1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::GenericMIPS: 69 case TargetCXXABI::GenericItanium: 70 case TargetCXXABI::WebAssembly: 71 return CreateItaniumCXXABI(CGM); 72 case TargetCXXABI::Microsoft: 73 return CreateMicrosoftCXXABI(CGM); 74 } 75 76 llvm_unreachable("invalid C++ ABI kind"); 77 } 78 79 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 80 const PreprocessorOptions &PPO, 81 const CodeGenOptions &CGO, llvm::Module &M, 82 DiagnosticsEngine &diags, 83 CoverageSourceInfo *CoverageInfo) 84 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 85 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 86 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 87 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 88 Types(*this), VTables(*this), ObjCRuntime(nullptr), 89 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 90 DebugInfo(nullptr), ARCData(nullptr), 91 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 92 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 93 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 94 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 95 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 96 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 97 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 IntAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 113 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 114 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 115 Int8PtrTy = Int8Ty->getPointerTo(0); 116 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 117 118 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 119 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 120 121 if (LangOpts.ObjC1) 122 createObjCRuntime(); 123 if (LangOpts.OpenCL) 124 createOpenCLRuntime(); 125 if (LangOpts.OpenMP) 126 createOpenMPRuntime(); 127 if (LangOpts.CUDA) 128 createCUDARuntime(); 129 130 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 131 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 132 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 133 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 134 getCXXABI().getMangleContext()); 135 136 // If debug info or coverage generation is enabled, create the CGDebugInfo 137 // object. 138 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 139 CodeGenOpts.EmitGcovArcs || 140 CodeGenOpts.EmitGcovNotes) 141 DebugInfo = new CGDebugInfo(*this); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjCAutoRefCount) 146 ARCData = new ARCEntrypoints(); 147 RRData = new RREntrypoints(); 148 149 if (!CodeGenOpts.InstrProfileInput.empty()) { 150 auto ReaderOrErr = 151 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 152 if (std::error_code EC = ReaderOrErr.getError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 156 << EC.message(); 157 } else 158 PGOReader = std::move(ReaderOrErr.get()); 159 } 160 161 // If coverage mapping generation is enabled, create the 162 // CoverageMappingModuleGen object. 163 if (CodeGenOpts.CoverageMapping) 164 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 165 } 166 167 CodeGenModule::~CodeGenModule() { 168 delete ObjCRuntime; 169 delete OpenCLRuntime; 170 delete OpenMPRuntime; 171 delete CUDARuntime; 172 delete TheTargetCodeGenInfo; 173 delete TBAA; 174 delete DebugInfo; 175 delete ARCData; 176 delete RRData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 ObjCRuntime = CreateMacObjCRuntime(*this); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime = new CGOpenCLRuntime(*this); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 OpenMPRuntime = new CGOpenMPRuntime(*this); 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime = CreateNVCUDARuntime(*this); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 239 } 240 OldF->eraseFromParent(); 241 } 242 } 243 244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 245 GlobalValReplacements.push_back(std::make_pair(GV, C)); 246 } 247 248 void CodeGenModule::applyGlobalValReplacements() { 249 for (auto &I : GlobalValReplacements) { 250 llvm::GlobalValue *GV = I.first; 251 llvm::Constant *C = I.second; 252 253 GV->replaceAllUsesWith(C); 254 GV->eraseFromParent(); 255 } 256 } 257 258 // This is only used in aliases that we created and we know they have a 259 // linear structure. 260 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 261 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 262 const llvm::Constant *C = &GA; 263 for (;;) { 264 C = C->stripPointerCasts(); 265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 266 return GO; 267 // stripPointerCasts will not walk over weak aliases. 268 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 269 if (!GA2) 270 return nullptr; 271 if (!Visited.insert(GA2).second) 272 return nullptr; 273 C = GA2->getAliasee(); 274 } 275 } 276 277 void CodeGenModule::checkAliases() { 278 // Check if the constructed aliases are well formed. It is really unfortunate 279 // that we have to do this in CodeGen, but we only construct mangled names 280 // and aliases during codegen. 281 bool Error = false; 282 DiagnosticsEngine &Diags = getDiags(); 283 for (const GlobalDecl &GD : Aliases) { 284 const auto *D = cast<ValueDecl>(GD.getDecl()); 285 const AliasAttr *AA = D->getAttr<AliasAttr>(); 286 StringRef MangledName = getMangledName(GD); 287 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 288 auto *Alias = cast<llvm::GlobalAlias>(Entry); 289 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 290 if (!GV) { 291 Error = true; 292 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 293 } else if (GV->isDeclaration()) { 294 Error = true; 295 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 296 } 297 298 llvm::Constant *Aliasee = Alias->getAliasee(); 299 llvm::GlobalValue *AliaseeGV; 300 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 301 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 302 else 303 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 304 305 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 306 StringRef AliasSection = SA->getName(); 307 if (AliasSection != AliaseeGV->getSection()) 308 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 309 << AliasSection; 310 } 311 312 // We have to handle alias to weak aliases in here. LLVM itself disallows 313 // this since the object semantics would not match the IL one. For 314 // compatibility with gcc we implement it by just pointing the alias 315 // to its aliasee's aliasee. We also warn, since the user is probably 316 // expecting the link to be weak. 317 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 318 if (GA->mayBeOverridden()) { 319 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 320 << GV->getName() << GA->getName(); 321 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 322 GA->getAliasee(), Alias->getType()); 323 Alias->setAliasee(Aliasee); 324 } 325 } 326 } 327 if (!Error) 328 return; 329 330 for (const GlobalDecl &GD : Aliases) { 331 StringRef MangledName = getMangledName(GD); 332 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 333 auto *Alias = cast<llvm::GlobalAlias>(Entry); 334 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 335 Alias->eraseFromParent(); 336 } 337 } 338 339 void CodeGenModule::clear() { 340 DeferredDeclsToEmit.clear(); 341 if (OpenMPRuntime) 342 OpenMPRuntime->clear(); 343 } 344 345 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 346 StringRef MainFile) { 347 if (!hasDiagnostics()) 348 return; 349 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 350 if (MainFile.empty()) 351 MainFile = "<stdin>"; 352 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 353 } else 354 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 355 << Mismatched; 356 } 357 358 void CodeGenModule::Release() { 359 EmitDeferred(); 360 applyGlobalValReplacements(); 361 applyReplacements(); 362 checkAliases(); 363 EmitCXXGlobalInitFunc(); 364 EmitCXXGlobalDtorFunc(); 365 EmitCXXThreadLocalInitFunc(); 366 if (ObjCRuntime) 367 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 368 AddGlobalCtor(ObjCInitFunction); 369 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 370 CUDARuntime) { 371 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 372 AddGlobalCtor(CudaCtorFunction); 373 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 374 AddGlobalDtor(CudaDtorFunction); 375 } 376 if (PGOReader && PGOStats.hasDiagnostics()) 377 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 378 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 379 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 380 EmitGlobalAnnotations(); 381 EmitStaticExternCAliases(); 382 EmitDeferredUnusedCoverageMappings(); 383 if (CoverageMapping) 384 CoverageMapping->emit(); 385 emitLLVMUsed(); 386 387 if (CodeGenOpts.Autolink && 388 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 389 EmitModuleLinkOptions(); 390 } 391 if (CodeGenOpts.DwarfVersion) { 392 // We actually want the latest version when there are conflicts. 393 // We can change from Warning to Latest if such mode is supported. 394 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 395 CodeGenOpts.DwarfVersion); 396 } 397 if (CodeGenOpts.EmitCodeView) { 398 // Indicate that we want CodeView in the metadata. 399 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 400 } 401 if (DebugInfo) 402 // We support a single version in the linked module. The LLVM 403 // parser will drop debug info with a different version number 404 // (and warn about it, too). 405 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 406 llvm::DEBUG_METADATA_VERSION); 407 408 // We need to record the widths of enums and wchar_t, so that we can generate 409 // the correct build attributes in the ARM backend. 410 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 411 if ( Arch == llvm::Triple::arm 412 || Arch == llvm::Triple::armeb 413 || Arch == llvm::Triple::thumb 414 || Arch == llvm::Triple::thumbeb) { 415 // Width of wchar_t in bytes 416 uint64_t WCharWidth = 417 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 418 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 419 420 // The minimum width of an enum in bytes 421 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 422 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 423 } 424 425 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 426 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 427 switch (PLevel) { 428 case 0: break; 429 case 1: PL = llvm::PICLevel::Small; break; 430 case 2: PL = llvm::PICLevel::Large; break; 431 default: llvm_unreachable("Invalid PIC Level"); 432 } 433 434 getModule().setPICLevel(PL); 435 } 436 437 SimplifyPersonality(); 438 439 if (getCodeGenOpts().EmitDeclMetadata) 440 EmitDeclMetadata(); 441 442 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 443 EmitCoverageFile(); 444 445 if (DebugInfo) 446 DebugInfo->finalize(); 447 448 EmitVersionIdentMetadata(); 449 450 EmitTargetMetadata(); 451 452 RewriteAlwaysInlineFunctions(); 453 } 454 455 void CodeGenModule::AddAlwaysInlineFunction(llvm::Function *Fn) { 456 AlwaysInlineFunctions.push_back(Fn); 457 } 458 459 /// Find all uses of GV that are not direct calls or invokes. 460 static void FindNonDirectCallUses(llvm::GlobalValue *GV, 461 llvm::SmallVectorImpl<llvm::Use *> *Uses) { 462 llvm::GlobalValue::use_iterator UI = GV->use_begin(), E = GV->use_end(); 463 for (; UI != E;) { 464 llvm::Use &U = *UI; 465 ++UI; 466 467 llvm::CallSite CS(U.getUser()); 468 bool isDirectCall = (CS.isCall() || CS.isInvoke()) && CS.isCallee(&U); 469 if (!isDirectCall) 470 Uses->push_back(&U); 471 } 472 } 473 474 /// Replace a list of uses. 475 static void ReplaceUsesWith(const llvm::SmallVectorImpl<llvm::Use *> &Uses, 476 llvm::GlobalValue *V, 477 llvm::GlobalValue *Replacement) { 478 for (llvm::Use *U : Uses) { 479 auto *C = dyn_cast<llvm::Constant>(U->getUser()); 480 if (C && !isa<llvm::GlobalValue>(C)) 481 C->handleOperandChange(V, Replacement, U); 482 else 483 U->set(Replacement); 484 } 485 } 486 487 void CodeGenModule::RewriteAlwaysInlineFunction(llvm::Function *Fn) { 488 std::string Name = Fn->getName(); 489 std::string InlineName = Name + ".alwaysinline"; 490 Fn->setName(InlineName); 491 492 llvm::SmallVector<llvm::Use *, 8> NonDirectCallUses; 493 Fn->removeDeadConstantUsers(); 494 FindNonDirectCallUses(Fn, &NonDirectCallUses); 495 // Do not create the wrapper if there are no non-direct call uses, and we are 496 // not required to emit an external definition. 497 if (NonDirectCallUses.empty() && Fn->isDiscardableIfUnused()) 498 return; 499 500 llvm::FunctionType *FT = Fn->getFunctionType(); 501 llvm::LLVMContext &Ctx = getModule().getContext(); 502 llvm::Function *StubFn = 503 llvm::Function::Create(FT, Fn->getLinkage(), Name, &getModule()); 504 assert(StubFn->getName() == Name && "name was uniqued!"); 505 506 // Insert the stub immediately after the original function. Helps with the 507 // fragile tests, among other things. 508 StubFn->removeFromParent(); 509 TheModule.getFunctionList().insertAfter(Fn, StubFn); 510 511 StubFn->copyAttributesFrom(Fn); 512 StubFn->setPersonalityFn(nullptr); 513 514 // AvailableExternally functions are replaced with a declaration. 515 // Everyone else gets a wrapper that musttail-calls the original function. 516 if (Fn->hasAvailableExternallyLinkage()) { 517 StubFn->setLinkage(llvm::GlobalValue::ExternalLinkage); 518 } else { 519 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", StubFn); 520 std::vector<llvm::Value *> Args; 521 for (llvm::Function::arg_iterator ai = StubFn->arg_begin(); 522 ai != StubFn->arg_end(); ++ai) 523 Args.push_back(&*ai); 524 llvm::CallInst *CI = llvm::CallInst::Create(Fn, Args, "", BB); 525 CI->setCallingConv(Fn->getCallingConv()); 526 CI->setTailCallKind(llvm::CallInst::TCK_MustTail); 527 CI->setAttributes(Fn->getAttributes()); 528 if (FT->getReturnType()->isVoidTy()) 529 llvm::ReturnInst::Create(Ctx, BB); 530 else 531 llvm::ReturnInst::Create(Ctx, CI, BB); 532 } 533 534 if (Fn->hasComdat()) 535 StubFn->setComdat(Fn->getComdat()); 536 537 ReplaceUsesWith(NonDirectCallUses, Fn, StubFn); 538 539 // Replace all metadata uses with the stub. This is primarily to reattach 540 // DISubprogram metadata to the stub, because that's what will be emitted in 541 // the object file. 542 if (Fn->isUsedByMetadata()) 543 llvm::ValueAsMetadata::handleRAUW(Fn, StubFn); 544 } 545 546 void CodeGenModule::RewriteAlwaysInlineFunctions() { 547 for (llvm::Function *Fn : AlwaysInlineFunctions) { 548 RewriteAlwaysInlineFunction(Fn); 549 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 550 Fn->addFnAttr(llvm::Attribute::AlwaysInline); 551 Fn->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 552 Fn->setVisibility(llvm::GlobalValue::DefaultVisibility); 553 } 554 } 555 556 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 557 // Make sure that this type is translated. 558 Types.UpdateCompletedType(TD); 559 } 560 561 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 562 if (!TBAA) 563 return nullptr; 564 return TBAA->getTBAAInfo(QTy); 565 } 566 567 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 568 if (!TBAA) 569 return nullptr; 570 return TBAA->getTBAAInfoForVTablePtr(); 571 } 572 573 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 574 if (!TBAA) 575 return nullptr; 576 return TBAA->getTBAAStructInfo(QTy); 577 } 578 579 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 580 if (!TBAA) 581 return nullptr; 582 return TBAA->getTBAAStructTypeInfo(QTy); 583 } 584 585 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 586 llvm::MDNode *AccessN, 587 uint64_t O) { 588 if (!TBAA) 589 return nullptr; 590 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 591 } 592 593 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 594 /// and struct-path aware TBAA, the tag has the same format: 595 /// base type, access type and offset. 596 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 597 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 598 llvm::MDNode *TBAAInfo, 599 bool ConvertTypeToTag) { 600 if (ConvertTypeToTag && TBAA) 601 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 602 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 603 else 604 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 605 } 606 607 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 608 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 609 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 610 } 611 612 /// ErrorUnsupported - Print out an error that codegen doesn't support the 613 /// specified stmt yet. 614 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 615 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 616 "cannot compile this %0 yet"); 617 std::string Msg = Type; 618 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 619 << Msg << S->getSourceRange(); 620 } 621 622 /// ErrorUnsupported - Print out an error that codegen doesn't support the 623 /// specified decl yet. 624 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 625 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 626 "cannot compile this %0 yet"); 627 std::string Msg = Type; 628 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 629 } 630 631 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 632 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 633 } 634 635 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 636 const NamedDecl *D) const { 637 // Internal definitions always have default visibility. 638 if (GV->hasLocalLinkage()) { 639 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 640 return; 641 } 642 643 // Set visibility for definitions. 644 LinkageInfo LV = D->getLinkageAndVisibility(); 645 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 646 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 647 } 648 649 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 650 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 651 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 652 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 653 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 654 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 655 } 656 657 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 658 CodeGenOptions::TLSModel M) { 659 switch (M) { 660 case CodeGenOptions::GeneralDynamicTLSModel: 661 return llvm::GlobalVariable::GeneralDynamicTLSModel; 662 case CodeGenOptions::LocalDynamicTLSModel: 663 return llvm::GlobalVariable::LocalDynamicTLSModel; 664 case CodeGenOptions::InitialExecTLSModel: 665 return llvm::GlobalVariable::InitialExecTLSModel; 666 case CodeGenOptions::LocalExecTLSModel: 667 return llvm::GlobalVariable::LocalExecTLSModel; 668 } 669 llvm_unreachable("Invalid TLS model!"); 670 } 671 672 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 673 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 674 675 llvm::GlobalValue::ThreadLocalMode TLM; 676 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 677 678 // Override the TLS model if it is explicitly specified. 679 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 680 TLM = GetLLVMTLSModel(Attr->getModel()); 681 } 682 683 GV->setThreadLocalMode(TLM); 684 } 685 686 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 687 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 688 if (!FoundStr.empty()) 689 return FoundStr; 690 691 const auto *ND = cast<NamedDecl>(GD.getDecl()); 692 SmallString<256> Buffer; 693 StringRef Str; 694 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 695 llvm::raw_svector_ostream Out(Buffer); 696 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 697 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 698 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 699 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 700 else 701 getCXXABI().getMangleContext().mangleName(ND, Out); 702 Str = Out.str(); 703 } else { 704 IdentifierInfo *II = ND->getIdentifier(); 705 assert(II && "Attempt to mangle unnamed decl."); 706 Str = II->getName(); 707 } 708 709 // Keep the first result in the case of a mangling collision. 710 auto Result = Manglings.insert(std::make_pair(Str, GD)); 711 return FoundStr = Result.first->first(); 712 } 713 714 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 715 const BlockDecl *BD) { 716 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 717 const Decl *D = GD.getDecl(); 718 719 SmallString<256> Buffer; 720 llvm::raw_svector_ostream Out(Buffer); 721 if (!D) 722 MangleCtx.mangleGlobalBlock(BD, 723 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 724 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 725 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 726 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 727 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 728 else 729 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 730 731 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 732 return Result.first->first(); 733 } 734 735 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 736 return getModule().getNamedValue(Name); 737 } 738 739 /// AddGlobalCtor - Add a function to the list that will be called before 740 /// main() runs. 741 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 742 llvm::Constant *AssociatedData) { 743 // FIXME: Type coercion of void()* types. 744 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 745 } 746 747 /// AddGlobalDtor - Add a function to the list that will be called 748 /// when the module is unloaded. 749 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 750 // FIXME: Type coercion of void()* types. 751 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 752 } 753 754 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 755 // Ctor function type is void()*. 756 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 757 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 758 759 // Get the type of a ctor entry, { i32, void ()*, i8* }. 760 llvm::StructType *CtorStructTy = llvm::StructType::get( 761 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 762 763 // Construct the constructor and destructor arrays. 764 SmallVector<llvm::Constant *, 8> Ctors; 765 for (const auto &I : Fns) { 766 llvm::Constant *S[] = { 767 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 768 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 769 (I.AssociatedData 770 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 771 : llvm::Constant::getNullValue(VoidPtrTy))}; 772 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 773 } 774 775 if (!Ctors.empty()) { 776 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 777 new llvm::GlobalVariable(TheModule, AT, false, 778 llvm::GlobalValue::AppendingLinkage, 779 llvm::ConstantArray::get(AT, Ctors), 780 GlobalName); 781 } 782 } 783 784 llvm::GlobalValue::LinkageTypes 785 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 786 const auto *D = cast<FunctionDecl>(GD.getDecl()); 787 788 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 789 790 if (isa<CXXDestructorDecl>(D) && 791 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 792 GD.getDtorType())) { 793 // Destructor variants in the Microsoft C++ ABI are always internal or 794 // linkonce_odr thunks emitted on an as-needed basis. 795 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 796 : llvm::GlobalValue::LinkOnceODRLinkage; 797 } 798 799 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 800 } 801 802 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 803 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 804 805 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 806 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 807 // Don't dllexport/import destructor thunks. 808 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 809 return; 810 } 811 } 812 813 if (FD->hasAttr<DLLImportAttr>()) 814 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 815 else if (FD->hasAttr<DLLExportAttr>()) 816 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 817 else 818 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 819 } 820 821 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 822 llvm::Function *F) { 823 setNonAliasAttributes(D, F); 824 } 825 826 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 827 const CGFunctionInfo &Info, 828 llvm::Function *F) { 829 unsigned CallingConv; 830 AttributeListType AttributeList; 831 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 832 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 833 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 834 } 835 836 /// Determines whether the language options require us to model 837 /// unwind exceptions. We treat -fexceptions as mandating this 838 /// except under the fragile ObjC ABI with only ObjC exceptions 839 /// enabled. This means, for example, that C with -fexceptions 840 /// enables this. 841 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 842 // If exceptions are completely disabled, obviously this is false. 843 if (!LangOpts.Exceptions) return false; 844 845 // If C++ exceptions are enabled, this is true. 846 if (LangOpts.CXXExceptions) return true; 847 848 // If ObjC exceptions are enabled, this depends on the ABI. 849 if (LangOpts.ObjCExceptions) { 850 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 851 } 852 853 return true; 854 } 855 856 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 857 llvm::Function *F) { 858 llvm::AttrBuilder B; 859 860 if (CodeGenOpts.UnwindTables) 861 B.addAttribute(llvm::Attribute::UWTable); 862 863 if (!hasUnwindExceptions(LangOpts)) 864 B.addAttribute(llvm::Attribute::NoUnwind); 865 866 if (D->hasAttr<NakedAttr>()) { 867 // Naked implies noinline: we should not be inlining such functions. 868 B.addAttribute(llvm::Attribute::Naked); 869 B.addAttribute(llvm::Attribute::NoInline); 870 } else if (D->hasAttr<NoDuplicateAttr>()) { 871 B.addAttribute(llvm::Attribute::NoDuplicate); 872 } else if (D->hasAttr<NoInlineAttr>()) { 873 B.addAttribute(llvm::Attribute::NoInline); 874 } else if (D->hasAttr<AlwaysInlineAttr>() && 875 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 876 llvm::Attribute::NoInline)) { 877 // (noinline wins over always_inline, and we can't specify both in IR) 878 AddAlwaysInlineFunction(F); 879 } 880 881 if (D->hasAttr<ColdAttr>()) { 882 if (!D->hasAttr<OptimizeNoneAttr>()) 883 B.addAttribute(llvm::Attribute::OptimizeForSize); 884 B.addAttribute(llvm::Attribute::Cold); 885 } 886 887 if (D->hasAttr<MinSizeAttr>()) 888 B.addAttribute(llvm::Attribute::MinSize); 889 890 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 891 B.addAttribute(llvm::Attribute::StackProtect); 892 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 893 B.addAttribute(llvm::Attribute::StackProtectStrong); 894 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 895 B.addAttribute(llvm::Attribute::StackProtectReq); 896 897 F->addAttributes(llvm::AttributeSet::FunctionIndex, 898 llvm::AttributeSet::get( 899 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 900 901 if (D->hasAttr<OptimizeNoneAttr>()) { 902 // OptimizeNone implies noinline; we should not be inlining such functions. 903 F->addFnAttr(llvm::Attribute::OptimizeNone); 904 F->addFnAttr(llvm::Attribute::NoInline); 905 906 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 907 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 908 "OptimizeNone and OptimizeForSize on same function!"); 909 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 910 "OptimizeNone and MinSize on same function!"); 911 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 912 "OptimizeNone and AlwaysInline on same function!"); 913 914 // Attribute 'inlinehint' has no effect on 'optnone' functions. 915 // Explicitly remove it from the set of function attributes. 916 F->removeFnAttr(llvm::Attribute::InlineHint); 917 } 918 919 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 920 F->setUnnamedAddr(true); 921 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 922 if (MD->isVirtual()) 923 F->setUnnamedAddr(true); 924 925 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 926 if (alignment) 927 F->setAlignment(alignment); 928 929 // Some C++ ABIs require 2-byte alignment for member functions, in order to 930 // reserve a bit for differentiating between virtual and non-virtual member 931 // functions. If the current target's C++ ABI requires this and this is a 932 // member function, set its alignment accordingly. 933 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 934 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 935 F->setAlignment(2); 936 } 937 } 938 939 void CodeGenModule::SetCommonAttributes(const Decl *D, 940 llvm::GlobalValue *GV) { 941 if (const auto *ND = dyn_cast<NamedDecl>(D)) 942 setGlobalVisibility(GV, ND); 943 else 944 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 945 946 if (D->hasAttr<UsedAttr>()) 947 addUsedGlobal(GV); 948 } 949 950 void CodeGenModule::setAliasAttributes(const Decl *D, 951 llvm::GlobalValue *GV) { 952 SetCommonAttributes(D, GV); 953 954 // Process the dllexport attribute based on whether the original definition 955 // (not necessarily the aliasee) was exported. 956 if (D->hasAttr<DLLExportAttr>()) 957 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 958 } 959 960 void CodeGenModule::setNonAliasAttributes(const Decl *D, 961 llvm::GlobalObject *GO) { 962 SetCommonAttributes(D, GO); 963 964 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 965 GO->setSection(SA->getName()); 966 967 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 968 } 969 970 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 971 llvm::Function *F, 972 const CGFunctionInfo &FI) { 973 SetLLVMFunctionAttributes(D, FI, F); 974 SetLLVMFunctionAttributesForDefinition(D, F); 975 976 F->setLinkage(llvm::Function::InternalLinkage); 977 978 setNonAliasAttributes(D, F); 979 } 980 981 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 982 const NamedDecl *ND) { 983 // Set linkage and visibility in case we never see a definition. 984 LinkageInfo LV = ND->getLinkageAndVisibility(); 985 if (LV.getLinkage() != ExternalLinkage) { 986 // Don't set internal linkage on declarations. 987 } else { 988 if (ND->hasAttr<DLLImportAttr>()) { 989 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 990 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 991 } else if (ND->hasAttr<DLLExportAttr>()) { 992 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 993 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 994 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 995 // "extern_weak" is overloaded in LLVM; we probably should have 996 // separate linkage types for this. 997 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 998 } 999 1000 // Set visibility on a declaration only if it's explicit. 1001 if (LV.isVisibilityExplicit()) 1002 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1003 } 1004 } 1005 1006 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1007 bool IsIncompleteFunction, 1008 bool IsThunk) { 1009 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1010 // If this is an intrinsic function, set the function's attributes 1011 // to the intrinsic's attributes. 1012 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1013 return; 1014 } 1015 1016 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1017 1018 if (!IsIncompleteFunction) 1019 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1020 1021 // Add the Returned attribute for "this", except for iOS 5 and earlier 1022 // where substantial code, including the libstdc++ dylib, was compiled with 1023 // GCC and does not actually return "this". 1024 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1025 !(getTarget().getTriple().isiOS() && 1026 getTarget().getTriple().isOSVersionLT(6))) { 1027 assert(!F->arg_empty() && 1028 F->arg_begin()->getType() 1029 ->canLosslesslyBitCastTo(F->getReturnType()) && 1030 "unexpected this return"); 1031 F->addAttribute(1, llvm::Attribute::Returned); 1032 } 1033 1034 // Only a few attributes are set on declarations; these may later be 1035 // overridden by a definition. 1036 1037 setLinkageAndVisibilityForGV(F, FD); 1038 1039 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1040 F->setSection(SA->getName()); 1041 1042 // A replaceable global allocation function does not act like a builtin by 1043 // default, only if it is invoked by a new-expression or delete-expression. 1044 if (FD->isReplaceableGlobalAllocationFunction()) 1045 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1046 llvm::Attribute::NoBuiltin); 1047 1048 // If we are checking indirect calls and this is not a non-static member 1049 // function, emit a bit set entry for the function type. 1050 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) && 1051 !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) { 1052 llvm::NamedMDNode *BitsetsMD = 1053 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 1054 1055 llvm::Metadata *BitsetOps[] = { 1056 CreateMetadataIdentifierForType(FD->getType()), 1057 llvm::ConstantAsMetadata::get(F), 1058 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1059 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 1060 } 1061 } 1062 1063 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1064 assert(!GV->isDeclaration() && 1065 "Only globals with definition can force usage."); 1066 LLVMUsed.emplace_back(GV); 1067 } 1068 1069 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1070 assert(!GV->isDeclaration() && 1071 "Only globals with definition can force usage."); 1072 LLVMCompilerUsed.emplace_back(GV); 1073 } 1074 1075 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1076 std::vector<llvm::WeakVH> &List) { 1077 // Don't create llvm.used if there is no need. 1078 if (List.empty()) 1079 return; 1080 1081 // Convert List to what ConstantArray needs. 1082 SmallVector<llvm::Constant*, 8> UsedArray; 1083 UsedArray.resize(List.size()); 1084 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1085 UsedArray[i] = 1086 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1087 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1088 } 1089 1090 if (UsedArray.empty()) 1091 return; 1092 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1093 1094 auto *GV = new llvm::GlobalVariable( 1095 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1096 llvm::ConstantArray::get(ATy, UsedArray), Name); 1097 1098 GV->setSection("llvm.metadata"); 1099 } 1100 1101 void CodeGenModule::emitLLVMUsed() { 1102 emitUsed(*this, "llvm.used", LLVMUsed); 1103 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1104 } 1105 1106 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1107 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1108 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1109 } 1110 1111 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1112 llvm::SmallString<32> Opt; 1113 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1114 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1115 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1116 } 1117 1118 void CodeGenModule::AddDependentLib(StringRef Lib) { 1119 llvm::SmallString<24> Opt; 1120 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1121 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1122 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1123 } 1124 1125 /// \brief Add link options implied by the given module, including modules 1126 /// it depends on, using a postorder walk. 1127 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1128 SmallVectorImpl<llvm::Metadata *> &Metadata, 1129 llvm::SmallPtrSet<Module *, 16> &Visited) { 1130 // Import this module's parent. 1131 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1132 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1133 } 1134 1135 // Import this module's dependencies. 1136 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1137 if (Visited.insert(Mod->Imports[I - 1]).second) 1138 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1139 } 1140 1141 // Add linker options to link against the libraries/frameworks 1142 // described by this module. 1143 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1144 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1145 // Link against a framework. Frameworks are currently Darwin only, so we 1146 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1147 if (Mod->LinkLibraries[I-1].IsFramework) { 1148 llvm::Metadata *Args[2] = { 1149 llvm::MDString::get(Context, "-framework"), 1150 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1151 1152 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1153 continue; 1154 } 1155 1156 // Link against a library. 1157 llvm::SmallString<24> Opt; 1158 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1159 Mod->LinkLibraries[I-1].Library, Opt); 1160 auto *OptString = llvm::MDString::get(Context, Opt); 1161 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1162 } 1163 } 1164 1165 void CodeGenModule::EmitModuleLinkOptions() { 1166 // Collect the set of all of the modules we want to visit to emit link 1167 // options, which is essentially the imported modules and all of their 1168 // non-explicit child modules. 1169 llvm::SetVector<clang::Module *> LinkModules; 1170 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1171 SmallVector<clang::Module *, 16> Stack; 1172 1173 // Seed the stack with imported modules. 1174 for (Module *M : ImportedModules) 1175 if (Visited.insert(M).second) 1176 Stack.push_back(M); 1177 1178 // Find all of the modules to import, making a little effort to prune 1179 // non-leaf modules. 1180 while (!Stack.empty()) { 1181 clang::Module *Mod = Stack.pop_back_val(); 1182 1183 bool AnyChildren = false; 1184 1185 // Visit the submodules of this module. 1186 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1187 SubEnd = Mod->submodule_end(); 1188 Sub != SubEnd; ++Sub) { 1189 // Skip explicit children; they need to be explicitly imported to be 1190 // linked against. 1191 if ((*Sub)->IsExplicit) 1192 continue; 1193 1194 if (Visited.insert(*Sub).second) { 1195 Stack.push_back(*Sub); 1196 AnyChildren = true; 1197 } 1198 } 1199 1200 // We didn't find any children, so add this module to the list of 1201 // modules to link against. 1202 if (!AnyChildren) { 1203 LinkModules.insert(Mod); 1204 } 1205 } 1206 1207 // Add link options for all of the imported modules in reverse topological 1208 // order. We don't do anything to try to order import link flags with respect 1209 // to linker options inserted by things like #pragma comment(). 1210 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1211 Visited.clear(); 1212 for (Module *M : LinkModules) 1213 if (Visited.insert(M).second) 1214 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1215 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1216 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1217 1218 // Add the linker options metadata flag. 1219 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1220 llvm::MDNode::get(getLLVMContext(), 1221 LinkerOptionsMetadata)); 1222 } 1223 1224 void CodeGenModule::EmitDeferred() { 1225 // Emit code for any potentially referenced deferred decls. Since a 1226 // previously unused static decl may become used during the generation of code 1227 // for a static function, iterate until no changes are made. 1228 1229 if (!DeferredVTables.empty()) { 1230 EmitDeferredVTables(); 1231 1232 // Emitting a v-table doesn't directly cause more v-tables to 1233 // become deferred, although it can cause functions to be 1234 // emitted that then need those v-tables. 1235 assert(DeferredVTables.empty()); 1236 } 1237 1238 // Stop if we're out of both deferred v-tables and deferred declarations. 1239 if (DeferredDeclsToEmit.empty()) 1240 return; 1241 1242 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1243 // work, it will not interfere with this. 1244 std::vector<DeferredGlobal> CurDeclsToEmit; 1245 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1246 1247 for (DeferredGlobal &G : CurDeclsToEmit) { 1248 GlobalDecl D = G.GD; 1249 llvm::GlobalValue *GV = G.GV; 1250 G.GV = nullptr; 1251 1252 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1253 // to get GlobalValue with exactly the type we need, not something that 1254 // might had been created for another decl with the same mangled name but 1255 // different type. 1256 // FIXME: Support for variables is not implemented yet. 1257 if (isa<FunctionDecl>(D.getDecl())) 1258 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1259 else 1260 if (!GV) 1261 GV = GetGlobalValue(getMangledName(D)); 1262 1263 // Check to see if we've already emitted this. This is necessary 1264 // for a couple of reasons: first, decls can end up in the 1265 // deferred-decls queue multiple times, and second, decls can end 1266 // up with definitions in unusual ways (e.g. by an extern inline 1267 // function acquiring a strong function redefinition). Just 1268 // ignore these cases. 1269 if (GV && !GV->isDeclaration()) 1270 continue; 1271 1272 // Otherwise, emit the definition and move on to the next one. 1273 EmitGlobalDefinition(D, GV); 1274 1275 // If we found out that we need to emit more decls, do that recursively. 1276 // This has the advantage that the decls are emitted in a DFS and related 1277 // ones are close together, which is convenient for testing. 1278 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1279 EmitDeferred(); 1280 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1281 } 1282 } 1283 } 1284 1285 void CodeGenModule::EmitGlobalAnnotations() { 1286 if (Annotations.empty()) 1287 return; 1288 1289 // Create a new global variable for the ConstantStruct in the Module. 1290 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1291 Annotations[0]->getType(), Annotations.size()), Annotations); 1292 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1293 llvm::GlobalValue::AppendingLinkage, 1294 Array, "llvm.global.annotations"); 1295 gv->setSection(AnnotationSection); 1296 } 1297 1298 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1299 llvm::Constant *&AStr = AnnotationStrings[Str]; 1300 if (AStr) 1301 return AStr; 1302 1303 // Not found yet, create a new global. 1304 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1305 auto *gv = 1306 new llvm::GlobalVariable(getModule(), s->getType(), true, 1307 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1308 gv->setSection(AnnotationSection); 1309 gv->setUnnamedAddr(true); 1310 AStr = gv; 1311 return gv; 1312 } 1313 1314 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1315 SourceManager &SM = getContext().getSourceManager(); 1316 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1317 if (PLoc.isValid()) 1318 return EmitAnnotationString(PLoc.getFilename()); 1319 return EmitAnnotationString(SM.getBufferName(Loc)); 1320 } 1321 1322 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1323 SourceManager &SM = getContext().getSourceManager(); 1324 PresumedLoc PLoc = SM.getPresumedLoc(L); 1325 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1326 SM.getExpansionLineNumber(L); 1327 return llvm::ConstantInt::get(Int32Ty, LineNo); 1328 } 1329 1330 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1331 const AnnotateAttr *AA, 1332 SourceLocation L) { 1333 // Get the globals for file name, annotation, and the line number. 1334 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1335 *UnitGV = EmitAnnotationUnit(L), 1336 *LineNoCst = EmitAnnotationLineNo(L); 1337 1338 // Create the ConstantStruct for the global annotation. 1339 llvm::Constant *Fields[4] = { 1340 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1341 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1342 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1343 LineNoCst 1344 }; 1345 return llvm::ConstantStruct::getAnon(Fields); 1346 } 1347 1348 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1349 llvm::GlobalValue *GV) { 1350 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1351 // Get the struct elements for these annotations. 1352 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1353 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1354 } 1355 1356 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1357 SourceLocation Loc) const { 1358 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1359 // Blacklist by function name. 1360 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1361 return true; 1362 // Blacklist by location. 1363 if (!Loc.isInvalid()) 1364 return SanitizerBL.isBlacklistedLocation(Loc); 1365 // If location is unknown, this may be a compiler-generated function. Assume 1366 // it's located in the main file. 1367 auto &SM = Context.getSourceManager(); 1368 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1369 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1370 } 1371 return false; 1372 } 1373 1374 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1375 SourceLocation Loc, QualType Ty, 1376 StringRef Category) const { 1377 // For now globals can be blacklisted only in ASan and KASan. 1378 if (!LangOpts.Sanitize.hasOneOf( 1379 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1380 return false; 1381 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1382 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1383 return true; 1384 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1385 return true; 1386 // Check global type. 1387 if (!Ty.isNull()) { 1388 // Drill down the array types: if global variable of a fixed type is 1389 // blacklisted, we also don't instrument arrays of them. 1390 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1391 Ty = AT->getElementType(); 1392 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1393 // We allow to blacklist only record types (classes, structs etc.) 1394 if (Ty->isRecordType()) { 1395 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1396 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1397 return true; 1398 } 1399 } 1400 return false; 1401 } 1402 1403 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1404 // Never defer when EmitAllDecls is specified. 1405 if (LangOpts.EmitAllDecls) 1406 return true; 1407 1408 return getContext().DeclMustBeEmitted(Global); 1409 } 1410 1411 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1412 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1413 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1414 // Implicit template instantiations may change linkage if they are later 1415 // explicitly instantiated, so they should not be emitted eagerly. 1416 return false; 1417 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1418 // codegen for global variables, because they may be marked as threadprivate. 1419 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1420 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1421 return false; 1422 1423 return true; 1424 } 1425 1426 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1427 const CXXUuidofExpr* E) { 1428 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1429 // well-formed. 1430 StringRef Uuid = E->getUuidAsStringRef(Context); 1431 std::string Name = "_GUID_" + Uuid.lower(); 1432 std::replace(Name.begin(), Name.end(), '-', '_'); 1433 1434 // Contains a 32-bit field. 1435 CharUnits Alignment = CharUnits::fromQuantity(4); 1436 1437 // Look for an existing global. 1438 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1439 return ConstantAddress(GV, Alignment); 1440 1441 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1442 assert(Init && "failed to initialize as constant"); 1443 1444 auto *GV = new llvm::GlobalVariable( 1445 getModule(), Init->getType(), 1446 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1447 if (supportsCOMDAT()) 1448 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1449 return ConstantAddress(GV, Alignment); 1450 } 1451 1452 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1453 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1454 assert(AA && "No alias?"); 1455 1456 CharUnits Alignment = getContext().getDeclAlign(VD); 1457 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1458 1459 // See if there is already something with the target's name in the module. 1460 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1461 if (Entry) { 1462 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1463 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1464 return ConstantAddress(Ptr, Alignment); 1465 } 1466 1467 llvm::Constant *Aliasee; 1468 if (isa<llvm::FunctionType>(DeclTy)) 1469 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1470 GlobalDecl(cast<FunctionDecl>(VD)), 1471 /*ForVTable=*/false); 1472 else 1473 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1474 llvm::PointerType::getUnqual(DeclTy), 1475 nullptr); 1476 1477 auto *F = cast<llvm::GlobalValue>(Aliasee); 1478 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1479 WeakRefReferences.insert(F); 1480 1481 return ConstantAddress(Aliasee, Alignment); 1482 } 1483 1484 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1485 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1486 1487 // Weak references don't produce any output by themselves. 1488 if (Global->hasAttr<WeakRefAttr>()) 1489 return; 1490 1491 // If this is an alias definition (which otherwise looks like a declaration) 1492 // emit it now. 1493 if (Global->hasAttr<AliasAttr>()) 1494 return EmitAliasDefinition(GD); 1495 1496 // If this is CUDA, be selective about which declarations we emit. 1497 if (LangOpts.CUDA) { 1498 if (LangOpts.CUDAIsDevice) { 1499 if (!Global->hasAttr<CUDADeviceAttr>() && 1500 !Global->hasAttr<CUDAGlobalAttr>() && 1501 !Global->hasAttr<CUDAConstantAttr>() && 1502 !Global->hasAttr<CUDASharedAttr>()) 1503 return; 1504 } else { 1505 if (!Global->hasAttr<CUDAHostAttr>() && ( 1506 Global->hasAttr<CUDADeviceAttr>() || 1507 Global->hasAttr<CUDAConstantAttr>() || 1508 Global->hasAttr<CUDASharedAttr>())) 1509 return; 1510 } 1511 } 1512 1513 // Ignore declarations, they will be emitted on their first use. 1514 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1515 // Forward declarations are emitted lazily on first use. 1516 if (!FD->doesThisDeclarationHaveABody()) { 1517 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1518 return; 1519 1520 StringRef MangledName = getMangledName(GD); 1521 1522 // Compute the function info and LLVM type. 1523 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1524 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1525 1526 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1527 /*DontDefer=*/false); 1528 return; 1529 } 1530 } else { 1531 const auto *VD = cast<VarDecl>(Global); 1532 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1533 1534 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1535 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1536 return; 1537 } 1538 1539 // Defer code generation to first use when possible, e.g. if this is an inline 1540 // function. If the global must always be emitted, do it eagerly if possible 1541 // to benefit from cache locality. 1542 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1543 // Emit the definition if it can't be deferred. 1544 EmitGlobalDefinition(GD); 1545 return; 1546 } 1547 1548 // If we're deferring emission of a C++ variable with an 1549 // initializer, remember the order in which it appeared in the file. 1550 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1551 cast<VarDecl>(Global)->hasInit()) { 1552 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1553 CXXGlobalInits.push_back(nullptr); 1554 } 1555 1556 StringRef MangledName = getMangledName(GD); 1557 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1558 // The value has already been used and should therefore be emitted. 1559 addDeferredDeclToEmit(GV, GD); 1560 } else if (MustBeEmitted(Global)) { 1561 // The value must be emitted, but cannot be emitted eagerly. 1562 assert(!MayBeEmittedEagerly(Global)); 1563 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1564 } else { 1565 // Otherwise, remember that we saw a deferred decl with this name. The 1566 // first use of the mangled name will cause it to move into 1567 // DeferredDeclsToEmit. 1568 DeferredDecls[MangledName] = GD; 1569 } 1570 } 1571 1572 namespace { 1573 struct FunctionIsDirectlyRecursive : 1574 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1575 const StringRef Name; 1576 const Builtin::Context &BI; 1577 bool Result; 1578 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1579 Name(N), BI(C), Result(false) { 1580 } 1581 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1582 1583 bool TraverseCallExpr(CallExpr *E) { 1584 const FunctionDecl *FD = E->getDirectCallee(); 1585 if (!FD) 1586 return true; 1587 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1588 if (Attr && Name == Attr->getLabel()) { 1589 Result = true; 1590 return false; 1591 } 1592 unsigned BuiltinID = FD->getBuiltinID(); 1593 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1594 return true; 1595 StringRef BuiltinName = BI.getName(BuiltinID); 1596 if (BuiltinName.startswith("__builtin_") && 1597 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1598 Result = true; 1599 return false; 1600 } 1601 return true; 1602 } 1603 }; 1604 1605 struct DLLImportFunctionVisitor 1606 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1607 bool SafeToInline = true; 1608 1609 bool VisitVarDecl(VarDecl *VD) { 1610 // A thread-local variable cannot be imported. 1611 SafeToInline = !VD->getTLSKind(); 1612 return SafeToInline; 1613 } 1614 1615 // Make sure we're not referencing non-imported vars or functions. 1616 bool VisitDeclRefExpr(DeclRefExpr *E) { 1617 ValueDecl *VD = E->getDecl(); 1618 if (isa<FunctionDecl>(VD)) 1619 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1620 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1621 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1622 return SafeToInline; 1623 } 1624 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1625 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1626 return SafeToInline; 1627 } 1628 bool VisitCXXNewExpr(CXXNewExpr *E) { 1629 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1630 return SafeToInline; 1631 } 1632 }; 1633 } 1634 1635 // isTriviallyRecursive - Check if this function calls another 1636 // decl that, because of the asm attribute or the other decl being a builtin, 1637 // ends up pointing to itself. 1638 bool 1639 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1640 StringRef Name; 1641 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1642 // asm labels are a special kind of mangling we have to support. 1643 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1644 if (!Attr) 1645 return false; 1646 Name = Attr->getLabel(); 1647 } else { 1648 Name = FD->getName(); 1649 } 1650 1651 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1652 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1653 return Walker.Result; 1654 } 1655 1656 bool 1657 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1658 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1659 return true; 1660 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1661 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1662 return false; 1663 1664 if (F->hasAttr<DLLImportAttr>()) { 1665 // Check whether it would be safe to inline this dllimport function. 1666 DLLImportFunctionVisitor Visitor; 1667 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1668 if (!Visitor.SafeToInline) 1669 return false; 1670 } 1671 1672 // PR9614. Avoid cases where the source code is lying to us. An available 1673 // externally function should have an equivalent function somewhere else, 1674 // but a function that calls itself is clearly not equivalent to the real 1675 // implementation. 1676 // This happens in glibc's btowc and in some configure checks. 1677 return !isTriviallyRecursive(F); 1678 } 1679 1680 /// If the type for the method's class was generated by 1681 /// CGDebugInfo::createContextChain(), the cache contains only a 1682 /// limited DIType without any declarations. Since EmitFunctionStart() 1683 /// needs to find the canonical declaration for each method, we need 1684 /// to construct the complete type prior to emitting the method. 1685 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1686 if (!D->isInstance()) 1687 return; 1688 1689 if (CGDebugInfo *DI = getModuleDebugInfo()) 1690 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1691 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1692 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1693 } 1694 } 1695 1696 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1697 const auto *D = cast<ValueDecl>(GD.getDecl()); 1698 1699 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1700 Context.getSourceManager(), 1701 "Generating code for declaration"); 1702 1703 if (isa<FunctionDecl>(D)) { 1704 // At -O0, don't generate IR for functions with available_externally 1705 // linkage. 1706 if (!shouldEmitFunction(GD)) 1707 return; 1708 1709 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1710 CompleteDIClassType(Method); 1711 // Make sure to emit the definition(s) before we emit the thunks. 1712 // This is necessary for the generation of certain thunks. 1713 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1714 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1715 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1716 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1717 else 1718 EmitGlobalFunctionDefinition(GD, GV); 1719 1720 if (Method->isVirtual()) 1721 getVTables().EmitThunks(GD); 1722 1723 return; 1724 } 1725 1726 return EmitGlobalFunctionDefinition(GD, GV); 1727 } 1728 1729 if (const auto *VD = dyn_cast<VarDecl>(D)) 1730 return EmitGlobalVarDefinition(VD); 1731 1732 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1733 } 1734 1735 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1736 llvm::Function *NewFn); 1737 1738 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1739 /// module, create and return an llvm Function with the specified type. If there 1740 /// is something in the module with the specified name, return it potentially 1741 /// bitcasted to the right type. 1742 /// 1743 /// If D is non-null, it specifies a decl that correspond to this. This is used 1744 /// to set the attributes on the function when it is first created. 1745 llvm::Constant * 1746 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1747 llvm::Type *Ty, 1748 GlobalDecl GD, bool ForVTable, 1749 bool DontDefer, bool IsThunk, 1750 llvm::AttributeSet ExtraAttrs, 1751 bool IsForDefinition) { 1752 const Decl *D = GD.getDecl(); 1753 1754 // Lookup the entry, lazily creating it if necessary. 1755 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1756 if (Entry) { 1757 if (WeakRefReferences.erase(Entry)) { 1758 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1759 if (FD && !FD->hasAttr<WeakAttr>()) 1760 Entry->setLinkage(llvm::Function::ExternalLinkage); 1761 } 1762 1763 // Handle dropped DLL attributes. 1764 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1765 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1766 1767 // If there are two attempts to define the same mangled name, issue an 1768 // error. 1769 if (IsForDefinition && !Entry->isDeclaration()) { 1770 GlobalDecl OtherGD; 1771 // Check that GD is not yet in ExplicitDefinitions is required to make 1772 // sure that we issue an error only once. 1773 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1774 (GD.getCanonicalDecl().getDecl() != 1775 OtherGD.getCanonicalDecl().getDecl()) && 1776 DiagnosedConflictingDefinitions.insert(GD).second) { 1777 getDiags().Report(D->getLocation(), 1778 diag::err_duplicate_mangled_name); 1779 getDiags().Report(OtherGD.getDecl()->getLocation(), 1780 diag::note_previous_definition); 1781 } 1782 } 1783 1784 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1785 (Entry->getType()->getElementType() == Ty)) { 1786 return Entry; 1787 } 1788 1789 // Make sure the result is of the correct type. 1790 // (If function is requested for a definition, we always need to create a new 1791 // function, not just return a bitcast.) 1792 if (!IsForDefinition) 1793 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1794 } 1795 1796 // This function doesn't have a complete type (for example, the return 1797 // type is an incomplete struct). Use a fake type instead, and make 1798 // sure not to try to set attributes. 1799 bool IsIncompleteFunction = false; 1800 1801 llvm::FunctionType *FTy; 1802 if (isa<llvm::FunctionType>(Ty)) { 1803 FTy = cast<llvm::FunctionType>(Ty); 1804 } else { 1805 FTy = llvm::FunctionType::get(VoidTy, false); 1806 IsIncompleteFunction = true; 1807 } 1808 1809 llvm::Function *F = 1810 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1811 Entry ? StringRef() : MangledName, &getModule()); 1812 1813 // If we already created a function with the same mangled name (but different 1814 // type) before, take its name and add it to the list of functions to be 1815 // replaced with F at the end of CodeGen. 1816 // 1817 // This happens if there is a prototype for a function (e.g. "int f()") and 1818 // then a definition of a different type (e.g. "int f(int x)"). 1819 if (Entry) { 1820 F->takeName(Entry); 1821 1822 // This might be an implementation of a function without a prototype, in 1823 // which case, try to do special replacement of calls which match the new 1824 // prototype. The really key thing here is that we also potentially drop 1825 // arguments from the call site so as to make a direct call, which makes the 1826 // inliner happier and suppresses a number of optimizer warnings (!) about 1827 // dropping arguments. 1828 if (!Entry->use_empty()) { 1829 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1830 Entry->removeDeadConstantUsers(); 1831 } 1832 1833 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1834 F, Entry->getType()->getElementType()->getPointerTo()); 1835 addGlobalValReplacement(Entry, BC); 1836 } 1837 1838 assert(F->getName() == MangledName && "name was uniqued!"); 1839 if (D) 1840 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1841 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1842 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1843 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1844 llvm::AttributeSet::get(VMContext, 1845 llvm::AttributeSet::FunctionIndex, 1846 B)); 1847 } 1848 1849 if (!DontDefer) { 1850 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1851 // each other bottoming out with the base dtor. Therefore we emit non-base 1852 // dtors on usage, even if there is no dtor definition in the TU. 1853 if (D && isa<CXXDestructorDecl>(D) && 1854 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1855 GD.getDtorType())) 1856 addDeferredDeclToEmit(F, GD); 1857 1858 // This is the first use or definition of a mangled name. If there is a 1859 // deferred decl with this name, remember that we need to emit it at the end 1860 // of the file. 1861 auto DDI = DeferredDecls.find(MangledName); 1862 if (DDI != DeferredDecls.end()) { 1863 // Move the potentially referenced deferred decl to the 1864 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1865 // don't need it anymore). 1866 addDeferredDeclToEmit(F, DDI->second); 1867 DeferredDecls.erase(DDI); 1868 1869 // Otherwise, there are cases we have to worry about where we're 1870 // using a declaration for which we must emit a definition but where 1871 // we might not find a top-level definition: 1872 // - member functions defined inline in their classes 1873 // - friend functions defined inline in some class 1874 // - special member functions with implicit definitions 1875 // If we ever change our AST traversal to walk into class methods, 1876 // this will be unnecessary. 1877 // 1878 // We also don't emit a definition for a function if it's going to be an 1879 // entry in a vtable, unless it's already marked as used. 1880 } else if (getLangOpts().CPlusPlus && D) { 1881 // Look for a declaration that's lexically in a record. 1882 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1883 FD = FD->getPreviousDecl()) { 1884 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1885 if (FD->doesThisDeclarationHaveABody()) { 1886 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1887 break; 1888 } 1889 } 1890 } 1891 } 1892 } 1893 1894 // Make sure the result is of the requested type. 1895 if (!IsIncompleteFunction) { 1896 assert(F->getType()->getElementType() == Ty); 1897 return F; 1898 } 1899 1900 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1901 return llvm::ConstantExpr::getBitCast(F, PTy); 1902 } 1903 1904 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1905 /// non-null, then this function will use the specified type if it has to 1906 /// create it (this occurs when we see a definition of the function). 1907 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1908 llvm::Type *Ty, 1909 bool ForVTable, 1910 bool DontDefer, 1911 bool IsForDefinition) { 1912 // If there was no specific requested type, just convert it now. 1913 if (!Ty) 1914 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1915 1916 StringRef MangledName = getMangledName(GD); 1917 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1918 /*IsThunk=*/false, llvm::AttributeSet(), 1919 IsForDefinition); 1920 } 1921 1922 /// CreateRuntimeFunction - Create a new runtime function with the specified 1923 /// type and name. 1924 llvm::Constant * 1925 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1926 StringRef Name, 1927 llvm::AttributeSet ExtraAttrs) { 1928 llvm::Constant *C = 1929 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1930 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1931 if (auto *F = dyn_cast<llvm::Function>(C)) 1932 if (F->empty()) 1933 F->setCallingConv(getRuntimeCC()); 1934 return C; 1935 } 1936 1937 /// CreateBuiltinFunction - Create a new builtin function with the specified 1938 /// type and name. 1939 llvm::Constant * 1940 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1941 StringRef Name, 1942 llvm::AttributeSet ExtraAttrs) { 1943 llvm::Constant *C = 1944 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1945 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1946 if (auto *F = dyn_cast<llvm::Function>(C)) 1947 if (F->empty()) 1948 F->setCallingConv(getBuiltinCC()); 1949 return C; 1950 } 1951 1952 /// isTypeConstant - Determine whether an object of this type can be emitted 1953 /// as a constant. 1954 /// 1955 /// If ExcludeCtor is true, the duration when the object's constructor runs 1956 /// will not be considered. The caller will need to verify that the object is 1957 /// not written to during its construction. 1958 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1959 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1960 return false; 1961 1962 if (Context.getLangOpts().CPlusPlus) { 1963 if (const CXXRecordDecl *Record 1964 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1965 return ExcludeCtor && !Record->hasMutableFields() && 1966 Record->hasTrivialDestructor(); 1967 } 1968 1969 return true; 1970 } 1971 1972 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1973 /// create and return an llvm GlobalVariable with the specified type. If there 1974 /// is something in the module with the specified name, return it potentially 1975 /// bitcasted to the right type. 1976 /// 1977 /// If D is non-null, it specifies a decl that correspond to this. This is used 1978 /// to set the attributes on the global when it is first created. 1979 llvm::Constant * 1980 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1981 llvm::PointerType *Ty, 1982 const VarDecl *D) { 1983 // Lookup the entry, lazily creating it if necessary. 1984 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1985 if (Entry) { 1986 if (WeakRefReferences.erase(Entry)) { 1987 if (D && !D->hasAttr<WeakAttr>()) 1988 Entry->setLinkage(llvm::Function::ExternalLinkage); 1989 } 1990 1991 // Handle dropped DLL attributes. 1992 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1993 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1994 1995 if (Entry->getType() == Ty) 1996 return Entry; 1997 1998 // Make sure the result is of the correct type. 1999 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2000 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2001 2002 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2003 } 2004 2005 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2006 auto *GV = new llvm::GlobalVariable( 2007 getModule(), Ty->getElementType(), false, 2008 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2009 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2010 2011 // This is the first use or definition of a mangled name. If there is a 2012 // deferred decl with this name, remember that we need to emit it at the end 2013 // of the file. 2014 auto DDI = DeferredDecls.find(MangledName); 2015 if (DDI != DeferredDecls.end()) { 2016 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2017 // list, and remove it from DeferredDecls (since we don't need it anymore). 2018 addDeferredDeclToEmit(GV, DDI->second); 2019 DeferredDecls.erase(DDI); 2020 } 2021 2022 // Handle things which are present even on external declarations. 2023 if (D) { 2024 // FIXME: This code is overly simple and should be merged with other global 2025 // handling. 2026 GV->setConstant(isTypeConstant(D->getType(), false)); 2027 2028 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2029 2030 setLinkageAndVisibilityForGV(GV, D); 2031 2032 if (D->getTLSKind()) { 2033 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2034 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2035 setTLSMode(GV, *D); 2036 } 2037 2038 // If required by the ABI, treat declarations of static data members with 2039 // inline initializers as definitions. 2040 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2041 EmitGlobalVarDefinition(D); 2042 } 2043 2044 // Handle XCore specific ABI requirements. 2045 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2046 D->getLanguageLinkage() == CLanguageLinkage && 2047 D->getType().isConstant(Context) && 2048 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2049 GV->setSection(".cp.rodata"); 2050 } 2051 2052 if (AddrSpace != Ty->getAddressSpace()) 2053 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2054 2055 return GV; 2056 } 2057 2058 llvm::Constant * 2059 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2060 bool IsForDefinition) { 2061 if (isa<CXXConstructorDecl>(GD.getDecl())) 2062 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2063 getFromCtorType(GD.getCtorType()), 2064 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2065 /*DontDefer=*/false, IsForDefinition); 2066 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2067 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2068 getFromDtorType(GD.getDtorType()), 2069 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2070 /*DontDefer=*/false, IsForDefinition); 2071 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2072 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2073 cast<CXXMethodDecl>(GD.getDecl())); 2074 auto Ty = getTypes().GetFunctionType(*FInfo); 2075 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2076 IsForDefinition); 2077 } else if (isa<FunctionDecl>(GD.getDecl())) { 2078 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2079 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2080 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2081 IsForDefinition); 2082 } else 2083 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 2084 } 2085 2086 llvm::GlobalVariable * 2087 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2088 llvm::Type *Ty, 2089 llvm::GlobalValue::LinkageTypes Linkage) { 2090 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2091 llvm::GlobalVariable *OldGV = nullptr; 2092 2093 if (GV) { 2094 // Check if the variable has the right type. 2095 if (GV->getType()->getElementType() == Ty) 2096 return GV; 2097 2098 // Because C++ name mangling, the only way we can end up with an already 2099 // existing global with the same name is if it has been declared extern "C". 2100 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2101 OldGV = GV; 2102 } 2103 2104 // Create a new variable. 2105 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2106 Linkage, nullptr, Name); 2107 2108 if (OldGV) { 2109 // Replace occurrences of the old variable if needed. 2110 GV->takeName(OldGV); 2111 2112 if (!OldGV->use_empty()) { 2113 llvm::Constant *NewPtrForOldDecl = 2114 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2115 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2116 } 2117 2118 OldGV->eraseFromParent(); 2119 } 2120 2121 if (supportsCOMDAT() && GV->isWeakForLinker() && 2122 !GV->hasAvailableExternallyLinkage()) 2123 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2124 2125 return GV; 2126 } 2127 2128 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2129 /// given global variable. If Ty is non-null and if the global doesn't exist, 2130 /// then it will be created with the specified type instead of whatever the 2131 /// normal requested type would be. 2132 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2133 llvm::Type *Ty) { 2134 assert(D->hasGlobalStorage() && "Not a global variable"); 2135 QualType ASTTy = D->getType(); 2136 if (!Ty) 2137 Ty = getTypes().ConvertTypeForMem(ASTTy); 2138 2139 llvm::PointerType *PTy = 2140 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2141 2142 StringRef MangledName = getMangledName(D); 2143 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2144 } 2145 2146 /// CreateRuntimeVariable - Create a new runtime global variable with the 2147 /// specified type and name. 2148 llvm::Constant * 2149 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2150 StringRef Name) { 2151 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2152 } 2153 2154 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2155 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2156 2157 if (!MustBeEmitted(D)) { 2158 // If we have not seen a reference to this variable yet, place it 2159 // into the deferred declarations table to be emitted if needed 2160 // later. 2161 StringRef MangledName = getMangledName(D); 2162 if (!GetGlobalValue(MangledName)) { 2163 DeferredDecls[MangledName] = D; 2164 return; 2165 } 2166 } 2167 2168 // The tentative definition is the only definition. 2169 EmitGlobalVarDefinition(D); 2170 } 2171 2172 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2173 return Context.toCharUnitsFromBits( 2174 getDataLayout().getTypeStoreSizeInBits(Ty)); 2175 } 2176 2177 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2178 unsigned AddrSpace) { 2179 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2180 if (D->hasAttr<CUDAConstantAttr>()) 2181 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2182 else if (D->hasAttr<CUDASharedAttr>()) 2183 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2184 else 2185 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2186 } 2187 2188 return AddrSpace; 2189 } 2190 2191 template<typename SomeDecl> 2192 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2193 llvm::GlobalValue *GV) { 2194 if (!getLangOpts().CPlusPlus) 2195 return; 2196 2197 // Must have 'used' attribute, or else inline assembly can't rely on 2198 // the name existing. 2199 if (!D->template hasAttr<UsedAttr>()) 2200 return; 2201 2202 // Must have internal linkage and an ordinary name. 2203 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2204 return; 2205 2206 // Must be in an extern "C" context. Entities declared directly within 2207 // a record are not extern "C" even if the record is in such a context. 2208 const SomeDecl *First = D->getFirstDecl(); 2209 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2210 return; 2211 2212 // OK, this is an internal linkage entity inside an extern "C" linkage 2213 // specification. Make a note of that so we can give it the "expected" 2214 // mangled name if nothing else is using that name. 2215 std::pair<StaticExternCMap::iterator, bool> R = 2216 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2217 2218 // If we have multiple internal linkage entities with the same name 2219 // in extern "C" regions, none of them gets that name. 2220 if (!R.second) 2221 R.first->second = nullptr; 2222 } 2223 2224 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2225 if (!CGM.supportsCOMDAT()) 2226 return false; 2227 2228 if (D.hasAttr<SelectAnyAttr>()) 2229 return true; 2230 2231 GVALinkage Linkage; 2232 if (auto *VD = dyn_cast<VarDecl>(&D)) 2233 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2234 else 2235 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2236 2237 switch (Linkage) { 2238 case GVA_Internal: 2239 case GVA_AvailableExternally: 2240 case GVA_StrongExternal: 2241 return false; 2242 case GVA_DiscardableODR: 2243 case GVA_StrongODR: 2244 return true; 2245 } 2246 llvm_unreachable("No such linkage"); 2247 } 2248 2249 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2250 llvm::GlobalObject &GO) { 2251 if (!shouldBeInCOMDAT(*this, D)) 2252 return; 2253 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2254 } 2255 2256 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2257 llvm::Constant *Init = nullptr; 2258 QualType ASTTy = D->getType(); 2259 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2260 bool NeedsGlobalCtor = false; 2261 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2262 2263 const VarDecl *InitDecl; 2264 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2265 2266 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2267 // of their declaration." 2268 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2269 && D->hasAttr<CUDASharedAttr>()) { 2270 if (InitExpr) { 2271 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2272 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2273 Error(D->getLocation(), 2274 "__shared__ variable cannot have an initialization."); 2275 } 2276 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2277 } else if (!InitExpr) { 2278 // This is a tentative definition; tentative definitions are 2279 // implicitly initialized with { 0 }. 2280 // 2281 // Note that tentative definitions are only emitted at the end of 2282 // a translation unit, so they should never have incomplete 2283 // type. In addition, EmitTentativeDefinition makes sure that we 2284 // never attempt to emit a tentative definition if a real one 2285 // exists. A use may still exists, however, so we still may need 2286 // to do a RAUW. 2287 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2288 Init = EmitNullConstant(D->getType()); 2289 } else { 2290 initializedGlobalDecl = GlobalDecl(D); 2291 Init = EmitConstantInit(*InitDecl); 2292 2293 if (!Init) { 2294 QualType T = InitExpr->getType(); 2295 if (D->getType()->isReferenceType()) 2296 T = D->getType(); 2297 2298 if (getLangOpts().CPlusPlus) { 2299 Init = EmitNullConstant(T); 2300 NeedsGlobalCtor = true; 2301 } else { 2302 ErrorUnsupported(D, "static initializer"); 2303 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2304 } 2305 } else { 2306 // We don't need an initializer, so remove the entry for the delayed 2307 // initializer position (just in case this entry was delayed) if we 2308 // also don't need to register a destructor. 2309 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2310 DelayedCXXInitPosition.erase(D); 2311 } 2312 } 2313 2314 llvm::Type* InitType = Init->getType(); 2315 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2316 2317 // Strip off a bitcast if we got one back. 2318 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2319 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2320 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2321 // All zero index gep. 2322 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2323 Entry = CE->getOperand(0); 2324 } 2325 2326 // Entry is now either a Function or GlobalVariable. 2327 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2328 2329 // We have a definition after a declaration with the wrong type. 2330 // We must make a new GlobalVariable* and update everything that used OldGV 2331 // (a declaration or tentative definition) with the new GlobalVariable* 2332 // (which will be a definition). 2333 // 2334 // This happens if there is a prototype for a global (e.g. 2335 // "extern int x[];") and then a definition of a different type (e.g. 2336 // "int x[10];"). This also happens when an initializer has a different type 2337 // from the type of the global (this happens with unions). 2338 if (!GV || 2339 GV->getType()->getElementType() != InitType || 2340 GV->getType()->getAddressSpace() != 2341 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2342 2343 // Move the old entry aside so that we'll create a new one. 2344 Entry->setName(StringRef()); 2345 2346 // Make a new global with the correct type, this is now guaranteed to work. 2347 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2348 2349 // Replace all uses of the old global with the new global 2350 llvm::Constant *NewPtrForOldDecl = 2351 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2352 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2353 2354 // Erase the old global, since it is no longer used. 2355 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2356 } 2357 2358 MaybeHandleStaticInExternC(D, GV); 2359 2360 if (D->hasAttr<AnnotateAttr>()) 2361 AddGlobalAnnotations(D, GV); 2362 2363 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2364 // the device. [...]" 2365 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2366 // __device__, declares a variable that: [...] 2367 // Is accessible from all the threads within the grid and from the host 2368 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2369 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2370 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2371 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2372 GV->setExternallyInitialized(true); 2373 } 2374 GV->setInitializer(Init); 2375 2376 // If it is safe to mark the global 'constant', do so now. 2377 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2378 isTypeConstant(D->getType(), true)); 2379 2380 // If it is in a read-only section, mark it 'constant'. 2381 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2382 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2383 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2384 GV->setConstant(true); 2385 } 2386 2387 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2388 2389 // Set the llvm linkage type as appropriate. 2390 llvm::GlobalValue::LinkageTypes Linkage = 2391 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2392 2393 // On Darwin, the backing variable for a C++11 thread_local variable always 2394 // has internal linkage; all accesses should just be calls to the 2395 // Itanium-specified entry point, which has the normal linkage of the 2396 // variable. 2397 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2398 Context.getTargetInfo().getTriple().isMacOSX()) 2399 Linkage = llvm::GlobalValue::InternalLinkage; 2400 2401 GV->setLinkage(Linkage); 2402 if (D->hasAttr<DLLImportAttr>()) 2403 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2404 else if (D->hasAttr<DLLExportAttr>()) 2405 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2406 else 2407 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2408 2409 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2410 // common vars aren't constant even if declared const. 2411 GV->setConstant(false); 2412 2413 setNonAliasAttributes(D, GV); 2414 2415 if (D->getTLSKind() && !GV->isThreadLocal()) { 2416 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2417 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2418 setTLSMode(GV, *D); 2419 } 2420 2421 maybeSetTrivialComdat(*D, *GV); 2422 2423 // Emit the initializer function if necessary. 2424 if (NeedsGlobalCtor || NeedsGlobalDtor) 2425 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2426 2427 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2428 2429 // Emit global variable debug information. 2430 if (CGDebugInfo *DI = getModuleDebugInfo()) 2431 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2432 DI->EmitGlobalVariable(GV, D); 2433 } 2434 2435 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2436 CodeGenModule &CGM, const VarDecl *D, 2437 bool NoCommon) { 2438 // Don't give variables common linkage if -fno-common was specified unless it 2439 // was overridden by a NoCommon attribute. 2440 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2441 return true; 2442 2443 // C11 6.9.2/2: 2444 // A declaration of an identifier for an object that has file scope without 2445 // an initializer, and without a storage-class specifier or with the 2446 // storage-class specifier static, constitutes a tentative definition. 2447 if (D->getInit() || D->hasExternalStorage()) 2448 return true; 2449 2450 // A variable cannot be both common and exist in a section. 2451 if (D->hasAttr<SectionAttr>()) 2452 return true; 2453 2454 // Thread local vars aren't considered common linkage. 2455 if (D->getTLSKind()) 2456 return true; 2457 2458 // Tentative definitions marked with WeakImportAttr are true definitions. 2459 if (D->hasAttr<WeakImportAttr>()) 2460 return true; 2461 2462 // A variable cannot be both common and exist in a comdat. 2463 if (shouldBeInCOMDAT(CGM, *D)) 2464 return true; 2465 2466 // Declarations with a required alignment do not have common linakge in MSVC 2467 // mode. 2468 if (Context.getLangOpts().MSVCCompat) { 2469 if (D->hasAttr<AlignedAttr>()) 2470 return true; 2471 QualType VarType = D->getType(); 2472 if (Context.isAlignmentRequired(VarType)) 2473 return true; 2474 2475 if (const auto *RT = VarType->getAs<RecordType>()) { 2476 const RecordDecl *RD = RT->getDecl(); 2477 for (const FieldDecl *FD : RD->fields()) { 2478 if (FD->isBitField()) 2479 continue; 2480 if (FD->hasAttr<AlignedAttr>()) 2481 return true; 2482 if (Context.isAlignmentRequired(FD->getType())) 2483 return true; 2484 } 2485 } 2486 } 2487 2488 return false; 2489 } 2490 2491 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2492 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2493 if (Linkage == GVA_Internal) 2494 return llvm::Function::InternalLinkage; 2495 2496 if (D->hasAttr<WeakAttr>()) { 2497 if (IsConstantVariable) 2498 return llvm::GlobalVariable::WeakODRLinkage; 2499 else 2500 return llvm::GlobalVariable::WeakAnyLinkage; 2501 } 2502 2503 // We are guaranteed to have a strong definition somewhere else, 2504 // so we can use available_externally linkage. 2505 if (Linkage == GVA_AvailableExternally) 2506 return llvm::Function::AvailableExternallyLinkage; 2507 2508 // Note that Apple's kernel linker doesn't support symbol 2509 // coalescing, so we need to avoid linkonce and weak linkages there. 2510 // Normally, this means we just map to internal, but for explicit 2511 // instantiations we'll map to external. 2512 2513 // In C++, the compiler has to emit a definition in every translation unit 2514 // that references the function. We should use linkonce_odr because 2515 // a) if all references in this translation unit are optimized away, we 2516 // don't need to codegen it. b) if the function persists, it needs to be 2517 // merged with other definitions. c) C++ has the ODR, so we know the 2518 // definition is dependable. 2519 if (Linkage == GVA_DiscardableODR) 2520 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2521 : llvm::Function::InternalLinkage; 2522 2523 // An explicit instantiation of a template has weak linkage, since 2524 // explicit instantiations can occur in multiple translation units 2525 // and must all be equivalent. However, we are not allowed to 2526 // throw away these explicit instantiations. 2527 if (Linkage == GVA_StrongODR) 2528 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2529 : llvm::Function::ExternalLinkage; 2530 2531 // C++ doesn't have tentative definitions and thus cannot have common 2532 // linkage. 2533 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2534 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2535 CodeGenOpts.NoCommon)) 2536 return llvm::GlobalVariable::CommonLinkage; 2537 2538 // selectany symbols are externally visible, so use weak instead of 2539 // linkonce. MSVC optimizes away references to const selectany globals, so 2540 // all definitions should be the same and ODR linkage should be used. 2541 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2542 if (D->hasAttr<SelectAnyAttr>()) 2543 return llvm::GlobalVariable::WeakODRLinkage; 2544 2545 // Otherwise, we have strong external linkage. 2546 assert(Linkage == GVA_StrongExternal); 2547 return llvm::GlobalVariable::ExternalLinkage; 2548 } 2549 2550 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2551 const VarDecl *VD, bool IsConstant) { 2552 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2553 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2554 } 2555 2556 /// Replace the uses of a function that was declared with a non-proto type. 2557 /// We want to silently drop extra arguments from call sites 2558 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2559 llvm::Function *newFn) { 2560 // Fast path. 2561 if (old->use_empty()) return; 2562 2563 llvm::Type *newRetTy = newFn->getReturnType(); 2564 SmallVector<llvm::Value*, 4> newArgs; 2565 2566 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2567 ui != ue; ) { 2568 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2569 llvm::User *user = use->getUser(); 2570 2571 // Recognize and replace uses of bitcasts. Most calls to 2572 // unprototyped functions will use bitcasts. 2573 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2574 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2575 replaceUsesOfNonProtoConstant(bitcast, newFn); 2576 continue; 2577 } 2578 2579 // Recognize calls to the function. 2580 llvm::CallSite callSite(user); 2581 if (!callSite) continue; 2582 if (!callSite.isCallee(&*use)) continue; 2583 2584 // If the return types don't match exactly, then we can't 2585 // transform this call unless it's dead. 2586 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2587 continue; 2588 2589 // Get the call site's attribute list. 2590 SmallVector<llvm::AttributeSet, 8> newAttrs; 2591 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2592 2593 // Collect any return attributes from the call. 2594 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2595 newAttrs.push_back( 2596 llvm::AttributeSet::get(newFn->getContext(), 2597 oldAttrs.getRetAttributes())); 2598 2599 // If the function was passed too few arguments, don't transform. 2600 unsigned newNumArgs = newFn->arg_size(); 2601 if (callSite.arg_size() < newNumArgs) continue; 2602 2603 // If extra arguments were passed, we silently drop them. 2604 // If any of the types mismatch, we don't transform. 2605 unsigned argNo = 0; 2606 bool dontTransform = false; 2607 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2608 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2609 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2610 dontTransform = true; 2611 break; 2612 } 2613 2614 // Add any parameter attributes. 2615 if (oldAttrs.hasAttributes(argNo + 1)) 2616 newAttrs. 2617 push_back(llvm:: 2618 AttributeSet::get(newFn->getContext(), 2619 oldAttrs.getParamAttributes(argNo + 1))); 2620 } 2621 if (dontTransform) 2622 continue; 2623 2624 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2625 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2626 oldAttrs.getFnAttributes())); 2627 2628 // Okay, we can transform this. Create the new call instruction and copy 2629 // over the required information. 2630 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2631 2632 llvm::CallSite newCall; 2633 if (callSite.isCall()) { 2634 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2635 callSite.getInstruction()); 2636 } else { 2637 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2638 newCall = llvm::InvokeInst::Create(newFn, 2639 oldInvoke->getNormalDest(), 2640 oldInvoke->getUnwindDest(), 2641 newArgs, "", 2642 callSite.getInstruction()); 2643 } 2644 newArgs.clear(); // for the next iteration 2645 2646 if (!newCall->getType()->isVoidTy()) 2647 newCall->takeName(callSite.getInstruction()); 2648 newCall.setAttributes( 2649 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2650 newCall.setCallingConv(callSite.getCallingConv()); 2651 2652 // Finally, remove the old call, replacing any uses with the new one. 2653 if (!callSite->use_empty()) 2654 callSite->replaceAllUsesWith(newCall.getInstruction()); 2655 2656 // Copy debug location attached to CI. 2657 if (callSite->getDebugLoc()) 2658 newCall->setDebugLoc(callSite->getDebugLoc()); 2659 callSite->eraseFromParent(); 2660 } 2661 } 2662 2663 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2664 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2665 /// existing call uses of the old function in the module, this adjusts them to 2666 /// call the new function directly. 2667 /// 2668 /// This is not just a cleanup: the always_inline pass requires direct calls to 2669 /// functions to be able to inline them. If there is a bitcast in the way, it 2670 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2671 /// run at -O0. 2672 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2673 llvm::Function *NewFn) { 2674 // If we're redefining a global as a function, don't transform it. 2675 if (!isa<llvm::Function>(Old)) return; 2676 2677 replaceUsesOfNonProtoConstant(Old, NewFn); 2678 } 2679 2680 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2681 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2682 // If we have a definition, this might be a deferred decl. If the 2683 // instantiation is explicit, make sure we emit it at the end. 2684 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2685 GetAddrOfGlobalVar(VD); 2686 2687 EmitTopLevelDecl(VD); 2688 } 2689 2690 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2691 llvm::GlobalValue *GV) { 2692 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2693 2694 // Compute the function info and LLVM type. 2695 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2696 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2697 2698 // Get or create the prototype for the function. 2699 if (!GV || (GV->getType()->getElementType() != Ty)) 2700 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2701 /*DontDefer=*/true, 2702 /*IsForDefinition=*/true)); 2703 2704 // Already emitted. 2705 if (!GV->isDeclaration()) 2706 return; 2707 2708 // We need to set linkage and visibility on the function before 2709 // generating code for it because various parts of IR generation 2710 // want to propagate this information down (e.g. to local static 2711 // declarations). 2712 auto *Fn = cast<llvm::Function>(GV); 2713 setFunctionLinkage(GD, Fn); 2714 setFunctionDLLStorageClass(GD, Fn); 2715 2716 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2717 setGlobalVisibility(Fn, D); 2718 2719 MaybeHandleStaticInExternC(D, Fn); 2720 2721 maybeSetTrivialComdat(*D, *Fn); 2722 2723 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2724 2725 setFunctionDefinitionAttributes(D, Fn); 2726 SetLLVMFunctionAttributesForDefinition(D, Fn); 2727 2728 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2729 AddGlobalCtor(Fn, CA->getPriority()); 2730 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2731 AddGlobalDtor(Fn, DA->getPriority()); 2732 if (D->hasAttr<AnnotateAttr>()) 2733 AddGlobalAnnotations(D, Fn); 2734 } 2735 2736 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2737 const auto *D = cast<ValueDecl>(GD.getDecl()); 2738 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2739 assert(AA && "Not an alias?"); 2740 2741 StringRef MangledName = getMangledName(GD); 2742 2743 if (AA->getAliasee() == MangledName) { 2744 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2745 return; 2746 } 2747 2748 // If there is a definition in the module, then it wins over the alias. 2749 // This is dubious, but allow it to be safe. Just ignore the alias. 2750 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2751 if (Entry && !Entry->isDeclaration()) 2752 return; 2753 2754 Aliases.push_back(GD); 2755 2756 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2757 2758 // Create a reference to the named value. This ensures that it is emitted 2759 // if a deferred decl. 2760 llvm::Constant *Aliasee; 2761 if (isa<llvm::FunctionType>(DeclTy)) 2762 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2763 /*ForVTable=*/false); 2764 else 2765 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2766 llvm::PointerType::getUnqual(DeclTy), 2767 /*D=*/nullptr); 2768 2769 // Create the new alias itself, but don't set a name yet. 2770 auto *GA = llvm::GlobalAlias::create( 2771 cast<llvm::PointerType>(Aliasee->getType()), 2772 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2773 2774 if (Entry) { 2775 if (GA->getAliasee() == Entry) { 2776 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2777 return; 2778 } 2779 2780 assert(Entry->isDeclaration()); 2781 2782 // If there is a declaration in the module, then we had an extern followed 2783 // by the alias, as in: 2784 // extern int test6(); 2785 // ... 2786 // int test6() __attribute__((alias("test7"))); 2787 // 2788 // Remove it and replace uses of it with the alias. 2789 GA->takeName(Entry); 2790 2791 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2792 Entry->getType())); 2793 Entry->eraseFromParent(); 2794 } else { 2795 GA->setName(MangledName); 2796 } 2797 2798 // Set attributes which are particular to an alias; this is a 2799 // specialization of the attributes which may be set on a global 2800 // variable/function. 2801 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2802 D->isWeakImported()) { 2803 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2804 } 2805 2806 if (const auto *VD = dyn_cast<VarDecl>(D)) 2807 if (VD->getTLSKind()) 2808 setTLSMode(GA, *VD); 2809 2810 setAliasAttributes(D, GA); 2811 } 2812 2813 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2814 ArrayRef<llvm::Type*> Tys) { 2815 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2816 Tys); 2817 } 2818 2819 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2820 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2821 const StringLiteral *Literal, bool TargetIsLSB, 2822 bool &IsUTF16, unsigned &StringLength) { 2823 StringRef String = Literal->getString(); 2824 unsigned NumBytes = String.size(); 2825 2826 // Check for simple case. 2827 if (!Literal->containsNonAsciiOrNull()) { 2828 StringLength = NumBytes; 2829 return *Map.insert(std::make_pair(String, nullptr)).first; 2830 } 2831 2832 // Otherwise, convert the UTF8 literals into a string of shorts. 2833 IsUTF16 = true; 2834 2835 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2836 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2837 UTF16 *ToPtr = &ToBuf[0]; 2838 2839 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2840 &ToPtr, ToPtr + NumBytes, 2841 strictConversion); 2842 2843 // ConvertUTF8toUTF16 returns the length in ToPtr. 2844 StringLength = ToPtr - &ToBuf[0]; 2845 2846 // Add an explicit null. 2847 *ToPtr = 0; 2848 return *Map.insert(std::make_pair( 2849 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2850 (StringLength + 1) * 2), 2851 nullptr)).first; 2852 } 2853 2854 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2855 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2856 const StringLiteral *Literal, unsigned &StringLength) { 2857 StringRef String = Literal->getString(); 2858 StringLength = String.size(); 2859 return *Map.insert(std::make_pair(String, nullptr)).first; 2860 } 2861 2862 ConstantAddress 2863 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2864 unsigned StringLength = 0; 2865 bool isUTF16 = false; 2866 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2867 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2868 getDataLayout().isLittleEndian(), isUTF16, 2869 StringLength); 2870 2871 if (auto *C = Entry.second) 2872 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2873 2874 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2875 llvm::Constant *Zeros[] = { Zero, Zero }; 2876 llvm::Value *V; 2877 2878 // If we don't already have it, get __CFConstantStringClassReference. 2879 if (!CFConstantStringClassRef) { 2880 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2881 Ty = llvm::ArrayType::get(Ty, 0); 2882 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2883 "__CFConstantStringClassReference"); 2884 // Decay array -> ptr 2885 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2886 CFConstantStringClassRef = V; 2887 } 2888 else 2889 V = CFConstantStringClassRef; 2890 2891 QualType CFTy = getContext().getCFConstantStringType(); 2892 2893 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2894 2895 llvm::Constant *Fields[4]; 2896 2897 // Class pointer. 2898 Fields[0] = cast<llvm::ConstantExpr>(V); 2899 2900 // Flags. 2901 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2902 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2903 llvm::ConstantInt::get(Ty, 0x07C8); 2904 2905 // String pointer. 2906 llvm::Constant *C = nullptr; 2907 if (isUTF16) { 2908 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2909 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2910 Entry.first().size() / 2); 2911 C = llvm::ConstantDataArray::get(VMContext, Arr); 2912 } else { 2913 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2914 } 2915 2916 // Note: -fwritable-strings doesn't make the backing store strings of 2917 // CFStrings writable. (See <rdar://problem/10657500>) 2918 auto *GV = 2919 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2920 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2921 GV->setUnnamedAddr(true); 2922 // Don't enforce the target's minimum global alignment, since the only use 2923 // of the string is via this class initializer. 2924 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2925 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2926 // that changes the section it ends in, which surprises ld64. 2927 if (isUTF16) { 2928 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2929 GV->setAlignment(Align.getQuantity()); 2930 GV->setSection("__TEXT,__ustring"); 2931 } else { 2932 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2933 GV->setAlignment(Align.getQuantity()); 2934 GV->setSection("__TEXT,__cstring,cstring_literals"); 2935 } 2936 2937 // String. 2938 Fields[2] = 2939 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2940 2941 if (isUTF16) 2942 // Cast the UTF16 string to the correct type. 2943 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2944 2945 // String length. 2946 Ty = getTypes().ConvertType(getContext().LongTy); 2947 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2948 2949 CharUnits Alignment = getPointerAlign(); 2950 2951 // The struct. 2952 C = llvm::ConstantStruct::get(STy, Fields); 2953 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2954 llvm::GlobalVariable::PrivateLinkage, C, 2955 "_unnamed_cfstring_"); 2956 GV->setSection("__DATA,__cfstring"); 2957 GV->setAlignment(Alignment.getQuantity()); 2958 Entry.second = GV; 2959 2960 return ConstantAddress(GV, Alignment); 2961 } 2962 2963 ConstantAddress 2964 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2965 unsigned StringLength = 0; 2966 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2967 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2968 2969 if (auto *C = Entry.second) 2970 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2971 2972 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2973 llvm::Constant *Zeros[] = { Zero, Zero }; 2974 llvm::Value *V; 2975 // If we don't already have it, get _NSConstantStringClassReference. 2976 if (!ConstantStringClassRef) { 2977 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2978 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2979 llvm::Constant *GV; 2980 if (LangOpts.ObjCRuntime.isNonFragile()) { 2981 std::string str = 2982 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2983 : "OBJC_CLASS_$_" + StringClass; 2984 GV = getObjCRuntime().GetClassGlobal(str); 2985 // Make sure the result is of the correct type. 2986 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2987 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2988 ConstantStringClassRef = V; 2989 } else { 2990 std::string str = 2991 StringClass.empty() ? "_NSConstantStringClassReference" 2992 : "_" + StringClass + "ClassReference"; 2993 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2994 GV = CreateRuntimeVariable(PTy, str); 2995 // Decay array -> ptr 2996 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2997 ConstantStringClassRef = V; 2998 } 2999 } else 3000 V = ConstantStringClassRef; 3001 3002 if (!NSConstantStringType) { 3003 // Construct the type for a constant NSString. 3004 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3005 D->startDefinition(); 3006 3007 QualType FieldTypes[3]; 3008 3009 // const int *isa; 3010 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3011 // const char *str; 3012 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3013 // unsigned int length; 3014 FieldTypes[2] = Context.UnsignedIntTy; 3015 3016 // Create fields 3017 for (unsigned i = 0; i < 3; ++i) { 3018 FieldDecl *Field = FieldDecl::Create(Context, D, 3019 SourceLocation(), 3020 SourceLocation(), nullptr, 3021 FieldTypes[i], /*TInfo=*/nullptr, 3022 /*BitWidth=*/nullptr, 3023 /*Mutable=*/false, 3024 ICIS_NoInit); 3025 Field->setAccess(AS_public); 3026 D->addDecl(Field); 3027 } 3028 3029 D->completeDefinition(); 3030 QualType NSTy = Context.getTagDeclType(D); 3031 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3032 } 3033 3034 llvm::Constant *Fields[3]; 3035 3036 // Class pointer. 3037 Fields[0] = cast<llvm::ConstantExpr>(V); 3038 3039 // String pointer. 3040 llvm::Constant *C = 3041 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3042 3043 llvm::GlobalValue::LinkageTypes Linkage; 3044 bool isConstant; 3045 Linkage = llvm::GlobalValue::PrivateLinkage; 3046 isConstant = !LangOpts.WritableStrings; 3047 3048 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3049 Linkage, C, ".str"); 3050 GV->setUnnamedAddr(true); 3051 // Don't enforce the target's minimum global alignment, since the only use 3052 // of the string is via this class initializer. 3053 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3054 GV->setAlignment(Align.getQuantity()); 3055 Fields[1] = 3056 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3057 3058 // String length. 3059 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3060 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3061 3062 // The struct. 3063 CharUnits Alignment = getPointerAlign(); 3064 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3065 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3066 llvm::GlobalVariable::PrivateLinkage, C, 3067 "_unnamed_nsstring_"); 3068 GV->setAlignment(Alignment.getQuantity()); 3069 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3070 const char *NSStringNonFragileABISection = 3071 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3072 // FIXME. Fix section. 3073 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3074 ? NSStringNonFragileABISection 3075 : NSStringSection); 3076 Entry.second = GV; 3077 3078 return ConstantAddress(GV, Alignment); 3079 } 3080 3081 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3082 if (ObjCFastEnumerationStateType.isNull()) { 3083 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3084 D->startDefinition(); 3085 3086 QualType FieldTypes[] = { 3087 Context.UnsignedLongTy, 3088 Context.getPointerType(Context.getObjCIdType()), 3089 Context.getPointerType(Context.UnsignedLongTy), 3090 Context.getConstantArrayType(Context.UnsignedLongTy, 3091 llvm::APInt(32, 5), ArrayType::Normal, 0) 3092 }; 3093 3094 for (size_t i = 0; i < 4; ++i) { 3095 FieldDecl *Field = FieldDecl::Create(Context, 3096 D, 3097 SourceLocation(), 3098 SourceLocation(), nullptr, 3099 FieldTypes[i], /*TInfo=*/nullptr, 3100 /*BitWidth=*/nullptr, 3101 /*Mutable=*/false, 3102 ICIS_NoInit); 3103 Field->setAccess(AS_public); 3104 D->addDecl(Field); 3105 } 3106 3107 D->completeDefinition(); 3108 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3109 } 3110 3111 return ObjCFastEnumerationStateType; 3112 } 3113 3114 llvm::Constant * 3115 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3116 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3117 3118 // Don't emit it as the address of the string, emit the string data itself 3119 // as an inline array. 3120 if (E->getCharByteWidth() == 1) { 3121 SmallString<64> Str(E->getString()); 3122 3123 // Resize the string to the right size, which is indicated by its type. 3124 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3125 Str.resize(CAT->getSize().getZExtValue()); 3126 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3127 } 3128 3129 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3130 llvm::Type *ElemTy = AType->getElementType(); 3131 unsigned NumElements = AType->getNumElements(); 3132 3133 // Wide strings have either 2-byte or 4-byte elements. 3134 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3135 SmallVector<uint16_t, 32> Elements; 3136 Elements.reserve(NumElements); 3137 3138 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3139 Elements.push_back(E->getCodeUnit(i)); 3140 Elements.resize(NumElements); 3141 return llvm::ConstantDataArray::get(VMContext, Elements); 3142 } 3143 3144 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3145 SmallVector<uint32_t, 32> Elements; 3146 Elements.reserve(NumElements); 3147 3148 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3149 Elements.push_back(E->getCodeUnit(i)); 3150 Elements.resize(NumElements); 3151 return llvm::ConstantDataArray::get(VMContext, Elements); 3152 } 3153 3154 static llvm::GlobalVariable * 3155 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3156 CodeGenModule &CGM, StringRef GlobalName, 3157 CharUnits Alignment) { 3158 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3159 unsigned AddrSpace = 0; 3160 if (CGM.getLangOpts().OpenCL) 3161 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3162 3163 llvm::Module &M = CGM.getModule(); 3164 // Create a global variable for this string 3165 auto *GV = new llvm::GlobalVariable( 3166 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3167 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3168 GV->setAlignment(Alignment.getQuantity()); 3169 GV->setUnnamedAddr(true); 3170 if (GV->isWeakForLinker()) { 3171 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3172 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3173 } 3174 3175 return GV; 3176 } 3177 3178 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3179 /// constant array for the given string literal. 3180 ConstantAddress 3181 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3182 StringRef Name) { 3183 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3184 3185 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3186 llvm::GlobalVariable **Entry = nullptr; 3187 if (!LangOpts.WritableStrings) { 3188 Entry = &ConstantStringMap[C]; 3189 if (auto GV = *Entry) { 3190 if (Alignment.getQuantity() > GV->getAlignment()) 3191 GV->setAlignment(Alignment.getQuantity()); 3192 return ConstantAddress(GV, Alignment); 3193 } 3194 } 3195 3196 SmallString<256> MangledNameBuffer; 3197 StringRef GlobalVariableName; 3198 llvm::GlobalValue::LinkageTypes LT; 3199 3200 // Mangle the string literal if the ABI allows for it. However, we cannot 3201 // do this if we are compiling with ASan or -fwritable-strings because they 3202 // rely on strings having normal linkage. 3203 if (!LangOpts.WritableStrings && 3204 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3205 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3206 llvm::raw_svector_ostream Out(MangledNameBuffer); 3207 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3208 3209 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3210 GlobalVariableName = MangledNameBuffer; 3211 } else { 3212 LT = llvm::GlobalValue::PrivateLinkage; 3213 GlobalVariableName = Name; 3214 } 3215 3216 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3217 if (Entry) 3218 *Entry = GV; 3219 3220 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3221 QualType()); 3222 return ConstantAddress(GV, Alignment); 3223 } 3224 3225 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3226 /// array for the given ObjCEncodeExpr node. 3227 ConstantAddress 3228 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3229 std::string Str; 3230 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3231 3232 return GetAddrOfConstantCString(Str); 3233 } 3234 3235 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3236 /// the literal and a terminating '\0' character. 3237 /// The result has pointer to array type. 3238 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3239 const std::string &Str, const char *GlobalName) { 3240 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3241 CharUnits Alignment = 3242 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3243 3244 llvm::Constant *C = 3245 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3246 3247 // Don't share any string literals if strings aren't constant. 3248 llvm::GlobalVariable **Entry = nullptr; 3249 if (!LangOpts.WritableStrings) { 3250 Entry = &ConstantStringMap[C]; 3251 if (auto GV = *Entry) { 3252 if (Alignment.getQuantity() > GV->getAlignment()) 3253 GV->setAlignment(Alignment.getQuantity()); 3254 return ConstantAddress(GV, Alignment); 3255 } 3256 } 3257 3258 // Get the default prefix if a name wasn't specified. 3259 if (!GlobalName) 3260 GlobalName = ".str"; 3261 // Create a global variable for this. 3262 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3263 GlobalName, Alignment); 3264 if (Entry) 3265 *Entry = GV; 3266 return ConstantAddress(GV, Alignment); 3267 } 3268 3269 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3270 const MaterializeTemporaryExpr *E, const Expr *Init) { 3271 assert((E->getStorageDuration() == SD_Static || 3272 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3273 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3274 3275 // If we're not materializing a subobject of the temporary, keep the 3276 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3277 QualType MaterializedType = Init->getType(); 3278 if (Init == E->GetTemporaryExpr()) 3279 MaterializedType = E->getType(); 3280 3281 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3282 3283 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3284 return ConstantAddress(Slot, Align); 3285 3286 // FIXME: If an externally-visible declaration extends multiple temporaries, 3287 // we need to give each temporary the same name in every translation unit (and 3288 // we also need to make the temporaries externally-visible). 3289 SmallString<256> Name; 3290 llvm::raw_svector_ostream Out(Name); 3291 getCXXABI().getMangleContext().mangleReferenceTemporary( 3292 VD, E->getManglingNumber(), Out); 3293 3294 APValue *Value = nullptr; 3295 if (E->getStorageDuration() == SD_Static) { 3296 // We might have a cached constant initializer for this temporary. Note 3297 // that this might have a different value from the value computed by 3298 // evaluating the initializer if the surrounding constant expression 3299 // modifies the temporary. 3300 Value = getContext().getMaterializedTemporaryValue(E, false); 3301 if (Value && Value->isUninit()) 3302 Value = nullptr; 3303 } 3304 3305 // Try evaluating it now, it might have a constant initializer. 3306 Expr::EvalResult EvalResult; 3307 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3308 !EvalResult.hasSideEffects()) 3309 Value = &EvalResult.Val; 3310 3311 llvm::Constant *InitialValue = nullptr; 3312 bool Constant = false; 3313 llvm::Type *Type; 3314 if (Value) { 3315 // The temporary has a constant initializer, use it. 3316 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3317 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3318 Type = InitialValue->getType(); 3319 } else { 3320 // No initializer, the initialization will be provided when we 3321 // initialize the declaration which performed lifetime extension. 3322 Type = getTypes().ConvertTypeForMem(MaterializedType); 3323 } 3324 3325 // Create a global variable for this lifetime-extended temporary. 3326 llvm::GlobalValue::LinkageTypes Linkage = 3327 getLLVMLinkageVarDefinition(VD, Constant); 3328 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3329 const VarDecl *InitVD; 3330 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3331 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3332 // Temporaries defined inside a class get linkonce_odr linkage because the 3333 // class can be defined in multipe translation units. 3334 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3335 } else { 3336 // There is no need for this temporary to have external linkage if the 3337 // VarDecl has external linkage. 3338 Linkage = llvm::GlobalVariable::InternalLinkage; 3339 } 3340 } 3341 unsigned AddrSpace = GetGlobalVarAddressSpace( 3342 VD, getContext().getTargetAddressSpace(MaterializedType)); 3343 auto *GV = new llvm::GlobalVariable( 3344 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3345 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3346 AddrSpace); 3347 setGlobalVisibility(GV, VD); 3348 GV->setAlignment(Align.getQuantity()); 3349 if (supportsCOMDAT() && GV->isWeakForLinker()) 3350 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3351 if (VD->getTLSKind()) 3352 setTLSMode(GV, *VD); 3353 MaterializedGlobalTemporaryMap[E] = GV; 3354 return ConstantAddress(GV, Align); 3355 } 3356 3357 /// EmitObjCPropertyImplementations - Emit information for synthesized 3358 /// properties for an implementation. 3359 void CodeGenModule::EmitObjCPropertyImplementations(const 3360 ObjCImplementationDecl *D) { 3361 for (const auto *PID : D->property_impls()) { 3362 // Dynamic is just for type-checking. 3363 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3364 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3365 3366 // Determine which methods need to be implemented, some may have 3367 // been overridden. Note that ::isPropertyAccessor is not the method 3368 // we want, that just indicates if the decl came from a 3369 // property. What we want to know is if the method is defined in 3370 // this implementation. 3371 if (!D->getInstanceMethod(PD->getGetterName())) 3372 CodeGenFunction(*this).GenerateObjCGetter( 3373 const_cast<ObjCImplementationDecl *>(D), PID); 3374 if (!PD->isReadOnly() && 3375 !D->getInstanceMethod(PD->getSetterName())) 3376 CodeGenFunction(*this).GenerateObjCSetter( 3377 const_cast<ObjCImplementationDecl *>(D), PID); 3378 } 3379 } 3380 } 3381 3382 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3383 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3384 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3385 ivar; ivar = ivar->getNextIvar()) 3386 if (ivar->getType().isDestructedType()) 3387 return true; 3388 3389 return false; 3390 } 3391 3392 static bool AllTrivialInitializers(CodeGenModule &CGM, 3393 ObjCImplementationDecl *D) { 3394 CodeGenFunction CGF(CGM); 3395 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3396 E = D->init_end(); B != E; ++B) { 3397 CXXCtorInitializer *CtorInitExp = *B; 3398 Expr *Init = CtorInitExp->getInit(); 3399 if (!CGF.isTrivialInitializer(Init)) 3400 return false; 3401 } 3402 return true; 3403 } 3404 3405 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3406 /// for an implementation. 3407 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3408 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3409 if (needsDestructMethod(D)) { 3410 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3411 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3412 ObjCMethodDecl *DTORMethod = 3413 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3414 cxxSelector, getContext().VoidTy, nullptr, D, 3415 /*isInstance=*/true, /*isVariadic=*/false, 3416 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3417 /*isDefined=*/false, ObjCMethodDecl::Required); 3418 D->addInstanceMethod(DTORMethod); 3419 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3420 D->setHasDestructors(true); 3421 } 3422 3423 // If the implementation doesn't have any ivar initializers, we don't need 3424 // a .cxx_construct. 3425 if (D->getNumIvarInitializers() == 0 || 3426 AllTrivialInitializers(*this, D)) 3427 return; 3428 3429 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3430 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3431 // The constructor returns 'self'. 3432 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3433 D->getLocation(), 3434 D->getLocation(), 3435 cxxSelector, 3436 getContext().getObjCIdType(), 3437 nullptr, D, /*isInstance=*/true, 3438 /*isVariadic=*/false, 3439 /*isPropertyAccessor=*/true, 3440 /*isImplicitlyDeclared=*/true, 3441 /*isDefined=*/false, 3442 ObjCMethodDecl::Required); 3443 D->addInstanceMethod(CTORMethod); 3444 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3445 D->setHasNonZeroConstructors(true); 3446 } 3447 3448 /// EmitNamespace - Emit all declarations in a namespace. 3449 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3450 for (auto *I : ND->decls()) { 3451 if (const auto *VD = dyn_cast<VarDecl>(I)) 3452 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3453 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3454 continue; 3455 EmitTopLevelDecl(I); 3456 } 3457 } 3458 3459 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3460 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3461 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3462 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3463 ErrorUnsupported(LSD, "linkage spec"); 3464 return; 3465 } 3466 3467 for (auto *I : LSD->decls()) { 3468 // Meta-data for ObjC class includes references to implemented methods. 3469 // Generate class's method definitions first. 3470 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3471 for (auto *M : OID->methods()) 3472 EmitTopLevelDecl(M); 3473 } 3474 EmitTopLevelDecl(I); 3475 } 3476 } 3477 3478 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3479 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3480 // Ignore dependent declarations. 3481 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3482 return; 3483 3484 switch (D->getKind()) { 3485 case Decl::CXXConversion: 3486 case Decl::CXXMethod: 3487 case Decl::Function: 3488 // Skip function templates 3489 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3490 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3491 return; 3492 3493 EmitGlobal(cast<FunctionDecl>(D)); 3494 // Always provide some coverage mapping 3495 // even for the functions that aren't emitted. 3496 AddDeferredUnusedCoverageMapping(D); 3497 break; 3498 3499 case Decl::Var: 3500 // Skip variable templates 3501 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3502 return; 3503 case Decl::VarTemplateSpecialization: 3504 EmitGlobal(cast<VarDecl>(D)); 3505 break; 3506 3507 // Indirect fields from global anonymous structs and unions can be 3508 // ignored; only the actual variable requires IR gen support. 3509 case Decl::IndirectField: 3510 break; 3511 3512 // C++ Decls 3513 case Decl::Namespace: 3514 EmitNamespace(cast<NamespaceDecl>(D)); 3515 break; 3516 // No code generation needed. 3517 case Decl::UsingShadow: 3518 case Decl::ClassTemplate: 3519 case Decl::VarTemplate: 3520 case Decl::VarTemplatePartialSpecialization: 3521 case Decl::FunctionTemplate: 3522 case Decl::TypeAliasTemplate: 3523 case Decl::Block: 3524 case Decl::Empty: 3525 break; 3526 case Decl::Using: // using X; [C++] 3527 if (CGDebugInfo *DI = getModuleDebugInfo()) 3528 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3529 return; 3530 case Decl::NamespaceAlias: 3531 if (CGDebugInfo *DI = getModuleDebugInfo()) 3532 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3533 return; 3534 case Decl::UsingDirective: // using namespace X; [C++] 3535 if (CGDebugInfo *DI = getModuleDebugInfo()) 3536 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3537 return; 3538 case Decl::CXXConstructor: 3539 // Skip function templates 3540 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3541 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3542 return; 3543 3544 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3545 break; 3546 case Decl::CXXDestructor: 3547 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3548 return; 3549 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3550 break; 3551 3552 case Decl::StaticAssert: 3553 // Nothing to do. 3554 break; 3555 3556 // Objective-C Decls 3557 3558 // Forward declarations, no (immediate) code generation. 3559 case Decl::ObjCInterface: 3560 case Decl::ObjCCategory: 3561 break; 3562 3563 case Decl::ObjCProtocol: { 3564 auto *Proto = cast<ObjCProtocolDecl>(D); 3565 if (Proto->isThisDeclarationADefinition()) 3566 ObjCRuntime->GenerateProtocol(Proto); 3567 break; 3568 } 3569 3570 case Decl::ObjCCategoryImpl: 3571 // Categories have properties but don't support synthesize so we 3572 // can ignore them here. 3573 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3574 break; 3575 3576 case Decl::ObjCImplementation: { 3577 auto *OMD = cast<ObjCImplementationDecl>(D); 3578 EmitObjCPropertyImplementations(OMD); 3579 EmitObjCIvarInitializations(OMD); 3580 ObjCRuntime->GenerateClass(OMD); 3581 // Emit global variable debug information. 3582 if (CGDebugInfo *DI = getModuleDebugInfo()) 3583 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3584 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3585 OMD->getClassInterface()), OMD->getLocation()); 3586 break; 3587 } 3588 case Decl::ObjCMethod: { 3589 auto *OMD = cast<ObjCMethodDecl>(D); 3590 // If this is not a prototype, emit the body. 3591 if (OMD->getBody()) 3592 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3593 break; 3594 } 3595 case Decl::ObjCCompatibleAlias: 3596 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3597 break; 3598 3599 case Decl::LinkageSpec: 3600 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3601 break; 3602 3603 case Decl::FileScopeAsm: { 3604 // File-scope asm is ignored during device-side CUDA compilation. 3605 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3606 break; 3607 auto *AD = cast<FileScopeAsmDecl>(D); 3608 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3609 break; 3610 } 3611 3612 case Decl::Import: { 3613 auto *Import = cast<ImportDecl>(D); 3614 3615 // Ignore import declarations that come from imported modules. 3616 if (Import->getImportedOwningModule()) 3617 break; 3618 if (CGDebugInfo *DI = getModuleDebugInfo()) 3619 DI->EmitImportDecl(*Import); 3620 3621 ImportedModules.insert(Import->getImportedModule()); 3622 break; 3623 } 3624 3625 case Decl::OMPThreadPrivate: 3626 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3627 break; 3628 3629 case Decl::ClassTemplateSpecialization: { 3630 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3631 if (DebugInfo && 3632 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3633 Spec->hasDefinition()) 3634 DebugInfo->completeTemplateDefinition(*Spec); 3635 break; 3636 } 3637 3638 default: 3639 // Make sure we handled everything we should, every other kind is a 3640 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3641 // function. Need to recode Decl::Kind to do that easily. 3642 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3643 break; 3644 } 3645 } 3646 3647 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3648 // Do we need to generate coverage mapping? 3649 if (!CodeGenOpts.CoverageMapping) 3650 return; 3651 switch (D->getKind()) { 3652 case Decl::CXXConversion: 3653 case Decl::CXXMethod: 3654 case Decl::Function: 3655 case Decl::ObjCMethod: 3656 case Decl::CXXConstructor: 3657 case Decl::CXXDestructor: { 3658 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3659 return; 3660 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3661 if (I == DeferredEmptyCoverageMappingDecls.end()) 3662 DeferredEmptyCoverageMappingDecls[D] = true; 3663 break; 3664 } 3665 default: 3666 break; 3667 }; 3668 } 3669 3670 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3671 // Do we need to generate coverage mapping? 3672 if (!CodeGenOpts.CoverageMapping) 3673 return; 3674 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3675 if (Fn->isTemplateInstantiation()) 3676 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3677 } 3678 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3679 if (I == DeferredEmptyCoverageMappingDecls.end()) 3680 DeferredEmptyCoverageMappingDecls[D] = false; 3681 else 3682 I->second = false; 3683 } 3684 3685 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3686 std::vector<const Decl *> DeferredDecls; 3687 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3688 if (!I.second) 3689 continue; 3690 DeferredDecls.push_back(I.first); 3691 } 3692 // Sort the declarations by their location to make sure that the tests get a 3693 // predictable order for the coverage mapping for the unused declarations. 3694 if (CodeGenOpts.DumpCoverageMapping) 3695 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3696 [] (const Decl *LHS, const Decl *RHS) { 3697 return LHS->getLocStart() < RHS->getLocStart(); 3698 }); 3699 for (const auto *D : DeferredDecls) { 3700 switch (D->getKind()) { 3701 case Decl::CXXConversion: 3702 case Decl::CXXMethod: 3703 case Decl::Function: 3704 case Decl::ObjCMethod: { 3705 CodeGenPGO PGO(*this); 3706 GlobalDecl GD(cast<FunctionDecl>(D)); 3707 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3708 getFunctionLinkage(GD)); 3709 break; 3710 } 3711 case Decl::CXXConstructor: { 3712 CodeGenPGO PGO(*this); 3713 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3714 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3715 getFunctionLinkage(GD)); 3716 break; 3717 } 3718 case Decl::CXXDestructor: { 3719 CodeGenPGO PGO(*this); 3720 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3721 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3722 getFunctionLinkage(GD)); 3723 break; 3724 } 3725 default: 3726 break; 3727 }; 3728 } 3729 } 3730 3731 /// Turns the given pointer into a constant. 3732 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3733 const void *Ptr) { 3734 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3735 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3736 return llvm::ConstantInt::get(i64, PtrInt); 3737 } 3738 3739 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3740 llvm::NamedMDNode *&GlobalMetadata, 3741 GlobalDecl D, 3742 llvm::GlobalValue *Addr) { 3743 if (!GlobalMetadata) 3744 GlobalMetadata = 3745 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3746 3747 // TODO: should we report variant information for ctors/dtors? 3748 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3749 llvm::ConstantAsMetadata::get(GetPointerConstant( 3750 CGM.getLLVMContext(), D.getDecl()))}; 3751 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3752 } 3753 3754 /// For each function which is declared within an extern "C" region and marked 3755 /// as 'used', but has internal linkage, create an alias from the unmangled 3756 /// name to the mangled name if possible. People expect to be able to refer 3757 /// to such functions with an unmangled name from inline assembly within the 3758 /// same translation unit. 3759 void CodeGenModule::EmitStaticExternCAliases() { 3760 for (auto &I : StaticExternCValues) { 3761 IdentifierInfo *Name = I.first; 3762 llvm::GlobalValue *Val = I.second; 3763 if (Val && !getModule().getNamedValue(Name->getName())) 3764 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3765 } 3766 } 3767 3768 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3769 GlobalDecl &Result) const { 3770 auto Res = Manglings.find(MangledName); 3771 if (Res == Manglings.end()) 3772 return false; 3773 Result = Res->getValue(); 3774 return true; 3775 } 3776 3777 /// Emits metadata nodes associating all the global values in the 3778 /// current module with the Decls they came from. This is useful for 3779 /// projects using IR gen as a subroutine. 3780 /// 3781 /// Since there's currently no way to associate an MDNode directly 3782 /// with an llvm::GlobalValue, we create a global named metadata 3783 /// with the name 'clang.global.decl.ptrs'. 3784 void CodeGenModule::EmitDeclMetadata() { 3785 llvm::NamedMDNode *GlobalMetadata = nullptr; 3786 3787 // StaticLocalDeclMap 3788 for (auto &I : MangledDeclNames) { 3789 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3790 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3791 } 3792 } 3793 3794 /// Emits metadata nodes for all the local variables in the current 3795 /// function. 3796 void CodeGenFunction::EmitDeclMetadata() { 3797 if (LocalDeclMap.empty()) return; 3798 3799 llvm::LLVMContext &Context = getLLVMContext(); 3800 3801 // Find the unique metadata ID for this name. 3802 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3803 3804 llvm::NamedMDNode *GlobalMetadata = nullptr; 3805 3806 for (auto &I : LocalDeclMap) { 3807 const Decl *D = I.first; 3808 llvm::Value *Addr = I.second.getPointer(); 3809 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3810 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3811 Alloca->setMetadata( 3812 DeclPtrKind, llvm::MDNode::get( 3813 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3814 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3815 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3816 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3817 } 3818 } 3819 } 3820 3821 void CodeGenModule::EmitVersionIdentMetadata() { 3822 llvm::NamedMDNode *IdentMetadata = 3823 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3824 std::string Version = getClangFullVersion(); 3825 llvm::LLVMContext &Ctx = TheModule.getContext(); 3826 3827 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3828 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3829 } 3830 3831 void CodeGenModule::EmitTargetMetadata() { 3832 // Warning, new MangledDeclNames may be appended within this loop. 3833 // We rely on MapVector insertions adding new elements to the end 3834 // of the container. 3835 // FIXME: Move this loop into the one target that needs it, and only 3836 // loop over those declarations for which we couldn't emit the target 3837 // metadata when we emitted the declaration. 3838 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3839 auto Val = *(MangledDeclNames.begin() + I); 3840 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3841 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3842 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3843 } 3844 } 3845 3846 void CodeGenModule::EmitCoverageFile() { 3847 if (!getCodeGenOpts().CoverageFile.empty()) { 3848 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3849 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3850 llvm::LLVMContext &Ctx = TheModule.getContext(); 3851 llvm::MDString *CoverageFile = 3852 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3853 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3854 llvm::MDNode *CU = CUNode->getOperand(i); 3855 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3856 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3857 } 3858 } 3859 } 3860 } 3861 3862 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3863 // Sema has checked that all uuid strings are of the form 3864 // "12345678-1234-1234-1234-1234567890ab". 3865 assert(Uuid.size() == 36); 3866 for (unsigned i = 0; i < 36; ++i) { 3867 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3868 else assert(isHexDigit(Uuid[i])); 3869 } 3870 3871 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3872 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3873 3874 llvm::Constant *Field3[8]; 3875 for (unsigned Idx = 0; Idx < 8; ++Idx) 3876 Field3[Idx] = llvm::ConstantInt::get( 3877 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3878 3879 llvm::Constant *Fields[4] = { 3880 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3881 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3882 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3883 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3884 }; 3885 3886 return llvm::ConstantStruct::getAnon(Fields); 3887 } 3888 3889 llvm::Constant * 3890 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3891 QualType CatchHandlerType) { 3892 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3893 } 3894 3895 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3896 bool ForEH) { 3897 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3898 // FIXME: should we even be calling this method if RTTI is disabled 3899 // and it's not for EH? 3900 if (!ForEH && !getLangOpts().RTTI) 3901 return llvm::Constant::getNullValue(Int8PtrTy); 3902 3903 if (ForEH && Ty->isObjCObjectPointerType() && 3904 LangOpts.ObjCRuntime.isGNUFamily()) 3905 return ObjCRuntime->GetEHType(Ty); 3906 3907 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3908 } 3909 3910 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3911 for (auto RefExpr : D->varlists()) { 3912 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3913 bool PerformInit = 3914 VD->getAnyInitializer() && 3915 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3916 /*ForRef=*/false); 3917 3918 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3919 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3920 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3921 CXXGlobalInits.push_back(InitFunction); 3922 } 3923 } 3924 3925 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3926 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3927 if (InternalId) 3928 return InternalId; 3929 3930 if (isExternallyVisible(T->getLinkage())) { 3931 std::string OutName; 3932 llvm::raw_string_ostream Out(OutName); 3933 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3934 3935 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3936 } else { 3937 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3938 llvm::ArrayRef<llvm::Metadata *>()); 3939 } 3940 3941 return InternalId; 3942 } 3943 3944 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3945 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3946 llvm::Metadata *BitsetOps[] = { 3947 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)), 3948 llvm::ConstantAsMetadata::get(VTable), 3949 llvm::ConstantAsMetadata::get( 3950 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3951 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3952 } 3953