1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 62 using namespace clang; 63 using namespace CodeGen; 64 65 static llvm::cl::opt<bool> LimitedCoverage( 66 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 67 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 68 llvm::cl::init(false)); 69 70 static const char AnnotationSection[] = "llvm.metadata"; 71 72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 73 switch (CGM.getTarget().getCXXABI().getKind()) { 74 case TargetCXXABI::GenericAArch64: 75 case TargetCXXABI::GenericARM: 76 case TargetCXXABI::iOS: 77 case TargetCXXABI::iOS64: 78 case TargetCXXABI::WatchOS: 79 case TargetCXXABI::GenericMIPS: 80 case TargetCXXABI::GenericItanium: 81 case TargetCXXABI::WebAssembly: 82 return CreateItaniumCXXABI(CGM); 83 case TargetCXXABI::Microsoft: 84 return CreateMicrosoftCXXABI(CGM); 85 } 86 87 llvm_unreachable("invalid C++ ABI kind"); 88 } 89 90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 91 const PreprocessorOptions &PPO, 92 const CodeGenOptions &CGO, llvm::Module &M, 93 DiagnosticsEngine &diags, 94 CoverageSourceInfo *CoverageInfo) 95 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 96 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 97 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 98 VMContext(M.getContext()), Types(*this), VTables(*this), 99 SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 HalfTy = llvm::Type::getHalfTy(LLVMContext); 109 FloatTy = llvm::Type::getFloatTy(LLVMContext); 110 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 111 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 112 PointerAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 114 SizeSizeInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, 120 C.getTargetInfo().getMaxPointerWidth()); 121 Int8PtrTy = Int8Ty->getPointerTo(0); 122 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 123 AllocaInt8PtrTy = Int8Ty->getPointerTo( 124 M.getDataLayout().getAllocaAddrSpace()); 125 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 126 127 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 128 129 if (LangOpts.ObjC) 130 createObjCRuntime(); 131 if (LangOpts.OpenCL) 132 createOpenCLRuntime(); 133 if (LangOpts.OpenMP) 134 createOpenMPRuntime(); 135 if (LangOpts.CUDA) 136 createCUDARuntime(); 137 138 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 139 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 140 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) { 141 fprintf(stderr, "TBAA enabled\n"); 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 } 145 146 // If debug info or coverage generation is enabled, create the CGDebugInfo 147 // object. 148 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 149 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 150 DebugInfo.reset(new CGDebugInfo(*this)); 151 152 Block.GlobalUniqueCount = 0; 153 154 if (C.getLangOpts().ObjC) 155 ObjCData.reset(new ObjCEntrypoints()); 156 157 if (CodeGenOpts.hasProfileClangUse()) { 158 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 159 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 160 if (auto E = ReaderOrErr.takeError()) { 161 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 162 "Could not read profile %0: %1"); 163 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 164 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 165 << EI.message(); 166 }); 167 } else 168 PGOReader = std::move(ReaderOrErr.get()); 169 } 170 171 // If coverage mapping generation is enabled, create the 172 // CoverageMappingModuleGen object. 173 if (CodeGenOpts.CoverageMapping) 174 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 175 } 176 177 CodeGenModule::~CodeGenModule() {} 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 case ObjCRuntime::WatchOS: 193 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 194 return; 195 } 196 llvm_unreachable("bad runtime kind"); 197 } 198 199 void CodeGenModule::createOpenCLRuntime() { 200 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 201 } 202 203 void CodeGenModule::createOpenMPRuntime() { 204 // Select a specialized code generation class based on the target, if any. 205 // If it does not exist use the default implementation. 206 switch (getTriple().getArch()) { 207 case llvm::Triple::nvptx: 208 case llvm::Triple::nvptx64: 209 assert(getLangOpts().OpenMPIsDevice && 210 "OpenMP NVPTX is only prepared to deal with device code."); 211 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 212 break; 213 default: 214 if (LangOpts.OpenMPSimd) 215 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 216 else 217 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 218 break; 219 } 220 } 221 222 void CodeGenModule::createCUDARuntime() { 223 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 224 } 225 226 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 227 Replacements[Name] = C; 228 } 229 230 void CodeGenModule::applyReplacements() { 231 for (auto &I : Replacements) { 232 StringRef MangledName = I.first(); 233 llvm::Constant *Replacement = I.second; 234 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 235 if (!Entry) 236 continue; 237 auto *OldF = cast<llvm::Function>(Entry); 238 auto *NewF = dyn_cast<llvm::Function>(Replacement); 239 if (!NewF) { 240 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 241 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 242 } else { 243 auto *CE = cast<llvm::ConstantExpr>(Replacement); 244 assert(CE->getOpcode() == llvm::Instruction::BitCast || 245 CE->getOpcode() == llvm::Instruction::GetElementPtr); 246 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 247 } 248 } 249 250 // Replace old with new, but keep the old order. 251 OldF->replaceAllUsesWith(Replacement); 252 if (NewF) { 253 NewF->removeFromParent(); 254 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 255 NewF); 256 } 257 OldF->eraseFromParent(); 258 } 259 } 260 261 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 262 GlobalValReplacements.push_back(std::make_pair(GV, C)); 263 } 264 265 void CodeGenModule::applyGlobalValReplacements() { 266 for (auto &I : GlobalValReplacements) { 267 llvm::GlobalValue *GV = I.first; 268 llvm::Constant *C = I.second; 269 270 GV->replaceAllUsesWith(C); 271 GV->eraseFromParent(); 272 } 273 } 274 275 // This is only used in aliases that we created and we know they have a 276 // linear structure. 277 static const llvm::GlobalObject *getAliasedGlobal( 278 const llvm::GlobalIndirectSymbol &GIS) { 279 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 280 const llvm::Constant *C = &GIS; 281 for (;;) { 282 C = C->stripPointerCasts(); 283 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 284 return GO; 285 // stripPointerCasts will not walk over weak aliases. 286 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 287 if (!GIS2) 288 return nullptr; 289 if (!Visited.insert(GIS2).second) 290 return nullptr; 291 C = GIS2->getIndirectSymbol(); 292 } 293 } 294 295 void CodeGenModule::checkAliases() { 296 // Check if the constructed aliases are well formed. It is really unfortunate 297 // that we have to do this in CodeGen, but we only construct mangled names 298 // and aliases during codegen. 299 bool Error = false; 300 DiagnosticsEngine &Diags = getDiags(); 301 for (const GlobalDecl &GD : Aliases) { 302 const auto *D = cast<ValueDecl>(GD.getDecl()); 303 SourceLocation Location; 304 bool IsIFunc = D->hasAttr<IFuncAttr>(); 305 if (const Attr *A = D->getDefiningAttr()) 306 Location = A->getLocation(); 307 else 308 llvm_unreachable("Not an alias or ifunc?"); 309 StringRef MangledName = getMangledName(GD); 310 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 311 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 312 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 313 if (!GV) { 314 Error = true; 315 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 316 } else if (GV->isDeclaration()) { 317 Error = true; 318 Diags.Report(Location, diag::err_alias_to_undefined) 319 << IsIFunc << IsIFunc; 320 } else if (IsIFunc) { 321 // Check resolver function type. 322 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 323 GV->getType()->getPointerElementType()); 324 assert(FTy); 325 if (!FTy->getReturnType()->isPointerTy()) 326 Diags.Report(Location, diag::err_ifunc_resolver_return); 327 } 328 329 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 330 llvm::GlobalValue *AliaseeGV; 331 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 332 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 333 else 334 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 335 336 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 337 StringRef AliasSection = SA->getName(); 338 if (AliasSection != AliaseeGV->getSection()) 339 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 340 << AliasSection << IsIFunc << IsIFunc; 341 } 342 343 // We have to handle alias to weak aliases in here. LLVM itself disallows 344 // this since the object semantics would not match the IL one. For 345 // compatibility with gcc we implement it by just pointing the alias 346 // to its aliasee's aliasee. We also warn, since the user is probably 347 // expecting the link to be weak. 348 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 349 if (GA->isInterposable()) { 350 Diags.Report(Location, diag::warn_alias_to_weak_alias) 351 << GV->getName() << GA->getName() << IsIFunc; 352 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 353 GA->getIndirectSymbol(), Alias->getType()); 354 Alias->setIndirectSymbol(Aliasee); 355 } 356 } 357 } 358 if (!Error) 359 return; 360 361 for (const GlobalDecl &GD : Aliases) { 362 StringRef MangledName = getMangledName(GD); 363 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 364 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 365 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 366 Alias->eraseFromParent(); 367 } 368 } 369 370 void CodeGenModule::clear() { 371 DeferredDeclsToEmit.clear(); 372 if (OpenMPRuntime) 373 OpenMPRuntime->clear(); 374 } 375 376 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 377 StringRef MainFile) { 378 if (!hasDiagnostics()) 379 return; 380 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 381 if (MainFile.empty()) 382 MainFile = "<stdin>"; 383 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 384 } else { 385 if (Mismatched > 0) 386 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 387 388 if (Missing > 0) 389 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 390 } 391 } 392 393 void CodeGenModule::Release() { 394 EmitDeferred(); 395 EmitVTablesOpportunistically(); 396 applyGlobalValReplacements(); 397 applyReplacements(); 398 checkAliases(); 399 emitMultiVersionFunctions(); 400 EmitCXXGlobalInitFunc(); 401 EmitCXXGlobalDtorFunc(); 402 registerGlobalDtorsWithAtExit(); 403 EmitCXXThreadLocalInitFunc(); 404 if (ObjCRuntime) 405 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 406 AddGlobalCtor(ObjCInitFunction); 407 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 408 CUDARuntime) { 409 if (llvm::Function *CudaCtorFunction = 410 CUDARuntime->makeModuleCtorFunction()) 411 AddGlobalCtor(CudaCtorFunction); 412 } 413 if (OpenMPRuntime) { 414 if (llvm::Function *OpenMPRegistrationFunction = 415 OpenMPRuntime->emitRegistrationFunction()) { 416 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 417 OpenMPRegistrationFunction : nullptr; 418 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 419 } 420 OpenMPRuntime->clear(); 421 } 422 if (PGOReader) { 423 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 424 if (PGOStats.hasDiagnostics()) 425 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 426 } 427 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 428 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 429 EmitGlobalAnnotations(); 430 EmitStaticExternCAliases(); 431 EmitDeferredUnusedCoverageMappings(); 432 if (CoverageMapping) 433 CoverageMapping->emit(); 434 if (CodeGenOpts.SanitizeCfiCrossDso) { 435 CodeGenFunction(*this).EmitCfiCheckFail(); 436 CodeGenFunction(*this).EmitCfiCheckStub(); 437 } 438 emitAtAvailableLinkGuard(); 439 emitLLVMUsed(); 440 if (SanStats) 441 SanStats->finish(); 442 443 if (CodeGenOpts.Autolink && 444 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 445 EmitModuleLinkOptions(); 446 } 447 448 // Record mregparm value now so it is visible through rest of codegen. 449 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 450 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 451 CodeGenOpts.NumRegisterParameters); 452 453 if (CodeGenOpts.DwarfVersion) { 454 // We actually want the latest version when there are conflicts. 455 // We can change from Warning to Latest if such mode is supported. 456 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 457 CodeGenOpts.DwarfVersion); 458 } 459 if (CodeGenOpts.EmitCodeView) { 460 // Indicate that we want CodeView in the metadata. 461 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 462 } 463 if (CodeGenOpts.CodeViewGHash) { 464 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 465 } 466 if (CodeGenOpts.ControlFlowGuard) { 467 // We want function ID tables for Control Flow Guard. 468 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 469 } 470 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 471 // We don't support LTO with 2 with different StrictVTablePointers 472 // FIXME: we could support it by stripping all the information introduced 473 // by StrictVTablePointers. 474 475 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 476 477 llvm::Metadata *Ops[2] = { 478 llvm::MDString::get(VMContext, "StrictVTablePointers"), 479 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 480 llvm::Type::getInt32Ty(VMContext), 1))}; 481 482 getModule().addModuleFlag(llvm::Module::Require, 483 "StrictVTablePointersRequirement", 484 llvm::MDNode::get(VMContext, Ops)); 485 } 486 if (DebugInfo) 487 // We support a single version in the linked module. The LLVM 488 // parser will drop debug info with a different version number 489 // (and warn about it, too). 490 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 491 llvm::DEBUG_METADATA_VERSION); 492 493 // We need to record the widths of enums and wchar_t, so that we can generate 494 // the correct build attributes in the ARM backend. wchar_size is also used by 495 // TargetLibraryInfo. 496 uint64_t WCharWidth = 497 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 498 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 499 500 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 501 if ( Arch == llvm::Triple::arm 502 || Arch == llvm::Triple::armeb 503 || Arch == llvm::Triple::thumb 504 || Arch == llvm::Triple::thumbeb) { 505 // The minimum width of an enum in bytes 506 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 507 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 508 } 509 510 if (CodeGenOpts.SanitizeCfiCrossDso) { 511 // Indicate that we want cross-DSO control flow integrity checks. 512 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 513 } 514 515 if (CodeGenOpts.CFProtectionReturn && 516 Target.checkCFProtectionReturnSupported(getDiags())) { 517 // Indicate that we want to instrument return control flow protection. 518 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 519 1); 520 } 521 522 if (CodeGenOpts.CFProtectionBranch && 523 Target.checkCFProtectionBranchSupported(getDiags())) { 524 // Indicate that we want to instrument branch control flow protection. 525 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 526 1); 527 } 528 529 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 530 // Indicate whether __nvvm_reflect should be configured to flush denormal 531 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 532 // property.) 533 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 534 CodeGenOpts.FlushDenorm ? 1 : 0); 535 } 536 537 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 538 if (LangOpts.OpenCL) { 539 EmitOpenCLMetadata(); 540 // Emit SPIR version. 541 if (getTriple().getArch() == llvm::Triple::spir || 542 getTriple().getArch() == llvm::Triple::spir64) { 543 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 544 // opencl.spir.version named metadata. 545 llvm::Metadata *SPIRVerElts[] = { 546 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 547 Int32Ty, LangOpts.OpenCLVersion / 100)), 548 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 549 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 550 llvm::NamedMDNode *SPIRVerMD = 551 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 552 llvm::LLVMContext &Ctx = TheModule.getContext(); 553 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 554 } 555 } 556 557 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 558 assert(PLevel < 3 && "Invalid PIC Level"); 559 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 560 if (Context.getLangOpts().PIE) 561 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 562 } 563 564 if (getCodeGenOpts().CodeModel.size() > 0) { 565 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 566 .Case("tiny", llvm::CodeModel::Tiny) 567 .Case("small", llvm::CodeModel::Small) 568 .Case("kernel", llvm::CodeModel::Kernel) 569 .Case("medium", llvm::CodeModel::Medium) 570 .Case("large", llvm::CodeModel::Large) 571 .Default(~0u); 572 if (CM != ~0u) { 573 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 574 getModule().setCodeModel(codeModel); 575 } 576 } 577 578 if (CodeGenOpts.NoPLT) 579 getModule().setRtLibUseGOT(); 580 581 SimplifyPersonality(); 582 583 if (getCodeGenOpts().EmitDeclMetadata) 584 EmitDeclMetadata(); 585 586 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 587 EmitCoverageFile(); 588 589 if (DebugInfo) 590 DebugInfo->finalize(); 591 592 if (getCodeGenOpts().EmitVersionIdentMetadata) 593 EmitVersionIdentMetadata(); 594 595 if (!getCodeGenOpts().RecordCommandLine.empty()) 596 EmitCommandLineMetadata(); 597 598 EmitTargetMetadata(); 599 } 600 601 void CodeGenModule::EmitOpenCLMetadata() { 602 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 603 // opencl.ocl.version named metadata node. 604 llvm::Metadata *OCLVerElts[] = { 605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 606 Int32Ty, LangOpts.OpenCLVersion / 100)), 607 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 608 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 609 llvm::NamedMDNode *OCLVerMD = 610 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 611 llvm::LLVMContext &Ctx = TheModule.getContext(); 612 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 613 } 614 615 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 616 // Make sure that this type is translated. 617 Types.UpdateCompletedType(TD); 618 } 619 620 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 621 // Make sure that this type is translated. 622 Types.RefreshTypeCacheForClass(RD); 623 } 624 625 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 626 if (!TBAA) 627 return nullptr; 628 return TBAA->getTypeInfo(QTy); 629 } 630 631 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 632 if (!TBAA) 633 return TBAAAccessInfo(); 634 return TBAA->getAccessInfo(AccessType); 635 } 636 637 TBAAAccessInfo 638 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 639 if (!TBAA) 640 return TBAAAccessInfo(); 641 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 642 } 643 644 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 645 if (!TBAA) 646 return nullptr; 647 return TBAA->getTBAAStructInfo(QTy); 648 } 649 650 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 651 if (!TBAA) 652 return nullptr; 653 return TBAA->getBaseTypeInfo(QTy); 654 } 655 656 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 657 if (!TBAA) 658 return nullptr; 659 return TBAA->getAccessTagInfo(Info); 660 } 661 662 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 663 TBAAAccessInfo TargetInfo) { 664 if (!TBAA) 665 return TBAAAccessInfo(); 666 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 667 } 668 669 TBAAAccessInfo 670 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 671 TBAAAccessInfo InfoB) { 672 if (!TBAA) 673 return TBAAAccessInfo(); 674 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 675 } 676 677 TBAAAccessInfo 678 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 679 TBAAAccessInfo SrcInfo) { 680 if (!TBAA) 681 return TBAAAccessInfo(); 682 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 683 } 684 685 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 686 TBAAAccessInfo TBAAInfo) { 687 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 688 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 689 } 690 691 void CodeGenModule::DecorateInstructionWithInvariantGroup( 692 llvm::Instruction *I, const CXXRecordDecl *RD) { 693 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 694 llvm::MDNode::get(getLLVMContext(), {})); 695 } 696 697 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 698 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 699 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 700 } 701 702 /// ErrorUnsupported - Print out an error that codegen doesn't support the 703 /// specified stmt yet. 704 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 705 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 706 "cannot compile this %0 yet"); 707 std::string Msg = Type; 708 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 709 << Msg << S->getSourceRange(); 710 } 711 712 /// ErrorUnsupported - Print out an error that codegen doesn't support the 713 /// specified decl yet. 714 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 715 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 716 "cannot compile this %0 yet"); 717 std::string Msg = Type; 718 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 719 } 720 721 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 722 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 723 } 724 725 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 726 const NamedDecl *D) const { 727 if (GV->hasDLLImportStorageClass()) 728 return; 729 // Internal definitions always have default visibility. 730 if (GV->hasLocalLinkage()) { 731 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 732 return; 733 } 734 if (!D) 735 return; 736 // Set visibility for definitions. 737 LinkageInfo LV = D->getLinkageAndVisibility(); 738 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 739 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 740 } 741 742 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 743 llvm::GlobalValue *GV) { 744 if (GV->hasLocalLinkage()) 745 return true; 746 747 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 748 return true; 749 750 // DLLImport explicitly marks the GV as external. 751 if (GV->hasDLLImportStorageClass()) 752 return false; 753 754 const llvm::Triple &TT = CGM.getTriple(); 755 if (TT.isWindowsGNUEnvironment()) { 756 // In MinGW, variables without DLLImport can still be automatically 757 // imported from a DLL by the linker; don't mark variables that 758 // potentially could come from another DLL as DSO local. 759 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 760 !GV->isThreadLocal()) 761 return false; 762 } 763 // Every other GV is local on COFF. 764 // Make an exception for windows OS in the triple: Some firmware builds use 765 // *-win32-macho triples. This (accidentally?) produced windows relocations 766 // without GOT tables in older clang versions; Keep this behaviour. 767 // FIXME: even thread local variables? 768 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 769 return true; 770 771 // Only handle COFF and ELF for now. 772 if (!TT.isOSBinFormatELF()) 773 return false; 774 775 // If this is not an executable, don't assume anything is local. 776 const auto &CGOpts = CGM.getCodeGenOpts(); 777 llvm::Reloc::Model RM = CGOpts.RelocationModel; 778 const auto &LOpts = CGM.getLangOpts(); 779 if (RM != llvm::Reloc::Static && !LOpts.PIE) 780 return false; 781 782 // A definition cannot be preempted from an executable. 783 if (!GV->isDeclarationForLinker()) 784 return true; 785 786 // Most PIC code sequences that assume that a symbol is local cannot produce a 787 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 788 // depended, it seems worth it to handle it here. 789 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 790 return false; 791 792 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 793 llvm::Triple::ArchType Arch = TT.getArch(); 794 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 795 Arch == llvm::Triple::ppc64le) 796 return false; 797 798 // If we can use copy relocations we can assume it is local. 799 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 800 if (!Var->isThreadLocal() && 801 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 802 return true; 803 804 // If we can use a plt entry as the symbol address we can assume it 805 // is local. 806 // FIXME: This should work for PIE, but the gold linker doesn't support it. 807 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 808 return true; 809 810 // Otherwise don't assue it is local. 811 return false; 812 } 813 814 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 815 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 816 } 817 818 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 819 GlobalDecl GD) const { 820 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 821 // C++ destructors have a few C++ ABI specific special cases. 822 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 823 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 824 return; 825 } 826 setDLLImportDLLExport(GV, D); 827 } 828 829 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 830 const NamedDecl *D) const { 831 if (D && D->isExternallyVisible()) { 832 if (D->hasAttr<DLLImportAttr>()) 833 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 834 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 835 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 836 } 837 } 838 839 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 840 GlobalDecl GD) const { 841 setDLLImportDLLExport(GV, GD); 842 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 843 } 844 845 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 846 const NamedDecl *D) const { 847 setDLLImportDLLExport(GV, D); 848 setGlobalVisibilityAndLocal(GV, D); 849 } 850 851 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 852 const NamedDecl *D) const { 853 setGlobalVisibility(GV, D); 854 setDSOLocal(GV); 855 } 856 857 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 858 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 859 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 860 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 861 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 862 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 863 } 864 865 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 866 CodeGenOptions::TLSModel M) { 867 switch (M) { 868 case CodeGenOptions::GeneralDynamicTLSModel: 869 return llvm::GlobalVariable::GeneralDynamicTLSModel; 870 case CodeGenOptions::LocalDynamicTLSModel: 871 return llvm::GlobalVariable::LocalDynamicTLSModel; 872 case CodeGenOptions::InitialExecTLSModel: 873 return llvm::GlobalVariable::InitialExecTLSModel; 874 case CodeGenOptions::LocalExecTLSModel: 875 return llvm::GlobalVariable::LocalExecTLSModel; 876 } 877 llvm_unreachable("Invalid TLS model!"); 878 } 879 880 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 881 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 882 883 llvm::GlobalValue::ThreadLocalMode TLM; 884 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 885 886 // Override the TLS model if it is explicitly specified. 887 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 888 TLM = GetLLVMTLSModel(Attr->getModel()); 889 } 890 891 GV->setThreadLocalMode(TLM); 892 } 893 894 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 895 StringRef Name) { 896 const TargetInfo &Target = CGM.getTarget(); 897 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 898 } 899 900 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 901 const CPUSpecificAttr *Attr, 902 unsigned CPUIndex, 903 raw_ostream &Out) { 904 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 905 // supported. 906 if (Attr) 907 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 908 else if (CGM.getTarget().supportsIFunc()) 909 Out << ".resolver"; 910 } 911 912 static void AppendTargetMangling(const CodeGenModule &CGM, 913 const TargetAttr *Attr, raw_ostream &Out) { 914 if (Attr->isDefaultVersion()) 915 return; 916 917 Out << '.'; 918 const TargetInfo &Target = CGM.getTarget(); 919 TargetAttr::ParsedTargetAttr Info = 920 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 921 // Multiversioning doesn't allow "no-${feature}", so we can 922 // only have "+" prefixes here. 923 assert(LHS.startswith("+") && RHS.startswith("+") && 924 "Features should always have a prefix."); 925 return Target.multiVersionSortPriority(LHS.substr(1)) > 926 Target.multiVersionSortPriority(RHS.substr(1)); 927 }); 928 929 bool IsFirst = true; 930 931 if (!Info.Architecture.empty()) { 932 IsFirst = false; 933 Out << "arch_" << Info.Architecture; 934 } 935 936 for (StringRef Feat : Info.Features) { 937 if (!IsFirst) 938 Out << '_'; 939 IsFirst = false; 940 Out << Feat.substr(1); 941 } 942 } 943 944 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 945 const NamedDecl *ND, 946 bool OmitMultiVersionMangling = false) { 947 SmallString<256> Buffer; 948 llvm::raw_svector_ostream Out(Buffer); 949 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 950 if (MC.shouldMangleDeclName(ND)) { 951 llvm::raw_svector_ostream Out(Buffer); 952 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 953 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 954 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 955 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 956 else 957 MC.mangleName(ND, Out); 958 } else { 959 IdentifierInfo *II = ND->getIdentifier(); 960 assert(II && "Attempt to mangle unnamed decl."); 961 const auto *FD = dyn_cast<FunctionDecl>(ND); 962 963 if (FD && 964 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 965 llvm::raw_svector_ostream Out(Buffer); 966 Out << "__regcall3__" << II->getName(); 967 } else { 968 Out << II->getName(); 969 } 970 } 971 972 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 973 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 974 switch (FD->getMultiVersionKind()) { 975 case MultiVersionKind::CPUDispatch: 976 case MultiVersionKind::CPUSpecific: 977 AppendCPUSpecificCPUDispatchMangling(CGM, 978 FD->getAttr<CPUSpecificAttr>(), 979 GD.getMultiVersionIndex(), Out); 980 break; 981 case MultiVersionKind::Target: 982 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 983 break; 984 case MultiVersionKind::None: 985 llvm_unreachable("None multiversion type isn't valid here"); 986 } 987 } 988 989 return Out.str(); 990 } 991 992 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 993 const FunctionDecl *FD) { 994 if (!FD->isMultiVersion()) 995 return; 996 997 // Get the name of what this would be without the 'target' attribute. This 998 // allows us to lookup the version that was emitted when this wasn't a 999 // multiversion function. 1000 std::string NonTargetName = 1001 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1002 GlobalDecl OtherGD; 1003 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1004 assert(OtherGD.getCanonicalDecl() 1005 .getDecl() 1006 ->getAsFunction() 1007 ->isMultiVersion() && 1008 "Other GD should now be a multiversioned function"); 1009 // OtherFD is the version of this function that was mangled BEFORE 1010 // becoming a MultiVersion function. It potentially needs to be updated. 1011 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1012 .getDecl() 1013 ->getAsFunction() 1014 ->getMostRecentDecl(); 1015 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1016 // This is so that if the initial version was already the 'default' 1017 // version, we don't try to update it. 1018 if (OtherName != NonTargetName) { 1019 // Remove instead of erase, since others may have stored the StringRef 1020 // to this. 1021 const auto ExistingRecord = Manglings.find(NonTargetName); 1022 if (ExistingRecord != std::end(Manglings)) 1023 Manglings.remove(&(*ExistingRecord)); 1024 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1025 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1026 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1027 Entry->setName(OtherName); 1028 } 1029 } 1030 } 1031 1032 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1033 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1034 1035 // Some ABIs don't have constructor variants. Make sure that base and 1036 // complete constructors get mangled the same. 1037 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1038 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1039 CXXCtorType OrigCtorType = GD.getCtorType(); 1040 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1041 if (OrigCtorType == Ctor_Base) 1042 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1043 } 1044 } 1045 1046 auto FoundName = MangledDeclNames.find(CanonicalGD); 1047 if (FoundName != MangledDeclNames.end()) 1048 return FoundName->second; 1049 1050 // Keep the first result in the case of a mangling collision. 1051 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1052 auto Result = 1053 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1054 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1055 } 1056 1057 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1058 const BlockDecl *BD) { 1059 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1060 const Decl *D = GD.getDecl(); 1061 1062 SmallString<256> Buffer; 1063 llvm::raw_svector_ostream Out(Buffer); 1064 if (!D) 1065 MangleCtx.mangleGlobalBlock(BD, 1066 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1067 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1068 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1069 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1070 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1071 else 1072 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1073 1074 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1075 return Result.first->first(); 1076 } 1077 1078 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1079 return getModule().getNamedValue(Name); 1080 } 1081 1082 /// AddGlobalCtor - Add a function to the list that will be called before 1083 /// main() runs. 1084 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1085 llvm::Constant *AssociatedData) { 1086 // FIXME: Type coercion of void()* types. 1087 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1088 } 1089 1090 /// AddGlobalDtor - Add a function to the list that will be called 1091 /// when the module is unloaded. 1092 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1093 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1094 DtorsUsingAtExit[Priority].push_back(Dtor); 1095 return; 1096 } 1097 1098 // FIXME: Type coercion of void()* types. 1099 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1100 } 1101 1102 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1103 if (Fns.empty()) return; 1104 1105 // Ctor function type is void()*. 1106 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1107 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1108 TheModule.getDataLayout().getProgramAddressSpace()); 1109 1110 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1111 llvm::StructType *CtorStructTy = llvm::StructType::get( 1112 Int32Ty, CtorPFTy, VoidPtrTy); 1113 1114 // Construct the constructor and destructor arrays. 1115 ConstantInitBuilder builder(*this); 1116 auto ctors = builder.beginArray(CtorStructTy); 1117 for (const auto &I : Fns) { 1118 auto ctor = ctors.beginStruct(CtorStructTy); 1119 ctor.addInt(Int32Ty, I.Priority); 1120 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1121 if (I.AssociatedData) 1122 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1123 else 1124 ctor.addNullPointer(VoidPtrTy); 1125 ctor.finishAndAddTo(ctors); 1126 } 1127 1128 auto list = 1129 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1130 /*constant*/ false, 1131 llvm::GlobalValue::AppendingLinkage); 1132 1133 // The LTO linker doesn't seem to like it when we set an alignment 1134 // on appending variables. Take it off as a workaround. 1135 list->setAlignment(0); 1136 1137 Fns.clear(); 1138 } 1139 1140 llvm::GlobalValue::LinkageTypes 1141 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1142 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1143 1144 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1145 1146 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1147 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1148 1149 if (isa<CXXConstructorDecl>(D) && 1150 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1151 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1152 // Our approach to inheriting constructors is fundamentally different from 1153 // that used by the MS ABI, so keep our inheriting constructor thunks 1154 // internal rather than trying to pick an unambiguous mangling for them. 1155 return llvm::GlobalValue::InternalLinkage; 1156 } 1157 1158 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1159 } 1160 1161 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1162 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1163 if (!MDS) return nullptr; 1164 1165 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1166 } 1167 1168 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1169 const CGFunctionInfo &Info, 1170 llvm::Function *F) { 1171 unsigned CallingConv; 1172 llvm::AttributeList PAL; 1173 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1174 F->setAttributes(PAL); 1175 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1176 } 1177 1178 /// Determines whether the language options require us to model 1179 /// unwind exceptions. We treat -fexceptions as mandating this 1180 /// except under the fragile ObjC ABI with only ObjC exceptions 1181 /// enabled. This means, for example, that C with -fexceptions 1182 /// enables this. 1183 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1184 // If exceptions are completely disabled, obviously this is false. 1185 if (!LangOpts.Exceptions) return false; 1186 1187 // If C++ exceptions are enabled, this is true. 1188 if (LangOpts.CXXExceptions) return true; 1189 1190 // If ObjC exceptions are enabled, this depends on the ABI. 1191 if (LangOpts.ObjCExceptions) { 1192 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1193 } 1194 1195 return true; 1196 } 1197 1198 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1199 const CXXMethodDecl *MD) { 1200 // Check that the type metadata can ever actually be used by a call. 1201 if (!CGM.getCodeGenOpts().LTOUnit || 1202 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1203 return false; 1204 1205 // Only functions whose address can be taken with a member function pointer 1206 // need this sort of type metadata. 1207 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1208 !isa<CXXDestructorDecl>(MD); 1209 } 1210 1211 std::vector<const CXXRecordDecl *> 1212 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1213 llvm::SetVector<const CXXRecordDecl *> MostBases; 1214 1215 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1216 CollectMostBases = [&](const CXXRecordDecl *RD) { 1217 if (RD->getNumBases() == 0) 1218 MostBases.insert(RD); 1219 for (const CXXBaseSpecifier &B : RD->bases()) 1220 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1221 }; 1222 CollectMostBases(RD); 1223 return MostBases.takeVector(); 1224 } 1225 1226 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1227 llvm::Function *F) { 1228 llvm::AttrBuilder B; 1229 1230 if (CodeGenOpts.UnwindTables) 1231 B.addAttribute(llvm::Attribute::UWTable); 1232 1233 if (!hasUnwindExceptions(LangOpts)) 1234 B.addAttribute(llvm::Attribute::NoUnwind); 1235 1236 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1237 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1238 B.addAttribute(llvm::Attribute::StackProtect); 1239 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1240 B.addAttribute(llvm::Attribute::StackProtectStrong); 1241 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1242 B.addAttribute(llvm::Attribute::StackProtectReq); 1243 } 1244 1245 if (!D) { 1246 // If we don't have a declaration to control inlining, the function isn't 1247 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1248 // disabled, mark the function as noinline. 1249 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1250 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1251 B.addAttribute(llvm::Attribute::NoInline); 1252 1253 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1254 return; 1255 } 1256 1257 // Track whether we need to add the optnone LLVM attribute, 1258 // starting with the default for this optimization level. 1259 bool ShouldAddOptNone = 1260 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1261 // We can't add optnone in the following cases, it won't pass the verifier. 1262 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1263 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1264 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1265 1266 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1267 B.addAttribute(llvm::Attribute::OptimizeNone); 1268 1269 // OptimizeNone implies noinline; we should not be inlining such functions. 1270 B.addAttribute(llvm::Attribute::NoInline); 1271 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1272 "OptimizeNone and AlwaysInline on same function!"); 1273 1274 // We still need to handle naked functions even though optnone subsumes 1275 // much of their semantics. 1276 if (D->hasAttr<NakedAttr>()) 1277 B.addAttribute(llvm::Attribute::Naked); 1278 1279 // OptimizeNone wins over OptimizeForSize and MinSize. 1280 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1281 F->removeFnAttr(llvm::Attribute::MinSize); 1282 } else if (D->hasAttr<NakedAttr>()) { 1283 // Naked implies noinline: we should not be inlining such functions. 1284 B.addAttribute(llvm::Attribute::Naked); 1285 B.addAttribute(llvm::Attribute::NoInline); 1286 } else if (D->hasAttr<NoDuplicateAttr>()) { 1287 B.addAttribute(llvm::Attribute::NoDuplicate); 1288 } else if (D->hasAttr<NoInlineAttr>()) { 1289 B.addAttribute(llvm::Attribute::NoInline); 1290 } else if (D->hasAttr<AlwaysInlineAttr>() && 1291 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1292 // (noinline wins over always_inline, and we can't specify both in IR) 1293 B.addAttribute(llvm::Attribute::AlwaysInline); 1294 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1295 // If we're not inlining, then force everything that isn't always_inline to 1296 // carry an explicit noinline attribute. 1297 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1298 B.addAttribute(llvm::Attribute::NoInline); 1299 } else { 1300 // Otherwise, propagate the inline hint attribute and potentially use its 1301 // absence to mark things as noinline. 1302 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1303 // Search function and template pattern redeclarations for inline. 1304 auto CheckForInline = [](const FunctionDecl *FD) { 1305 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1306 return Redecl->isInlineSpecified(); 1307 }; 1308 if (any_of(FD->redecls(), CheckRedeclForInline)) 1309 return true; 1310 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1311 if (!Pattern) 1312 return false; 1313 return any_of(Pattern->redecls(), CheckRedeclForInline); 1314 }; 1315 if (CheckForInline(FD)) { 1316 B.addAttribute(llvm::Attribute::InlineHint); 1317 } else if (CodeGenOpts.getInlining() == 1318 CodeGenOptions::OnlyHintInlining && 1319 !FD->isInlined() && 1320 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1321 B.addAttribute(llvm::Attribute::NoInline); 1322 } 1323 } 1324 } 1325 1326 // Add other optimization related attributes if we are optimizing this 1327 // function. 1328 if (!D->hasAttr<OptimizeNoneAttr>()) { 1329 if (D->hasAttr<ColdAttr>()) { 1330 if (!ShouldAddOptNone) 1331 B.addAttribute(llvm::Attribute::OptimizeForSize); 1332 B.addAttribute(llvm::Attribute::Cold); 1333 } 1334 1335 if (D->hasAttr<MinSizeAttr>()) 1336 B.addAttribute(llvm::Attribute::MinSize); 1337 } 1338 1339 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1340 1341 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1342 if (alignment) 1343 F->setAlignment(alignment); 1344 1345 if (!D->hasAttr<AlignedAttr>()) 1346 if (LangOpts.FunctionAlignment) 1347 F->setAlignment(1 << LangOpts.FunctionAlignment); 1348 1349 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1350 // reserve a bit for differentiating between virtual and non-virtual member 1351 // functions. If the current target's C++ ABI requires this and this is a 1352 // member function, set its alignment accordingly. 1353 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1354 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1355 F->setAlignment(2); 1356 } 1357 1358 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1359 if (CodeGenOpts.SanitizeCfiCrossDso) 1360 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1361 CreateFunctionTypeMetadataForIcall(FD, F); 1362 1363 // Emit type metadata on member functions for member function pointer checks. 1364 // These are only ever necessary on definitions; we're guaranteed that the 1365 // definition will be present in the LTO unit as a result of LTO visibility. 1366 auto *MD = dyn_cast<CXXMethodDecl>(D); 1367 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1368 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1369 llvm::Metadata *Id = 1370 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1371 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1372 F->addTypeMetadata(0, Id); 1373 } 1374 } 1375 } 1376 1377 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1378 const Decl *D = GD.getDecl(); 1379 if (dyn_cast_or_null<NamedDecl>(D)) 1380 setGVProperties(GV, GD); 1381 else 1382 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1383 1384 if (D && D->hasAttr<UsedAttr>()) 1385 addUsedGlobal(GV); 1386 1387 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1388 const auto *VD = cast<VarDecl>(D); 1389 if (VD->getType().isConstQualified() && 1390 VD->getStorageDuration() == SD_Static) 1391 addUsedGlobal(GV); 1392 } 1393 } 1394 1395 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1396 llvm::AttrBuilder &Attrs) { 1397 // Add target-cpu and target-features attributes to functions. If 1398 // we have a decl for the function and it has a target attribute then 1399 // parse that and add it to the feature set. 1400 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1401 std::vector<std::string> Features; 1402 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1403 FD = FD ? FD->getMostRecentDecl() : FD; 1404 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1405 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1406 bool AddedAttr = false; 1407 if (TD || SD) { 1408 llvm::StringMap<bool> FeatureMap; 1409 getFunctionFeatureMap(FeatureMap, GD); 1410 1411 // Produce the canonical string for this set of features. 1412 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1413 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1414 1415 // Now add the target-cpu and target-features to the function. 1416 // While we populated the feature map above, we still need to 1417 // get and parse the target attribute so we can get the cpu for 1418 // the function. 1419 if (TD) { 1420 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1421 if (ParsedAttr.Architecture != "" && 1422 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1423 TargetCPU = ParsedAttr.Architecture; 1424 } 1425 } else { 1426 // Otherwise just add the existing target cpu and target features to the 1427 // function. 1428 Features = getTarget().getTargetOpts().Features; 1429 } 1430 1431 if (TargetCPU != "") { 1432 Attrs.addAttribute("target-cpu", TargetCPU); 1433 AddedAttr = true; 1434 } 1435 if (!Features.empty()) { 1436 llvm::sort(Features); 1437 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1438 AddedAttr = true; 1439 } 1440 1441 return AddedAttr; 1442 } 1443 1444 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1445 llvm::GlobalObject *GO) { 1446 const Decl *D = GD.getDecl(); 1447 SetCommonAttributes(GD, GO); 1448 1449 if (D) { 1450 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1451 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1452 GV->addAttribute("bss-section", SA->getName()); 1453 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1454 GV->addAttribute("data-section", SA->getName()); 1455 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1456 GV->addAttribute("rodata-section", SA->getName()); 1457 } 1458 1459 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1460 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1461 if (!D->getAttr<SectionAttr>()) 1462 F->addFnAttr("implicit-section-name", SA->getName()); 1463 1464 llvm::AttrBuilder Attrs; 1465 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1466 // We know that GetCPUAndFeaturesAttributes will always have the 1467 // newest set, since it has the newest possible FunctionDecl, so the 1468 // new ones should replace the old. 1469 F->removeFnAttr("target-cpu"); 1470 F->removeFnAttr("target-features"); 1471 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1472 } 1473 } 1474 1475 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1476 GO->setSection(CSA->getName()); 1477 else if (const auto *SA = D->getAttr<SectionAttr>()) 1478 GO->setSection(SA->getName()); 1479 } 1480 1481 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1482 } 1483 1484 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1485 llvm::Function *F, 1486 const CGFunctionInfo &FI) { 1487 const Decl *D = GD.getDecl(); 1488 SetLLVMFunctionAttributes(GD, FI, F); 1489 SetLLVMFunctionAttributesForDefinition(D, F); 1490 1491 F->setLinkage(llvm::Function::InternalLinkage); 1492 1493 setNonAliasAttributes(GD, F); 1494 } 1495 1496 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1497 // Set linkage and visibility in case we never see a definition. 1498 LinkageInfo LV = ND->getLinkageAndVisibility(); 1499 // Don't set internal linkage on declarations. 1500 // "extern_weak" is overloaded in LLVM; we probably should have 1501 // separate linkage types for this. 1502 if (isExternallyVisible(LV.getLinkage()) && 1503 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1504 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1505 } 1506 1507 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1508 llvm::Function *F) { 1509 // Only if we are checking indirect calls. 1510 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1511 return; 1512 1513 // Non-static class methods are handled via vtable or member function pointer 1514 // checks elsewhere. 1515 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1516 return; 1517 1518 // Additionally, if building with cross-DSO support... 1519 if (CodeGenOpts.SanitizeCfiCrossDso) { 1520 // Skip available_externally functions. They won't be codegen'ed in the 1521 // current module anyway. 1522 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1523 return; 1524 } 1525 1526 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1527 F->addTypeMetadata(0, MD); 1528 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1529 1530 // Emit a hash-based bit set entry for cross-DSO calls. 1531 if (CodeGenOpts.SanitizeCfiCrossDso) 1532 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1533 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1534 } 1535 1536 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1537 bool IsIncompleteFunction, 1538 bool IsThunk) { 1539 1540 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1541 // If this is an intrinsic function, set the function's attributes 1542 // to the intrinsic's attributes. 1543 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1544 return; 1545 } 1546 1547 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1548 1549 if (!IsIncompleteFunction) { 1550 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1551 // Setup target-specific attributes. 1552 if (F->isDeclaration()) 1553 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1554 } 1555 1556 // Add the Returned attribute for "this", except for iOS 5 and earlier 1557 // where substantial code, including the libstdc++ dylib, was compiled with 1558 // GCC and does not actually return "this". 1559 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1560 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1561 assert(!F->arg_empty() && 1562 F->arg_begin()->getType() 1563 ->canLosslesslyBitCastTo(F->getReturnType()) && 1564 "unexpected this return"); 1565 F->addAttribute(1, llvm::Attribute::Returned); 1566 } 1567 1568 // Only a few attributes are set on declarations; these may later be 1569 // overridden by a definition. 1570 1571 setLinkageForGV(F, FD); 1572 setGVProperties(F, FD); 1573 1574 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1575 F->setSection(CSA->getName()); 1576 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1577 F->setSection(SA->getName()); 1578 1579 if (FD->isReplaceableGlobalAllocationFunction()) { 1580 // A replaceable global allocation function does not act like a builtin by 1581 // default, only if it is invoked by a new-expression or delete-expression. 1582 F->addAttribute(llvm::AttributeList::FunctionIndex, 1583 llvm::Attribute::NoBuiltin); 1584 1585 // A sane operator new returns a non-aliasing pointer. 1586 // FIXME: Also add NonNull attribute to the return value 1587 // for the non-nothrow forms? 1588 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1589 if (getCodeGenOpts().AssumeSaneOperatorNew && 1590 (Kind == OO_New || Kind == OO_Array_New)) 1591 F->addAttribute(llvm::AttributeList::ReturnIndex, 1592 llvm::Attribute::NoAlias); 1593 } 1594 1595 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1596 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1597 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1598 if (MD->isVirtual()) 1599 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1600 1601 // Don't emit entries for function declarations in the cross-DSO mode. This 1602 // is handled with better precision by the receiving DSO. 1603 if (!CodeGenOpts.SanitizeCfiCrossDso) 1604 CreateFunctionTypeMetadataForIcall(FD, F); 1605 1606 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1607 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1608 } 1609 1610 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1611 assert(!GV->isDeclaration() && 1612 "Only globals with definition can force usage."); 1613 LLVMUsed.emplace_back(GV); 1614 } 1615 1616 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1617 assert(!GV->isDeclaration() && 1618 "Only globals with definition can force usage."); 1619 LLVMCompilerUsed.emplace_back(GV); 1620 } 1621 1622 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1623 std::vector<llvm::WeakTrackingVH> &List) { 1624 // Don't create llvm.used if there is no need. 1625 if (List.empty()) 1626 return; 1627 1628 // Convert List to what ConstantArray needs. 1629 SmallVector<llvm::Constant*, 8> UsedArray; 1630 UsedArray.resize(List.size()); 1631 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1632 UsedArray[i] = 1633 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1634 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1635 } 1636 1637 if (UsedArray.empty()) 1638 return; 1639 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1640 1641 auto *GV = new llvm::GlobalVariable( 1642 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1643 llvm::ConstantArray::get(ATy, UsedArray), Name); 1644 1645 GV->setSection("llvm.metadata"); 1646 } 1647 1648 void CodeGenModule::emitLLVMUsed() { 1649 emitUsed(*this, "llvm.used", LLVMUsed); 1650 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1651 } 1652 1653 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1654 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1655 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1656 } 1657 1658 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1659 llvm::SmallString<32> Opt; 1660 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1661 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1662 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1663 } 1664 1665 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1666 auto &C = getLLVMContext(); 1667 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1668 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1669 } 1670 1671 void CodeGenModule::AddDependentLib(StringRef Lib) { 1672 llvm::SmallString<24> Opt; 1673 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1674 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1675 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1676 } 1677 1678 /// Add link options implied by the given module, including modules 1679 /// it depends on, using a postorder walk. 1680 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1681 SmallVectorImpl<llvm::MDNode *> &Metadata, 1682 llvm::SmallPtrSet<Module *, 16> &Visited) { 1683 // Import this module's parent. 1684 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1685 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1686 } 1687 1688 // Import this module's dependencies. 1689 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1690 if (Visited.insert(Mod->Imports[I - 1]).second) 1691 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1692 } 1693 1694 // Add linker options to link against the libraries/frameworks 1695 // described by this module. 1696 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1697 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1698 bool IsPS4 = CGM.getTarget().getTriple().isPS4(); 1699 1700 // For modules that use export_as for linking, use that module 1701 // name instead. 1702 if (Mod->UseExportAsModuleLinkName) 1703 return; 1704 1705 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1706 // Link against a framework. Frameworks are currently Darwin only, so we 1707 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1708 if (Mod->LinkLibraries[I-1].IsFramework) { 1709 llvm::Metadata *Args[2] = { 1710 llvm::MDString::get(Context, "-framework"), 1711 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1712 1713 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1714 continue; 1715 } 1716 1717 // Link against a library. 1718 if (IsELF && !IsPS4) { 1719 llvm::Metadata *Args[2] = { 1720 llvm::MDString::get(Context, "lib"), 1721 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1722 }; 1723 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1724 } else { 1725 llvm::SmallString<24> Opt; 1726 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1727 Mod->LinkLibraries[I - 1].Library, Opt); 1728 auto *OptString = llvm::MDString::get(Context, Opt); 1729 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1730 } 1731 } 1732 } 1733 1734 void CodeGenModule::EmitModuleLinkOptions() { 1735 // Collect the set of all of the modules we want to visit to emit link 1736 // options, which is essentially the imported modules and all of their 1737 // non-explicit child modules. 1738 llvm::SetVector<clang::Module *> LinkModules; 1739 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1740 SmallVector<clang::Module *, 16> Stack; 1741 1742 // Seed the stack with imported modules. 1743 for (Module *M : ImportedModules) { 1744 // Do not add any link flags when an implementation TU of a module imports 1745 // a header of that same module. 1746 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1747 !getLangOpts().isCompilingModule()) 1748 continue; 1749 if (Visited.insert(M).second) 1750 Stack.push_back(M); 1751 } 1752 1753 // Find all of the modules to import, making a little effort to prune 1754 // non-leaf modules. 1755 while (!Stack.empty()) { 1756 clang::Module *Mod = Stack.pop_back_val(); 1757 1758 bool AnyChildren = false; 1759 1760 // Visit the submodules of this module. 1761 for (const auto &SM : Mod->submodules()) { 1762 // Skip explicit children; they need to be explicitly imported to be 1763 // linked against. 1764 if (SM->IsExplicit) 1765 continue; 1766 1767 if (Visited.insert(SM).second) { 1768 Stack.push_back(SM); 1769 AnyChildren = true; 1770 } 1771 } 1772 1773 // We didn't find any children, so add this module to the list of 1774 // modules to link against. 1775 if (!AnyChildren) { 1776 LinkModules.insert(Mod); 1777 } 1778 } 1779 1780 // Add link options for all of the imported modules in reverse topological 1781 // order. We don't do anything to try to order import link flags with respect 1782 // to linker options inserted by things like #pragma comment(). 1783 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1784 Visited.clear(); 1785 for (Module *M : LinkModules) 1786 if (Visited.insert(M).second) 1787 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1788 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1789 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1790 1791 // Add the linker options metadata flag. 1792 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1793 for (auto *MD : LinkerOptionsMetadata) 1794 NMD->addOperand(MD); 1795 } 1796 1797 void CodeGenModule::EmitDeferred() { 1798 // Emit deferred declare target declarations. 1799 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1800 getOpenMPRuntime().emitDeferredTargetDecls(); 1801 1802 // Emit code for any potentially referenced deferred decls. Since a 1803 // previously unused static decl may become used during the generation of code 1804 // for a static function, iterate until no changes are made. 1805 1806 if (!DeferredVTables.empty()) { 1807 EmitDeferredVTables(); 1808 1809 // Emitting a vtable doesn't directly cause more vtables to 1810 // become deferred, although it can cause functions to be 1811 // emitted that then need those vtables. 1812 assert(DeferredVTables.empty()); 1813 } 1814 1815 // Stop if we're out of both deferred vtables and deferred declarations. 1816 if (DeferredDeclsToEmit.empty()) 1817 return; 1818 1819 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1820 // work, it will not interfere with this. 1821 std::vector<GlobalDecl> CurDeclsToEmit; 1822 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1823 1824 for (GlobalDecl &D : CurDeclsToEmit) { 1825 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1826 // to get GlobalValue with exactly the type we need, not something that 1827 // might had been created for another decl with the same mangled name but 1828 // different type. 1829 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1830 GetAddrOfGlobal(D, ForDefinition)); 1831 1832 // In case of different address spaces, we may still get a cast, even with 1833 // IsForDefinition equal to true. Query mangled names table to get 1834 // GlobalValue. 1835 if (!GV) 1836 GV = GetGlobalValue(getMangledName(D)); 1837 1838 // Make sure GetGlobalValue returned non-null. 1839 assert(GV); 1840 1841 // Check to see if we've already emitted this. This is necessary 1842 // for a couple of reasons: first, decls can end up in the 1843 // deferred-decls queue multiple times, and second, decls can end 1844 // up with definitions in unusual ways (e.g. by an extern inline 1845 // function acquiring a strong function redefinition). Just 1846 // ignore these cases. 1847 if (!GV->isDeclaration()) 1848 continue; 1849 1850 // Otherwise, emit the definition and move on to the next one. 1851 EmitGlobalDefinition(D, GV); 1852 1853 // If we found out that we need to emit more decls, do that recursively. 1854 // This has the advantage that the decls are emitted in a DFS and related 1855 // ones are close together, which is convenient for testing. 1856 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1857 EmitDeferred(); 1858 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1859 } 1860 } 1861 } 1862 1863 void CodeGenModule::EmitVTablesOpportunistically() { 1864 // Try to emit external vtables as available_externally if they have emitted 1865 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1866 // is not allowed to create new references to things that need to be emitted 1867 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1868 1869 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1870 && "Only emit opportunistic vtables with optimizations"); 1871 1872 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1873 assert(getVTables().isVTableExternal(RD) && 1874 "This queue should only contain external vtables"); 1875 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1876 VTables.GenerateClassData(RD); 1877 } 1878 OpportunisticVTables.clear(); 1879 } 1880 1881 void CodeGenModule::EmitGlobalAnnotations() { 1882 if (Annotations.empty()) 1883 return; 1884 1885 // Create a new global variable for the ConstantStruct in the Module. 1886 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1887 Annotations[0]->getType(), Annotations.size()), Annotations); 1888 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1889 llvm::GlobalValue::AppendingLinkage, 1890 Array, "llvm.global.annotations"); 1891 gv->setSection(AnnotationSection); 1892 } 1893 1894 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1895 llvm::Constant *&AStr = AnnotationStrings[Str]; 1896 if (AStr) 1897 return AStr; 1898 1899 // Not found yet, create a new global. 1900 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1901 auto *gv = 1902 new llvm::GlobalVariable(getModule(), s->getType(), true, 1903 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1904 gv->setSection(AnnotationSection); 1905 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1906 AStr = gv; 1907 return gv; 1908 } 1909 1910 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1911 SourceManager &SM = getContext().getSourceManager(); 1912 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1913 if (PLoc.isValid()) 1914 return EmitAnnotationString(PLoc.getFilename()); 1915 return EmitAnnotationString(SM.getBufferName(Loc)); 1916 } 1917 1918 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1919 SourceManager &SM = getContext().getSourceManager(); 1920 PresumedLoc PLoc = SM.getPresumedLoc(L); 1921 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1922 SM.getExpansionLineNumber(L); 1923 return llvm::ConstantInt::get(Int32Ty, LineNo); 1924 } 1925 1926 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1927 const AnnotateAttr *AA, 1928 SourceLocation L) { 1929 // Get the globals for file name, annotation, and the line number. 1930 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1931 *UnitGV = EmitAnnotationUnit(L), 1932 *LineNoCst = EmitAnnotationLineNo(L); 1933 1934 // Create the ConstantStruct for the global annotation. 1935 llvm::Constant *Fields[4] = { 1936 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1937 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1938 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1939 LineNoCst 1940 }; 1941 return llvm::ConstantStruct::getAnon(Fields); 1942 } 1943 1944 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1945 llvm::GlobalValue *GV) { 1946 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1947 // Get the struct elements for these annotations. 1948 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1949 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1950 } 1951 1952 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1953 llvm::Function *Fn, 1954 SourceLocation Loc) const { 1955 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1956 // Blacklist by function name. 1957 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1958 return true; 1959 // Blacklist by location. 1960 if (Loc.isValid()) 1961 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1962 // If location is unknown, this may be a compiler-generated function. Assume 1963 // it's located in the main file. 1964 auto &SM = Context.getSourceManager(); 1965 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1966 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1967 } 1968 return false; 1969 } 1970 1971 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1972 SourceLocation Loc, QualType Ty, 1973 StringRef Category) const { 1974 // For now globals can be blacklisted only in ASan and KASan. 1975 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1976 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1977 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1978 if (!EnabledAsanMask) 1979 return false; 1980 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1981 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1982 return true; 1983 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1984 return true; 1985 // Check global type. 1986 if (!Ty.isNull()) { 1987 // Drill down the array types: if global variable of a fixed type is 1988 // blacklisted, we also don't instrument arrays of them. 1989 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1990 Ty = AT->getElementType(); 1991 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1992 // We allow to blacklist only record types (classes, structs etc.) 1993 if (Ty->isRecordType()) { 1994 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1995 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1996 return true; 1997 } 1998 } 1999 return false; 2000 } 2001 2002 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2003 StringRef Category) const { 2004 const auto &XRayFilter = getContext().getXRayFilter(); 2005 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2006 auto Attr = ImbueAttr::NONE; 2007 if (Loc.isValid()) 2008 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2009 if (Attr == ImbueAttr::NONE) 2010 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2011 switch (Attr) { 2012 case ImbueAttr::NONE: 2013 return false; 2014 case ImbueAttr::ALWAYS: 2015 Fn->addFnAttr("function-instrument", "xray-always"); 2016 break; 2017 case ImbueAttr::ALWAYS_ARG1: 2018 Fn->addFnAttr("function-instrument", "xray-always"); 2019 Fn->addFnAttr("xray-log-args", "1"); 2020 break; 2021 case ImbueAttr::NEVER: 2022 Fn->addFnAttr("function-instrument", "xray-never"); 2023 break; 2024 } 2025 return true; 2026 } 2027 2028 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2029 // Never defer when EmitAllDecls is specified. 2030 if (LangOpts.EmitAllDecls) 2031 return true; 2032 2033 if (CodeGenOpts.KeepStaticConsts) { 2034 const auto *VD = dyn_cast<VarDecl>(Global); 2035 if (VD && VD->getType().isConstQualified() && 2036 VD->getStorageDuration() == SD_Static) 2037 return true; 2038 } 2039 2040 return getContext().DeclMustBeEmitted(Global); 2041 } 2042 2043 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2044 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2045 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2046 // Implicit template instantiations may change linkage if they are later 2047 // explicitly instantiated, so they should not be emitted eagerly. 2048 return false; 2049 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2050 if (Context.getInlineVariableDefinitionKind(VD) == 2051 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2052 // A definition of an inline constexpr static data member may change 2053 // linkage later if it's redeclared outside the class. 2054 return false; 2055 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2056 // codegen for global variables, because they may be marked as threadprivate. 2057 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2058 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2059 !isTypeConstant(Global->getType(), false) && 2060 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2061 return false; 2062 2063 return true; 2064 } 2065 2066 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2067 const CXXUuidofExpr* E) { 2068 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2069 // well-formed. 2070 StringRef Uuid = E->getUuidStr(); 2071 std::string Name = "_GUID_" + Uuid.lower(); 2072 std::replace(Name.begin(), Name.end(), '-', '_'); 2073 2074 // The UUID descriptor should be pointer aligned. 2075 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2076 2077 // Look for an existing global. 2078 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2079 return ConstantAddress(GV, Alignment); 2080 2081 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2082 assert(Init && "failed to initialize as constant"); 2083 2084 auto *GV = new llvm::GlobalVariable( 2085 getModule(), Init->getType(), 2086 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2087 if (supportsCOMDAT()) 2088 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2089 setDSOLocal(GV); 2090 return ConstantAddress(GV, Alignment); 2091 } 2092 2093 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2094 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2095 assert(AA && "No alias?"); 2096 2097 CharUnits Alignment = getContext().getDeclAlign(VD); 2098 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2099 2100 // See if there is already something with the target's name in the module. 2101 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2102 if (Entry) { 2103 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2104 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2105 return ConstantAddress(Ptr, Alignment); 2106 } 2107 2108 llvm::Constant *Aliasee; 2109 if (isa<llvm::FunctionType>(DeclTy)) 2110 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2111 GlobalDecl(cast<FunctionDecl>(VD)), 2112 /*ForVTable=*/false); 2113 else 2114 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2115 llvm::PointerType::getUnqual(DeclTy), 2116 nullptr); 2117 2118 auto *F = cast<llvm::GlobalValue>(Aliasee); 2119 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2120 WeakRefReferences.insert(F); 2121 2122 return ConstantAddress(Aliasee, Alignment); 2123 } 2124 2125 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2126 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2127 2128 // Weak references don't produce any output by themselves. 2129 if (Global->hasAttr<WeakRefAttr>()) 2130 return; 2131 2132 // If this is an alias definition (which otherwise looks like a declaration) 2133 // emit it now. 2134 if (Global->hasAttr<AliasAttr>()) 2135 return EmitAliasDefinition(GD); 2136 2137 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2138 if (Global->hasAttr<IFuncAttr>()) 2139 return emitIFuncDefinition(GD); 2140 2141 // If this is a cpu_dispatch multiversion function, emit the resolver. 2142 if (Global->hasAttr<CPUDispatchAttr>()) 2143 return emitCPUDispatchDefinition(GD); 2144 2145 // If this is CUDA, be selective about which declarations we emit. 2146 if (LangOpts.CUDA) { 2147 if (LangOpts.CUDAIsDevice) { 2148 if (!Global->hasAttr<CUDADeviceAttr>() && 2149 !Global->hasAttr<CUDAGlobalAttr>() && 2150 !Global->hasAttr<CUDAConstantAttr>() && 2151 !Global->hasAttr<CUDASharedAttr>()) 2152 return; 2153 } else { 2154 // We need to emit host-side 'shadows' for all global 2155 // device-side variables because the CUDA runtime needs their 2156 // size and host-side address in order to provide access to 2157 // their device-side incarnations. 2158 2159 // So device-only functions are the only things we skip. 2160 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2161 Global->hasAttr<CUDADeviceAttr>()) 2162 return; 2163 2164 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2165 "Expected Variable or Function"); 2166 } 2167 } 2168 2169 if (LangOpts.OpenMP) { 2170 // If this is OpenMP device, check if it is legal to emit this global 2171 // normally. 2172 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2173 return; 2174 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2175 if (MustBeEmitted(Global)) 2176 EmitOMPDeclareReduction(DRD); 2177 return; 2178 } 2179 } 2180 2181 // Ignore declarations, they will be emitted on their first use. 2182 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2183 // Forward declarations are emitted lazily on first use. 2184 if (!FD->doesThisDeclarationHaveABody()) { 2185 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2186 return; 2187 2188 StringRef MangledName = getMangledName(GD); 2189 2190 // Compute the function info and LLVM type. 2191 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2192 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2193 2194 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2195 /*DontDefer=*/false); 2196 return; 2197 } 2198 } else { 2199 const auto *VD = cast<VarDecl>(Global); 2200 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2201 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2202 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2203 if (LangOpts.OpenMP) { 2204 // Emit declaration of the must-be-emitted declare target variable. 2205 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2206 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2207 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2208 (void)GetAddrOfGlobalVar(VD); 2209 } else { 2210 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2211 "link claue expected."); 2212 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2213 } 2214 return; 2215 } 2216 } 2217 // If this declaration may have caused an inline variable definition to 2218 // change linkage, make sure that it's emitted. 2219 if (Context.getInlineVariableDefinitionKind(VD) == 2220 ASTContext::InlineVariableDefinitionKind::Strong) 2221 GetAddrOfGlobalVar(VD); 2222 return; 2223 } 2224 } 2225 2226 // Defer code generation to first use when possible, e.g. if this is an inline 2227 // function. If the global must always be emitted, do it eagerly if possible 2228 // to benefit from cache locality. 2229 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2230 // Emit the definition if it can't be deferred. 2231 EmitGlobalDefinition(GD); 2232 return; 2233 } 2234 2235 // If we're deferring emission of a C++ variable with an 2236 // initializer, remember the order in which it appeared in the file. 2237 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2238 cast<VarDecl>(Global)->hasInit()) { 2239 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2240 CXXGlobalInits.push_back(nullptr); 2241 } 2242 2243 StringRef MangledName = getMangledName(GD); 2244 if (GetGlobalValue(MangledName) != nullptr) { 2245 // The value has already been used and should therefore be emitted. 2246 addDeferredDeclToEmit(GD); 2247 } else if (MustBeEmitted(Global)) { 2248 // The value must be emitted, but cannot be emitted eagerly. 2249 assert(!MayBeEmittedEagerly(Global)); 2250 addDeferredDeclToEmit(GD); 2251 } else { 2252 // Otherwise, remember that we saw a deferred decl with this name. The 2253 // first use of the mangled name will cause it to move into 2254 // DeferredDeclsToEmit. 2255 DeferredDecls[MangledName] = GD; 2256 } 2257 } 2258 2259 // Check if T is a class type with a destructor that's not dllimport. 2260 static bool HasNonDllImportDtor(QualType T) { 2261 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2262 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2263 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2264 return true; 2265 2266 return false; 2267 } 2268 2269 namespace { 2270 struct FunctionIsDirectlyRecursive : 2271 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2272 const StringRef Name; 2273 const Builtin::Context &BI; 2274 bool Result; 2275 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2276 Name(N), BI(C), Result(false) { 2277 } 2278 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2279 2280 bool TraverseCallExpr(CallExpr *E) { 2281 const FunctionDecl *FD = E->getDirectCallee(); 2282 if (!FD) 2283 return true; 2284 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2285 if (Attr && Name == Attr->getLabel()) { 2286 Result = true; 2287 return false; 2288 } 2289 unsigned BuiltinID = FD->getBuiltinID(); 2290 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2291 return true; 2292 StringRef BuiltinName = BI.getName(BuiltinID); 2293 if (BuiltinName.startswith("__builtin_") && 2294 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2295 Result = true; 2296 return false; 2297 } 2298 return true; 2299 } 2300 }; 2301 2302 // Make sure we're not referencing non-imported vars or functions. 2303 struct DLLImportFunctionVisitor 2304 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2305 bool SafeToInline = true; 2306 2307 bool shouldVisitImplicitCode() const { return true; } 2308 2309 bool VisitVarDecl(VarDecl *VD) { 2310 if (VD->getTLSKind()) { 2311 // A thread-local variable cannot be imported. 2312 SafeToInline = false; 2313 return SafeToInline; 2314 } 2315 2316 // A variable definition might imply a destructor call. 2317 if (VD->isThisDeclarationADefinition()) 2318 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2319 2320 return SafeToInline; 2321 } 2322 2323 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2324 if (const auto *D = E->getTemporary()->getDestructor()) 2325 SafeToInline = D->hasAttr<DLLImportAttr>(); 2326 return SafeToInline; 2327 } 2328 2329 bool VisitDeclRefExpr(DeclRefExpr *E) { 2330 ValueDecl *VD = E->getDecl(); 2331 if (isa<FunctionDecl>(VD)) 2332 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2333 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2334 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2335 return SafeToInline; 2336 } 2337 2338 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2339 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2340 return SafeToInline; 2341 } 2342 2343 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2344 CXXMethodDecl *M = E->getMethodDecl(); 2345 if (!M) { 2346 // Call through a pointer to member function. This is safe to inline. 2347 SafeToInline = true; 2348 } else { 2349 SafeToInline = M->hasAttr<DLLImportAttr>(); 2350 } 2351 return SafeToInline; 2352 } 2353 2354 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2355 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2356 return SafeToInline; 2357 } 2358 2359 bool VisitCXXNewExpr(CXXNewExpr *E) { 2360 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2361 return SafeToInline; 2362 } 2363 }; 2364 } 2365 2366 // isTriviallyRecursive - Check if this function calls another 2367 // decl that, because of the asm attribute or the other decl being a builtin, 2368 // ends up pointing to itself. 2369 bool 2370 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2371 StringRef Name; 2372 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2373 // asm labels are a special kind of mangling we have to support. 2374 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2375 if (!Attr) 2376 return false; 2377 Name = Attr->getLabel(); 2378 } else { 2379 Name = FD->getName(); 2380 } 2381 2382 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2383 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2384 return Walker.Result; 2385 } 2386 2387 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2388 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2389 return true; 2390 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2391 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2392 return false; 2393 2394 if (F->hasAttr<DLLImportAttr>()) { 2395 // Check whether it would be safe to inline this dllimport function. 2396 DLLImportFunctionVisitor Visitor; 2397 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2398 if (!Visitor.SafeToInline) 2399 return false; 2400 2401 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2402 // Implicit destructor invocations aren't captured in the AST, so the 2403 // check above can't see them. Check for them manually here. 2404 for (const Decl *Member : Dtor->getParent()->decls()) 2405 if (isa<FieldDecl>(Member)) 2406 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2407 return false; 2408 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2409 if (HasNonDllImportDtor(B.getType())) 2410 return false; 2411 } 2412 } 2413 2414 // PR9614. Avoid cases where the source code is lying to us. An available 2415 // externally function should have an equivalent function somewhere else, 2416 // but a function that calls itself is clearly not equivalent to the real 2417 // implementation. 2418 // This happens in glibc's btowc and in some configure checks. 2419 return !isTriviallyRecursive(F); 2420 } 2421 2422 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2423 return CodeGenOpts.OptimizationLevel > 0; 2424 } 2425 2426 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2427 llvm::GlobalValue *GV) { 2428 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2429 2430 if (FD->isCPUSpecificMultiVersion()) { 2431 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2432 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2433 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2434 // Requires multiple emits. 2435 } else 2436 EmitGlobalFunctionDefinition(GD, GV); 2437 } 2438 2439 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2440 const auto *D = cast<ValueDecl>(GD.getDecl()); 2441 2442 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2443 Context.getSourceManager(), 2444 "Generating code for declaration"); 2445 2446 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2447 // At -O0, don't generate IR for functions with available_externally 2448 // linkage. 2449 if (!shouldEmitFunction(GD)) 2450 return; 2451 2452 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2453 // Make sure to emit the definition(s) before we emit the thunks. 2454 // This is necessary for the generation of certain thunks. 2455 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2456 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2457 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2458 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2459 else if (FD->isMultiVersion()) 2460 EmitMultiVersionFunctionDefinition(GD, GV); 2461 else 2462 EmitGlobalFunctionDefinition(GD, GV); 2463 2464 if (Method->isVirtual()) 2465 getVTables().EmitThunks(GD); 2466 2467 return; 2468 } 2469 2470 if (FD->isMultiVersion()) 2471 return EmitMultiVersionFunctionDefinition(GD, GV); 2472 return EmitGlobalFunctionDefinition(GD, GV); 2473 } 2474 2475 if (const auto *VD = dyn_cast<VarDecl>(D)) 2476 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2477 2478 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2479 } 2480 2481 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2482 llvm::Function *NewFn); 2483 2484 static unsigned 2485 TargetMVPriority(const TargetInfo &TI, 2486 const CodeGenFunction::MultiVersionResolverOption &RO) { 2487 unsigned Priority = 0; 2488 for (StringRef Feat : RO.Conditions.Features) 2489 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2490 2491 if (!RO.Conditions.Architecture.empty()) 2492 Priority = std::max( 2493 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2494 return Priority; 2495 } 2496 2497 void CodeGenModule::emitMultiVersionFunctions() { 2498 for (GlobalDecl GD : MultiVersionFuncs) { 2499 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2500 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2501 getContext().forEachMultiversionedFunctionVersion( 2502 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2503 GlobalDecl CurGD{ 2504 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2505 StringRef MangledName = getMangledName(CurGD); 2506 llvm::Constant *Func = GetGlobalValue(MangledName); 2507 if (!Func) { 2508 if (CurFD->isDefined()) { 2509 EmitGlobalFunctionDefinition(CurGD, nullptr); 2510 Func = GetGlobalValue(MangledName); 2511 } else { 2512 const CGFunctionInfo &FI = 2513 getTypes().arrangeGlobalDeclaration(GD); 2514 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2515 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2516 /*DontDefer=*/false, ForDefinition); 2517 } 2518 assert(Func && "This should have just been created"); 2519 } 2520 2521 const auto *TA = CurFD->getAttr<TargetAttr>(); 2522 llvm::SmallVector<StringRef, 8> Feats; 2523 TA->getAddedFeatures(Feats); 2524 2525 Options.emplace_back(cast<llvm::Function>(Func), 2526 TA->getArchitecture(), Feats); 2527 }); 2528 2529 llvm::Function *ResolverFunc; 2530 const TargetInfo &TI = getTarget(); 2531 2532 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2533 ResolverFunc = cast<llvm::Function>( 2534 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2535 else 2536 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2537 2538 if (supportsCOMDAT()) 2539 ResolverFunc->setComdat( 2540 getModule().getOrInsertComdat(ResolverFunc->getName())); 2541 2542 std::stable_sort( 2543 Options.begin(), Options.end(), 2544 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2545 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2546 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2547 }); 2548 CodeGenFunction CGF(*this); 2549 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2550 } 2551 } 2552 2553 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2554 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2555 assert(FD && "Not a FunctionDecl?"); 2556 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2557 assert(DD && "Not a cpu_dispatch Function?"); 2558 QualType CanonTy = Context.getCanonicalType(FD->getType()); 2559 llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD); 2560 2561 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2562 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2563 DeclTy = getTypes().GetFunctionType(FInfo); 2564 } 2565 2566 StringRef ResolverName = getMangledName(GD); 2567 2568 llvm::Type *ResolverType; 2569 GlobalDecl ResolverGD; 2570 if (getTarget().supportsIFunc()) 2571 ResolverType = llvm::FunctionType::get( 2572 llvm::PointerType::get(DeclTy, 2573 Context.getTargetAddressSpace(FD->getType())), 2574 false); 2575 else { 2576 ResolverType = DeclTy; 2577 ResolverGD = GD; 2578 } 2579 2580 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2581 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2582 2583 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2584 const TargetInfo &Target = getTarget(); 2585 unsigned Index = 0; 2586 for (const IdentifierInfo *II : DD->cpus()) { 2587 // Get the name of the target function so we can look it up/create it. 2588 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2589 getCPUSpecificMangling(*this, II->getName()); 2590 2591 llvm::Constant *Func = GetGlobalValue(MangledName); 2592 2593 if (!Func) { 2594 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2595 if (ExistingDecl.getDecl() && 2596 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2597 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2598 Func = GetGlobalValue(MangledName); 2599 } else { 2600 if (!ExistingDecl.getDecl()) 2601 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2602 2603 Func = GetOrCreateLLVMFunction( 2604 MangledName, DeclTy, ExistingDecl, 2605 /*ForVTable=*/false, /*DontDefer=*/true, 2606 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2607 } 2608 } 2609 2610 llvm::SmallVector<StringRef, 32> Features; 2611 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2612 llvm::transform(Features, Features.begin(), 2613 [](StringRef Str) { return Str.substr(1); }); 2614 Features.erase(std::remove_if( 2615 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2616 return !Target.validateCpuSupports(Feat); 2617 }), Features.end()); 2618 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2619 ++Index; 2620 } 2621 2622 llvm::sort( 2623 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2624 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2625 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2626 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2627 }); 2628 2629 // If the list contains multiple 'default' versions, such as when it contains 2630 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2631 // always run on at least a 'pentium'). We do this by deleting the 'least 2632 // advanced' (read, lowest mangling letter). 2633 while (Options.size() > 1 && 2634 CodeGenFunction::GetX86CpuSupportsMask( 2635 (Options.end() - 2)->Conditions.Features) == 0) { 2636 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2637 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2638 if (LHSName.compare(RHSName) < 0) 2639 Options.erase(Options.end() - 2); 2640 else 2641 Options.erase(Options.end() - 1); 2642 } 2643 2644 CodeGenFunction CGF(*this); 2645 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2646 } 2647 2648 /// If a dispatcher for the specified mangled name is not in the module, create 2649 /// and return an llvm Function with the specified type. 2650 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2651 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2652 std::string MangledName = 2653 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2654 2655 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2656 // a separate resolver). 2657 std::string ResolverName = MangledName; 2658 if (getTarget().supportsIFunc()) 2659 ResolverName += ".ifunc"; 2660 else if (FD->isTargetMultiVersion()) 2661 ResolverName += ".resolver"; 2662 2663 // If this already exists, just return that one. 2664 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2665 return ResolverGV; 2666 2667 // Since this is the first time we've created this IFunc, make sure 2668 // that we put this multiversioned function into the list to be 2669 // replaced later if necessary (target multiversioning only). 2670 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2671 MultiVersionFuncs.push_back(GD); 2672 2673 if (getTarget().supportsIFunc()) { 2674 llvm::Type *ResolverType = llvm::FunctionType::get( 2675 llvm::PointerType::get( 2676 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2677 false); 2678 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2679 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2680 /*ForVTable=*/false); 2681 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2682 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2683 GIF->setName(ResolverName); 2684 SetCommonAttributes(FD, GIF); 2685 2686 return GIF; 2687 } 2688 2689 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2690 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2691 assert(isa<llvm::GlobalValue>(Resolver) && 2692 "Resolver should be created for the first time"); 2693 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2694 return Resolver; 2695 } 2696 2697 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2698 /// module, create and return an llvm Function with the specified type. If there 2699 /// is something in the module with the specified name, return it potentially 2700 /// bitcasted to the right type. 2701 /// 2702 /// If D is non-null, it specifies a decl that correspond to this. This is used 2703 /// to set the attributes on the function when it is first created. 2704 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2705 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2706 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2707 ForDefinition_t IsForDefinition) { 2708 const Decl *D = GD.getDecl(); 2709 2710 // Any attempts to use a MultiVersion function should result in retrieving 2711 // the iFunc instead. Name Mangling will handle the rest of the changes. 2712 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2713 // For the device mark the function as one that should be emitted. 2714 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2715 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2716 !DontDefer && !IsForDefinition) { 2717 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2718 GlobalDecl GDDef; 2719 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2720 GDDef = GlobalDecl(CD, GD.getCtorType()); 2721 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2722 GDDef = GlobalDecl(DD, GD.getDtorType()); 2723 else 2724 GDDef = GlobalDecl(FDDef); 2725 EmitGlobal(GDDef); 2726 } 2727 } 2728 2729 if (FD->isMultiVersion()) { 2730 const auto *TA = FD->getAttr<TargetAttr>(); 2731 if (TA && TA->isDefaultVersion()) 2732 UpdateMultiVersionNames(GD, FD); 2733 if (!IsForDefinition) 2734 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2735 } 2736 } 2737 2738 // Lookup the entry, lazily creating it if necessary. 2739 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2740 if (Entry) { 2741 if (WeakRefReferences.erase(Entry)) { 2742 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2743 if (FD && !FD->hasAttr<WeakAttr>()) 2744 Entry->setLinkage(llvm::Function::ExternalLinkage); 2745 } 2746 2747 // Handle dropped DLL attributes. 2748 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2749 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2750 setDSOLocal(Entry); 2751 } 2752 2753 // If there are two attempts to define the same mangled name, issue an 2754 // error. 2755 if (IsForDefinition && !Entry->isDeclaration()) { 2756 GlobalDecl OtherGD; 2757 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2758 // to make sure that we issue an error only once. 2759 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2760 (GD.getCanonicalDecl().getDecl() != 2761 OtherGD.getCanonicalDecl().getDecl()) && 2762 DiagnosedConflictingDefinitions.insert(GD).second) { 2763 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2764 << MangledName; 2765 getDiags().Report(OtherGD.getDecl()->getLocation(), 2766 diag::note_previous_definition); 2767 } 2768 } 2769 2770 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2771 (Entry->getType()->getElementType() == Ty)) { 2772 return Entry; 2773 } 2774 2775 // Make sure the result is of the correct type. 2776 // (If function is requested for a definition, we always need to create a new 2777 // function, not just return a bitcast.) 2778 if (!IsForDefinition) 2779 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2780 } 2781 2782 // This function doesn't have a complete type (for example, the return 2783 // type is an incomplete struct). Use a fake type instead, and make 2784 // sure not to try to set attributes. 2785 bool IsIncompleteFunction = false; 2786 2787 llvm::FunctionType *FTy; 2788 if (isa<llvm::FunctionType>(Ty)) { 2789 FTy = cast<llvm::FunctionType>(Ty); 2790 } else { 2791 FTy = llvm::FunctionType::get(VoidTy, false); 2792 IsIncompleteFunction = true; 2793 } 2794 2795 llvm::Function *F = 2796 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2797 Entry ? StringRef() : MangledName, &getModule()); 2798 2799 // If we already created a function with the same mangled name (but different 2800 // type) before, take its name and add it to the list of functions to be 2801 // replaced with F at the end of CodeGen. 2802 // 2803 // This happens if there is a prototype for a function (e.g. "int f()") and 2804 // then a definition of a different type (e.g. "int f(int x)"). 2805 if (Entry) { 2806 F->takeName(Entry); 2807 2808 // This might be an implementation of a function without a prototype, in 2809 // which case, try to do special replacement of calls which match the new 2810 // prototype. The really key thing here is that we also potentially drop 2811 // arguments from the call site so as to make a direct call, which makes the 2812 // inliner happier and suppresses a number of optimizer warnings (!) about 2813 // dropping arguments. 2814 if (!Entry->use_empty()) { 2815 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2816 Entry->removeDeadConstantUsers(); 2817 } 2818 2819 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2820 F, Entry->getType()->getElementType()->getPointerTo()); 2821 addGlobalValReplacement(Entry, BC); 2822 } 2823 2824 assert(F->getName() == MangledName && "name was uniqued!"); 2825 if (D) 2826 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2827 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2828 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2829 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2830 } 2831 2832 if (!DontDefer) { 2833 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2834 // each other bottoming out with the base dtor. Therefore we emit non-base 2835 // dtors on usage, even if there is no dtor definition in the TU. 2836 if (D && isa<CXXDestructorDecl>(D) && 2837 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2838 GD.getDtorType())) 2839 addDeferredDeclToEmit(GD); 2840 2841 // This is the first use or definition of a mangled name. If there is a 2842 // deferred decl with this name, remember that we need to emit it at the end 2843 // of the file. 2844 auto DDI = DeferredDecls.find(MangledName); 2845 if (DDI != DeferredDecls.end()) { 2846 // Move the potentially referenced deferred decl to the 2847 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2848 // don't need it anymore). 2849 addDeferredDeclToEmit(DDI->second); 2850 DeferredDecls.erase(DDI); 2851 2852 // Otherwise, there are cases we have to worry about where we're 2853 // using a declaration for which we must emit a definition but where 2854 // we might not find a top-level definition: 2855 // - member functions defined inline in their classes 2856 // - friend functions defined inline in some class 2857 // - special member functions with implicit definitions 2858 // If we ever change our AST traversal to walk into class methods, 2859 // this will be unnecessary. 2860 // 2861 // We also don't emit a definition for a function if it's going to be an 2862 // entry in a vtable, unless it's already marked as used. 2863 } else if (getLangOpts().CPlusPlus && D) { 2864 // Look for a declaration that's lexically in a record. 2865 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2866 FD = FD->getPreviousDecl()) { 2867 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2868 if (FD->doesThisDeclarationHaveABody()) { 2869 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2870 break; 2871 } 2872 } 2873 } 2874 } 2875 } 2876 2877 // Make sure the result is of the requested type. 2878 if (!IsIncompleteFunction) { 2879 assert(F->getType()->getElementType() == Ty); 2880 return F; 2881 } 2882 2883 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2884 return llvm::ConstantExpr::getBitCast(F, PTy); 2885 } 2886 2887 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2888 /// non-null, then this function will use the specified type if it has to 2889 /// create it (this occurs when we see a definition of the function). 2890 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2891 llvm::Type *Ty, 2892 bool ForVTable, 2893 bool DontDefer, 2894 ForDefinition_t IsForDefinition) { 2895 // If there was no specific requested type, just convert it now. 2896 if (!Ty) { 2897 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2898 auto CanonTy = Context.getCanonicalType(FD->getType()); 2899 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2900 } 2901 2902 // Devirtualized destructor calls may come through here instead of via 2903 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2904 // of the complete destructor when necessary. 2905 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2906 if (getTarget().getCXXABI().isMicrosoft() && 2907 GD.getDtorType() == Dtor_Complete && 2908 DD->getParent()->getNumVBases() == 0) 2909 GD = GlobalDecl(DD, Dtor_Base); 2910 } 2911 2912 StringRef MangledName = getMangledName(GD); 2913 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2914 /*IsThunk=*/false, llvm::AttributeList(), 2915 IsForDefinition); 2916 } 2917 2918 static const FunctionDecl * 2919 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2920 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2921 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2922 2923 IdentifierInfo &CII = C.Idents.get(Name); 2924 for (const auto &Result : DC->lookup(&CII)) 2925 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2926 return FD; 2927 2928 if (!C.getLangOpts().CPlusPlus) 2929 return nullptr; 2930 2931 // Demangle the premangled name from getTerminateFn() 2932 IdentifierInfo &CXXII = 2933 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2934 ? C.Idents.get("terminate") 2935 : C.Idents.get(Name); 2936 2937 for (const auto &N : {"__cxxabiv1", "std"}) { 2938 IdentifierInfo &NS = C.Idents.get(N); 2939 for (const auto &Result : DC->lookup(&NS)) { 2940 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2941 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2942 for (const auto &Result : LSD->lookup(&NS)) 2943 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2944 break; 2945 2946 if (ND) 2947 for (const auto &Result : ND->lookup(&CXXII)) 2948 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2949 return FD; 2950 } 2951 } 2952 2953 return nullptr; 2954 } 2955 2956 /// CreateRuntimeFunction - Create a new runtime function with the specified 2957 /// type and name. 2958 llvm::Constant * 2959 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2960 llvm::AttributeList ExtraAttrs, 2961 bool Local) { 2962 llvm::Constant *C = 2963 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2964 /*DontDefer=*/false, /*IsThunk=*/false, 2965 ExtraAttrs); 2966 2967 if (auto *F = dyn_cast<llvm::Function>(C)) { 2968 if (F->empty()) { 2969 F->setCallingConv(getRuntimeCC()); 2970 2971 if (!Local && getTriple().isOSBinFormatCOFF() && 2972 !getCodeGenOpts().LTOVisibilityPublicStd && 2973 !getTriple().isWindowsGNUEnvironment()) { 2974 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2975 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2976 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2977 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2978 } 2979 } 2980 setDSOLocal(F); 2981 } 2982 } 2983 2984 return C; 2985 } 2986 2987 /// CreateBuiltinFunction - Create a new builtin function with the specified 2988 /// type and name. 2989 llvm::Constant * 2990 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2991 llvm::AttributeList ExtraAttrs) { 2992 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2993 } 2994 2995 /// isTypeConstant - Determine whether an object of this type can be emitted 2996 /// as a constant. 2997 /// 2998 /// If ExcludeCtor is true, the duration when the object's constructor runs 2999 /// will not be considered. The caller will need to verify that the object is 3000 /// not written to during its construction. 3001 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3002 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3003 return false; 3004 3005 if (Context.getLangOpts().CPlusPlus) { 3006 if (const CXXRecordDecl *Record 3007 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3008 return ExcludeCtor && !Record->hasMutableFields() && 3009 Record->hasTrivialDestructor(); 3010 } 3011 3012 return true; 3013 } 3014 3015 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3016 /// create and return an llvm GlobalVariable with the specified type. If there 3017 /// is something in the module with the specified name, return it potentially 3018 /// bitcasted to the right type. 3019 /// 3020 /// If D is non-null, it specifies a decl that correspond to this. This is used 3021 /// to set the attributes on the global when it is first created. 3022 /// 3023 /// If IsForDefinition is true, it is guaranteed that an actual global with 3024 /// type Ty will be returned, not conversion of a variable with the same 3025 /// mangled name but some other type. 3026 llvm::Constant * 3027 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3028 llvm::PointerType *Ty, 3029 const VarDecl *D, 3030 ForDefinition_t IsForDefinition) { 3031 // Lookup the entry, lazily creating it if necessary. 3032 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3033 if (Entry) { 3034 if (WeakRefReferences.erase(Entry)) { 3035 if (D && !D->hasAttr<WeakAttr>()) 3036 Entry->setLinkage(llvm::Function::ExternalLinkage); 3037 } 3038 3039 // Handle dropped DLL attributes. 3040 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3041 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3042 3043 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3044 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3045 3046 if (Entry->getType() == Ty) 3047 return Entry; 3048 3049 // If there are two attempts to define the same mangled name, issue an 3050 // error. 3051 if (IsForDefinition && !Entry->isDeclaration()) { 3052 GlobalDecl OtherGD; 3053 const VarDecl *OtherD; 3054 3055 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3056 // to make sure that we issue an error only once. 3057 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3058 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3059 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3060 OtherD->hasInit() && 3061 DiagnosedConflictingDefinitions.insert(D).second) { 3062 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3063 << MangledName; 3064 getDiags().Report(OtherGD.getDecl()->getLocation(), 3065 diag::note_previous_definition); 3066 } 3067 } 3068 3069 // Make sure the result is of the correct type. 3070 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3071 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3072 3073 // (If global is requested for a definition, we always need to create a new 3074 // global, not just return a bitcast.) 3075 if (!IsForDefinition) 3076 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3077 } 3078 3079 auto AddrSpace = GetGlobalVarAddressSpace(D); 3080 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3081 3082 auto *GV = new llvm::GlobalVariable( 3083 getModule(), Ty->getElementType(), false, 3084 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3085 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3086 3087 // If we already created a global with the same mangled name (but different 3088 // type) before, take its name and remove it from its parent. 3089 if (Entry) { 3090 GV->takeName(Entry); 3091 3092 if (!Entry->use_empty()) { 3093 llvm::Constant *NewPtrForOldDecl = 3094 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3095 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3096 } 3097 3098 Entry->eraseFromParent(); 3099 } 3100 3101 // This is the first use or definition of a mangled name. If there is a 3102 // deferred decl with this name, remember that we need to emit it at the end 3103 // of the file. 3104 auto DDI = DeferredDecls.find(MangledName); 3105 if (DDI != DeferredDecls.end()) { 3106 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3107 // list, and remove it from DeferredDecls (since we don't need it anymore). 3108 addDeferredDeclToEmit(DDI->second); 3109 DeferredDecls.erase(DDI); 3110 } 3111 3112 // Handle things which are present even on external declarations. 3113 if (D) { 3114 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3115 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3116 3117 // FIXME: This code is overly simple and should be merged with other global 3118 // handling. 3119 GV->setConstant(isTypeConstant(D->getType(), false)); 3120 3121 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3122 3123 setLinkageForGV(GV, D); 3124 3125 if (D->getTLSKind()) { 3126 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3127 CXXThreadLocals.push_back(D); 3128 setTLSMode(GV, *D); 3129 } 3130 3131 setGVProperties(GV, D); 3132 3133 // If required by the ABI, treat declarations of static data members with 3134 // inline initializers as definitions. 3135 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3136 EmitGlobalVarDefinition(D); 3137 } 3138 3139 // Emit section information for extern variables. 3140 if (D->hasExternalStorage()) { 3141 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3142 GV->setSection(SA->getName()); 3143 } 3144 3145 // Handle XCore specific ABI requirements. 3146 if (getTriple().getArch() == llvm::Triple::xcore && 3147 D->getLanguageLinkage() == CLanguageLinkage && 3148 D->getType().isConstant(Context) && 3149 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3150 GV->setSection(".cp.rodata"); 3151 3152 // Check if we a have a const declaration with an initializer, we may be 3153 // able to emit it as available_externally to expose it's value to the 3154 // optimizer. 3155 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3156 D->getType().isConstQualified() && !GV->hasInitializer() && 3157 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3158 const auto *Record = 3159 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3160 bool HasMutableFields = Record && Record->hasMutableFields(); 3161 if (!HasMutableFields) { 3162 const VarDecl *InitDecl; 3163 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3164 if (InitExpr) { 3165 ConstantEmitter emitter(*this); 3166 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3167 if (Init) { 3168 auto *InitType = Init->getType(); 3169 if (GV->getType()->getElementType() != InitType) { 3170 // The type of the initializer does not match the definition. 3171 // This happens when an initializer has a different type from 3172 // the type of the global (because of padding at the end of a 3173 // structure for instance). 3174 GV->setName(StringRef()); 3175 // Make a new global with the correct type, this is now guaranteed 3176 // to work. 3177 auto *NewGV = cast<llvm::GlobalVariable>( 3178 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3179 3180 // Erase the old global, since it is no longer used. 3181 GV->eraseFromParent(); 3182 GV = NewGV; 3183 } else { 3184 GV->setInitializer(Init); 3185 GV->setConstant(true); 3186 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3187 } 3188 emitter.finalize(GV); 3189 } 3190 } 3191 } 3192 } 3193 } 3194 3195 LangAS ExpectedAS = 3196 D ? D->getType().getAddressSpace() 3197 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3198 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3199 Ty->getPointerAddressSpace()); 3200 if (AddrSpace != ExpectedAS) 3201 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3202 ExpectedAS, Ty); 3203 3204 return GV; 3205 } 3206 3207 llvm::Constant * 3208 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3209 ForDefinition_t IsForDefinition) { 3210 const Decl *D = GD.getDecl(); 3211 if (isa<CXXConstructorDecl>(D)) 3212 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3213 getFromCtorType(GD.getCtorType()), 3214 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3215 /*DontDefer=*/false, IsForDefinition); 3216 else if (isa<CXXDestructorDecl>(D)) 3217 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3218 getFromDtorType(GD.getDtorType()), 3219 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3220 /*DontDefer=*/false, IsForDefinition); 3221 else if (isa<CXXMethodDecl>(D)) { 3222 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3223 cast<CXXMethodDecl>(D)); 3224 auto Ty = getTypes().GetFunctionType(*FInfo); 3225 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3226 IsForDefinition); 3227 } else if (isa<FunctionDecl>(D)) { 3228 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3229 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3230 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3231 IsForDefinition); 3232 } else 3233 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3234 IsForDefinition); 3235 } 3236 3237 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3238 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3239 unsigned Alignment) { 3240 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3241 llvm::GlobalVariable *OldGV = nullptr; 3242 3243 if (GV) { 3244 // Check if the variable has the right type. 3245 if (GV->getType()->getElementType() == Ty) 3246 return GV; 3247 3248 // Because C++ name mangling, the only way we can end up with an already 3249 // existing global with the same name is if it has been declared extern "C". 3250 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3251 OldGV = GV; 3252 } 3253 3254 // Create a new variable. 3255 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3256 Linkage, nullptr, Name); 3257 3258 if (OldGV) { 3259 // Replace occurrences of the old variable if needed. 3260 GV->takeName(OldGV); 3261 3262 if (!OldGV->use_empty()) { 3263 llvm::Constant *NewPtrForOldDecl = 3264 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3265 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3266 } 3267 3268 OldGV->eraseFromParent(); 3269 } 3270 3271 if (supportsCOMDAT() && GV->isWeakForLinker() && 3272 !GV->hasAvailableExternallyLinkage()) 3273 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3274 3275 GV->setAlignment(Alignment); 3276 3277 return GV; 3278 } 3279 3280 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3281 /// given global variable. If Ty is non-null and if the global doesn't exist, 3282 /// then it will be created with the specified type instead of whatever the 3283 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3284 /// that an actual global with type Ty will be returned, not conversion of a 3285 /// variable with the same mangled name but some other type. 3286 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3287 llvm::Type *Ty, 3288 ForDefinition_t IsForDefinition) { 3289 assert(D->hasGlobalStorage() && "Not a global variable"); 3290 QualType ASTTy = D->getType(); 3291 if (!Ty) 3292 Ty = getTypes().ConvertTypeForMem(ASTTy); 3293 3294 llvm::PointerType *PTy = 3295 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3296 3297 StringRef MangledName = getMangledName(D); 3298 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3299 } 3300 3301 /// CreateRuntimeVariable - Create a new runtime global variable with the 3302 /// specified type and name. 3303 llvm::Constant * 3304 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3305 StringRef Name) { 3306 auto *Ret = 3307 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3308 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3309 return Ret; 3310 } 3311 3312 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3313 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3314 3315 StringRef MangledName = getMangledName(D); 3316 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3317 3318 // We already have a definition, not declaration, with the same mangled name. 3319 // Emitting of declaration is not required (and actually overwrites emitted 3320 // definition). 3321 if (GV && !GV->isDeclaration()) 3322 return; 3323 3324 // If we have not seen a reference to this variable yet, place it into the 3325 // deferred declarations table to be emitted if needed later. 3326 if (!MustBeEmitted(D) && !GV) { 3327 DeferredDecls[MangledName] = D; 3328 return; 3329 } 3330 3331 // The tentative definition is the only definition. 3332 EmitGlobalVarDefinition(D); 3333 } 3334 3335 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3336 return Context.toCharUnitsFromBits( 3337 getDataLayout().getTypeStoreSizeInBits(Ty)); 3338 } 3339 3340 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3341 LangAS AddrSpace = LangAS::Default; 3342 if (LangOpts.OpenCL) { 3343 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3344 assert(AddrSpace == LangAS::opencl_global || 3345 AddrSpace == LangAS::opencl_constant || 3346 AddrSpace == LangAS::opencl_local || 3347 AddrSpace >= LangAS::FirstTargetAddressSpace); 3348 return AddrSpace; 3349 } 3350 3351 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3352 if (D && D->hasAttr<CUDAConstantAttr>()) 3353 return LangAS::cuda_constant; 3354 else if (D && D->hasAttr<CUDASharedAttr>()) 3355 return LangAS::cuda_shared; 3356 else if (D && D->hasAttr<CUDADeviceAttr>()) 3357 return LangAS::cuda_device; 3358 else if (D && D->getType().isConstQualified()) 3359 return LangAS::cuda_constant; 3360 else 3361 return LangAS::cuda_device; 3362 } 3363 3364 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3365 } 3366 3367 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3368 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3369 if (LangOpts.OpenCL) 3370 return LangAS::opencl_constant; 3371 if (auto AS = getTarget().getConstantAddressSpace()) 3372 return AS.getValue(); 3373 return LangAS::Default; 3374 } 3375 3376 // In address space agnostic languages, string literals are in default address 3377 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3378 // emitted in constant address space in LLVM IR. To be consistent with other 3379 // parts of AST, string literal global variables in constant address space 3380 // need to be casted to default address space before being put into address 3381 // map and referenced by other part of CodeGen. 3382 // In OpenCL, string literals are in constant address space in AST, therefore 3383 // they should not be casted to default address space. 3384 static llvm::Constant * 3385 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3386 llvm::GlobalVariable *GV) { 3387 llvm::Constant *Cast = GV; 3388 if (!CGM.getLangOpts().OpenCL) { 3389 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3390 if (AS != LangAS::Default) 3391 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3392 CGM, GV, AS.getValue(), LangAS::Default, 3393 GV->getValueType()->getPointerTo( 3394 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3395 } 3396 } 3397 return Cast; 3398 } 3399 3400 template<typename SomeDecl> 3401 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3402 llvm::GlobalValue *GV) { 3403 if (!getLangOpts().CPlusPlus) 3404 return; 3405 3406 // Must have 'used' attribute, or else inline assembly can't rely on 3407 // the name existing. 3408 if (!D->template hasAttr<UsedAttr>()) 3409 return; 3410 3411 // Must have internal linkage and an ordinary name. 3412 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3413 return; 3414 3415 // Must be in an extern "C" context. Entities declared directly within 3416 // a record are not extern "C" even if the record is in such a context. 3417 const SomeDecl *First = D->getFirstDecl(); 3418 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3419 return; 3420 3421 // OK, this is an internal linkage entity inside an extern "C" linkage 3422 // specification. Make a note of that so we can give it the "expected" 3423 // mangled name if nothing else is using that name. 3424 std::pair<StaticExternCMap::iterator, bool> R = 3425 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3426 3427 // If we have multiple internal linkage entities with the same name 3428 // in extern "C" regions, none of them gets that name. 3429 if (!R.second) 3430 R.first->second = nullptr; 3431 } 3432 3433 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3434 if (!CGM.supportsCOMDAT()) 3435 return false; 3436 3437 if (D.hasAttr<SelectAnyAttr>()) 3438 return true; 3439 3440 GVALinkage Linkage; 3441 if (auto *VD = dyn_cast<VarDecl>(&D)) 3442 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3443 else 3444 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3445 3446 switch (Linkage) { 3447 case GVA_Internal: 3448 case GVA_AvailableExternally: 3449 case GVA_StrongExternal: 3450 return false; 3451 case GVA_DiscardableODR: 3452 case GVA_StrongODR: 3453 return true; 3454 } 3455 llvm_unreachable("No such linkage"); 3456 } 3457 3458 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3459 llvm::GlobalObject &GO) { 3460 if (!shouldBeInCOMDAT(*this, D)) 3461 return; 3462 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3463 } 3464 3465 /// Pass IsTentative as true if you want to create a tentative definition. 3466 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3467 bool IsTentative) { 3468 // OpenCL global variables of sampler type are translated to function calls, 3469 // therefore no need to be translated. 3470 QualType ASTTy = D->getType(); 3471 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3472 return; 3473 3474 // If this is OpenMP device, check if it is legal to emit this global 3475 // normally. 3476 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3477 OpenMPRuntime->emitTargetGlobalVariable(D)) 3478 return; 3479 3480 llvm::Constant *Init = nullptr; 3481 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3482 bool NeedsGlobalCtor = false; 3483 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3484 3485 const VarDecl *InitDecl; 3486 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3487 3488 Optional<ConstantEmitter> emitter; 3489 3490 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3491 // as part of their declaration." Sema has already checked for 3492 // error cases, so we just need to set Init to UndefValue. 3493 bool IsCUDASharedVar = 3494 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3495 // Shadows of initialized device-side global variables are also left 3496 // undefined. 3497 bool IsCUDAShadowVar = 3498 !getLangOpts().CUDAIsDevice && 3499 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3500 D->hasAttr<CUDASharedAttr>()); 3501 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3502 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3503 else if (!InitExpr) { 3504 // This is a tentative definition; tentative definitions are 3505 // implicitly initialized with { 0 }. 3506 // 3507 // Note that tentative definitions are only emitted at the end of 3508 // a translation unit, so they should never have incomplete 3509 // type. In addition, EmitTentativeDefinition makes sure that we 3510 // never attempt to emit a tentative definition if a real one 3511 // exists. A use may still exists, however, so we still may need 3512 // to do a RAUW. 3513 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3514 Init = EmitNullConstant(D->getType()); 3515 } else { 3516 initializedGlobalDecl = GlobalDecl(D); 3517 emitter.emplace(*this); 3518 Init = emitter->tryEmitForInitializer(*InitDecl); 3519 3520 if (!Init) { 3521 QualType T = InitExpr->getType(); 3522 if (D->getType()->isReferenceType()) 3523 T = D->getType(); 3524 3525 if (getLangOpts().CPlusPlus) { 3526 Init = EmitNullConstant(T); 3527 NeedsGlobalCtor = true; 3528 } else { 3529 ErrorUnsupported(D, "static initializer"); 3530 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3531 } 3532 } else { 3533 // We don't need an initializer, so remove the entry for the delayed 3534 // initializer position (just in case this entry was delayed) if we 3535 // also don't need to register a destructor. 3536 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3537 DelayedCXXInitPosition.erase(D); 3538 } 3539 } 3540 3541 llvm::Type* InitType = Init->getType(); 3542 llvm::Constant *Entry = 3543 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3544 3545 // Strip off a bitcast if we got one back. 3546 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3547 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3548 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3549 // All zero index gep. 3550 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3551 Entry = CE->getOperand(0); 3552 } 3553 3554 // Entry is now either a Function or GlobalVariable. 3555 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3556 3557 // We have a definition after a declaration with the wrong type. 3558 // We must make a new GlobalVariable* and update everything that used OldGV 3559 // (a declaration or tentative definition) with the new GlobalVariable* 3560 // (which will be a definition). 3561 // 3562 // This happens if there is a prototype for a global (e.g. 3563 // "extern int x[];") and then a definition of a different type (e.g. 3564 // "int x[10];"). This also happens when an initializer has a different type 3565 // from the type of the global (this happens with unions). 3566 if (!GV || GV->getType()->getElementType() != InitType || 3567 GV->getType()->getAddressSpace() != 3568 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3569 3570 // Move the old entry aside so that we'll create a new one. 3571 Entry->setName(StringRef()); 3572 3573 // Make a new global with the correct type, this is now guaranteed to work. 3574 GV = cast<llvm::GlobalVariable>( 3575 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3576 3577 // Replace all uses of the old global with the new global 3578 llvm::Constant *NewPtrForOldDecl = 3579 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3580 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3581 3582 // Erase the old global, since it is no longer used. 3583 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3584 } 3585 3586 MaybeHandleStaticInExternC(D, GV); 3587 3588 if (D->hasAttr<AnnotateAttr>()) 3589 AddGlobalAnnotations(D, GV); 3590 3591 // Set the llvm linkage type as appropriate. 3592 llvm::GlobalValue::LinkageTypes Linkage = 3593 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3594 3595 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3596 // the device. [...]" 3597 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3598 // __device__, declares a variable that: [...] 3599 // Is accessible from all the threads within the grid and from the host 3600 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3601 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3602 if (GV && LangOpts.CUDA) { 3603 if (LangOpts.CUDAIsDevice) { 3604 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3605 GV->setExternallyInitialized(true); 3606 } else { 3607 // Host-side shadows of external declarations of device-side 3608 // global variables become internal definitions. These have to 3609 // be internal in order to prevent name conflicts with global 3610 // host variables with the same name in a different TUs. 3611 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3612 Linkage = llvm::GlobalValue::InternalLinkage; 3613 3614 // Shadow variables and their properties must be registered 3615 // with CUDA runtime. 3616 unsigned Flags = 0; 3617 if (!D->hasDefinition()) 3618 Flags |= CGCUDARuntime::ExternDeviceVar; 3619 if (D->hasAttr<CUDAConstantAttr>()) 3620 Flags |= CGCUDARuntime::ConstantDeviceVar; 3621 // Extern global variables will be registered in the TU where they are 3622 // defined. 3623 if (!D->hasExternalStorage()) 3624 getCUDARuntime().registerDeviceVar(*GV, Flags); 3625 } else if (D->hasAttr<CUDASharedAttr>()) 3626 // __shared__ variables are odd. Shadows do get created, but 3627 // they are not registered with the CUDA runtime, so they 3628 // can't really be used to access their device-side 3629 // counterparts. It's not clear yet whether it's nvcc's bug or 3630 // a feature, but we've got to do the same for compatibility. 3631 Linkage = llvm::GlobalValue::InternalLinkage; 3632 } 3633 } 3634 3635 GV->setInitializer(Init); 3636 if (emitter) emitter->finalize(GV); 3637 3638 // If it is safe to mark the global 'constant', do so now. 3639 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3640 isTypeConstant(D->getType(), true)); 3641 3642 // If it is in a read-only section, mark it 'constant'. 3643 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3644 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3645 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3646 GV->setConstant(true); 3647 } 3648 3649 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3650 3651 3652 // On Darwin, if the normal linkage of a C++ thread_local variable is 3653 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3654 // copies within a linkage unit; otherwise, the backing variable has 3655 // internal linkage and all accesses should just be calls to the 3656 // Itanium-specified entry point, which has the normal linkage of the 3657 // variable. This is to preserve the ability to change the implementation 3658 // behind the scenes. 3659 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3660 Context.getTargetInfo().getTriple().isOSDarwin() && 3661 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3662 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3663 Linkage = llvm::GlobalValue::InternalLinkage; 3664 3665 GV->setLinkage(Linkage); 3666 if (D->hasAttr<DLLImportAttr>()) 3667 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3668 else if (D->hasAttr<DLLExportAttr>()) 3669 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3670 else 3671 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3672 3673 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3674 // common vars aren't constant even if declared const. 3675 GV->setConstant(false); 3676 // Tentative definition of global variables may be initialized with 3677 // non-zero null pointers. In this case they should have weak linkage 3678 // since common linkage must have zero initializer and must not have 3679 // explicit section therefore cannot have non-zero initial value. 3680 if (!GV->getInitializer()->isNullValue()) 3681 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3682 } 3683 3684 setNonAliasAttributes(D, GV); 3685 3686 if (D->getTLSKind() && !GV->isThreadLocal()) { 3687 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3688 CXXThreadLocals.push_back(D); 3689 setTLSMode(GV, *D); 3690 } 3691 3692 maybeSetTrivialComdat(*D, *GV); 3693 3694 // Emit the initializer function if necessary. 3695 if (NeedsGlobalCtor || NeedsGlobalDtor) 3696 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3697 3698 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3699 3700 // Emit global variable debug information. 3701 if (CGDebugInfo *DI = getModuleDebugInfo()) 3702 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3703 DI->EmitGlobalVariable(GV, D); 3704 } 3705 3706 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3707 CodeGenModule &CGM, const VarDecl *D, 3708 bool NoCommon) { 3709 // Don't give variables common linkage if -fno-common was specified unless it 3710 // was overridden by a NoCommon attribute. 3711 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3712 return true; 3713 3714 // C11 6.9.2/2: 3715 // A declaration of an identifier for an object that has file scope without 3716 // an initializer, and without a storage-class specifier or with the 3717 // storage-class specifier static, constitutes a tentative definition. 3718 if (D->getInit() || D->hasExternalStorage()) 3719 return true; 3720 3721 // A variable cannot be both common and exist in a section. 3722 if (D->hasAttr<SectionAttr>()) 3723 return true; 3724 3725 // A variable cannot be both common and exist in a section. 3726 // We don't try to determine which is the right section in the front-end. 3727 // If no specialized section name is applicable, it will resort to default. 3728 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3729 D->hasAttr<PragmaClangDataSectionAttr>() || 3730 D->hasAttr<PragmaClangRodataSectionAttr>()) 3731 return true; 3732 3733 // Thread local vars aren't considered common linkage. 3734 if (D->getTLSKind()) 3735 return true; 3736 3737 // Tentative definitions marked with WeakImportAttr are true definitions. 3738 if (D->hasAttr<WeakImportAttr>()) 3739 return true; 3740 3741 // A variable cannot be both common and exist in a comdat. 3742 if (shouldBeInCOMDAT(CGM, *D)) 3743 return true; 3744 3745 // Declarations with a required alignment do not have common linkage in MSVC 3746 // mode. 3747 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3748 if (D->hasAttr<AlignedAttr>()) 3749 return true; 3750 QualType VarType = D->getType(); 3751 if (Context.isAlignmentRequired(VarType)) 3752 return true; 3753 3754 if (const auto *RT = VarType->getAs<RecordType>()) { 3755 const RecordDecl *RD = RT->getDecl(); 3756 for (const FieldDecl *FD : RD->fields()) { 3757 if (FD->isBitField()) 3758 continue; 3759 if (FD->hasAttr<AlignedAttr>()) 3760 return true; 3761 if (Context.isAlignmentRequired(FD->getType())) 3762 return true; 3763 } 3764 } 3765 } 3766 3767 // Microsoft's link.exe doesn't support alignments greater than 32 for common 3768 // symbols, so symbols with greater alignment requirements cannot be common. 3769 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 3770 // alignments for common symbols via the aligncomm directive, so this 3771 // restriction only applies to MSVC environments. 3772 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 3773 Context.getTypeAlignIfKnown(D->getType()) > 32) 3774 return true; 3775 3776 return false; 3777 } 3778 3779 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3780 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3781 if (Linkage == GVA_Internal) 3782 return llvm::Function::InternalLinkage; 3783 3784 if (D->hasAttr<WeakAttr>()) { 3785 if (IsConstantVariable) 3786 return llvm::GlobalVariable::WeakODRLinkage; 3787 else 3788 return llvm::GlobalVariable::WeakAnyLinkage; 3789 } 3790 3791 if (const auto *FD = D->getAsFunction()) 3792 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3793 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3794 3795 // We are guaranteed to have a strong definition somewhere else, 3796 // so we can use available_externally linkage. 3797 if (Linkage == GVA_AvailableExternally) 3798 return llvm::GlobalValue::AvailableExternallyLinkage; 3799 3800 // Note that Apple's kernel linker doesn't support symbol 3801 // coalescing, so we need to avoid linkonce and weak linkages there. 3802 // Normally, this means we just map to internal, but for explicit 3803 // instantiations we'll map to external. 3804 3805 // In C++, the compiler has to emit a definition in every translation unit 3806 // that references the function. We should use linkonce_odr because 3807 // a) if all references in this translation unit are optimized away, we 3808 // don't need to codegen it. b) if the function persists, it needs to be 3809 // merged with other definitions. c) C++ has the ODR, so we know the 3810 // definition is dependable. 3811 if (Linkage == GVA_DiscardableODR) 3812 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3813 : llvm::Function::InternalLinkage; 3814 3815 // An explicit instantiation of a template has weak linkage, since 3816 // explicit instantiations can occur in multiple translation units 3817 // and must all be equivalent. However, we are not allowed to 3818 // throw away these explicit instantiations. 3819 // 3820 // We don't currently support CUDA device code spread out across multiple TUs, 3821 // so say that CUDA templates are either external (for kernels) or internal. 3822 // This lets llvm perform aggressive inter-procedural optimizations. 3823 if (Linkage == GVA_StrongODR) { 3824 if (Context.getLangOpts().AppleKext) 3825 return llvm::Function::ExternalLinkage; 3826 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3827 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3828 : llvm::Function::InternalLinkage; 3829 return llvm::Function::WeakODRLinkage; 3830 } 3831 3832 // C++ doesn't have tentative definitions and thus cannot have common 3833 // linkage. 3834 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3835 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3836 CodeGenOpts.NoCommon)) 3837 return llvm::GlobalVariable::CommonLinkage; 3838 3839 // selectany symbols are externally visible, so use weak instead of 3840 // linkonce. MSVC optimizes away references to const selectany globals, so 3841 // all definitions should be the same and ODR linkage should be used. 3842 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3843 if (D->hasAttr<SelectAnyAttr>()) 3844 return llvm::GlobalVariable::WeakODRLinkage; 3845 3846 // Otherwise, we have strong external linkage. 3847 assert(Linkage == GVA_StrongExternal); 3848 return llvm::GlobalVariable::ExternalLinkage; 3849 } 3850 3851 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3852 const VarDecl *VD, bool IsConstant) { 3853 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3854 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3855 } 3856 3857 /// Replace the uses of a function that was declared with a non-proto type. 3858 /// We want to silently drop extra arguments from call sites 3859 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3860 llvm::Function *newFn) { 3861 // Fast path. 3862 if (old->use_empty()) return; 3863 3864 llvm::Type *newRetTy = newFn->getReturnType(); 3865 SmallVector<llvm::Value*, 4> newArgs; 3866 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3867 3868 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3869 ui != ue; ) { 3870 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3871 llvm::User *user = use->getUser(); 3872 3873 // Recognize and replace uses of bitcasts. Most calls to 3874 // unprototyped functions will use bitcasts. 3875 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3876 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3877 replaceUsesOfNonProtoConstant(bitcast, newFn); 3878 continue; 3879 } 3880 3881 // Recognize calls to the function. 3882 llvm::CallSite callSite(user); 3883 if (!callSite) continue; 3884 if (!callSite.isCallee(&*use)) continue; 3885 3886 // If the return types don't match exactly, then we can't 3887 // transform this call unless it's dead. 3888 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3889 continue; 3890 3891 // Get the call site's attribute list. 3892 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3893 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3894 3895 // If the function was passed too few arguments, don't transform. 3896 unsigned newNumArgs = newFn->arg_size(); 3897 if (callSite.arg_size() < newNumArgs) continue; 3898 3899 // If extra arguments were passed, we silently drop them. 3900 // If any of the types mismatch, we don't transform. 3901 unsigned argNo = 0; 3902 bool dontTransform = false; 3903 for (llvm::Argument &A : newFn->args()) { 3904 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3905 dontTransform = true; 3906 break; 3907 } 3908 3909 // Add any parameter attributes. 3910 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3911 argNo++; 3912 } 3913 if (dontTransform) 3914 continue; 3915 3916 // Okay, we can transform this. Create the new call instruction and copy 3917 // over the required information. 3918 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3919 3920 // Copy over any operand bundles. 3921 callSite.getOperandBundlesAsDefs(newBundles); 3922 3923 llvm::CallSite newCall; 3924 if (callSite.isCall()) { 3925 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3926 callSite.getInstruction()); 3927 } else { 3928 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3929 newCall = llvm::InvokeInst::Create(newFn, 3930 oldInvoke->getNormalDest(), 3931 oldInvoke->getUnwindDest(), 3932 newArgs, newBundles, "", 3933 callSite.getInstruction()); 3934 } 3935 newArgs.clear(); // for the next iteration 3936 3937 if (!newCall->getType()->isVoidTy()) 3938 newCall->takeName(callSite.getInstruction()); 3939 newCall.setAttributes(llvm::AttributeList::get( 3940 newFn->getContext(), oldAttrs.getFnAttributes(), 3941 oldAttrs.getRetAttributes(), newArgAttrs)); 3942 newCall.setCallingConv(callSite.getCallingConv()); 3943 3944 // Finally, remove the old call, replacing any uses with the new one. 3945 if (!callSite->use_empty()) 3946 callSite->replaceAllUsesWith(newCall.getInstruction()); 3947 3948 // Copy debug location attached to CI. 3949 if (callSite->getDebugLoc()) 3950 newCall->setDebugLoc(callSite->getDebugLoc()); 3951 3952 callSite->eraseFromParent(); 3953 } 3954 } 3955 3956 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3957 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3958 /// existing call uses of the old function in the module, this adjusts them to 3959 /// call the new function directly. 3960 /// 3961 /// This is not just a cleanup: the always_inline pass requires direct calls to 3962 /// functions to be able to inline them. If there is a bitcast in the way, it 3963 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3964 /// run at -O0. 3965 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3966 llvm::Function *NewFn) { 3967 // If we're redefining a global as a function, don't transform it. 3968 if (!isa<llvm::Function>(Old)) return; 3969 3970 replaceUsesOfNonProtoConstant(Old, NewFn); 3971 } 3972 3973 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3974 auto DK = VD->isThisDeclarationADefinition(); 3975 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3976 return; 3977 3978 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3979 // If we have a definition, this might be a deferred decl. If the 3980 // instantiation is explicit, make sure we emit it at the end. 3981 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3982 GetAddrOfGlobalVar(VD); 3983 3984 EmitTopLevelDecl(VD); 3985 } 3986 3987 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3988 llvm::GlobalValue *GV) { 3989 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3990 3991 // Compute the function info and LLVM type. 3992 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3993 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3994 3995 // Get or create the prototype for the function. 3996 if (!GV || (GV->getType()->getElementType() != Ty)) 3997 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3998 /*DontDefer=*/true, 3999 ForDefinition)); 4000 4001 // Already emitted. 4002 if (!GV->isDeclaration()) 4003 return; 4004 4005 // We need to set linkage and visibility on the function before 4006 // generating code for it because various parts of IR generation 4007 // want to propagate this information down (e.g. to local static 4008 // declarations). 4009 auto *Fn = cast<llvm::Function>(GV); 4010 setFunctionLinkage(GD, Fn); 4011 4012 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4013 setGVProperties(Fn, GD); 4014 4015 MaybeHandleStaticInExternC(D, Fn); 4016 4017 4018 maybeSetTrivialComdat(*D, *Fn); 4019 4020 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4021 4022 setNonAliasAttributes(GD, Fn); 4023 SetLLVMFunctionAttributesForDefinition(D, Fn); 4024 4025 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4026 AddGlobalCtor(Fn, CA->getPriority()); 4027 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4028 AddGlobalDtor(Fn, DA->getPriority()); 4029 if (D->hasAttr<AnnotateAttr>()) 4030 AddGlobalAnnotations(D, Fn); 4031 } 4032 4033 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4034 const auto *D = cast<ValueDecl>(GD.getDecl()); 4035 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4036 assert(AA && "Not an alias?"); 4037 4038 StringRef MangledName = getMangledName(GD); 4039 4040 if (AA->getAliasee() == MangledName) { 4041 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4042 return; 4043 } 4044 4045 // If there is a definition in the module, then it wins over the alias. 4046 // This is dubious, but allow it to be safe. Just ignore the alias. 4047 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4048 if (Entry && !Entry->isDeclaration()) 4049 return; 4050 4051 Aliases.push_back(GD); 4052 4053 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4054 4055 // Create a reference to the named value. This ensures that it is emitted 4056 // if a deferred decl. 4057 llvm::Constant *Aliasee; 4058 if (isa<llvm::FunctionType>(DeclTy)) 4059 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4060 /*ForVTable=*/false); 4061 else 4062 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4063 llvm::PointerType::getUnqual(DeclTy), 4064 /*D=*/nullptr); 4065 4066 // Create the new alias itself, but don't set a name yet. 4067 auto *GA = llvm::GlobalAlias::create( 4068 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4069 4070 if (Entry) { 4071 if (GA->getAliasee() == Entry) { 4072 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4073 return; 4074 } 4075 4076 assert(Entry->isDeclaration()); 4077 4078 // If there is a declaration in the module, then we had an extern followed 4079 // by the alias, as in: 4080 // extern int test6(); 4081 // ... 4082 // int test6() __attribute__((alias("test7"))); 4083 // 4084 // Remove it and replace uses of it with the alias. 4085 GA->takeName(Entry); 4086 4087 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4088 Entry->getType())); 4089 Entry->eraseFromParent(); 4090 } else { 4091 GA->setName(MangledName); 4092 } 4093 4094 // Set attributes which are particular to an alias; this is a 4095 // specialization of the attributes which may be set on a global 4096 // variable/function. 4097 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4098 D->isWeakImported()) { 4099 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4100 } 4101 4102 if (const auto *VD = dyn_cast<VarDecl>(D)) 4103 if (VD->getTLSKind()) 4104 setTLSMode(GA, *VD); 4105 4106 SetCommonAttributes(GD, GA); 4107 } 4108 4109 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4110 const auto *D = cast<ValueDecl>(GD.getDecl()); 4111 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4112 assert(IFA && "Not an ifunc?"); 4113 4114 StringRef MangledName = getMangledName(GD); 4115 4116 if (IFA->getResolver() == MangledName) { 4117 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4118 return; 4119 } 4120 4121 // Report an error if some definition overrides ifunc. 4122 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4123 if (Entry && !Entry->isDeclaration()) { 4124 GlobalDecl OtherGD; 4125 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4126 DiagnosedConflictingDefinitions.insert(GD).second) { 4127 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4128 << MangledName; 4129 Diags.Report(OtherGD.getDecl()->getLocation(), 4130 diag::note_previous_definition); 4131 } 4132 return; 4133 } 4134 4135 Aliases.push_back(GD); 4136 4137 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4138 llvm::Constant *Resolver = 4139 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4140 /*ForVTable=*/false); 4141 llvm::GlobalIFunc *GIF = 4142 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4143 "", Resolver, &getModule()); 4144 if (Entry) { 4145 if (GIF->getResolver() == Entry) { 4146 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4147 return; 4148 } 4149 assert(Entry->isDeclaration()); 4150 4151 // If there is a declaration in the module, then we had an extern followed 4152 // by the ifunc, as in: 4153 // extern int test(); 4154 // ... 4155 // int test() __attribute__((ifunc("resolver"))); 4156 // 4157 // Remove it and replace uses of it with the ifunc. 4158 GIF->takeName(Entry); 4159 4160 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4161 Entry->getType())); 4162 Entry->eraseFromParent(); 4163 } else 4164 GIF->setName(MangledName); 4165 4166 SetCommonAttributes(GD, GIF); 4167 } 4168 4169 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4170 ArrayRef<llvm::Type*> Tys) { 4171 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4172 Tys); 4173 } 4174 4175 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4176 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4177 const StringLiteral *Literal, bool TargetIsLSB, 4178 bool &IsUTF16, unsigned &StringLength) { 4179 StringRef String = Literal->getString(); 4180 unsigned NumBytes = String.size(); 4181 4182 // Check for simple case. 4183 if (!Literal->containsNonAsciiOrNull()) { 4184 StringLength = NumBytes; 4185 return *Map.insert(std::make_pair(String, nullptr)).first; 4186 } 4187 4188 // Otherwise, convert the UTF8 literals into a string of shorts. 4189 IsUTF16 = true; 4190 4191 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4192 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4193 llvm::UTF16 *ToPtr = &ToBuf[0]; 4194 4195 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4196 ToPtr + NumBytes, llvm::strictConversion); 4197 4198 // ConvertUTF8toUTF16 returns the length in ToPtr. 4199 StringLength = ToPtr - &ToBuf[0]; 4200 4201 // Add an explicit null. 4202 *ToPtr = 0; 4203 return *Map.insert(std::make_pair( 4204 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4205 (StringLength + 1) * 2), 4206 nullptr)).first; 4207 } 4208 4209 ConstantAddress 4210 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4211 unsigned StringLength = 0; 4212 bool isUTF16 = false; 4213 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4214 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4215 getDataLayout().isLittleEndian(), isUTF16, 4216 StringLength); 4217 4218 if (auto *C = Entry.second) 4219 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4220 4221 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4222 llvm::Constant *Zeros[] = { Zero, Zero }; 4223 4224 const ASTContext &Context = getContext(); 4225 const llvm::Triple &Triple = getTriple(); 4226 4227 const auto CFRuntime = getLangOpts().CFRuntime; 4228 const bool IsSwiftABI = 4229 static_cast<unsigned>(CFRuntime) >= 4230 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4231 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4232 4233 // If we don't already have it, get __CFConstantStringClassReference. 4234 if (!CFConstantStringClassRef) { 4235 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4236 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4237 Ty = llvm::ArrayType::get(Ty, 0); 4238 4239 switch (CFRuntime) { 4240 default: break; 4241 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4242 case LangOptions::CoreFoundationABI::Swift5_0: 4243 CFConstantStringClassName = 4244 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4245 : "$s10Foundation19_NSCFConstantStringCN"; 4246 Ty = IntPtrTy; 4247 break; 4248 case LangOptions::CoreFoundationABI::Swift4_2: 4249 CFConstantStringClassName = 4250 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4251 : "$S10Foundation19_NSCFConstantStringCN"; 4252 Ty = IntPtrTy; 4253 break; 4254 case LangOptions::CoreFoundationABI::Swift4_1: 4255 CFConstantStringClassName = 4256 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4257 : "__T010Foundation19_NSCFConstantStringCN"; 4258 Ty = IntPtrTy; 4259 break; 4260 } 4261 4262 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4263 4264 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4265 llvm::GlobalValue *GV = nullptr; 4266 4267 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4268 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4269 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4270 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4271 4272 const VarDecl *VD = nullptr; 4273 for (const auto &Result : DC->lookup(&II)) 4274 if ((VD = dyn_cast<VarDecl>(Result))) 4275 break; 4276 4277 if (Triple.isOSBinFormatELF()) { 4278 if (!VD) 4279 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4280 } else { 4281 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4282 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4283 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4284 else 4285 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4286 } 4287 4288 setDSOLocal(GV); 4289 } 4290 } 4291 4292 // Decay array -> ptr 4293 CFConstantStringClassRef = 4294 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4295 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4296 } 4297 4298 QualType CFTy = Context.getCFConstantStringType(); 4299 4300 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4301 4302 ConstantInitBuilder Builder(*this); 4303 auto Fields = Builder.beginStruct(STy); 4304 4305 // Class pointer. 4306 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4307 4308 // Flags. 4309 if (IsSwiftABI) { 4310 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4311 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4312 } else { 4313 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4314 } 4315 4316 // String pointer. 4317 llvm::Constant *C = nullptr; 4318 if (isUTF16) { 4319 auto Arr = llvm::makeArrayRef( 4320 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4321 Entry.first().size() / 2); 4322 C = llvm::ConstantDataArray::get(VMContext, Arr); 4323 } else { 4324 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4325 } 4326 4327 // Note: -fwritable-strings doesn't make the backing store strings of 4328 // CFStrings writable. (See <rdar://problem/10657500>) 4329 auto *GV = 4330 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4331 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4332 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4333 // Don't enforce the target's minimum global alignment, since the only use 4334 // of the string is via this class initializer. 4335 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4336 : Context.getTypeAlignInChars(Context.CharTy); 4337 GV->setAlignment(Align.getQuantity()); 4338 4339 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4340 // Without it LLVM can merge the string with a non unnamed_addr one during 4341 // LTO. Doing that changes the section it ends in, which surprises ld64. 4342 if (Triple.isOSBinFormatMachO()) 4343 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4344 : "__TEXT,__cstring,cstring_literals"); 4345 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4346 // the static linker to adjust permissions to read-only later on. 4347 else if (Triple.isOSBinFormatELF()) 4348 GV->setSection(".rodata"); 4349 4350 // String. 4351 llvm::Constant *Str = 4352 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4353 4354 if (isUTF16) 4355 // Cast the UTF16 string to the correct type. 4356 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4357 Fields.add(Str); 4358 4359 // String length. 4360 llvm::IntegerType *LengthTy = 4361 llvm::IntegerType::get(getModule().getContext(), 4362 Context.getTargetInfo().getLongWidth()); 4363 if (IsSwiftABI) { 4364 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4365 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4366 LengthTy = Int32Ty; 4367 else 4368 LengthTy = IntPtrTy; 4369 } 4370 Fields.addInt(LengthTy, StringLength); 4371 4372 CharUnits Alignment = getPointerAlign(); 4373 4374 // The struct. 4375 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4376 /*isConstant=*/false, 4377 llvm::GlobalVariable::PrivateLinkage); 4378 switch (Triple.getObjectFormat()) { 4379 case llvm::Triple::UnknownObjectFormat: 4380 llvm_unreachable("unknown file format"); 4381 case llvm::Triple::COFF: 4382 case llvm::Triple::ELF: 4383 case llvm::Triple::Wasm: 4384 GV->setSection("cfstring"); 4385 break; 4386 case llvm::Triple::MachO: 4387 GV->setSection("__DATA,__cfstring"); 4388 break; 4389 } 4390 Entry.second = GV; 4391 4392 return ConstantAddress(GV, Alignment); 4393 } 4394 4395 bool CodeGenModule::getExpressionLocationsEnabled() const { 4396 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4397 } 4398 4399 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4400 if (ObjCFastEnumerationStateType.isNull()) { 4401 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4402 D->startDefinition(); 4403 4404 QualType FieldTypes[] = { 4405 Context.UnsignedLongTy, 4406 Context.getPointerType(Context.getObjCIdType()), 4407 Context.getPointerType(Context.UnsignedLongTy), 4408 Context.getConstantArrayType(Context.UnsignedLongTy, 4409 llvm::APInt(32, 5), ArrayType::Normal, 0) 4410 }; 4411 4412 for (size_t i = 0; i < 4; ++i) { 4413 FieldDecl *Field = FieldDecl::Create(Context, 4414 D, 4415 SourceLocation(), 4416 SourceLocation(), nullptr, 4417 FieldTypes[i], /*TInfo=*/nullptr, 4418 /*BitWidth=*/nullptr, 4419 /*Mutable=*/false, 4420 ICIS_NoInit); 4421 Field->setAccess(AS_public); 4422 D->addDecl(Field); 4423 } 4424 4425 D->completeDefinition(); 4426 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4427 } 4428 4429 return ObjCFastEnumerationStateType; 4430 } 4431 4432 llvm::Constant * 4433 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4434 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4435 4436 // Don't emit it as the address of the string, emit the string data itself 4437 // as an inline array. 4438 if (E->getCharByteWidth() == 1) { 4439 SmallString<64> Str(E->getString()); 4440 4441 // Resize the string to the right size, which is indicated by its type. 4442 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4443 Str.resize(CAT->getSize().getZExtValue()); 4444 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4445 } 4446 4447 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4448 llvm::Type *ElemTy = AType->getElementType(); 4449 unsigned NumElements = AType->getNumElements(); 4450 4451 // Wide strings have either 2-byte or 4-byte elements. 4452 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4453 SmallVector<uint16_t, 32> Elements; 4454 Elements.reserve(NumElements); 4455 4456 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4457 Elements.push_back(E->getCodeUnit(i)); 4458 Elements.resize(NumElements); 4459 return llvm::ConstantDataArray::get(VMContext, Elements); 4460 } 4461 4462 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4463 SmallVector<uint32_t, 32> Elements; 4464 Elements.reserve(NumElements); 4465 4466 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4467 Elements.push_back(E->getCodeUnit(i)); 4468 Elements.resize(NumElements); 4469 return llvm::ConstantDataArray::get(VMContext, Elements); 4470 } 4471 4472 static llvm::GlobalVariable * 4473 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4474 CodeGenModule &CGM, StringRef GlobalName, 4475 CharUnits Alignment) { 4476 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4477 CGM.getStringLiteralAddressSpace()); 4478 4479 llvm::Module &M = CGM.getModule(); 4480 // Create a global variable for this string 4481 auto *GV = new llvm::GlobalVariable( 4482 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4483 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4484 GV->setAlignment(Alignment.getQuantity()); 4485 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4486 if (GV->isWeakForLinker()) { 4487 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4488 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4489 } 4490 CGM.setDSOLocal(GV); 4491 4492 return GV; 4493 } 4494 4495 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4496 /// constant array for the given string literal. 4497 ConstantAddress 4498 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4499 StringRef Name) { 4500 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4501 4502 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4503 llvm::GlobalVariable **Entry = nullptr; 4504 if (!LangOpts.WritableStrings) { 4505 Entry = &ConstantStringMap[C]; 4506 if (auto GV = *Entry) { 4507 if (Alignment.getQuantity() > GV->getAlignment()) 4508 GV->setAlignment(Alignment.getQuantity()); 4509 return ConstantAddress(GV, Alignment); 4510 } 4511 } 4512 4513 SmallString<256> MangledNameBuffer; 4514 StringRef GlobalVariableName; 4515 llvm::GlobalValue::LinkageTypes LT; 4516 4517 // Mangle the string literal if that's how the ABI merges duplicate strings. 4518 // Don't do it if they are writable, since we don't want writes in one TU to 4519 // affect strings in another. 4520 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4521 !LangOpts.WritableStrings) { 4522 llvm::raw_svector_ostream Out(MangledNameBuffer); 4523 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4524 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4525 GlobalVariableName = MangledNameBuffer; 4526 } else { 4527 LT = llvm::GlobalValue::PrivateLinkage; 4528 GlobalVariableName = Name; 4529 } 4530 4531 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4532 if (Entry) 4533 *Entry = GV; 4534 4535 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4536 QualType()); 4537 4538 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4539 Alignment); 4540 } 4541 4542 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4543 /// array for the given ObjCEncodeExpr node. 4544 ConstantAddress 4545 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4546 std::string Str; 4547 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4548 4549 return GetAddrOfConstantCString(Str); 4550 } 4551 4552 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4553 /// the literal and a terminating '\0' character. 4554 /// The result has pointer to array type. 4555 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4556 const std::string &Str, const char *GlobalName) { 4557 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4558 CharUnits Alignment = 4559 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4560 4561 llvm::Constant *C = 4562 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4563 4564 // Don't share any string literals if strings aren't constant. 4565 llvm::GlobalVariable **Entry = nullptr; 4566 if (!LangOpts.WritableStrings) { 4567 Entry = &ConstantStringMap[C]; 4568 if (auto GV = *Entry) { 4569 if (Alignment.getQuantity() > GV->getAlignment()) 4570 GV->setAlignment(Alignment.getQuantity()); 4571 return ConstantAddress(GV, Alignment); 4572 } 4573 } 4574 4575 // Get the default prefix if a name wasn't specified. 4576 if (!GlobalName) 4577 GlobalName = ".str"; 4578 // Create a global variable for this. 4579 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4580 GlobalName, Alignment); 4581 if (Entry) 4582 *Entry = GV; 4583 4584 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4585 Alignment); 4586 } 4587 4588 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4589 const MaterializeTemporaryExpr *E, const Expr *Init) { 4590 assert((E->getStorageDuration() == SD_Static || 4591 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4592 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4593 4594 // If we're not materializing a subobject of the temporary, keep the 4595 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4596 QualType MaterializedType = Init->getType(); 4597 if (Init == E->GetTemporaryExpr()) 4598 MaterializedType = E->getType(); 4599 4600 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4601 4602 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4603 return ConstantAddress(Slot, Align); 4604 4605 // FIXME: If an externally-visible declaration extends multiple temporaries, 4606 // we need to give each temporary the same name in every translation unit (and 4607 // we also need to make the temporaries externally-visible). 4608 SmallString<256> Name; 4609 llvm::raw_svector_ostream Out(Name); 4610 getCXXABI().getMangleContext().mangleReferenceTemporary( 4611 VD, E->getManglingNumber(), Out); 4612 4613 APValue *Value = nullptr; 4614 if (E->getStorageDuration() == SD_Static) { 4615 // We might have a cached constant initializer for this temporary. Note 4616 // that this might have a different value from the value computed by 4617 // evaluating the initializer if the surrounding constant expression 4618 // modifies the temporary. 4619 Value = getContext().getMaterializedTemporaryValue(E, false); 4620 if (Value && Value->isUninit()) 4621 Value = nullptr; 4622 } 4623 4624 // Try evaluating it now, it might have a constant initializer. 4625 Expr::EvalResult EvalResult; 4626 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4627 !EvalResult.hasSideEffects()) 4628 Value = &EvalResult.Val; 4629 4630 LangAS AddrSpace = 4631 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4632 4633 Optional<ConstantEmitter> emitter; 4634 llvm::Constant *InitialValue = nullptr; 4635 bool Constant = false; 4636 llvm::Type *Type; 4637 if (Value) { 4638 // The temporary has a constant initializer, use it. 4639 emitter.emplace(*this); 4640 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4641 MaterializedType); 4642 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4643 Type = InitialValue->getType(); 4644 } else { 4645 // No initializer, the initialization will be provided when we 4646 // initialize the declaration which performed lifetime extension. 4647 Type = getTypes().ConvertTypeForMem(MaterializedType); 4648 } 4649 4650 // Create a global variable for this lifetime-extended temporary. 4651 llvm::GlobalValue::LinkageTypes Linkage = 4652 getLLVMLinkageVarDefinition(VD, Constant); 4653 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4654 const VarDecl *InitVD; 4655 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4656 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4657 // Temporaries defined inside a class get linkonce_odr linkage because the 4658 // class can be defined in multiple translation units. 4659 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4660 } else { 4661 // There is no need for this temporary to have external linkage if the 4662 // VarDecl has external linkage. 4663 Linkage = llvm::GlobalVariable::InternalLinkage; 4664 } 4665 } 4666 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4667 auto *GV = new llvm::GlobalVariable( 4668 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4669 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4670 if (emitter) emitter->finalize(GV); 4671 setGVProperties(GV, VD); 4672 GV->setAlignment(Align.getQuantity()); 4673 if (supportsCOMDAT() && GV->isWeakForLinker()) 4674 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4675 if (VD->getTLSKind()) 4676 setTLSMode(GV, *VD); 4677 llvm::Constant *CV = GV; 4678 if (AddrSpace != LangAS::Default) 4679 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4680 *this, GV, AddrSpace, LangAS::Default, 4681 Type->getPointerTo( 4682 getContext().getTargetAddressSpace(LangAS::Default))); 4683 MaterializedGlobalTemporaryMap[E] = CV; 4684 return ConstantAddress(CV, Align); 4685 } 4686 4687 /// EmitObjCPropertyImplementations - Emit information for synthesized 4688 /// properties for an implementation. 4689 void CodeGenModule::EmitObjCPropertyImplementations(const 4690 ObjCImplementationDecl *D) { 4691 for (const auto *PID : D->property_impls()) { 4692 // Dynamic is just for type-checking. 4693 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4694 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4695 4696 // Determine which methods need to be implemented, some may have 4697 // been overridden. Note that ::isPropertyAccessor is not the method 4698 // we want, that just indicates if the decl came from a 4699 // property. What we want to know is if the method is defined in 4700 // this implementation. 4701 if (!D->getInstanceMethod(PD->getGetterName())) 4702 CodeGenFunction(*this).GenerateObjCGetter( 4703 const_cast<ObjCImplementationDecl *>(D), PID); 4704 if (!PD->isReadOnly() && 4705 !D->getInstanceMethod(PD->getSetterName())) 4706 CodeGenFunction(*this).GenerateObjCSetter( 4707 const_cast<ObjCImplementationDecl *>(D), PID); 4708 } 4709 } 4710 } 4711 4712 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4713 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4714 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4715 ivar; ivar = ivar->getNextIvar()) 4716 if (ivar->getType().isDestructedType()) 4717 return true; 4718 4719 return false; 4720 } 4721 4722 static bool AllTrivialInitializers(CodeGenModule &CGM, 4723 ObjCImplementationDecl *D) { 4724 CodeGenFunction CGF(CGM); 4725 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4726 E = D->init_end(); B != E; ++B) { 4727 CXXCtorInitializer *CtorInitExp = *B; 4728 Expr *Init = CtorInitExp->getInit(); 4729 if (!CGF.isTrivialInitializer(Init)) 4730 return false; 4731 } 4732 return true; 4733 } 4734 4735 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4736 /// for an implementation. 4737 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4738 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4739 if (needsDestructMethod(D)) { 4740 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4741 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4742 ObjCMethodDecl *DTORMethod = 4743 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4744 cxxSelector, getContext().VoidTy, nullptr, D, 4745 /*isInstance=*/true, /*isVariadic=*/false, 4746 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4747 /*isDefined=*/false, ObjCMethodDecl::Required); 4748 D->addInstanceMethod(DTORMethod); 4749 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4750 D->setHasDestructors(true); 4751 } 4752 4753 // If the implementation doesn't have any ivar initializers, we don't need 4754 // a .cxx_construct. 4755 if (D->getNumIvarInitializers() == 0 || 4756 AllTrivialInitializers(*this, D)) 4757 return; 4758 4759 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4760 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4761 // The constructor returns 'self'. 4762 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4763 D->getLocation(), 4764 D->getLocation(), 4765 cxxSelector, 4766 getContext().getObjCIdType(), 4767 nullptr, D, /*isInstance=*/true, 4768 /*isVariadic=*/false, 4769 /*isPropertyAccessor=*/true, 4770 /*isImplicitlyDeclared=*/true, 4771 /*isDefined=*/false, 4772 ObjCMethodDecl::Required); 4773 D->addInstanceMethod(CTORMethod); 4774 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4775 D->setHasNonZeroConstructors(true); 4776 } 4777 4778 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4779 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4780 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4781 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4782 ErrorUnsupported(LSD, "linkage spec"); 4783 return; 4784 } 4785 4786 EmitDeclContext(LSD); 4787 } 4788 4789 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4790 for (auto *I : DC->decls()) { 4791 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4792 // are themselves considered "top-level", so EmitTopLevelDecl on an 4793 // ObjCImplDecl does not recursively visit them. We need to do that in 4794 // case they're nested inside another construct (LinkageSpecDecl / 4795 // ExportDecl) that does stop them from being considered "top-level". 4796 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4797 for (auto *M : OID->methods()) 4798 EmitTopLevelDecl(M); 4799 } 4800 4801 EmitTopLevelDecl(I); 4802 } 4803 } 4804 4805 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4806 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4807 // Ignore dependent declarations. 4808 if (D->isTemplated()) 4809 return; 4810 4811 switch (D->getKind()) { 4812 case Decl::CXXConversion: 4813 case Decl::CXXMethod: 4814 case Decl::Function: 4815 EmitGlobal(cast<FunctionDecl>(D)); 4816 // Always provide some coverage mapping 4817 // even for the functions that aren't emitted. 4818 AddDeferredUnusedCoverageMapping(D); 4819 break; 4820 4821 case Decl::CXXDeductionGuide: 4822 // Function-like, but does not result in code emission. 4823 break; 4824 4825 case Decl::Var: 4826 case Decl::Decomposition: 4827 case Decl::VarTemplateSpecialization: 4828 EmitGlobal(cast<VarDecl>(D)); 4829 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4830 for (auto *B : DD->bindings()) 4831 if (auto *HD = B->getHoldingVar()) 4832 EmitGlobal(HD); 4833 break; 4834 4835 // Indirect fields from global anonymous structs and unions can be 4836 // ignored; only the actual variable requires IR gen support. 4837 case Decl::IndirectField: 4838 break; 4839 4840 // C++ Decls 4841 case Decl::Namespace: 4842 EmitDeclContext(cast<NamespaceDecl>(D)); 4843 break; 4844 case Decl::ClassTemplateSpecialization: { 4845 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4846 if (DebugInfo && 4847 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4848 Spec->hasDefinition()) 4849 DebugInfo->completeTemplateDefinition(*Spec); 4850 } LLVM_FALLTHROUGH; 4851 case Decl::CXXRecord: 4852 if (DebugInfo) { 4853 if (auto *ES = D->getASTContext().getExternalSource()) 4854 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4855 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4856 } 4857 // Emit any static data members, they may be definitions. 4858 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4859 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4860 EmitTopLevelDecl(I); 4861 break; 4862 // No code generation needed. 4863 case Decl::UsingShadow: 4864 case Decl::ClassTemplate: 4865 case Decl::VarTemplate: 4866 case Decl::VarTemplatePartialSpecialization: 4867 case Decl::FunctionTemplate: 4868 case Decl::TypeAliasTemplate: 4869 case Decl::Block: 4870 case Decl::Empty: 4871 case Decl::Binding: 4872 break; 4873 case Decl::Using: // using X; [C++] 4874 if (CGDebugInfo *DI = getModuleDebugInfo()) 4875 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4876 return; 4877 case Decl::NamespaceAlias: 4878 if (CGDebugInfo *DI = getModuleDebugInfo()) 4879 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4880 return; 4881 case Decl::UsingDirective: // using namespace X; [C++] 4882 if (CGDebugInfo *DI = getModuleDebugInfo()) 4883 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4884 return; 4885 case Decl::CXXConstructor: 4886 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4887 break; 4888 case Decl::CXXDestructor: 4889 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4890 break; 4891 4892 case Decl::StaticAssert: 4893 // Nothing to do. 4894 break; 4895 4896 // Objective-C Decls 4897 4898 // Forward declarations, no (immediate) code generation. 4899 case Decl::ObjCInterface: 4900 case Decl::ObjCCategory: 4901 break; 4902 4903 case Decl::ObjCProtocol: { 4904 auto *Proto = cast<ObjCProtocolDecl>(D); 4905 if (Proto->isThisDeclarationADefinition()) 4906 ObjCRuntime->GenerateProtocol(Proto); 4907 break; 4908 } 4909 4910 case Decl::ObjCCategoryImpl: 4911 // Categories have properties but don't support synthesize so we 4912 // can ignore them here. 4913 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4914 break; 4915 4916 case Decl::ObjCImplementation: { 4917 auto *OMD = cast<ObjCImplementationDecl>(D); 4918 EmitObjCPropertyImplementations(OMD); 4919 EmitObjCIvarInitializations(OMD); 4920 ObjCRuntime->GenerateClass(OMD); 4921 // Emit global variable debug information. 4922 if (CGDebugInfo *DI = getModuleDebugInfo()) 4923 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4924 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4925 OMD->getClassInterface()), OMD->getLocation()); 4926 break; 4927 } 4928 case Decl::ObjCMethod: { 4929 auto *OMD = cast<ObjCMethodDecl>(D); 4930 // If this is not a prototype, emit the body. 4931 if (OMD->getBody()) 4932 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4933 break; 4934 } 4935 case Decl::ObjCCompatibleAlias: 4936 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4937 break; 4938 4939 case Decl::PragmaComment: { 4940 const auto *PCD = cast<PragmaCommentDecl>(D); 4941 switch (PCD->getCommentKind()) { 4942 case PCK_Unknown: 4943 llvm_unreachable("unexpected pragma comment kind"); 4944 case PCK_Linker: 4945 AppendLinkerOptions(PCD->getArg()); 4946 break; 4947 case PCK_Lib: 4948 if (getTarget().getTriple().isOSBinFormatELF() && 4949 !getTarget().getTriple().isPS4()) 4950 AddELFLibDirective(PCD->getArg()); 4951 else 4952 AddDependentLib(PCD->getArg()); 4953 break; 4954 case PCK_Compiler: 4955 case PCK_ExeStr: 4956 case PCK_User: 4957 break; // We ignore all of these. 4958 } 4959 break; 4960 } 4961 4962 case Decl::PragmaDetectMismatch: { 4963 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4964 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4965 break; 4966 } 4967 4968 case Decl::LinkageSpec: 4969 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4970 break; 4971 4972 case Decl::FileScopeAsm: { 4973 // File-scope asm is ignored during device-side CUDA compilation. 4974 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4975 break; 4976 // File-scope asm is ignored during device-side OpenMP compilation. 4977 if (LangOpts.OpenMPIsDevice) 4978 break; 4979 auto *AD = cast<FileScopeAsmDecl>(D); 4980 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4981 break; 4982 } 4983 4984 case Decl::Import: { 4985 auto *Import = cast<ImportDecl>(D); 4986 4987 // If we've already imported this module, we're done. 4988 if (!ImportedModules.insert(Import->getImportedModule())) 4989 break; 4990 4991 // Emit debug information for direct imports. 4992 if (!Import->getImportedOwningModule()) { 4993 if (CGDebugInfo *DI = getModuleDebugInfo()) 4994 DI->EmitImportDecl(*Import); 4995 } 4996 4997 // Find all of the submodules and emit the module initializers. 4998 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4999 SmallVector<clang::Module *, 16> Stack; 5000 Visited.insert(Import->getImportedModule()); 5001 Stack.push_back(Import->getImportedModule()); 5002 5003 while (!Stack.empty()) { 5004 clang::Module *Mod = Stack.pop_back_val(); 5005 if (!EmittedModuleInitializers.insert(Mod).second) 5006 continue; 5007 5008 for (auto *D : Context.getModuleInitializers(Mod)) 5009 EmitTopLevelDecl(D); 5010 5011 // Visit the submodules of this module. 5012 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5013 SubEnd = Mod->submodule_end(); 5014 Sub != SubEnd; ++Sub) { 5015 // Skip explicit children; they need to be explicitly imported to emit 5016 // the initializers. 5017 if ((*Sub)->IsExplicit) 5018 continue; 5019 5020 if (Visited.insert(*Sub).second) 5021 Stack.push_back(*Sub); 5022 } 5023 } 5024 break; 5025 } 5026 5027 case Decl::Export: 5028 EmitDeclContext(cast<ExportDecl>(D)); 5029 break; 5030 5031 case Decl::OMPThreadPrivate: 5032 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5033 break; 5034 5035 case Decl::OMPDeclareReduction: 5036 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5037 break; 5038 5039 case Decl::OMPRequires: 5040 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5041 break; 5042 5043 default: 5044 // Make sure we handled everything we should, every other kind is a 5045 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5046 // function. Need to recode Decl::Kind to do that easily. 5047 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5048 break; 5049 } 5050 } 5051 5052 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5053 // Do we need to generate coverage mapping? 5054 if (!CodeGenOpts.CoverageMapping) 5055 return; 5056 switch (D->getKind()) { 5057 case Decl::CXXConversion: 5058 case Decl::CXXMethod: 5059 case Decl::Function: 5060 case Decl::ObjCMethod: 5061 case Decl::CXXConstructor: 5062 case Decl::CXXDestructor: { 5063 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5064 return; 5065 SourceManager &SM = getContext().getSourceManager(); 5066 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5067 return; 5068 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5069 if (I == DeferredEmptyCoverageMappingDecls.end()) 5070 DeferredEmptyCoverageMappingDecls[D] = true; 5071 break; 5072 } 5073 default: 5074 break; 5075 }; 5076 } 5077 5078 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5079 // Do we need to generate coverage mapping? 5080 if (!CodeGenOpts.CoverageMapping) 5081 return; 5082 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5083 if (Fn->isTemplateInstantiation()) 5084 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5085 } 5086 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5087 if (I == DeferredEmptyCoverageMappingDecls.end()) 5088 DeferredEmptyCoverageMappingDecls[D] = false; 5089 else 5090 I->second = false; 5091 } 5092 5093 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5094 // We call takeVector() here to avoid use-after-free. 5095 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5096 // we deserialize function bodies to emit coverage info for them, and that 5097 // deserializes more declarations. How should we handle that case? 5098 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5099 if (!Entry.second) 5100 continue; 5101 const Decl *D = Entry.first; 5102 switch (D->getKind()) { 5103 case Decl::CXXConversion: 5104 case Decl::CXXMethod: 5105 case Decl::Function: 5106 case Decl::ObjCMethod: { 5107 CodeGenPGO PGO(*this); 5108 GlobalDecl GD(cast<FunctionDecl>(D)); 5109 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5110 getFunctionLinkage(GD)); 5111 break; 5112 } 5113 case Decl::CXXConstructor: { 5114 CodeGenPGO PGO(*this); 5115 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5116 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5117 getFunctionLinkage(GD)); 5118 break; 5119 } 5120 case Decl::CXXDestructor: { 5121 CodeGenPGO PGO(*this); 5122 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5123 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5124 getFunctionLinkage(GD)); 5125 break; 5126 } 5127 default: 5128 break; 5129 }; 5130 } 5131 } 5132 5133 /// Turns the given pointer into a constant. 5134 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5135 const void *Ptr) { 5136 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5137 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5138 return llvm::ConstantInt::get(i64, PtrInt); 5139 } 5140 5141 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5142 llvm::NamedMDNode *&GlobalMetadata, 5143 GlobalDecl D, 5144 llvm::GlobalValue *Addr) { 5145 if (!GlobalMetadata) 5146 GlobalMetadata = 5147 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5148 5149 // TODO: should we report variant information for ctors/dtors? 5150 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5151 llvm::ConstantAsMetadata::get(GetPointerConstant( 5152 CGM.getLLVMContext(), D.getDecl()))}; 5153 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5154 } 5155 5156 /// For each function which is declared within an extern "C" region and marked 5157 /// as 'used', but has internal linkage, create an alias from the unmangled 5158 /// name to the mangled name if possible. People expect to be able to refer 5159 /// to such functions with an unmangled name from inline assembly within the 5160 /// same translation unit. 5161 void CodeGenModule::EmitStaticExternCAliases() { 5162 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5163 return; 5164 for (auto &I : StaticExternCValues) { 5165 IdentifierInfo *Name = I.first; 5166 llvm::GlobalValue *Val = I.second; 5167 if (Val && !getModule().getNamedValue(Name->getName())) 5168 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5169 } 5170 } 5171 5172 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5173 GlobalDecl &Result) const { 5174 auto Res = Manglings.find(MangledName); 5175 if (Res == Manglings.end()) 5176 return false; 5177 Result = Res->getValue(); 5178 return true; 5179 } 5180 5181 /// Emits metadata nodes associating all the global values in the 5182 /// current module with the Decls they came from. This is useful for 5183 /// projects using IR gen as a subroutine. 5184 /// 5185 /// Since there's currently no way to associate an MDNode directly 5186 /// with an llvm::GlobalValue, we create a global named metadata 5187 /// with the name 'clang.global.decl.ptrs'. 5188 void CodeGenModule::EmitDeclMetadata() { 5189 llvm::NamedMDNode *GlobalMetadata = nullptr; 5190 5191 for (auto &I : MangledDeclNames) { 5192 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5193 // Some mangled names don't necessarily have an associated GlobalValue 5194 // in this module, e.g. if we mangled it for DebugInfo. 5195 if (Addr) 5196 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5197 } 5198 } 5199 5200 /// Emits metadata nodes for all the local variables in the current 5201 /// function. 5202 void CodeGenFunction::EmitDeclMetadata() { 5203 if (LocalDeclMap.empty()) return; 5204 5205 llvm::LLVMContext &Context = getLLVMContext(); 5206 5207 // Find the unique metadata ID for this name. 5208 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5209 5210 llvm::NamedMDNode *GlobalMetadata = nullptr; 5211 5212 for (auto &I : LocalDeclMap) { 5213 const Decl *D = I.first; 5214 llvm::Value *Addr = I.second.getPointer(); 5215 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5216 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5217 Alloca->setMetadata( 5218 DeclPtrKind, llvm::MDNode::get( 5219 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5220 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5221 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5222 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5223 } 5224 } 5225 } 5226 5227 void CodeGenModule::EmitVersionIdentMetadata() { 5228 llvm::NamedMDNode *IdentMetadata = 5229 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5230 std::string Version = getClangFullVersion(); 5231 llvm::LLVMContext &Ctx = TheModule.getContext(); 5232 5233 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5234 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5235 } 5236 5237 void CodeGenModule::EmitCommandLineMetadata() { 5238 llvm::NamedMDNode *CommandLineMetadata = 5239 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5240 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5241 llvm::LLVMContext &Ctx = TheModule.getContext(); 5242 5243 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5244 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5245 } 5246 5247 void CodeGenModule::EmitTargetMetadata() { 5248 // Warning, new MangledDeclNames may be appended within this loop. 5249 // We rely on MapVector insertions adding new elements to the end 5250 // of the container. 5251 // FIXME: Move this loop into the one target that needs it, and only 5252 // loop over those declarations for which we couldn't emit the target 5253 // metadata when we emitted the declaration. 5254 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5255 auto Val = *(MangledDeclNames.begin() + I); 5256 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5257 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5258 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5259 } 5260 } 5261 5262 void CodeGenModule::EmitCoverageFile() { 5263 if (getCodeGenOpts().CoverageDataFile.empty() && 5264 getCodeGenOpts().CoverageNotesFile.empty()) 5265 return; 5266 5267 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5268 if (!CUNode) 5269 return; 5270 5271 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5272 llvm::LLVMContext &Ctx = TheModule.getContext(); 5273 auto *CoverageDataFile = 5274 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5275 auto *CoverageNotesFile = 5276 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5277 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5278 llvm::MDNode *CU = CUNode->getOperand(i); 5279 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5280 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5281 } 5282 } 5283 5284 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5285 // Sema has checked that all uuid strings are of the form 5286 // "12345678-1234-1234-1234-1234567890ab". 5287 assert(Uuid.size() == 36); 5288 for (unsigned i = 0; i < 36; ++i) { 5289 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5290 else assert(isHexDigit(Uuid[i])); 5291 } 5292 5293 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5294 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5295 5296 llvm::Constant *Field3[8]; 5297 for (unsigned Idx = 0; Idx < 8; ++Idx) 5298 Field3[Idx] = llvm::ConstantInt::get( 5299 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5300 5301 llvm::Constant *Fields[4] = { 5302 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5303 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5304 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5305 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5306 }; 5307 5308 return llvm::ConstantStruct::getAnon(Fields); 5309 } 5310 5311 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5312 bool ForEH) { 5313 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5314 // FIXME: should we even be calling this method if RTTI is disabled 5315 // and it's not for EH? 5316 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5317 return llvm::Constant::getNullValue(Int8PtrTy); 5318 5319 if (ForEH && Ty->isObjCObjectPointerType() && 5320 LangOpts.ObjCRuntime.isGNUFamily()) 5321 return ObjCRuntime->GetEHType(Ty); 5322 5323 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5324 } 5325 5326 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5327 // Do not emit threadprivates in simd-only mode. 5328 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5329 return; 5330 for (auto RefExpr : D->varlists()) { 5331 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5332 bool PerformInit = 5333 VD->getAnyInitializer() && 5334 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5335 /*ForRef=*/false); 5336 5337 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5338 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5339 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5340 CXXGlobalInits.push_back(InitFunction); 5341 } 5342 } 5343 5344 llvm::Metadata * 5345 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5346 StringRef Suffix) { 5347 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5348 if (InternalId) 5349 return InternalId; 5350 5351 if (isExternallyVisible(T->getLinkage())) { 5352 std::string OutName; 5353 llvm::raw_string_ostream Out(OutName); 5354 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5355 Out << Suffix; 5356 5357 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5358 } else { 5359 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5360 llvm::ArrayRef<llvm::Metadata *>()); 5361 } 5362 5363 return InternalId; 5364 } 5365 5366 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5367 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5368 } 5369 5370 llvm::Metadata * 5371 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5372 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5373 } 5374 5375 // Generalize pointer types to a void pointer with the qualifiers of the 5376 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5377 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5378 // 'void *'. 5379 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5380 if (!Ty->isPointerType()) 5381 return Ty; 5382 5383 return Ctx.getPointerType( 5384 QualType(Ctx.VoidTy).withCVRQualifiers( 5385 Ty->getPointeeType().getCVRQualifiers())); 5386 } 5387 5388 // Apply type generalization to a FunctionType's return and argument types 5389 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5390 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5391 SmallVector<QualType, 8> GeneralizedParams; 5392 for (auto &Param : FnType->param_types()) 5393 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5394 5395 return Ctx.getFunctionType( 5396 GeneralizeType(Ctx, FnType->getReturnType()), 5397 GeneralizedParams, FnType->getExtProtoInfo()); 5398 } 5399 5400 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5401 return Ctx.getFunctionNoProtoType( 5402 GeneralizeType(Ctx, FnType->getReturnType())); 5403 5404 llvm_unreachable("Encountered unknown FunctionType"); 5405 } 5406 5407 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5408 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5409 GeneralizedMetadataIdMap, ".generalized"); 5410 } 5411 5412 /// Returns whether this module needs the "all-vtables" type identifier. 5413 bool CodeGenModule::NeedAllVtablesTypeId() const { 5414 // Returns true if at least one of vtable-based CFI checkers is enabled and 5415 // is not in the trapping mode. 5416 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5417 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5418 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5419 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5420 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5421 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5422 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5423 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5424 } 5425 5426 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5427 CharUnits Offset, 5428 const CXXRecordDecl *RD) { 5429 llvm::Metadata *MD = 5430 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5431 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5432 5433 if (CodeGenOpts.SanitizeCfiCrossDso) 5434 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5435 VTable->addTypeMetadata(Offset.getQuantity(), 5436 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5437 5438 if (NeedAllVtablesTypeId()) { 5439 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5440 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5441 } 5442 } 5443 5444 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5445 assert(TD != nullptr); 5446 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5447 5448 ParsedAttr.Features.erase( 5449 llvm::remove_if(ParsedAttr.Features, 5450 [&](const std::string &Feat) { 5451 return !Target.isValidFeatureName( 5452 StringRef{Feat}.substr(1)); 5453 }), 5454 ParsedAttr.Features.end()); 5455 return ParsedAttr; 5456 } 5457 5458 5459 // Fills in the supplied string map with the set of target features for the 5460 // passed in function. 5461 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5462 GlobalDecl GD) { 5463 StringRef TargetCPU = Target.getTargetOpts().CPU; 5464 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5465 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5466 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5467 5468 // Make a copy of the features as passed on the command line into the 5469 // beginning of the additional features from the function to override. 5470 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5471 Target.getTargetOpts().FeaturesAsWritten.begin(), 5472 Target.getTargetOpts().FeaturesAsWritten.end()); 5473 5474 if (ParsedAttr.Architecture != "" && 5475 Target.isValidCPUName(ParsedAttr.Architecture)) 5476 TargetCPU = ParsedAttr.Architecture; 5477 5478 // Now populate the feature map, first with the TargetCPU which is either 5479 // the default or a new one from the target attribute string. Then we'll use 5480 // the passed in features (FeaturesAsWritten) along with the new ones from 5481 // the attribute. 5482 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5483 ParsedAttr.Features); 5484 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5485 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5486 Target.getCPUSpecificCPUDispatchFeatures( 5487 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5488 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5489 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5490 } else { 5491 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5492 Target.getTargetOpts().Features); 5493 } 5494 } 5495 5496 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5497 if (!SanStats) 5498 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5499 5500 return *SanStats; 5501 } 5502 llvm::Value * 5503 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5504 CodeGenFunction &CGF) { 5505 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5506 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5507 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5508 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5509 "__translate_sampler_initializer"), 5510 {C}); 5511 } 5512