xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 930635271f810316f48bd1aa78935acf36a08f8f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/TargetParser/X86TargetParser.h"
73 #include <optional>
74 
75 using namespace clang;
76 using namespace CodeGen;
77 
78 static llvm::cl::opt<bool> LimitedCoverage(
79     "limited-coverage-experimental", llvm::cl::Hidden,
80     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
81 
82 static const char AnnotationSection[] = "llvm.metadata";
83 
84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
85   switch (CGM.getContext().getCXXABIKind()) {
86   case TargetCXXABI::AppleARM64:
87   case TargetCXXABI::Fuchsia:
88   case TargetCXXABI::GenericAArch64:
89   case TargetCXXABI::GenericARM:
90   case TargetCXXABI::iOS:
91   case TargetCXXABI::WatchOS:
92   case TargetCXXABI::GenericMIPS:
93   case TargetCXXABI::GenericItanium:
94   case TargetCXXABI::WebAssembly:
95   case TargetCXXABI::XL:
96     return CreateItaniumCXXABI(CGM);
97   case TargetCXXABI::Microsoft:
98     return CreateMicrosoftCXXABI(CGM);
99   }
100 
101   llvm_unreachable("invalid C++ ABI kind");
102 }
103 
104 static std::unique_ptr<TargetCodeGenInfo>
105 createTargetCodeGenInfo(CodeGenModule &CGM) {
106   const TargetInfo &Target = CGM.getTarget();
107   const llvm::Triple &Triple = Target.getTriple();
108   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
109 
110   switch (Triple.getArch()) {
111   default:
112     return createDefaultTargetCodeGenInfo(CGM);
113 
114   case llvm::Triple::le32:
115     return createPNaClTargetCodeGenInfo(CGM);
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145 
146     return createAArch64TargetCodeGenInfo(CGM, Kind);
147   }
148 
149   case llvm::Triple::wasm32:
150   case llvm::Triple::wasm64: {
151     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
152     if (Target.getABI() == "experimental-mv")
153       Kind = WebAssemblyABIKind::ExperimentalMV;
154     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
155   }
156 
157   case llvm::Triple::arm:
158   case llvm::Triple::armeb:
159   case llvm::Triple::thumb:
160   case llvm::Triple::thumbeb: {
161     if (Triple.getOS() == llvm::Triple::Win32)
162       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
163 
164     ARMABIKind Kind = ARMABIKind::AAPCS;
165     StringRef ABIStr = Target.getABI();
166     if (ABIStr == "apcs-gnu")
167       Kind = ARMABIKind::APCS;
168     else if (ABIStr == "aapcs16")
169       Kind = ARMABIKind::AAPCS16_VFP;
170     else if (CodeGenOpts.FloatABI == "hard" ||
171              (CodeGenOpts.FloatABI != "soft" &&
172               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
173                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
174                Triple.getEnvironment() == llvm::Triple::EABIHF)))
175       Kind = ARMABIKind::AAPCS_VFP;
176 
177     return createARMTargetCodeGenInfo(CGM, Kind);
178   }
179 
180   case llvm::Triple::ppc: {
181     if (Triple.isOSAIX())
182       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
183 
184     bool IsSoftFloat =
185         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
186     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
187   }
188   case llvm::Triple::ppcle: {
189     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
190     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
191   }
192   case llvm::Triple::ppc64:
193     if (Triple.isOSAIX())
194       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
195 
196     if (Triple.isOSBinFormatELF()) {
197       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
198       if (Target.getABI() == "elfv2")
199         Kind = PPC64_SVR4_ABIKind::ELFv2;
200       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
201 
202       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
203     }
204     return createPPC64TargetCodeGenInfo(CGM);
205   case llvm::Triple::ppc64le: {
206     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
207     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
208     if (Target.getABI() == "elfv1")
209       Kind = PPC64_SVR4_ABIKind::ELFv1;
210     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
211 
212     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
213   }
214 
215   case llvm::Triple::nvptx:
216   case llvm::Triple::nvptx64:
217     return createNVPTXTargetCodeGenInfo(CGM);
218 
219   case llvm::Triple::msp430:
220     return createMSP430TargetCodeGenInfo(CGM);
221 
222   case llvm::Triple::riscv32:
223   case llvm::Triple::riscv64: {
224     StringRef ABIStr = Target.getABI();
225     unsigned XLen = Target.getPointerWidth(LangAS::Default);
226     unsigned ABIFLen = 0;
227     if (ABIStr.endswith("f"))
228       ABIFLen = 32;
229     else if (ABIStr.endswith("d"))
230       ABIFLen = 64;
231     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
232   }
233 
234   case llvm::Triple::systemz: {
235     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
236     bool HasVector = !SoftFloat && Target.getABI() == "vector";
237     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
238   }
239 
240   case llvm::Triple::tce:
241   case llvm::Triple::tcele:
242     return createTCETargetCodeGenInfo(CGM);
243 
244   case llvm::Triple::x86: {
245     bool IsDarwinVectorABI = Triple.isOSDarwin();
246     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
247 
248     if (Triple.getOS() == llvm::Triple::Win32) {
249       return createWinX86_32TargetCodeGenInfo(
250           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
251           CodeGenOpts.NumRegisterParameters);
252     }
253     return createX86_32TargetCodeGenInfo(
254         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
255         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
256   }
257 
258   case llvm::Triple::x86_64: {
259     StringRef ABI = Target.getABI();
260     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
261                                : ABI == "avx"  ? X86AVXABILevel::AVX
262                                                : X86AVXABILevel::None);
263 
264     switch (Triple.getOS()) {
265     case llvm::Triple::Win32:
266       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
267     default:
268       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     }
270   }
271   case llvm::Triple::hexagon:
272     return createHexagonTargetCodeGenInfo(CGM);
273   case llvm::Triple::lanai:
274     return createLanaiTargetCodeGenInfo(CGM);
275   case llvm::Triple::r600:
276     return createAMDGPUTargetCodeGenInfo(CGM);
277   case llvm::Triple::amdgcn:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::sparc:
280     return createSparcV8TargetCodeGenInfo(CGM);
281   case llvm::Triple::sparcv9:
282     return createSparcV9TargetCodeGenInfo(CGM);
283   case llvm::Triple::xcore:
284     return createXCoreTargetCodeGenInfo(CGM);
285   case llvm::Triple::arc:
286     return createARCTargetCodeGenInfo(CGM);
287   case llvm::Triple::spir:
288   case llvm::Triple::spir64:
289     return createCommonSPIRTargetCodeGenInfo(CGM);
290   case llvm::Triple::spirv32:
291   case llvm::Triple::spirv64:
292     return createSPIRVTargetCodeGenInfo(CGM);
293   case llvm::Triple::ve:
294     return createVETargetCodeGenInfo(CGM);
295   case llvm::Triple::csky: {
296     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
297     bool hasFP64 =
298         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
299     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
300                                             : hasFP64   ? 64
301                                                         : 32);
302   }
303   case llvm::Triple::bpfeb:
304   case llvm::Triple::bpfel:
305     return createBPFTargetCodeGenInfo(CGM);
306   case llvm::Triple::loongarch32:
307   case llvm::Triple::loongarch64: {
308     StringRef ABIStr = Target.getABI();
309     unsigned ABIFRLen = 0;
310     if (ABIStr.endswith("f"))
311       ABIFRLen = 32;
312     else if (ABIStr.endswith("d"))
313       ABIFRLen = 64;
314     return createLoongArchTargetCodeGenInfo(
315         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
316   }
317   }
318 }
319 
320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
321   if (!TheTargetCodeGenInfo)
322     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
323   return *TheTargetCodeGenInfo;
324 }
325 
326 CodeGenModule::CodeGenModule(ASTContext &C,
327                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
328                              const HeaderSearchOptions &HSO,
329                              const PreprocessorOptions &PPO,
330                              const CodeGenOptions &CGO, llvm::Module &M,
331                              DiagnosticsEngine &diags,
332                              CoverageSourceInfo *CoverageInfo)
333     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
334       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
335       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
336       VMContext(M.getContext()), Types(*this), VTables(*this),
337       SanitizerMD(new SanitizerMetadata(*this)) {
338 
339   // Initialize the type cache.
340   llvm::LLVMContext &LLVMContext = M.getContext();
341   VoidTy = llvm::Type::getVoidTy(LLVMContext);
342   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
343   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
344   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
345   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
346   HalfTy = llvm::Type::getHalfTy(LLVMContext);
347   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
348   FloatTy = llvm::Type::getFloatTy(LLVMContext);
349   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
350   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
351   PointerAlignInBytes =
352       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
353           .getQuantity();
354   SizeSizeInBytes =
355     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
356   IntAlignInBytes =
357     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
358   CharTy =
359     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
360   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
361   IntPtrTy = llvm::IntegerType::get(LLVMContext,
362     C.getTargetInfo().getMaxPointerWidth());
363   Int8PtrTy = Int8Ty->getPointerTo(0);
364   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
365   const llvm::DataLayout &DL = M.getDataLayout();
366   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
367   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
368   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
369       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
370   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
371 
372   // Build C++20 Module initializers.
373   // TODO: Add Microsoft here once we know the mangling required for the
374   // initializers.
375   CXX20ModuleInits =
376       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
377                                        ItaniumMangleContext::MK_Itanium;
378 
379   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
380 
381   if (LangOpts.ObjC)
382     createObjCRuntime();
383   if (LangOpts.OpenCL)
384     createOpenCLRuntime();
385   if (LangOpts.OpenMP)
386     createOpenMPRuntime();
387   if (LangOpts.CUDA)
388     createCUDARuntime();
389   if (LangOpts.HLSL)
390     createHLSLRuntime();
391 
392   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
393   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
394       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
395     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
396                                getCXXABI().getMangleContext()));
397 
398   // If debug info or coverage generation is enabled, create the CGDebugInfo
399   // object.
400   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
401       CodeGenOpts.CoverageNotesFile.size() ||
402       CodeGenOpts.CoverageDataFile.size())
403     DebugInfo.reset(new CGDebugInfo(*this));
404 
405   Block.GlobalUniqueCount = 0;
406 
407   if (C.getLangOpts().ObjC)
408     ObjCData.reset(new ObjCEntrypoints());
409 
410   if (CodeGenOpts.hasProfileClangUse()) {
411     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
412         CodeGenOpts.ProfileInstrumentUsePath, *FS,
413         CodeGenOpts.ProfileRemappingFile);
414     // We're checking for profile read errors in CompilerInvocation, so if
415     // there was an error it should've already been caught. If it hasn't been
416     // somehow, trip an assertion.
417     assert(ReaderOrErr);
418     PGOReader = std::move(ReaderOrErr.get());
419   }
420 
421   // If coverage mapping generation is enabled, create the
422   // CoverageMappingModuleGen object.
423   if (CodeGenOpts.CoverageMapping)
424     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
425 
426   // Generate the module name hash here if needed.
427   if (CodeGenOpts.UniqueInternalLinkageNames &&
428       !getModule().getSourceFileName().empty()) {
429     std::string Path = getModule().getSourceFileName();
430     // Check if a path substitution is needed from the MacroPrefixMap.
431     for (const auto &Entry : LangOpts.MacroPrefixMap)
432       if (Path.rfind(Entry.first, 0) != std::string::npos) {
433         Path = Entry.second + Path.substr(Entry.first.size());
434         break;
435       }
436     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
437   }
438 }
439 
440 CodeGenModule::~CodeGenModule() {}
441 
442 void CodeGenModule::createObjCRuntime() {
443   // This is just isGNUFamily(), but we want to force implementors of
444   // new ABIs to decide how best to do this.
445   switch (LangOpts.ObjCRuntime.getKind()) {
446   case ObjCRuntime::GNUstep:
447   case ObjCRuntime::GCC:
448   case ObjCRuntime::ObjFW:
449     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
450     return;
451 
452   case ObjCRuntime::FragileMacOSX:
453   case ObjCRuntime::MacOSX:
454   case ObjCRuntime::iOS:
455   case ObjCRuntime::WatchOS:
456     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
457     return;
458   }
459   llvm_unreachable("bad runtime kind");
460 }
461 
462 void CodeGenModule::createOpenCLRuntime() {
463   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
464 }
465 
466 void CodeGenModule::createOpenMPRuntime() {
467   // Select a specialized code generation class based on the target, if any.
468   // If it does not exist use the default implementation.
469   switch (getTriple().getArch()) {
470   case llvm::Triple::nvptx:
471   case llvm::Triple::nvptx64:
472   case llvm::Triple::amdgcn:
473     assert(getLangOpts().OpenMPIsDevice &&
474            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
475     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
476     break;
477   default:
478     if (LangOpts.OpenMPSimd)
479       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
480     else
481       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
482     break;
483   }
484 }
485 
486 void CodeGenModule::createCUDARuntime() {
487   CUDARuntime.reset(CreateNVCUDARuntime(*this));
488 }
489 
490 void CodeGenModule::createHLSLRuntime() {
491   HLSLRuntime.reset(new CGHLSLRuntime(*this));
492 }
493 
494 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
495   Replacements[Name] = C;
496 }
497 
498 void CodeGenModule::applyReplacements() {
499   for (auto &I : Replacements) {
500     StringRef MangledName = I.first();
501     llvm::Constant *Replacement = I.second;
502     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
503     if (!Entry)
504       continue;
505     auto *OldF = cast<llvm::Function>(Entry);
506     auto *NewF = dyn_cast<llvm::Function>(Replacement);
507     if (!NewF) {
508       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
509         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
510       } else {
511         auto *CE = cast<llvm::ConstantExpr>(Replacement);
512         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
513                CE->getOpcode() == llvm::Instruction::GetElementPtr);
514         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
515       }
516     }
517 
518     // Replace old with new, but keep the old order.
519     OldF->replaceAllUsesWith(Replacement);
520     if (NewF) {
521       NewF->removeFromParent();
522       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
523                                                        NewF);
524     }
525     OldF->eraseFromParent();
526   }
527 }
528 
529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
530   GlobalValReplacements.push_back(std::make_pair(GV, C));
531 }
532 
533 void CodeGenModule::applyGlobalValReplacements() {
534   for (auto &I : GlobalValReplacements) {
535     llvm::GlobalValue *GV = I.first;
536     llvm::Constant *C = I.second;
537 
538     GV->replaceAllUsesWith(C);
539     GV->eraseFromParent();
540   }
541 }
542 
543 // This is only used in aliases that we created and we know they have a
544 // linear structure.
545 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
546   const llvm::Constant *C;
547   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
548     C = GA->getAliasee();
549   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
550     C = GI->getResolver();
551   else
552     return GV;
553 
554   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
555   if (!AliaseeGV)
556     return nullptr;
557 
558   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
559   if (FinalGV == GV)
560     return nullptr;
561 
562   return FinalGV;
563 }
564 
565 static bool checkAliasedGlobal(
566     DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc,
567     const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
568     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
569     SourceRange AliasRange) {
570   GV = getAliasedGlobal(Alias);
571   if (!GV) {
572     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
573     return false;
574   }
575 
576   if (GV->isDeclaration()) {
577     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
578     Diags.Report(Location, diag::note_alias_requires_mangled_name)
579         << IsIFunc << IsIFunc;
580     // Provide a note if the given function is not found and exists as a
581     // mangled name.
582     for (const auto &[Decl, Name] : MangledDeclNames) {
583       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
584         if (ND->getName() == GV->getName()) {
585           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
586               << Name
587               << FixItHint::CreateReplacement(
588                      AliasRange,
589                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
590                          .str());
591         }
592       }
593     }
594     return false;
595   }
596 
597   if (IsIFunc) {
598     // Check resolver function type.
599     const auto *F = dyn_cast<llvm::Function>(GV);
600     if (!F) {
601       Diags.Report(Location, diag::err_alias_to_undefined)
602           << IsIFunc << IsIFunc;
603       return false;
604     }
605 
606     llvm::FunctionType *FTy = F->getFunctionType();
607     if (!FTy->getReturnType()->isPointerTy()) {
608       Diags.Report(Location, diag::err_ifunc_resolver_return);
609       return false;
610     }
611   }
612 
613   return true;
614 }
615 
616 void CodeGenModule::checkAliases() {
617   // Check if the constructed aliases are well formed. It is really unfortunate
618   // that we have to do this in CodeGen, but we only construct mangled names
619   // and aliases during codegen.
620   bool Error = false;
621   DiagnosticsEngine &Diags = getDiags();
622   for (const GlobalDecl &GD : Aliases) {
623     const auto *D = cast<ValueDecl>(GD.getDecl());
624     SourceLocation Location;
625     SourceRange Range;
626     bool IsIFunc = D->hasAttr<IFuncAttr>();
627     if (const Attr *A = D->getDefiningAttr()) {
628       Location = A->getLocation();
629       Range = A->getRange();
630     } else
631       llvm_unreachable("Not an alias or ifunc?");
632 
633     StringRef MangledName = getMangledName(GD);
634     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
635     const llvm::GlobalValue *GV = nullptr;
636     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV,
637                             MangledDeclNames, Range)) {
638       Error = true;
639       continue;
640     }
641 
642     llvm::Constant *Aliasee =
643         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
644                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
645 
646     llvm::GlobalValue *AliaseeGV;
647     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
648       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
649     else
650       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
651 
652     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
653       StringRef AliasSection = SA->getName();
654       if (AliasSection != AliaseeGV->getSection())
655         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
656             << AliasSection << IsIFunc << IsIFunc;
657     }
658 
659     // We have to handle alias to weak aliases in here. LLVM itself disallows
660     // this since the object semantics would not match the IL one. For
661     // compatibility with gcc we implement it by just pointing the alias
662     // to its aliasee's aliasee. We also warn, since the user is probably
663     // expecting the link to be weak.
664     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
665       if (GA->isInterposable()) {
666         Diags.Report(Location, diag::warn_alias_to_weak_alias)
667             << GV->getName() << GA->getName() << IsIFunc;
668         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
669             GA->getAliasee(), Alias->getType());
670 
671         if (IsIFunc)
672           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
673         else
674           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
675       }
676     }
677   }
678   if (!Error)
679     return;
680 
681   for (const GlobalDecl &GD : Aliases) {
682     StringRef MangledName = getMangledName(GD);
683     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
684     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
685     Alias->eraseFromParent();
686   }
687 }
688 
689 void CodeGenModule::clear() {
690   DeferredDeclsToEmit.clear();
691   EmittedDeferredDecls.clear();
692   if (OpenMPRuntime)
693     OpenMPRuntime->clear();
694 }
695 
696 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
697                                        StringRef MainFile) {
698   if (!hasDiagnostics())
699     return;
700   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
701     if (MainFile.empty())
702       MainFile = "<stdin>";
703     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
704   } else {
705     if (Mismatched > 0)
706       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
707 
708     if (Missing > 0)
709       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
710   }
711 }
712 
713 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
714                                              llvm::Module &M) {
715   if (!LO.VisibilityFromDLLStorageClass)
716     return;
717 
718   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
719       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
720   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
721       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
722   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
723       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
724   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
725       CodeGenModule::GetLLVMVisibility(
726           LO.getExternDeclNoDLLStorageClassVisibility());
727 
728   for (llvm::GlobalValue &GV : M.global_values()) {
729     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
730       continue;
731 
732     // Reset DSO locality before setting the visibility. This removes
733     // any effects that visibility options and annotations may have
734     // had on the DSO locality. Setting the visibility will implicitly set
735     // appropriate globals to DSO Local; however, this will be pessimistic
736     // w.r.t. to the normal compiler IRGen.
737     GV.setDSOLocal(false);
738 
739     if (GV.isDeclarationForLinker()) {
740       GV.setVisibility(GV.getDLLStorageClass() ==
741                                llvm::GlobalValue::DLLImportStorageClass
742                            ? ExternDeclDLLImportVisibility
743                            : ExternDeclNoDLLStorageClassVisibility);
744     } else {
745       GV.setVisibility(GV.getDLLStorageClass() ==
746                                llvm::GlobalValue::DLLExportStorageClass
747                            ? DLLExportVisibility
748                            : NoDLLStorageClassVisibility);
749     }
750 
751     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
752   }
753 }
754 
755 void CodeGenModule::Release() {
756   Module *Primary = getContext().getCurrentNamedModule();
757   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
758     EmitModuleInitializers(Primary);
759   EmitDeferred();
760   DeferredDecls.insert(EmittedDeferredDecls.begin(),
761                        EmittedDeferredDecls.end());
762   EmittedDeferredDecls.clear();
763   EmitVTablesOpportunistically();
764   applyGlobalValReplacements();
765   applyReplacements();
766   emitMultiVersionFunctions();
767 
768   if (Context.getLangOpts().IncrementalExtensions &&
769       GlobalTopLevelStmtBlockInFlight.first) {
770     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
771     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
772     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
773   }
774 
775   // Module implementations are initialized the same way as a regular TU that
776   // imports one or more modules.
777   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
778     EmitCXXModuleInitFunc(Primary);
779   else
780     EmitCXXGlobalInitFunc();
781   EmitCXXGlobalCleanUpFunc();
782   registerGlobalDtorsWithAtExit();
783   EmitCXXThreadLocalInitFunc();
784   if (ObjCRuntime)
785     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
786       AddGlobalCtor(ObjCInitFunction);
787   if (Context.getLangOpts().CUDA && CUDARuntime) {
788     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
789       AddGlobalCtor(CudaCtorFunction);
790   }
791   if (OpenMPRuntime) {
792     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
793             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
794       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
795     }
796     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
797     OpenMPRuntime->clear();
798   }
799   if (PGOReader) {
800     getModule().setProfileSummary(
801         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
802         llvm::ProfileSummary::PSK_Instr);
803     if (PGOStats.hasDiagnostics())
804       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
805   }
806   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
807     return L.LexOrder < R.LexOrder;
808   });
809   EmitCtorList(GlobalCtors, "llvm.global_ctors");
810   EmitCtorList(GlobalDtors, "llvm.global_dtors");
811   EmitGlobalAnnotations();
812   EmitStaticExternCAliases();
813   checkAliases();
814   EmitDeferredUnusedCoverageMappings();
815   CodeGenPGO(*this).setValueProfilingFlag(getModule());
816   if (CoverageMapping)
817     CoverageMapping->emit();
818   if (CodeGenOpts.SanitizeCfiCrossDso) {
819     CodeGenFunction(*this).EmitCfiCheckFail();
820     CodeGenFunction(*this).EmitCfiCheckStub();
821   }
822   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
823     finalizeKCFITypes();
824   emitAtAvailableLinkGuard();
825   if (Context.getTargetInfo().getTriple().isWasm())
826     EmitMainVoidAlias();
827 
828   if (getTriple().isAMDGPU()) {
829     // Emit amdgpu_code_object_version module flag, which is code object version
830     // times 100.
831     if (getTarget().getTargetOpts().CodeObjectVersion !=
832         TargetOptions::COV_None) {
833       getModule().addModuleFlag(llvm::Module::Error,
834                                 "amdgpu_code_object_version",
835                                 getTarget().getTargetOpts().CodeObjectVersion);
836     }
837 
838     // Currently, "-mprintf-kind" option is only supported for HIP
839     if (LangOpts.HIP) {
840       auto *MDStr = llvm::MDString::get(
841           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
842                              TargetOptions::AMDGPUPrintfKind::Hostcall)
843                                 ? "hostcall"
844                                 : "buffered");
845       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
846                                 MDStr);
847     }
848   }
849 
850   // Emit a global array containing all external kernels or device variables
851   // used by host functions and mark it as used for CUDA/HIP. This is necessary
852   // to get kernels or device variables in archives linked in even if these
853   // kernels or device variables are only used in host functions.
854   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
855     SmallVector<llvm::Constant *, 8> UsedArray;
856     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
857       GlobalDecl GD;
858       if (auto *FD = dyn_cast<FunctionDecl>(D))
859         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
860       else
861         GD = GlobalDecl(D);
862       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
863           GetAddrOfGlobal(GD), Int8PtrTy));
864     }
865 
866     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
867 
868     auto *GV = new llvm::GlobalVariable(
869         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
870         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
871     addCompilerUsedGlobal(GV);
872   }
873 
874   emitLLVMUsed();
875   if (SanStats)
876     SanStats->finish();
877 
878   if (CodeGenOpts.Autolink &&
879       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
880     EmitModuleLinkOptions();
881   }
882 
883   // On ELF we pass the dependent library specifiers directly to the linker
884   // without manipulating them. This is in contrast to other platforms where
885   // they are mapped to a specific linker option by the compiler. This
886   // difference is a result of the greater variety of ELF linkers and the fact
887   // that ELF linkers tend to handle libraries in a more complicated fashion
888   // than on other platforms. This forces us to defer handling the dependent
889   // libs to the linker.
890   //
891   // CUDA/HIP device and host libraries are different. Currently there is no
892   // way to differentiate dependent libraries for host or device. Existing
893   // usage of #pragma comment(lib, *) is intended for host libraries on
894   // Windows. Therefore emit llvm.dependent-libraries only for host.
895   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
896     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
897     for (auto *MD : ELFDependentLibraries)
898       NMD->addOperand(MD);
899   }
900 
901   // Record mregparm value now so it is visible through rest of codegen.
902   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
903     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
904                               CodeGenOpts.NumRegisterParameters);
905 
906   if (CodeGenOpts.DwarfVersion) {
907     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
908                               CodeGenOpts.DwarfVersion);
909   }
910 
911   if (CodeGenOpts.Dwarf64)
912     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
913 
914   if (Context.getLangOpts().SemanticInterposition)
915     // Require various optimization to respect semantic interposition.
916     getModule().setSemanticInterposition(true);
917 
918   if (CodeGenOpts.EmitCodeView) {
919     // Indicate that we want CodeView in the metadata.
920     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
921   }
922   if (CodeGenOpts.CodeViewGHash) {
923     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
924   }
925   if (CodeGenOpts.ControlFlowGuard) {
926     // Function ID tables and checks for Control Flow Guard (cfguard=2).
927     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
928   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
929     // Function ID tables for Control Flow Guard (cfguard=1).
930     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
931   }
932   if (CodeGenOpts.EHContGuard) {
933     // Function ID tables for EH Continuation Guard.
934     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
935   }
936   if (Context.getLangOpts().Kernel) {
937     // Note if we are compiling with /kernel.
938     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
939   }
940   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
941     // We don't support LTO with 2 with different StrictVTablePointers
942     // FIXME: we could support it by stripping all the information introduced
943     // by StrictVTablePointers.
944 
945     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
946 
947     llvm::Metadata *Ops[2] = {
948               llvm::MDString::get(VMContext, "StrictVTablePointers"),
949               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
950                   llvm::Type::getInt32Ty(VMContext), 1))};
951 
952     getModule().addModuleFlag(llvm::Module::Require,
953                               "StrictVTablePointersRequirement",
954                               llvm::MDNode::get(VMContext, Ops));
955   }
956   if (getModuleDebugInfo())
957     // We support a single version in the linked module. The LLVM
958     // parser will drop debug info with a different version number
959     // (and warn about it, too).
960     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
961                               llvm::DEBUG_METADATA_VERSION);
962 
963   // We need to record the widths of enums and wchar_t, so that we can generate
964   // the correct build attributes in the ARM backend. wchar_size is also used by
965   // TargetLibraryInfo.
966   uint64_t WCharWidth =
967       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
968   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
969 
970   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
971   if (   Arch == llvm::Triple::arm
972       || Arch == llvm::Triple::armeb
973       || Arch == llvm::Triple::thumb
974       || Arch == llvm::Triple::thumbeb) {
975     // The minimum width of an enum in bytes
976     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
977     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
978   }
979 
980   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
981     StringRef ABIStr = Target.getABI();
982     llvm::LLVMContext &Ctx = TheModule.getContext();
983     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
984                               llvm::MDString::get(Ctx, ABIStr));
985   }
986 
987   if (CodeGenOpts.SanitizeCfiCrossDso) {
988     // Indicate that we want cross-DSO control flow integrity checks.
989     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
990   }
991 
992   if (CodeGenOpts.WholeProgramVTables) {
993     // Indicate whether VFE was enabled for this module, so that the
994     // vcall_visibility metadata added under whole program vtables is handled
995     // appropriately in the optimizer.
996     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
997                               CodeGenOpts.VirtualFunctionElimination);
998   }
999 
1000   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1001     getModule().addModuleFlag(llvm::Module::Override,
1002                               "CFI Canonical Jump Tables",
1003                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1004   }
1005 
1006   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1007     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1008     // KCFI assumes patchable-function-prefix is the same for all indirectly
1009     // called functions. Store the expected offset for code generation.
1010     if (CodeGenOpts.PatchableFunctionEntryOffset)
1011       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1012                                 CodeGenOpts.PatchableFunctionEntryOffset);
1013   }
1014 
1015   if (CodeGenOpts.CFProtectionReturn &&
1016       Target.checkCFProtectionReturnSupported(getDiags())) {
1017     // Indicate that we want to instrument return control flow protection.
1018     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1019                               1);
1020   }
1021 
1022   if (CodeGenOpts.CFProtectionBranch &&
1023       Target.checkCFProtectionBranchSupported(getDiags())) {
1024     // Indicate that we want to instrument branch control flow protection.
1025     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1026                               1);
1027   }
1028 
1029   if (CodeGenOpts.FunctionReturnThunks)
1030     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1031 
1032   if (CodeGenOpts.IndirectBranchCSPrefix)
1033     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1034 
1035   // Add module metadata for return address signing (ignoring
1036   // non-leaf/all) and stack tagging. These are actually turned on by function
1037   // attributes, but we use module metadata to emit build attributes. This is
1038   // needed for LTO, where the function attributes are inside bitcode
1039   // serialised into a global variable by the time build attributes are
1040   // emitted, so we can't access them. LTO objects could be compiled with
1041   // different flags therefore module flags are set to "Min" behavior to achieve
1042   // the same end result of the normal build where e.g BTI is off if any object
1043   // doesn't support it.
1044   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1045       LangOpts.getSignReturnAddressScope() !=
1046           LangOptions::SignReturnAddressScopeKind::None)
1047     getModule().addModuleFlag(llvm::Module::Override,
1048                               "sign-return-address-buildattr", 1);
1049   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1050     getModule().addModuleFlag(llvm::Module::Override,
1051                               "tag-stack-memory-buildattr", 1);
1052 
1053   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
1054       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
1055       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
1056       Arch == llvm::Triple::aarch64_be) {
1057     if (LangOpts.BranchTargetEnforcement)
1058       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1059                                 1);
1060     if (LangOpts.hasSignReturnAddress())
1061       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1062     if (LangOpts.isSignReturnAddressScopeAll())
1063       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1064                                 1);
1065     if (!LangOpts.isSignReturnAddressWithAKey())
1066       getModule().addModuleFlag(llvm::Module::Min,
1067                                 "sign-return-address-with-bkey", 1);
1068   }
1069 
1070   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1071     llvm::LLVMContext &Ctx = TheModule.getContext();
1072     getModule().addModuleFlag(
1073         llvm::Module::Error, "MemProfProfileFilename",
1074         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1075   }
1076 
1077   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1078     // Indicate whether __nvvm_reflect should be configured to flush denormal
1079     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1080     // property.)
1081     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1082                               CodeGenOpts.FP32DenormalMode.Output !=
1083                                   llvm::DenormalMode::IEEE);
1084   }
1085 
1086   if (LangOpts.EHAsynch)
1087     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1088 
1089   // Indicate whether this Module was compiled with -fopenmp
1090   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1091     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1092   if (getLangOpts().OpenMPIsDevice)
1093     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1094                               LangOpts.OpenMP);
1095 
1096   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1097   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1098     EmitOpenCLMetadata();
1099     // Emit SPIR version.
1100     if (getTriple().isSPIR()) {
1101       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1102       // opencl.spir.version named metadata.
1103       // C++ for OpenCL has a distinct mapping for version compatibility with
1104       // OpenCL.
1105       auto Version = LangOpts.getOpenCLCompatibleVersion();
1106       llvm::Metadata *SPIRVerElts[] = {
1107           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1108               Int32Ty, Version / 100)),
1109           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1110               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1111       llvm::NamedMDNode *SPIRVerMD =
1112           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1113       llvm::LLVMContext &Ctx = TheModule.getContext();
1114       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1115     }
1116   }
1117 
1118   // HLSL related end of code gen work items.
1119   if (LangOpts.HLSL)
1120     getHLSLRuntime().finishCodeGen();
1121 
1122   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1123     assert(PLevel < 3 && "Invalid PIC Level");
1124     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1125     if (Context.getLangOpts().PIE)
1126       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1127   }
1128 
1129   if (getCodeGenOpts().CodeModel.size() > 0) {
1130     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1131                   .Case("tiny", llvm::CodeModel::Tiny)
1132                   .Case("small", llvm::CodeModel::Small)
1133                   .Case("kernel", llvm::CodeModel::Kernel)
1134                   .Case("medium", llvm::CodeModel::Medium)
1135                   .Case("large", llvm::CodeModel::Large)
1136                   .Default(~0u);
1137     if (CM != ~0u) {
1138       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1139       getModule().setCodeModel(codeModel);
1140     }
1141   }
1142 
1143   if (CodeGenOpts.NoPLT)
1144     getModule().setRtLibUseGOT();
1145   if (getTriple().isOSBinFormatELF() &&
1146       CodeGenOpts.DirectAccessExternalData !=
1147           getModule().getDirectAccessExternalData()) {
1148     getModule().setDirectAccessExternalData(
1149         CodeGenOpts.DirectAccessExternalData);
1150   }
1151   if (CodeGenOpts.UnwindTables)
1152     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1153 
1154   switch (CodeGenOpts.getFramePointer()) {
1155   case CodeGenOptions::FramePointerKind::None:
1156     // 0 ("none") is the default.
1157     break;
1158   case CodeGenOptions::FramePointerKind::NonLeaf:
1159     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1160     break;
1161   case CodeGenOptions::FramePointerKind::All:
1162     getModule().setFramePointer(llvm::FramePointerKind::All);
1163     break;
1164   }
1165 
1166   SimplifyPersonality();
1167 
1168   if (getCodeGenOpts().EmitDeclMetadata)
1169     EmitDeclMetadata();
1170 
1171   if (getCodeGenOpts().CoverageNotesFile.size() ||
1172       getCodeGenOpts().CoverageDataFile.size())
1173     EmitCoverageFile();
1174 
1175   if (CGDebugInfo *DI = getModuleDebugInfo())
1176     DI->finalize();
1177 
1178   if (getCodeGenOpts().EmitVersionIdentMetadata)
1179     EmitVersionIdentMetadata();
1180 
1181   if (!getCodeGenOpts().RecordCommandLine.empty())
1182     EmitCommandLineMetadata();
1183 
1184   if (!getCodeGenOpts().StackProtectorGuard.empty())
1185     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1186   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1187     getModule().setStackProtectorGuardReg(
1188         getCodeGenOpts().StackProtectorGuardReg);
1189   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1190     getModule().setStackProtectorGuardSymbol(
1191         getCodeGenOpts().StackProtectorGuardSymbol);
1192   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1193     getModule().setStackProtectorGuardOffset(
1194         getCodeGenOpts().StackProtectorGuardOffset);
1195   if (getCodeGenOpts().StackAlignment)
1196     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1197   if (getCodeGenOpts().SkipRaxSetup)
1198     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1199 
1200   if (getContext().getTargetInfo().getMaxTLSAlign())
1201     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1202                               getContext().getTargetInfo().getMaxTLSAlign());
1203 
1204   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1205 
1206   EmitBackendOptionsMetadata(getCodeGenOpts());
1207 
1208   // If there is device offloading code embed it in the host now.
1209   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1210 
1211   // Set visibility from DLL storage class
1212   // We do this at the end of LLVM IR generation; after any operation
1213   // that might affect the DLL storage class or the visibility, and
1214   // before anything that might act on these.
1215   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1216 }
1217 
1218 void CodeGenModule::EmitOpenCLMetadata() {
1219   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1220   // opencl.ocl.version named metadata node.
1221   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1222   auto Version = LangOpts.getOpenCLCompatibleVersion();
1223   llvm::Metadata *OCLVerElts[] = {
1224       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1225           Int32Ty, Version / 100)),
1226       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1227           Int32Ty, (Version % 100) / 10))};
1228   llvm::NamedMDNode *OCLVerMD =
1229       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1230   llvm::LLVMContext &Ctx = TheModule.getContext();
1231   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1232 }
1233 
1234 void CodeGenModule::EmitBackendOptionsMetadata(
1235     const CodeGenOptions &CodeGenOpts) {
1236   if (getTriple().isRISCV()) {
1237     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1238                               CodeGenOpts.SmallDataLimit);
1239   }
1240 }
1241 
1242 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1243   // Make sure that this type is translated.
1244   Types.UpdateCompletedType(TD);
1245 }
1246 
1247 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1248   // Make sure that this type is translated.
1249   Types.RefreshTypeCacheForClass(RD);
1250 }
1251 
1252 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1253   if (!TBAA)
1254     return nullptr;
1255   return TBAA->getTypeInfo(QTy);
1256 }
1257 
1258 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1259   if (!TBAA)
1260     return TBAAAccessInfo();
1261   if (getLangOpts().CUDAIsDevice) {
1262     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1263     // access info.
1264     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1265       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1266           nullptr)
1267         return TBAAAccessInfo();
1268     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1269       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1270           nullptr)
1271         return TBAAAccessInfo();
1272     }
1273   }
1274   return TBAA->getAccessInfo(AccessType);
1275 }
1276 
1277 TBAAAccessInfo
1278 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1279   if (!TBAA)
1280     return TBAAAccessInfo();
1281   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1282 }
1283 
1284 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1285   if (!TBAA)
1286     return nullptr;
1287   return TBAA->getTBAAStructInfo(QTy);
1288 }
1289 
1290 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1291   if (!TBAA)
1292     return nullptr;
1293   return TBAA->getBaseTypeInfo(QTy);
1294 }
1295 
1296 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1297   if (!TBAA)
1298     return nullptr;
1299   return TBAA->getAccessTagInfo(Info);
1300 }
1301 
1302 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1303                                                    TBAAAccessInfo TargetInfo) {
1304   if (!TBAA)
1305     return TBAAAccessInfo();
1306   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1307 }
1308 
1309 TBAAAccessInfo
1310 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1311                                                    TBAAAccessInfo InfoB) {
1312   if (!TBAA)
1313     return TBAAAccessInfo();
1314   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1315 }
1316 
1317 TBAAAccessInfo
1318 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1319                                               TBAAAccessInfo SrcInfo) {
1320   if (!TBAA)
1321     return TBAAAccessInfo();
1322   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1323 }
1324 
1325 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1326                                                 TBAAAccessInfo TBAAInfo) {
1327   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1328     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1329 }
1330 
1331 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1332     llvm::Instruction *I, const CXXRecordDecl *RD) {
1333   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1334                  llvm::MDNode::get(getLLVMContext(), {}));
1335 }
1336 
1337 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1338   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1339   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1340 }
1341 
1342 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1343 /// specified stmt yet.
1344 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1345   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1346                                                "cannot compile this %0 yet");
1347   std::string Msg = Type;
1348   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1349       << Msg << S->getSourceRange();
1350 }
1351 
1352 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1353 /// specified decl yet.
1354 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1355   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1356                                                "cannot compile this %0 yet");
1357   std::string Msg = Type;
1358   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1359 }
1360 
1361 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1362   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1363 }
1364 
1365 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1366                                         const NamedDecl *D) const {
1367   // Internal definitions always have default visibility.
1368   if (GV->hasLocalLinkage()) {
1369     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1370     return;
1371   }
1372   if (!D)
1373     return;
1374   // Set visibility for definitions, and for declarations if requested globally
1375   // or set explicitly.
1376   LinkageInfo LV = D->getLinkageAndVisibility();
1377   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1378     // Reject incompatible dlllstorage and visibility annotations.
1379     if (!LV.isVisibilityExplicit())
1380       return;
1381     if (GV->hasDLLExportStorageClass()) {
1382       if (LV.getVisibility() == HiddenVisibility)
1383         getDiags().Report(D->getLocation(),
1384                           diag::err_hidden_visibility_dllexport);
1385     } else if (LV.getVisibility() != DefaultVisibility) {
1386       getDiags().Report(D->getLocation(),
1387                         diag::err_non_default_visibility_dllimport);
1388     }
1389     return;
1390   }
1391 
1392   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1393       !GV->isDeclarationForLinker())
1394     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1395 }
1396 
1397 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1398                                  llvm::GlobalValue *GV) {
1399   if (GV->hasLocalLinkage())
1400     return true;
1401 
1402   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1403     return true;
1404 
1405   // DLLImport explicitly marks the GV as external.
1406   if (GV->hasDLLImportStorageClass())
1407     return false;
1408 
1409   const llvm::Triple &TT = CGM.getTriple();
1410   if (TT.isWindowsGNUEnvironment()) {
1411     // In MinGW, variables without DLLImport can still be automatically
1412     // imported from a DLL by the linker; don't mark variables that
1413     // potentially could come from another DLL as DSO local.
1414 
1415     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1416     // (and this actually happens in the public interface of libstdc++), so
1417     // such variables can't be marked as DSO local. (Native TLS variables
1418     // can't be dllimported at all, though.)
1419     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1420         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1421       return false;
1422   }
1423 
1424   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1425   // remain unresolved in the link, they can be resolved to zero, which is
1426   // outside the current DSO.
1427   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1428     return false;
1429 
1430   // Every other GV is local on COFF.
1431   // Make an exception for windows OS in the triple: Some firmware builds use
1432   // *-win32-macho triples. This (accidentally?) produced windows relocations
1433   // without GOT tables in older clang versions; Keep this behaviour.
1434   // FIXME: even thread local variables?
1435   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1436     return true;
1437 
1438   // Only handle COFF and ELF for now.
1439   if (!TT.isOSBinFormatELF())
1440     return false;
1441 
1442   // If this is not an executable, don't assume anything is local.
1443   const auto &CGOpts = CGM.getCodeGenOpts();
1444   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1445   const auto &LOpts = CGM.getLangOpts();
1446   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1447     // On ELF, if -fno-semantic-interposition is specified and the target
1448     // supports local aliases, there will be neither CC1
1449     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1450     // dso_local on the function if using a local alias is preferable (can avoid
1451     // PLT indirection).
1452     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1453       return false;
1454     return !(CGM.getLangOpts().SemanticInterposition ||
1455              CGM.getLangOpts().HalfNoSemanticInterposition);
1456   }
1457 
1458   // A definition cannot be preempted from an executable.
1459   if (!GV->isDeclarationForLinker())
1460     return true;
1461 
1462   // Most PIC code sequences that assume that a symbol is local cannot produce a
1463   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1464   // depended, it seems worth it to handle it here.
1465   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1466     return false;
1467 
1468   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1469   if (TT.isPPC64())
1470     return false;
1471 
1472   if (CGOpts.DirectAccessExternalData) {
1473     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1474     // for non-thread-local variables. If the symbol is not defined in the
1475     // executable, a copy relocation will be needed at link time. dso_local is
1476     // excluded for thread-local variables because they generally don't support
1477     // copy relocations.
1478     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1479       if (!Var->isThreadLocal())
1480         return true;
1481 
1482     // -fno-pic sets dso_local on a function declaration to allow direct
1483     // accesses when taking its address (similar to a data symbol). If the
1484     // function is not defined in the executable, a canonical PLT entry will be
1485     // needed at link time. -fno-direct-access-external-data can avoid the
1486     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1487     // it could just cause trouble without providing perceptible benefits.
1488     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1489       return true;
1490   }
1491 
1492   // If we can use copy relocations we can assume it is local.
1493 
1494   // Otherwise don't assume it is local.
1495   return false;
1496 }
1497 
1498 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1499   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1500 }
1501 
1502 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1503                                           GlobalDecl GD) const {
1504   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1505   // C++ destructors have a few C++ ABI specific special cases.
1506   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1507     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1508     return;
1509   }
1510   setDLLImportDLLExport(GV, D);
1511 }
1512 
1513 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1514                                           const NamedDecl *D) const {
1515   if (D && D->isExternallyVisible()) {
1516     if (D->hasAttr<DLLImportAttr>())
1517       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1518     else if ((D->hasAttr<DLLExportAttr>() ||
1519               shouldMapVisibilityToDLLExport(D)) &&
1520              !GV->isDeclarationForLinker())
1521       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1522   }
1523 }
1524 
1525 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1526                                     GlobalDecl GD) const {
1527   setDLLImportDLLExport(GV, GD);
1528   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1529 }
1530 
1531 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1532                                     const NamedDecl *D) const {
1533   setDLLImportDLLExport(GV, D);
1534   setGVPropertiesAux(GV, D);
1535 }
1536 
1537 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1538                                        const NamedDecl *D) const {
1539   setGlobalVisibility(GV, D);
1540   setDSOLocal(GV);
1541   GV->setPartition(CodeGenOpts.SymbolPartition);
1542 }
1543 
1544 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1545   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1546       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1547       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1548       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1549       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1550 }
1551 
1552 llvm::GlobalVariable::ThreadLocalMode
1553 CodeGenModule::GetDefaultLLVMTLSModel() const {
1554   switch (CodeGenOpts.getDefaultTLSModel()) {
1555   case CodeGenOptions::GeneralDynamicTLSModel:
1556     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1557   case CodeGenOptions::LocalDynamicTLSModel:
1558     return llvm::GlobalVariable::LocalDynamicTLSModel;
1559   case CodeGenOptions::InitialExecTLSModel:
1560     return llvm::GlobalVariable::InitialExecTLSModel;
1561   case CodeGenOptions::LocalExecTLSModel:
1562     return llvm::GlobalVariable::LocalExecTLSModel;
1563   }
1564   llvm_unreachable("Invalid TLS model!");
1565 }
1566 
1567 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1568   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1569 
1570   llvm::GlobalValue::ThreadLocalMode TLM;
1571   TLM = GetDefaultLLVMTLSModel();
1572 
1573   // Override the TLS model if it is explicitly specified.
1574   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1575     TLM = GetLLVMTLSModel(Attr->getModel());
1576   }
1577 
1578   GV->setThreadLocalMode(TLM);
1579 }
1580 
1581 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1582                                           StringRef Name) {
1583   const TargetInfo &Target = CGM.getTarget();
1584   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1585 }
1586 
1587 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1588                                                  const CPUSpecificAttr *Attr,
1589                                                  unsigned CPUIndex,
1590                                                  raw_ostream &Out) {
1591   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1592   // supported.
1593   if (Attr)
1594     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1595   else if (CGM.getTarget().supportsIFunc())
1596     Out << ".resolver";
1597 }
1598 
1599 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1600                                         const TargetVersionAttr *Attr,
1601                                         raw_ostream &Out) {
1602   if (Attr->isDefaultVersion())
1603     return;
1604   Out << "._";
1605   const TargetInfo &TI = CGM.getTarget();
1606   llvm::SmallVector<StringRef, 8> Feats;
1607   Attr->getFeatures(Feats);
1608   llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1609     return TI.multiVersionSortPriority(FeatL) <
1610            TI.multiVersionSortPriority(FeatR);
1611   });
1612   for (const auto &Feat : Feats) {
1613     Out << 'M';
1614     Out << Feat;
1615   }
1616 }
1617 
1618 static void AppendTargetMangling(const CodeGenModule &CGM,
1619                                  const TargetAttr *Attr, raw_ostream &Out) {
1620   if (Attr->isDefaultVersion())
1621     return;
1622 
1623   Out << '.';
1624   const TargetInfo &Target = CGM.getTarget();
1625   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1626   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1627     // Multiversioning doesn't allow "no-${feature}", so we can
1628     // only have "+" prefixes here.
1629     assert(LHS.startswith("+") && RHS.startswith("+") &&
1630            "Features should always have a prefix.");
1631     return Target.multiVersionSortPriority(LHS.substr(1)) >
1632            Target.multiVersionSortPriority(RHS.substr(1));
1633   });
1634 
1635   bool IsFirst = true;
1636 
1637   if (!Info.CPU.empty()) {
1638     IsFirst = false;
1639     Out << "arch_" << Info.CPU;
1640   }
1641 
1642   for (StringRef Feat : Info.Features) {
1643     if (!IsFirst)
1644       Out << '_';
1645     IsFirst = false;
1646     Out << Feat.substr(1);
1647   }
1648 }
1649 
1650 // Returns true if GD is a function decl with internal linkage and
1651 // needs a unique suffix after the mangled name.
1652 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1653                                         CodeGenModule &CGM) {
1654   const Decl *D = GD.getDecl();
1655   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1656          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1657 }
1658 
1659 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1660                                        const TargetClonesAttr *Attr,
1661                                        unsigned VersionIndex,
1662                                        raw_ostream &Out) {
1663   const TargetInfo &TI = CGM.getTarget();
1664   if (TI.getTriple().isAArch64()) {
1665     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1666     if (FeatureStr == "default")
1667       return;
1668     Out << "._";
1669     SmallVector<StringRef, 8> Features;
1670     FeatureStr.split(Features, "+");
1671     llvm::stable_sort(Features,
1672                       [&TI](const StringRef FeatL, const StringRef FeatR) {
1673                         return TI.multiVersionSortPriority(FeatL) <
1674                                TI.multiVersionSortPriority(FeatR);
1675                       });
1676     for (auto &Feat : Features) {
1677       Out << 'M';
1678       Out << Feat;
1679     }
1680   } else {
1681     Out << '.';
1682     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1683     if (FeatureStr.startswith("arch="))
1684       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1685     else
1686       Out << FeatureStr;
1687 
1688     Out << '.' << Attr->getMangledIndex(VersionIndex);
1689   }
1690 }
1691 
1692 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1693                                       const NamedDecl *ND,
1694                                       bool OmitMultiVersionMangling = false) {
1695   SmallString<256> Buffer;
1696   llvm::raw_svector_ostream Out(Buffer);
1697   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1698   if (!CGM.getModuleNameHash().empty())
1699     MC.needsUniqueInternalLinkageNames();
1700   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1701   if (ShouldMangle)
1702     MC.mangleName(GD.getWithDecl(ND), Out);
1703   else {
1704     IdentifierInfo *II = ND->getIdentifier();
1705     assert(II && "Attempt to mangle unnamed decl.");
1706     const auto *FD = dyn_cast<FunctionDecl>(ND);
1707 
1708     if (FD &&
1709         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1710       Out << "__regcall3__" << II->getName();
1711     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1712                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1713       Out << "__device_stub__" << II->getName();
1714     } else {
1715       Out << II->getName();
1716     }
1717   }
1718 
1719   // Check if the module name hash should be appended for internal linkage
1720   // symbols.   This should come before multi-version target suffixes are
1721   // appended. This is to keep the name and module hash suffix of the
1722   // internal linkage function together.  The unique suffix should only be
1723   // added when name mangling is done to make sure that the final name can
1724   // be properly demangled.  For example, for C functions without prototypes,
1725   // name mangling is not done and the unique suffix should not be appeneded
1726   // then.
1727   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1728     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1729            "Hash computed when not explicitly requested");
1730     Out << CGM.getModuleNameHash();
1731   }
1732 
1733   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1734     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1735       switch (FD->getMultiVersionKind()) {
1736       case MultiVersionKind::CPUDispatch:
1737       case MultiVersionKind::CPUSpecific:
1738         AppendCPUSpecificCPUDispatchMangling(CGM,
1739                                              FD->getAttr<CPUSpecificAttr>(),
1740                                              GD.getMultiVersionIndex(), Out);
1741         break;
1742       case MultiVersionKind::Target:
1743         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1744         break;
1745       case MultiVersionKind::TargetVersion:
1746         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1747         break;
1748       case MultiVersionKind::TargetClones:
1749         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1750                                    GD.getMultiVersionIndex(), Out);
1751         break;
1752       case MultiVersionKind::None:
1753         llvm_unreachable("None multiversion type isn't valid here");
1754       }
1755     }
1756 
1757   // Make unique name for device side static file-scope variable for HIP.
1758   if (CGM.getContext().shouldExternalize(ND) &&
1759       CGM.getLangOpts().GPURelocatableDeviceCode &&
1760       CGM.getLangOpts().CUDAIsDevice)
1761     CGM.printPostfixForExternalizedDecl(Out, ND);
1762 
1763   return std::string(Out.str());
1764 }
1765 
1766 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1767                                             const FunctionDecl *FD,
1768                                             StringRef &CurName) {
1769   if (!FD->isMultiVersion())
1770     return;
1771 
1772   // Get the name of what this would be without the 'target' attribute.  This
1773   // allows us to lookup the version that was emitted when this wasn't a
1774   // multiversion function.
1775   std::string NonTargetName =
1776       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1777   GlobalDecl OtherGD;
1778   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1779     assert(OtherGD.getCanonicalDecl()
1780                .getDecl()
1781                ->getAsFunction()
1782                ->isMultiVersion() &&
1783            "Other GD should now be a multiversioned function");
1784     // OtherFD is the version of this function that was mangled BEFORE
1785     // becoming a MultiVersion function.  It potentially needs to be updated.
1786     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1787                                       .getDecl()
1788                                       ->getAsFunction()
1789                                       ->getMostRecentDecl();
1790     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1791     // This is so that if the initial version was already the 'default'
1792     // version, we don't try to update it.
1793     if (OtherName != NonTargetName) {
1794       // Remove instead of erase, since others may have stored the StringRef
1795       // to this.
1796       const auto ExistingRecord = Manglings.find(NonTargetName);
1797       if (ExistingRecord != std::end(Manglings))
1798         Manglings.remove(&(*ExistingRecord));
1799       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1800       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1801           Result.first->first();
1802       // If this is the current decl is being created, make sure we update the name.
1803       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1804         CurName = OtherNameRef;
1805       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1806         Entry->setName(OtherName);
1807     }
1808   }
1809 }
1810 
1811 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1812   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1813 
1814   // Some ABIs don't have constructor variants.  Make sure that base and
1815   // complete constructors get mangled the same.
1816   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1817     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1818       CXXCtorType OrigCtorType = GD.getCtorType();
1819       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1820       if (OrigCtorType == Ctor_Base)
1821         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1822     }
1823   }
1824 
1825   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1826   // static device variable depends on whether the variable is referenced by
1827   // a host or device host function. Therefore the mangled name cannot be
1828   // cached.
1829   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1830     auto FoundName = MangledDeclNames.find(CanonicalGD);
1831     if (FoundName != MangledDeclNames.end())
1832       return FoundName->second;
1833   }
1834 
1835   // Keep the first result in the case of a mangling collision.
1836   const auto *ND = cast<NamedDecl>(GD.getDecl());
1837   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1838 
1839   // Ensure either we have different ABIs between host and device compilations,
1840   // says host compilation following MSVC ABI but device compilation follows
1841   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1842   // mangling should be the same after name stubbing. The later checking is
1843   // very important as the device kernel name being mangled in host-compilation
1844   // is used to resolve the device binaries to be executed. Inconsistent naming
1845   // result in undefined behavior. Even though we cannot check that naming
1846   // directly between host- and device-compilations, the host- and
1847   // device-mangling in host compilation could help catching certain ones.
1848   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1849          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1850          (getContext().getAuxTargetInfo() &&
1851           (getContext().getAuxTargetInfo()->getCXXABI() !=
1852            getContext().getTargetInfo().getCXXABI())) ||
1853          getCUDARuntime().getDeviceSideName(ND) ==
1854              getMangledNameImpl(
1855                  *this,
1856                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1857                  ND));
1858 
1859   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1860   return MangledDeclNames[CanonicalGD] = Result.first->first();
1861 }
1862 
1863 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1864                                              const BlockDecl *BD) {
1865   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1866   const Decl *D = GD.getDecl();
1867 
1868   SmallString<256> Buffer;
1869   llvm::raw_svector_ostream Out(Buffer);
1870   if (!D)
1871     MangleCtx.mangleGlobalBlock(BD,
1872       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1873   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1874     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1875   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1876     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1877   else
1878     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1879 
1880   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1881   return Result.first->first();
1882 }
1883 
1884 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1885   auto it = MangledDeclNames.begin();
1886   while (it != MangledDeclNames.end()) {
1887     if (it->second == Name)
1888       return it->first;
1889     it++;
1890   }
1891   return GlobalDecl();
1892 }
1893 
1894 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1895   return getModule().getNamedValue(Name);
1896 }
1897 
1898 /// AddGlobalCtor - Add a function to the list that will be called before
1899 /// main() runs.
1900 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1901                                   unsigned LexOrder,
1902                                   llvm::Constant *AssociatedData) {
1903   // FIXME: Type coercion of void()* types.
1904   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1905 }
1906 
1907 /// AddGlobalDtor - Add a function to the list that will be called
1908 /// when the module is unloaded.
1909 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1910                                   bool IsDtorAttrFunc) {
1911   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1912       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1913     DtorsUsingAtExit[Priority].push_back(Dtor);
1914     return;
1915   }
1916 
1917   // FIXME: Type coercion of void()* types.
1918   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1919 }
1920 
1921 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1922   if (Fns.empty()) return;
1923 
1924   // Ctor function type is void()*.
1925   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1926   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1927       TheModule.getDataLayout().getProgramAddressSpace());
1928 
1929   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1930   llvm::StructType *CtorStructTy = llvm::StructType::get(
1931       Int32Ty, CtorPFTy, VoidPtrTy);
1932 
1933   // Construct the constructor and destructor arrays.
1934   ConstantInitBuilder builder(*this);
1935   auto ctors = builder.beginArray(CtorStructTy);
1936   for (const auto &I : Fns) {
1937     auto ctor = ctors.beginStruct(CtorStructTy);
1938     ctor.addInt(Int32Ty, I.Priority);
1939     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1940     if (I.AssociatedData)
1941       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1942     else
1943       ctor.addNullPointer(VoidPtrTy);
1944     ctor.finishAndAddTo(ctors);
1945   }
1946 
1947   auto list =
1948     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1949                                 /*constant*/ false,
1950                                 llvm::GlobalValue::AppendingLinkage);
1951 
1952   // The LTO linker doesn't seem to like it when we set an alignment
1953   // on appending variables.  Take it off as a workaround.
1954   list->setAlignment(std::nullopt);
1955 
1956   Fns.clear();
1957 }
1958 
1959 llvm::GlobalValue::LinkageTypes
1960 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1961   const auto *D = cast<FunctionDecl>(GD.getDecl());
1962 
1963   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1964 
1965   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1966     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1967 
1968   if (isa<CXXConstructorDecl>(D) &&
1969       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1970       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1971     // Our approach to inheriting constructors is fundamentally different from
1972     // that used by the MS ABI, so keep our inheriting constructor thunks
1973     // internal rather than trying to pick an unambiguous mangling for them.
1974     return llvm::GlobalValue::InternalLinkage;
1975   }
1976 
1977   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1978 }
1979 
1980 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1981   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1982   if (!MDS) return nullptr;
1983 
1984   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1985 }
1986 
1987 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1988   if (auto *FnType = T->getAs<FunctionProtoType>())
1989     T = getContext().getFunctionType(
1990         FnType->getReturnType(), FnType->getParamTypes(),
1991         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1992 
1993   std::string OutName;
1994   llvm::raw_string_ostream Out(OutName);
1995   getCXXABI().getMangleContext().mangleTypeName(
1996       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
1997 
1998   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
1999     Out << ".normalized";
2000 
2001   return llvm::ConstantInt::get(Int32Ty,
2002                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2003 }
2004 
2005 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2006                                               const CGFunctionInfo &Info,
2007                                               llvm::Function *F, bool IsThunk) {
2008   unsigned CallingConv;
2009   llvm::AttributeList PAL;
2010   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2011                          /*AttrOnCallSite=*/false, IsThunk);
2012   F->setAttributes(PAL);
2013   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2014 }
2015 
2016 static void removeImageAccessQualifier(std::string& TyName) {
2017   std::string ReadOnlyQual("__read_only");
2018   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2019   if (ReadOnlyPos != std::string::npos)
2020     // "+ 1" for the space after access qualifier.
2021     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2022   else {
2023     std::string WriteOnlyQual("__write_only");
2024     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2025     if (WriteOnlyPos != std::string::npos)
2026       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2027     else {
2028       std::string ReadWriteQual("__read_write");
2029       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2030       if (ReadWritePos != std::string::npos)
2031         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2032     }
2033   }
2034 }
2035 
2036 // Returns the address space id that should be produced to the
2037 // kernel_arg_addr_space metadata. This is always fixed to the ids
2038 // as specified in the SPIR 2.0 specification in order to differentiate
2039 // for example in clGetKernelArgInfo() implementation between the address
2040 // spaces with targets without unique mapping to the OpenCL address spaces
2041 // (basically all single AS CPUs).
2042 static unsigned ArgInfoAddressSpace(LangAS AS) {
2043   switch (AS) {
2044   case LangAS::opencl_global:
2045     return 1;
2046   case LangAS::opencl_constant:
2047     return 2;
2048   case LangAS::opencl_local:
2049     return 3;
2050   case LangAS::opencl_generic:
2051     return 4; // Not in SPIR 2.0 specs.
2052   case LangAS::opencl_global_device:
2053     return 5;
2054   case LangAS::opencl_global_host:
2055     return 6;
2056   default:
2057     return 0; // Assume private.
2058   }
2059 }
2060 
2061 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2062                                          const FunctionDecl *FD,
2063                                          CodeGenFunction *CGF) {
2064   assert(((FD && CGF) || (!FD && !CGF)) &&
2065          "Incorrect use - FD and CGF should either be both null or not!");
2066   // Create MDNodes that represent the kernel arg metadata.
2067   // Each MDNode is a list in the form of "key", N number of values which is
2068   // the same number of values as their are kernel arguments.
2069 
2070   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2071 
2072   // MDNode for the kernel argument address space qualifiers.
2073   SmallVector<llvm::Metadata *, 8> addressQuals;
2074 
2075   // MDNode for the kernel argument access qualifiers (images only).
2076   SmallVector<llvm::Metadata *, 8> accessQuals;
2077 
2078   // MDNode for the kernel argument type names.
2079   SmallVector<llvm::Metadata *, 8> argTypeNames;
2080 
2081   // MDNode for the kernel argument base type names.
2082   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2083 
2084   // MDNode for the kernel argument type qualifiers.
2085   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2086 
2087   // MDNode for the kernel argument names.
2088   SmallVector<llvm::Metadata *, 8> argNames;
2089 
2090   if (FD && CGF)
2091     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2092       const ParmVarDecl *parm = FD->getParamDecl(i);
2093       // Get argument name.
2094       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2095 
2096       if (!getLangOpts().OpenCL)
2097         continue;
2098       QualType ty = parm->getType();
2099       std::string typeQuals;
2100 
2101       // Get image and pipe access qualifier:
2102       if (ty->isImageType() || ty->isPipeType()) {
2103         const Decl *PDecl = parm;
2104         if (const auto *TD = ty->getAs<TypedefType>())
2105           PDecl = TD->getDecl();
2106         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2107         if (A && A->isWriteOnly())
2108           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2109         else if (A && A->isReadWrite())
2110           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2111         else
2112           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2113       } else
2114         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2115 
2116       auto getTypeSpelling = [&](QualType Ty) {
2117         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2118 
2119         if (Ty.isCanonical()) {
2120           StringRef typeNameRef = typeName;
2121           // Turn "unsigned type" to "utype"
2122           if (typeNameRef.consume_front("unsigned "))
2123             return std::string("u") + typeNameRef.str();
2124           if (typeNameRef.consume_front("signed "))
2125             return typeNameRef.str();
2126         }
2127 
2128         return typeName;
2129       };
2130 
2131       if (ty->isPointerType()) {
2132         QualType pointeeTy = ty->getPointeeType();
2133 
2134         // Get address qualifier.
2135         addressQuals.push_back(
2136             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2137                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2138 
2139         // Get argument type name.
2140         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2141         std::string baseTypeName =
2142             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2143         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2144         argBaseTypeNames.push_back(
2145             llvm::MDString::get(VMContext, baseTypeName));
2146 
2147         // Get argument type qualifiers:
2148         if (ty.isRestrictQualified())
2149           typeQuals = "restrict";
2150         if (pointeeTy.isConstQualified() ||
2151             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2152           typeQuals += typeQuals.empty() ? "const" : " const";
2153         if (pointeeTy.isVolatileQualified())
2154           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2155       } else {
2156         uint32_t AddrSpc = 0;
2157         bool isPipe = ty->isPipeType();
2158         if (ty->isImageType() || isPipe)
2159           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2160 
2161         addressQuals.push_back(
2162             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2163 
2164         // Get argument type name.
2165         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2166         std::string typeName = getTypeSpelling(ty);
2167         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2168 
2169         // Remove access qualifiers on images
2170         // (as they are inseparable from type in clang implementation,
2171         // but OpenCL spec provides a special query to get access qualifier
2172         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2173         if (ty->isImageType()) {
2174           removeImageAccessQualifier(typeName);
2175           removeImageAccessQualifier(baseTypeName);
2176         }
2177 
2178         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2179         argBaseTypeNames.push_back(
2180             llvm::MDString::get(VMContext, baseTypeName));
2181 
2182         if (isPipe)
2183           typeQuals = "pipe";
2184       }
2185       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2186     }
2187 
2188   if (getLangOpts().OpenCL) {
2189     Fn->setMetadata("kernel_arg_addr_space",
2190                     llvm::MDNode::get(VMContext, addressQuals));
2191     Fn->setMetadata("kernel_arg_access_qual",
2192                     llvm::MDNode::get(VMContext, accessQuals));
2193     Fn->setMetadata("kernel_arg_type",
2194                     llvm::MDNode::get(VMContext, argTypeNames));
2195     Fn->setMetadata("kernel_arg_base_type",
2196                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2197     Fn->setMetadata("kernel_arg_type_qual",
2198                     llvm::MDNode::get(VMContext, argTypeQuals));
2199   }
2200   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2201       getCodeGenOpts().HIPSaveKernelArgName)
2202     Fn->setMetadata("kernel_arg_name",
2203                     llvm::MDNode::get(VMContext, argNames));
2204 }
2205 
2206 /// Determines whether the language options require us to model
2207 /// unwind exceptions.  We treat -fexceptions as mandating this
2208 /// except under the fragile ObjC ABI with only ObjC exceptions
2209 /// enabled.  This means, for example, that C with -fexceptions
2210 /// enables this.
2211 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2212   // If exceptions are completely disabled, obviously this is false.
2213   if (!LangOpts.Exceptions) return false;
2214 
2215   // If C++ exceptions are enabled, this is true.
2216   if (LangOpts.CXXExceptions) return true;
2217 
2218   // If ObjC exceptions are enabled, this depends on the ABI.
2219   if (LangOpts.ObjCExceptions) {
2220     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2221   }
2222 
2223   return true;
2224 }
2225 
2226 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2227                                                       const CXXMethodDecl *MD) {
2228   // Check that the type metadata can ever actually be used by a call.
2229   if (!CGM.getCodeGenOpts().LTOUnit ||
2230       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2231     return false;
2232 
2233   // Only functions whose address can be taken with a member function pointer
2234   // need this sort of type metadata.
2235   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
2236          !isa<CXXDestructorDecl>(MD);
2237 }
2238 
2239 std::vector<const CXXRecordDecl *>
2240 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2241   llvm::SetVector<const CXXRecordDecl *> MostBases;
2242 
2243   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2244   CollectMostBases = [&](const CXXRecordDecl *RD) {
2245     if (RD->getNumBases() == 0)
2246       MostBases.insert(RD);
2247     for (const CXXBaseSpecifier &B : RD->bases())
2248       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2249   };
2250   CollectMostBases(RD);
2251   return MostBases.takeVector();
2252 }
2253 
2254 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2255                                                            llvm::Function *F) {
2256   llvm::AttrBuilder B(F->getContext());
2257 
2258   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2259     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2260 
2261   if (CodeGenOpts.StackClashProtector)
2262     B.addAttribute("probe-stack", "inline-asm");
2263 
2264   if (!hasUnwindExceptions(LangOpts))
2265     B.addAttribute(llvm::Attribute::NoUnwind);
2266 
2267   if (D && D->hasAttr<NoStackProtectorAttr>())
2268     ; // Do nothing.
2269   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2270            LangOpts.getStackProtector() == LangOptions::SSPOn)
2271     B.addAttribute(llvm::Attribute::StackProtectStrong);
2272   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2273     B.addAttribute(llvm::Attribute::StackProtect);
2274   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2275     B.addAttribute(llvm::Attribute::StackProtectStrong);
2276   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2277     B.addAttribute(llvm::Attribute::StackProtectReq);
2278 
2279   if (!D) {
2280     // If we don't have a declaration to control inlining, the function isn't
2281     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2282     // disabled, mark the function as noinline.
2283     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2284         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2285       B.addAttribute(llvm::Attribute::NoInline);
2286 
2287     F->addFnAttrs(B);
2288     return;
2289   }
2290 
2291   // Track whether we need to add the optnone LLVM attribute,
2292   // starting with the default for this optimization level.
2293   bool ShouldAddOptNone =
2294       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2295   // We can't add optnone in the following cases, it won't pass the verifier.
2296   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2297   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2298 
2299   // Add optnone, but do so only if the function isn't always_inline.
2300   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2301       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2302     B.addAttribute(llvm::Attribute::OptimizeNone);
2303 
2304     // OptimizeNone implies noinline; we should not be inlining such functions.
2305     B.addAttribute(llvm::Attribute::NoInline);
2306 
2307     // We still need to handle naked functions even though optnone subsumes
2308     // much of their semantics.
2309     if (D->hasAttr<NakedAttr>())
2310       B.addAttribute(llvm::Attribute::Naked);
2311 
2312     // OptimizeNone wins over OptimizeForSize and MinSize.
2313     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2314     F->removeFnAttr(llvm::Attribute::MinSize);
2315   } else if (D->hasAttr<NakedAttr>()) {
2316     // Naked implies noinline: we should not be inlining such functions.
2317     B.addAttribute(llvm::Attribute::Naked);
2318     B.addAttribute(llvm::Attribute::NoInline);
2319   } else if (D->hasAttr<NoDuplicateAttr>()) {
2320     B.addAttribute(llvm::Attribute::NoDuplicate);
2321   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2322     // Add noinline if the function isn't always_inline.
2323     B.addAttribute(llvm::Attribute::NoInline);
2324   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2325              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2326     // (noinline wins over always_inline, and we can't specify both in IR)
2327     B.addAttribute(llvm::Attribute::AlwaysInline);
2328   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2329     // If we're not inlining, then force everything that isn't always_inline to
2330     // carry an explicit noinline attribute.
2331     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2332       B.addAttribute(llvm::Attribute::NoInline);
2333   } else {
2334     // Otherwise, propagate the inline hint attribute and potentially use its
2335     // absence to mark things as noinline.
2336     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2337       // Search function and template pattern redeclarations for inline.
2338       auto CheckForInline = [](const FunctionDecl *FD) {
2339         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2340           return Redecl->isInlineSpecified();
2341         };
2342         if (any_of(FD->redecls(), CheckRedeclForInline))
2343           return true;
2344         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2345         if (!Pattern)
2346           return false;
2347         return any_of(Pattern->redecls(), CheckRedeclForInline);
2348       };
2349       if (CheckForInline(FD)) {
2350         B.addAttribute(llvm::Attribute::InlineHint);
2351       } else if (CodeGenOpts.getInlining() ==
2352                      CodeGenOptions::OnlyHintInlining &&
2353                  !FD->isInlined() &&
2354                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2355         B.addAttribute(llvm::Attribute::NoInline);
2356       }
2357     }
2358   }
2359 
2360   // Add other optimization related attributes if we are optimizing this
2361   // function.
2362   if (!D->hasAttr<OptimizeNoneAttr>()) {
2363     if (D->hasAttr<ColdAttr>()) {
2364       if (!ShouldAddOptNone)
2365         B.addAttribute(llvm::Attribute::OptimizeForSize);
2366       B.addAttribute(llvm::Attribute::Cold);
2367     }
2368     if (D->hasAttr<HotAttr>())
2369       B.addAttribute(llvm::Attribute::Hot);
2370     if (D->hasAttr<MinSizeAttr>())
2371       B.addAttribute(llvm::Attribute::MinSize);
2372   }
2373 
2374   F->addFnAttrs(B);
2375 
2376   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2377   if (alignment)
2378     F->setAlignment(llvm::Align(alignment));
2379 
2380   if (!D->hasAttr<AlignedAttr>())
2381     if (LangOpts.FunctionAlignment)
2382       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2383 
2384   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2385   // reserve a bit for differentiating between virtual and non-virtual member
2386   // functions. If the current target's C++ ABI requires this and this is a
2387   // member function, set its alignment accordingly.
2388   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2389     if (F->getPointerAlignment(getDataLayout()) < 2 && isa<CXXMethodDecl>(D))
2390       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2391   }
2392 
2393   // In the cross-dso CFI mode with canonical jump tables, we want !type
2394   // attributes on definitions only.
2395   if (CodeGenOpts.SanitizeCfiCrossDso &&
2396       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2397     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2398       // Skip available_externally functions. They won't be codegen'ed in the
2399       // current module anyway.
2400       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2401         CreateFunctionTypeMetadataForIcall(FD, F);
2402     }
2403   }
2404 
2405   // Emit type metadata on member functions for member function pointer checks.
2406   // These are only ever necessary on definitions; we're guaranteed that the
2407   // definition will be present in the LTO unit as a result of LTO visibility.
2408   auto *MD = dyn_cast<CXXMethodDecl>(D);
2409   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2410     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2411       llvm::Metadata *Id =
2412           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2413               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2414       F->addTypeMetadata(0, Id);
2415     }
2416   }
2417 }
2418 
2419 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2420                                                   llvm::Function *F) {
2421   if (D->hasAttr<StrictFPAttr>()) {
2422     llvm::AttrBuilder FuncAttrs(F->getContext());
2423     FuncAttrs.addAttribute("strictfp");
2424     F->addFnAttrs(FuncAttrs);
2425   }
2426 }
2427 
2428 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2429   const Decl *D = GD.getDecl();
2430   if (isa_and_nonnull<NamedDecl>(D))
2431     setGVProperties(GV, GD);
2432   else
2433     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2434 
2435   if (D && D->hasAttr<UsedAttr>())
2436     addUsedOrCompilerUsedGlobal(GV);
2437 
2438   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2439     const auto *VD = cast<VarDecl>(D);
2440     if (VD->getType().isConstQualified() &&
2441         VD->getStorageDuration() == SD_Static)
2442       addUsedOrCompilerUsedGlobal(GV);
2443   }
2444 }
2445 
2446 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2447                                                 llvm::AttrBuilder &Attrs,
2448                                                 bool SetTargetFeatures) {
2449   // Add target-cpu and target-features attributes to functions. If
2450   // we have a decl for the function and it has a target attribute then
2451   // parse that and add it to the feature set.
2452   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2453   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2454   std::vector<std::string> Features;
2455   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2456   FD = FD ? FD->getMostRecentDecl() : FD;
2457   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2458   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2459   assert((!TD || !TV) && "both target_version and target specified");
2460   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2461   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2462   bool AddedAttr = false;
2463   if (TD || TV || SD || TC) {
2464     llvm::StringMap<bool> FeatureMap;
2465     getContext().getFunctionFeatureMap(FeatureMap, GD);
2466 
2467     // Produce the canonical string for this set of features.
2468     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2469       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2470 
2471     // Now add the target-cpu and target-features to the function.
2472     // While we populated the feature map above, we still need to
2473     // get and parse the target attribute so we can get the cpu for
2474     // the function.
2475     if (TD) {
2476       ParsedTargetAttr ParsedAttr =
2477           Target.parseTargetAttr(TD->getFeaturesStr());
2478       if (!ParsedAttr.CPU.empty() &&
2479           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2480         TargetCPU = ParsedAttr.CPU;
2481         TuneCPU = ""; // Clear the tune CPU.
2482       }
2483       if (!ParsedAttr.Tune.empty() &&
2484           getTarget().isValidCPUName(ParsedAttr.Tune))
2485         TuneCPU = ParsedAttr.Tune;
2486     }
2487 
2488     if (SD) {
2489       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2490       // favor this processor.
2491       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2492     }
2493   } else {
2494     // Otherwise just add the existing target cpu and target features to the
2495     // function.
2496     Features = getTarget().getTargetOpts().Features;
2497   }
2498 
2499   if (!TargetCPU.empty()) {
2500     Attrs.addAttribute("target-cpu", TargetCPU);
2501     AddedAttr = true;
2502   }
2503   if (!TuneCPU.empty()) {
2504     Attrs.addAttribute("tune-cpu", TuneCPU);
2505     AddedAttr = true;
2506   }
2507   if (!Features.empty() && SetTargetFeatures) {
2508     llvm::erase_if(Features, [&](const std::string& F) {
2509        return getTarget().isReadOnlyFeature(F.substr(1));
2510     });
2511     llvm::sort(Features);
2512     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2513     AddedAttr = true;
2514   }
2515 
2516   return AddedAttr;
2517 }
2518 
2519 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2520                                           llvm::GlobalObject *GO) {
2521   const Decl *D = GD.getDecl();
2522   SetCommonAttributes(GD, GO);
2523 
2524   if (D) {
2525     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2526       if (D->hasAttr<RetainAttr>())
2527         addUsedGlobal(GV);
2528       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2529         GV->addAttribute("bss-section", SA->getName());
2530       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2531         GV->addAttribute("data-section", SA->getName());
2532       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2533         GV->addAttribute("rodata-section", SA->getName());
2534       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2535         GV->addAttribute("relro-section", SA->getName());
2536     }
2537 
2538     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2539       if (D->hasAttr<RetainAttr>())
2540         addUsedGlobal(F);
2541       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2542         if (!D->getAttr<SectionAttr>())
2543           F->addFnAttr("implicit-section-name", SA->getName());
2544 
2545       llvm::AttrBuilder Attrs(F->getContext());
2546       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2547         // We know that GetCPUAndFeaturesAttributes will always have the
2548         // newest set, since it has the newest possible FunctionDecl, so the
2549         // new ones should replace the old.
2550         llvm::AttributeMask RemoveAttrs;
2551         RemoveAttrs.addAttribute("target-cpu");
2552         RemoveAttrs.addAttribute("target-features");
2553         RemoveAttrs.addAttribute("tune-cpu");
2554         F->removeFnAttrs(RemoveAttrs);
2555         F->addFnAttrs(Attrs);
2556       }
2557     }
2558 
2559     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2560       GO->setSection(CSA->getName());
2561     else if (const auto *SA = D->getAttr<SectionAttr>())
2562       GO->setSection(SA->getName());
2563   }
2564 
2565   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2566 }
2567 
2568 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2569                                                   llvm::Function *F,
2570                                                   const CGFunctionInfo &FI) {
2571   const Decl *D = GD.getDecl();
2572   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2573   SetLLVMFunctionAttributesForDefinition(D, F);
2574 
2575   F->setLinkage(llvm::Function::InternalLinkage);
2576 
2577   setNonAliasAttributes(GD, F);
2578 }
2579 
2580 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2581   // Set linkage and visibility in case we never see a definition.
2582   LinkageInfo LV = ND->getLinkageAndVisibility();
2583   // Don't set internal linkage on declarations.
2584   // "extern_weak" is overloaded in LLVM; we probably should have
2585   // separate linkage types for this.
2586   if (isExternallyVisible(LV.getLinkage()) &&
2587       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2588     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2589 }
2590 
2591 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2592                                                        llvm::Function *F) {
2593   // Only if we are checking indirect calls.
2594   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2595     return;
2596 
2597   // Non-static class methods are handled via vtable or member function pointer
2598   // checks elsewhere.
2599   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2600     return;
2601 
2602   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2603   F->addTypeMetadata(0, MD);
2604   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2605 
2606   // Emit a hash-based bit set entry for cross-DSO calls.
2607   if (CodeGenOpts.SanitizeCfiCrossDso)
2608     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2609       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2610 }
2611 
2612 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2613   llvm::LLVMContext &Ctx = F->getContext();
2614   llvm::MDBuilder MDB(Ctx);
2615   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2616                  llvm::MDNode::get(
2617                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2618 }
2619 
2620 static bool allowKCFIIdentifier(StringRef Name) {
2621   // KCFI type identifier constants are only necessary for external assembly
2622   // functions, which means it's safe to skip unusual names. Subset of
2623   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2624   return llvm::all_of(Name, [](const char &C) {
2625     return llvm::isAlnum(C) || C == '_' || C == '.';
2626   });
2627 }
2628 
2629 void CodeGenModule::finalizeKCFITypes() {
2630   llvm::Module &M = getModule();
2631   for (auto &F : M.functions()) {
2632     // Remove KCFI type metadata from non-address-taken local functions.
2633     bool AddressTaken = F.hasAddressTaken();
2634     if (!AddressTaken && F.hasLocalLinkage())
2635       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2636 
2637     // Generate a constant with the expected KCFI type identifier for all
2638     // address-taken function declarations to support annotating indirectly
2639     // called assembly functions.
2640     if (!AddressTaken || !F.isDeclaration())
2641       continue;
2642 
2643     const llvm::ConstantInt *Type;
2644     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2645       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2646     else
2647       continue;
2648 
2649     StringRef Name = F.getName();
2650     if (!allowKCFIIdentifier(Name))
2651       continue;
2652 
2653     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2654                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2655                           .str();
2656     M.appendModuleInlineAsm(Asm);
2657   }
2658 }
2659 
2660 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2661                                           bool IsIncompleteFunction,
2662                                           bool IsThunk) {
2663 
2664   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2665     // If this is an intrinsic function, set the function's attributes
2666     // to the intrinsic's attributes.
2667     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2668     return;
2669   }
2670 
2671   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2672 
2673   if (!IsIncompleteFunction)
2674     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2675                               IsThunk);
2676 
2677   // Add the Returned attribute for "this", except for iOS 5 and earlier
2678   // where substantial code, including the libstdc++ dylib, was compiled with
2679   // GCC and does not actually return "this".
2680   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2681       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2682     assert(!F->arg_empty() &&
2683            F->arg_begin()->getType()
2684              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2685            "unexpected this return");
2686     F->addParamAttr(0, llvm::Attribute::Returned);
2687   }
2688 
2689   // Only a few attributes are set on declarations; these may later be
2690   // overridden by a definition.
2691 
2692   setLinkageForGV(F, FD);
2693   setGVProperties(F, FD);
2694 
2695   // Setup target-specific attributes.
2696   if (!IsIncompleteFunction && F->isDeclaration())
2697     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2698 
2699   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2700     F->setSection(CSA->getName());
2701   else if (const auto *SA = FD->getAttr<SectionAttr>())
2702      F->setSection(SA->getName());
2703 
2704   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2705     if (EA->isError())
2706       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2707     else if (EA->isWarning())
2708       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2709   }
2710 
2711   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2712   if (FD->isInlineBuiltinDeclaration()) {
2713     const FunctionDecl *FDBody;
2714     bool HasBody = FD->hasBody(FDBody);
2715     (void)HasBody;
2716     assert(HasBody && "Inline builtin declarations should always have an "
2717                       "available body!");
2718     if (shouldEmitFunction(FDBody))
2719       F->addFnAttr(llvm::Attribute::NoBuiltin);
2720   }
2721 
2722   if (FD->isReplaceableGlobalAllocationFunction()) {
2723     // A replaceable global allocation function does not act like a builtin by
2724     // default, only if it is invoked by a new-expression or delete-expression.
2725     F->addFnAttr(llvm::Attribute::NoBuiltin);
2726   }
2727 
2728   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2729     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2730   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2731     if (MD->isVirtual())
2732       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2733 
2734   // Don't emit entries for function declarations in the cross-DSO mode. This
2735   // is handled with better precision by the receiving DSO. But if jump tables
2736   // are non-canonical then we need type metadata in order to produce the local
2737   // jump table.
2738   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2739       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2740     CreateFunctionTypeMetadataForIcall(FD, F);
2741 
2742   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2743     setKCFIType(FD, F);
2744 
2745   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2746     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2747 
2748   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2749     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2750 
2751   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2752     // Annotate the callback behavior as metadata:
2753     //  - The callback callee (as argument number).
2754     //  - The callback payloads (as argument numbers).
2755     llvm::LLVMContext &Ctx = F->getContext();
2756     llvm::MDBuilder MDB(Ctx);
2757 
2758     // The payload indices are all but the first one in the encoding. The first
2759     // identifies the callback callee.
2760     int CalleeIdx = *CB->encoding_begin();
2761     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2762     F->addMetadata(llvm::LLVMContext::MD_callback,
2763                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2764                                                CalleeIdx, PayloadIndices,
2765                                                /* VarArgsArePassed */ false)}));
2766   }
2767 }
2768 
2769 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2770   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2771          "Only globals with definition can force usage.");
2772   LLVMUsed.emplace_back(GV);
2773 }
2774 
2775 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2776   assert(!GV->isDeclaration() &&
2777          "Only globals with definition can force usage.");
2778   LLVMCompilerUsed.emplace_back(GV);
2779 }
2780 
2781 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2782   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2783          "Only globals with definition can force usage.");
2784   if (getTriple().isOSBinFormatELF())
2785     LLVMCompilerUsed.emplace_back(GV);
2786   else
2787     LLVMUsed.emplace_back(GV);
2788 }
2789 
2790 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2791                      std::vector<llvm::WeakTrackingVH> &List) {
2792   // Don't create llvm.used if there is no need.
2793   if (List.empty())
2794     return;
2795 
2796   // Convert List to what ConstantArray needs.
2797   SmallVector<llvm::Constant*, 8> UsedArray;
2798   UsedArray.resize(List.size());
2799   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2800     UsedArray[i] =
2801         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2802             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2803   }
2804 
2805   if (UsedArray.empty())
2806     return;
2807   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2808 
2809   auto *GV = new llvm::GlobalVariable(
2810       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2811       llvm::ConstantArray::get(ATy, UsedArray), Name);
2812 
2813   GV->setSection("llvm.metadata");
2814 }
2815 
2816 void CodeGenModule::emitLLVMUsed() {
2817   emitUsed(*this, "llvm.used", LLVMUsed);
2818   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2819 }
2820 
2821 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2822   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2823   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2824 }
2825 
2826 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2827   llvm::SmallString<32> Opt;
2828   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2829   if (Opt.empty())
2830     return;
2831   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2832   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2833 }
2834 
2835 void CodeGenModule::AddDependentLib(StringRef Lib) {
2836   auto &C = getLLVMContext();
2837   if (getTarget().getTriple().isOSBinFormatELF()) {
2838       ELFDependentLibraries.push_back(
2839         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2840     return;
2841   }
2842 
2843   llvm::SmallString<24> Opt;
2844   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2845   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2846   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2847 }
2848 
2849 /// Add link options implied by the given module, including modules
2850 /// it depends on, using a postorder walk.
2851 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2852                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2853                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2854   // Import this module's parent.
2855   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2856     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2857   }
2858 
2859   // Import this module's dependencies.
2860   for (Module *Import : llvm::reverse(Mod->Imports)) {
2861     if (Visited.insert(Import).second)
2862       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2863   }
2864 
2865   // Add linker options to link against the libraries/frameworks
2866   // described by this module.
2867   llvm::LLVMContext &Context = CGM.getLLVMContext();
2868   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2869 
2870   // For modules that use export_as for linking, use that module
2871   // name instead.
2872   if (Mod->UseExportAsModuleLinkName)
2873     return;
2874 
2875   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2876     // Link against a framework.  Frameworks are currently Darwin only, so we
2877     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2878     if (LL.IsFramework) {
2879       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2880                                  llvm::MDString::get(Context, LL.Library)};
2881 
2882       Metadata.push_back(llvm::MDNode::get(Context, Args));
2883       continue;
2884     }
2885 
2886     // Link against a library.
2887     if (IsELF) {
2888       llvm::Metadata *Args[2] = {
2889           llvm::MDString::get(Context, "lib"),
2890           llvm::MDString::get(Context, LL.Library),
2891       };
2892       Metadata.push_back(llvm::MDNode::get(Context, Args));
2893     } else {
2894       llvm::SmallString<24> Opt;
2895       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2896       auto *OptString = llvm::MDString::get(Context, Opt);
2897       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2898     }
2899   }
2900 }
2901 
2902 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2903   // Emit the initializers in the order that sub-modules appear in the
2904   // source, first Global Module Fragments, if present.
2905   if (auto GMF = Primary->getGlobalModuleFragment()) {
2906     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2907       if (isa<ImportDecl>(D))
2908         continue;
2909       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2910       EmitTopLevelDecl(D);
2911     }
2912   }
2913   // Second any associated with the module, itself.
2914   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2915     // Skip import decls, the inits for those are called explicitly.
2916     if (isa<ImportDecl>(D))
2917       continue;
2918     EmitTopLevelDecl(D);
2919   }
2920   // Third any associated with the Privat eMOdule Fragment, if present.
2921   if (auto PMF = Primary->getPrivateModuleFragment()) {
2922     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2923       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2924       EmitTopLevelDecl(D);
2925     }
2926   }
2927 }
2928 
2929 void CodeGenModule::EmitModuleLinkOptions() {
2930   // Collect the set of all of the modules we want to visit to emit link
2931   // options, which is essentially the imported modules and all of their
2932   // non-explicit child modules.
2933   llvm::SetVector<clang::Module *> LinkModules;
2934   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2935   SmallVector<clang::Module *, 16> Stack;
2936 
2937   // Seed the stack with imported modules.
2938   for (Module *M : ImportedModules) {
2939     // Do not add any link flags when an implementation TU of a module imports
2940     // a header of that same module.
2941     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2942         !getLangOpts().isCompilingModule())
2943       continue;
2944     if (Visited.insert(M).second)
2945       Stack.push_back(M);
2946   }
2947 
2948   // Find all of the modules to import, making a little effort to prune
2949   // non-leaf modules.
2950   while (!Stack.empty()) {
2951     clang::Module *Mod = Stack.pop_back_val();
2952 
2953     bool AnyChildren = false;
2954 
2955     // Visit the submodules of this module.
2956     for (const auto &SM : Mod->submodules()) {
2957       // Skip explicit children; they need to be explicitly imported to be
2958       // linked against.
2959       if (SM->IsExplicit)
2960         continue;
2961 
2962       if (Visited.insert(SM).second) {
2963         Stack.push_back(SM);
2964         AnyChildren = true;
2965       }
2966     }
2967 
2968     // We didn't find any children, so add this module to the list of
2969     // modules to link against.
2970     if (!AnyChildren) {
2971       LinkModules.insert(Mod);
2972     }
2973   }
2974 
2975   // Add link options for all of the imported modules in reverse topological
2976   // order.  We don't do anything to try to order import link flags with respect
2977   // to linker options inserted by things like #pragma comment().
2978   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2979   Visited.clear();
2980   for (Module *M : LinkModules)
2981     if (Visited.insert(M).second)
2982       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2983   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2984   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2985 
2986   // Add the linker options metadata flag.
2987   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2988   for (auto *MD : LinkerOptionsMetadata)
2989     NMD->addOperand(MD);
2990 }
2991 
2992 void CodeGenModule::EmitDeferred() {
2993   // Emit deferred declare target declarations.
2994   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2995     getOpenMPRuntime().emitDeferredTargetDecls();
2996 
2997   // Emit code for any potentially referenced deferred decls.  Since a
2998   // previously unused static decl may become used during the generation of code
2999   // for a static function, iterate until no changes are made.
3000 
3001   if (!DeferredVTables.empty()) {
3002     EmitDeferredVTables();
3003 
3004     // Emitting a vtable doesn't directly cause more vtables to
3005     // become deferred, although it can cause functions to be
3006     // emitted that then need those vtables.
3007     assert(DeferredVTables.empty());
3008   }
3009 
3010   // Emit CUDA/HIP static device variables referenced by host code only.
3011   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3012   // needed for further handling.
3013   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3014     llvm::append_range(DeferredDeclsToEmit,
3015                        getContext().CUDADeviceVarODRUsedByHost);
3016 
3017   // Stop if we're out of both deferred vtables and deferred declarations.
3018   if (DeferredDeclsToEmit.empty())
3019     return;
3020 
3021   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3022   // work, it will not interfere with this.
3023   std::vector<GlobalDecl> CurDeclsToEmit;
3024   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3025 
3026   for (GlobalDecl &D : CurDeclsToEmit) {
3027     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3028     // to get GlobalValue with exactly the type we need, not something that
3029     // might had been created for another decl with the same mangled name but
3030     // different type.
3031     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3032         GetAddrOfGlobal(D, ForDefinition));
3033 
3034     // In case of different address spaces, we may still get a cast, even with
3035     // IsForDefinition equal to true. Query mangled names table to get
3036     // GlobalValue.
3037     if (!GV)
3038       GV = GetGlobalValue(getMangledName(D));
3039 
3040     // Make sure GetGlobalValue returned non-null.
3041     assert(GV);
3042 
3043     // Check to see if we've already emitted this.  This is necessary
3044     // for a couple of reasons: first, decls can end up in the
3045     // deferred-decls queue multiple times, and second, decls can end
3046     // up with definitions in unusual ways (e.g. by an extern inline
3047     // function acquiring a strong function redefinition).  Just
3048     // ignore these cases.
3049     if (!GV->isDeclaration())
3050       continue;
3051 
3052     // If this is OpenMP, check if it is legal to emit this global normally.
3053     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3054       continue;
3055 
3056     // Otherwise, emit the definition and move on to the next one.
3057     EmitGlobalDefinition(D, GV);
3058 
3059     // If we found out that we need to emit more decls, do that recursively.
3060     // This has the advantage that the decls are emitted in a DFS and related
3061     // ones are close together, which is convenient for testing.
3062     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3063       EmitDeferred();
3064       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3065     }
3066   }
3067 }
3068 
3069 void CodeGenModule::EmitVTablesOpportunistically() {
3070   // Try to emit external vtables as available_externally if they have emitted
3071   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3072   // is not allowed to create new references to things that need to be emitted
3073   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3074 
3075   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3076          && "Only emit opportunistic vtables with optimizations");
3077 
3078   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3079     assert(getVTables().isVTableExternal(RD) &&
3080            "This queue should only contain external vtables");
3081     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3082       VTables.GenerateClassData(RD);
3083   }
3084   OpportunisticVTables.clear();
3085 }
3086 
3087 void CodeGenModule::EmitGlobalAnnotations() {
3088   if (Annotations.empty())
3089     return;
3090 
3091   // Create a new global variable for the ConstantStruct in the Module.
3092   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3093     Annotations[0]->getType(), Annotations.size()), Annotations);
3094   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3095                                       llvm::GlobalValue::AppendingLinkage,
3096                                       Array, "llvm.global.annotations");
3097   gv->setSection(AnnotationSection);
3098 }
3099 
3100 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3101   llvm::Constant *&AStr = AnnotationStrings[Str];
3102   if (AStr)
3103     return AStr;
3104 
3105   // Not found yet, create a new global.
3106   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3107   auto *gv = new llvm::GlobalVariable(
3108       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3109       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3110       ConstGlobalsPtrTy->getAddressSpace());
3111   gv->setSection(AnnotationSection);
3112   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3113   AStr = gv;
3114   return gv;
3115 }
3116 
3117 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3118   SourceManager &SM = getContext().getSourceManager();
3119   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3120   if (PLoc.isValid())
3121     return EmitAnnotationString(PLoc.getFilename());
3122   return EmitAnnotationString(SM.getBufferName(Loc));
3123 }
3124 
3125 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3126   SourceManager &SM = getContext().getSourceManager();
3127   PresumedLoc PLoc = SM.getPresumedLoc(L);
3128   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3129     SM.getExpansionLineNumber(L);
3130   return llvm::ConstantInt::get(Int32Ty, LineNo);
3131 }
3132 
3133 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3134   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3135   if (Exprs.empty())
3136     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3137 
3138   llvm::FoldingSetNodeID ID;
3139   for (Expr *E : Exprs) {
3140     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3141   }
3142   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3143   if (Lookup)
3144     return Lookup;
3145 
3146   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3147   LLVMArgs.reserve(Exprs.size());
3148   ConstantEmitter ConstEmiter(*this);
3149   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3150     const auto *CE = cast<clang::ConstantExpr>(E);
3151     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3152                                     CE->getType());
3153   });
3154   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3155   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3156                                       llvm::GlobalValue::PrivateLinkage, Struct,
3157                                       ".args");
3158   GV->setSection(AnnotationSection);
3159   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3160   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
3161 
3162   Lookup = Bitcasted;
3163   return Bitcasted;
3164 }
3165 
3166 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3167                                                 const AnnotateAttr *AA,
3168                                                 SourceLocation L) {
3169   // Get the globals for file name, annotation, and the line number.
3170   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3171                  *UnitGV = EmitAnnotationUnit(L),
3172                  *LineNoCst = EmitAnnotationLineNo(L),
3173                  *Args = EmitAnnotationArgs(AA);
3174 
3175   llvm::Constant *GVInGlobalsAS = GV;
3176   if (GV->getAddressSpace() !=
3177       getDataLayout().getDefaultGlobalsAddressSpace()) {
3178     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3179         GV, GV->getValueType()->getPointerTo(
3180                 getDataLayout().getDefaultGlobalsAddressSpace()));
3181   }
3182 
3183   // Create the ConstantStruct for the global annotation.
3184   llvm::Constant *Fields[] = {
3185       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
3186       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
3187       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
3188       LineNoCst,
3189       Args,
3190   };
3191   return llvm::ConstantStruct::getAnon(Fields);
3192 }
3193 
3194 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3195                                          llvm::GlobalValue *GV) {
3196   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3197   // Get the struct elements for these annotations.
3198   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3199     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3200 }
3201 
3202 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3203                                        SourceLocation Loc) const {
3204   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3205   // NoSanitize by function name.
3206   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3207     return true;
3208   // NoSanitize by location. Check "mainfile" prefix.
3209   auto &SM = Context.getSourceManager();
3210   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
3211   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3212     return true;
3213 
3214   // Check "src" prefix.
3215   if (Loc.isValid())
3216     return NoSanitizeL.containsLocation(Kind, Loc);
3217   // If location is unknown, this may be a compiler-generated function. Assume
3218   // it's located in the main file.
3219   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3220 }
3221 
3222 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3223                                        llvm::GlobalVariable *GV,
3224                                        SourceLocation Loc, QualType Ty,
3225                                        StringRef Category) const {
3226   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3227   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3228     return true;
3229   auto &SM = Context.getSourceManager();
3230   if (NoSanitizeL.containsMainFile(
3231           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
3232     return true;
3233   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3234     return true;
3235 
3236   // Check global type.
3237   if (!Ty.isNull()) {
3238     // Drill down the array types: if global variable of a fixed type is
3239     // not sanitized, we also don't instrument arrays of them.
3240     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3241       Ty = AT->getElementType();
3242     Ty = Ty.getCanonicalType().getUnqualifiedType();
3243     // Only record types (classes, structs etc.) are ignored.
3244     if (Ty->isRecordType()) {
3245       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3246       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3247         return true;
3248     }
3249   }
3250   return false;
3251 }
3252 
3253 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3254                                    StringRef Category) const {
3255   const auto &XRayFilter = getContext().getXRayFilter();
3256   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3257   auto Attr = ImbueAttr::NONE;
3258   if (Loc.isValid())
3259     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3260   if (Attr == ImbueAttr::NONE)
3261     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3262   switch (Attr) {
3263   case ImbueAttr::NONE:
3264     return false;
3265   case ImbueAttr::ALWAYS:
3266     Fn->addFnAttr("function-instrument", "xray-always");
3267     break;
3268   case ImbueAttr::ALWAYS_ARG1:
3269     Fn->addFnAttr("function-instrument", "xray-always");
3270     Fn->addFnAttr("xray-log-args", "1");
3271     break;
3272   case ImbueAttr::NEVER:
3273     Fn->addFnAttr("function-instrument", "xray-never");
3274     break;
3275   }
3276   return true;
3277 }
3278 
3279 ProfileList::ExclusionType
3280 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3281                                               SourceLocation Loc) const {
3282   const auto &ProfileList = getContext().getProfileList();
3283   // If the profile list is empty, then instrument everything.
3284   if (ProfileList.isEmpty())
3285     return ProfileList::Allow;
3286   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3287   // First, check the function name.
3288   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3289     return *V;
3290   // Next, check the source location.
3291   if (Loc.isValid())
3292     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3293       return *V;
3294   // If location is unknown, this may be a compiler-generated function. Assume
3295   // it's located in the main file.
3296   auto &SM = Context.getSourceManager();
3297   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3298     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3299       return *V;
3300   return ProfileList.getDefault(Kind);
3301 }
3302 
3303 ProfileList::ExclusionType
3304 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3305                                                  SourceLocation Loc) const {
3306   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3307   if (V != ProfileList::Allow)
3308     return V;
3309 
3310   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3311   if (NumGroups > 1) {
3312     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3313     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3314       return ProfileList::Skip;
3315   }
3316   return ProfileList::Allow;
3317 }
3318 
3319 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3320   // Never defer when EmitAllDecls is specified.
3321   if (LangOpts.EmitAllDecls)
3322     return true;
3323 
3324   if (CodeGenOpts.KeepStaticConsts) {
3325     const auto *VD = dyn_cast<VarDecl>(Global);
3326     if (VD && VD->getType().isConstQualified() &&
3327         VD->getStorageDuration() == SD_Static)
3328       return true;
3329   }
3330 
3331   return getContext().DeclMustBeEmitted(Global);
3332 }
3333 
3334 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3335   // In OpenMP 5.0 variables and function may be marked as
3336   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3337   // that they must be emitted on the host/device. To be sure we need to have
3338   // seen a declare target with an explicit mentioning of the function, we know
3339   // we have if the level of the declare target attribute is -1. Note that we
3340   // check somewhere else if we should emit this at all.
3341   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3342     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3343         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3344     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3345       return false;
3346   }
3347 
3348   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3349     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3350       // Implicit template instantiations may change linkage if they are later
3351       // explicitly instantiated, so they should not be emitted eagerly.
3352       return false;
3353   }
3354   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3355     if (Context.getInlineVariableDefinitionKind(VD) ==
3356         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3357       // A definition of an inline constexpr static data member may change
3358       // linkage later if it's redeclared outside the class.
3359       return false;
3360     if (CXX20ModuleInits && VD->getOwningModule() &&
3361         !VD->getOwningModule()->isModuleMapModule()) {
3362       // For CXX20, module-owned initializers need to be deferred, since it is
3363       // not known at this point if they will be run for the current module or
3364       // as part of the initializer for an imported one.
3365       return false;
3366     }
3367   }
3368   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3369   // codegen for global variables, because they may be marked as threadprivate.
3370   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3371       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3372       !isTypeConstant(Global->getType(), false, false) &&
3373       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3374     return false;
3375 
3376   return true;
3377 }
3378 
3379 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3380   StringRef Name = getMangledName(GD);
3381 
3382   // The UUID descriptor should be pointer aligned.
3383   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3384 
3385   // Look for an existing global.
3386   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3387     return ConstantAddress(GV, GV->getValueType(), Alignment);
3388 
3389   ConstantEmitter Emitter(*this);
3390   llvm::Constant *Init;
3391 
3392   APValue &V = GD->getAsAPValue();
3393   if (!V.isAbsent()) {
3394     // If possible, emit the APValue version of the initializer. In particular,
3395     // this gets the type of the constant right.
3396     Init = Emitter.emitForInitializer(
3397         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3398   } else {
3399     // As a fallback, directly construct the constant.
3400     // FIXME: This may get padding wrong under esoteric struct layout rules.
3401     // MSVC appears to create a complete type 'struct __s_GUID' that it
3402     // presumably uses to represent these constants.
3403     MSGuidDecl::Parts Parts = GD->getParts();
3404     llvm::Constant *Fields[4] = {
3405         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3406         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3407         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3408         llvm::ConstantDataArray::getRaw(
3409             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3410             Int8Ty)};
3411     Init = llvm::ConstantStruct::getAnon(Fields);
3412   }
3413 
3414   auto *GV = new llvm::GlobalVariable(
3415       getModule(), Init->getType(),
3416       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3417   if (supportsCOMDAT())
3418     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3419   setDSOLocal(GV);
3420 
3421   if (!V.isAbsent()) {
3422     Emitter.finalize(GV);
3423     return ConstantAddress(GV, GV->getValueType(), Alignment);
3424   }
3425 
3426   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3427   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3428       GV, Ty->getPointerTo(GV->getAddressSpace()));
3429   return ConstantAddress(Addr, Ty, Alignment);
3430 }
3431 
3432 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3433     const UnnamedGlobalConstantDecl *GCD) {
3434   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3435 
3436   llvm::GlobalVariable **Entry = nullptr;
3437   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3438   if (*Entry)
3439     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3440 
3441   ConstantEmitter Emitter(*this);
3442   llvm::Constant *Init;
3443 
3444   const APValue &V = GCD->getValue();
3445 
3446   assert(!V.isAbsent());
3447   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3448                                     GCD->getType());
3449 
3450   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3451                                       /*isConstant=*/true,
3452                                       llvm::GlobalValue::PrivateLinkage, Init,
3453                                       ".constant");
3454   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3455   GV->setAlignment(Alignment.getAsAlign());
3456 
3457   Emitter.finalize(GV);
3458 
3459   *Entry = GV;
3460   return ConstantAddress(GV, GV->getValueType(), Alignment);
3461 }
3462 
3463 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3464     const TemplateParamObjectDecl *TPO) {
3465   StringRef Name = getMangledName(TPO);
3466   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3467 
3468   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3469     return ConstantAddress(GV, GV->getValueType(), Alignment);
3470 
3471   ConstantEmitter Emitter(*this);
3472   llvm::Constant *Init = Emitter.emitForInitializer(
3473         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3474 
3475   if (!Init) {
3476     ErrorUnsupported(TPO, "template parameter object");
3477     return ConstantAddress::invalid();
3478   }
3479 
3480   llvm::GlobalValue::LinkageTypes Linkage =
3481       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3482           ? llvm::GlobalValue::LinkOnceODRLinkage
3483           : llvm::GlobalValue::InternalLinkage;
3484   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3485                                       /*isConstant=*/true, Linkage, Init, Name);
3486   setGVProperties(GV, TPO);
3487   if (supportsCOMDAT())
3488     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3489   Emitter.finalize(GV);
3490 
3491   return ConstantAddress(GV, GV->getValueType(), Alignment);
3492 }
3493 
3494 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3495   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3496   assert(AA && "No alias?");
3497 
3498   CharUnits Alignment = getContext().getDeclAlign(VD);
3499   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3500 
3501   // See if there is already something with the target's name in the module.
3502   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3503   if (Entry) {
3504     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3505     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3506     return ConstantAddress(Ptr, DeclTy, Alignment);
3507   }
3508 
3509   llvm::Constant *Aliasee;
3510   if (isa<llvm::FunctionType>(DeclTy))
3511     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3512                                       GlobalDecl(cast<FunctionDecl>(VD)),
3513                                       /*ForVTable=*/false);
3514   else
3515     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3516                                     nullptr);
3517 
3518   auto *F = cast<llvm::GlobalValue>(Aliasee);
3519   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3520   WeakRefReferences.insert(F);
3521 
3522   return ConstantAddress(Aliasee, DeclTy, Alignment);
3523 }
3524 
3525 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3526   const auto *Global = cast<ValueDecl>(GD.getDecl());
3527 
3528   // Weak references don't produce any output by themselves.
3529   if (Global->hasAttr<WeakRefAttr>())
3530     return;
3531 
3532   // If this is an alias definition (which otherwise looks like a declaration)
3533   // emit it now.
3534   if (Global->hasAttr<AliasAttr>())
3535     return EmitAliasDefinition(GD);
3536 
3537   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3538   if (Global->hasAttr<IFuncAttr>())
3539     return emitIFuncDefinition(GD);
3540 
3541   // If this is a cpu_dispatch multiversion function, emit the resolver.
3542   if (Global->hasAttr<CPUDispatchAttr>())
3543     return emitCPUDispatchDefinition(GD);
3544 
3545   // If this is CUDA, be selective about which declarations we emit.
3546   if (LangOpts.CUDA) {
3547     if (LangOpts.CUDAIsDevice) {
3548       if (!Global->hasAttr<CUDADeviceAttr>() &&
3549           !Global->hasAttr<CUDAGlobalAttr>() &&
3550           !Global->hasAttr<CUDAConstantAttr>() &&
3551           !Global->hasAttr<CUDASharedAttr>() &&
3552           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3553           !Global->getType()->isCUDADeviceBuiltinTextureType())
3554         return;
3555     } else {
3556       // We need to emit host-side 'shadows' for all global
3557       // device-side variables because the CUDA runtime needs their
3558       // size and host-side address in order to provide access to
3559       // their device-side incarnations.
3560 
3561       // So device-only functions are the only things we skip.
3562       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3563           Global->hasAttr<CUDADeviceAttr>())
3564         return;
3565 
3566       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3567              "Expected Variable or Function");
3568     }
3569   }
3570 
3571   if (LangOpts.OpenMP) {
3572     // If this is OpenMP, check if it is legal to emit this global normally.
3573     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3574       return;
3575     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3576       if (MustBeEmitted(Global))
3577         EmitOMPDeclareReduction(DRD);
3578       return;
3579     }
3580     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3581       if (MustBeEmitted(Global))
3582         EmitOMPDeclareMapper(DMD);
3583       return;
3584     }
3585   }
3586 
3587   // Ignore declarations, they will be emitted on their first use.
3588   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3589     // Forward declarations are emitted lazily on first use.
3590     if (!FD->doesThisDeclarationHaveABody()) {
3591       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3592         return;
3593 
3594       StringRef MangledName = getMangledName(GD);
3595 
3596       // Compute the function info and LLVM type.
3597       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3598       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3599 
3600       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3601                               /*DontDefer=*/false);
3602       return;
3603     }
3604   } else {
3605     const auto *VD = cast<VarDecl>(Global);
3606     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3607     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3608         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3609       if (LangOpts.OpenMP) {
3610         // Emit declaration of the must-be-emitted declare target variable.
3611         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3612                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3613           bool UnifiedMemoryEnabled =
3614               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3615           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3616                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3617               !UnifiedMemoryEnabled) {
3618             (void)GetAddrOfGlobalVar(VD);
3619           } else {
3620             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3621                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3622                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3623                      UnifiedMemoryEnabled)) &&
3624                    "Link clause or to clause with unified memory expected.");
3625             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3626           }
3627 
3628           return;
3629         }
3630       }
3631       // If this declaration may have caused an inline variable definition to
3632       // change linkage, make sure that it's emitted.
3633       if (Context.getInlineVariableDefinitionKind(VD) ==
3634           ASTContext::InlineVariableDefinitionKind::Strong)
3635         GetAddrOfGlobalVar(VD);
3636       return;
3637     }
3638   }
3639 
3640   // Defer code generation to first use when possible, e.g. if this is an inline
3641   // function. If the global must always be emitted, do it eagerly if possible
3642   // to benefit from cache locality.
3643   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3644     // Emit the definition if it can't be deferred.
3645     EmitGlobalDefinition(GD);
3646     return;
3647   }
3648 
3649   // If we're deferring emission of a C++ variable with an
3650   // initializer, remember the order in which it appeared in the file.
3651   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3652       cast<VarDecl>(Global)->hasInit()) {
3653     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3654     CXXGlobalInits.push_back(nullptr);
3655   }
3656 
3657   StringRef MangledName = getMangledName(GD);
3658   if (GetGlobalValue(MangledName) != nullptr) {
3659     // The value has already been used and should therefore be emitted.
3660     addDeferredDeclToEmit(GD);
3661   } else if (MustBeEmitted(Global)) {
3662     // The value must be emitted, but cannot be emitted eagerly.
3663     assert(!MayBeEmittedEagerly(Global));
3664     addDeferredDeclToEmit(GD);
3665     EmittedDeferredDecls[MangledName] = GD;
3666   } else {
3667     // Otherwise, remember that we saw a deferred decl with this name.  The
3668     // first use of the mangled name will cause it to move into
3669     // DeferredDeclsToEmit.
3670     DeferredDecls[MangledName] = GD;
3671   }
3672 }
3673 
3674 // Check if T is a class type with a destructor that's not dllimport.
3675 static bool HasNonDllImportDtor(QualType T) {
3676   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3677     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3678       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3679         return true;
3680 
3681   return false;
3682 }
3683 
3684 namespace {
3685   struct FunctionIsDirectlyRecursive
3686       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3687     const StringRef Name;
3688     const Builtin::Context &BI;
3689     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3690         : Name(N), BI(C) {}
3691 
3692     bool VisitCallExpr(const CallExpr *E) {
3693       const FunctionDecl *FD = E->getDirectCallee();
3694       if (!FD)
3695         return false;
3696       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3697       if (Attr && Name == Attr->getLabel())
3698         return true;
3699       unsigned BuiltinID = FD->getBuiltinID();
3700       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3701         return false;
3702       StringRef BuiltinName = BI.getName(BuiltinID);
3703       if (BuiltinName.startswith("__builtin_") &&
3704           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3705         return true;
3706       }
3707       return false;
3708     }
3709 
3710     bool VisitStmt(const Stmt *S) {
3711       for (const Stmt *Child : S->children())
3712         if (Child && this->Visit(Child))
3713           return true;
3714       return false;
3715     }
3716   };
3717 
3718   // Make sure we're not referencing non-imported vars or functions.
3719   struct DLLImportFunctionVisitor
3720       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3721     bool SafeToInline = true;
3722 
3723     bool shouldVisitImplicitCode() const { return true; }
3724 
3725     bool VisitVarDecl(VarDecl *VD) {
3726       if (VD->getTLSKind()) {
3727         // A thread-local variable cannot be imported.
3728         SafeToInline = false;
3729         return SafeToInline;
3730       }
3731 
3732       // A variable definition might imply a destructor call.
3733       if (VD->isThisDeclarationADefinition())
3734         SafeToInline = !HasNonDllImportDtor(VD->getType());
3735 
3736       return SafeToInline;
3737     }
3738 
3739     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3740       if (const auto *D = E->getTemporary()->getDestructor())
3741         SafeToInline = D->hasAttr<DLLImportAttr>();
3742       return SafeToInline;
3743     }
3744 
3745     bool VisitDeclRefExpr(DeclRefExpr *E) {
3746       ValueDecl *VD = E->getDecl();
3747       if (isa<FunctionDecl>(VD))
3748         SafeToInline = VD->hasAttr<DLLImportAttr>();
3749       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3750         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3751       return SafeToInline;
3752     }
3753 
3754     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3755       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3756       return SafeToInline;
3757     }
3758 
3759     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3760       CXXMethodDecl *M = E->getMethodDecl();
3761       if (!M) {
3762         // Call through a pointer to member function. This is safe to inline.
3763         SafeToInline = true;
3764       } else {
3765         SafeToInline = M->hasAttr<DLLImportAttr>();
3766       }
3767       return SafeToInline;
3768     }
3769 
3770     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3771       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3772       return SafeToInline;
3773     }
3774 
3775     bool VisitCXXNewExpr(CXXNewExpr *E) {
3776       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3777       return SafeToInline;
3778     }
3779   };
3780 }
3781 
3782 // isTriviallyRecursive - Check if this function calls another
3783 // decl that, because of the asm attribute or the other decl being a builtin,
3784 // ends up pointing to itself.
3785 bool
3786 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3787   StringRef Name;
3788   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3789     // asm labels are a special kind of mangling we have to support.
3790     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3791     if (!Attr)
3792       return false;
3793     Name = Attr->getLabel();
3794   } else {
3795     Name = FD->getName();
3796   }
3797 
3798   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3799   const Stmt *Body = FD->getBody();
3800   return Body ? Walker.Visit(Body) : false;
3801 }
3802 
3803 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3804   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3805     return true;
3806   const auto *F = cast<FunctionDecl>(GD.getDecl());
3807   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3808     return false;
3809 
3810   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3811     // Check whether it would be safe to inline this dllimport function.
3812     DLLImportFunctionVisitor Visitor;
3813     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3814     if (!Visitor.SafeToInline)
3815       return false;
3816 
3817     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3818       // Implicit destructor invocations aren't captured in the AST, so the
3819       // check above can't see them. Check for them manually here.
3820       for (const Decl *Member : Dtor->getParent()->decls())
3821         if (isa<FieldDecl>(Member))
3822           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3823             return false;
3824       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3825         if (HasNonDllImportDtor(B.getType()))
3826           return false;
3827     }
3828   }
3829 
3830   // Inline builtins declaration must be emitted. They often are fortified
3831   // functions.
3832   if (F->isInlineBuiltinDeclaration())
3833     return true;
3834 
3835   // PR9614. Avoid cases where the source code is lying to us. An available
3836   // externally function should have an equivalent function somewhere else,
3837   // but a function that calls itself through asm label/`__builtin_` trickery is
3838   // clearly not equivalent to the real implementation.
3839   // This happens in glibc's btowc and in some configure checks.
3840   return !isTriviallyRecursive(F);
3841 }
3842 
3843 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3844   return CodeGenOpts.OptimizationLevel > 0;
3845 }
3846 
3847 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3848                                                        llvm::GlobalValue *GV) {
3849   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3850 
3851   if (FD->isCPUSpecificMultiVersion()) {
3852     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3853     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3854       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3855   } else if (FD->isTargetClonesMultiVersion()) {
3856     auto *Clone = FD->getAttr<TargetClonesAttr>();
3857     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3858       if (Clone->isFirstOfVersion(I))
3859         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3860     // Ensure that the resolver function is also emitted.
3861     GetOrCreateMultiVersionResolver(GD);
3862   } else
3863     EmitGlobalFunctionDefinition(GD, GV);
3864 }
3865 
3866 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3867   const auto *D = cast<ValueDecl>(GD.getDecl());
3868 
3869   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3870                                  Context.getSourceManager(),
3871                                  "Generating code for declaration");
3872 
3873   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3874     // At -O0, don't generate IR for functions with available_externally
3875     // linkage.
3876     if (!shouldEmitFunction(GD))
3877       return;
3878 
3879     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3880       std::string Name;
3881       llvm::raw_string_ostream OS(Name);
3882       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3883                                /*Qualified=*/true);
3884       return Name;
3885     });
3886 
3887     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3888       // Make sure to emit the definition(s) before we emit the thunks.
3889       // This is necessary for the generation of certain thunks.
3890       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3891         ABI->emitCXXStructor(GD);
3892       else if (FD->isMultiVersion())
3893         EmitMultiVersionFunctionDefinition(GD, GV);
3894       else
3895         EmitGlobalFunctionDefinition(GD, GV);
3896 
3897       if (Method->isVirtual())
3898         getVTables().EmitThunks(GD);
3899 
3900       return;
3901     }
3902 
3903     if (FD->isMultiVersion())
3904       return EmitMultiVersionFunctionDefinition(GD, GV);
3905     return EmitGlobalFunctionDefinition(GD, GV);
3906   }
3907 
3908   if (const auto *VD = dyn_cast<VarDecl>(D))
3909     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3910 
3911   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3912 }
3913 
3914 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3915                                                       llvm::Function *NewFn);
3916 
3917 static unsigned
3918 TargetMVPriority(const TargetInfo &TI,
3919                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3920   unsigned Priority = 0;
3921   unsigned NumFeatures = 0;
3922   for (StringRef Feat : RO.Conditions.Features) {
3923     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3924     NumFeatures++;
3925   }
3926 
3927   if (!RO.Conditions.Architecture.empty())
3928     Priority = std::max(
3929         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3930 
3931   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3932 
3933   return Priority;
3934 }
3935 
3936 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3937 // TU can forward declare the function without causing problems.  Particularly
3938 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3939 // work with internal linkage functions, so that the same function name can be
3940 // used with internal linkage in multiple TUs.
3941 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3942                                                        GlobalDecl GD) {
3943   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3944   if (FD->getFormalLinkage() == InternalLinkage)
3945     return llvm::GlobalValue::InternalLinkage;
3946   return llvm::GlobalValue::WeakODRLinkage;
3947 }
3948 
3949 void CodeGenModule::emitMultiVersionFunctions() {
3950   std::vector<GlobalDecl> MVFuncsToEmit;
3951   MultiVersionFuncs.swap(MVFuncsToEmit);
3952   for (GlobalDecl GD : MVFuncsToEmit) {
3953     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3954     assert(FD && "Expected a FunctionDecl");
3955 
3956     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3957     if (FD->isTargetMultiVersion()) {
3958       getContext().forEachMultiversionedFunctionVersion(
3959           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3960             GlobalDecl CurGD{
3961                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3962             StringRef MangledName = getMangledName(CurGD);
3963             llvm::Constant *Func = GetGlobalValue(MangledName);
3964             if (!Func) {
3965               if (CurFD->isDefined()) {
3966                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3967                 Func = GetGlobalValue(MangledName);
3968               } else {
3969                 const CGFunctionInfo &FI =
3970                     getTypes().arrangeGlobalDeclaration(GD);
3971                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3972                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3973                                          /*DontDefer=*/false, ForDefinition);
3974               }
3975               assert(Func && "This should have just been created");
3976             }
3977             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3978               const auto *TA = CurFD->getAttr<TargetAttr>();
3979               llvm::SmallVector<StringRef, 8> Feats;
3980               TA->getAddedFeatures(Feats);
3981               Options.emplace_back(cast<llvm::Function>(Func),
3982                                    TA->getArchitecture(), Feats);
3983             } else {
3984               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3985               llvm::SmallVector<StringRef, 8> Feats;
3986               TVA->getFeatures(Feats);
3987               Options.emplace_back(cast<llvm::Function>(Func),
3988                                    /*Architecture*/ "", Feats);
3989             }
3990           });
3991     } else if (FD->isTargetClonesMultiVersion()) {
3992       const auto *TC = FD->getAttr<TargetClonesAttr>();
3993       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3994            ++VersionIndex) {
3995         if (!TC->isFirstOfVersion(VersionIndex))
3996           continue;
3997         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3998                          VersionIndex};
3999         StringRef Version = TC->getFeatureStr(VersionIndex);
4000         StringRef MangledName = getMangledName(CurGD);
4001         llvm::Constant *Func = GetGlobalValue(MangledName);
4002         if (!Func) {
4003           if (FD->isDefined()) {
4004             EmitGlobalFunctionDefinition(CurGD, nullptr);
4005             Func = GetGlobalValue(MangledName);
4006           } else {
4007             const CGFunctionInfo &FI =
4008                 getTypes().arrangeGlobalDeclaration(CurGD);
4009             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4010             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4011                                      /*DontDefer=*/false, ForDefinition);
4012           }
4013           assert(Func && "This should have just been created");
4014         }
4015 
4016         StringRef Architecture;
4017         llvm::SmallVector<StringRef, 1> Feature;
4018 
4019         if (getTarget().getTriple().isAArch64()) {
4020           if (Version != "default") {
4021             llvm::SmallVector<StringRef, 8> VerFeats;
4022             Version.split(VerFeats, "+");
4023             for (auto &CurFeat : VerFeats)
4024               Feature.push_back(CurFeat.trim());
4025           }
4026         } else {
4027           if (Version.startswith("arch="))
4028             Architecture = Version.drop_front(sizeof("arch=") - 1);
4029           else if (Version != "default")
4030             Feature.push_back(Version);
4031         }
4032 
4033         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4034       }
4035     } else {
4036       assert(0 && "Expected a target or target_clones multiversion function");
4037       continue;
4038     }
4039 
4040     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4041     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
4042       ResolverConstant = IFunc->getResolver();
4043     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4044 
4045     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4046 
4047     if (supportsCOMDAT())
4048       ResolverFunc->setComdat(
4049           getModule().getOrInsertComdat(ResolverFunc->getName()));
4050 
4051     const TargetInfo &TI = getTarget();
4052     llvm::stable_sort(
4053         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4054                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4055           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4056         });
4057     CodeGenFunction CGF(*this);
4058     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4059   }
4060 
4061   // Ensure that any additions to the deferred decls list caused by emitting a
4062   // variant are emitted.  This can happen when the variant itself is inline and
4063   // calls a function without linkage.
4064   if (!MVFuncsToEmit.empty())
4065     EmitDeferred();
4066 
4067   // Ensure that any additions to the multiversion funcs list from either the
4068   // deferred decls or the multiversion functions themselves are emitted.
4069   if (!MultiVersionFuncs.empty())
4070     emitMultiVersionFunctions();
4071 }
4072 
4073 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4074   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4075   assert(FD && "Not a FunctionDecl?");
4076   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4077   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4078   assert(DD && "Not a cpu_dispatch Function?");
4079 
4080   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4081   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4082 
4083   StringRef ResolverName = getMangledName(GD);
4084   UpdateMultiVersionNames(GD, FD, ResolverName);
4085 
4086   llvm::Type *ResolverType;
4087   GlobalDecl ResolverGD;
4088   if (getTarget().supportsIFunc()) {
4089     ResolverType = llvm::FunctionType::get(
4090         llvm::PointerType::get(DeclTy,
4091                                getTypes().getTargetAddressSpace(FD->getType())),
4092         false);
4093   }
4094   else {
4095     ResolverType = DeclTy;
4096     ResolverGD = GD;
4097   }
4098 
4099   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4100       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4101   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4102   if (supportsCOMDAT())
4103     ResolverFunc->setComdat(
4104         getModule().getOrInsertComdat(ResolverFunc->getName()));
4105 
4106   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4107   const TargetInfo &Target = getTarget();
4108   unsigned Index = 0;
4109   for (const IdentifierInfo *II : DD->cpus()) {
4110     // Get the name of the target function so we can look it up/create it.
4111     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4112                               getCPUSpecificMangling(*this, II->getName());
4113 
4114     llvm::Constant *Func = GetGlobalValue(MangledName);
4115 
4116     if (!Func) {
4117       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4118       if (ExistingDecl.getDecl() &&
4119           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4120         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4121         Func = GetGlobalValue(MangledName);
4122       } else {
4123         if (!ExistingDecl.getDecl())
4124           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4125 
4126       Func = GetOrCreateLLVMFunction(
4127           MangledName, DeclTy, ExistingDecl,
4128           /*ForVTable=*/false, /*DontDefer=*/true,
4129           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4130       }
4131     }
4132 
4133     llvm::SmallVector<StringRef, 32> Features;
4134     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4135     llvm::transform(Features, Features.begin(),
4136                     [](StringRef Str) { return Str.substr(1); });
4137     llvm::erase_if(Features, [&Target](StringRef Feat) {
4138       return !Target.validateCpuSupports(Feat);
4139     });
4140     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4141     ++Index;
4142   }
4143 
4144   llvm::stable_sort(
4145       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4146                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4147         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4148                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4149       });
4150 
4151   // If the list contains multiple 'default' versions, such as when it contains
4152   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4153   // always run on at least a 'pentium'). We do this by deleting the 'least
4154   // advanced' (read, lowest mangling letter).
4155   while (Options.size() > 1 &&
4156          llvm::X86::getCpuSupportsMask(
4157              (Options.end() - 2)->Conditions.Features) == 0) {
4158     StringRef LHSName = (Options.end() - 2)->Function->getName();
4159     StringRef RHSName = (Options.end() - 1)->Function->getName();
4160     if (LHSName.compare(RHSName) < 0)
4161       Options.erase(Options.end() - 2);
4162     else
4163       Options.erase(Options.end() - 1);
4164   }
4165 
4166   CodeGenFunction CGF(*this);
4167   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4168 
4169   if (getTarget().supportsIFunc()) {
4170     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4171     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4172 
4173     // Fix up function declarations that were created for cpu_specific before
4174     // cpu_dispatch was known
4175     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4176       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4177       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4178                                            &getModule());
4179       GI->takeName(IFunc);
4180       IFunc->replaceAllUsesWith(GI);
4181       IFunc->eraseFromParent();
4182       IFunc = GI;
4183     }
4184 
4185     std::string AliasName = getMangledNameImpl(
4186         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4187     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4188     if (!AliasFunc) {
4189       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4190                                            &getModule());
4191       SetCommonAttributes(GD, GA);
4192     }
4193   }
4194 }
4195 
4196 /// If a dispatcher for the specified mangled name is not in the module, create
4197 /// and return an llvm Function with the specified type.
4198 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4199   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4200   assert(FD && "Not a FunctionDecl?");
4201 
4202   std::string MangledName =
4203       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4204 
4205   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4206   // a separate resolver).
4207   std::string ResolverName = MangledName;
4208   if (getTarget().supportsIFunc())
4209     ResolverName += ".ifunc";
4210   else if (FD->isTargetMultiVersion())
4211     ResolverName += ".resolver";
4212 
4213   // If the resolver has already been created, just return it.
4214   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4215     return ResolverGV;
4216 
4217   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4218   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4219 
4220   // The resolver needs to be created. For target and target_clones, defer
4221   // creation until the end of the TU.
4222   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4223     MultiVersionFuncs.push_back(GD);
4224 
4225   // For cpu_specific, don't create an ifunc yet because we don't know if the
4226   // cpu_dispatch will be emitted in this translation unit.
4227   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4228     llvm::Type *ResolverType = llvm::FunctionType::get(
4229         llvm::PointerType::get(DeclTy,
4230                                getTypes().getTargetAddressSpace(FD->getType())),
4231         false);
4232     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4233         MangledName + ".resolver", ResolverType, GlobalDecl{},
4234         /*ForVTable=*/false);
4235     llvm::GlobalIFunc *GIF =
4236         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4237                                   "", Resolver, &getModule());
4238     GIF->setName(ResolverName);
4239     SetCommonAttributes(FD, GIF);
4240 
4241     return GIF;
4242   }
4243 
4244   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4245       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4246   assert(isa<llvm::GlobalValue>(Resolver) &&
4247          "Resolver should be created for the first time");
4248   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4249   return Resolver;
4250 }
4251 
4252 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4253 /// module, create and return an llvm Function with the specified type. If there
4254 /// is something in the module with the specified name, return it potentially
4255 /// bitcasted to the right type.
4256 ///
4257 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4258 /// to set the attributes on the function when it is first created.
4259 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4260     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4261     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4262     ForDefinition_t IsForDefinition) {
4263   const Decl *D = GD.getDecl();
4264 
4265   // Any attempts to use a MultiVersion function should result in retrieving
4266   // the iFunc instead. Name Mangling will handle the rest of the changes.
4267   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4268     // For the device mark the function as one that should be emitted.
4269     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
4270         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4271         !DontDefer && !IsForDefinition) {
4272       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4273         GlobalDecl GDDef;
4274         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4275           GDDef = GlobalDecl(CD, GD.getCtorType());
4276         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4277           GDDef = GlobalDecl(DD, GD.getDtorType());
4278         else
4279           GDDef = GlobalDecl(FDDef);
4280         EmitGlobal(GDDef);
4281       }
4282     }
4283 
4284     if (FD->isMultiVersion()) {
4285       UpdateMultiVersionNames(GD, FD, MangledName);
4286       if (!IsForDefinition)
4287         return GetOrCreateMultiVersionResolver(GD);
4288     }
4289   }
4290 
4291   // Lookup the entry, lazily creating it if necessary.
4292   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4293   if (Entry) {
4294     if (WeakRefReferences.erase(Entry)) {
4295       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4296       if (FD && !FD->hasAttr<WeakAttr>())
4297         Entry->setLinkage(llvm::Function::ExternalLinkage);
4298     }
4299 
4300     // Handle dropped DLL attributes.
4301     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4302         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4303       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4304       setDSOLocal(Entry);
4305     }
4306 
4307     // If there are two attempts to define the same mangled name, issue an
4308     // error.
4309     if (IsForDefinition && !Entry->isDeclaration()) {
4310       GlobalDecl OtherGD;
4311       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4312       // to make sure that we issue an error only once.
4313       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4314           (GD.getCanonicalDecl().getDecl() !=
4315            OtherGD.getCanonicalDecl().getDecl()) &&
4316           DiagnosedConflictingDefinitions.insert(GD).second) {
4317         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4318             << MangledName;
4319         getDiags().Report(OtherGD.getDecl()->getLocation(),
4320                           diag::note_previous_definition);
4321       }
4322     }
4323 
4324     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4325         (Entry->getValueType() == Ty)) {
4326       return Entry;
4327     }
4328 
4329     // Make sure the result is of the correct type.
4330     // (If function is requested for a definition, we always need to create a new
4331     // function, not just return a bitcast.)
4332     if (!IsForDefinition)
4333       return llvm::ConstantExpr::getBitCast(
4334           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4335   }
4336 
4337   // This function doesn't have a complete type (for example, the return
4338   // type is an incomplete struct). Use a fake type instead, and make
4339   // sure not to try to set attributes.
4340   bool IsIncompleteFunction = false;
4341 
4342   llvm::FunctionType *FTy;
4343   if (isa<llvm::FunctionType>(Ty)) {
4344     FTy = cast<llvm::FunctionType>(Ty);
4345   } else {
4346     FTy = llvm::FunctionType::get(VoidTy, false);
4347     IsIncompleteFunction = true;
4348   }
4349 
4350   llvm::Function *F =
4351       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4352                              Entry ? StringRef() : MangledName, &getModule());
4353 
4354   // If we already created a function with the same mangled name (but different
4355   // type) before, take its name and add it to the list of functions to be
4356   // replaced with F at the end of CodeGen.
4357   //
4358   // This happens if there is a prototype for a function (e.g. "int f()") and
4359   // then a definition of a different type (e.g. "int f(int x)").
4360   if (Entry) {
4361     F->takeName(Entry);
4362 
4363     // This might be an implementation of a function without a prototype, in
4364     // which case, try to do special replacement of calls which match the new
4365     // prototype.  The really key thing here is that we also potentially drop
4366     // arguments from the call site so as to make a direct call, which makes the
4367     // inliner happier and suppresses a number of optimizer warnings (!) about
4368     // dropping arguments.
4369     if (!Entry->use_empty()) {
4370       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4371       Entry->removeDeadConstantUsers();
4372     }
4373 
4374     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4375         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4376     addGlobalValReplacement(Entry, BC);
4377   }
4378 
4379   assert(F->getName() == MangledName && "name was uniqued!");
4380   if (D)
4381     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4382   if (ExtraAttrs.hasFnAttrs()) {
4383     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4384     F->addFnAttrs(B);
4385   }
4386 
4387   if (!DontDefer) {
4388     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4389     // each other bottoming out with the base dtor.  Therefore we emit non-base
4390     // dtors on usage, even if there is no dtor definition in the TU.
4391     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4392         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4393                                            GD.getDtorType()))
4394       addDeferredDeclToEmit(GD);
4395 
4396     // This is the first use or definition of a mangled name.  If there is a
4397     // deferred decl with this name, remember that we need to emit it at the end
4398     // of the file.
4399     auto DDI = DeferredDecls.find(MangledName);
4400     if (DDI != DeferredDecls.end()) {
4401       // Move the potentially referenced deferred decl to the
4402       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4403       // don't need it anymore).
4404       addDeferredDeclToEmit(DDI->second);
4405       EmittedDeferredDecls[DDI->first] = DDI->second;
4406       DeferredDecls.erase(DDI);
4407 
4408       // Otherwise, there are cases we have to worry about where we're
4409       // using a declaration for which we must emit a definition but where
4410       // we might not find a top-level definition:
4411       //   - member functions defined inline in their classes
4412       //   - friend functions defined inline in some class
4413       //   - special member functions with implicit definitions
4414       // If we ever change our AST traversal to walk into class methods,
4415       // this will be unnecessary.
4416       //
4417       // We also don't emit a definition for a function if it's going to be an
4418       // entry in a vtable, unless it's already marked as used.
4419     } else if (getLangOpts().CPlusPlus && D) {
4420       // Look for a declaration that's lexically in a record.
4421       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4422            FD = FD->getPreviousDecl()) {
4423         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4424           if (FD->doesThisDeclarationHaveABody()) {
4425             addDeferredDeclToEmit(GD.getWithDecl(FD));
4426             break;
4427           }
4428         }
4429       }
4430     }
4431   }
4432 
4433   // Make sure the result is of the requested type.
4434   if (!IsIncompleteFunction) {
4435     assert(F->getFunctionType() == Ty);
4436     return F;
4437   }
4438 
4439   return llvm::ConstantExpr::getBitCast(F,
4440                                         Ty->getPointerTo(F->getAddressSpace()));
4441 }
4442 
4443 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4444 /// non-null, then this function will use the specified type if it has to
4445 /// create it (this occurs when we see a definition of the function).
4446 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4447                                                  llvm::Type *Ty,
4448                                                  bool ForVTable,
4449                                                  bool DontDefer,
4450                                               ForDefinition_t IsForDefinition) {
4451   assert(!cast<FunctionDecl>(GD.getDecl())->isImmediateFunction() &&
4452          "an immediate function should never be emitted");
4453   // If there was no specific requested type, just convert it now.
4454   if (!Ty) {
4455     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4456     Ty = getTypes().ConvertType(FD->getType());
4457   }
4458 
4459   // Devirtualized destructor calls may come through here instead of via
4460   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4461   // of the complete destructor when necessary.
4462   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4463     if (getTarget().getCXXABI().isMicrosoft() &&
4464         GD.getDtorType() == Dtor_Complete &&
4465         DD->getParent()->getNumVBases() == 0)
4466       GD = GlobalDecl(DD, Dtor_Base);
4467   }
4468 
4469   StringRef MangledName = getMangledName(GD);
4470   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4471                                     /*IsThunk=*/false, llvm::AttributeList(),
4472                                     IsForDefinition);
4473   // Returns kernel handle for HIP kernel stub function.
4474   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4475       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4476     auto *Handle = getCUDARuntime().getKernelHandle(
4477         cast<llvm::Function>(F->stripPointerCasts()), GD);
4478     if (IsForDefinition)
4479       return F;
4480     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4481   }
4482   return F;
4483 }
4484 
4485 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4486   llvm::GlobalValue *F =
4487       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4488 
4489   return llvm::ConstantExpr::getBitCast(
4490       llvm::NoCFIValue::get(F),
4491       llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
4492 }
4493 
4494 static const FunctionDecl *
4495 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4496   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4497   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4498 
4499   IdentifierInfo &CII = C.Idents.get(Name);
4500   for (const auto *Result : DC->lookup(&CII))
4501     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4502       return FD;
4503 
4504   if (!C.getLangOpts().CPlusPlus)
4505     return nullptr;
4506 
4507   // Demangle the premangled name from getTerminateFn()
4508   IdentifierInfo &CXXII =
4509       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4510           ? C.Idents.get("terminate")
4511           : C.Idents.get(Name);
4512 
4513   for (const auto &N : {"__cxxabiv1", "std"}) {
4514     IdentifierInfo &NS = C.Idents.get(N);
4515     for (const auto *Result : DC->lookup(&NS)) {
4516       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4517       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4518         for (const auto *Result : LSD->lookup(&NS))
4519           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4520             break;
4521 
4522       if (ND)
4523         for (const auto *Result : ND->lookup(&CXXII))
4524           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4525             return FD;
4526     }
4527   }
4528 
4529   return nullptr;
4530 }
4531 
4532 /// CreateRuntimeFunction - Create a new runtime function with the specified
4533 /// type and name.
4534 llvm::FunctionCallee
4535 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4536                                      llvm::AttributeList ExtraAttrs, bool Local,
4537                                      bool AssumeConvergent) {
4538   if (AssumeConvergent) {
4539     ExtraAttrs =
4540         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4541   }
4542 
4543   llvm::Constant *C =
4544       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4545                               /*DontDefer=*/false, /*IsThunk=*/false,
4546                               ExtraAttrs);
4547 
4548   if (auto *F = dyn_cast<llvm::Function>(C)) {
4549     if (F->empty()) {
4550       F->setCallingConv(getRuntimeCC());
4551 
4552       // In Windows Itanium environments, try to mark runtime functions
4553       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4554       // will link their standard library statically or dynamically. Marking
4555       // functions imported when they are not imported can cause linker errors
4556       // and warnings.
4557       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4558           !getCodeGenOpts().LTOVisibilityPublicStd) {
4559         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4560         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4561           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4562           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4563         }
4564       }
4565       setDSOLocal(F);
4566     }
4567   }
4568 
4569   return {FTy, C};
4570 }
4571 
4572 /// isTypeConstant - Determine whether an object of this type can be emitted
4573 /// as a constant.
4574 ///
4575 /// If ExcludeCtor is true, the duration when the object's constructor runs
4576 /// will not be considered. The caller will need to verify that the object is
4577 /// not written to during its construction. ExcludeDtor works similarly.
4578 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor,
4579                                    bool ExcludeDtor) {
4580   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4581     return false;
4582 
4583   if (Context.getLangOpts().CPlusPlus) {
4584     if (const CXXRecordDecl *Record
4585           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4586       return ExcludeCtor && !Record->hasMutableFields() &&
4587              (Record->hasTrivialDestructor() || ExcludeDtor);
4588   }
4589 
4590   return true;
4591 }
4592 
4593 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4594 /// create and return an llvm GlobalVariable with the specified type and address
4595 /// space. If there is something in the module with the specified name, return
4596 /// it potentially bitcasted to the right type.
4597 ///
4598 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4599 /// to set the attributes on the global when it is first created.
4600 ///
4601 /// If IsForDefinition is true, it is guaranteed that an actual global with
4602 /// type Ty will be returned, not conversion of a variable with the same
4603 /// mangled name but some other type.
4604 llvm::Constant *
4605 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4606                                      LangAS AddrSpace, const VarDecl *D,
4607                                      ForDefinition_t IsForDefinition) {
4608   // Lookup the entry, lazily creating it if necessary.
4609   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4610   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4611   if (Entry) {
4612     if (WeakRefReferences.erase(Entry)) {
4613       if (D && !D->hasAttr<WeakAttr>())
4614         Entry->setLinkage(llvm::Function::ExternalLinkage);
4615     }
4616 
4617     // Handle dropped DLL attributes.
4618     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4619         !shouldMapVisibilityToDLLExport(D))
4620       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4621 
4622     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4623       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4624 
4625     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4626       return Entry;
4627 
4628     // If there are two attempts to define the same mangled name, issue an
4629     // error.
4630     if (IsForDefinition && !Entry->isDeclaration()) {
4631       GlobalDecl OtherGD;
4632       const VarDecl *OtherD;
4633 
4634       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4635       // to make sure that we issue an error only once.
4636       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4637           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4638           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4639           OtherD->hasInit() &&
4640           DiagnosedConflictingDefinitions.insert(D).second) {
4641         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4642             << MangledName;
4643         getDiags().Report(OtherGD.getDecl()->getLocation(),
4644                           diag::note_previous_definition);
4645       }
4646     }
4647 
4648     // Make sure the result is of the correct type.
4649     if (Entry->getType()->getAddressSpace() != TargetAS) {
4650       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4651                                                   Ty->getPointerTo(TargetAS));
4652     }
4653 
4654     // (If global is requested for a definition, we always need to create a new
4655     // global, not just return a bitcast.)
4656     if (!IsForDefinition)
4657       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4658   }
4659 
4660   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4661 
4662   auto *GV = new llvm::GlobalVariable(
4663       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4664       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4665       getContext().getTargetAddressSpace(DAddrSpace));
4666 
4667   // If we already created a global with the same mangled name (but different
4668   // type) before, take its name and remove it from its parent.
4669   if (Entry) {
4670     GV->takeName(Entry);
4671 
4672     if (!Entry->use_empty()) {
4673       llvm::Constant *NewPtrForOldDecl =
4674           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4675       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4676     }
4677 
4678     Entry->eraseFromParent();
4679   }
4680 
4681   // This is the first use or definition of a mangled name.  If there is a
4682   // deferred decl with this name, remember that we need to emit it at the end
4683   // of the file.
4684   auto DDI = DeferredDecls.find(MangledName);
4685   if (DDI != DeferredDecls.end()) {
4686     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4687     // list, and remove it from DeferredDecls (since we don't need it anymore).
4688     addDeferredDeclToEmit(DDI->second);
4689     EmittedDeferredDecls[DDI->first] = DDI->second;
4690     DeferredDecls.erase(DDI);
4691   }
4692 
4693   // Handle things which are present even on external declarations.
4694   if (D) {
4695     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4696       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4697 
4698     // FIXME: This code is overly simple and should be merged with other global
4699     // handling.
4700     GV->setConstant(isTypeConstant(D->getType(), false, false));
4701 
4702     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4703 
4704     setLinkageForGV(GV, D);
4705 
4706     if (D->getTLSKind()) {
4707       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4708         CXXThreadLocals.push_back(D);
4709       setTLSMode(GV, *D);
4710     }
4711 
4712     setGVProperties(GV, D);
4713 
4714     // If required by the ABI, treat declarations of static data members with
4715     // inline initializers as definitions.
4716     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4717       EmitGlobalVarDefinition(D);
4718     }
4719 
4720     // Emit section information for extern variables.
4721     if (D->hasExternalStorage()) {
4722       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4723         GV->setSection(SA->getName());
4724     }
4725 
4726     // Handle XCore specific ABI requirements.
4727     if (getTriple().getArch() == llvm::Triple::xcore &&
4728         D->getLanguageLinkage() == CLanguageLinkage &&
4729         D->getType().isConstant(Context) &&
4730         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4731       GV->setSection(".cp.rodata");
4732 
4733     // Check if we a have a const declaration with an initializer, we may be
4734     // able to emit it as available_externally to expose it's value to the
4735     // optimizer.
4736     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4737         D->getType().isConstQualified() && !GV->hasInitializer() &&
4738         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4739       const auto *Record =
4740           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4741       bool HasMutableFields = Record && Record->hasMutableFields();
4742       if (!HasMutableFields) {
4743         const VarDecl *InitDecl;
4744         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4745         if (InitExpr) {
4746           ConstantEmitter emitter(*this);
4747           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4748           if (Init) {
4749             auto *InitType = Init->getType();
4750             if (GV->getValueType() != InitType) {
4751               // The type of the initializer does not match the definition.
4752               // This happens when an initializer has a different type from
4753               // the type of the global (because of padding at the end of a
4754               // structure for instance).
4755               GV->setName(StringRef());
4756               // Make a new global with the correct type, this is now guaranteed
4757               // to work.
4758               auto *NewGV = cast<llvm::GlobalVariable>(
4759                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4760                       ->stripPointerCasts());
4761 
4762               // Erase the old global, since it is no longer used.
4763               GV->eraseFromParent();
4764               GV = NewGV;
4765             } else {
4766               GV->setInitializer(Init);
4767               GV->setConstant(true);
4768               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4769             }
4770             emitter.finalize(GV);
4771           }
4772         }
4773       }
4774     }
4775   }
4776 
4777   if (GV->isDeclaration()) {
4778     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4779     // External HIP managed variables needed to be recorded for transformation
4780     // in both device and host compilations.
4781     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4782         D->hasExternalStorage())
4783       getCUDARuntime().handleVarRegistration(D, *GV);
4784   }
4785 
4786   if (D)
4787     SanitizerMD->reportGlobal(GV, *D);
4788 
4789   LangAS ExpectedAS =
4790       D ? D->getType().getAddressSpace()
4791         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4792   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4793   if (DAddrSpace != ExpectedAS) {
4794     return getTargetCodeGenInfo().performAddrSpaceCast(
4795         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4796   }
4797 
4798   return GV;
4799 }
4800 
4801 llvm::Constant *
4802 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4803   const Decl *D = GD.getDecl();
4804 
4805   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4806     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4807                                 /*DontDefer=*/false, IsForDefinition);
4808 
4809   if (isa<CXXMethodDecl>(D)) {
4810     auto FInfo =
4811         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4812     auto Ty = getTypes().GetFunctionType(*FInfo);
4813     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4814                              IsForDefinition);
4815   }
4816 
4817   if (isa<FunctionDecl>(D)) {
4818     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4819     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4820     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4821                              IsForDefinition);
4822   }
4823 
4824   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4825 }
4826 
4827 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4828     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4829     llvm::Align Alignment) {
4830   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4831   llvm::GlobalVariable *OldGV = nullptr;
4832 
4833   if (GV) {
4834     // Check if the variable has the right type.
4835     if (GV->getValueType() == Ty)
4836       return GV;
4837 
4838     // Because C++ name mangling, the only way we can end up with an already
4839     // existing global with the same name is if it has been declared extern "C".
4840     assert(GV->isDeclaration() && "Declaration has wrong type!");
4841     OldGV = GV;
4842   }
4843 
4844   // Create a new variable.
4845   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4846                                 Linkage, nullptr, Name);
4847 
4848   if (OldGV) {
4849     // Replace occurrences of the old variable if needed.
4850     GV->takeName(OldGV);
4851 
4852     if (!OldGV->use_empty()) {
4853       llvm::Constant *NewPtrForOldDecl =
4854       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4855       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4856     }
4857 
4858     OldGV->eraseFromParent();
4859   }
4860 
4861   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4862       !GV->hasAvailableExternallyLinkage())
4863     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4864 
4865   GV->setAlignment(Alignment);
4866 
4867   return GV;
4868 }
4869 
4870 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4871 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4872 /// then it will be created with the specified type instead of whatever the
4873 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4874 /// that an actual global with type Ty will be returned, not conversion of a
4875 /// variable with the same mangled name but some other type.
4876 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4877                                                   llvm::Type *Ty,
4878                                            ForDefinition_t IsForDefinition) {
4879   assert(D->hasGlobalStorage() && "Not a global variable");
4880   QualType ASTTy = D->getType();
4881   if (!Ty)
4882     Ty = getTypes().ConvertTypeForMem(ASTTy);
4883 
4884   StringRef MangledName = getMangledName(D);
4885   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4886                                IsForDefinition);
4887 }
4888 
4889 /// CreateRuntimeVariable - Create a new runtime global variable with the
4890 /// specified type and name.
4891 llvm::Constant *
4892 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4893                                      StringRef Name) {
4894   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4895                                                        : LangAS::Default;
4896   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4897   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4898   return Ret;
4899 }
4900 
4901 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4902   assert(!D->getInit() && "Cannot emit definite definitions here!");
4903 
4904   StringRef MangledName = getMangledName(D);
4905   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4906 
4907   // We already have a definition, not declaration, with the same mangled name.
4908   // Emitting of declaration is not required (and actually overwrites emitted
4909   // definition).
4910   if (GV && !GV->isDeclaration())
4911     return;
4912 
4913   // If we have not seen a reference to this variable yet, place it into the
4914   // deferred declarations table to be emitted if needed later.
4915   if (!MustBeEmitted(D) && !GV) {
4916       DeferredDecls[MangledName] = D;
4917       return;
4918   }
4919 
4920   // The tentative definition is the only definition.
4921   EmitGlobalVarDefinition(D);
4922 }
4923 
4924 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4925   EmitExternalVarDeclaration(D);
4926 }
4927 
4928 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4929   return Context.toCharUnitsFromBits(
4930       getDataLayout().getTypeStoreSizeInBits(Ty));
4931 }
4932 
4933 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4934   if (LangOpts.OpenCL) {
4935     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4936     assert(AS == LangAS::opencl_global ||
4937            AS == LangAS::opencl_global_device ||
4938            AS == LangAS::opencl_global_host ||
4939            AS == LangAS::opencl_constant ||
4940            AS == LangAS::opencl_local ||
4941            AS >= LangAS::FirstTargetAddressSpace);
4942     return AS;
4943   }
4944 
4945   if (LangOpts.SYCLIsDevice &&
4946       (!D || D->getType().getAddressSpace() == LangAS::Default))
4947     return LangAS::sycl_global;
4948 
4949   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4950     if (D) {
4951       if (D->hasAttr<CUDAConstantAttr>())
4952         return LangAS::cuda_constant;
4953       if (D->hasAttr<CUDASharedAttr>())
4954         return LangAS::cuda_shared;
4955       if (D->hasAttr<CUDADeviceAttr>())
4956         return LangAS::cuda_device;
4957       if (D->getType().isConstQualified())
4958         return LangAS::cuda_constant;
4959     }
4960     return LangAS::cuda_device;
4961   }
4962 
4963   if (LangOpts.OpenMP) {
4964     LangAS AS;
4965     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4966       return AS;
4967   }
4968   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4969 }
4970 
4971 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4972   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4973   if (LangOpts.OpenCL)
4974     return LangAS::opencl_constant;
4975   if (LangOpts.SYCLIsDevice)
4976     return LangAS::sycl_global;
4977   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4978     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4979     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4980     // with OpVariable instructions with Generic storage class which is not
4981     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4982     // UniformConstant storage class is not viable as pointers to it may not be
4983     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4984     return LangAS::cuda_device;
4985   if (auto AS = getTarget().getConstantAddressSpace())
4986     return *AS;
4987   return LangAS::Default;
4988 }
4989 
4990 // In address space agnostic languages, string literals are in default address
4991 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4992 // emitted in constant address space in LLVM IR. To be consistent with other
4993 // parts of AST, string literal global variables in constant address space
4994 // need to be casted to default address space before being put into address
4995 // map and referenced by other part of CodeGen.
4996 // In OpenCL, string literals are in constant address space in AST, therefore
4997 // they should not be casted to default address space.
4998 static llvm::Constant *
4999 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5000                                        llvm::GlobalVariable *GV) {
5001   llvm::Constant *Cast = GV;
5002   if (!CGM.getLangOpts().OpenCL) {
5003     auto AS = CGM.GetGlobalConstantAddressSpace();
5004     if (AS != LangAS::Default)
5005       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5006           CGM, GV, AS, LangAS::Default,
5007           GV->getValueType()->getPointerTo(
5008               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5009   }
5010   return Cast;
5011 }
5012 
5013 template<typename SomeDecl>
5014 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5015                                                llvm::GlobalValue *GV) {
5016   if (!getLangOpts().CPlusPlus)
5017     return;
5018 
5019   // Must have 'used' attribute, or else inline assembly can't rely on
5020   // the name existing.
5021   if (!D->template hasAttr<UsedAttr>())
5022     return;
5023 
5024   // Must have internal linkage and an ordinary name.
5025   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
5026     return;
5027 
5028   // Must be in an extern "C" context. Entities declared directly within
5029   // a record are not extern "C" even if the record is in such a context.
5030   const SomeDecl *First = D->getFirstDecl();
5031   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5032     return;
5033 
5034   // OK, this is an internal linkage entity inside an extern "C" linkage
5035   // specification. Make a note of that so we can give it the "expected"
5036   // mangled name if nothing else is using that name.
5037   std::pair<StaticExternCMap::iterator, bool> R =
5038       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5039 
5040   // If we have multiple internal linkage entities with the same name
5041   // in extern "C" regions, none of them gets that name.
5042   if (!R.second)
5043     R.first->second = nullptr;
5044 }
5045 
5046 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5047   if (!CGM.supportsCOMDAT())
5048     return false;
5049 
5050   if (D.hasAttr<SelectAnyAttr>())
5051     return true;
5052 
5053   GVALinkage Linkage;
5054   if (auto *VD = dyn_cast<VarDecl>(&D))
5055     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5056   else
5057     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5058 
5059   switch (Linkage) {
5060   case GVA_Internal:
5061   case GVA_AvailableExternally:
5062   case GVA_StrongExternal:
5063     return false;
5064   case GVA_DiscardableODR:
5065   case GVA_StrongODR:
5066     return true;
5067   }
5068   llvm_unreachable("No such linkage");
5069 }
5070 
5071 bool CodeGenModule::supportsCOMDAT() const {
5072   return getTriple().supportsCOMDAT();
5073 }
5074 
5075 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5076                                           llvm::GlobalObject &GO) {
5077   if (!shouldBeInCOMDAT(*this, D))
5078     return;
5079   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5080 }
5081 
5082 /// Pass IsTentative as true if you want to create a tentative definition.
5083 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5084                                             bool IsTentative) {
5085   // OpenCL global variables of sampler type are translated to function calls,
5086   // therefore no need to be translated.
5087   QualType ASTTy = D->getType();
5088   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5089     return;
5090 
5091   // If this is OpenMP device, check if it is legal to emit this global
5092   // normally.
5093   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
5094       OpenMPRuntime->emitTargetGlobalVariable(D))
5095     return;
5096 
5097   llvm::TrackingVH<llvm::Constant> Init;
5098   bool NeedsGlobalCtor = false;
5099   // Whether the definition of the variable is available externally.
5100   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5101   // since this is the job for its original source.
5102   bool IsDefinitionAvailableExternally =
5103       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5104   bool NeedsGlobalDtor =
5105       !IsDefinitionAvailableExternally &&
5106       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5107 
5108   const VarDecl *InitDecl;
5109   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5110 
5111   std::optional<ConstantEmitter> emitter;
5112 
5113   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5114   // as part of their declaration."  Sema has already checked for
5115   // error cases, so we just need to set Init to UndefValue.
5116   bool IsCUDASharedVar =
5117       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5118   // Shadows of initialized device-side global variables are also left
5119   // undefined.
5120   // Managed Variables should be initialized on both host side and device side.
5121   bool IsCUDAShadowVar =
5122       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5123       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5124        D->hasAttr<CUDASharedAttr>());
5125   bool IsCUDADeviceShadowVar =
5126       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5127       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5128        D->getType()->isCUDADeviceBuiltinTextureType());
5129   if (getLangOpts().CUDA &&
5130       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5131     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5132   else if (D->hasAttr<LoaderUninitializedAttr>())
5133     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5134   else if (!InitExpr) {
5135     // This is a tentative definition; tentative definitions are
5136     // implicitly initialized with { 0 }.
5137     //
5138     // Note that tentative definitions are only emitted at the end of
5139     // a translation unit, so they should never have incomplete
5140     // type. In addition, EmitTentativeDefinition makes sure that we
5141     // never attempt to emit a tentative definition if a real one
5142     // exists. A use may still exists, however, so we still may need
5143     // to do a RAUW.
5144     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5145     Init = EmitNullConstant(D->getType());
5146   } else {
5147     initializedGlobalDecl = GlobalDecl(D);
5148     emitter.emplace(*this);
5149     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5150     if (!Initializer) {
5151       QualType T = InitExpr->getType();
5152       if (D->getType()->isReferenceType())
5153         T = D->getType();
5154 
5155       if (getLangOpts().CPlusPlus) {
5156         if (InitDecl->hasFlexibleArrayInit(getContext()))
5157           ErrorUnsupported(D, "flexible array initializer");
5158         Init = EmitNullConstant(T);
5159 
5160         if (!IsDefinitionAvailableExternally)
5161           NeedsGlobalCtor = true;
5162       } else {
5163         ErrorUnsupported(D, "static initializer");
5164         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5165       }
5166     } else {
5167       Init = Initializer;
5168       // We don't need an initializer, so remove the entry for the delayed
5169       // initializer position (just in case this entry was delayed) if we
5170       // also don't need to register a destructor.
5171       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5172         DelayedCXXInitPosition.erase(D);
5173 
5174 #ifndef NDEBUG
5175       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5176                           InitDecl->getFlexibleArrayInitChars(getContext());
5177       CharUnits CstSize = CharUnits::fromQuantity(
5178           getDataLayout().getTypeAllocSize(Init->getType()));
5179       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5180 #endif
5181     }
5182   }
5183 
5184   llvm::Type* InitType = Init->getType();
5185   llvm::Constant *Entry =
5186       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5187 
5188   // Strip off pointer casts if we got them.
5189   Entry = Entry->stripPointerCasts();
5190 
5191   // Entry is now either a Function or GlobalVariable.
5192   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5193 
5194   // We have a definition after a declaration with the wrong type.
5195   // We must make a new GlobalVariable* and update everything that used OldGV
5196   // (a declaration or tentative definition) with the new GlobalVariable*
5197   // (which will be a definition).
5198   //
5199   // This happens if there is a prototype for a global (e.g.
5200   // "extern int x[];") and then a definition of a different type (e.g.
5201   // "int x[10];"). This also happens when an initializer has a different type
5202   // from the type of the global (this happens with unions).
5203   if (!GV || GV->getValueType() != InitType ||
5204       GV->getType()->getAddressSpace() !=
5205           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5206 
5207     // Move the old entry aside so that we'll create a new one.
5208     Entry->setName(StringRef());
5209 
5210     // Make a new global with the correct type, this is now guaranteed to work.
5211     GV = cast<llvm::GlobalVariable>(
5212         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5213             ->stripPointerCasts());
5214 
5215     // Replace all uses of the old global with the new global
5216     llvm::Constant *NewPtrForOldDecl =
5217         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5218                                                              Entry->getType());
5219     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5220 
5221     // Erase the old global, since it is no longer used.
5222     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5223   }
5224 
5225   MaybeHandleStaticInExternC(D, GV);
5226 
5227   if (D->hasAttr<AnnotateAttr>())
5228     AddGlobalAnnotations(D, GV);
5229 
5230   // Set the llvm linkage type as appropriate.
5231   llvm::GlobalValue::LinkageTypes Linkage =
5232       getLLVMLinkageVarDefinition(D, GV->isConstant());
5233 
5234   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5235   // the device. [...]"
5236   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5237   // __device__, declares a variable that: [...]
5238   // Is accessible from all the threads within the grid and from the host
5239   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5240   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5241   if (GV && LangOpts.CUDA) {
5242     if (LangOpts.CUDAIsDevice) {
5243       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5244           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5245            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5246            D->getType()->isCUDADeviceBuiltinTextureType()))
5247         GV->setExternallyInitialized(true);
5248     } else {
5249       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5250     }
5251     getCUDARuntime().handleVarRegistration(D, *GV);
5252   }
5253 
5254   GV->setInitializer(Init);
5255   if (emitter)
5256     emitter->finalize(GV);
5257 
5258   // If it is safe to mark the global 'constant', do so now.
5259   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5260                   isTypeConstant(D->getType(), true, true));
5261 
5262   // If it is in a read-only section, mark it 'constant'.
5263   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5264     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5265     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5266       GV->setConstant(true);
5267   }
5268 
5269   CharUnits AlignVal = getContext().getDeclAlign(D);
5270   // Check for alignment specifed in an 'omp allocate' directive.
5271   if (std::optional<CharUnits> AlignValFromAllocate =
5272           getOMPAllocateAlignment(D))
5273     AlignVal = *AlignValFromAllocate;
5274   GV->setAlignment(AlignVal.getAsAlign());
5275 
5276   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5277   // function is only defined alongside the variable, not also alongside
5278   // callers. Normally, all accesses to a thread_local go through the
5279   // thread-wrapper in order to ensure initialization has occurred, underlying
5280   // variable will never be used other than the thread-wrapper, so it can be
5281   // converted to internal linkage.
5282   //
5283   // However, if the variable has the 'constinit' attribute, it _can_ be
5284   // referenced directly, without calling the thread-wrapper, so the linkage
5285   // must not be changed.
5286   //
5287   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5288   // weak or linkonce, the de-duplication semantics are important to preserve,
5289   // so we don't change the linkage.
5290   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5291       Linkage == llvm::GlobalValue::ExternalLinkage &&
5292       Context.getTargetInfo().getTriple().isOSDarwin() &&
5293       !D->hasAttr<ConstInitAttr>())
5294     Linkage = llvm::GlobalValue::InternalLinkage;
5295 
5296   GV->setLinkage(Linkage);
5297   if (D->hasAttr<DLLImportAttr>())
5298     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5299   else if (D->hasAttr<DLLExportAttr>())
5300     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5301   else
5302     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5303 
5304   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5305     // common vars aren't constant even if declared const.
5306     GV->setConstant(false);
5307     // Tentative definition of global variables may be initialized with
5308     // non-zero null pointers. In this case they should have weak linkage
5309     // since common linkage must have zero initializer and must not have
5310     // explicit section therefore cannot have non-zero initial value.
5311     if (!GV->getInitializer()->isNullValue())
5312       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5313   }
5314 
5315   setNonAliasAttributes(D, GV);
5316 
5317   if (D->getTLSKind() && !GV->isThreadLocal()) {
5318     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5319       CXXThreadLocals.push_back(D);
5320     setTLSMode(GV, *D);
5321   }
5322 
5323   maybeSetTrivialComdat(*D, *GV);
5324 
5325   // Emit the initializer function if necessary.
5326   if (NeedsGlobalCtor || NeedsGlobalDtor)
5327     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5328 
5329   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5330 
5331   // Emit global variable debug information.
5332   if (CGDebugInfo *DI = getModuleDebugInfo())
5333     if (getCodeGenOpts().hasReducedDebugInfo())
5334       DI->EmitGlobalVariable(GV, D);
5335 }
5336 
5337 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5338   if (CGDebugInfo *DI = getModuleDebugInfo())
5339     if (getCodeGenOpts().hasReducedDebugInfo()) {
5340       QualType ASTTy = D->getType();
5341       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5342       llvm::Constant *GV =
5343           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5344       DI->EmitExternalVariable(
5345           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5346     }
5347 }
5348 
5349 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5350                                       CodeGenModule &CGM, const VarDecl *D,
5351                                       bool NoCommon) {
5352   // Don't give variables common linkage if -fno-common was specified unless it
5353   // was overridden by a NoCommon attribute.
5354   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5355     return true;
5356 
5357   // C11 6.9.2/2:
5358   //   A declaration of an identifier for an object that has file scope without
5359   //   an initializer, and without a storage-class specifier or with the
5360   //   storage-class specifier static, constitutes a tentative definition.
5361   if (D->getInit() || D->hasExternalStorage())
5362     return true;
5363 
5364   // A variable cannot be both common and exist in a section.
5365   if (D->hasAttr<SectionAttr>())
5366     return true;
5367 
5368   // A variable cannot be both common and exist in a section.
5369   // We don't try to determine which is the right section in the front-end.
5370   // If no specialized section name is applicable, it will resort to default.
5371   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5372       D->hasAttr<PragmaClangDataSectionAttr>() ||
5373       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5374       D->hasAttr<PragmaClangRodataSectionAttr>())
5375     return true;
5376 
5377   // Thread local vars aren't considered common linkage.
5378   if (D->getTLSKind())
5379     return true;
5380 
5381   // Tentative definitions marked with WeakImportAttr are true definitions.
5382   if (D->hasAttr<WeakImportAttr>())
5383     return true;
5384 
5385   // A variable cannot be both common and exist in a comdat.
5386   if (shouldBeInCOMDAT(CGM, *D))
5387     return true;
5388 
5389   // Declarations with a required alignment do not have common linkage in MSVC
5390   // mode.
5391   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5392     if (D->hasAttr<AlignedAttr>())
5393       return true;
5394     QualType VarType = D->getType();
5395     if (Context.isAlignmentRequired(VarType))
5396       return true;
5397 
5398     if (const auto *RT = VarType->getAs<RecordType>()) {
5399       const RecordDecl *RD = RT->getDecl();
5400       for (const FieldDecl *FD : RD->fields()) {
5401         if (FD->isBitField())
5402           continue;
5403         if (FD->hasAttr<AlignedAttr>())
5404           return true;
5405         if (Context.isAlignmentRequired(FD->getType()))
5406           return true;
5407       }
5408     }
5409   }
5410 
5411   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5412   // common symbols, so symbols with greater alignment requirements cannot be
5413   // common.
5414   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5415   // alignments for common symbols via the aligncomm directive, so this
5416   // restriction only applies to MSVC environments.
5417   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5418       Context.getTypeAlignIfKnown(D->getType()) >
5419           Context.toBits(CharUnits::fromQuantity(32)))
5420     return true;
5421 
5422   return false;
5423 }
5424 
5425 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5426     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5427   if (Linkage == GVA_Internal)
5428     return llvm::Function::InternalLinkage;
5429 
5430   if (D->hasAttr<WeakAttr>())
5431     return llvm::GlobalVariable::WeakAnyLinkage;
5432 
5433   if (const auto *FD = D->getAsFunction())
5434     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5435       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5436 
5437   // We are guaranteed to have a strong definition somewhere else,
5438   // so we can use available_externally linkage.
5439   if (Linkage == GVA_AvailableExternally)
5440     return llvm::GlobalValue::AvailableExternallyLinkage;
5441 
5442   // Note that Apple's kernel linker doesn't support symbol
5443   // coalescing, so we need to avoid linkonce and weak linkages there.
5444   // Normally, this means we just map to internal, but for explicit
5445   // instantiations we'll map to external.
5446 
5447   // In C++, the compiler has to emit a definition in every translation unit
5448   // that references the function.  We should use linkonce_odr because
5449   // a) if all references in this translation unit are optimized away, we
5450   // don't need to codegen it.  b) if the function persists, it needs to be
5451   // merged with other definitions. c) C++ has the ODR, so we know the
5452   // definition is dependable.
5453   if (Linkage == GVA_DiscardableODR)
5454     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5455                                             : llvm::Function::InternalLinkage;
5456 
5457   // An explicit instantiation of a template has weak linkage, since
5458   // explicit instantiations can occur in multiple translation units
5459   // and must all be equivalent. However, we are not allowed to
5460   // throw away these explicit instantiations.
5461   //
5462   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5463   // so say that CUDA templates are either external (for kernels) or internal.
5464   // This lets llvm perform aggressive inter-procedural optimizations. For
5465   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5466   // therefore we need to follow the normal linkage paradigm.
5467   if (Linkage == GVA_StrongODR) {
5468     if (getLangOpts().AppleKext)
5469       return llvm::Function::ExternalLinkage;
5470     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5471         !getLangOpts().GPURelocatableDeviceCode)
5472       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5473                                           : llvm::Function::InternalLinkage;
5474     return llvm::Function::WeakODRLinkage;
5475   }
5476 
5477   // C++ doesn't have tentative definitions and thus cannot have common
5478   // linkage.
5479   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5480       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5481                                  CodeGenOpts.NoCommon))
5482     return llvm::GlobalVariable::CommonLinkage;
5483 
5484   // selectany symbols are externally visible, so use weak instead of
5485   // linkonce.  MSVC optimizes away references to const selectany globals, so
5486   // all definitions should be the same and ODR linkage should be used.
5487   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5488   if (D->hasAttr<SelectAnyAttr>())
5489     return llvm::GlobalVariable::WeakODRLinkage;
5490 
5491   // Otherwise, we have strong external linkage.
5492   assert(Linkage == GVA_StrongExternal);
5493   return llvm::GlobalVariable::ExternalLinkage;
5494 }
5495 
5496 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5497     const VarDecl *VD, bool IsConstant) {
5498   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5499   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5500 }
5501 
5502 /// Replace the uses of a function that was declared with a non-proto type.
5503 /// We want to silently drop extra arguments from call sites
5504 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5505                                           llvm::Function *newFn) {
5506   // Fast path.
5507   if (old->use_empty()) return;
5508 
5509   llvm::Type *newRetTy = newFn->getReturnType();
5510   SmallVector<llvm::Value*, 4> newArgs;
5511 
5512   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5513          ui != ue; ) {
5514     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5515     llvm::User *user = use->getUser();
5516 
5517     // Recognize and replace uses of bitcasts.  Most calls to
5518     // unprototyped functions will use bitcasts.
5519     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5520       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5521         replaceUsesOfNonProtoConstant(bitcast, newFn);
5522       continue;
5523     }
5524 
5525     // Recognize calls to the function.
5526     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5527     if (!callSite) continue;
5528     if (!callSite->isCallee(&*use))
5529       continue;
5530 
5531     // If the return types don't match exactly, then we can't
5532     // transform this call unless it's dead.
5533     if (callSite->getType() != newRetTy && !callSite->use_empty())
5534       continue;
5535 
5536     // Get the call site's attribute list.
5537     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5538     llvm::AttributeList oldAttrs = callSite->getAttributes();
5539 
5540     // If the function was passed too few arguments, don't transform.
5541     unsigned newNumArgs = newFn->arg_size();
5542     if (callSite->arg_size() < newNumArgs)
5543       continue;
5544 
5545     // If extra arguments were passed, we silently drop them.
5546     // If any of the types mismatch, we don't transform.
5547     unsigned argNo = 0;
5548     bool dontTransform = false;
5549     for (llvm::Argument &A : newFn->args()) {
5550       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5551         dontTransform = true;
5552         break;
5553       }
5554 
5555       // Add any parameter attributes.
5556       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5557       argNo++;
5558     }
5559     if (dontTransform)
5560       continue;
5561 
5562     // Okay, we can transform this.  Create the new call instruction and copy
5563     // over the required information.
5564     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5565 
5566     // Copy over any operand bundles.
5567     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5568     callSite->getOperandBundlesAsDefs(newBundles);
5569 
5570     llvm::CallBase *newCall;
5571     if (isa<llvm::CallInst>(callSite)) {
5572       newCall =
5573           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5574     } else {
5575       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5576       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5577                                          oldInvoke->getUnwindDest(), newArgs,
5578                                          newBundles, "", callSite);
5579     }
5580     newArgs.clear(); // for the next iteration
5581 
5582     if (!newCall->getType()->isVoidTy())
5583       newCall->takeName(callSite);
5584     newCall->setAttributes(
5585         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5586                                  oldAttrs.getRetAttrs(), newArgAttrs));
5587     newCall->setCallingConv(callSite->getCallingConv());
5588 
5589     // Finally, remove the old call, replacing any uses with the new one.
5590     if (!callSite->use_empty())
5591       callSite->replaceAllUsesWith(newCall);
5592 
5593     // Copy debug location attached to CI.
5594     if (callSite->getDebugLoc())
5595       newCall->setDebugLoc(callSite->getDebugLoc());
5596 
5597     callSite->eraseFromParent();
5598   }
5599 }
5600 
5601 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5602 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5603 /// existing call uses of the old function in the module, this adjusts them to
5604 /// call the new function directly.
5605 ///
5606 /// This is not just a cleanup: the always_inline pass requires direct calls to
5607 /// functions to be able to inline them.  If there is a bitcast in the way, it
5608 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5609 /// run at -O0.
5610 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5611                                                       llvm::Function *NewFn) {
5612   // If we're redefining a global as a function, don't transform it.
5613   if (!isa<llvm::Function>(Old)) return;
5614 
5615   replaceUsesOfNonProtoConstant(Old, NewFn);
5616 }
5617 
5618 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5619   auto DK = VD->isThisDeclarationADefinition();
5620   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5621     return;
5622 
5623   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5624   // If we have a definition, this might be a deferred decl. If the
5625   // instantiation is explicit, make sure we emit it at the end.
5626   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5627     GetAddrOfGlobalVar(VD);
5628 
5629   EmitTopLevelDecl(VD);
5630 }
5631 
5632 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5633                                                  llvm::GlobalValue *GV) {
5634   const auto *D = cast<FunctionDecl>(GD.getDecl());
5635 
5636   // Compute the function info and LLVM type.
5637   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5638   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5639 
5640   // Get or create the prototype for the function.
5641   if (!GV || (GV->getValueType() != Ty))
5642     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5643                                                    /*DontDefer=*/true,
5644                                                    ForDefinition));
5645 
5646   // Already emitted.
5647   if (!GV->isDeclaration())
5648     return;
5649 
5650   // We need to set linkage and visibility on the function before
5651   // generating code for it because various parts of IR generation
5652   // want to propagate this information down (e.g. to local static
5653   // declarations).
5654   auto *Fn = cast<llvm::Function>(GV);
5655   setFunctionLinkage(GD, Fn);
5656 
5657   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5658   setGVProperties(Fn, GD);
5659 
5660   MaybeHandleStaticInExternC(D, Fn);
5661 
5662   maybeSetTrivialComdat(*D, *Fn);
5663 
5664   // Set CodeGen attributes that represent floating point environment.
5665   setLLVMFunctionFEnvAttributes(D, Fn);
5666 
5667   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5668 
5669   setNonAliasAttributes(GD, Fn);
5670   SetLLVMFunctionAttributesForDefinition(D, Fn);
5671 
5672   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5673     AddGlobalCtor(Fn, CA->getPriority());
5674   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5675     AddGlobalDtor(Fn, DA->getPriority(), true);
5676   if (D->hasAttr<AnnotateAttr>())
5677     AddGlobalAnnotations(D, Fn);
5678 }
5679 
5680 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5681   const auto *D = cast<ValueDecl>(GD.getDecl());
5682   const AliasAttr *AA = D->getAttr<AliasAttr>();
5683   assert(AA && "Not an alias?");
5684 
5685   StringRef MangledName = getMangledName(GD);
5686 
5687   if (AA->getAliasee() == MangledName) {
5688     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5689     return;
5690   }
5691 
5692   // If there is a definition in the module, then it wins over the alias.
5693   // This is dubious, but allow it to be safe.  Just ignore the alias.
5694   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5695   if (Entry && !Entry->isDeclaration())
5696     return;
5697 
5698   Aliases.push_back(GD);
5699 
5700   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5701 
5702   // Create a reference to the named value.  This ensures that it is emitted
5703   // if a deferred decl.
5704   llvm::Constant *Aliasee;
5705   llvm::GlobalValue::LinkageTypes LT;
5706   if (isa<llvm::FunctionType>(DeclTy)) {
5707     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5708                                       /*ForVTable=*/false);
5709     LT = getFunctionLinkage(GD);
5710   } else {
5711     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5712                                     /*D=*/nullptr);
5713     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5714       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5715     else
5716       LT = getFunctionLinkage(GD);
5717   }
5718 
5719   // Create the new alias itself, but don't set a name yet.
5720   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5721   auto *GA =
5722       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5723 
5724   if (Entry) {
5725     if (GA->getAliasee() == Entry) {
5726       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5727       return;
5728     }
5729 
5730     assert(Entry->isDeclaration());
5731 
5732     // If there is a declaration in the module, then we had an extern followed
5733     // by the alias, as in:
5734     //   extern int test6();
5735     //   ...
5736     //   int test6() __attribute__((alias("test7")));
5737     //
5738     // Remove it and replace uses of it with the alias.
5739     GA->takeName(Entry);
5740 
5741     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5742                                                           Entry->getType()));
5743     Entry->eraseFromParent();
5744   } else {
5745     GA->setName(MangledName);
5746   }
5747 
5748   // Set attributes which are particular to an alias; this is a
5749   // specialization of the attributes which may be set on a global
5750   // variable/function.
5751   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5752       D->isWeakImported()) {
5753     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5754   }
5755 
5756   if (const auto *VD = dyn_cast<VarDecl>(D))
5757     if (VD->getTLSKind())
5758       setTLSMode(GA, *VD);
5759 
5760   SetCommonAttributes(GD, GA);
5761 
5762   // Emit global alias debug information.
5763   if (isa<VarDecl>(D))
5764     if (CGDebugInfo *DI = getModuleDebugInfo())
5765       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5766 }
5767 
5768 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5769   const auto *D = cast<ValueDecl>(GD.getDecl());
5770   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5771   assert(IFA && "Not an ifunc?");
5772 
5773   StringRef MangledName = getMangledName(GD);
5774 
5775   if (IFA->getResolver() == MangledName) {
5776     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5777     return;
5778   }
5779 
5780   // Report an error if some definition overrides ifunc.
5781   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5782   if (Entry && !Entry->isDeclaration()) {
5783     GlobalDecl OtherGD;
5784     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5785         DiagnosedConflictingDefinitions.insert(GD).second) {
5786       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5787           << MangledName;
5788       Diags.Report(OtherGD.getDecl()->getLocation(),
5789                    diag::note_previous_definition);
5790     }
5791     return;
5792   }
5793 
5794   Aliases.push_back(GD);
5795 
5796   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5797   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5798   llvm::Constant *Resolver =
5799       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5800                               /*ForVTable=*/false);
5801   llvm::GlobalIFunc *GIF =
5802       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5803                                 "", Resolver, &getModule());
5804   if (Entry) {
5805     if (GIF->getResolver() == Entry) {
5806       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5807       return;
5808     }
5809     assert(Entry->isDeclaration());
5810 
5811     // If there is a declaration in the module, then we had an extern followed
5812     // by the ifunc, as in:
5813     //   extern int test();
5814     //   ...
5815     //   int test() __attribute__((ifunc("resolver")));
5816     //
5817     // Remove it and replace uses of it with the ifunc.
5818     GIF->takeName(Entry);
5819 
5820     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5821                                                           Entry->getType()));
5822     Entry->eraseFromParent();
5823   } else
5824     GIF->setName(MangledName);
5825 
5826   SetCommonAttributes(GD, GIF);
5827 }
5828 
5829 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5830                                             ArrayRef<llvm::Type*> Tys) {
5831   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5832                                          Tys);
5833 }
5834 
5835 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5836 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5837                          const StringLiteral *Literal, bool TargetIsLSB,
5838                          bool &IsUTF16, unsigned &StringLength) {
5839   StringRef String = Literal->getString();
5840   unsigned NumBytes = String.size();
5841 
5842   // Check for simple case.
5843   if (!Literal->containsNonAsciiOrNull()) {
5844     StringLength = NumBytes;
5845     return *Map.insert(std::make_pair(String, nullptr)).first;
5846   }
5847 
5848   // Otherwise, convert the UTF8 literals into a string of shorts.
5849   IsUTF16 = true;
5850 
5851   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5852   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5853   llvm::UTF16 *ToPtr = &ToBuf[0];
5854 
5855   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5856                                  ToPtr + NumBytes, llvm::strictConversion);
5857 
5858   // ConvertUTF8toUTF16 returns the length in ToPtr.
5859   StringLength = ToPtr - &ToBuf[0];
5860 
5861   // Add an explicit null.
5862   *ToPtr = 0;
5863   return *Map.insert(std::make_pair(
5864                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5865                                    (StringLength + 1) * 2),
5866                          nullptr)).first;
5867 }
5868 
5869 ConstantAddress
5870 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5871   unsigned StringLength = 0;
5872   bool isUTF16 = false;
5873   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5874       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5875                                getDataLayout().isLittleEndian(), isUTF16,
5876                                StringLength);
5877 
5878   if (auto *C = Entry.second)
5879     return ConstantAddress(
5880         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5881 
5882   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5883   llvm::Constant *Zeros[] = { Zero, Zero };
5884 
5885   const ASTContext &Context = getContext();
5886   const llvm::Triple &Triple = getTriple();
5887 
5888   const auto CFRuntime = getLangOpts().CFRuntime;
5889   const bool IsSwiftABI =
5890       static_cast<unsigned>(CFRuntime) >=
5891       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5892   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5893 
5894   // If we don't already have it, get __CFConstantStringClassReference.
5895   if (!CFConstantStringClassRef) {
5896     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5897     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5898     Ty = llvm::ArrayType::get(Ty, 0);
5899 
5900     switch (CFRuntime) {
5901     default: break;
5902     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5903     case LangOptions::CoreFoundationABI::Swift5_0:
5904       CFConstantStringClassName =
5905           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5906                               : "$s10Foundation19_NSCFConstantStringCN";
5907       Ty = IntPtrTy;
5908       break;
5909     case LangOptions::CoreFoundationABI::Swift4_2:
5910       CFConstantStringClassName =
5911           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5912                               : "$S10Foundation19_NSCFConstantStringCN";
5913       Ty = IntPtrTy;
5914       break;
5915     case LangOptions::CoreFoundationABI::Swift4_1:
5916       CFConstantStringClassName =
5917           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5918                               : "__T010Foundation19_NSCFConstantStringCN";
5919       Ty = IntPtrTy;
5920       break;
5921     }
5922 
5923     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5924 
5925     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5926       llvm::GlobalValue *GV = nullptr;
5927 
5928       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5929         IdentifierInfo &II = Context.Idents.get(GV->getName());
5930         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5931         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5932 
5933         const VarDecl *VD = nullptr;
5934         for (const auto *Result : DC->lookup(&II))
5935           if ((VD = dyn_cast<VarDecl>(Result)))
5936             break;
5937 
5938         if (Triple.isOSBinFormatELF()) {
5939           if (!VD)
5940             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5941         } else {
5942           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5943           if (!VD || !VD->hasAttr<DLLExportAttr>())
5944             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5945           else
5946             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5947         }
5948 
5949         setDSOLocal(GV);
5950       }
5951     }
5952 
5953     // Decay array -> ptr
5954     CFConstantStringClassRef =
5955         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5956                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5957   }
5958 
5959   QualType CFTy = Context.getCFConstantStringType();
5960 
5961   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5962 
5963   ConstantInitBuilder Builder(*this);
5964   auto Fields = Builder.beginStruct(STy);
5965 
5966   // Class pointer.
5967   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5968 
5969   // Flags.
5970   if (IsSwiftABI) {
5971     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5972     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5973   } else {
5974     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5975   }
5976 
5977   // String pointer.
5978   llvm::Constant *C = nullptr;
5979   if (isUTF16) {
5980     auto Arr = llvm::ArrayRef(
5981         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5982         Entry.first().size() / 2);
5983     C = llvm::ConstantDataArray::get(VMContext, Arr);
5984   } else {
5985     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5986   }
5987 
5988   // Note: -fwritable-strings doesn't make the backing store strings of
5989   // CFStrings writable.
5990   auto *GV =
5991       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5992                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5993   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5994   // Don't enforce the target's minimum global alignment, since the only use
5995   // of the string is via this class initializer.
5996   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5997                             : Context.getTypeAlignInChars(Context.CharTy);
5998   GV->setAlignment(Align.getAsAlign());
5999 
6000   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6001   // Without it LLVM can merge the string with a non unnamed_addr one during
6002   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6003   if (Triple.isOSBinFormatMachO())
6004     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6005                            : "__TEXT,__cstring,cstring_literals");
6006   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6007   // the static linker to adjust permissions to read-only later on.
6008   else if (Triple.isOSBinFormatELF())
6009     GV->setSection(".rodata");
6010 
6011   // String.
6012   llvm::Constant *Str =
6013       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6014 
6015   if (isUTF16)
6016     // Cast the UTF16 string to the correct type.
6017     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
6018   Fields.add(Str);
6019 
6020   // String length.
6021   llvm::IntegerType *LengthTy =
6022       llvm::IntegerType::get(getModule().getContext(),
6023                              Context.getTargetInfo().getLongWidth());
6024   if (IsSwiftABI) {
6025     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6026         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6027       LengthTy = Int32Ty;
6028     else
6029       LengthTy = IntPtrTy;
6030   }
6031   Fields.addInt(LengthTy, StringLength);
6032 
6033   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6034   // properly aligned on 32-bit platforms.
6035   CharUnits Alignment =
6036       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6037 
6038   // The struct.
6039   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6040                                     /*isConstant=*/false,
6041                                     llvm::GlobalVariable::PrivateLinkage);
6042   GV->addAttribute("objc_arc_inert");
6043   switch (Triple.getObjectFormat()) {
6044   case llvm::Triple::UnknownObjectFormat:
6045     llvm_unreachable("unknown file format");
6046   case llvm::Triple::DXContainer:
6047   case llvm::Triple::GOFF:
6048   case llvm::Triple::SPIRV:
6049   case llvm::Triple::XCOFF:
6050     llvm_unreachable("unimplemented");
6051   case llvm::Triple::COFF:
6052   case llvm::Triple::ELF:
6053   case llvm::Triple::Wasm:
6054     GV->setSection("cfstring");
6055     break;
6056   case llvm::Triple::MachO:
6057     GV->setSection("__DATA,__cfstring");
6058     break;
6059   }
6060   Entry.second = GV;
6061 
6062   return ConstantAddress(GV, GV->getValueType(), Alignment);
6063 }
6064 
6065 bool CodeGenModule::getExpressionLocationsEnabled() const {
6066   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6067 }
6068 
6069 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6070   if (ObjCFastEnumerationStateType.isNull()) {
6071     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6072     D->startDefinition();
6073 
6074     QualType FieldTypes[] = {
6075       Context.UnsignedLongTy,
6076       Context.getPointerType(Context.getObjCIdType()),
6077       Context.getPointerType(Context.UnsignedLongTy),
6078       Context.getConstantArrayType(Context.UnsignedLongTy,
6079                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
6080     };
6081 
6082     for (size_t i = 0; i < 4; ++i) {
6083       FieldDecl *Field = FieldDecl::Create(Context,
6084                                            D,
6085                                            SourceLocation(),
6086                                            SourceLocation(), nullptr,
6087                                            FieldTypes[i], /*TInfo=*/nullptr,
6088                                            /*BitWidth=*/nullptr,
6089                                            /*Mutable=*/false,
6090                                            ICIS_NoInit);
6091       Field->setAccess(AS_public);
6092       D->addDecl(Field);
6093     }
6094 
6095     D->completeDefinition();
6096     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6097   }
6098 
6099   return ObjCFastEnumerationStateType;
6100 }
6101 
6102 llvm::Constant *
6103 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6104   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6105 
6106   // Don't emit it as the address of the string, emit the string data itself
6107   // as an inline array.
6108   if (E->getCharByteWidth() == 1) {
6109     SmallString<64> Str(E->getString());
6110 
6111     // Resize the string to the right size, which is indicated by its type.
6112     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6113     assert(CAT && "String literal not of constant array type!");
6114     Str.resize(CAT->getSize().getZExtValue());
6115     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6116   }
6117 
6118   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6119   llvm::Type *ElemTy = AType->getElementType();
6120   unsigned NumElements = AType->getNumElements();
6121 
6122   // Wide strings have either 2-byte or 4-byte elements.
6123   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6124     SmallVector<uint16_t, 32> Elements;
6125     Elements.reserve(NumElements);
6126 
6127     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6128       Elements.push_back(E->getCodeUnit(i));
6129     Elements.resize(NumElements);
6130     return llvm::ConstantDataArray::get(VMContext, Elements);
6131   }
6132 
6133   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6134   SmallVector<uint32_t, 32> Elements;
6135   Elements.reserve(NumElements);
6136 
6137   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6138     Elements.push_back(E->getCodeUnit(i));
6139   Elements.resize(NumElements);
6140   return llvm::ConstantDataArray::get(VMContext, Elements);
6141 }
6142 
6143 static llvm::GlobalVariable *
6144 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6145                       CodeGenModule &CGM, StringRef GlobalName,
6146                       CharUnits Alignment) {
6147   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6148       CGM.GetGlobalConstantAddressSpace());
6149 
6150   llvm::Module &M = CGM.getModule();
6151   // Create a global variable for this string
6152   auto *GV = new llvm::GlobalVariable(
6153       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6154       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6155   GV->setAlignment(Alignment.getAsAlign());
6156   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6157   if (GV->isWeakForLinker()) {
6158     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6159     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6160   }
6161   CGM.setDSOLocal(GV);
6162 
6163   return GV;
6164 }
6165 
6166 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6167 /// constant array for the given string literal.
6168 ConstantAddress
6169 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6170                                                   StringRef Name) {
6171   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
6172 
6173   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6174   llvm::GlobalVariable **Entry = nullptr;
6175   if (!LangOpts.WritableStrings) {
6176     Entry = &ConstantStringMap[C];
6177     if (auto GV = *Entry) {
6178       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6179         GV->setAlignment(Alignment.getAsAlign());
6180       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6181                              GV->getValueType(), Alignment);
6182     }
6183   }
6184 
6185   SmallString<256> MangledNameBuffer;
6186   StringRef GlobalVariableName;
6187   llvm::GlobalValue::LinkageTypes LT;
6188 
6189   // Mangle the string literal if that's how the ABI merges duplicate strings.
6190   // Don't do it if they are writable, since we don't want writes in one TU to
6191   // affect strings in another.
6192   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6193       !LangOpts.WritableStrings) {
6194     llvm::raw_svector_ostream Out(MangledNameBuffer);
6195     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6196     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6197     GlobalVariableName = MangledNameBuffer;
6198   } else {
6199     LT = llvm::GlobalValue::PrivateLinkage;
6200     GlobalVariableName = Name;
6201   }
6202 
6203   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6204 
6205   CGDebugInfo *DI = getModuleDebugInfo();
6206   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6207     DI->AddStringLiteralDebugInfo(GV, S);
6208 
6209   if (Entry)
6210     *Entry = GV;
6211 
6212   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6213 
6214   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6215                          GV->getValueType(), Alignment);
6216 }
6217 
6218 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6219 /// array for the given ObjCEncodeExpr node.
6220 ConstantAddress
6221 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6222   std::string Str;
6223   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6224 
6225   return GetAddrOfConstantCString(Str);
6226 }
6227 
6228 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6229 /// the literal and a terminating '\0' character.
6230 /// The result has pointer to array type.
6231 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6232     const std::string &Str, const char *GlobalName) {
6233   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6234   CharUnits Alignment =
6235     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
6236 
6237   llvm::Constant *C =
6238       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6239 
6240   // Don't share any string literals if strings aren't constant.
6241   llvm::GlobalVariable **Entry = nullptr;
6242   if (!LangOpts.WritableStrings) {
6243     Entry = &ConstantStringMap[C];
6244     if (auto GV = *Entry) {
6245       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6246         GV->setAlignment(Alignment.getAsAlign());
6247       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6248                              GV->getValueType(), Alignment);
6249     }
6250   }
6251 
6252   // Get the default prefix if a name wasn't specified.
6253   if (!GlobalName)
6254     GlobalName = ".str";
6255   // Create a global variable for this.
6256   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6257                                   GlobalName, Alignment);
6258   if (Entry)
6259     *Entry = GV;
6260 
6261   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6262                          GV->getValueType(), Alignment);
6263 }
6264 
6265 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6266     const MaterializeTemporaryExpr *E, const Expr *Init) {
6267   assert((E->getStorageDuration() == SD_Static ||
6268           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6269   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6270 
6271   // If we're not materializing a subobject of the temporary, keep the
6272   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6273   QualType MaterializedType = Init->getType();
6274   if (Init == E->getSubExpr())
6275     MaterializedType = E->getType();
6276 
6277   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6278 
6279   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6280   if (!InsertResult.second) {
6281     // We've seen this before: either we already created it or we're in the
6282     // process of doing so.
6283     if (!InsertResult.first->second) {
6284       // We recursively re-entered this function, probably during emission of
6285       // the initializer. Create a placeholder. We'll clean this up in the
6286       // outer call, at the end of this function.
6287       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6288       InsertResult.first->second = new llvm::GlobalVariable(
6289           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6290           nullptr);
6291     }
6292     return ConstantAddress(InsertResult.first->second,
6293                            llvm::cast<llvm::GlobalVariable>(
6294                                InsertResult.first->second->stripPointerCasts())
6295                                ->getValueType(),
6296                            Align);
6297   }
6298 
6299   // FIXME: If an externally-visible declaration extends multiple temporaries,
6300   // we need to give each temporary the same name in every translation unit (and
6301   // we also need to make the temporaries externally-visible).
6302   SmallString<256> Name;
6303   llvm::raw_svector_ostream Out(Name);
6304   getCXXABI().getMangleContext().mangleReferenceTemporary(
6305       VD, E->getManglingNumber(), Out);
6306 
6307   APValue *Value = nullptr;
6308   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6309     // If the initializer of the extending declaration is a constant
6310     // initializer, we should have a cached constant initializer for this
6311     // temporary. Note that this might have a different value from the value
6312     // computed by evaluating the initializer if the surrounding constant
6313     // expression modifies the temporary.
6314     Value = E->getOrCreateValue(false);
6315   }
6316 
6317   // Try evaluating it now, it might have a constant initializer.
6318   Expr::EvalResult EvalResult;
6319   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6320       !EvalResult.hasSideEffects())
6321     Value = &EvalResult.Val;
6322 
6323   LangAS AddrSpace =
6324       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6325 
6326   std::optional<ConstantEmitter> emitter;
6327   llvm::Constant *InitialValue = nullptr;
6328   bool Constant = false;
6329   llvm::Type *Type;
6330   if (Value) {
6331     // The temporary has a constant initializer, use it.
6332     emitter.emplace(*this);
6333     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6334                                                MaterializedType);
6335     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/ Value,
6336                               /*ExcludeDtor*/ false);
6337     Type = InitialValue->getType();
6338   } else {
6339     // No initializer, the initialization will be provided when we
6340     // initialize the declaration which performed lifetime extension.
6341     Type = getTypes().ConvertTypeForMem(MaterializedType);
6342   }
6343 
6344   // Create a global variable for this lifetime-extended temporary.
6345   llvm::GlobalValue::LinkageTypes Linkage =
6346       getLLVMLinkageVarDefinition(VD, Constant);
6347   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6348     const VarDecl *InitVD;
6349     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6350         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6351       // Temporaries defined inside a class get linkonce_odr linkage because the
6352       // class can be defined in multiple translation units.
6353       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6354     } else {
6355       // There is no need for this temporary to have external linkage if the
6356       // VarDecl has external linkage.
6357       Linkage = llvm::GlobalVariable::InternalLinkage;
6358     }
6359   }
6360   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6361   auto *GV = new llvm::GlobalVariable(
6362       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6363       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6364   if (emitter) emitter->finalize(GV);
6365   // Don't assign dllimport or dllexport to local linkage globals.
6366   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6367     setGVProperties(GV, VD);
6368     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6369       // The reference temporary should never be dllexport.
6370       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6371   }
6372   GV->setAlignment(Align.getAsAlign());
6373   if (supportsCOMDAT() && GV->isWeakForLinker())
6374     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6375   if (VD->getTLSKind())
6376     setTLSMode(GV, *VD);
6377   llvm::Constant *CV = GV;
6378   if (AddrSpace != LangAS::Default)
6379     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6380         *this, GV, AddrSpace, LangAS::Default,
6381         Type->getPointerTo(
6382             getContext().getTargetAddressSpace(LangAS::Default)));
6383 
6384   // Update the map with the new temporary. If we created a placeholder above,
6385   // replace it with the new global now.
6386   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6387   if (Entry) {
6388     Entry->replaceAllUsesWith(
6389         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6390     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6391   }
6392   Entry = CV;
6393 
6394   return ConstantAddress(CV, Type, Align);
6395 }
6396 
6397 /// EmitObjCPropertyImplementations - Emit information for synthesized
6398 /// properties for an implementation.
6399 void CodeGenModule::EmitObjCPropertyImplementations(const
6400                                                     ObjCImplementationDecl *D) {
6401   for (const auto *PID : D->property_impls()) {
6402     // Dynamic is just for type-checking.
6403     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6404       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6405 
6406       // Determine which methods need to be implemented, some may have
6407       // been overridden. Note that ::isPropertyAccessor is not the method
6408       // we want, that just indicates if the decl came from a
6409       // property. What we want to know is if the method is defined in
6410       // this implementation.
6411       auto *Getter = PID->getGetterMethodDecl();
6412       if (!Getter || Getter->isSynthesizedAccessorStub())
6413         CodeGenFunction(*this).GenerateObjCGetter(
6414             const_cast<ObjCImplementationDecl *>(D), PID);
6415       auto *Setter = PID->getSetterMethodDecl();
6416       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6417         CodeGenFunction(*this).GenerateObjCSetter(
6418                                  const_cast<ObjCImplementationDecl *>(D), PID);
6419     }
6420   }
6421 }
6422 
6423 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6424   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6425   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6426        ivar; ivar = ivar->getNextIvar())
6427     if (ivar->getType().isDestructedType())
6428       return true;
6429 
6430   return false;
6431 }
6432 
6433 static bool AllTrivialInitializers(CodeGenModule &CGM,
6434                                    ObjCImplementationDecl *D) {
6435   CodeGenFunction CGF(CGM);
6436   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6437        E = D->init_end(); B != E; ++B) {
6438     CXXCtorInitializer *CtorInitExp = *B;
6439     Expr *Init = CtorInitExp->getInit();
6440     if (!CGF.isTrivialInitializer(Init))
6441       return false;
6442   }
6443   return true;
6444 }
6445 
6446 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6447 /// for an implementation.
6448 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6449   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6450   if (needsDestructMethod(D)) {
6451     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6452     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6453     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6454         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6455         getContext().VoidTy, nullptr, D,
6456         /*isInstance=*/true, /*isVariadic=*/false,
6457         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6458         /*isImplicitlyDeclared=*/true,
6459         /*isDefined=*/false, ObjCMethodDecl::Required);
6460     D->addInstanceMethod(DTORMethod);
6461     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6462     D->setHasDestructors(true);
6463   }
6464 
6465   // If the implementation doesn't have any ivar initializers, we don't need
6466   // a .cxx_construct.
6467   if (D->getNumIvarInitializers() == 0 ||
6468       AllTrivialInitializers(*this, D))
6469     return;
6470 
6471   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6472   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6473   // The constructor returns 'self'.
6474   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6475       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6476       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6477       /*isVariadic=*/false,
6478       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6479       /*isImplicitlyDeclared=*/true,
6480       /*isDefined=*/false, ObjCMethodDecl::Required);
6481   D->addInstanceMethod(CTORMethod);
6482   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6483   D->setHasNonZeroConstructors(true);
6484 }
6485 
6486 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6487 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6488   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6489       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6490     ErrorUnsupported(LSD, "linkage spec");
6491     return;
6492   }
6493 
6494   EmitDeclContext(LSD);
6495 }
6496 
6497 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6498   // Device code should not be at top level.
6499   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6500     return;
6501 
6502   std::unique_ptr<CodeGenFunction> &CurCGF =
6503       GlobalTopLevelStmtBlockInFlight.first;
6504 
6505   // We emitted a top-level stmt but after it there is initialization.
6506   // Stop squashing the top-level stmts into a single function.
6507   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6508     CurCGF->FinishFunction(D->getEndLoc());
6509     CurCGF = nullptr;
6510   }
6511 
6512   if (!CurCGF) {
6513     // void __stmts__N(void)
6514     // FIXME: Ask the ABI name mangler to pick a name.
6515     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6516     FunctionArgList Args;
6517     QualType RetTy = getContext().VoidTy;
6518     const CGFunctionInfo &FnInfo =
6519         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6520     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6521     llvm::Function *Fn = llvm::Function::Create(
6522         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6523 
6524     CurCGF.reset(new CodeGenFunction(*this));
6525     GlobalTopLevelStmtBlockInFlight.second = D;
6526     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6527                           D->getBeginLoc(), D->getBeginLoc());
6528     CXXGlobalInits.push_back(Fn);
6529   }
6530 
6531   CurCGF->EmitStmt(D->getStmt());
6532 }
6533 
6534 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6535   for (auto *I : DC->decls()) {
6536     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6537     // are themselves considered "top-level", so EmitTopLevelDecl on an
6538     // ObjCImplDecl does not recursively visit them. We need to do that in
6539     // case they're nested inside another construct (LinkageSpecDecl /
6540     // ExportDecl) that does stop them from being considered "top-level".
6541     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6542       for (auto *M : OID->methods())
6543         EmitTopLevelDecl(M);
6544     }
6545 
6546     EmitTopLevelDecl(I);
6547   }
6548 }
6549 
6550 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6551 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6552   // Ignore dependent declarations.
6553   if (D->isTemplated())
6554     return;
6555 
6556   // Consteval function shouldn't be emitted.
6557   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6558     return;
6559 
6560   switch (D->getKind()) {
6561   case Decl::CXXConversion:
6562   case Decl::CXXMethod:
6563   case Decl::Function:
6564     EmitGlobal(cast<FunctionDecl>(D));
6565     // Always provide some coverage mapping
6566     // even for the functions that aren't emitted.
6567     AddDeferredUnusedCoverageMapping(D);
6568     break;
6569 
6570   case Decl::CXXDeductionGuide:
6571     // Function-like, but does not result in code emission.
6572     break;
6573 
6574   case Decl::Var:
6575   case Decl::Decomposition:
6576   case Decl::VarTemplateSpecialization:
6577     EmitGlobal(cast<VarDecl>(D));
6578     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6579       for (auto *B : DD->bindings())
6580         if (auto *HD = B->getHoldingVar())
6581           EmitGlobal(HD);
6582     break;
6583 
6584   // Indirect fields from global anonymous structs and unions can be
6585   // ignored; only the actual variable requires IR gen support.
6586   case Decl::IndirectField:
6587     break;
6588 
6589   // C++ Decls
6590   case Decl::Namespace:
6591     EmitDeclContext(cast<NamespaceDecl>(D));
6592     break;
6593   case Decl::ClassTemplateSpecialization: {
6594     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6595     if (CGDebugInfo *DI = getModuleDebugInfo())
6596       if (Spec->getSpecializationKind() ==
6597               TSK_ExplicitInstantiationDefinition &&
6598           Spec->hasDefinition())
6599         DI->completeTemplateDefinition(*Spec);
6600   } [[fallthrough]];
6601   case Decl::CXXRecord: {
6602     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6603     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6604       if (CRD->hasDefinition())
6605         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6606       if (auto *ES = D->getASTContext().getExternalSource())
6607         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6608           DI->completeUnusedClass(*CRD);
6609     }
6610     // Emit any static data members, they may be definitions.
6611     for (auto *I : CRD->decls())
6612       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6613         EmitTopLevelDecl(I);
6614     break;
6615   }
6616     // No code generation needed.
6617   case Decl::UsingShadow:
6618   case Decl::ClassTemplate:
6619   case Decl::VarTemplate:
6620   case Decl::Concept:
6621   case Decl::VarTemplatePartialSpecialization:
6622   case Decl::FunctionTemplate:
6623   case Decl::TypeAliasTemplate:
6624   case Decl::Block:
6625   case Decl::Empty:
6626   case Decl::Binding:
6627     break;
6628   case Decl::Using:          // using X; [C++]
6629     if (CGDebugInfo *DI = getModuleDebugInfo())
6630         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6631     break;
6632   case Decl::UsingEnum: // using enum X; [C++]
6633     if (CGDebugInfo *DI = getModuleDebugInfo())
6634       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6635     break;
6636   case Decl::NamespaceAlias:
6637     if (CGDebugInfo *DI = getModuleDebugInfo())
6638         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6639     break;
6640   case Decl::UsingDirective: // using namespace X; [C++]
6641     if (CGDebugInfo *DI = getModuleDebugInfo())
6642       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6643     break;
6644   case Decl::CXXConstructor:
6645     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6646     break;
6647   case Decl::CXXDestructor:
6648     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6649     break;
6650 
6651   case Decl::StaticAssert:
6652     // Nothing to do.
6653     break;
6654 
6655   // Objective-C Decls
6656 
6657   // Forward declarations, no (immediate) code generation.
6658   case Decl::ObjCInterface:
6659   case Decl::ObjCCategory:
6660     break;
6661 
6662   case Decl::ObjCProtocol: {
6663     auto *Proto = cast<ObjCProtocolDecl>(D);
6664     if (Proto->isThisDeclarationADefinition())
6665       ObjCRuntime->GenerateProtocol(Proto);
6666     break;
6667   }
6668 
6669   case Decl::ObjCCategoryImpl:
6670     // Categories have properties but don't support synthesize so we
6671     // can ignore them here.
6672     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6673     break;
6674 
6675   case Decl::ObjCImplementation: {
6676     auto *OMD = cast<ObjCImplementationDecl>(D);
6677     EmitObjCPropertyImplementations(OMD);
6678     EmitObjCIvarInitializations(OMD);
6679     ObjCRuntime->GenerateClass(OMD);
6680     // Emit global variable debug information.
6681     if (CGDebugInfo *DI = getModuleDebugInfo())
6682       if (getCodeGenOpts().hasReducedDebugInfo())
6683         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6684             OMD->getClassInterface()), OMD->getLocation());
6685     break;
6686   }
6687   case Decl::ObjCMethod: {
6688     auto *OMD = cast<ObjCMethodDecl>(D);
6689     // If this is not a prototype, emit the body.
6690     if (OMD->getBody())
6691       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6692     break;
6693   }
6694   case Decl::ObjCCompatibleAlias:
6695     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6696     break;
6697 
6698   case Decl::PragmaComment: {
6699     const auto *PCD = cast<PragmaCommentDecl>(D);
6700     switch (PCD->getCommentKind()) {
6701     case PCK_Unknown:
6702       llvm_unreachable("unexpected pragma comment kind");
6703     case PCK_Linker:
6704       AppendLinkerOptions(PCD->getArg());
6705       break;
6706     case PCK_Lib:
6707         AddDependentLib(PCD->getArg());
6708       break;
6709     case PCK_Compiler:
6710     case PCK_ExeStr:
6711     case PCK_User:
6712       break; // We ignore all of these.
6713     }
6714     break;
6715   }
6716 
6717   case Decl::PragmaDetectMismatch: {
6718     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6719     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6720     break;
6721   }
6722 
6723   case Decl::LinkageSpec:
6724     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6725     break;
6726 
6727   case Decl::FileScopeAsm: {
6728     // File-scope asm is ignored during device-side CUDA compilation.
6729     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6730       break;
6731     // File-scope asm is ignored during device-side OpenMP compilation.
6732     if (LangOpts.OpenMPIsDevice)
6733       break;
6734     // File-scope asm is ignored during device-side SYCL compilation.
6735     if (LangOpts.SYCLIsDevice)
6736       break;
6737     auto *AD = cast<FileScopeAsmDecl>(D);
6738     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6739     break;
6740   }
6741 
6742   case Decl::TopLevelStmt:
6743     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6744     break;
6745 
6746   case Decl::Import: {
6747     auto *Import = cast<ImportDecl>(D);
6748 
6749     // If we've already imported this module, we're done.
6750     if (!ImportedModules.insert(Import->getImportedModule()))
6751       break;
6752 
6753     // Emit debug information for direct imports.
6754     if (!Import->getImportedOwningModule()) {
6755       if (CGDebugInfo *DI = getModuleDebugInfo())
6756         DI->EmitImportDecl(*Import);
6757     }
6758 
6759     // For C++ standard modules we are done - we will call the module
6760     // initializer for imported modules, and that will likewise call those for
6761     // any imports it has.
6762     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6763         !Import->getImportedOwningModule()->isModuleMapModule())
6764       break;
6765 
6766     // For clang C++ module map modules the initializers for sub-modules are
6767     // emitted here.
6768 
6769     // Find all of the submodules and emit the module initializers.
6770     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6771     SmallVector<clang::Module *, 16> Stack;
6772     Visited.insert(Import->getImportedModule());
6773     Stack.push_back(Import->getImportedModule());
6774 
6775     while (!Stack.empty()) {
6776       clang::Module *Mod = Stack.pop_back_val();
6777       if (!EmittedModuleInitializers.insert(Mod).second)
6778         continue;
6779 
6780       for (auto *D : Context.getModuleInitializers(Mod))
6781         EmitTopLevelDecl(D);
6782 
6783       // Visit the submodules of this module.
6784       for (auto *Submodule : Mod->submodules()) {
6785         // Skip explicit children; they need to be explicitly imported to emit
6786         // the initializers.
6787         if (Submodule->IsExplicit)
6788           continue;
6789 
6790         if (Visited.insert(Submodule).second)
6791           Stack.push_back(Submodule);
6792       }
6793     }
6794     break;
6795   }
6796 
6797   case Decl::Export:
6798     EmitDeclContext(cast<ExportDecl>(D));
6799     break;
6800 
6801   case Decl::OMPThreadPrivate:
6802     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6803     break;
6804 
6805   case Decl::OMPAllocate:
6806     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6807     break;
6808 
6809   case Decl::OMPDeclareReduction:
6810     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6811     break;
6812 
6813   case Decl::OMPDeclareMapper:
6814     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6815     break;
6816 
6817   case Decl::OMPRequires:
6818     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6819     break;
6820 
6821   case Decl::Typedef:
6822   case Decl::TypeAlias: // using foo = bar; [C++11]
6823     if (CGDebugInfo *DI = getModuleDebugInfo())
6824       DI->EmitAndRetainType(
6825           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6826     break;
6827 
6828   case Decl::Record:
6829     if (CGDebugInfo *DI = getModuleDebugInfo())
6830       if (cast<RecordDecl>(D)->getDefinition())
6831         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6832     break;
6833 
6834   case Decl::Enum:
6835     if (CGDebugInfo *DI = getModuleDebugInfo())
6836       if (cast<EnumDecl>(D)->getDefinition())
6837         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6838     break;
6839 
6840   case Decl::HLSLBuffer:
6841     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6842     break;
6843 
6844   default:
6845     // Make sure we handled everything we should, every other kind is a
6846     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6847     // function. Need to recode Decl::Kind to do that easily.
6848     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6849     break;
6850   }
6851 }
6852 
6853 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6854   // Do we need to generate coverage mapping?
6855   if (!CodeGenOpts.CoverageMapping)
6856     return;
6857   switch (D->getKind()) {
6858   case Decl::CXXConversion:
6859   case Decl::CXXMethod:
6860   case Decl::Function:
6861   case Decl::ObjCMethod:
6862   case Decl::CXXConstructor:
6863   case Decl::CXXDestructor: {
6864     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6865       break;
6866     SourceManager &SM = getContext().getSourceManager();
6867     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6868       break;
6869     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6870     if (I == DeferredEmptyCoverageMappingDecls.end())
6871       DeferredEmptyCoverageMappingDecls[D] = true;
6872     break;
6873   }
6874   default:
6875     break;
6876   };
6877 }
6878 
6879 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6880   // Do we need to generate coverage mapping?
6881   if (!CodeGenOpts.CoverageMapping)
6882     return;
6883   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6884     if (Fn->isTemplateInstantiation())
6885       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6886   }
6887   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6888   if (I == DeferredEmptyCoverageMappingDecls.end())
6889     DeferredEmptyCoverageMappingDecls[D] = false;
6890   else
6891     I->second = false;
6892 }
6893 
6894 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6895   // We call takeVector() here to avoid use-after-free.
6896   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6897   // we deserialize function bodies to emit coverage info for them, and that
6898   // deserializes more declarations. How should we handle that case?
6899   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6900     if (!Entry.second)
6901       continue;
6902     const Decl *D = Entry.first;
6903     switch (D->getKind()) {
6904     case Decl::CXXConversion:
6905     case Decl::CXXMethod:
6906     case Decl::Function:
6907     case Decl::ObjCMethod: {
6908       CodeGenPGO PGO(*this);
6909       GlobalDecl GD(cast<FunctionDecl>(D));
6910       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6911                                   getFunctionLinkage(GD));
6912       break;
6913     }
6914     case Decl::CXXConstructor: {
6915       CodeGenPGO PGO(*this);
6916       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6917       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6918                                   getFunctionLinkage(GD));
6919       break;
6920     }
6921     case Decl::CXXDestructor: {
6922       CodeGenPGO PGO(*this);
6923       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6924       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6925                                   getFunctionLinkage(GD));
6926       break;
6927     }
6928     default:
6929       break;
6930     };
6931   }
6932 }
6933 
6934 void CodeGenModule::EmitMainVoidAlias() {
6935   // In order to transition away from "__original_main" gracefully, emit an
6936   // alias for "main" in the no-argument case so that libc can detect when
6937   // new-style no-argument main is in used.
6938   if (llvm::Function *F = getModule().getFunction("main")) {
6939     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6940         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6941       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6942       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6943     }
6944   }
6945 }
6946 
6947 /// Turns the given pointer into a constant.
6948 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6949                                           const void *Ptr) {
6950   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6951   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6952   return llvm::ConstantInt::get(i64, PtrInt);
6953 }
6954 
6955 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6956                                    llvm::NamedMDNode *&GlobalMetadata,
6957                                    GlobalDecl D,
6958                                    llvm::GlobalValue *Addr) {
6959   if (!GlobalMetadata)
6960     GlobalMetadata =
6961       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6962 
6963   // TODO: should we report variant information for ctors/dtors?
6964   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6965                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6966                                CGM.getLLVMContext(), D.getDecl()))};
6967   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6968 }
6969 
6970 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6971                                                  llvm::GlobalValue *CppFunc) {
6972   // Store the list of ifuncs we need to replace uses in.
6973   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6974   // List of ConstantExprs that we should be able to delete when we're done
6975   // here.
6976   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6977 
6978   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6979   if (Elem == CppFunc)
6980     return false;
6981 
6982   // First make sure that all users of this are ifuncs (or ifuncs via a
6983   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6984   // later.
6985   for (llvm::User *User : Elem->users()) {
6986     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6987     // ifunc directly. In any other case, just give up, as we don't know what we
6988     // could break by changing those.
6989     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6990       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6991         return false;
6992 
6993       for (llvm::User *CEUser : ConstExpr->users()) {
6994         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6995           IFuncs.push_back(IFunc);
6996         } else {
6997           return false;
6998         }
6999       }
7000       CEs.push_back(ConstExpr);
7001     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7002       IFuncs.push_back(IFunc);
7003     } else {
7004       // This user is one we don't know how to handle, so fail redirection. This
7005       // will result in an ifunc retaining a resolver name that will ultimately
7006       // fail to be resolved to a defined function.
7007       return false;
7008     }
7009   }
7010 
7011   // Now we know this is a valid case where we can do this alias replacement, we
7012   // need to remove all of the references to Elem (and the bitcasts!) so we can
7013   // delete it.
7014   for (llvm::GlobalIFunc *IFunc : IFuncs)
7015     IFunc->setResolver(nullptr);
7016   for (llvm::ConstantExpr *ConstExpr : CEs)
7017     ConstExpr->destroyConstant();
7018 
7019   // We should now be out of uses for the 'old' version of this function, so we
7020   // can erase it as well.
7021   Elem->eraseFromParent();
7022 
7023   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7024     // The type of the resolver is always just a function-type that returns the
7025     // type of the IFunc, so create that here. If the type of the actual
7026     // resolver doesn't match, it just gets bitcast to the right thing.
7027     auto *ResolverTy =
7028         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7029     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7030         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7031     IFunc->setResolver(Resolver);
7032   }
7033   return true;
7034 }
7035 
7036 /// For each function which is declared within an extern "C" region and marked
7037 /// as 'used', but has internal linkage, create an alias from the unmangled
7038 /// name to the mangled name if possible. People expect to be able to refer
7039 /// to such functions with an unmangled name from inline assembly within the
7040 /// same translation unit.
7041 void CodeGenModule::EmitStaticExternCAliases() {
7042   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7043     return;
7044   for (auto &I : StaticExternCValues) {
7045     IdentifierInfo *Name = I.first;
7046     llvm::GlobalValue *Val = I.second;
7047 
7048     // If Val is null, that implies there were multiple declarations that each
7049     // had a claim to the unmangled name. In this case, generation of the alias
7050     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7051     if (!Val)
7052       break;
7053 
7054     llvm::GlobalValue *ExistingElem =
7055         getModule().getNamedValue(Name->getName());
7056 
7057     // If there is either not something already by this name, or we were able to
7058     // replace all uses from IFuncs, create the alias.
7059     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7060       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7061   }
7062 }
7063 
7064 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7065                                              GlobalDecl &Result) const {
7066   auto Res = Manglings.find(MangledName);
7067   if (Res == Manglings.end())
7068     return false;
7069   Result = Res->getValue();
7070   return true;
7071 }
7072 
7073 /// Emits metadata nodes associating all the global values in the
7074 /// current module with the Decls they came from.  This is useful for
7075 /// projects using IR gen as a subroutine.
7076 ///
7077 /// Since there's currently no way to associate an MDNode directly
7078 /// with an llvm::GlobalValue, we create a global named metadata
7079 /// with the name 'clang.global.decl.ptrs'.
7080 void CodeGenModule::EmitDeclMetadata() {
7081   llvm::NamedMDNode *GlobalMetadata = nullptr;
7082 
7083   for (auto &I : MangledDeclNames) {
7084     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7085     // Some mangled names don't necessarily have an associated GlobalValue
7086     // in this module, e.g. if we mangled it for DebugInfo.
7087     if (Addr)
7088       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7089   }
7090 }
7091 
7092 /// Emits metadata nodes for all the local variables in the current
7093 /// function.
7094 void CodeGenFunction::EmitDeclMetadata() {
7095   if (LocalDeclMap.empty()) return;
7096 
7097   llvm::LLVMContext &Context = getLLVMContext();
7098 
7099   // Find the unique metadata ID for this name.
7100   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7101 
7102   llvm::NamedMDNode *GlobalMetadata = nullptr;
7103 
7104   for (auto &I : LocalDeclMap) {
7105     const Decl *D = I.first;
7106     llvm::Value *Addr = I.second.getPointer();
7107     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7108       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7109       Alloca->setMetadata(
7110           DeclPtrKind, llvm::MDNode::get(
7111                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7112     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7113       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7114       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7115     }
7116   }
7117 }
7118 
7119 void CodeGenModule::EmitVersionIdentMetadata() {
7120   llvm::NamedMDNode *IdentMetadata =
7121     TheModule.getOrInsertNamedMetadata("llvm.ident");
7122   std::string Version = getClangFullVersion();
7123   llvm::LLVMContext &Ctx = TheModule.getContext();
7124 
7125   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7126   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7127 }
7128 
7129 void CodeGenModule::EmitCommandLineMetadata() {
7130   llvm::NamedMDNode *CommandLineMetadata =
7131     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7132   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7133   llvm::LLVMContext &Ctx = TheModule.getContext();
7134 
7135   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7136   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7137 }
7138 
7139 void CodeGenModule::EmitCoverageFile() {
7140   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7141   if (!CUNode)
7142     return;
7143 
7144   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7145   llvm::LLVMContext &Ctx = TheModule.getContext();
7146   auto *CoverageDataFile =
7147       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7148   auto *CoverageNotesFile =
7149       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7150   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7151     llvm::MDNode *CU = CUNode->getOperand(i);
7152     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7153     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7154   }
7155 }
7156 
7157 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7158                                                        bool ForEH) {
7159   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7160   // FIXME: should we even be calling this method if RTTI is disabled
7161   // and it's not for EH?
7162   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
7163       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
7164        getTriple().isNVPTX()))
7165     return llvm::Constant::getNullValue(Int8PtrTy);
7166 
7167   if (ForEH && Ty->isObjCObjectPointerType() &&
7168       LangOpts.ObjCRuntime.isGNUFamily())
7169     return ObjCRuntime->GetEHType(Ty);
7170 
7171   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7172 }
7173 
7174 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7175   // Do not emit threadprivates in simd-only mode.
7176   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7177     return;
7178   for (auto RefExpr : D->varlists()) {
7179     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7180     bool PerformInit =
7181         VD->getAnyInitializer() &&
7182         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7183                                                         /*ForRef=*/false);
7184 
7185     Address Addr(GetAddrOfGlobalVar(VD),
7186                  getTypes().ConvertTypeForMem(VD->getType()),
7187                  getContext().getDeclAlign(VD));
7188     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7189             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7190       CXXGlobalInits.push_back(InitFunction);
7191   }
7192 }
7193 
7194 llvm::Metadata *
7195 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7196                                             StringRef Suffix) {
7197   if (auto *FnType = T->getAs<FunctionProtoType>())
7198     T = getContext().getFunctionType(
7199         FnType->getReturnType(), FnType->getParamTypes(),
7200         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7201 
7202   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7203   if (InternalId)
7204     return InternalId;
7205 
7206   if (isExternallyVisible(T->getLinkage())) {
7207     std::string OutName;
7208     llvm::raw_string_ostream Out(OutName);
7209     getCXXABI().getMangleContext().mangleTypeName(
7210         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7211 
7212     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7213       Out << ".normalized";
7214 
7215     Out << Suffix;
7216 
7217     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7218   } else {
7219     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7220                                            llvm::ArrayRef<llvm::Metadata *>());
7221   }
7222 
7223   return InternalId;
7224 }
7225 
7226 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7227   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7228 }
7229 
7230 llvm::Metadata *
7231 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7232   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7233 }
7234 
7235 // Generalize pointer types to a void pointer with the qualifiers of the
7236 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7237 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7238 // 'void *'.
7239 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7240   if (!Ty->isPointerType())
7241     return Ty;
7242 
7243   return Ctx.getPointerType(
7244       QualType(Ctx.VoidTy).withCVRQualifiers(
7245           Ty->getPointeeType().getCVRQualifiers()));
7246 }
7247 
7248 // Apply type generalization to a FunctionType's return and argument types
7249 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7250   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7251     SmallVector<QualType, 8> GeneralizedParams;
7252     for (auto &Param : FnType->param_types())
7253       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7254 
7255     return Ctx.getFunctionType(
7256         GeneralizeType(Ctx, FnType->getReturnType()),
7257         GeneralizedParams, FnType->getExtProtoInfo());
7258   }
7259 
7260   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7261     return Ctx.getFunctionNoProtoType(
7262         GeneralizeType(Ctx, FnType->getReturnType()));
7263 
7264   llvm_unreachable("Encountered unknown FunctionType");
7265 }
7266 
7267 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7268   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7269                                       GeneralizedMetadataIdMap, ".generalized");
7270 }
7271 
7272 /// Returns whether this module needs the "all-vtables" type identifier.
7273 bool CodeGenModule::NeedAllVtablesTypeId() const {
7274   // Returns true if at least one of vtable-based CFI checkers is enabled and
7275   // is not in the trapping mode.
7276   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7277            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7278           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7279            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7280           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7281            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7282           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7283            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7284 }
7285 
7286 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7287                                           CharUnits Offset,
7288                                           const CXXRecordDecl *RD) {
7289   llvm::Metadata *MD =
7290       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7291   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7292 
7293   if (CodeGenOpts.SanitizeCfiCrossDso)
7294     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7295       VTable->addTypeMetadata(Offset.getQuantity(),
7296                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7297 
7298   if (NeedAllVtablesTypeId()) {
7299     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7300     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7301   }
7302 }
7303 
7304 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7305   if (!SanStats)
7306     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7307 
7308   return *SanStats;
7309 }
7310 
7311 llvm::Value *
7312 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7313                                                   CodeGenFunction &CGF) {
7314   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7315   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7316   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7317   auto *Call = CGF.EmitRuntimeCall(
7318       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7319   return Call;
7320 }
7321 
7322 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7323     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7324   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7325                                  /* forPointeeType= */ true);
7326 }
7327 
7328 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7329                                                  LValueBaseInfo *BaseInfo,
7330                                                  TBAAAccessInfo *TBAAInfo,
7331                                                  bool forPointeeType) {
7332   if (TBAAInfo)
7333     *TBAAInfo = getTBAAAccessInfo(T);
7334 
7335   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7336   // that doesn't return the information we need to compute BaseInfo.
7337 
7338   // Honor alignment typedef attributes even on incomplete types.
7339   // We also honor them straight for C++ class types, even as pointees;
7340   // there's an expressivity gap here.
7341   if (auto TT = T->getAs<TypedefType>()) {
7342     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7343       if (BaseInfo)
7344         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7345       return getContext().toCharUnitsFromBits(Align);
7346     }
7347   }
7348 
7349   bool AlignForArray = T->isArrayType();
7350 
7351   // Analyze the base element type, so we don't get confused by incomplete
7352   // array types.
7353   T = getContext().getBaseElementType(T);
7354 
7355   if (T->isIncompleteType()) {
7356     // We could try to replicate the logic from
7357     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7358     // type is incomplete, so it's impossible to test. We could try to reuse
7359     // getTypeAlignIfKnown, but that doesn't return the information we need
7360     // to set BaseInfo.  So just ignore the possibility that the alignment is
7361     // greater than one.
7362     if (BaseInfo)
7363       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7364     return CharUnits::One();
7365   }
7366 
7367   if (BaseInfo)
7368     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7369 
7370   CharUnits Alignment;
7371   const CXXRecordDecl *RD;
7372   if (T.getQualifiers().hasUnaligned()) {
7373     Alignment = CharUnits::One();
7374   } else if (forPointeeType && !AlignForArray &&
7375              (RD = T->getAsCXXRecordDecl())) {
7376     // For C++ class pointees, we don't know whether we're pointing at a
7377     // base or a complete object, so we generally need to use the
7378     // non-virtual alignment.
7379     Alignment = getClassPointerAlignment(RD);
7380   } else {
7381     Alignment = getContext().getTypeAlignInChars(T);
7382   }
7383 
7384   // Cap to the global maximum type alignment unless the alignment
7385   // was somehow explicit on the type.
7386   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7387     if (Alignment.getQuantity() > MaxAlign &&
7388         !getContext().isAlignmentRequired(T))
7389       Alignment = CharUnits::fromQuantity(MaxAlign);
7390   }
7391   return Alignment;
7392 }
7393 
7394 bool CodeGenModule::stopAutoInit() {
7395   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7396   if (StopAfter) {
7397     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7398     // used
7399     if (NumAutoVarInit >= StopAfter) {
7400       return true;
7401     }
7402     if (!NumAutoVarInit) {
7403       unsigned DiagID = getDiags().getCustomDiagID(
7404           DiagnosticsEngine::Warning,
7405           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7406           "number of times ftrivial-auto-var-init=%1 gets applied.");
7407       getDiags().Report(DiagID)
7408           << StopAfter
7409           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7410                       LangOptions::TrivialAutoVarInitKind::Zero
7411                   ? "zero"
7412                   : "pattern");
7413     }
7414     ++NumAutoVarInit;
7415   }
7416   return false;
7417 }
7418 
7419 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7420                                                     const Decl *D) const {
7421   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7422   // postfix beginning with '.' since the symbol name can be demangled.
7423   if (LangOpts.HIP)
7424     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7425   else
7426     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7427 
7428   // If the CUID is not specified we try to generate a unique postfix.
7429   if (getLangOpts().CUID.empty()) {
7430     SourceManager &SM = getContext().getSourceManager();
7431     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7432     assert(PLoc.isValid() && "Source location is expected to be valid.");
7433 
7434     // Get the hash of the user defined macros.
7435     llvm::MD5 Hash;
7436     llvm::MD5::MD5Result Result;
7437     for (const auto &Arg : PreprocessorOpts.Macros)
7438       Hash.update(Arg.first);
7439     Hash.final(Result);
7440 
7441     // Get the UniqueID for the file containing the decl.
7442     llvm::sys::fs::UniqueID ID;
7443     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7444       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7445       assert(PLoc.isValid() && "Source location is expected to be valid.");
7446       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7447         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7448             << PLoc.getFilename() << EC.message();
7449     }
7450     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7451        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7452   } else {
7453     OS << getContext().getCUIDHash();
7454   }
7455 }
7456 
7457 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7458   assert(DeferredDeclsToEmit.empty() &&
7459          "Should have emitted all decls deferred to emit.");
7460   assert(NewBuilder->DeferredDecls.empty() &&
7461          "Newly created module should not have deferred decls");
7462   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7463 
7464   assert(NewBuilder->DeferredVTables.empty() &&
7465          "Newly created module should not have deferred vtables");
7466   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7467 
7468   assert(NewBuilder->MangledDeclNames.empty() &&
7469          "Newly created module should not have mangled decl names");
7470   assert(NewBuilder->Manglings.empty() &&
7471          "Newly created module should not have manglings");
7472   NewBuilder->Manglings = std::move(Manglings);
7473 
7474   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7475 
7476   NewBuilder->TBAA = std::move(TBAA);
7477 
7478   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7479          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7480 
7481   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7482 
7483   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7484 }
7485