                           diag::note_previous_definition);
2701       }
2702     }
2703 
2704     // Make sure the result is of the correct type.
2705     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2706       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2707 
2708     // (If global is requested for a definition, we always need to create a new
2709     // global, not just return a bitcast.)
2710     if (!IsForDefinition)
2711       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2712   }
2713 
2714   auto AddrSpace = GetGlobalVarAddressSpace(D);
2715   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2716 
2717   auto *GV = new llvm::GlobalVariable(
2718       getModule(), Ty->getElementType(), false,
2719       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2720       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2721 
2722   // If we already created a global with the same mangled name (but different
2723   // type) before, take its name and remove it from its parent.
2724   if (Entry) {
2725     GV->takeName(Entry);
2726 
2727     if (!Entry->use_empty()) {
2728       llvm::Constant *NewPtrForOldDecl =
2729           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2730       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2731     }
2732 
2733     Entry->eraseFromParent();
2734   }
2735 
2736   // This is the first use or definition of a mangled name.  If there is a
2737   // deferred decl with this name, remember that we need to emit it at the end
2738   // of the file.
2739   auto DDI = DeferredDecls.find(MangledName);
2740   if (DDI != DeferredDecls.end()) {
2741     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2742     // list, and remove it from DeferredDecls (since we don't need it anymore).
2743     addDeferredDeclToEmit(DDI->second);
2744     DeferredDecls.erase(DDI);
2745   }
2746 
2747   // Handle things which are present even on external declarations.
2748   if (D) {
2749     // FIXME: This code is overly simple and should be merged with other global
2750     // handling.
2751     GV->setConstant(isTypeConstant(D->getType(), false));
2752 
2753     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2754 
2755     setLinkageForGV(GV, D);
2756     setGVProperties(GV, D);
2757 
2758     if (D->getTLSKind()) {
2759       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2760         CXXThreadLocals.push_back(D);
2761       setTLSMode(GV, *D);
2762     }
2763 
2764     // If required by the ABI, treat declarations of static data members with
2765     // inline initializers as definitions.
2766     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2767       EmitGlobalVarDefinition(D);
2768     }
2769 
2770     // Emit section information for extern variables.
2771     if (D->hasExternalStorage()) {
2772       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2773         GV->setSection(SA->getName());
2774     }
2775 
2776     // Handle XCore specific ABI requirements.
2777     if (getTriple().getArch() == llvm::Triple::xcore &&
2778         D->getLanguageLinkage() == CLanguageLinkage &&
2779         D->getType().isConstant(Context) &&
2780         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2781       GV->setSection(".cp.rodata");
2782 
2783     // Check if we a have a const declaration with an initializer, we may be
2784     // able to emit it as available_externally to expose it's value to the
2785     // optimizer.
2786     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2787         D->getType().isConstQualified() && !GV->hasInitializer() &&
2788         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2789       const auto *Record =
2790           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2791       bool HasMutableFields = Record && Record->hasMutableFields();
2792       if (!HasMutableFields) {
2793         const VarDecl *InitDecl;
2794         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2795         if (InitExpr) {
2796           ConstantEmitter emitter(*this);
2797           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2798           if (Init) {
2799             auto *InitType = Init->getType();
2800             if (GV->getType()->getElementType() != InitType) {
2801               // The type of the initializer does not match the definition.
2802               // This happens when an initializer has a different type from
2803               // the type of the global (because of padding at the end of a
2804               // structure for instance).
2805               GV->setName(StringRef());
2806               // Make a new global with the correct type, this is now guaranteed
2807               // to work.
2808               auto *NewGV = cast<llvm::GlobalVariable>(
2809                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2810 
2811               // Erase the old global, since it is no longer used.
2812               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2813               GV = NewGV;
2814             } else {
2815               GV->setInitializer(Init);
2816               GV->setConstant(true);
2817               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2818             }
2819             emitter.finalize(GV);
2820           }
2821         }
2822       }
2823     }
2824   }
2825 
2826   LangAS ExpectedAS =
2827       D ? D->getType().getAddressSpace()
2828         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2829   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2830          Ty->getPointerAddressSpace());
2831   if (AddrSpace != ExpectedAS)
2832     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2833                                                        ExpectedAS, Ty);
2834 
2835   return GV;
2836 }
2837 
2838 llvm::Constant *
2839 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2840                                ForDefinition_t IsForDefinition) {
2841   const Decl *D = GD.getDecl();
2842   if (isa<CXXConstructorDecl>(D))
2843     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2844                                 getFromCtorType(GD.getCtorType()),
2845                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2846                                 /*DontDefer=*/false, IsForDefinition);
2847   else if (isa<CXXDestructorDecl>(D))
2848     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2849                                 getFromDtorType(GD.getDtorType()),
2850                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2851                                 /*DontDefer=*/false, IsForDefinition);
2852   else if (isa<CXXMethodDecl>(D)) {
2853     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2854         cast<CXXMethodDecl>(D));
2855     auto Ty = getTypes().GetFunctionType(*FInfo);
2856     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2857                              IsForDefinition);
2858   } else if (isa<FunctionDecl>(D)) {
2859     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2860     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2861     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2862                              IsForDefinition);
2863   } else
2864     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2865                               IsForDefinition);
2866 }
2867 
2868 llvm::GlobalVariable *
2869 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2870                                       llvm::Type *Ty,
2871                                       llvm::GlobalValue::LinkageTypes Linkage) {
2872   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2873   llvm::GlobalVariable *OldGV = nullptr;
2874 
2875   if (GV) {
2876     // Check if the variable has the right type.
2877     if (GV->getType()->getElementType() == Ty)
2878       return GV;
2879 
2880     // Because C++ name mangling, the only way we can end up with an already
2881     // existing global with the same name is if it has been declared extern "C".
2882     assert(GV->isDeclaration() && "Declaration has wrong type!");
2883     OldGV = GV;
2884   }
2885 
2886   // Create a new variable.
2887   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2888                                 Linkage, nullptr, Name);
2889 
2890   if (OldGV) {
2891     // Replace occurrences of the old variable if needed.
2892     GV->takeName(OldGV);
2893 
2894     if (!OldGV->use_empty()) {
2895       llvm::Constant *NewPtrForOldDecl =
2896       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2897       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2898     }
2899 
2900     OldGV->eraseFromParent();
2901   }
2902 
2903   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2904       !GV->hasAvailableExternallyLinkage())
2905     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2906 
2907   return GV;
2908 }
2909 
2910 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2911 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2912 /// then it will be created with the specified type instead of whatever the
2913 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2914 /// that an actual global with type Ty will be returned, not conversion of a
2915 /// variable with the same mangled name but some other type.
2916 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2917                                                   llvm::Type *Ty,
2918                                            ForDefinition_t IsForDefinition) {
2919   assert(D->hasGlobalStorage() && "Not a global variable");
2920   QualType ASTTy = D->getType();
2921   if (!Ty)
2922     Ty = getTypes().ConvertTypeForMem(ASTTy);
2923 
2924   llvm::PointerType *PTy =
2925     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2926 
2927   StringRef MangledName = getMangledName(D);
2928   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2929 }
2930 
2931 /// CreateRuntimeVariable - Create a new runtime global variable with the
2932 /// specified type and name.
2933 llvm::Constant *
2934 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2935                                      StringRef Name) {
2936   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2937 }
2938 
2939 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2940   assert(!D->getInit() && "Cannot emit definite definitions here!");
2941 
2942   StringRef MangledName = getMangledName(D);
2943   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2944 
2945   // We already have a definition, not declaration, with the same mangled name.
2946   // Emitting of declaration is not required (and actually overwrites emitted
2947   // definition).
2948   if (GV && !GV->isDeclaration())
2949     return;
2950 
2951   // If we have not seen a reference to this variable yet, place it into the
2952   // deferred declarations table to be emitted if needed later.
2953   if (!MustBeEmitted(D) && !GV) {
2954       DeferredDecls[MangledName] = D;
2955       return;
2956   }
2957 
2958   // The tentative definition is the only definition.
2959   EmitGlobalVarDefinition(D);
2960 }
2961 
2962 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2963   return Context.toCharUnitsFromBits(
2964       getDataLayout().getTypeStoreSizeInBits(Ty));
2965 }
2966 
2967 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2968   LangAS AddrSpace = LangAS::Default;
2969   if (LangOpts.OpenCL) {
2970     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2971     assert(AddrSpace == LangAS::opencl_global ||
2972            AddrSpace == LangAS::opencl_constant ||
2973            AddrSpace == LangAS::opencl_local ||
2974            AddrSpace >= LangAS::FirstTargetAddressSpace);
2975     return AddrSpace;
2976   }
2977 
2978   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2979     if (D && D->hasAttr<CUDAConstantAttr>())
2980       return LangAS::cuda_constant;
2981     else if (D && D->hasAttr<CUDASharedAttr>())
2982       return LangAS::cuda_shared;
2983     else
2984       return LangAS::cuda_device;
2985   }
2986 
2987   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2988 }
2989 
2990 template<typename SomeDecl>
2991 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2992                                                llvm::GlobalValue *GV) {
2993   if (!getLangOpts().CPlusPlus)
2994     return;
2995 
2996   // Must have 'used' attribute, or else inline assembly can't rely on
2997   // the name existing.
2998   if (!D->template hasAttr<UsedAttr>())
2999     return;
3000 
3001   // Must have internal linkage and an ordinary name.
3002   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3003     return;
3004 
3005   // Must be in an extern "C" context. Entities declared directly within
3006   // a record are not extern "C" even if the record is in such a context.
3007   const SomeDecl *First = D->getFirstDecl();
3008   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3009     return;
3010 
3011   // OK, this is an internal linkage entity inside an extern "C" linkage
3012   // specification. Make a note of that so we can give it the "expected"
3013   // mangled name if nothing else is using that name.
3014   std::pair<StaticExternCMap::iterator, bool> R =
3015       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3016 
3017   // If we have multiple internal linkage entities with the same name
3018   // in extern "C" regions, none of them gets that name.
3019   if (!R.second)
3020     R.first->second = nullptr;
3021 }
3022 
3023 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3024   if (!CGM.supportsCOMDAT())
3025     return false;
3026 
3027   if (D.hasAttr<SelectAnyAttr>())
3028     return true;
3029 
3030   GVALinkage Linkage;
3031   if (auto *VD = dyn_cast<VarDecl>(&D))
3032     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3033   else
3034     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3035 
3036   switch (Linkage) {
3037   case GVA_Internal:
3038   case GVA_AvailableExternally:
3039   case GVA_StrongExternal:
3040     return false;
3041   case GVA_DiscardableODR:
3042   case GVA_StrongODR:
3043     return true;
3044   }
3045   llvm_unreachable("No such linkage");
3046 }
3047 
3048 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3049                                           llvm::GlobalObject &GO) {
3050   if (!shouldBeInCOMDAT(*this, D))
3051     return;
3052   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3053 }
3054 
3055 /// Pass IsTentative as true if you want to create a tentative definition.
3056 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3057                                             bool IsTentative) {
3058   // OpenCL global variables of sampler type are translated to function calls,
3059   // therefore no need to be translated.
3060   QualType ASTTy = D->getType();
3061   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3062     return;
3063 
3064   llvm::Constant *Init = nullptr;
3065   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3066   bool NeedsGlobalCtor = false;
3067   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3068 
3069   const VarDecl *InitDecl;
3070   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3071 
3072   Optional<ConstantEmitter> emitter;
3073 
3074   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3075   // as part of their declaration."  Sema has already checked for
3076   // error cases, so we just need to set Init to UndefValue.
3077   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3078       D->hasAttr<CUDASharedAttr>())
3079     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3080   else if (!InitExpr) {
3081     // This is a tentative definition; tentative definitions are
3082     // implicitly initialized with { 0 }.
3083     //
3084     // Note that tentative definitions are only emitted at the end of
3085     // a translation unit, so they should never have incomplete
3086     // type. In addition, EmitTentativeDefinition makes sure that we
3087     // never attempt to emit a tentative definition if a real one
3088     // exists. A use may still exists, however, so we still may need
3089     // to do a RAUW.
3090     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3091     Init = EmitNullConstant(D->getType());
3092   } else {
3093     initializedGlobalDecl = GlobalDecl(D);
3094     emitter.emplace(*this);
3095     Init = emitter->tryEmitForInitializer(*InitDecl);
3096 
3097     if (!Init) {
3098       QualType T = InitExpr->getType();
3099       if (D->getType()->isReferenceType())
3100         T = D->getType();
3101 
3102       if (getLangOpts().CPlusPlus) {
3103         Init = EmitNullConstant(T);
3104         NeedsGlobalCtor = true;
3105       } else {
3106         ErrorUnsupported(D, "static initializer");
3107         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3108       }
3109     } else {
3110       // We don't need an initializer, so remove the entry for the delayed
3111       // initializer position (just in case this entry was delayed) if we
3112       // also don't need to register a destructor.
3113       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3114         DelayedCXXInitPosition.erase(D);
3115     }
3116   }
3117 
3118   llvm::Type* InitType = Init->getType();
3119   llvm::Constant *Entry =
3120       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3121 
3122   // Strip off a bitcast if we got one back.
3123   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3124     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3125            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3126            // All zero index gep.
3127            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3128     Entry = CE->getOperand(0);
3129   }
3130 
3131   // Entry is now either a Function or GlobalVariable.
3132   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3133 
3134   // We have a definition after a declaration with the wrong type.
3135   // We must make a new GlobalVariable* and update everything that used OldGV
3136   // (a declaration or tentative definition) with the new GlobalVariable*
3137   // (which will be a definition).
3138   //
3139   // This happens if there is a prototype for a global (e.g.
3140   // "extern int x[];") and then a definition of a different type (e.g.
3141   // "int x[10];"). This also happens when an initializer has a different type
3142   // from the type of the global (this happens with unions).
3143   if (!GV || GV->getType()->getElementType() != InitType ||
3144       GV->getType()->getAddressSpace() !=
3145           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3146 
3147     // Move the old entry aside so that we'll create a new one.
3148     Entry->setName(StringRef());
3149 
3150     // Make a new global with the correct type, this is now guaranteed to work.
3151     GV = cast<llvm::GlobalVariable>(
3152         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3153 
3154     // Replace all uses of the old global with the new global
3155     llvm::Constant *NewPtrForOldDecl =
3156         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3157     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3158 
3159     // Erase the old global, since it is no longer used.
3160     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3161   }
3162 
3163   MaybeHandleStaticInExternC(D, GV);
3164 
3165   if (D->hasAttr<AnnotateAttr>())
3166     AddGlobalAnnotations(D, GV);
3167 
3168   // Set the llvm linkage type as appropriate.
3169   llvm::GlobalValue::LinkageTypes Linkage =
3170       getLLVMLinkageVarDefinition(D, GV->isConstant());
3171 
3172   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3173   // the device. [...]"
3174   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3175   // __device__, declares a variable that: [...]
3176   // Is accessible from all the threads within the grid and from the host
3177   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3178   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3179   if (GV && LangOpts.CUDA) {
3180     if (LangOpts.CUDAIsDevice) {
3181       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3182         GV->setExternallyInitialized(true);
3183     } else {
3184       // Host-side shadows of external declarations of device-side
3185       // global variables become internal definitions. These have to
3186       // be internal in order to prevent name conflicts with global
3187       // host variables with the same name in a different TUs.
3188       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3189         Linkage = llvm::GlobalValue::InternalLinkage;
3190 
3191         // Shadow variables and their properties must be registered
3192         // with CUDA runtime.
3193         unsigned Flags = 0;
3194         if (!D->hasDefinition())
3195           Flags |= CGCUDARuntime::ExternDeviceVar;
3196         if (D->hasAttr<CUDAConstantAttr>())
3197           Flags |= CGCUDARuntime::ConstantDeviceVar;
3198         getCUDARuntime().registerDeviceVar(*GV, Flags);
3199       } else if (D->hasAttr<CUDASharedAttr>())
3200         // __shared__ variables are odd. Shadows do get created, but
3201         // they are not registered with the CUDA runtime, so they
3202         // can't really be used to access their device-side
3203         // counterparts. It's not clear yet whether it's nvcc's bug or
3204         // a feature, but we've got to do the same for compatibility.
3205         Linkage = llvm::GlobalValue::InternalLinkage;
3206     }
3207   }
3208 
3209   GV->setInitializer(Init);
3210   if (emitter) emitter->finalize(GV);
3211 
3212   // If it is safe to mark the global 'constant', do so now.
3213   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3214                   isTypeConstant(D->getType(), true));
3215 
3216   // If it is in a read-only section, mark it 'constant'.
3217   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3218     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3219     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3220       GV->setConstant(true);
3221   }
3222 
3223   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3224 
3225 
3226   // On Darwin, if the normal linkage of a C++ thread_local variable is
3227   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3228   // copies within a linkage unit; otherwise, the backing variable has
3229   // internal linkage and all accesses should just be calls to the
3230   // Itanium-specified entry point, which has the normal linkage of the
3231   // variable. This is to preserve the ability to change the implementation
3232   // behind the scenes.
3233   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3234       Context.getTargetInfo().getTriple().isOSDarwin() &&
3235       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3236       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3237     Linkage = llvm::GlobalValue::InternalLinkage;
3238 
3239   GV->setLinkage(Linkage);
3240   if (D->hasAttr<DLLImportAttr>())
3241     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3242   else if (D->hasAttr<DLLExportAttr>())
3243     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3244   else
3245     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3246 
3247   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3248     // common vars aren't constant even if declared const.
3249     GV->setConstant(false);
3250     // Tentative definition of global variables may be initialized with
3251     // non-zero null pointers. In this case they should have weak linkage
3252     // since common linkage must have zero initializer and must not have
3253     // explicit section therefore cannot have non-zero initial value.
3254     if (!GV->getInitializer()->isNullValue())
3255       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3256   }
3257 
3258   setNonAliasAttributes(D, GV);
3259 
3260   if (D->getTLSKind() && !GV->isThreadLocal()) {
3261     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3262       CXXThreadLocals.push_back(D);
3263     setTLSMode(GV, *D);
3264   }
3265 
3266   maybeSetTrivialComdat(*D, *GV);
3267 
3268   // Emit the initializer function if necessary.
3269   if (NeedsGlobalCtor || NeedsGlobalDtor)
3270     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3271 
3272   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3273 
3274   // Emit global variable debug information.
3275   if (CGDebugInfo *DI = getModuleDebugInfo())
3276     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3277       DI->EmitGlobalVariable(GV, D);
3278 }
3279 
3280 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3281                                       CodeGenModule &CGM, const VarDecl *D,
3282                                       bool NoCommon) {
3283   // Don't give variables common linkage if -fno-common was specified unless it
3284   // was overridden by a NoCommon attribute.
3285   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3286     return true;
3287 
3288   // C11 6.9.2/2:
3289   //   A declaration of an identifier for an object that has file scope without
3290   //   an initializer, and without a storage-class specifier or with the
3291   //   storage-class specifier static, constitutes a tentative definition.
3292   if (D->getInit() || D->hasExternalStorage())
3293     return true;
3294 
3295   // A variable cannot be both common and exist in a section.
3296   if (D->hasAttr<SectionAttr>())
3297     return true;
3298 
3299   // A variable cannot be both common and exist in a section.
3300   // We dont try to determine which is the right section in the front-end.
3301   // If no specialized section name is applicable, it will resort to default.
3302   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3303       D->hasAttr<PragmaClangDataSectionAttr>() ||
3304       D->hasAttr<PragmaClangRodataSectionAttr>())
3305     return true;
3306 
3307   // Thread local vars aren't considered common linkage.
3308   if (D->getTLSKind())
3309     return true;
3310 
3311   // Tentative definitions marked with WeakImportAttr are true definitions.
3312   if (D->hasAttr<WeakImportAttr>())
3313     return true;
3314 
3315   // A variable cannot be both common and exist in a comdat.
3316   if (shouldBeInCOMDAT(CGM, *D))
3317     return true;
3318 
3319   // Declarations with a required alignment do not have common linkage in MSVC
3320   // mode.
3321   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3322     if (D->hasAttr<AlignedAttr>())
3323       return true;
3324     QualType VarType = D->getType();
3325     if (Context.isAlignmentRequired(VarType))
3326       return true;
3327 
3328     if (const auto *RT = VarType->getAs<RecordType>()) {
3329       const RecordDecl *RD = RT->getDecl();
3330       for (const FieldDecl *FD : RD->fields()) {
3331         if (FD->isBitField())
3332           continue;
3333         if (FD->hasAttr<AlignedAttr>())
3334           return true;
3335         if (Context.isAlignmentRequired(FD->getType()))
3336           return true;
3337       }
3338     }
3339   }
3340 
3341   return false;
3342 }
3343 
3344 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3345     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3346   if (Linkage == GVA_Internal)
3347     return llvm::Function::InternalLinkage;
3348 
3349   if (D->hasAttr<WeakAttr>()) {
3350     if (IsConstantVariable)
3351       return llvm::GlobalVariable::WeakODRLinkage;
3352     else
3353       return llvm::GlobalVariable::WeakAnyLinkage;
3354   }
3355 
3356   // We are guaranteed to have a strong definition somewhere else,
3357   // so we can use available_externally linkage.
3358   if (Linkage == GVA_AvailableExternally)
3359     return llvm::GlobalValue::AvailableExternallyLinkage;
3360 
3361   // Note that Apple's kernel linker doesn't support symbol
3362   // coalescing, so we need to avoid linkonce and weak linkages there.
3363   // Normally, this means we just map to internal, but for explicit
3364   // instantiations we'll map to external.
3365 
3366   // In C++, the compiler has to emit a definition in every translation unit
3367   // that references the function.  We should use linkonce_odr because
3368   // a) if all references in this translation unit are optimized away, we
3369   // don't need to codegen it.  b) if the function persists, it needs to be
3370   // merged with other definitions. c) C++ has the ODR, so we know the
3371   // definition is dependable.
3372   if (Linkage == GVA_DiscardableODR)
3373     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3374                                             : llvm::Function::InternalLinkage;
3375 
3376   // An explicit instantiation of a template has weak linkage, since
3377   // explicit instantiations can occur in multiple translation units
3378   // and must all be equivalent. However, we are not allowed to
3379   // throw away these explicit instantiations.
3380   //
3381   // We don't currently support CUDA device code spread out across multiple TUs,
3382   // so say that CUDA templates are either external (for kernels) or internal.
3383   // This lets llvm perform aggressive inter-procedural optimizations.
3384   if (Linkage == GVA_StrongODR) {
3385     if (Context.getLangOpts().AppleKext)
3386       return llvm::Function::ExternalLinkage;
3387     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3388       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3389                                           : llvm::Function::InternalLinkage;
3390     return llvm::Function::WeakODRLinkage;
3391   }
3392 
3393   // C++ doesn't have tentative definitions and thus cannot have common
3394   // linkage.
3395   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3396       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3397                                  CodeGenOpts.NoCommon))
3398     return llvm::GlobalVariable::CommonLinkage;
3399 
3400   // selectany symbols are externally visible, so use weak instead of
3401   // linkonce.  MSVC optimizes away references to const selectany globals, so
3402   // all definitions should be the same and ODR linkage should be used.
3403   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3404   if (D->hasAttr<SelectAnyAttr>())
3405     return llvm::GlobalVariable::WeakODRLinkage;
3406 
3407   // Otherwise, we have strong external linkage.
3408   assert(Linkage == GVA_StrongExternal);
3409   return llvm::GlobalVariable::ExternalLinkage;
3410 }
3411 
3412 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3413     const VarDecl *VD, bool IsConstant) {
3414   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3415   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3416 }
3417 
3418 /// Replace the uses of a function that was declared with a non-proto type.
3419 /// We want to silently drop extra arguments from call sites
3420 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3421                                           llvm::Function *newFn) {
3422   // Fast path.
3423   if (old->use_empty()) return;
3424 
3425   llvm::Type *newRetTy = newFn->getReturnType();
3426   SmallVector<llvm::Value*, 4> newArgs;
3427   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3428 
3429   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3430          ui != ue; ) {
3431     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3432     llvm::User *user = use->getUser();
3433 
3434     // Recognize and replace uses of bitcasts.  Most calls to
3435     // unprototyped functions will use bitcasts.
3436     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3437       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3438         replaceUsesOfNonProtoConstant(bitcast, newFn);
3439       continue;
3440     }
3441 
3442     // Recognize calls to the function.
3443     llvm::CallSite callSite(user);
3444     if (!callSite) continue;
3445     if (!callSite.isCallee(&*use)) continue;
3446 
3447     // If the return types don't match exactly, then we can't
3448     // transform this call unless it's dead.
3449     if (callSite->getType() != newRetTy && !callSite->use_empty())
3450       continue;
3451 
3452     // Get the call site's attribute list.
3453     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3454     llvm::AttributeList oldAttrs = callSite.getAttributes();
3455 
3456     // If the function was passed too few arguments, don't transform.
3457     unsigned newNumArgs = newFn->arg_size();
3458     if (callSite.arg_size() < newNumArgs) continue;
3459 
3460     // If extra arguments were passed, we silently drop them.
3461     // If any of the types mismatch, we don't transform.
3462     unsigned argNo = 0;
3463     bool dontTransform = false;
3464     for (llvm::Argument &A : newFn->args()) {
3465       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3466         dontTransform = true;
3467         break;
3468       }
3469 
3470       // Add any parameter attributes.
3471       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3472       argNo++;
3473     }
3474     if (dontTransform)
3475       continue;
3476 
3477     // Okay, we can transform this.  Create the new call instruction and copy
3478     // over the required information.
3479     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3480 
3481     // Copy over any operand bundles.
3482     callSite.getOperandBundlesAsDefs(newBundles);
3483 
3484     llvm::CallSite newCall;
3485     if (callSite.isCall()) {
3486       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3487                                        callSite.getInstruction());
3488     } else {
3489       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3490       newCall = llvm::InvokeInst::Create(newFn,
3491                                          oldInvoke->getNormalDest(),
3492                                          oldInvoke->getUnwindDest(),
3493                                          newArgs, newBundles, "",
3494                                          callSite.getInstruction());
3495     }
3496     newArgs.clear(); // for the next iteration
3497 
3498     if (!newCall->getType()->isVoidTy())
3499       newCall->takeName(callSite.getInstruction());
3500     newCall.setAttributes(llvm::AttributeList::get(
3501         newFn->getContext(), oldAttrs.getFnAttributes(),
3502         oldAttrs.getRetAttributes(), newArgAttrs));
3503     newCall.setCallingConv(callSite.getCallingConv());
3504 
3505     // Finally, remove the old call, replacing any uses with the new one.
3506     if (!callSite->use_empty())
3507       callSite->replaceAllUsesWith(newCall.getInstruction());
3508 
3509     // Copy debug location attached to CI.
3510     if (callSite->getDebugLoc())
3511       newCall->setDebugLoc(callSite->getDebugLoc());
3512 
3513     callSite->eraseFromParent();
3514   }
3515 }
3516 
3517 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3518 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3519 /// existing call uses of the old function in the module, this adjusts them to
3520 /// call the new function directly.
3521 ///
3522 /// This is not just a cleanup: the always_inline pass requires direct calls to
3523 /// functions to be able to inline them.  If there is a bitcast in the way, it
3524 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3525 /// run at -O0.
3526 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3527                                                       llvm::Function *NewFn) {
3528   // If we're redefining a global as a function, don't transform it.
3529   if (!isa<llvm::Function>(Old)) return;
3530 
3531   replaceUsesOfNonProtoConstant(Old, NewFn);
3532 }
3533 
3534 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3535   auto DK = VD->isThisDeclarationADefinition();
3536   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3537     return;
3538 
3539   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3540   // If we have a definition, this might be a deferred decl. If the
3541   // instantiation is explicit, make sure we emit it at the end.
3542   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3543     GetAddrOfGlobalVar(VD);
3544 
3545   EmitTopLevelDecl(VD);
3546 }
3547 
3548 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3549                                                  llvm::GlobalValue *GV) {
3550   const auto *D = cast<FunctionDecl>(GD.getDecl());
3551 
3552   // Compute the function info and LLVM type.
3553   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3554   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3555 
3556   // Get or create the prototype for the function.
3557   if (!GV || (GV->getType()->getElementType() != Ty))
3558     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3559                                                    /*DontDefer=*/true,
3560                                                    ForDefinition));
3561 
3562   // Already emitted.
3563   if (!GV->isDeclaration())
3564     return;
3565 
3566   // We need to set linkage and visibility on the function before
3567   // generating code for it because various parts of IR generation
3568   // want to propagate this information down (e.g. to local static
3569   // declarations).
3570   auto *Fn = cast<llvm::Function>(GV);
3571   setFunctionLinkage(GD, Fn);
3572   setFunctionDLLStorageClass(GD, Fn);
3573 
3574   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3575   setGVProperties(Fn, D);
3576 
3577   MaybeHandleStaticInExternC(D, Fn);
3578 
3579   maybeSetTrivialComdat(*D, *Fn);
3580 
3581   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3582 
3583   setFunctionDefinitionAttributes(D, Fn);
3584   SetLLVMFunctionAttributesForDefinition(D, Fn);
3585 
3586   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3587     AddGlobalCtor(Fn, CA->getPriority());
3588   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3589     AddGlobalDtor(Fn, DA->getPriority());
3590   if (D->hasAttr<AnnotateAttr>())
3591     AddGlobalAnnotations(D, Fn);
3592 }
3593 
3594 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3595   const auto *D = cast<ValueDecl>(GD.getDecl());
3596   const AliasAttr *AA = D->getAttr<AliasAttr>();
3597   assert(AA && "Not an alias?");
3598 
3599   StringRef MangledName = getMangledName(GD);
3600 
3601   if (AA->getAliasee() == MangledName) {
3602     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3603     return;
3604   }
3605 
3606   // If there is a definition in the module, then it wins over the alias.
3607   // This is dubious, but allow it to be safe.  Just ignore the alias.
3608   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3609   if (Entry && !Entry->isDeclaration())
3610     return;
3611 
3612   Aliases.push_back(GD);
3613 
3614   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3615 
3616   // Create a reference to the named value.  This ensures that it is emitted
3617   // if a deferred decl.
3618   llvm::Constant *Aliasee;
3619   if (isa<llvm::FunctionType>(DeclTy))
3620     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3621                                       /*ForVTable=*/false);
3622   else
3623     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3624                                     llvm::PointerType::getUnqual(DeclTy),
3625                                     /*D=*/nullptr);
3626 
3627   // Create the new alias itself, but don't set a name yet.
3628   auto *GA = llvm::GlobalAlias::create(
3629       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3630 
3631   if (Entry) {
3632     if (GA->getAliasee() == Entry) {
3633       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3634       return;
3635     }
3636 
3637     assert(Entry->isDeclaration());
3638 
3639     // If there is a declaration in the module, then we had an extern followed
3640     // by the alias, as in:
3641     //   extern int test6();
3642     //   ...
3643     //   int test6() __attribute__((alias("test7")));
3644     //
3645     // Remove it and replace uses of it with the alias.
3646     GA->takeName(Entry);
3647 
3648     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3649                                                           Entry->getType()));
3650     Entry->eraseFromParent();
3651   } else {
3652     GA->setName(MangledName);
3653   }
3654 
3655   // Set attributes which are particular to an alias; this is a
3656   // specialization of the attributes which may be set on a global
3657   // variable/function.
3658   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3659       D->isWeakImported()) {
3660     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3661   }
3662 
3663   if (const auto *VD = dyn_cast<VarDecl>(D))
3664     if (VD->getTLSKind())
3665       setTLSMode(GA, *VD);
3666 
3667   setAliasAttributes(D, GA);
3668 }
3669 
3670 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3671   const auto *D = cast<ValueDecl>(GD.getDecl());
3672   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3673   assert(IFA && "Not an ifunc?");
3674 
3675   StringRef MangledName = getMangledName(GD);
3676 
3677   if (IFA->getResolver() == MangledName) {
3678     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3679     return;
3680   }
3681 
3682   // Report an error if some definition overrides ifunc.
3683   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3684   if (Entry && !Entry->isDeclaration()) {
3685     GlobalDecl OtherGD;
3686     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3687         DiagnosedConflictingDefinitions.insert(GD).second) {
3688       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3689       Diags.Report(OtherGD.getDecl()->getLocation(),
3690                    diag::note_previous_definition);
3691     }
3692     return;
3693   }
3694 
3695   Aliases.push_back(GD);
3696 
3697   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3698   llvm::Constant *Resolver =
3699       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3700                               /*ForVTable=*/false);
3701   llvm::GlobalIFunc *GIF =
3702       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3703                                 "", Resolver, &getModule());
3704   if (Entry) {
3705     if (GIF->getResolver() == Entry) {
3706       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3707       return;
3708     }
3709     assert(Entry->isDeclaration());
3710 
3711     // If there is a declaration in the module, then we had an extern followed
3712     // by the ifunc, as in:
3713     //   extern int test();
3714     //   ...
3715     //   int test() __attribute__((ifunc("resolver")));
3716     //
3717     // Remove it and replace uses of it with the ifunc.
3718     GIF->takeName(Entry);
3719 
3720     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3721                                                           Entry->getType()));
3722     Entry->eraseFromParent();
3723   } else
3724     GIF->setName(MangledName);
3725 
3726   SetCommonAttributes(D, GIF);
3727 }
3728 
3729 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3730                                             ArrayRef<llvm::Type*> Tys) {
3731   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3732                                          Tys);
3733 }
3734 
3735 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3736 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3737                          const StringLiteral *Literal, bool TargetIsLSB,
3738                          bool &IsUTF16, unsigned &StringLength) {
3739   StringRef String = Literal->getString();
3740   unsigned NumBytes = String.size();
3741 
3742   // Check for simple case.
3743   if (!Literal->containsNonAsciiOrNull()) {
3744     StringLength = NumBytes;
3745     return *Map.insert(std::make_pair(String, nullptr)).first;
3746   }
3747 
3748   // Otherwise, convert the UTF8 literals into a string of shorts.
3749   IsUTF16 = true;
3750 
3751   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3752   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3753   llvm::UTF16 *ToPtr = &ToBuf[0];
3754 
3755   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3756                                  ToPtr + NumBytes, llvm::strictConversion);
3757 
3758   // ConvertUTF8toUTF16 returns the length in ToPtr.
3759   StringLength = ToPtr - &ToBuf[0];
3760 
3761   // Add an explicit null.
3762   *ToPtr = 0;
3763   return *Map.insert(std::make_pair(
3764                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3765                                    (StringLength + 1) * 2),
3766                          nullptr)).first;
3767 }
3768 
3769 ConstantAddress
3770 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3771   unsigned StringLength = 0;
3772   bool isUTF16 = false;
3773   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3774       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3775                                getDataLayout().isLittleEndian(), isUTF16,
3776                                StringLength);
3777 
3778   if (auto *C = Entry.second)
3779     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3780 
3781   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3782   llvm::Constant *Zeros[] = { Zero, Zero };
3783 
3784   // If we don't already have it, get __CFConstantStringClassReference.
3785   if (!CFConstantStringClassRef) {
3786     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3787     Ty = llvm::ArrayType::get(Ty, 0);
3788     llvm::Constant *GV =
3789         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3790 
3791     if (getTriple().isOSBinFormatCOFF()) {
3792       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3793       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3794       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3795       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3796 
3797       const VarDecl *VD = nullptr;
3798       for (const auto &Result : DC->lookup(&II))
3799         if ((VD = dyn_cast<VarDecl>(Result)))
3800           break;
3801 
3802       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3803         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3804         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3805       } else {
3806         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3807         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3808       }
3809     }
3810 
3811     // Decay array -> ptr
3812     CFConstantStringClassRef =
3813         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3814   }
3815 
3816   QualType CFTy = getContext().getCFConstantStringType();
3817 
3818   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3819 
3820   ConstantInitBuilder Builder(*this);
3821   auto Fields = Builder.beginStruct(STy);
3822 
3823   // Class pointer.
3824   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3825 
3826   // Flags.
3827   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3828 
3829   // String pointer.
3830   llvm::Constant *C = nullptr;
3831   if (isUTF16) {
3832     auto Arr = llvm::makeArrayRef(
3833         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3834         Entry.first().size() / 2);
3835     C = llvm::ConstantDataArray::get(VMContext, Arr);
3836   } else {
3837     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3838   }
3839 
3840   // Note: -fwritable-strings doesn't make the backing store strings of
3841   // CFStrings writable. (See <rdar://problem/10657500>)
3842   auto *GV =
3843       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3844                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3845   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3846   // Don't enforce the target's minimum global alignment, since the only use
3847   // of the string is via this class initializer.
3848   CharUnits Align = isUTF16
3849                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3850                         : getContext().getTypeAlignInChars(getContext().CharTy);
3851   GV->setAlignment(Align.getQuantity());
3852 
3853   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3854   // Without it LLVM can merge the string with a non unnamed_addr one during
3855   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3856   if (getTriple().isOSBinFormatMachO())
3857     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3858                            : "__TEXT,__cstring,cstring_literals");
3859 
3860   // String.
3861   llvm::Constant *Str =
3862       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3863 
3864   if (isUTF16)
3865     // Cast the UTF16 string to the correct type.
3866     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3867   Fields.add(Str);
3868 
3869   // String length.
3870   auto Ty = getTypes().ConvertType(getContext().LongTy);
3871   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3872 
3873   CharUnits Alignment = getPointerAlign();
3874 
3875   // The struct.
3876   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3877                                     /*isConstant=*/false,
3878                                     llvm::GlobalVariable::PrivateLinkage);
3879   switch (getTriple().getObjectFormat()) {
3880   case llvm::Triple::UnknownObjectFormat:
3881     llvm_unreachable("unknown file format");
3882   case llvm::Triple::COFF:
3883   case llvm::Triple::ELF:
3884   case llvm::Triple::Wasm:
3885     GV->setSection("cfstring");
3886     break;
3887   case llvm::Triple::MachO:
3888     GV->setSection("__DATA,__cfstring");
3889     break;
3890   }
3891   Entry.second = GV;
3892 
3893   return ConstantAddress(GV, Alignment);
3894 }
3895 
3896 bool CodeGenModule::getExpressionLocationsEnabled() const {
3897   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3898 }
3899 
3900 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3901   if (ObjCFastEnumerationStateType.isNull()) {
3902     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3903     D->startDefinition();
3904 
3905     QualType FieldTypes[] = {
3906       Context.UnsignedLongTy,
3907       Context.getPointerType(Context.getObjCIdType()),
3908       Context.getPointerType(Context.UnsignedLongTy),
3909       Context.getConstantArrayType(Context.UnsignedLongTy,
3910                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3911     };
3912 
3913     for (size_t i = 0; i < 4; ++i) {
3914       FieldDecl *Field = FieldDecl::Create(Context,
3915                                            D,
3916                                            SourceLocation(),
3917                                            SourceLocation(), nullptr,
3918                                            FieldTypes[i], /*TInfo=*/nullptr,
3919                                            /*BitWidth=*/nullptr,
3920                                            /*Mutable=*/false,
3921                                            ICIS_NoInit);
3922       Field->setAccess(AS_public);
3923       D->addDecl(Field);
3924     }
3925 
3926     D->completeDefinition();
3927     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3928   }
3929 
3930   return ObjCFastEnumerationStateType;
3931 }
3932 
3933 llvm::Constant *
3934 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3935   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3936 
3937   // Don't emit it as the address of the string, emit the string data itself
3938   // as an inline array.
3939   if (E->getCharByteWidth() == 1) {
3940     SmallString<64> Str(E->getString());
3941 
3942     // Resize the string to the right size, which is indicated by its type.
3943     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3944     Str.resize(CAT->getSize().getZExtValue());
3945     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3946   }
3947 
3948   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3949   llvm::Type *ElemTy = AType->getElementType();
3950   unsigned NumElements = AType->getNumElements();
3951 
3952   // Wide strings have either 2-byte or 4-byte elements.
3953   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3954     SmallVector<uint16_t, 32> Elements;
3955     Elements.reserve(NumElements);
3956 
3957     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3958       Elements.push_back(E->getCodeUnit(i));
3959     Elements.resize(NumElements);
3960     return llvm::ConstantDataArray::get(VMContext, Elements);
3961   }
3962 
3963   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3964   SmallVector<uint32_t, 32> Elements;
3965   Elements.reserve(NumElements);
3966 
3967   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3968     Elements.push_back(E->getCodeUnit(i));
3969   Elements.resize(NumElements);
3970   return llvm::ConstantDataArray::get(VMContext, Elements);
3971 }
3972 
3973 static llvm::GlobalVariable *
3974 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3975                       CodeGenModule &CGM, StringRef GlobalName,
3976                       CharUnits Alignment) {
3977   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3978   unsigned AddrSpace = 0;
3979   if (CGM.getLangOpts().OpenCL)
3980     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3981 
3982   llvm::Module &M = CGM.getModule();
3983   // Create a global variable for this string
3984   auto *GV = new llvm::GlobalVariable(
3985       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3986       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3987   GV->setAlignment(Alignment.getQuantity());
3988   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3989   if (GV->isWeakForLinker()) {
3990     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3991     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3992   }
3993 
3994   return GV;
3995 }
3996 
3997 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3998 /// constant array for the given string literal.
3999 ConstantAddress
4000 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4001                                                   StringRef Name) {
4002   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4003 
4004   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4005   llvm::GlobalVariable **Entry = nullptr;
4006   if (!LangOpts.WritableStrings) {
4007     Entry = &ConstantStringMap[C];
4008     if (auto GV = *Entry) {
4009       if (Alignment.getQuantity() > GV->getAlignment())
4010         GV->setAlignment(Alignment.getQuantity());
4011       return ConstantAddress(GV, Alignment);
4012     }
4013   }
4014 
4015   SmallString<256> MangledNameBuffer;
4016   StringRef GlobalVariableName;
4017   llvm::GlobalValue::LinkageTypes LT;
4018 
4019   // Mangle the string literal if the ABI allows for it.  However, we cannot
4020   // do this if  we are compiling with ASan or -fwritable-strings because they
4021   // rely on strings having normal linkage.
4022   if (!LangOpts.WritableStrings &&
4023       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4024       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4025     llvm::raw_svector_ostream Out(MangledNameBuffer);
4026     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4027 
4028     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4029     GlobalVariableName = MangledNameBuffer;
4030   } else {
4031     LT = llvm::GlobalValue::PrivateLinkage;
4032     GlobalVariableName = Name;
4033   }
4034 
4035   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4036   if (Entry)
4037     *Entry = GV;
4038 
4039   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4040                                   QualType());
4041   return ConstantAddress(GV, Alignment);
4042 }
4043 
4044 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4045 /// array for the given ObjCEncodeExpr node.
4046 ConstantAddress
4047 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4048   std::string Str;
4049   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4050 
4051   return GetAddrOfConstantCString(Str);
4052 }
4053 
4054 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4055 /// the literal and a terminating '\0' character.
4056 /// The result has pointer to array type.
4057 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4058     const std::string &Str, const char *GlobalName) {
4059   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4060   CharUnits Alignment =
4061     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4062 
4063   llvm::Constant *C =
4064       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4065 
4066   // Don't share any string literals if strings aren't constant.
4067   llvm::GlobalVariable **Entry = nullptr;
4068   if (!LangOpts.WritableStrings) {
4069     Entry = &ConstantStringMap[C];
4070     if (auto GV = *Entry) {
4071       if (Alignment.getQuantity() > GV->getAlignment())
4072         GV->setAlignment(Alignment.getQuantity());
4073       return ConstantAddress(GV, Alignment);
4074     }
4075   }
4076 
4077   // Get the default prefix if a name wasn't specified.
4078   if (!GlobalName)
4079     GlobalName = ".str";
4080   // Create a global variable for this.
4081   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4082                                   GlobalName, Alignment);
4083   if (Entry)
4084     *Entry = GV;
4085   return ConstantAddress(GV, Alignment);
4086 }
4087 
4088 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4089     const MaterializeTemporaryExpr *E, const Expr *Init) {
4090   assert((E->getStorageDuration() == SD_Static ||
4091           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4092   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4093 
4094   // If we're not materializing a subobject of the temporary, keep the
4095   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4096   QualType MaterializedType = Init->getType();
4097   if (Init == E->GetTemporaryExpr())
4098     MaterializedType = E->getType();
4099 
4100   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4101 
4102   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4103     return ConstantAddress(Slot, Align);
4104 
4105   // FIXME: If an externally-visible declaration extends multiple temporaries,
4106   // we need to give each temporary the same name in every translation unit (and
4107   // we also need to make the temporaries externally-visible).
4108   SmallString<256> Name;
4109   llvm::raw_svector_ostream Out(Name);
4110   getCXXABI().getMangleContext().mangleReferenceTemporary(
4111       VD, E->getManglingNumber(), Out);
4112 
4113   APValue *Value = nullptr;
4114   if (E->getStorageDuration() == SD_Static) {
4115     // We might have a cached constant initializer for this temporary. Note
4116     // that this might have a different value from the value computed by
4117     // evaluating the initializer if the surrounding constant expression
4118     // modifies the temporary.
4119     Value = getContext().getMaterializedTemporaryValue(E, false);
4120     if (Value && Value->isUninit())
4121       Value = nullptr;
4122   }
4123 
4124   // Try evaluating it now, it might have a constant initializer.
4125   Expr::EvalResult EvalResult;
4126   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4127       !EvalResult.hasSideEffects())
4128     Value = &EvalResult.Val;
4129 
4130   LangAS AddrSpace =
4131       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4132 
4133   Optional<ConstantEmitter> emitter;
4134   llvm::Constant *InitialValue = nullptr;
4135   bool Constant = false;
4136   llvm::Type *Type;
4137   if (Value) {
4138     // The temporary has a constant initializer, use it.
4139     emitter.emplace(*this);
4140     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4141                                                MaterializedType);
4142     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4143     Type = InitialValue->getType();
4144   } else {
4145     // No initializer, the initialization will be provided when we
4146     // initialize the declaration which performed lifetime extension.
4147     Type = getTypes().ConvertTypeForMem(MaterializedType);
4148   }
4149 
4150   // Create a global variable for this lifetime-extended temporary.
4151   llvm::GlobalValue::LinkageTypes Linkage =
4152       getLLVMLinkageVarDefinition(VD, Constant);
4153   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4154     const VarDecl *InitVD;
4155     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4156         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4157       // Temporaries defined inside a class get linkonce_odr linkage because the
4158       // class can be defined in multipe translation units.
4159       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4160     } else {
4161       // There is no need for this temporary to have external linkage if the
4162       // VarDecl has external linkage.
4163       Linkage = llvm::GlobalVariable::InternalLinkage;
4164     }
4165   }
4166   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4167   auto *GV = new llvm::GlobalVariable(
4168       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4169       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4170   if (emitter) emitter->finalize(GV);
4171   setGVProperties(GV, VD);
4172   GV->setAlignment(Align.getQuantity());
4173   if (supportsCOMDAT() && GV->isWeakForLinker())
4174     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4175   if (VD->getTLSKind())
4176     setTLSMode(GV, *VD);
4177   llvm::Constant *CV = GV;
4178   if (AddrSpace != LangAS::Default)
4179     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4180         *this, GV, AddrSpace, LangAS::Default,
4181         Type->getPointerTo(
4182             getContext().getTargetAddressSpace(LangAS::Default)));
4183   MaterializedGlobalTemporaryMap[E] = CV;
4184   return ConstantAddress(CV, Align);
4185 }
4186 
4187 /// EmitObjCPropertyImplementations - Emit information for synthesized
4188 /// properties for an implementation.
4189 void CodeGenModule::EmitObjCPropertyImplementations(const
4190                                                     ObjCImplementationDecl *D) {
4191   for (const auto *PID : D->property_impls()) {
4192     // Dynamic is just for type-checking.
4193     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4194       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4195 
4196       // Determine which methods need to be implemented, some may have
4197       // been overridden. Note that ::isPropertyAccessor is not the method
4198       // we want, that just indicates if the decl came from a
4199       // property. What we want to know is if the method is defined in
4200       // this implementation.
4201       if (!D->getInstanceMethod(PD->getGetterName()))
4202         CodeGenFunction(*this).GenerateObjCGetter(
4203                                  const_cast<ObjCImplementationDecl *>(D), PID);
4204       if (!PD->isReadOnly() &&
4205           !D->getInstanceMethod(PD->getSetterName()))
4206         CodeGenFunction(*this).GenerateObjCSetter(
4207                                  const_cast<ObjCImplementationDecl *>(D), PID);
4208     }
4209   }
4210 }
4211 
4212 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4213   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4214   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4215        ivar; ivar = ivar->getNextIvar())
4216     if (ivar->getType().isDestructedType())
4217       return true;
4218 
4219   return false;
4220 }
4221 
4222 static bool AllTrivialInitializers(CodeGenModule &CGM,
4223                                    ObjCImplementationDecl *D) {
4224   CodeGenFunction CGF(CGM);
4225   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4226        E = D->init_end(); B != E; ++B) {
4227     CXXCtorInitializer *CtorInitExp = *B;
4228     Expr *Init = CtorInitExp->getInit();
4229     if (!CGF.isTrivialInitializer(Init))
4230       return false;
4231   }
4232   return true;
4233 }
4234 
4235 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4236 /// for an implementation.
4237 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4238   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4239   if (needsDestructMethod(D)) {
4240     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4241     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4242     ObjCMethodDecl *DTORMethod =
4243       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4244                              cxxSelector, getContext().VoidTy, nullptr, D,
4245                              /*isInstance=*/true, /*isVariadic=*/false,
4246                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4247                              /*isDefined=*/false, ObjCMethodDecl::Required);
4248     D->addInstanceMethod(DTORMethod);
4249     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4250     D->setHasDestructors(true);
4251   }
4252 
4253   // If the implementation doesn't have any ivar initializers, we don't need
4254   // a .cxx_construct.
4255   if (D->getNumIvarInitializers() == 0 ||
4256       AllTrivialInitializers(*this, D))
4257     return;
4258 
4259   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4260   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4261   // The constructor returns 'self'.
4262   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4263                                                 D->getLocation(),
4264                                                 D->getLocation(),
4265                                                 cxxSelector,
4266                                                 getContext().getObjCIdType(),
4267                                                 nullptr, D, /*isInstance=*/true,
4268                                                 /*isVariadic=*/false,
4269                                                 /*isPropertyAccessor=*/true,
4270                                                 /*isImplicitlyDeclared=*/true,
4271                                                 /*isDefined=*/false,
4272                                                 ObjCMethodDecl::Required);
4273   D->addInstanceMethod(CTORMethod);
4274   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4275   D->setHasNonZeroConstructors(true);
4276 }
4277 
4278 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4279 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4280   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4281       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4282     ErrorUnsupported(LSD, "linkage spec");
4283     return;
4284   }
4285 
4286   EmitDeclContext(LSD);
4287 }
4288 
4289 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4290   for (auto *I : DC->decls()) {
4291     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4292     // are themselves considered "top-level", so EmitTopLevelDecl on an
4293     // ObjCImplDecl does not recursively visit them. We need to do that in
4294     // case they're nested inside another construct (LinkageSpecDecl /
4295     // ExportDecl) that does stop them from being considered "top-level".
4296     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4297       for (auto *M : OID->methods())
4298         EmitTopLevelDecl(M);
4299     }
4300 
4301     EmitTopLevelDecl(I);
4302   }
4303 }
4304 
4305 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4306 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4307   // Ignore dependent declarations.
4308   if (D->isTemplated())
4309     return;
4310 
4311   switch (D->getKind()) {
4312   case Decl::CXXConversion:
4313   case Decl::CXXMethod:
4314   case Decl::Function:
4315     EmitGlobal(cast<FunctionDecl>(D));
4316     // Always provide some coverage mapping
4317     // even for the functions that aren't emitted.
4318     AddDeferredUnusedCoverageMapping(D);
4319     break;
4320 
4321   case Decl::CXXDeductionGuide:
4322     // Function-like, but does not result in code emission.
4323     break;
4324 
4325   case Decl::Var:
4326   case Decl::Decomposition:
4327   case Decl::VarTemplateSpecialization:
4328     EmitGlobal(cast<VarDecl>(D));
4329     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4330       for (auto *B : DD->bindings())
4331         if (auto *HD = B->getHoldingVar())
4332           EmitGlobal(HD);
4333     break;
4334 
4335   // Indirect fields from global anonymous structs and unions can be
4336   // ignored; only the actual variable requires IR gen support.
4337   case Decl::IndirectField:
4338     break;
4339 
4340   // C++ Decls
4341   case Decl::Namespace:
4342     EmitDeclContext(cast<NamespaceDecl>(D));
4343     break;
4344   case Decl::ClassTemplateSpecialization: {
4345     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4346     if (DebugInfo &&
4347         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4348         Spec->hasDefinition())
4349       DebugInfo->completeTemplateDefinition(*Spec);
4350   } LLVM_FALLTHROUGH;
4351   case Decl::CXXRecord:
4352     if (DebugInfo) {
4353       if (auto *ES = D->getASTContext().getExternalSource())
4354         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4355           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4356     }
4357     // Emit any static data members, they may be definitions.
4358     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4359       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4360         EmitTopLevelDecl(I);
4361     break;
4362     // No code generation needed.
4363   case Decl::UsingShadow:
4364   case Decl::ClassTemplate:
4365   case Decl::VarTemplate:
4366   case Decl::VarTemplatePartialSpecialization:
4367   case Decl::FunctionTemplate:
4368   case Decl::TypeAliasTemplate:
4369   case Decl::Block:
4370   case Decl::Empty:
4371     break;
4372   case Decl::Using:          // using X; [C++]
4373     if (CGDebugInfo *DI = getModuleDebugInfo())
4374         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4375     return;
4376   case Decl::NamespaceAlias:
4377     if (CGDebugInfo *DI = getModuleDebugInfo())
4378         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4379     return;
4380   case Decl::UsingDirective: // using namespace X; [C++]
4381     if (CGDebugInfo *DI = getModuleDebugInfo())
4382       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4383     return;
4384   case Decl::CXXConstructor:
4385     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4386     break;
4387   case Decl::CXXDestructor:
4388     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4389     break;
4390 
4391   case Decl::StaticAssert:
4392     // Nothing to do.
4393     break;
4394 
4395   // Objective-C Decls
4396 
4397   // Forward declarations, no (immediate) code generation.
4398   case Decl::ObjCInterface:
4399   case Decl::ObjCCategory:
4400     break;
4401 
4402   case Decl::ObjCProtocol: {
4403     auto *Proto = cast<ObjCProtocolDecl>(D);
4404     if (Proto->isThisDeclarationADefinition())
4405       ObjCRuntime->GenerateProtocol(Proto);
4406     break;
4407   }
4408 
4409   case Decl::ObjCCategoryImpl:
4410     // Categories have properties but don't support synthesize so we
4411     // can ignore them here.
4412     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4413     break;
4414 
4415   case Decl::ObjCImplementation: {
4416     auto *OMD = cast<ObjCImplementationDecl>(D);
4417     EmitObjCPropertyImplementations(OMD);
4418     EmitObjCIvarInitializations(OMD);
4419     ObjCRuntime->GenerateClass(OMD);
4420     // Emit global variable debug information.
4421     if (CGDebugInfo *DI = getModuleDebugInfo())
4422       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4423         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4424             OMD->getClassInterface()), OMD->getLocation());
4425     break;
4426   }
4427   case Decl::ObjCMethod: {
4428     auto *OMD = cast<ObjCMethodDecl>(D);
4429     // If this is not a prototype, emit the body.
4430     if (OMD->getBody())
4431       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4432     break;
4433   }
4434   case Decl::ObjCCompatibleAlias:
4435     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4436     break;
4437 
4438   case Decl::PragmaComment: {
4439     const auto *PCD = cast<PragmaCommentDecl>(D);
4440     switch (PCD->getCommentKind()) {
4441     case PCK_Unknown:
4442       llvm_unreachable("unexpected pragma comment kind");
4443     case PCK_Linker:
4444       AppendLinkerOptions(PCD->getArg());
4445       break;
4446     case PCK_Lib:
4447       if (getTarget().getTriple().isOSBinFormatELF() &&
4448           !getTarget().getTriple().isPS4())
4449         AddELFLibDirective(PCD->getArg());
4450       else
4451         AddDependentLib(PCD->getArg());
4452       break;
4453     case PCK_Compiler:
4454     case PCK_ExeStr:
4455     case PCK_User:
4456       break; // We ignore all of these.
4457     }
4458     break;
4459   }
4460 
4461   case Decl::PragmaDetectMismatch: {
4462     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4463     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4464     break;
4465   }
4466 
4467   case Decl::LinkageSpec:
4468     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4469     break;
4470 
4471   case Decl::FileScopeAsm: {
4472     // File-scope asm is ignored during device-side CUDA compilation.
4473     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4474       break;
4475     // File-scope asm is ignored during device-side OpenMP compilation.
4476     if (LangOpts.OpenMPIsDevice)
4477       break;
4478     auto *AD = cast<FileScopeAsmDecl>(D);
4479     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4480     break;
4481   }
4482 
4483   case Decl::Import: {
4484     auto *Import = cast<ImportDecl>(D);
4485 
4486     // If we've already imported this module, we're done.
4487     if (!ImportedModules.insert(Import->getImportedModule()))
4488       break;
4489 
4490     // Emit debug information for direct imports.
4491     if (!Import->getImportedOwningModule()) {
4492       if (CGDebugInfo *DI = getModuleDebugInfo())
4493         DI->EmitImportDecl(*Import);
4494     }
4495 
4496     // Find all of the submodules and emit the module initializers.
4497     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4498     SmallVector<clang::Module *, 16> Stack;
4499     Visited.insert(Import->getImportedModule());
4500     Stack.push_back(Import->getImportedModule());
4501 
4502     while (!Stack.empty()) {
4503       clang::Module *Mod = Stack.pop_back_val();
4504       if (!EmittedModuleInitializers.insert(Mod).second)
4505         continue;
4506 
4507       for (auto *D : Context.getModuleInitializers(Mod))
4508         EmitTopLevelDecl(D);
4509 
4510       // Visit the submodules of this module.
4511       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4512                                              SubEnd = Mod->submodule_end();
4513            Sub != SubEnd; ++Sub) {
4514         // Skip explicit children; they need to be explicitly imported to emit
4515         // the initializers.
4516         if ((*Sub)->IsExplicit)
4517           continue;
4518 
4519         if (Visited.insert(*Sub).second)
4520           Stack.push_back(*Sub);
4521       }
4522     }
4523     break;
4524   }
4525 
4526   case Decl::Export:
4527     EmitDeclContext(cast<ExportDecl>(D));
4528     break;
4529 
4530   case Decl::OMPThreadPrivate:
4531     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4532     break;
4533 
4534   case Decl::OMPDeclareReduction:
4535     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4536     break;
4537 
4538   default:
4539     // Make sure we handled everything we should, every other kind is a
4540     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4541     // function. Need to recode Decl::Kind to do that easily.
4542     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4543     break;
4544   }
4545 }
4546 
4547 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4548   // Do we need to generate coverage mapping?
4549   if (!CodeGenOpts.CoverageMapping)
4550     return;
4551   switch (D->getKind()) {
4552   case Decl::CXXConversion:
4553   case Decl::CXXMethod:
4554   case Decl::Function:
4555   case Decl::ObjCMethod:
4556   case Decl::CXXConstructor:
4557   case Decl::CXXDestructor: {
4558     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4559       return;
4560     SourceManager &SM = getContext().getSourceManager();
4561     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4562       return;
4563     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4564     if (I == DeferredEmptyCoverageMappingDecls.end())
4565       DeferredEmptyCoverageMappingDecls[D] = true;
4566     break;
4567   }
4568   default:
4569     break;
4570   };
4571 }
4572 
4573 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4574   // Do we need to generate coverage mapping?
4575   if (!CodeGenOpts.CoverageMapping)
4576     return;
4577   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4578     if (Fn->isTemplateInstantiation())
4579       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4580   }
4581   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4582   if (I == DeferredEmptyCoverageMappingDecls.end())
4583     DeferredEmptyCoverageMappingDecls[D] = false;
4584   else
4585     I->second = false;
4586 }
4587 
4588 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4589   // We call takeVector() here to avoid use-after-free.
4590   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4591   // we deserialize function bodies to emit coverage info for them, and that
4592   // deserializes more declarations. How should we handle that case?
4593   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4594     if (!Entry.second)
4595       continue;
4596     const Decl *D = Entry.first;
4597     switch (D->getKind()) {
4598     case Decl::CXXConversion:
4599     case Decl::CXXMethod:
4600     case Decl::Function:
4601     case Decl::ObjCMethod: {
4602       CodeGenPGO PGO(*this);
4603       GlobalDecl GD(cast<FunctionDecl>(D));
4604       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4605                                   getFunctionLinkage(GD));
4606       break;
4607     }
4608     case Decl::CXXConstructor: {
4609       CodeGenPGO PGO(*this);
4610       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4611       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4612                                   getFunctionLinkage(GD));
4613       break;
4614     }
4615     case Decl::CXXDestructor: {
4616       CodeGenPGO PGO(*this);
4617       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4618       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4619                                   getFunctionLinkage(GD));
4620       break;
4621     }
4622     default:
4623       break;
4624     };
4625   }
4626 }
4627 
4628 /// Turns the given pointer into a constant.
4629 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4630                                           const void *Ptr) {
4631   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4632   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4633   return llvm::ConstantInt::get(i64, PtrInt);
4634 }
4635 
4636 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4637                                    llvm::NamedMDNode *&GlobalMetadata,
4638                                    GlobalDecl D,
4639                                    llvm::GlobalValue *Addr) {
4640   if (!GlobalMetadata)
4641     GlobalMetadata =
4642       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4643 
4644   // TODO: should we report variant information for ctors/dtors?
4645   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4646                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4647                                CGM.getLLVMContext(), D.getDecl()))};
4648   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4649 }
4650 
4651 /// For each function which is declared within an extern "C" region and marked
4652 /// as 'used', but has internal linkage, create an alias from the unmangled
4653 /// name to the mangled name if possible. People expect to be able to refer
4654 /// to such functions with an unmangled name from inline assembly within the
4655 /// same translation unit.
4656 void CodeGenModule::EmitStaticExternCAliases() {
4657   // Don't do anything if we're generating CUDA device code -- the NVPTX
4658   // assembly target doesn't support aliases.
4659   if (Context.getTargetInfo().getTriple().isNVPTX())
4660     return;
4661   for (auto &I : StaticExternCValues) {
4662     IdentifierInfo *Name = I.first;
4663     llvm::GlobalValue *Val = I.second;
4664     if (Val && !getModule().getNamedValue(Name->getName()))
4665       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4666   }
4667 }
4668 
4669 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4670                                              GlobalDecl &Result) const {
4671   auto Res = Manglings.find(MangledName);
4672   if (Res == Manglings.end())
4673     return false;
4674   Result = Res->getValue();
4675   return true;
4676 }
4677 
4678 /// Emits metadata nodes associating all the global values in the
4679 /// current module with the Decls they came from.  This is useful for
4680 /// projects using IR gen as a subroutine.
4681 ///
4682 /// Since there's currently no way to associate an MDNode directly
4683 /// with an llvm::GlobalValue, we create a global named metadata
4684 /// with the name 'clang.global.decl.ptrs'.
4685 void CodeGenModule::EmitDeclMetadata() {
4686   llvm::NamedMDNode *GlobalMetadata = nullptr;
4687 
4688   for (auto &I : MangledDeclNames) {
4689     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4690     // Some mangled names don't necessarily have an associated GlobalValue
4691     // in this module, e.g. if we mangled it for DebugInfo.
4692     if (Addr)
4693       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4694   }
4695 }
4696 
4697 /// Emits metadata nodes for all the local variables in the current
4698 /// function.
4699 void CodeGenFunction::EmitDeclMetadata() {
4700   if (LocalDeclMap.empty()) return;
4701 
4702   llvm::LLVMContext &Context = getLLVMContext();
4703 
4704   // Find the unique metadata ID for this name.
4705   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4706 
4707   llvm::NamedMDNode *GlobalMetadata = nullptr;
4708 
4709   for (auto &I : LocalDeclMap) {
4710     const Decl *D = I.first;
4711     llvm::Value *Addr = I.second.getPointer();
4712     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4713       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4714       Alloca->setMetadata(
4715           DeclPtrKind, llvm::MDNode::get(
4716                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4717     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4718       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4719       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4720     }
4721   }
4722 }
4723 
4724 void CodeGenModule::EmitVersionIdentMetadata() {
4725   llvm::NamedMDNode *IdentMetadata =
4726     TheModule.getOrInsertNamedMetadata("llvm.ident");
4727   std::string Version = getClangFullVersion();
4728   llvm::LLVMContext &Ctx = TheModule.getContext();
4729 
4730   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4731   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4732 }
4733 
4734 void CodeGenModule::EmitTargetMetadata() {
4735   // Warning, new MangledDeclNames may be appended within this loop.
4736   // We rely on MapVector insertions adding new elements to the end
4737   // of the container.
4738   // FIXME: Move this loop into the one target that needs it, and only
4739   // loop over those declarations for which we couldn't emit the target
4740   // metadata when we emitted the declaration.
4741   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4742     auto Val = *(MangledDeclNames.begin() + I);
4743     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4744     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4745     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4746   }
4747 }
4748 
4749 void CodeGenModule::EmitCoverageFile() {
4750   if (getCodeGenOpts().CoverageDataFile.empty() &&
4751       getCodeGenOpts().CoverageNotesFile.empty())
4752     return;
4753 
4754   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4755   if (!CUNode)
4756     return;
4757 
4758   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4759   llvm::LLVMContext &Ctx = TheModule.getContext();
4760   auto *CoverageDataFile =
4761       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4762   auto *CoverageNotesFile =
4763       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4764   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4765     llvm::MDNode *CU = CUNode->getOperand(i);
4766     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4767     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4768   }
4769 }
4770 
4771 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4772   // Sema has checked that all uuid strings are of the form
4773   // "12345678-1234-1234-1234-1234567890ab".
4774   assert(Uuid.size() == 36);
4775   for (unsigned i = 0; i < 36; ++i) {
4776     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4777     else                                         assert(isHexDigit(Uuid[i]));
4778   }
4779 
4780   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4781   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4782 
4783   llvm::Constant *Field3[8];
4784   for (unsigned Idx = 0; Idx < 8; ++Idx)
4785     Field3[Idx] = llvm::ConstantInt::get(
4786         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4787 
4788   llvm::Constant *Fields[4] = {
4789     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4790     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4791     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4792     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4793   };
4794 
4795   return llvm::ConstantStruct::getAnon(Fields);
4796 }
4797 
4798 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4799                                                        bool ForEH) {
4800   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4801   // FIXME: should we even be calling this method if RTTI is disabled
4802   // and it's not for EH?
4803   if (!ForEH && !getLangOpts().RTTI)
4804     return llvm::Constant::getNullValue(Int8PtrTy);
4805 
4806   if (ForEH && Ty->isObjCObjectPointerType() &&
4807       LangOpts.ObjCRuntime.isGNUFamily())
4808     return ObjCRuntime->GetEHType(Ty);
4809 
4810   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4811 }
4812 
4813 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4814   // Do not emit threadprivates in simd-only mode.
4815   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4816     return;
4817   for (auto RefExpr : D->varlists()) {
4818     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4819     bool PerformInit =
4820         VD->getAnyInitializer() &&
4821         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4822                                                         /*ForRef=*/false);
4823 
4824     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4825     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4826             VD, Addr, RefExpr->getLocStart(), PerformInit))
4827       CXXGlobalInits.push_back(InitFunction);
4828   }
4829 }
4830 
4831 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4832   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4833   if (InternalId)
4834     return InternalId;
4835 
4836   if (isExternallyVisible(T->getLinkage())) {
4837     std::string OutName;
4838     llvm::raw_string_ostream Out(OutName);
4839     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4840 
4841     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4842   } else {
4843     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4844                                            llvm::ArrayRef<llvm::Metadata *>());
4845   }
4846 
4847   return InternalId;
4848 }
4849 
4850 // Generalize pointer types to a void pointer with the qualifiers of the
4851 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4852 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4853 // 'void *'.
4854 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4855   if (!Ty->isPointerType())
4856     return Ty;
4857 
4858   return Ctx.getPointerType(
4859       QualType(Ctx.VoidTy).withCVRQualifiers(
4860           Ty->getPointeeType().getCVRQualifiers()));
4861 }
4862 
4863 // Apply type generalization to a FunctionType's return and argument types
4864 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4865   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4866     SmallVector<QualType, 8> GeneralizedParams;
4867     for (auto &Param : FnType->param_types())
4868       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4869 
4870     return Ctx.getFunctionType(
4871         GeneralizeType(Ctx, FnType->getReturnType()),
4872         GeneralizedParams, FnType->getExtProtoInfo());
4873   }
4874 
4875   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4876     return Ctx.getFunctionNoProtoType(
4877         GeneralizeType(Ctx, FnType->getReturnType()));
4878 
4879   llvm_unreachable("Encountered unknown FunctionType");
4880 }
4881 
4882 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4883   T = GeneralizeFunctionType(getContext(), T);
4884 
4885   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4886   if (InternalId)
4887     return InternalId;
4888 
4889   if (isExternallyVisible(T->getLinkage())) {
4890     std::string OutName;
4891     llvm::raw_string_ostream Out(OutName);
4892     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4893     Out << ".generalized";
4894 
4895     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4896   } else {
4897     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4898                                            llvm::ArrayRef<llvm::Metadata *>());
4899   }
4900 
4901   return InternalId;
4902 }
4903 
4904 /// Returns whether this module needs the "all-vtables" type identifier.
4905 bool CodeGenModule::NeedAllVtablesTypeId() const {
4906   // Returns true if at least one of vtable-based CFI checkers is enabled and
4907   // is not in the trapping mode.
4908   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4909            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4910           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4911            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4912           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4913            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4914           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4915            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4916 }
4917 
4918 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4919                                           CharUnits Offset,
4920                                           const CXXRecordDecl *RD) {
4921   llvm::Metadata *MD =
4922       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4923   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4924 
4925   if (CodeGenOpts.SanitizeCfiCrossDso)
4926     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4927       VTable->addTypeMetadata(Offset.getQuantity(),
4928                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4929 
4930   if (NeedAllVtablesTypeId()) {
4931     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4932     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4933   }
4934 }
4935 
4936 // Fills in the supplied string map with the set of target features for the
4937 // passed in function.
4938 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4939                                           const FunctionDecl *FD) {
4940   StringRef TargetCPU = Target.getTargetOpts().CPU;
4941   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4942     // If we have a TargetAttr build up the feature map based on that.
4943     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4944 
4945     ParsedAttr.Features.erase(
4946         llvm::remove_if(ParsedAttr.Features,
4947                         [&](const std::string &Feat) {
4948                           return !Target.isValidFeatureName(
4949                               StringRef{Feat}.substr(1));
4950                         }),
4951         ParsedAttr.Features.end());
4952 
4953     // Make a copy of the features as passed on the command line into the
4954     // beginning of the additional features from the function to override.
4955     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4956                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4957                             Target.getTargetOpts().FeaturesAsWritten.end());
4958 
4959     if (ParsedAttr.Architecture != "" &&
4960         Target.isValidCPUName(ParsedAttr.Architecture))
4961       TargetCPU = ParsedAttr.Architecture;
4962 
4963     // Now populate the feature map, first with the TargetCPU which is either
4964     // the default or a new one from the target attribute string. Then we'll use
4965     // the passed in features (FeaturesAsWritten) along with the new ones from
4966     // the attribute.
4967     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4968                           ParsedAttr.Features);
4969   } else {
4970     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4971                           Target.getTargetOpts().Features);
4972   }
4973 }
4974 
4975 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4976   if (!SanStats)
4977     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4978 
4979   return *SanStats;
4980 }
4981 llvm::Value *
4982 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4983                                                   CodeGenFunction &CGF) {
4984   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4985   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4986   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4987   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4988                                 "__translate_sampler_initializer"),
4989                                 {C});
4990 }
4991