xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 93011fe2a5268aab9bf59e71b9d21a3818d1e199)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CodeGenOptions.h"
42 #include "clang/Basic/Diagnostic.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/BinaryFormat/ELF.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/RISCVISAInfo.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include "llvm/TargetParser/X86TargetParser.h"
74 #include "llvm/Transforms/Utils/BuildLibCalls.h"
75 #include <optional>
76 
77 using namespace clang;
78 using namespace CodeGen;
79 
80 static llvm::cl::opt<bool> LimitedCoverage(
81     "limited-coverage-experimental", llvm::cl::Hidden,
82     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
83 
84 static const char AnnotationSection[] = "llvm.metadata";
85 
86 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
87   switch (CGM.getContext().getCXXABIKind()) {
88   case TargetCXXABI::AppleARM64:
89   case TargetCXXABI::Fuchsia:
90   case TargetCXXABI::GenericAArch64:
91   case TargetCXXABI::GenericARM:
92   case TargetCXXABI::iOS:
93   case TargetCXXABI::WatchOS:
94   case TargetCXXABI::GenericMIPS:
95   case TargetCXXABI::GenericItanium:
96   case TargetCXXABI::WebAssembly:
97   case TargetCXXABI::XL:
98     return CreateItaniumCXXABI(CGM);
99   case TargetCXXABI::Microsoft:
100     return CreateMicrosoftCXXABI(CGM);
101   }
102 
103   llvm_unreachable("invalid C++ ABI kind");
104 }
105 
106 static std::unique_ptr<TargetCodeGenInfo>
107 createTargetCodeGenInfo(CodeGenModule &CGM) {
108   const TargetInfo &Target = CGM.getTarget();
109   const llvm::Triple &Triple = Target.getTriple();
110   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
111 
112   switch (Triple.getArch()) {
113   default:
114     return createDefaultTargetCodeGenInfo(CGM);
115 
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145     else if (Target.getABI() == "aapcs-soft")
146       Kind = AArch64ABIKind::AAPCSSoft;
147     else if (Target.getABI() == "pauthtest")
148       Kind = AArch64ABIKind::PAuthTest;
149 
150     return createAArch64TargetCodeGenInfo(CGM, Kind);
151   }
152 
153   case llvm::Triple::wasm32:
154   case llvm::Triple::wasm64: {
155     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
156     if (Target.getABI() == "experimental-mv")
157       Kind = WebAssemblyABIKind::ExperimentalMV;
158     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
159   }
160 
161   case llvm::Triple::arm:
162   case llvm::Triple::armeb:
163   case llvm::Triple::thumb:
164   case llvm::Triple::thumbeb: {
165     if (Triple.getOS() == llvm::Triple::Win32)
166       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
167 
168     ARMABIKind Kind = ARMABIKind::AAPCS;
169     StringRef ABIStr = Target.getABI();
170     if (ABIStr == "apcs-gnu")
171       Kind = ARMABIKind::APCS;
172     else if (ABIStr == "aapcs16")
173       Kind = ARMABIKind::AAPCS16_VFP;
174     else if (CodeGenOpts.FloatABI == "hard" ||
175              (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
176       Kind = ARMABIKind::AAPCS_VFP;
177 
178     return createARMTargetCodeGenInfo(CGM, Kind);
179   }
180 
181   case llvm::Triple::ppc: {
182     if (Triple.isOSAIX())
183       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
184 
185     bool IsSoftFloat =
186         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
187     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
188   }
189   case llvm::Triple::ppcle: {
190     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
191     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
192   }
193   case llvm::Triple::ppc64:
194     if (Triple.isOSAIX())
195       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
196 
197     if (Triple.isOSBinFormatELF()) {
198       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
199       if (Target.getABI() == "elfv2")
200         Kind = PPC64_SVR4_ABIKind::ELFv2;
201       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
202 
203       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
204     }
205     return createPPC64TargetCodeGenInfo(CGM);
206   case llvm::Triple::ppc64le: {
207     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
208     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
209     if (Target.getABI() == "elfv1")
210       Kind = PPC64_SVR4_ABIKind::ELFv1;
211     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
212 
213     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
214   }
215 
216   case llvm::Triple::nvptx:
217   case llvm::Triple::nvptx64:
218     return createNVPTXTargetCodeGenInfo(CGM);
219 
220   case llvm::Triple::msp430:
221     return createMSP430TargetCodeGenInfo(CGM);
222 
223   case llvm::Triple::riscv32:
224   case llvm::Triple::riscv64: {
225     StringRef ABIStr = Target.getABI();
226     unsigned XLen = Target.getPointerWidth(LangAS::Default);
227     unsigned ABIFLen = 0;
228     if (ABIStr.ends_with("f"))
229       ABIFLen = 32;
230     else if (ABIStr.ends_with("d"))
231       ABIFLen = 64;
232     bool EABI = ABIStr.ends_with("e");
233     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
234   }
235 
236   case llvm::Triple::systemz: {
237     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
238     bool HasVector = !SoftFloat && Target.getABI() == "vector";
239     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
240   }
241 
242   case llvm::Triple::tce:
243   case llvm::Triple::tcele:
244     return createTCETargetCodeGenInfo(CGM);
245 
246   case llvm::Triple::x86: {
247     bool IsDarwinVectorABI = Triple.isOSDarwin();
248     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
249 
250     if (Triple.getOS() == llvm::Triple::Win32) {
251       return createWinX86_32TargetCodeGenInfo(
252           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
253           CodeGenOpts.NumRegisterParameters);
254     }
255     return createX86_32TargetCodeGenInfo(
256         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
257         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
258   }
259 
260   case llvm::Triple::x86_64: {
261     StringRef ABI = Target.getABI();
262     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
263                                : ABI == "avx"  ? X86AVXABILevel::AVX
264                                                : X86AVXABILevel::None);
265 
266     switch (Triple.getOS()) {
267     case llvm::Triple::Win32:
268       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     default:
270       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
271     }
272   }
273   case llvm::Triple::hexagon:
274     return createHexagonTargetCodeGenInfo(CGM);
275   case llvm::Triple::lanai:
276     return createLanaiTargetCodeGenInfo(CGM);
277   case llvm::Triple::r600:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::amdgcn:
280     return createAMDGPUTargetCodeGenInfo(CGM);
281   case llvm::Triple::sparc:
282     return createSparcV8TargetCodeGenInfo(CGM);
283   case llvm::Triple::sparcv9:
284     return createSparcV9TargetCodeGenInfo(CGM);
285   case llvm::Triple::xcore:
286     return createXCoreTargetCodeGenInfo(CGM);
287   case llvm::Triple::arc:
288     return createARCTargetCodeGenInfo(CGM);
289   case llvm::Triple::spir:
290   case llvm::Triple::spir64:
291     return createCommonSPIRTargetCodeGenInfo(CGM);
292   case llvm::Triple::spirv32:
293   case llvm::Triple::spirv64:
294   case llvm::Triple::spirv:
295     return createSPIRVTargetCodeGenInfo(CGM);
296   case llvm::Triple::dxil:
297     return createDirectXTargetCodeGenInfo(CGM);
298   case llvm::Triple::ve:
299     return createVETargetCodeGenInfo(CGM);
300   case llvm::Triple::csky: {
301     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
302     bool hasFP64 =
303         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
304     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
305                                             : hasFP64   ? 64
306                                                         : 32);
307   }
308   case llvm::Triple::bpfeb:
309   case llvm::Triple::bpfel:
310     return createBPFTargetCodeGenInfo(CGM);
311   case llvm::Triple::loongarch32:
312   case llvm::Triple::loongarch64: {
313     StringRef ABIStr = Target.getABI();
314     unsigned ABIFRLen = 0;
315     if (ABIStr.ends_with("f"))
316       ABIFRLen = 32;
317     else if (ABIStr.ends_with("d"))
318       ABIFRLen = 64;
319     return createLoongArchTargetCodeGenInfo(
320         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
321   }
322   }
323 }
324 
325 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
326   if (!TheTargetCodeGenInfo)
327     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
328   return *TheTargetCodeGenInfo;
329 }
330 
331 CodeGenModule::CodeGenModule(ASTContext &C,
332                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
333                              const HeaderSearchOptions &HSO,
334                              const PreprocessorOptions &PPO,
335                              const CodeGenOptions &CGO, llvm::Module &M,
336                              DiagnosticsEngine &diags,
337                              CoverageSourceInfo *CoverageInfo)
338     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
339       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
340       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
341       VMContext(M.getContext()), VTables(*this), StackHandler(diags),
342       SanitizerMD(new SanitizerMetadata(*this)) {
343 
344   // Initialize the type cache.
345   Types.reset(new CodeGenTypes(*this));
346   llvm::LLVMContext &LLVMContext = M.getContext();
347   VoidTy = llvm::Type::getVoidTy(LLVMContext);
348   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
349   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
350   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
351   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
352   HalfTy = llvm::Type::getHalfTy(LLVMContext);
353   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
354   FloatTy = llvm::Type::getFloatTy(LLVMContext);
355   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
356   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
357   PointerAlignInBytes =
358       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
359           .getQuantity();
360   SizeSizeInBytes =
361     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
362   IntAlignInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
364   CharTy =
365     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
366   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
367   IntPtrTy = llvm::IntegerType::get(LLVMContext,
368     C.getTargetInfo().getMaxPointerWidth());
369   Int8PtrTy = llvm::PointerType::get(LLVMContext,
370                                      C.getTargetAddressSpace(LangAS::Default));
371   const llvm::DataLayout &DL = M.getDataLayout();
372   AllocaInt8PtrTy =
373       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
374   GlobalsInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
376   ConstGlobalsPtrTy = llvm::PointerType::get(
377       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
378   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
379 
380   // Build C++20 Module initializers.
381   // TODO: Add Microsoft here once we know the mangling required for the
382   // initializers.
383   CXX20ModuleInits =
384       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
385                                        ItaniumMangleContext::MK_Itanium;
386 
387   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
388 
389   if (LangOpts.ObjC)
390     createObjCRuntime();
391   if (LangOpts.OpenCL)
392     createOpenCLRuntime();
393   if (LangOpts.OpenMP)
394     createOpenMPRuntime();
395   if (LangOpts.CUDA)
396     createCUDARuntime();
397   if (LangOpts.HLSL)
398     createHLSLRuntime();
399 
400   // Enable TBAA unless it's suppressed. TSan and TySan need TBAA even at O0.
401   if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Thread | SanitizerKind::Type) ||
402       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
403     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
404                                getLangOpts()));
405 
406   // If debug info or coverage generation is enabled, create the CGDebugInfo
407   // object.
408   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
409       CodeGenOpts.CoverageNotesFile.size() ||
410       CodeGenOpts.CoverageDataFile.size())
411     DebugInfo.reset(new CGDebugInfo(*this));
412 
413   Block.GlobalUniqueCount = 0;
414 
415   if (C.getLangOpts().ObjC)
416     ObjCData.reset(new ObjCEntrypoints());
417 
418   if (CodeGenOpts.hasProfileClangUse()) {
419     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
420         CodeGenOpts.ProfileInstrumentUsePath, *FS,
421         CodeGenOpts.ProfileRemappingFile);
422     // We're checking for profile read errors in CompilerInvocation, so if
423     // there was an error it should've already been caught. If it hasn't been
424     // somehow, trip an assertion.
425     assert(ReaderOrErr);
426     PGOReader = std::move(ReaderOrErr.get());
427   }
428 
429   // If coverage mapping generation is enabled, create the
430   // CoverageMappingModuleGen object.
431   if (CodeGenOpts.CoverageMapping)
432     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
433 
434   // Generate the module name hash here if needed.
435   if (CodeGenOpts.UniqueInternalLinkageNames &&
436       !getModule().getSourceFileName().empty()) {
437     std::string Path = getModule().getSourceFileName();
438     // Check if a path substitution is needed from the MacroPrefixMap.
439     for (const auto &Entry : LangOpts.MacroPrefixMap)
440       if (Path.rfind(Entry.first, 0) != std::string::npos) {
441         Path = Entry.second + Path.substr(Entry.first.size());
442         break;
443       }
444     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
445   }
446 
447   // Record mregparm value now so it is visible through all of codegen.
448   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450                               CodeGenOpts.NumRegisterParameters);
451 }
452 
453 CodeGenModule::~CodeGenModule() {}
454 
455 void CodeGenModule::createObjCRuntime() {
456   // This is just isGNUFamily(), but we want to force implementors of
457   // new ABIs to decide how best to do this.
458   switch (LangOpts.ObjCRuntime.getKind()) {
459   case ObjCRuntime::GNUstep:
460   case ObjCRuntime::GCC:
461   case ObjCRuntime::ObjFW:
462     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
463     return;
464 
465   case ObjCRuntime::FragileMacOSX:
466   case ObjCRuntime::MacOSX:
467   case ObjCRuntime::iOS:
468   case ObjCRuntime::WatchOS:
469     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
470     return;
471   }
472   llvm_unreachable("bad runtime kind");
473 }
474 
475 void CodeGenModule::createOpenCLRuntime() {
476   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
477 }
478 
479 void CodeGenModule::createOpenMPRuntime() {
480   // Select a specialized code generation class based on the target, if any.
481   // If it does not exist use the default implementation.
482   switch (getTriple().getArch()) {
483   case llvm::Triple::nvptx:
484   case llvm::Triple::nvptx64:
485   case llvm::Triple::amdgcn:
486     assert(getLangOpts().OpenMPIsTargetDevice &&
487            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
488     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
489     break;
490   default:
491     if (LangOpts.OpenMPSimd)
492       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
493     else
494       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
495     break;
496   }
497 }
498 
499 void CodeGenModule::createCUDARuntime() {
500   CUDARuntime.reset(CreateNVCUDARuntime(*this));
501 }
502 
503 void CodeGenModule::createHLSLRuntime() {
504   HLSLRuntime.reset(new CGHLSLRuntime(*this));
505 }
506 
507 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
508   Replacements[Name] = C;
509 }
510 
511 void CodeGenModule::applyReplacements() {
512   for (auto &I : Replacements) {
513     StringRef MangledName = I.first;
514     llvm::Constant *Replacement = I.second;
515     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
516     if (!Entry)
517       continue;
518     auto *OldF = cast<llvm::Function>(Entry);
519     auto *NewF = dyn_cast<llvm::Function>(Replacement);
520     if (!NewF) {
521       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
522         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
523       } else {
524         auto *CE = cast<llvm::ConstantExpr>(Replacement);
525         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
526                CE->getOpcode() == llvm::Instruction::GetElementPtr);
527         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
528       }
529     }
530 
531     // Replace old with new, but keep the old order.
532     OldF->replaceAllUsesWith(Replacement);
533     if (NewF) {
534       NewF->removeFromParent();
535       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
536                                                        NewF);
537     }
538     OldF->eraseFromParent();
539   }
540 }
541 
542 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
543   GlobalValReplacements.push_back(std::make_pair(GV, C));
544 }
545 
546 void CodeGenModule::applyGlobalValReplacements() {
547   for (auto &I : GlobalValReplacements) {
548     llvm::GlobalValue *GV = I.first;
549     llvm::Constant *C = I.second;
550 
551     GV->replaceAllUsesWith(C);
552     GV->eraseFromParent();
553   }
554 }
555 
556 // This is only used in aliases that we created and we know they have a
557 // linear structure.
558 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
559   const llvm::Constant *C;
560   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
561     C = GA->getAliasee();
562   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
563     C = GI->getResolver();
564   else
565     return GV;
566 
567   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
568   if (!AliaseeGV)
569     return nullptr;
570 
571   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
572   if (FinalGV == GV)
573     return nullptr;
574 
575   return FinalGV;
576 }
577 
578 static bool checkAliasedGlobal(
579     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
580     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
581     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
582     SourceRange AliasRange) {
583   GV = getAliasedGlobal(Alias);
584   if (!GV) {
585     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
586     return false;
587   }
588 
589   if (GV->hasCommonLinkage()) {
590     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
591     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
592       Diags.Report(Location, diag::err_alias_to_common);
593       return false;
594     }
595   }
596 
597   if (GV->isDeclaration()) {
598     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
599     Diags.Report(Location, diag::note_alias_requires_mangled_name)
600         << IsIFunc << IsIFunc;
601     // Provide a note if the given function is not found and exists as a
602     // mangled name.
603     for (const auto &[Decl, Name] : MangledDeclNames) {
604       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
605         IdentifierInfo *II = ND->getIdentifier();
606         if (II && II->getName() == GV->getName()) {
607           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
608               << Name
609               << FixItHint::CreateReplacement(
610                      AliasRange,
611                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
612                          .str());
613         }
614       }
615     }
616     return false;
617   }
618 
619   if (IsIFunc) {
620     // Check resolver function type.
621     const auto *F = dyn_cast<llvm::Function>(GV);
622     if (!F) {
623       Diags.Report(Location, diag::err_alias_to_undefined)
624           << IsIFunc << IsIFunc;
625       return false;
626     }
627 
628     llvm::FunctionType *FTy = F->getFunctionType();
629     if (!FTy->getReturnType()->isPointerTy()) {
630       Diags.Report(Location, diag::err_ifunc_resolver_return);
631       return false;
632     }
633   }
634 
635   return true;
636 }
637 
638 // Emit a warning if toc-data attribute is requested for global variables that
639 // have aliases and remove the toc-data attribute.
640 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
641                                  const CodeGenOptions &CodeGenOpts,
642                                  DiagnosticsEngine &Diags,
643                                  SourceLocation Location) {
644   if (GVar->hasAttribute("toc-data")) {
645     auto GVId = GVar->getName();
646     // Is this a global variable specified by the user as local?
647     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
648       Diags.Report(Location, diag::warn_toc_unsupported_type)
649           << GVId << "the variable has an alias";
650     }
651     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
652     llvm::AttributeSet NewAttributes =
653         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
654     GVar->setAttributes(NewAttributes);
655   }
656 }
657 
658 void CodeGenModule::checkAliases() {
659   // Check if the constructed aliases are well formed. It is really unfortunate
660   // that we have to do this in CodeGen, but we only construct mangled names
661   // and aliases during codegen.
662   bool Error = false;
663   DiagnosticsEngine &Diags = getDiags();
664   for (const GlobalDecl &GD : Aliases) {
665     const auto *D = cast<ValueDecl>(GD.getDecl());
666     SourceLocation Location;
667     SourceRange Range;
668     bool IsIFunc = D->hasAttr<IFuncAttr>();
669     if (const Attr *A = D->getDefiningAttr()) {
670       Location = A->getLocation();
671       Range = A->getRange();
672     } else
673       llvm_unreachable("Not an alias or ifunc?");
674 
675     StringRef MangledName = getMangledName(GD);
676     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
677     const llvm::GlobalValue *GV = nullptr;
678     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
679                             MangledDeclNames, Range)) {
680       Error = true;
681       continue;
682     }
683 
684     if (getContext().getTargetInfo().getTriple().isOSAIX())
685       if (const llvm::GlobalVariable *GVar =
686               dyn_cast<const llvm::GlobalVariable>(GV))
687         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
688                              getCodeGenOpts(), Diags, Location);
689 
690     llvm::Constant *Aliasee =
691         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
692                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
693 
694     llvm::GlobalValue *AliaseeGV;
695     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
696       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
697     else
698       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
699 
700     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
701       StringRef AliasSection = SA->getName();
702       if (AliasSection != AliaseeGV->getSection())
703         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
704             << AliasSection << IsIFunc << IsIFunc;
705     }
706 
707     // We have to handle alias to weak aliases in here. LLVM itself disallows
708     // this since the object semantics would not match the IL one. For
709     // compatibility with gcc we implement it by just pointing the alias
710     // to its aliasee's aliasee. We also warn, since the user is probably
711     // expecting the link to be weak.
712     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
713       if (GA->isInterposable()) {
714         Diags.Report(Location, diag::warn_alias_to_weak_alias)
715             << GV->getName() << GA->getName() << IsIFunc;
716         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
717             GA->getAliasee(), Alias->getType());
718 
719         if (IsIFunc)
720           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
721         else
722           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
723       }
724     }
725     // ifunc resolvers are usually implemented to run before sanitizer
726     // initialization. Disable instrumentation to prevent the ordering issue.
727     if (IsIFunc)
728       cast<llvm::Function>(Aliasee)->addFnAttr(
729           llvm::Attribute::DisableSanitizerInstrumentation);
730   }
731   if (!Error)
732     return;
733 
734   for (const GlobalDecl &GD : Aliases) {
735     StringRef MangledName = getMangledName(GD);
736     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
737     Alias->replaceAllUsesWith(llvm::PoisonValue::get(Alias->getType()));
738     Alias->eraseFromParent();
739   }
740 }
741 
742 void CodeGenModule::clear() {
743   DeferredDeclsToEmit.clear();
744   EmittedDeferredDecls.clear();
745   DeferredAnnotations.clear();
746   if (OpenMPRuntime)
747     OpenMPRuntime->clear();
748 }
749 
750 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
751                                        StringRef MainFile) {
752   if (!hasDiagnostics())
753     return;
754   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
755     if (MainFile.empty())
756       MainFile = "<stdin>";
757     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
758   } else {
759     if (Mismatched > 0)
760       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
761 
762     if (Missing > 0)
763       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
764   }
765 }
766 
767 static std::optional<llvm::GlobalValue::VisibilityTypes>
768 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
769   // Map to LLVM visibility.
770   switch (K) {
771   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
772     return std::nullopt;
773   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
774     return llvm::GlobalValue::DefaultVisibility;
775   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
776     return llvm::GlobalValue::HiddenVisibility;
777   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
778     return llvm::GlobalValue::ProtectedVisibility;
779   }
780   llvm_unreachable("unknown option value!");
781 }
782 
783 static void
784 setLLVMVisibility(llvm::GlobalValue &GV,
785                   std::optional<llvm::GlobalValue::VisibilityTypes> V) {
786   if (!V)
787     return;
788 
789   // Reset DSO locality before setting the visibility. This removes
790   // any effects that visibility options and annotations may have
791   // had on the DSO locality. Setting the visibility will implicitly set
792   // appropriate globals to DSO Local; however, this will be pessimistic
793   // w.r.t. to the normal compiler IRGen.
794   GV.setDSOLocal(false);
795   GV.setVisibility(*V);
796 }
797 
798 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
799                                              llvm::Module &M) {
800   if (!LO.VisibilityFromDLLStorageClass)
801     return;
802 
803   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
804       getLLVMVisibility(LO.getDLLExportVisibility());
805 
806   std::optional<llvm::GlobalValue::VisibilityTypes>
807       NoDLLStorageClassVisibility =
808           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
809 
810   std::optional<llvm::GlobalValue::VisibilityTypes>
811       ExternDeclDLLImportVisibility =
812           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
813 
814   std::optional<llvm::GlobalValue::VisibilityTypes>
815       ExternDeclNoDLLStorageClassVisibility =
816           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
817 
818   for (llvm::GlobalValue &GV : M.global_values()) {
819     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
820       continue;
821 
822     if (GV.isDeclarationForLinker())
823       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
824                                     llvm::GlobalValue::DLLImportStorageClass
825                                 ? ExternDeclDLLImportVisibility
826                                 : ExternDeclNoDLLStorageClassVisibility);
827     else
828       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
829                                     llvm::GlobalValue::DLLExportStorageClass
830                                 ? DLLExportVisibility
831                                 : NoDLLStorageClassVisibility);
832 
833     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
834   }
835 }
836 
837 static bool isStackProtectorOn(const LangOptions &LangOpts,
838                                const llvm::Triple &Triple,
839                                clang::LangOptions::StackProtectorMode Mode) {
840   if (Triple.isAMDGPU() || Triple.isNVPTX())
841     return false;
842   return LangOpts.getStackProtector() == Mode;
843 }
844 
845 void CodeGenModule::Release() {
846   Module *Primary = getContext().getCurrentNamedModule();
847   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
848     EmitModuleInitializers(Primary);
849   EmitDeferred();
850   DeferredDecls.insert(EmittedDeferredDecls.begin(),
851                        EmittedDeferredDecls.end());
852   EmittedDeferredDecls.clear();
853   EmitVTablesOpportunistically();
854   applyGlobalValReplacements();
855   applyReplacements();
856   emitMultiVersionFunctions();
857 
858   if (Context.getLangOpts().IncrementalExtensions &&
859       GlobalTopLevelStmtBlockInFlight.first) {
860     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
861     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
862     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
863   }
864 
865   // Module implementations are initialized the same way as a regular TU that
866   // imports one or more modules.
867   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
868     EmitCXXModuleInitFunc(Primary);
869   else
870     EmitCXXGlobalInitFunc();
871   EmitCXXGlobalCleanUpFunc();
872   registerGlobalDtorsWithAtExit();
873   EmitCXXThreadLocalInitFunc();
874   if (ObjCRuntime)
875     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
876       AddGlobalCtor(ObjCInitFunction);
877   if (Context.getLangOpts().CUDA && CUDARuntime) {
878     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
879       AddGlobalCtor(CudaCtorFunction);
880   }
881   if (OpenMPRuntime) {
882     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
883     OpenMPRuntime->clear();
884   }
885   if (PGOReader) {
886     getModule().setProfileSummary(
887         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
888         llvm::ProfileSummary::PSK_Instr);
889     if (PGOStats.hasDiagnostics())
890       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
891   }
892   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
893     return L.LexOrder < R.LexOrder;
894   });
895   EmitCtorList(GlobalCtors, "llvm.global_ctors");
896   EmitCtorList(GlobalDtors, "llvm.global_dtors");
897   EmitGlobalAnnotations();
898   EmitStaticExternCAliases();
899   checkAliases();
900   EmitDeferredUnusedCoverageMappings();
901   CodeGenPGO(*this).setValueProfilingFlag(getModule());
902   CodeGenPGO(*this).setProfileVersion(getModule());
903   if (CoverageMapping)
904     CoverageMapping->emit();
905   if (CodeGenOpts.SanitizeCfiCrossDso) {
906     CodeGenFunction(*this).EmitCfiCheckFail();
907     CodeGenFunction(*this).EmitCfiCheckStub();
908   }
909   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
910     finalizeKCFITypes();
911   emitAtAvailableLinkGuard();
912   if (Context.getTargetInfo().getTriple().isWasm())
913     EmitMainVoidAlias();
914 
915   if (getTriple().isAMDGPU() ||
916       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
917     // Emit amdhsa_code_object_version module flag, which is code object version
918     // times 100.
919     if (getTarget().getTargetOpts().CodeObjectVersion !=
920         llvm::CodeObjectVersionKind::COV_None) {
921       getModule().addModuleFlag(llvm::Module::Error,
922                                 "amdhsa_code_object_version",
923                                 getTarget().getTargetOpts().CodeObjectVersion);
924     }
925 
926     // Currently, "-mprintf-kind" option is only supported for HIP
927     if (LangOpts.HIP) {
928       auto *MDStr = llvm::MDString::get(
929           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
930                              TargetOptions::AMDGPUPrintfKind::Hostcall)
931                                 ? "hostcall"
932                                 : "buffered");
933       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
934                                 MDStr);
935     }
936   }
937 
938   // Emit a global array containing all external kernels or device variables
939   // used by host functions and mark it as used for CUDA/HIP. This is necessary
940   // to get kernels or device variables in archives linked in even if these
941   // kernels or device variables are only used in host functions.
942   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
943     SmallVector<llvm::Constant *, 8> UsedArray;
944     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
945       GlobalDecl GD;
946       if (auto *FD = dyn_cast<FunctionDecl>(D))
947         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
948       else
949         GD = GlobalDecl(D);
950       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
951           GetAddrOfGlobal(GD), Int8PtrTy));
952     }
953 
954     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
955 
956     auto *GV = new llvm::GlobalVariable(
957         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
958         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
959     addCompilerUsedGlobal(GV);
960   }
961   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
962     // Emit a unique ID so that host and device binaries from the same
963     // compilation unit can be associated.
964     auto *GV = new llvm::GlobalVariable(
965         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
966         llvm::Constant::getNullValue(Int8Ty),
967         "__hip_cuid_" + getContext().getCUIDHash());
968     addCompilerUsedGlobal(GV);
969   }
970   emitLLVMUsed();
971   if (SanStats)
972     SanStats->finish();
973 
974   if (CodeGenOpts.Autolink &&
975       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
976     EmitModuleLinkOptions();
977   }
978 
979   // On ELF we pass the dependent library specifiers directly to the linker
980   // without manipulating them. This is in contrast to other platforms where
981   // they are mapped to a specific linker option by the compiler. This
982   // difference is a result of the greater variety of ELF linkers and the fact
983   // that ELF linkers tend to handle libraries in a more complicated fashion
984   // than on other platforms. This forces us to defer handling the dependent
985   // libs to the linker.
986   //
987   // CUDA/HIP device and host libraries are different. Currently there is no
988   // way to differentiate dependent libraries for host or device. Existing
989   // usage of #pragma comment(lib, *) is intended for host libraries on
990   // Windows. Therefore emit llvm.dependent-libraries only for host.
991   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
992     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
993     for (auto *MD : ELFDependentLibraries)
994       NMD->addOperand(MD);
995   }
996 
997   if (CodeGenOpts.DwarfVersion) {
998     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
999                               CodeGenOpts.DwarfVersion);
1000   }
1001 
1002   if (CodeGenOpts.Dwarf64)
1003     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1004 
1005   if (Context.getLangOpts().SemanticInterposition)
1006     // Require various optimization to respect semantic interposition.
1007     getModule().setSemanticInterposition(true);
1008 
1009   if (CodeGenOpts.EmitCodeView) {
1010     // Indicate that we want CodeView in the metadata.
1011     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1012   }
1013   if (CodeGenOpts.CodeViewGHash) {
1014     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1015   }
1016   if (CodeGenOpts.ControlFlowGuard) {
1017     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1018     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1019   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1020     // Function ID tables for Control Flow Guard (cfguard=1).
1021     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1022   }
1023   if (CodeGenOpts.EHContGuard) {
1024     // Function ID tables for EH Continuation Guard.
1025     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1026   }
1027   if (Context.getLangOpts().Kernel) {
1028     // Note if we are compiling with /kernel.
1029     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1030   }
1031   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1032     // We don't support LTO with 2 with different StrictVTablePointers
1033     // FIXME: we could support it by stripping all the information introduced
1034     // by StrictVTablePointers.
1035 
1036     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1037 
1038     llvm::Metadata *Ops[2] = {
1039               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1040               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1041                   llvm::Type::getInt32Ty(VMContext), 1))};
1042 
1043     getModule().addModuleFlag(llvm::Module::Require,
1044                               "StrictVTablePointersRequirement",
1045                               llvm::MDNode::get(VMContext, Ops));
1046   }
1047   if (getModuleDebugInfo())
1048     // We support a single version in the linked module. The LLVM
1049     // parser will drop debug info with a different version number
1050     // (and warn about it, too).
1051     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1052                               llvm::DEBUG_METADATA_VERSION);
1053 
1054   // We need to record the widths of enums and wchar_t, so that we can generate
1055   // the correct build attributes in the ARM backend. wchar_size is also used by
1056   // TargetLibraryInfo.
1057   uint64_t WCharWidth =
1058       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1059   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1060 
1061   if (getTriple().isOSzOS()) {
1062     getModule().addModuleFlag(llvm::Module::Warning,
1063                               "zos_product_major_version",
1064                               uint32_t(CLANG_VERSION_MAJOR));
1065     getModule().addModuleFlag(llvm::Module::Warning,
1066                               "zos_product_minor_version",
1067                               uint32_t(CLANG_VERSION_MINOR));
1068     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1069                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1070     std::string ProductId = getClangVendor() + "clang";
1071     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1072                               llvm::MDString::get(VMContext, ProductId));
1073 
1074     // Record the language because we need it for the PPA2.
1075     StringRef lang_str = languageToString(
1076         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1077     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1078                               llvm::MDString::get(VMContext, lang_str));
1079 
1080     time_t TT = PreprocessorOpts.SourceDateEpoch
1081                     ? *PreprocessorOpts.SourceDateEpoch
1082                     : std::time(nullptr);
1083     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1084                               static_cast<uint64_t>(TT));
1085 
1086     // Multiple modes will be supported here.
1087     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1088                               llvm::MDString::get(VMContext, "ascii"));
1089   }
1090 
1091   llvm::Triple T = Context.getTargetInfo().getTriple();
1092   if (T.isARM() || T.isThumb()) {
1093     // The minimum width of an enum in bytes
1094     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1095     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1096   }
1097 
1098   if (T.isRISCV()) {
1099     StringRef ABIStr = Target.getABI();
1100     llvm::LLVMContext &Ctx = TheModule.getContext();
1101     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1102                               llvm::MDString::get(Ctx, ABIStr));
1103 
1104     // Add the canonical ISA string as metadata so the backend can set the ELF
1105     // attributes correctly. We use AppendUnique so LTO will keep all of the
1106     // unique ISA strings that were linked together.
1107     const std::vector<std::string> &Features =
1108         getTarget().getTargetOpts().Features;
1109     auto ParseResult =
1110         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1111     if (!errorToBool(ParseResult.takeError()))
1112       getModule().addModuleFlag(
1113           llvm::Module::AppendUnique, "riscv-isa",
1114           llvm::MDNode::get(
1115               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1116   }
1117 
1118   if (CodeGenOpts.SanitizeCfiCrossDso) {
1119     // Indicate that we want cross-DSO control flow integrity checks.
1120     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1121   }
1122 
1123   if (CodeGenOpts.WholeProgramVTables) {
1124     // Indicate whether VFE was enabled for this module, so that the
1125     // vcall_visibility metadata added under whole program vtables is handled
1126     // appropriately in the optimizer.
1127     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1128                               CodeGenOpts.VirtualFunctionElimination);
1129   }
1130 
1131   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1132     getModule().addModuleFlag(llvm::Module::Override,
1133                               "CFI Canonical Jump Tables",
1134                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1135   }
1136 
1137   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1138     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1139                               1);
1140   }
1141 
1142   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1143     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1144     // KCFI assumes patchable-function-prefix is the same for all indirectly
1145     // called functions. Store the expected offset for code generation.
1146     if (CodeGenOpts.PatchableFunctionEntryOffset)
1147       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1148                                 CodeGenOpts.PatchableFunctionEntryOffset);
1149   }
1150 
1151   if (CodeGenOpts.CFProtectionReturn &&
1152       Target.checkCFProtectionReturnSupported(getDiags())) {
1153     // Indicate that we want to instrument return control flow protection.
1154     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1155                               1);
1156   }
1157 
1158   if (CodeGenOpts.CFProtectionBranch &&
1159       Target.checkCFProtectionBranchSupported(getDiags())) {
1160     // Indicate that we want to instrument branch control flow protection.
1161     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1162                               1);
1163 
1164     auto Scheme = CodeGenOpts.getCFBranchLabelScheme();
1165     if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) {
1166       if (Scheme == CFBranchLabelSchemeKind::Default)
1167         Scheme = Target.getDefaultCFBranchLabelScheme();
1168       getModule().addModuleFlag(
1169           llvm::Module::Error, "cf-branch-label-scheme",
1170           llvm::MDString::get(getLLVMContext(),
1171                               getCFBranchLabelSchemeFlagVal(Scheme)));
1172     }
1173   }
1174 
1175   if (CodeGenOpts.FunctionReturnThunks)
1176     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1177 
1178   if (CodeGenOpts.IndirectBranchCSPrefix)
1179     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1180 
1181   // Add module metadata for return address signing (ignoring
1182   // non-leaf/all) and stack tagging. These are actually turned on by function
1183   // attributes, but we use module metadata to emit build attributes. This is
1184   // needed for LTO, where the function attributes are inside bitcode
1185   // serialised into a global variable by the time build attributes are
1186   // emitted, so we can't access them. LTO objects could be compiled with
1187   // different flags therefore module flags are set to "Min" behavior to achieve
1188   // the same end result of the normal build where e.g BTI is off if any object
1189   // doesn't support it.
1190   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1191       LangOpts.getSignReturnAddressScope() !=
1192           LangOptions::SignReturnAddressScopeKind::None)
1193     getModule().addModuleFlag(llvm::Module::Override,
1194                               "sign-return-address-buildattr", 1);
1195   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1196     getModule().addModuleFlag(llvm::Module::Override,
1197                               "tag-stack-memory-buildattr", 1);
1198 
1199   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1200     if (LangOpts.BranchTargetEnforcement)
1201       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1202                                 1);
1203     if (LangOpts.BranchProtectionPAuthLR)
1204       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1205                                 1);
1206     if (LangOpts.GuardedControlStack)
1207       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1208     if (LangOpts.hasSignReturnAddress())
1209       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1210     if (LangOpts.isSignReturnAddressScopeAll())
1211       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1212                                 1);
1213     if (!LangOpts.isSignReturnAddressWithAKey())
1214       getModule().addModuleFlag(llvm::Module::Min,
1215                                 "sign-return-address-with-bkey", 1);
1216 
1217     if (LangOpts.PointerAuthELFGOT)
1218       getModule().addModuleFlag(llvm::Module::Min, "ptrauth-elf-got", 1);
1219 
1220     if (getTriple().isOSLinux()) {
1221       if (LangOpts.PointerAuthCalls)
1222         getModule().addModuleFlag(llvm::Module::Min, "ptrauth-sign-personality",
1223                                   1);
1224       assert(getTriple().isOSBinFormatELF());
1225       using namespace llvm::ELF;
1226       uint64_t PAuthABIVersion =
1227           (LangOpts.PointerAuthIntrinsics
1228            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1229           (LangOpts.PointerAuthCalls
1230            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1231           (LangOpts.PointerAuthReturns
1232            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1233           (LangOpts.PointerAuthAuthTraps
1234            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1235           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1236            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1237           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1238            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1239           (LangOpts.PointerAuthInitFini
1240            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1241           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1242            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1243           (LangOpts.PointerAuthELFGOT
1244            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1245           (LangOpts.PointerAuthIndirectGotos
1246            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1247           (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1248            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1249           (LangOpts.PointerAuthFunctionTypeDiscrimination
1250            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1251       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1252                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1253                     "Update when new enum items are defined");
1254       if (PAuthABIVersion != 0) {
1255         getModule().addModuleFlag(llvm::Module::Error,
1256                                   "aarch64-elf-pauthabi-platform",
1257                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1258         getModule().addModuleFlag(llvm::Module::Error,
1259                                   "aarch64-elf-pauthabi-version",
1260                                   PAuthABIVersion);
1261       }
1262     }
1263   }
1264 
1265   if (CodeGenOpts.StackClashProtector)
1266     getModule().addModuleFlag(
1267         llvm::Module::Override, "probe-stack",
1268         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1269 
1270   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1271     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1272                               CodeGenOpts.StackProbeSize);
1273 
1274   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1275     llvm::LLVMContext &Ctx = TheModule.getContext();
1276     getModule().addModuleFlag(
1277         llvm::Module::Error, "MemProfProfileFilename",
1278         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1279   }
1280 
1281   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1282     // Indicate whether __nvvm_reflect should be configured to flush denormal
1283     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1284     // property.)
1285     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1286                               CodeGenOpts.FP32DenormalMode.Output !=
1287                                   llvm::DenormalMode::IEEE);
1288   }
1289 
1290   if (LangOpts.EHAsynch)
1291     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1292 
1293   // Indicate whether this Module was compiled with -fopenmp
1294   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1295     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1296   if (getLangOpts().OpenMPIsTargetDevice)
1297     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1298                               LangOpts.OpenMP);
1299 
1300   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1301   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1302     EmitOpenCLMetadata();
1303     // Emit SPIR version.
1304     if (getTriple().isSPIR()) {
1305       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1306       // opencl.spir.version named metadata.
1307       // C++ for OpenCL has a distinct mapping for version compatibility with
1308       // OpenCL.
1309       auto Version = LangOpts.getOpenCLCompatibleVersion();
1310       llvm::Metadata *SPIRVerElts[] = {
1311           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1312               Int32Ty, Version / 100)),
1313           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1314               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1315       llvm::NamedMDNode *SPIRVerMD =
1316           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1317       llvm::LLVMContext &Ctx = TheModule.getContext();
1318       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1319     }
1320   }
1321 
1322   // HLSL related end of code gen work items.
1323   if (LangOpts.HLSL)
1324     getHLSLRuntime().finishCodeGen();
1325 
1326   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1327     assert(PLevel < 3 && "Invalid PIC Level");
1328     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1329     if (Context.getLangOpts().PIE)
1330       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1331   }
1332 
1333   if (getCodeGenOpts().CodeModel.size() > 0) {
1334     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1335                   .Case("tiny", llvm::CodeModel::Tiny)
1336                   .Case("small", llvm::CodeModel::Small)
1337                   .Case("kernel", llvm::CodeModel::Kernel)
1338                   .Case("medium", llvm::CodeModel::Medium)
1339                   .Case("large", llvm::CodeModel::Large)
1340                   .Default(~0u);
1341     if (CM != ~0u) {
1342       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1343       getModule().setCodeModel(codeModel);
1344 
1345       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1346           Context.getTargetInfo().getTriple().getArch() ==
1347               llvm::Triple::x86_64) {
1348         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1349       }
1350     }
1351   }
1352 
1353   if (CodeGenOpts.NoPLT)
1354     getModule().setRtLibUseGOT();
1355   if (getTriple().isOSBinFormatELF() &&
1356       CodeGenOpts.DirectAccessExternalData !=
1357           getModule().getDirectAccessExternalData()) {
1358     getModule().setDirectAccessExternalData(
1359         CodeGenOpts.DirectAccessExternalData);
1360   }
1361   if (CodeGenOpts.UnwindTables)
1362     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1363 
1364   switch (CodeGenOpts.getFramePointer()) {
1365   case CodeGenOptions::FramePointerKind::None:
1366     // 0 ("none") is the default.
1367     break;
1368   case CodeGenOptions::FramePointerKind::Reserved:
1369     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1370     break;
1371   case CodeGenOptions::FramePointerKind::NonLeaf:
1372     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1373     break;
1374   case CodeGenOptions::FramePointerKind::All:
1375     getModule().setFramePointer(llvm::FramePointerKind::All);
1376     break;
1377   }
1378 
1379   SimplifyPersonality();
1380 
1381   if (getCodeGenOpts().EmitDeclMetadata)
1382     EmitDeclMetadata();
1383 
1384   if (getCodeGenOpts().CoverageNotesFile.size() ||
1385       getCodeGenOpts().CoverageDataFile.size())
1386     EmitCoverageFile();
1387 
1388   if (CGDebugInfo *DI = getModuleDebugInfo())
1389     DI->finalize();
1390 
1391   if (getCodeGenOpts().EmitVersionIdentMetadata)
1392     EmitVersionIdentMetadata();
1393 
1394   if (!getCodeGenOpts().RecordCommandLine.empty())
1395     EmitCommandLineMetadata();
1396 
1397   if (!getCodeGenOpts().StackProtectorGuard.empty())
1398     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1399   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1400     getModule().setStackProtectorGuardReg(
1401         getCodeGenOpts().StackProtectorGuardReg);
1402   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1403     getModule().setStackProtectorGuardSymbol(
1404         getCodeGenOpts().StackProtectorGuardSymbol);
1405   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1406     getModule().setStackProtectorGuardOffset(
1407         getCodeGenOpts().StackProtectorGuardOffset);
1408   if (getCodeGenOpts().StackAlignment)
1409     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1410   if (getCodeGenOpts().SkipRaxSetup)
1411     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1412   if (getLangOpts().RegCall4)
1413     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1414 
1415   if (getContext().getTargetInfo().getMaxTLSAlign())
1416     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1417                               getContext().getTargetInfo().getMaxTLSAlign());
1418 
1419   getTargetCodeGenInfo().emitTargetGlobals(*this);
1420 
1421   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1422 
1423   EmitBackendOptionsMetadata(getCodeGenOpts());
1424 
1425   // If there is device offloading code embed it in the host now.
1426   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1427 
1428   // Set visibility from DLL storage class
1429   // We do this at the end of LLVM IR generation; after any operation
1430   // that might affect the DLL storage class or the visibility, and
1431   // before anything that might act on these.
1432   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1433 
1434   // Check the tail call symbols are truly undefined.
1435   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1436     for (auto &I : MustTailCallUndefinedGlobals) {
1437       if (!I.first->isDefined())
1438         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1439       else {
1440         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1441         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1442         if (!Entry || Entry->isWeakForLinker() ||
1443             Entry->isDeclarationForLinker())
1444           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1445       }
1446     }
1447   }
1448 }
1449 
1450 void CodeGenModule::EmitOpenCLMetadata() {
1451   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1452   // opencl.ocl.version named metadata node.
1453   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1454   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1455 
1456   auto EmitVersion = [this](StringRef MDName, int Version) {
1457     llvm::Metadata *OCLVerElts[] = {
1458         llvm::ConstantAsMetadata::get(
1459             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1460         llvm::ConstantAsMetadata::get(
1461             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1462     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1463     llvm::LLVMContext &Ctx = TheModule.getContext();
1464     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1465   };
1466 
1467   EmitVersion("opencl.ocl.version", CLVersion);
1468   if (LangOpts.OpenCLCPlusPlus) {
1469     // In addition to the OpenCL compatible version, emit the C++ version.
1470     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1471   }
1472 }
1473 
1474 void CodeGenModule::EmitBackendOptionsMetadata(
1475     const CodeGenOptions &CodeGenOpts) {
1476   if (getTriple().isRISCV()) {
1477     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1478                               CodeGenOpts.SmallDataLimit);
1479   }
1480 }
1481 
1482 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1483   // Make sure that this type is translated.
1484   getTypes().UpdateCompletedType(TD);
1485 }
1486 
1487 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1488   // Make sure that this type is translated.
1489   getTypes().RefreshTypeCacheForClass(RD);
1490 }
1491 
1492 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1493   if (!TBAA)
1494     return nullptr;
1495   return TBAA->getTypeInfo(QTy);
1496 }
1497 
1498 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1499   if (!TBAA)
1500     return TBAAAccessInfo();
1501   if (getLangOpts().CUDAIsDevice) {
1502     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1503     // access info.
1504     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1505       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1506           nullptr)
1507         return TBAAAccessInfo();
1508     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1509       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1510           nullptr)
1511         return TBAAAccessInfo();
1512     }
1513   }
1514   return TBAA->getAccessInfo(AccessType);
1515 }
1516 
1517 TBAAAccessInfo
1518 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1519   if (!TBAA)
1520     return TBAAAccessInfo();
1521   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1522 }
1523 
1524 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1525   if (!TBAA)
1526     return nullptr;
1527   return TBAA->getTBAAStructInfo(QTy);
1528 }
1529 
1530 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1531   if (!TBAA)
1532     return nullptr;
1533   return TBAA->getBaseTypeInfo(QTy);
1534 }
1535 
1536 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1537   if (!TBAA)
1538     return nullptr;
1539   return TBAA->getAccessTagInfo(Info);
1540 }
1541 
1542 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1543                                                    TBAAAccessInfo TargetInfo) {
1544   if (!TBAA)
1545     return TBAAAccessInfo();
1546   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1547 }
1548 
1549 TBAAAccessInfo
1550 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1551                                                    TBAAAccessInfo InfoB) {
1552   if (!TBAA)
1553     return TBAAAccessInfo();
1554   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1555 }
1556 
1557 TBAAAccessInfo
1558 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1559                                               TBAAAccessInfo SrcInfo) {
1560   if (!TBAA)
1561     return TBAAAccessInfo();
1562   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1563 }
1564 
1565 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1566                                                 TBAAAccessInfo TBAAInfo) {
1567   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1568     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1569 }
1570 
1571 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1572     llvm::Instruction *I, const CXXRecordDecl *RD) {
1573   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1574                  llvm::MDNode::get(getLLVMContext(), {}));
1575 }
1576 
1577 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1578   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1579   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1580 }
1581 
1582 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1583 /// specified stmt yet.
1584 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1585   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1586                                                "cannot compile this %0 yet");
1587   std::string Msg = Type;
1588   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1589       << Msg << S->getSourceRange();
1590 }
1591 
1592 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1593 /// specified decl yet.
1594 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1595   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1596                                                "cannot compile this %0 yet");
1597   std::string Msg = Type;
1598   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1599 }
1600 
1601 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc,
1602                                                 llvm::function_ref<void()> Fn) {
1603   StackHandler.runWithSufficientStackSpace(Loc, Fn);
1604 }
1605 
1606 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1607   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1608 }
1609 
1610 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1611                                         const NamedDecl *D) const {
1612   // Internal definitions always have default visibility.
1613   if (GV->hasLocalLinkage()) {
1614     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1615     return;
1616   }
1617   if (!D)
1618     return;
1619 
1620   // Set visibility for definitions, and for declarations if requested globally
1621   // or set explicitly.
1622   LinkageInfo LV = D->getLinkageAndVisibility();
1623 
1624   // OpenMP declare target variables must be visible to the host so they can
1625   // be registered. We require protected visibility unless the variable has
1626   // the DT_nohost modifier and does not need to be registered.
1627   if (Context.getLangOpts().OpenMP &&
1628       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1629       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1630       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1631           OMPDeclareTargetDeclAttr::DT_NoHost &&
1632       LV.getVisibility() == HiddenVisibility) {
1633     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1634     return;
1635   }
1636 
1637   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1638     // Reject incompatible dlllstorage and visibility annotations.
1639     if (!LV.isVisibilityExplicit())
1640       return;
1641     if (GV->hasDLLExportStorageClass()) {
1642       if (LV.getVisibility() == HiddenVisibility)
1643         getDiags().Report(D->getLocation(),
1644                           diag::err_hidden_visibility_dllexport);
1645     } else if (LV.getVisibility() != DefaultVisibility) {
1646       getDiags().Report(D->getLocation(),
1647                         diag::err_non_default_visibility_dllimport);
1648     }
1649     return;
1650   }
1651 
1652   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1653       !GV->isDeclarationForLinker())
1654     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1655 }
1656 
1657 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1658                                  llvm::GlobalValue *GV) {
1659   if (GV->hasLocalLinkage())
1660     return true;
1661 
1662   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1663     return true;
1664 
1665   // DLLImport explicitly marks the GV as external.
1666   if (GV->hasDLLImportStorageClass())
1667     return false;
1668 
1669   const llvm::Triple &TT = CGM.getTriple();
1670   const auto &CGOpts = CGM.getCodeGenOpts();
1671   if (TT.isWindowsGNUEnvironment()) {
1672     // In MinGW, variables without DLLImport can still be automatically
1673     // imported from a DLL by the linker; don't mark variables that
1674     // potentially could come from another DLL as DSO local.
1675 
1676     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1677     // (and this actually happens in the public interface of libstdc++), so
1678     // such variables can't be marked as DSO local. (Native TLS variables
1679     // can't be dllimported at all, though.)
1680     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1681         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1682         CGOpts.AutoImport)
1683       return false;
1684   }
1685 
1686   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1687   // remain unresolved in the link, they can be resolved to zero, which is
1688   // outside the current DSO.
1689   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1690     return false;
1691 
1692   // Every other GV is local on COFF.
1693   // Make an exception for windows OS in the triple: Some firmware builds use
1694   // *-win32-macho triples. This (accidentally?) produced windows relocations
1695   // without GOT tables in older clang versions; Keep this behaviour.
1696   // FIXME: even thread local variables?
1697   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1698     return true;
1699 
1700   // Only handle COFF and ELF for now.
1701   if (!TT.isOSBinFormatELF())
1702     return false;
1703 
1704   // If this is not an executable, don't assume anything is local.
1705   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1706   const auto &LOpts = CGM.getLangOpts();
1707   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1708     // On ELF, if -fno-semantic-interposition is specified and the target
1709     // supports local aliases, there will be neither CC1
1710     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1711     // dso_local on the function if using a local alias is preferable (can avoid
1712     // PLT indirection).
1713     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1714       return false;
1715     return !(CGM.getLangOpts().SemanticInterposition ||
1716              CGM.getLangOpts().HalfNoSemanticInterposition);
1717   }
1718 
1719   // A definition cannot be preempted from an executable.
1720   if (!GV->isDeclarationForLinker())
1721     return true;
1722 
1723   // Most PIC code sequences that assume that a symbol is local cannot produce a
1724   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1725   // depended, it seems worth it to handle it here.
1726   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1727     return false;
1728 
1729   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1730   if (TT.isPPC64())
1731     return false;
1732 
1733   if (CGOpts.DirectAccessExternalData) {
1734     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1735     // for non-thread-local variables. If the symbol is not defined in the
1736     // executable, a copy relocation will be needed at link time. dso_local is
1737     // excluded for thread-local variables because they generally don't support
1738     // copy relocations.
1739     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1740       if (!Var->isThreadLocal())
1741         return true;
1742 
1743     // -fno-pic sets dso_local on a function declaration to allow direct
1744     // accesses when taking its address (similar to a data symbol). If the
1745     // function is not defined in the executable, a canonical PLT entry will be
1746     // needed at link time. -fno-direct-access-external-data can avoid the
1747     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1748     // it could just cause trouble without providing perceptible benefits.
1749     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1750       return true;
1751   }
1752 
1753   // If we can use copy relocations we can assume it is local.
1754 
1755   // Otherwise don't assume it is local.
1756   return false;
1757 }
1758 
1759 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1760   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1761 }
1762 
1763 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1764                                           GlobalDecl GD) const {
1765   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1766   // C++ destructors have a few C++ ABI specific special cases.
1767   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1768     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1769     return;
1770   }
1771   setDLLImportDLLExport(GV, D);
1772 }
1773 
1774 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1775                                           const NamedDecl *D) const {
1776   if (D && D->isExternallyVisible()) {
1777     if (D->hasAttr<DLLImportAttr>())
1778       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1779     else if ((D->hasAttr<DLLExportAttr>() ||
1780               shouldMapVisibilityToDLLExport(D)) &&
1781              !GV->isDeclarationForLinker())
1782       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1783   }
1784 }
1785 
1786 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1787                                     GlobalDecl GD) const {
1788   setDLLImportDLLExport(GV, GD);
1789   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1790 }
1791 
1792 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1793                                     const NamedDecl *D) const {
1794   setDLLImportDLLExport(GV, D);
1795   setGVPropertiesAux(GV, D);
1796 }
1797 
1798 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1799                                        const NamedDecl *D) const {
1800   setGlobalVisibility(GV, D);
1801   setDSOLocal(GV);
1802   GV->setPartition(CodeGenOpts.SymbolPartition);
1803 }
1804 
1805 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1806   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1807       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1808       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1809       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1810       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1811 }
1812 
1813 llvm::GlobalVariable::ThreadLocalMode
1814 CodeGenModule::GetDefaultLLVMTLSModel() const {
1815   switch (CodeGenOpts.getDefaultTLSModel()) {
1816   case CodeGenOptions::GeneralDynamicTLSModel:
1817     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1818   case CodeGenOptions::LocalDynamicTLSModel:
1819     return llvm::GlobalVariable::LocalDynamicTLSModel;
1820   case CodeGenOptions::InitialExecTLSModel:
1821     return llvm::GlobalVariable::InitialExecTLSModel;
1822   case CodeGenOptions::LocalExecTLSModel:
1823     return llvm::GlobalVariable::LocalExecTLSModel;
1824   }
1825   llvm_unreachable("Invalid TLS model!");
1826 }
1827 
1828 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1829   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1830 
1831   llvm::GlobalValue::ThreadLocalMode TLM;
1832   TLM = GetDefaultLLVMTLSModel();
1833 
1834   // Override the TLS model if it is explicitly specified.
1835   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1836     TLM = GetLLVMTLSModel(Attr->getModel());
1837   }
1838 
1839   GV->setThreadLocalMode(TLM);
1840 }
1841 
1842 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1843                                           StringRef Name) {
1844   const TargetInfo &Target = CGM.getTarget();
1845   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1846 }
1847 
1848 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1849                                                  const CPUSpecificAttr *Attr,
1850                                                  unsigned CPUIndex,
1851                                                  raw_ostream &Out) {
1852   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1853   // supported.
1854   if (Attr)
1855     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1856   else if (CGM.getTarget().supportsIFunc())
1857     Out << ".resolver";
1858 }
1859 
1860 // Returns true if GD is a function decl with internal linkage and
1861 // needs a unique suffix after the mangled name.
1862 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1863                                         CodeGenModule &CGM) {
1864   const Decl *D = GD.getDecl();
1865   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1866          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1867 }
1868 
1869 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1870                                       const NamedDecl *ND,
1871                                       bool OmitMultiVersionMangling = false) {
1872   SmallString<256> Buffer;
1873   llvm::raw_svector_ostream Out(Buffer);
1874   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1875   if (!CGM.getModuleNameHash().empty())
1876     MC.needsUniqueInternalLinkageNames();
1877   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1878   if (ShouldMangle)
1879     MC.mangleName(GD.getWithDecl(ND), Out);
1880   else {
1881     IdentifierInfo *II = ND->getIdentifier();
1882     assert(II && "Attempt to mangle unnamed decl.");
1883     const auto *FD = dyn_cast<FunctionDecl>(ND);
1884 
1885     if (FD &&
1886         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1887       if (CGM.getLangOpts().RegCall4)
1888         Out << "__regcall4__" << II->getName();
1889       else
1890         Out << "__regcall3__" << II->getName();
1891     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1892                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1893       Out << "__device_stub__" << II->getName();
1894     } else {
1895       Out << II->getName();
1896     }
1897   }
1898 
1899   // Check if the module name hash should be appended for internal linkage
1900   // symbols.   This should come before multi-version target suffixes are
1901   // appended. This is to keep the name and module hash suffix of the
1902   // internal linkage function together.  The unique suffix should only be
1903   // added when name mangling is done to make sure that the final name can
1904   // be properly demangled.  For example, for C functions without prototypes,
1905   // name mangling is not done and the unique suffix should not be appeneded
1906   // then.
1907   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1908     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1909            "Hash computed when not explicitly requested");
1910     Out << CGM.getModuleNameHash();
1911   }
1912 
1913   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1914     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1915       switch (FD->getMultiVersionKind()) {
1916       case MultiVersionKind::CPUDispatch:
1917       case MultiVersionKind::CPUSpecific:
1918         AppendCPUSpecificCPUDispatchMangling(CGM,
1919                                              FD->getAttr<CPUSpecificAttr>(),
1920                                              GD.getMultiVersionIndex(), Out);
1921         break;
1922       case MultiVersionKind::Target: {
1923         auto *Attr = FD->getAttr<TargetAttr>();
1924         assert(Attr && "Expected TargetAttr to be present "
1925                        "for attribute mangling");
1926         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1927         Info.appendAttributeMangling(Attr, Out);
1928         break;
1929       }
1930       case MultiVersionKind::TargetVersion: {
1931         auto *Attr = FD->getAttr<TargetVersionAttr>();
1932         assert(Attr && "Expected TargetVersionAttr to be present "
1933                        "for attribute mangling");
1934         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1935         Info.appendAttributeMangling(Attr, Out);
1936         break;
1937       }
1938       case MultiVersionKind::TargetClones: {
1939         auto *Attr = FD->getAttr<TargetClonesAttr>();
1940         assert(Attr && "Expected TargetClonesAttr to be present "
1941                        "for attribute mangling");
1942         unsigned Index = GD.getMultiVersionIndex();
1943         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1944         Info.appendAttributeMangling(Attr, Index, Out);
1945         break;
1946       }
1947       case MultiVersionKind::None:
1948         llvm_unreachable("None multiversion type isn't valid here");
1949       }
1950     }
1951 
1952   // Make unique name for device side static file-scope variable for HIP.
1953   if (CGM.getContext().shouldExternalize(ND) &&
1954       CGM.getLangOpts().GPURelocatableDeviceCode &&
1955       CGM.getLangOpts().CUDAIsDevice)
1956     CGM.printPostfixForExternalizedDecl(Out, ND);
1957 
1958   return std::string(Out.str());
1959 }
1960 
1961 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1962                                             const FunctionDecl *FD,
1963                                             StringRef &CurName) {
1964   if (!FD->isMultiVersion())
1965     return;
1966 
1967   // Get the name of what this would be without the 'target' attribute.  This
1968   // allows us to lookup the version that was emitted when this wasn't a
1969   // multiversion function.
1970   std::string NonTargetName =
1971       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1972   GlobalDecl OtherGD;
1973   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1974     assert(OtherGD.getCanonicalDecl()
1975                .getDecl()
1976                ->getAsFunction()
1977                ->isMultiVersion() &&
1978            "Other GD should now be a multiversioned function");
1979     // OtherFD is the version of this function that was mangled BEFORE
1980     // becoming a MultiVersion function.  It potentially needs to be updated.
1981     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1982                                       .getDecl()
1983                                       ->getAsFunction()
1984                                       ->getMostRecentDecl();
1985     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1986     // This is so that if the initial version was already the 'default'
1987     // version, we don't try to update it.
1988     if (OtherName != NonTargetName) {
1989       // Remove instead of erase, since others may have stored the StringRef
1990       // to this.
1991       const auto ExistingRecord = Manglings.find(NonTargetName);
1992       if (ExistingRecord != std::end(Manglings))
1993         Manglings.remove(&(*ExistingRecord));
1994       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1995       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1996           Result.first->first();
1997       // If this is the current decl is being created, make sure we update the name.
1998       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1999         CurName = OtherNameRef;
2000       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
2001         Entry->setName(OtherName);
2002     }
2003   }
2004 }
2005 
2006 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
2007   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
2008 
2009   // Some ABIs don't have constructor variants.  Make sure that base and
2010   // complete constructors get mangled the same.
2011   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
2012     if (!getTarget().getCXXABI().hasConstructorVariants()) {
2013       CXXCtorType OrigCtorType = GD.getCtorType();
2014       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
2015       if (OrigCtorType == Ctor_Base)
2016         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
2017     }
2018   }
2019 
2020   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2021   // static device variable depends on whether the variable is referenced by
2022   // a host or device host function. Therefore the mangled name cannot be
2023   // cached.
2024   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2025     auto FoundName = MangledDeclNames.find(CanonicalGD);
2026     if (FoundName != MangledDeclNames.end())
2027       return FoundName->second;
2028   }
2029 
2030   // Keep the first result in the case of a mangling collision.
2031   const auto *ND = cast<NamedDecl>(GD.getDecl());
2032   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2033 
2034   // Ensure either we have different ABIs between host and device compilations,
2035   // says host compilation following MSVC ABI but device compilation follows
2036   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2037   // mangling should be the same after name stubbing. The later checking is
2038   // very important as the device kernel name being mangled in host-compilation
2039   // is used to resolve the device binaries to be executed. Inconsistent naming
2040   // result in undefined behavior. Even though we cannot check that naming
2041   // directly between host- and device-compilations, the host- and
2042   // device-mangling in host compilation could help catching certain ones.
2043   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2044          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2045          (getContext().getAuxTargetInfo() &&
2046           (getContext().getAuxTargetInfo()->getCXXABI() !=
2047            getContext().getTargetInfo().getCXXABI())) ||
2048          getCUDARuntime().getDeviceSideName(ND) ==
2049              getMangledNameImpl(
2050                  *this,
2051                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2052                  ND));
2053 
2054   // This invariant should hold true in the future.
2055   // Prior work:
2056   // https://discourse.llvm.org/t/rfc-clang-diagnostic-for-demangling-failures/82835/8
2057   // https://github.com/llvm/llvm-project/issues/111345
2058   // assert((MangledName.startswith("_Z") || MangledName.startswith("?")) &&
2059   //        !GD->hasAttr<AsmLabelAttr>() &&
2060   //        llvm::demangle(MangledName) != MangledName &&
2061   //        "LLVM demangler must demangle clang-generated names");
2062 
2063   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2064   return MangledDeclNames[CanonicalGD] = Result.first->first();
2065 }
2066 
2067 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2068                                              const BlockDecl *BD) {
2069   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2070   const Decl *D = GD.getDecl();
2071 
2072   SmallString<256> Buffer;
2073   llvm::raw_svector_ostream Out(Buffer);
2074   if (!D)
2075     MangleCtx.mangleGlobalBlock(BD,
2076       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2077   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2078     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2079   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2080     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2081   else
2082     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2083 
2084   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2085   return Result.first->first();
2086 }
2087 
2088 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2089   auto it = MangledDeclNames.begin();
2090   while (it != MangledDeclNames.end()) {
2091     if (it->second == Name)
2092       return it->first;
2093     it++;
2094   }
2095   return GlobalDecl();
2096 }
2097 
2098 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2099   return getModule().getNamedValue(Name);
2100 }
2101 
2102 /// AddGlobalCtor - Add a function to the list that will be called before
2103 /// main() runs.
2104 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2105                                   unsigned LexOrder,
2106                                   llvm::Constant *AssociatedData) {
2107   // FIXME: Type coercion of void()* types.
2108   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2109 }
2110 
2111 /// AddGlobalDtor - Add a function to the list that will be called
2112 /// when the module is unloaded.
2113 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2114                                   bool IsDtorAttrFunc) {
2115   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2116       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2117     DtorsUsingAtExit[Priority].push_back(Dtor);
2118     return;
2119   }
2120 
2121   // FIXME: Type coercion of void()* types.
2122   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2123 }
2124 
2125 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2126   if (Fns.empty()) return;
2127 
2128   const PointerAuthSchema &InitFiniAuthSchema =
2129       getCodeGenOpts().PointerAuth.InitFiniPointers;
2130 
2131   // Ctor function type is ptr.
2132   llvm::PointerType *PtrTy = llvm::PointerType::get(
2133       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2134 
2135   // Get the type of a ctor entry, { i32, ptr, ptr }.
2136   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2137 
2138   // Construct the constructor and destructor arrays.
2139   ConstantInitBuilder Builder(*this);
2140   auto Ctors = Builder.beginArray(CtorStructTy);
2141   for (const auto &I : Fns) {
2142     auto Ctor = Ctors.beginStruct(CtorStructTy);
2143     Ctor.addInt(Int32Ty, I.Priority);
2144     if (InitFiniAuthSchema) {
2145       llvm::Constant *StorageAddress =
2146           (InitFiniAuthSchema.isAddressDiscriminated()
2147                ? llvm::ConstantExpr::getIntToPtr(
2148                      llvm::ConstantInt::get(
2149                          IntPtrTy,
2150                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2151                      PtrTy)
2152                : nullptr);
2153       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2154           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2155           llvm::ConstantInt::get(
2156               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2157       Ctor.add(SignedCtorPtr);
2158     } else {
2159       Ctor.add(I.Initializer);
2160     }
2161     if (I.AssociatedData)
2162       Ctor.add(I.AssociatedData);
2163     else
2164       Ctor.addNullPointer(PtrTy);
2165     Ctor.finishAndAddTo(Ctors);
2166   }
2167 
2168   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2169                                           /*constant*/ false,
2170                                           llvm::GlobalValue::AppendingLinkage);
2171 
2172   // The LTO linker doesn't seem to like it when we set an alignment
2173   // on appending variables.  Take it off as a workaround.
2174   List->setAlignment(std::nullopt);
2175 
2176   Fns.clear();
2177 }
2178 
2179 llvm::GlobalValue::LinkageTypes
2180 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2181   const auto *D = cast<FunctionDecl>(GD.getDecl());
2182 
2183   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2184 
2185   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2186     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2187 
2188   return getLLVMLinkageForDeclarator(D, Linkage);
2189 }
2190 
2191 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2192   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2193   if (!MDS) return nullptr;
2194 
2195   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2196 }
2197 
2198 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2199   if (auto *FnType = T->getAs<FunctionProtoType>())
2200     T = getContext().getFunctionType(
2201         FnType->getReturnType(), FnType->getParamTypes(),
2202         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2203 
2204   std::string OutName;
2205   llvm::raw_string_ostream Out(OutName);
2206   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2207       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2208 
2209   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2210     Out << ".normalized";
2211 
2212   return llvm::ConstantInt::get(Int32Ty,
2213                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2214 }
2215 
2216 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2217                                               const CGFunctionInfo &Info,
2218                                               llvm::Function *F, bool IsThunk) {
2219   unsigned CallingConv;
2220   llvm::AttributeList PAL;
2221   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2222                          /*AttrOnCallSite=*/false, IsThunk);
2223   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2224       getTarget().getTriple().isWindowsArm64EC()) {
2225     SourceLocation Loc;
2226     if (const Decl *D = GD.getDecl())
2227       Loc = D->getLocation();
2228 
2229     Error(Loc, "__vectorcall calling convention is not currently supported");
2230   }
2231   F->setAttributes(PAL);
2232   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2233 }
2234 
2235 static void removeImageAccessQualifier(std::string& TyName) {
2236   std::string ReadOnlyQual("__read_only");
2237   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2238   if (ReadOnlyPos != std::string::npos)
2239     // "+ 1" for the space after access qualifier.
2240     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2241   else {
2242     std::string WriteOnlyQual("__write_only");
2243     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2244     if (WriteOnlyPos != std::string::npos)
2245       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2246     else {
2247       std::string ReadWriteQual("__read_write");
2248       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2249       if (ReadWritePos != std::string::npos)
2250         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2251     }
2252   }
2253 }
2254 
2255 // Returns the address space id that should be produced to the
2256 // kernel_arg_addr_space metadata. This is always fixed to the ids
2257 // as specified in the SPIR 2.0 specification in order to differentiate
2258 // for example in clGetKernelArgInfo() implementation between the address
2259 // spaces with targets without unique mapping to the OpenCL address spaces
2260 // (basically all single AS CPUs).
2261 static unsigned ArgInfoAddressSpace(LangAS AS) {
2262   switch (AS) {
2263   case LangAS::opencl_global:
2264     return 1;
2265   case LangAS::opencl_constant:
2266     return 2;
2267   case LangAS::opencl_local:
2268     return 3;
2269   case LangAS::opencl_generic:
2270     return 4; // Not in SPIR 2.0 specs.
2271   case LangAS::opencl_global_device:
2272     return 5;
2273   case LangAS::opencl_global_host:
2274     return 6;
2275   default:
2276     return 0; // Assume private.
2277   }
2278 }
2279 
2280 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2281                                          const FunctionDecl *FD,
2282                                          CodeGenFunction *CGF) {
2283   assert(((FD && CGF) || (!FD && !CGF)) &&
2284          "Incorrect use - FD and CGF should either be both null or not!");
2285   // Create MDNodes that represent the kernel arg metadata.
2286   // Each MDNode is a list in the form of "key", N number of values which is
2287   // the same number of values as their are kernel arguments.
2288 
2289   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2290 
2291   // MDNode for the kernel argument address space qualifiers.
2292   SmallVector<llvm::Metadata *, 8> addressQuals;
2293 
2294   // MDNode for the kernel argument access qualifiers (images only).
2295   SmallVector<llvm::Metadata *, 8> accessQuals;
2296 
2297   // MDNode for the kernel argument type names.
2298   SmallVector<llvm::Metadata *, 8> argTypeNames;
2299 
2300   // MDNode for the kernel argument base type names.
2301   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2302 
2303   // MDNode for the kernel argument type qualifiers.
2304   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2305 
2306   // MDNode for the kernel argument names.
2307   SmallVector<llvm::Metadata *, 8> argNames;
2308 
2309   if (FD && CGF)
2310     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2311       const ParmVarDecl *parm = FD->getParamDecl(i);
2312       // Get argument name.
2313       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2314 
2315       if (!getLangOpts().OpenCL)
2316         continue;
2317       QualType ty = parm->getType();
2318       std::string typeQuals;
2319 
2320       // Get image and pipe access qualifier:
2321       if (ty->isImageType() || ty->isPipeType()) {
2322         const Decl *PDecl = parm;
2323         if (const auto *TD = ty->getAs<TypedefType>())
2324           PDecl = TD->getDecl();
2325         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2326         if (A && A->isWriteOnly())
2327           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2328         else if (A && A->isReadWrite())
2329           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2330         else
2331           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2332       } else
2333         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2334 
2335       auto getTypeSpelling = [&](QualType Ty) {
2336         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2337 
2338         if (Ty.isCanonical()) {
2339           StringRef typeNameRef = typeName;
2340           // Turn "unsigned type" to "utype"
2341           if (typeNameRef.consume_front("unsigned "))
2342             return std::string("u") + typeNameRef.str();
2343           if (typeNameRef.consume_front("signed "))
2344             return typeNameRef.str();
2345         }
2346 
2347         return typeName;
2348       };
2349 
2350       if (ty->isPointerType()) {
2351         QualType pointeeTy = ty->getPointeeType();
2352 
2353         // Get address qualifier.
2354         addressQuals.push_back(
2355             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2356                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2357 
2358         // Get argument type name.
2359         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2360         std::string baseTypeName =
2361             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2362         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2363         argBaseTypeNames.push_back(
2364             llvm::MDString::get(VMContext, baseTypeName));
2365 
2366         // Get argument type qualifiers:
2367         if (ty.isRestrictQualified())
2368           typeQuals = "restrict";
2369         if (pointeeTy.isConstQualified() ||
2370             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2371           typeQuals += typeQuals.empty() ? "const" : " const";
2372         if (pointeeTy.isVolatileQualified())
2373           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2374       } else {
2375         uint32_t AddrSpc = 0;
2376         bool isPipe = ty->isPipeType();
2377         if (ty->isImageType() || isPipe)
2378           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2379 
2380         addressQuals.push_back(
2381             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2382 
2383         // Get argument type name.
2384         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2385         std::string typeName = getTypeSpelling(ty);
2386         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2387 
2388         // Remove access qualifiers on images
2389         // (as they are inseparable from type in clang implementation,
2390         // but OpenCL spec provides a special query to get access qualifier
2391         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2392         if (ty->isImageType()) {
2393           removeImageAccessQualifier(typeName);
2394           removeImageAccessQualifier(baseTypeName);
2395         }
2396 
2397         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2398         argBaseTypeNames.push_back(
2399             llvm::MDString::get(VMContext, baseTypeName));
2400 
2401         if (isPipe)
2402           typeQuals = "pipe";
2403       }
2404       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2405     }
2406 
2407   if (getLangOpts().OpenCL) {
2408     Fn->setMetadata("kernel_arg_addr_space",
2409                     llvm::MDNode::get(VMContext, addressQuals));
2410     Fn->setMetadata("kernel_arg_access_qual",
2411                     llvm::MDNode::get(VMContext, accessQuals));
2412     Fn->setMetadata("kernel_arg_type",
2413                     llvm::MDNode::get(VMContext, argTypeNames));
2414     Fn->setMetadata("kernel_arg_base_type",
2415                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2416     Fn->setMetadata("kernel_arg_type_qual",
2417                     llvm::MDNode::get(VMContext, argTypeQuals));
2418   }
2419   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2420       getCodeGenOpts().HIPSaveKernelArgName)
2421     Fn->setMetadata("kernel_arg_name",
2422                     llvm::MDNode::get(VMContext, argNames));
2423 }
2424 
2425 /// Determines whether the language options require us to model
2426 /// unwind exceptions.  We treat -fexceptions as mandating this
2427 /// except under the fragile ObjC ABI with only ObjC exceptions
2428 /// enabled.  This means, for example, that C with -fexceptions
2429 /// enables this.
2430 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2431   // If exceptions are completely disabled, obviously this is false.
2432   if (!LangOpts.Exceptions) return false;
2433 
2434   // If C++ exceptions are enabled, this is true.
2435   if (LangOpts.CXXExceptions) return true;
2436 
2437   // If ObjC exceptions are enabled, this depends on the ABI.
2438   if (LangOpts.ObjCExceptions) {
2439     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2440   }
2441 
2442   return true;
2443 }
2444 
2445 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2446                                                       const CXXMethodDecl *MD) {
2447   // Check that the type metadata can ever actually be used by a call.
2448   if (!CGM.getCodeGenOpts().LTOUnit ||
2449       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2450     return false;
2451 
2452   // Only functions whose address can be taken with a member function pointer
2453   // need this sort of type metadata.
2454   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2455          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2456 }
2457 
2458 SmallVector<const CXXRecordDecl *, 0>
2459 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2460   llvm::SetVector<const CXXRecordDecl *> MostBases;
2461 
2462   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2463   CollectMostBases = [&](const CXXRecordDecl *RD) {
2464     if (RD->getNumBases() == 0)
2465       MostBases.insert(RD);
2466     for (const CXXBaseSpecifier &B : RD->bases())
2467       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2468   };
2469   CollectMostBases(RD);
2470   return MostBases.takeVector();
2471 }
2472 
2473 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2474                                                            llvm::Function *F) {
2475   llvm::AttrBuilder B(F->getContext());
2476 
2477   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2478     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2479 
2480   if (CodeGenOpts.StackClashProtector)
2481     B.addAttribute("probe-stack", "inline-asm");
2482 
2483   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2484     B.addAttribute("stack-probe-size",
2485                    std::to_string(CodeGenOpts.StackProbeSize));
2486 
2487   if (!hasUnwindExceptions(LangOpts))
2488     B.addAttribute(llvm::Attribute::NoUnwind);
2489 
2490   if (D && D->hasAttr<NoStackProtectorAttr>())
2491     ; // Do nothing.
2492   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2493            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2494     B.addAttribute(llvm::Attribute::StackProtectStrong);
2495   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2496     B.addAttribute(llvm::Attribute::StackProtect);
2497   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2498     B.addAttribute(llvm::Attribute::StackProtectStrong);
2499   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2500     B.addAttribute(llvm::Attribute::StackProtectReq);
2501 
2502   if (!D) {
2503     // Non-entry HLSL functions must always be inlined.
2504     if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline))
2505       B.addAttribute(llvm::Attribute::AlwaysInline);
2506     // If we don't have a declaration to control inlining, the function isn't
2507     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2508     // disabled, mark the function as noinline.
2509     else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2510              CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2511       B.addAttribute(llvm::Attribute::NoInline);
2512 
2513     F->addFnAttrs(B);
2514     return;
2515   }
2516 
2517   // Handle SME attributes that apply to function definitions,
2518   // rather than to function prototypes.
2519   if (D->hasAttr<ArmLocallyStreamingAttr>())
2520     B.addAttribute("aarch64_pstate_sm_body");
2521 
2522   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2523     if (Attr->isNewZA())
2524       B.addAttribute("aarch64_new_za");
2525     if (Attr->isNewZT0())
2526       B.addAttribute("aarch64_new_zt0");
2527   }
2528 
2529   // Track whether we need to add the optnone LLVM attribute,
2530   // starting with the default for this optimization level.
2531   bool ShouldAddOptNone =
2532       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2533   // We can't add optnone in the following cases, it won't pass the verifier.
2534   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2535   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2536 
2537   // Non-entry HLSL functions must always be inlined.
2538   if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) &&
2539       !D->hasAttr<NoInlineAttr>()) {
2540     B.addAttribute(llvm::Attribute::AlwaysInline);
2541   } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2542              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2543     // Add optnone, but do so only if the function isn't always_inline.
2544     B.addAttribute(llvm::Attribute::OptimizeNone);
2545 
2546     // OptimizeNone implies noinline; we should not be inlining such functions.
2547     B.addAttribute(llvm::Attribute::NoInline);
2548 
2549     // We still need to handle naked functions even though optnone subsumes
2550     // much of their semantics.
2551     if (D->hasAttr<NakedAttr>())
2552       B.addAttribute(llvm::Attribute::Naked);
2553 
2554     // OptimizeNone wins over OptimizeForSize and MinSize.
2555     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2556     F->removeFnAttr(llvm::Attribute::MinSize);
2557   } else if (D->hasAttr<NakedAttr>()) {
2558     // Naked implies noinline: we should not be inlining such functions.
2559     B.addAttribute(llvm::Attribute::Naked);
2560     B.addAttribute(llvm::Attribute::NoInline);
2561   } else if (D->hasAttr<NoDuplicateAttr>()) {
2562     B.addAttribute(llvm::Attribute::NoDuplicate);
2563   } else if (D->hasAttr<NoInlineAttr>() &&
2564              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2565     // Add noinline if the function isn't always_inline.
2566     B.addAttribute(llvm::Attribute::NoInline);
2567   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2568              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2569     // (noinline wins over always_inline, and we can't specify both in IR)
2570     B.addAttribute(llvm::Attribute::AlwaysInline);
2571   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2572     // If we're not inlining, then force everything that isn't always_inline to
2573     // carry an explicit noinline attribute.
2574     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2575       B.addAttribute(llvm::Attribute::NoInline);
2576   } else {
2577     // Otherwise, propagate the inline hint attribute and potentially use its
2578     // absence to mark things as noinline.
2579     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2580       // Search function and template pattern redeclarations for inline.
2581       auto CheckForInline = [](const FunctionDecl *FD) {
2582         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2583           return Redecl->isInlineSpecified();
2584         };
2585         if (any_of(FD->redecls(), CheckRedeclForInline))
2586           return true;
2587         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2588         if (!Pattern)
2589           return false;
2590         return any_of(Pattern->redecls(), CheckRedeclForInline);
2591       };
2592       if (CheckForInline(FD)) {
2593         B.addAttribute(llvm::Attribute::InlineHint);
2594       } else if (CodeGenOpts.getInlining() ==
2595                      CodeGenOptions::OnlyHintInlining &&
2596                  !FD->isInlined() &&
2597                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2598         B.addAttribute(llvm::Attribute::NoInline);
2599       }
2600     }
2601   }
2602 
2603   // Add other optimization related attributes if we are optimizing this
2604   // function.
2605   if (!D->hasAttr<OptimizeNoneAttr>()) {
2606     if (D->hasAttr<ColdAttr>()) {
2607       if (!ShouldAddOptNone)
2608         B.addAttribute(llvm::Attribute::OptimizeForSize);
2609       B.addAttribute(llvm::Attribute::Cold);
2610     }
2611     if (D->hasAttr<HotAttr>())
2612       B.addAttribute(llvm::Attribute::Hot);
2613     if (D->hasAttr<MinSizeAttr>())
2614       B.addAttribute(llvm::Attribute::MinSize);
2615   }
2616 
2617   F->addFnAttrs(B);
2618 
2619   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2620   if (alignment)
2621     F->setAlignment(llvm::Align(alignment));
2622 
2623   if (!D->hasAttr<AlignedAttr>())
2624     if (LangOpts.FunctionAlignment)
2625       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2626 
2627   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2628   // reserve a bit for differentiating between virtual and non-virtual member
2629   // functions. If the current target's C++ ABI requires this and this is a
2630   // member function, set its alignment accordingly.
2631   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2632     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2633       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2634   }
2635 
2636   // In the cross-dso CFI mode with canonical jump tables, we want !type
2637   // attributes on definitions only.
2638   if (CodeGenOpts.SanitizeCfiCrossDso &&
2639       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2640     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2641       // Skip available_externally functions. They won't be codegen'ed in the
2642       // current module anyway.
2643       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2644         CreateFunctionTypeMetadataForIcall(FD, F);
2645     }
2646   }
2647 
2648   // Emit type metadata on member functions for member function pointer checks.
2649   // These are only ever necessary on definitions; we're guaranteed that the
2650   // definition will be present in the LTO unit as a result of LTO visibility.
2651   auto *MD = dyn_cast<CXXMethodDecl>(D);
2652   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2653     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2654       llvm::Metadata *Id =
2655           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2656               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2657       F->addTypeMetadata(0, Id);
2658     }
2659   }
2660 }
2661 
2662 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2663   const Decl *D = GD.getDecl();
2664   if (isa_and_nonnull<NamedDecl>(D))
2665     setGVProperties(GV, GD);
2666   else
2667     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2668 
2669   if (D && D->hasAttr<UsedAttr>())
2670     addUsedOrCompilerUsedGlobal(GV);
2671 
2672   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2673       VD &&
2674       ((CodeGenOpts.KeepPersistentStorageVariables &&
2675         (VD->getStorageDuration() == SD_Static ||
2676          VD->getStorageDuration() == SD_Thread)) ||
2677        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2678         VD->getType().isConstQualified())))
2679     addUsedOrCompilerUsedGlobal(GV);
2680 }
2681 
2682 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2683                                                 llvm::AttrBuilder &Attrs,
2684                                                 bool SetTargetFeatures) {
2685   // Add target-cpu and target-features attributes to functions. If
2686   // we have a decl for the function and it has a target attribute then
2687   // parse that and add it to the feature set.
2688   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2689   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2690   std::vector<std::string> Features;
2691   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2692   FD = FD ? FD->getMostRecentDecl() : FD;
2693   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2694   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2695   assert((!TD || !TV) && "both target_version and target specified");
2696   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2697   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2698   bool AddedAttr = false;
2699   if (TD || TV || SD || TC) {
2700     llvm::StringMap<bool> FeatureMap;
2701     getContext().getFunctionFeatureMap(FeatureMap, GD);
2702 
2703     // Produce the canonical string for this set of features.
2704     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2705       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2706 
2707     // Now add the target-cpu and target-features to the function.
2708     // While we populated the feature map above, we still need to
2709     // get and parse the target attribute so we can get the cpu for
2710     // the function.
2711     if (TD) {
2712       ParsedTargetAttr ParsedAttr =
2713           Target.parseTargetAttr(TD->getFeaturesStr());
2714       if (!ParsedAttr.CPU.empty() &&
2715           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2716         TargetCPU = ParsedAttr.CPU;
2717         TuneCPU = ""; // Clear the tune CPU.
2718       }
2719       if (!ParsedAttr.Tune.empty() &&
2720           getTarget().isValidCPUName(ParsedAttr.Tune))
2721         TuneCPU = ParsedAttr.Tune;
2722     }
2723 
2724     if (SD) {
2725       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2726       // favor this processor.
2727       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2728     }
2729   } else {
2730     // Otherwise just add the existing target cpu and target features to the
2731     // function.
2732     Features = getTarget().getTargetOpts().Features;
2733   }
2734 
2735   if (!TargetCPU.empty()) {
2736     Attrs.addAttribute("target-cpu", TargetCPU);
2737     AddedAttr = true;
2738   }
2739   if (!TuneCPU.empty()) {
2740     Attrs.addAttribute("tune-cpu", TuneCPU);
2741     AddedAttr = true;
2742   }
2743   if (!Features.empty() && SetTargetFeatures) {
2744     llvm::erase_if(Features, [&](const std::string& F) {
2745        return getTarget().isReadOnlyFeature(F.substr(1));
2746     });
2747     llvm::sort(Features);
2748     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2749     AddedAttr = true;
2750   }
2751   if (getTarget().getTriple().isAArch64()) {
2752     llvm::SmallVector<StringRef, 8> Feats;
2753     if (TV)
2754       TV->getFeatures(Feats);
2755     else if (TC)
2756       TC->getFeatures(Feats, GD.getMultiVersionIndex());
2757     if (!Feats.empty()) {
2758       llvm::sort(Feats);
2759       std::string FMVFeatures;
2760       for (StringRef F : Feats)
2761         FMVFeatures.append(",+" + F.str());
2762       Attrs.addAttribute("fmv-features", FMVFeatures.substr(1));
2763       AddedAttr = true;
2764     }
2765   }
2766   return AddedAttr;
2767 }
2768 
2769 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2770                                           llvm::GlobalObject *GO) {
2771   const Decl *D = GD.getDecl();
2772   SetCommonAttributes(GD, GO);
2773 
2774   if (D) {
2775     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2776       if (D->hasAttr<RetainAttr>())
2777         addUsedGlobal(GV);
2778       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2779         GV->addAttribute("bss-section", SA->getName());
2780       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2781         GV->addAttribute("data-section", SA->getName());
2782       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2783         GV->addAttribute("rodata-section", SA->getName());
2784       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2785         GV->addAttribute("relro-section", SA->getName());
2786     }
2787 
2788     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2789       if (D->hasAttr<RetainAttr>())
2790         addUsedGlobal(F);
2791       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2792         if (!D->getAttr<SectionAttr>())
2793           F->setSection(SA->getName());
2794 
2795       llvm::AttrBuilder Attrs(F->getContext());
2796       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2797         // We know that GetCPUAndFeaturesAttributes will always have the
2798         // newest set, since it has the newest possible FunctionDecl, so the
2799         // new ones should replace the old.
2800         llvm::AttributeMask RemoveAttrs;
2801         RemoveAttrs.addAttribute("target-cpu");
2802         RemoveAttrs.addAttribute("target-features");
2803         RemoveAttrs.addAttribute("tune-cpu");
2804         F->removeFnAttrs(RemoveAttrs);
2805         F->addFnAttrs(Attrs);
2806       }
2807     }
2808 
2809     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2810       GO->setSection(CSA->getName());
2811     else if (const auto *SA = D->getAttr<SectionAttr>())
2812       GO->setSection(SA->getName());
2813   }
2814 
2815   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2816 }
2817 
2818 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2819                                                   llvm::Function *F,
2820                                                   const CGFunctionInfo &FI) {
2821   const Decl *D = GD.getDecl();
2822   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2823   SetLLVMFunctionAttributesForDefinition(D, F);
2824 
2825   F->setLinkage(llvm::Function::InternalLinkage);
2826 
2827   setNonAliasAttributes(GD, F);
2828 }
2829 
2830 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2831   // Set linkage and visibility in case we never see a definition.
2832   LinkageInfo LV = ND->getLinkageAndVisibility();
2833   // Don't set internal linkage on declarations.
2834   // "extern_weak" is overloaded in LLVM; we probably should have
2835   // separate linkage types for this.
2836   if (isExternallyVisible(LV.getLinkage()) &&
2837       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2838     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2839 }
2840 
2841 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2842                                                        llvm::Function *F) {
2843   // Only if we are checking indirect calls.
2844   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2845     return;
2846 
2847   // Non-static class methods are handled via vtable or member function pointer
2848   // checks elsewhere.
2849   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2850     return;
2851 
2852   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2853   F->addTypeMetadata(0, MD);
2854   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2855 
2856   // Emit a hash-based bit set entry for cross-DSO calls.
2857   if (CodeGenOpts.SanitizeCfiCrossDso)
2858     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2859       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2860 }
2861 
2862 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2863   llvm::LLVMContext &Ctx = F->getContext();
2864   llvm::MDBuilder MDB(Ctx);
2865   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2866                  llvm::MDNode::get(
2867                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2868 }
2869 
2870 static bool allowKCFIIdentifier(StringRef Name) {
2871   // KCFI type identifier constants are only necessary for external assembly
2872   // functions, which means it's safe to skip unusual names. Subset of
2873   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2874   return llvm::all_of(Name, [](const char &C) {
2875     return llvm::isAlnum(C) || C == '_' || C == '.';
2876   });
2877 }
2878 
2879 void CodeGenModule::finalizeKCFITypes() {
2880   llvm::Module &M = getModule();
2881   for (auto &F : M.functions()) {
2882     // Remove KCFI type metadata from non-address-taken local functions.
2883     bool AddressTaken = F.hasAddressTaken();
2884     if (!AddressTaken && F.hasLocalLinkage())
2885       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2886 
2887     // Generate a constant with the expected KCFI type identifier for all
2888     // address-taken function declarations to support annotating indirectly
2889     // called assembly functions.
2890     if (!AddressTaken || !F.isDeclaration())
2891       continue;
2892 
2893     const llvm::ConstantInt *Type;
2894     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2895       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2896     else
2897       continue;
2898 
2899     StringRef Name = F.getName();
2900     if (!allowKCFIIdentifier(Name))
2901       continue;
2902 
2903     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2904                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2905                           .str();
2906     M.appendModuleInlineAsm(Asm);
2907   }
2908 }
2909 
2910 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2911                                           bool IsIncompleteFunction,
2912                                           bool IsThunk) {
2913 
2914   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2915     // If this is an intrinsic function, set the function's attributes
2916     // to the intrinsic's attributes.
2917     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2918     return;
2919   }
2920 
2921   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2922 
2923   if (!IsIncompleteFunction)
2924     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2925                               IsThunk);
2926 
2927   // Add the Returned attribute for "this", except for iOS 5 and earlier
2928   // where substantial code, including the libstdc++ dylib, was compiled with
2929   // GCC and does not actually return "this".
2930   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2931       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2932     assert(!F->arg_empty() &&
2933            F->arg_begin()->getType()
2934              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2935            "unexpected this return");
2936     F->addParamAttr(0, llvm::Attribute::Returned);
2937   }
2938 
2939   // Only a few attributes are set on declarations; these may later be
2940   // overridden by a definition.
2941 
2942   setLinkageForGV(F, FD);
2943   setGVProperties(F, FD);
2944 
2945   // Setup target-specific attributes.
2946   if (!IsIncompleteFunction && F->isDeclaration())
2947     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2948 
2949   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2950     F->setSection(CSA->getName());
2951   else if (const auto *SA = FD->getAttr<SectionAttr>())
2952      F->setSection(SA->getName());
2953 
2954   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2955     if (EA->isError())
2956       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2957     else if (EA->isWarning())
2958       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2959   }
2960 
2961   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2962   if (FD->isInlineBuiltinDeclaration()) {
2963     const FunctionDecl *FDBody;
2964     bool HasBody = FD->hasBody(FDBody);
2965     (void)HasBody;
2966     assert(HasBody && "Inline builtin declarations should always have an "
2967                       "available body!");
2968     if (shouldEmitFunction(FDBody))
2969       F->addFnAttr(llvm::Attribute::NoBuiltin);
2970   }
2971 
2972   if (FD->isReplaceableGlobalAllocationFunction()) {
2973     // A replaceable global allocation function does not act like a builtin by
2974     // default, only if it is invoked by a new-expression or delete-expression.
2975     F->addFnAttr(llvm::Attribute::NoBuiltin);
2976   }
2977 
2978   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2979     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2980   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2981     if (MD->isVirtual())
2982       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2983 
2984   // Don't emit entries for function declarations in the cross-DSO mode. This
2985   // is handled with better precision by the receiving DSO. But if jump tables
2986   // are non-canonical then we need type metadata in order to produce the local
2987   // jump table.
2988   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2989       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2990     CreateFunctionTypeMetadataForIcall(FD, F);
2991 
2992   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2993     setKCFIType(FD, F);
2994 
2995   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2996     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2997 
2998   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2999     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
3000 
3001   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
3002     // Annotate the callback behavior as metadata:
3003     //  - The callback callee (as argument number).
3004     //  - The callback payloads (as argument numbers).
3005     llvm::LLVMContext &Ctx = F->getContext();
3006     llvm::MDBuilder MDB(Ctx);
3007 
3008     // The payload indices are all but the first one in the encoding. The first
3009     // identifies the callback callee.
3010     int CalleeIdx = *CB->encoding_begin();
3011     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
3012     F->addMetadata(llvm::LLVMContext::MD_callback,
3013                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
3014                                                CalleeIdx, PayloadIndices,
3015                                                /* VarArgsArePassed */ false)}));
3016   }
3017 }
3018 
3019 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
3020   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3021          "Only globals with definition can force usage.");
3022   LLVMUsed.emplace_back(GV);
3023 }
3024 
3025 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
3026   assert(!GV->isDeclaration() &&
3027          "Only globals with definition can force usage.");
3028   LLVMCompilerUsed.emplace_back(GV);
3029 }
3030 
3031 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
3032   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3033          "Only globals with definition can force usage.");
3034   if (getTriple().isOSBinFormatELF())
3035     LLVMCompilerUsed.emplace_back(GV);
3036   else
3037     LLVMUsed.emplace_back(GV);
3038 }
3039 
3040 static void emitUsed(CodeGenModule &CGM, StringRef Name,
3041                      std::vector<llvm::WeakTrackingVH> &List) {
3042   // Don't create llvm.used if there is no need.
3043   if (List.empty())
3044     return;
3045 
3046   // Convert List to what ConstantArray needs.
3047   SmallVector<llvm::Constant*, 8> UsedArray;
3048   UsedArray.resize(List.size());
3049   for (unsigned i = 0, e = List.size(); i != e; ++i) {
3050     UsedArray[i] =
3051         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3052             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3053   }
3054 
3055   if (UsedArray.empty())
3056     return;
3057   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3058 
3059   auto *GV = new llvm::GlobalVariable(
3060       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3061       llvm::ConstantArray::get(ATy, UsedArray), Name);
3062 
3063   GV->setSection("llvm.metadata");
3064 }
3065 
3066 void CodeGenModule::emitLLVMUsed() {
3067   emitUsed(*this, "llvm.used", LLVMUsed);
3068   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3069 }
3070 
3071 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3072   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3073   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3074 }
3075 
3076 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3077   llvm::SmallString<32> Opt;
3078   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3079   if (Opt.empty())
3080     return;
3081   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3082   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3083 }
3084 
3085 void CodeGenModule::AddDependentLib(StringRef Lib) {
3086   auto &C = getLLVMContext();
3087   if (getTarget().getTriple().isOSBinFormatELF()) {
3088       ELFDependentLibraries.push_back(
3089         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3090     return;
3091   }
3092 
3093   llvm::SmallString<24> Opt;
3094   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3095   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3096   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3097 }
3098 
3099 /// Add link options implied by the given module, including modules
3100 /// it depends on, using a postorder walk.
3101 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3102                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3103                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3104   // Import this module's parent.
3105   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3106     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3107   }
3108 
3109   // Import this module's dependencies.
3110   for (Module *Import : llvm::reverse(Mod->Imports)) {
3111     if (Visited.insert(Import).second)
3112       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3113   }
3114 
3115   // Add linker options to link against the libraries/frameworks
3116   // described by this module.
3117   llvm::LLVMContext &Context = CGM.getLLVMContext();
3118   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3119 
3120   // For modules that use export_as for linking, use that module
3121   // name instead.
3122   if (Mod->UseExportAsModuleLinkName)
3123     return;
3124 
3125   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3126     // Link against a framework.  Frameworks are currently Darwin only, so we
3127     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3128     if (LL.IsFramework) {
3129       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3130                                  llvm::MDString::get(Context, LL.Library)};
3131 
3132       Metadata.push_back(llvm::MDNode::get(Context, Args));
3133       continue;
3134     }
3135 
3136     // Link against a library.
3137     if (IsELF) {
3138       llvm::Metadata *Args[2] = {
3139           llvm::MDString::get(Context, "lib"),
3140           llvm::MDString::get(Context, LL.Library),
3141       };
3142       Metadata.push_back(llvm::MDNode::get(Context, Args));
3143     } else {
3144       llvm::SmallString<24> Opt;
3145       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3146       auto *OptString = llvm::MDString::get(Context, Opt);
3147       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3148     }
3149   }
3150 }
3151 
3152 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3153   assert(Primary->isNamedModuleUnit() &&
3154          "We should only emit module initializers for named modules.");
3155 
3156   // Emit the initializers in the order that sub-modules appear in the
3157   // source, first Global Module Fragments, if present.
3158   if (auto GMF = Primary->getGlobalModuleFragment()) {
3159     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3160       if (isa<ImportDecl>(D))
3161         continue;
3162       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3163       EmitTopLevelDecl(D);
3164     }
3165   }
3166   // Second any associated with the module, itself.
3167   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3168     // Skip import decls, the inits for those are called explicitly.
3169     if (isa<ImportDecl>(D))
3170       continue;
3171     EmitTopLevelDecl(D);
3172   }
3173   // Third any associated with the Privat eMOdule Fragment, if present.
3174   if (auto PMF = Primary->getPrivateModuleFragment()) {
3175     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3176       // Skip import decls, the inits for those are called explicitly.
3177       if (isa<ImportDecl>(D))
3178         continue;
3179       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3180       EmitTopLevelDecl(D);
3181     }
3182   }
3183 }
3184 
3185 void CodeGenModule::EmitModuleLinkOptions() {
3186   // Collect the set of all of the modules we want to visit to emit link
3187   // options, which is essentially the imported modules and all of their
3188   // non-explicit child modules.
3189   llvm::SetVector<clang::Module *> LinkModules;
3190   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3191   SmallVector<clang::Module *, 16> Stack;
3192 
3193   // Seed the stack with imported modules.
3194   for (Module *M : ImportedModules) {
3195     // Do not add any link flags when an implementation TU of a module imports
3196     // a header of that same module.
3197     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3198         !getLangOpts().isCompilingModule())
3199       continue;
3200     if (Visited.insert(M).second)
3201       Stack.push_back(M);
3202   }
3203 
3204   // Find all of the modules to import, making a little effort to prune
3205   // non-leaf modules.
3206   while (!Stack.empty()) {
3207     clang::Module *Mod = Stack.pop_back_val();
3208 
3209     bool AnyChildren = false;
3210 
3211     // Visit the submodules of this module.
3212     for (const auto &SM : Mod->submodules()) {
3213       // Skip explicit children; they need to be explicitly imported to be
3214       // linked against.
3215       if (SM->IsExplicit)
3216         continue;
3217 
3218       if (Visited.insert(SM).second) {
3219         Stack.push_back(SM);
3220         AnyChildren = true;
3221       }
3222     }
3223 
3224     // We didn't find any children, so add this module to the list of
3225     // modules to link against.
3226     if (!AnyChildren) {
3227       LinkModules.insert(Mod);
3228     }
3229   }
3230 
3231   // Add link options for all of the imported modules in reverse topological
3232   // order.  We don't do anything to try to order import link flags with respect
3233   // to linker options inserted by things like #pragma comment().
3234   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3235   Visited.clear();
3236   for (Module *M : LinkModules)
3237     if (Visited.insert(M).second)
3238       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3239   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3240   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3241 
3242   // Add the linker options metadata flag.
3243   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3244   for (auto *MD : LinkerOptionsMetadata)
3245     NMD->addOperand(MD);
3246 }
3247 
3248 void CodeGenModule::EmitDeferred() {
3249   // Emit deferred declare target declarations.
3250   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3251     getOpenMPRuntime().emitDeferredTargetDecls();
3252 
3253   // Emit code for any potentially referenced deferred decls.  Since a
3254   // previously unused static decl may become used during the generation of code
3255   // for a static function, iterate until no changes are made.
3256 
3257   if (!DeferredVTables.empty()) {
3258     EmitDeferredVTables();
3259 
3260     // Emitting a vtable doesn't directly cause more vtables to
3261     // become deferred, although it can cause functions to be
3262     // emitted that then need those vtables.
3263     assert(DeferredVTables.empty());
3264   }
3265 
3266   // Emit CUDA/HIP static device variables referenced by host code only.
3267   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3268   // needed for further handling.
3269   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3270     llvm::append_range(DeferredDeclsToEmit,
3271                        getContext().CUDADeviceVarODRUsedByHost);
3272 
3273   // Stop if we're out of both deferred vtables and deferred declarations.
3274   if (DeferredDeclsToEmit.empty())
3275     return;
3276 
3277   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3278   // work, it will not interfere with this.
3279   std::vector<GlobalDecl> CurDeclsToEmit;
3280   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3281 
3282   for (GlobalDecl &D : CurDeclsToEmit) {
3283     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3284     // to get GlobalValue with exactly the type we need, not something that
3285     // might had been created for another decl with the same mangled name but
3286     // different type.
3287     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3288         GetAddrOfGlobal(D, ForDefinition));
3289 
3290     // In case of different address spaces, we may still get a cast, even with
3291     // IsForDefinition equal to true. Query mangled names table to get
3292     // GlobalValue.
3293     if (!GV)
3294       GV = GetGlobalValue(getMangledName(D));
3295 
3296     // Make sure GetGlobalValue returned non-null.
3297     assert(GV);
3298 
3299     // Check to see if we've already emitted this.  This is necessary
3300     // for a couple of reasons: first, decls can end up in the
3301     // deferred-decls queue multiple times, and second, decls can end
3302     // up with definitions in unusual ways (e.g. by an extern inline
3303     // function acquiring a strong function redefinition).  Just
3304     // ignore these cases.
3305     if (!GV->isDeclaration())
3306       continue;
3307 
3308     // If this is OpenMP, check if it is legal to emit this global normally.
3309     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3310       continue;
3311 
3312     // Otherwise, emit the definition and move on to the next one.
3313     EmitGlobalDefinition(D, GV);
3314 
3315     // If we found out that we need to emit more decls, do that recursively.
3316     // This has the advantage that the decls are emitted in a DFS and related
3317     // ones are close together, which is convenient for testing.
3318     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3319       EmitDeferred();
3320       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3321     }
3322   }
3323 }
3324 
3325 void CodeGenModule::EmitVTablesOpportunistically() {
3326   // Try to emit external vtables as available_externally if they have emitted
3327   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3328   // is not allowed to create new references to things that need to be emitted
3329   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3330 
3331   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3332          && "Only emit opportunistic vtables with optimizations");
3333 
3334   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3335     assert(getVTables().isVTableExternal(RD) &&
3336            "This queue should only contain external vtables");
3337     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3338       VTables.GenerateClassData(RD);
3339   }
3340   OpportunisticVTables.clear();
3341 }
3342 
3343 void CodeGenModule::EmitGlobalAnnotations() {
3344   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3345     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3346     if (GV)
3347       AddGlobalAnnotations(VD, GV);
3348   }
3349   DeferredAnnotations.clear();
3350 
3351   if (Annotations.empty())
3352     return;
3353 
3354   // Create a new global variable for the ConstantStruct in the Module.
3355   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3356     Annotations[0]->getType(), Annotations.size()), Annotations);
3357   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3358                                       llvm::GlobalValue::AppendingLinkage,
3359                                       Array, "llvm.global.annotations");
3360   gv->setSection(AnnotationSection);
3361 }
3362 
3363 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3364   llvm::Constant *&AStr = AnnotationStrings[Str];
3365   if (AStr)
3366     return AStr;
3367 
3368   // Not found yet, create a new global.
3369   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3370   auto *gv = new llvm::GlobalVariable(
3371       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3372       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3373       ConstGlobalsPtrTy->getAddressSpace());
3374   gv->setSection(AnnotationSection);
3375   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3376   AStr = gv;
3377   return gv;
3378 }
3379 
3380 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3381   SourceManager &SM = getContext().getSourceManager();
3382   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3383   if (PLoc.isValid())
3384     return EmitAnnotationString(PLoc.getFilename());
3385   return EmitAnnotationString(SM.getBufferName(Loc));
3386 }
3387 
3388 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3389   SourceManager &SM = getContext().getSourceManager();
3390   PresumedLoc PLoc = SM.getPresumedLoc(L);
3391   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3392     SM.getExpansionLineNumber(L);
3393   return llvm::ConstantInt::get(Int32Ty, LineNo);
3394 }
3395 
3396 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3397   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3398   if (Exprs.empty())
3399     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3400 
3401   llvm::FoldingSetNodeID ID;
3402   for (Expr *E : Exprs) {
3403     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3404   }
3405   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3406   if (Lookup)
3407     return Lookup;
3408 
3409   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3410   LLVMArgs.reserve(Exprs.size());
3411   ConstantEmitter ConstEmiter(*this);
3412   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3413     const auto *CE = cast<clang::ConstantExpr>(E);
3414     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3415                                     CE->getType());
3416   });
3417   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3418   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3419                                       llvm::GlobalValue::PrivateLinkage, Struct,
3420                                       ".args");
3421   GV->setSection(AnnotationSection);
3422   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3423 
3424   Lookup = GV;
3425   return GV;
3426 }
3427 
3428 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3429                                                 const AnnotateAttr *AA,
3430                                                 SourceLocation L) {
3431   // Get the globals for file name, annotation, and the line number.
3432   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3433                  *UnitGV = EmitAnnotationUnit(L),
3434                  *LineNoCst = EmitAnnotationLineNo(L),
3435                  *Args = EmitAnnotationArgs(AA);
3436 
3437   llvm::Constant *GVInGlobalsAS = GV;
3438   if (GV->getAddressSpace() !=
3439       getDataLayout().getDefaultGlobalsAddressSpace()) {
3440     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3441         GV,
3442         llvm::PointerType::get(
3443             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3444   }
3445 
3446   // Create the ConstantStruct for the global annotation.
3447   llvm::Constant *Fields[] = {
3448       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3449   };
3450   return llvm::ConstantStruct::getAnon(Fields);
3451 }
3452 
3453 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3454                                          llvm::GlobalValue *GV) {
3455   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3456   // Get the struct elements for these annotations.
3457   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3458     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3459 }
3460 
3461 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3462                                        SourceLocation Loc) const {
3463   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3464   // NoSanitize by function name.
3465   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3466     return true;
3467   // NoSanitize by location. Check "mainfile" prefix.
3468   auto &SM = Context.getSourceManager();
3469   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3470   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3471     return true;
3472 
3473   // Check "src" prefix.
3474   if (Loc.isValid())
3475     return NoSanitizeL.containsLocation(Kind, Loc);
3476   // If location is unknown, this may be a compiler-generated function. Assume
3477   // it's located in the main file.
3478   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3479 }
3480 
3481 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3482                                        llvm::GlobalVariable *GV,
3483                                        SourceLocation Loc, QualType Ty,
3484                                        StringRef Category) const {
3485   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3486   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3487     return true;
3488   auto &SM = Context.getSourceManager();
3489   if (NoSanitizeL.containsMainFile(
3490           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3491           Category))
3492     return true;
3493   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3494     return true;
3495 
3496   // Check global type.
3497   if (!Ty.isNull()) {
3498     // Drill down the array types: if global variable of a fixed type is
3499     // not sanitized, we also don't instrument arrays of them.
3500     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3501       Ty = AT->getElementType();
3502     Ty = Ty.getCanonicalType().getUnqualifiedType();
3503     // Only record types (classes, structs etc.) are ignored.
3504     if (Ty->isRecordType()) {
3505       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3506       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3507         return true;
3508     }
3509   }
3510   return false;
3511 }
3512 
3513 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3514                                    StringRef Category) const {
3515   const auto &XRayFilter = getContext().getXRayFilter();
3516   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3517   auto Attr = ImbueAttr::NONE;
3518   if (Loc.isValid())
3519     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3520   if (Attr == ImbueAttr::NONE)
3521     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3522   switch (Attr) {
3523   case ImbueAttr::NONE:
3524     return false;
3525   case ImbueAttr::ALWAYS:
3526     Fn->addFnAttr("function-instrument", "xray-always");
3527     break;
3528   case ImbueAttr::ALWAYS_ARG1:
3529     Fn->addFnAttr("function-instrument", "xray-always");
3530     Fn->addFnAttr("xray-log-args", "1");
3531     break;
3532   case ImbueAttr::NEVER:
3533     Fn->addFnAttr("function-instrument", "xray-never");
3534     break;
3535   }
3536   return true;
3537 }
3538 
3539 ProfileList::ExclusionType
3540 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3541                                               SourceLocation Loc) const {
3542   const auto &ProfileList = getContext().getProfileList();
3543   // If the profile list is empty, then instrument everything.
3544   if (ProfileList.isEmpty())
3545     return ProfileList::Allow;
3546   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3547   // First, check the function name.
3548   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3549     return *V;
3550   // Next, check the source location.
3551   if (Loc.isValid())
3552     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3553       return *V;
3554   // If location is unknown, this may be a compiler-generated function. Assume
3555   // it's located in the main file.
3556   auto &SM = Context.getSourceManager();
3557   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3558     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3559       return *V;
3560   return ProfileList.getDefault(Kind);
3561 }
3562 
3563 ProfileList::ExclusionType
3564 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3565                                                  SourceLocation Loc) const {
3566   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3567   if (V != ProfileList::Allow)
3568     return V;
3569 
3570   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3571   if (NumGroups > 1) {
3572     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3573     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3574       return ProfileList::Skip;
3575   }
3576   return ProfileList::Allow;
3577 }
3578 
3579 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3580   // Never defer when EmitAllDecls is specified.
3581   if (LangOpts.EmitAllDecls)
3582     return true;
3583 
3584   const auto *VD = dyn_cast<VarDecl>(Global);
3585   if (VD &&
3586       ((CodeGenOpts.KeepPersistentStorageVariables &&
3587         (VD->getStorageDuration() == SD_Static ||
3588          VD->getStorageDuration() == SD_Thread)) ||
3589        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3590         VD->getType().isConstQualified())))
3591     return true;
3592 
3593   return getContext().DeclMustBeEmitted(Global);
3594 }
3595 
3596 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3597   // In OpenMP 5.0 variables and function may be marked as
3598   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3599   // that they must be emitted on the host/device. To be sure we need to have
3600   // seen a declare target with an explicit mentioning of the function, we know
3601   // we have if the level of the declare target attribute is -1. Note that we
3602   // check somewhere else if we should emit this at all.
3603   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3604     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3605         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3606     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3607       return false;
3608   }
3609 
3610   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3611     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3612       // Implicit template instantiations may change linkage if they are later
3613       // explicitly instantiated, so they should not be emitted eagerly.
3614       return false;
3615     // Defer until all versions have been semantically checked.
3616     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3617       return false;
3618   }
3619   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3620     if (Context.getInlineVariableDefinitionKind(VD) ==
3621         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3622       // A definition of an inline constexpr static data member may change
3623       // linkage later if it's redeclared outside the class.
3624       return false;
3625     if (CXX20ModuleInits && VD->getOwningModule() &&
3626         !VD->getOwningModule()->isModuleMapModule()) {
3627       // For CXX20, module-owned initializers need to be deferred, since it is
3628       // not known at this point if they will be run for the current module or
3629       // as part of the initializer for an imported one.
3630       return false;
3631     }
3632   }
3633   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3634   // codegen for global variables, because they may be marked as threadprivate.
3635   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3636       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3637       !Global->getType().isConstantStorage(getContext(), false, false) &&
3638       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3639     return false;
3640 
3641   return true;
3642 }
3643 
3644 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3645   StringRef Name = getMangledName(GD);
3646 
3647   // The UUID descriptor should be pointer aligned.
3648   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3649 
3650   // Look for an existing global.
3651   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3652     return ConstantAddress(GV, GV->getValueType(), Alignment);
3653 
3654   ConstantEmitter Emitter(*this);
3655   llvm::Constant *Init;
3656 
3657   APValue &V = GD->getAsAPValue();
3658   if (!V.isAbsent()) {
3659     // If possible, emit the APValue version of the initializer. In particular,
3660     // this gets the type of the constant right.
3661     Init = Emitter.emitForInitializer(
3662         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3663   } else {
3664     // As a fallback, directly construct the constant.
3665     // FIXME: This may get padding wrong under esoteric struct layout rules.
3666     // MSVC appears to create a complete type 'struct __s_GUID' that it
3667     // presumably uses to represent these constants.
3668     MSGuidDecl::Parts Parts = GD->getParts();
3669     llvm::Constant *Fields[4] = {
3670         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3671         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3672         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3673         llvm::ConstantDataArray::getRaw(
3674             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3675             Int8Ty)};
3676     Init = llvm::ConstantStruct::getAnon(Fields);
3677   }
3678 
3679   auto *GV = new llvm::GlobalVariable(
3680       getModule(), Init->getType(),
3681       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3682   if (supportsCOMDAT())
3683     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3684   setDSOLocal(GV);
3685 
3686   if (!V.isAbsent()) {
3687     Emitter.finalize(GV);
3688     return ConstantAddress(GV, GV->getValueType(), Alignment);
3689   }
3690 
3691   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3692   return ConstantAddress(GV, Ty, Alignment);
3693 }
3694 
3695 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3696     const UnnamedGlobalConstantDecl *GCD) {
3697   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3698 
3699   llvm::GlobalVariable **Entry = nullptr;
3700   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3701   if (*Entry)
3702     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3703 
3704   ConstantEmitter Emitter(*this);
3705   llvm::Constant *Init;
3706 
3707   const APValue &V = GCD->getValue();
3708 
3709   assert(!V.isAbsent());
3710   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3711                                     GCD->getType());
3712 
3713   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3714                                       /*isConstant=*/true,
3715                                       llvm::GlobalValue::PrivateLinkage, Init,
3716                                       ".constant");
3717   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3718   GV->setAlignment(Alignment.getAsAlign());
3719 
3720   Emitter.finalize(GV);
3721 
3722   *Entry = GV;
3723   return ConstantAddress(GV, GV->getValueType(), Alignment);
3724 }
3725 
3726 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3727     const TemplateParamObjectDecl *TPO) {
3728   StringRef Name = getMangledName(TPO);
3729   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3730 
3731   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3732     return ConstantAddress(GV, GV->getValueType(), Alignment);
3733 
3734   ConstantEmitter Emitter(*this);
3735   llvm::Constant *Init = Emitter.emitForInitializer(
3736         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3737 
3738   if (!Init) {
3739     ErrorUnsupported(TPO, "template parameter object");
3740     return ConstantAddress::invalid();
3741   }
3742 
3743   llvm::GlobalValue::LinkageTypes Linkage =
3744       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3745           ? llvm::GlobalValue::LinkOnceODRLinkage
3746           : llvm::GlobalValue::InternalLinkage;
3747   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3748                                       /*isConstant=*/true, Linkage, Init, Name);
3749   setGVProperties(GV, TPO);
3750   if (supportsCOMDAT())
3751     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3752   Emitter.finalize(GV);
3753 
3754     return ConstantAddress(GV, GV->getValueType(), Alignment);
3755 }
3756 
3757 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3758   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3759   assert(AA && "No alias?");
3760 
3761   CharUnits Alignment = getContext().getDeclAlign(VD);
3762   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3763 
3764   // See if there is already something with the target's name in the module.
3765   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3766   if (Entry)
3767     return ConstantAddress(Entry, DeclTy, Alignment);
3768 
3769   llvm::Constant *Aliasee;
3770   if (isa<llvm::FunctionType>(DeclTy))
3771     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3772                                       GlobalDecl(cast<FunctionDecl>(VD)),
3773                                       /*ForVTable=*/false);
3774   else
3775     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3776                                     nullptr);
3777 
3778   auto *F = cast<llvm::GlobalValue>(Aliasee);
3779   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3780   WeakRefReferences.insert(F);
3781 
3782   return ConstantAddress(Aliasee, DeclTy, Alignment);
3783 }
3784 
3785 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3786   if (!D)
3787     return false;
3788   if (auto *A = D->getAttr<AttrT>())
3789     return A->isImplicit();
3790   return D->isImplicit();
3791 }
3792 
3793 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3794   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3795   // We need to emit host-side 'shadows' for all global
3796   // device-side variables because the CUDA runtime needs their
3797   // size and host-side address in order to provide access to
3798   // their device-side incarnations.
3799   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3800          Global->hasAttr<CUDAConstantAttr>() ||
3801          Global->hasAttr<CUDASharedAttr>() ||
3802          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3803          Global->getType()->isCUDADeviceBuiltinTextureType();
3804 }
3805 
3806 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3807   const auto *Global = cast<ValueDecl>(GD.getDecl());
3808 
3809   // Weak references don't produce any output by themselves.
3810   if (Global->hasAttr<WeakRefAttr>())
3811     return;
3812 
3813   // If this is an alias definition (which otherwise looks like a declaration)
3814   // emit it now.
3815   if (Global->hasAttr<AliasAttr>())
3816     return EmitAliasDefinition(GD);
3817 
3818   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3819   if (Global->hasAttr<IFuncAttr>())
3820     return emitIFuncDefinition(GD);
3821 
3822   // If this is a cpu_dispatch multiversion function, emit the resolver.
3823   if (Global->hasAttr<CPUDispatchAttr>())
3824     return emitCPUDispatchDefinition(GD);
3825 
3826   // If this is CUDA, be selective about which declarations we emit.
3827   // Non-constexpr non-lambda implicit host device functions are not emitted
3828   // unless they are used on device side.
3829   if (LangOpts.CUDA) {
3830     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3831            "Expected Variable or Function");
3832     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3833       if (!shouldEmitCUDAGlobalVar(VD))
3834         return;
3835     } else if (LangOpts.CUDAIsDevice) {
3836       const auto *FD = dyn_cast<FunctionDecl>(Global);
3837       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3838            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3839             hasImplicitAttr<CUDAHostAttr>(FD) &&
3840             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3841             !isLambdaCallOperator(FD) &&
3842             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3843           !Global->hasAttr<CUDAGlobalAttr>() &&
3844           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3845             !Global->hasAttr<CUDAHostAttr>()))
3846         return;
3847       // Device-only functions are the only things we skip.
3848     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3849                Global->hasAttr<CUDADeviceAttr>())
3850       return;
3851   }
3852 
3853   if (LangOpts.OpenMP) {
3854     // If this is OpenMP, check if it is legal to emit this global normally.
3855     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3856       return;
3857     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3858       if (MustBeEmitted(Global))
3859         EmitOMPDeclareReduction(DRD);
3860       return;
3861     }
3862     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3863       if (MustBeEmitted(Global))
3864         EmitOMPDeclareMapper(DMD);
3865       return;
3866     }
3867   }
3868 
3869   // Ignore declarations, they will be emitted on their first use.
3870   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3871     // Update deferred annotations with the latest declaration if the function
3872     // function was already used or defined.
3873     if (FD->hasAttr<AnnotateAttr>()) {
3874       StringRef MangledName = getMangledName(GD);
3875       if (GetGlobalValue(MangledName))
3876         DeferredAnnotations[MangledName] = FD;
3877     }
3878 
3879     // Forward declarations are emitted lazily on first use.
3880     if (!FD->doesThisDeclarationHaveABody()) {
3881       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3882           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3883         return;
3884 
3885       StringRef MangledName = getMangledName(GD);
3886 
3887       // Compute the function info and LLVM type.
3888       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3889       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3890 
3891       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3892                               /*DontDefer=*/false);
3893       return;
3894     }
3895   } else {
3896     const auto *VD = cast<VarDecl>(Global);
3897     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3898     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3899         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3900       if (LangOpts.OpenMP) {
3901         // Emit declaration of the must-be-emitted declare target variable.
3902         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3903                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3904 
3905           // If this variable has external storage and doesn't require special
3906           // link handling we defer to its canonical definition.
3907           if (VD->hasExternalStorage() &&
3908               Res != OMPDeclareTargetDeclAttr::MT_Link)
3909             return;
3910 
3911           bool UnifiedMemoryEnabled =
3912               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3913           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3914                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3915               !UnifiedMemoryEnabled) {
3916             (void)GetAddrOfGlobalVar(VD);
3917           } else {
3918             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3919                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3920                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3921                      UnifiedMemoryEnabled)) &&
3922                    "Link clause or to clause with unified memory expected.");
3923             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3924           }
3925 
3926           return;
3927         }
3928       }
3929       // If this declaration may have caused an inline variable definition to
3930       // change linkage, make sure that it's emitted.
3931       if (Context.getInlineVariableDefinitionKind(VD) ==
3932           ASTContext::InlineVariableDefinitionKind::Strong)
3933         GetAddrOfGlobalVar(VD);
3934       return;
3935     }
3936   }
3937 
3938   // Defer code generation to first use when possible, e.g. if this is an inline
3939   // function. If the global must always be emitted, do it eagerly if possible
3940   // to benefit from cache locality.
3941   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3942     // Emit the definition if it can't be deferred.
3943     EmitGlobalDefinition(GD);
3944     addEmittedDeferredDecl(GD);
3945     return;
3946   }
3947 
3948   // If we're deferring emission of a C++ variable with an
3949   // initializer, remember the order in which it appeared in the file.
3950   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3951       cast<VarDecl>(Global)->hasInit()) {
3952     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3953     CXXGlobalInits.push_back(nullptr);
3954   }
3955 
3956   StringRef MangledName = getMangledName(GD);
3957   if (GetGlobalValue(MangledName) != nullptr) {
3958     // The value has already been used and should therefore be emitted.
3959     addDeferredDeclToEmit(GD);
3960   } else if (MustBeEmitted(Global)) {
3961     // The value must be emitted, but cannot be emitted eagerly.
3962     assert(!MayBeEmittedEagerly(Global));
3963     addDeferredDeclToEmit(GD);
3964   } else {
3965     // Otherwise, remember that we saw a deferred decl with this name.  The
3966     // first use of the mangled name will cause it to move into
3967     // DeferredDeclsToEmit.
3968     DeferredDecls[MangledName] = GD;
3969   }
3970 }
3971 
3972 // Check if T is a class type with a destructor that's not dllimport.
3973 static bool HasNonDllImportDtor(QualType T) {
3974   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3975     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3976       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3977         return true;
3978 
3979   return false;
3980 }
3981 
3982 namespace {
3983   struct FunctionIsDirectlyRecursive
3984       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3985     const StringRef Name;
3986     const Builtin::Context &BI;
3987     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3988         : Name(N), BI(C) {}
3989 
3990     bool VisitCallExpr(const CallExpr *E) {
3991       const FunctionDecl *FD = E->getDirectCallee();
3992       if (!FD)
3993         return false;
3994       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3995       if (Attr && Name == Attr->getLabel())
3996         return true;
3997       unsigned BuiltinID = FD->getBuiltinID();
3998       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3999         return false;
4000       StringRef BuiltinName = BI.getName(BuiltinID);
4001       if (BuiltinName.starts_with("__builtin_") &&
4002           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
4003         return true;
4004       }
4005       return false;
4006     }
4007 
4008     bool VisitStmt(const Stmt *S) {
4009       for (const Stmt *Child : S->children())
4010         if (Child && this->Visit(Child))
4011           return true;
4012       return false;
4013     }
4014   };
4015 
4016   // Make sure we're not referencing non-imported vars or functions.
4017   struct DLLImportFunctionVisitor
4018       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
4019     bool SafeToInline = true;
4020 
4021     bool shouldVisitImplicitCode() const { return true; }
4022 
4023     bool VisitVarDecl(VarDecl *VD) {
4024       if (VD->getTLSKind()) {
4025         // A thread-local variable cannot be imported.
4026         SafeToInline = false;
4027         return SafeToInline;
4028       }
4029 
4030       // A variable definition might imply a destructor call.
4031       if (VD->isThisDeclarationADefinition())
4032         SafeToInline = !HasNonDllImportDtor(VD->getType());
4033 
4034       return SafeToInline;
4035     }
4036 
4037     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
4038       if (const auto *D = E->getTemporary()->getDestructor())
4039         SafeToInline = D->hasAttr<DLLImportAttr>();
4040       return SafeToInline;
4041     }
4042 
4043     bool VisitDeclRefExpr(DeclRefExpr *E) {
4044       ValueDecl *VD = E->getDecl();
4045       if (isa<FunctionDecl>(VD))
4046         SafeToInline = VD->hasAttr<DLLImportAttr>();
4047       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
4048         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4049       return SafeToInline;
4050     }
4051 
4052     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4053       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4054       return SafeToInline;
4055     }
4056 
4057     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4058       CXXMethodDecl *M = E->getMethodDecl();
4059       if (!M) {
4060         // Call through a pointer to member function. This is safe to inline.
4061         SafeToInline = true;
4062       } else {
4063         SafeToInline = M->hasAttr<DLLImportAttr>();
4064       }
4065       return SafeToInline;
4066     }
4067 
4068     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4069       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4070       return SafeToInline;
4071     }
4072 
4073     bool VisitCXXNewExpr(CXXNewExpr *E) {
4074       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4075       return SafeToInline;
4076     }
4077   };
4078 }
4079 
4080 // isTriviallyRecursive - Check if this function calls another
4081 // decl that, because of the asm attribute or the other decl being a builtin,
4082 // ends up pointing to itself.
4083 bool
4084 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4085   StringRef Name;
4086   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4087     // asm labels are a special kind of mangling we have to support.
4088     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4089     if (!Attr)
4090       return false;
4091     Name = Attr->getLabel();
4092   } else {
4093     Name = FD->getName();
4094   }
4095 
4096   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4097   const Stmt *Body = FD->getBody();
4098   return Body ? Walker.Visit(Body) : false;
4099 }
4100 
4101 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4102   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4103     return true;
4104 
4105   const auto *F = cast<FunctionDecl>(GD.getDecl());
4106   // Inline builtins declaration must be emitted. They often are fortified
4107   // functions.
4108   if (F->isInlineBuiltinDeclaration())
4109     return true;
4110 
4111   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4112     return false;
4113 
4114   // We don't import function bodies from other named module units since that
4115   // behavior may break ABI compatibility of the current unit.
4116   if (const Module *M = F->getOwningModule();
4117       M && M->getTopLevelModule()->isNamedModule() &&
4118       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4119     // There are practices to mark template member function as always-inline
4120     // and mark the template as extern explicit instantiation but not give
4121     // the definition for member function. So we have to emit the function
4122     // from explicitly instantiation with always-inline.
4123     //
4124     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4125     //
4126     // TODO: Maybe it is better to give it a warning if we call a non-inline
4127     // function from other module units which is marked as always-inline.
4128     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4129       return false;
4130     }
4131   }
4132 
4133   if (F->hasAttr<NoInlineAttr>())
4134     return false;
4135 
4136   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4137     // Check whether it would be safe to inline this dllimport function.
4138     DLLImportFunctionVisitor Visitor;
4139     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4140     if (!Visitor.SafeToInline)
4141       return false;
4142 
4143     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4144       // Implicit destructor invocations aren't captured in the AST, so the
4145       // check above can't see them. Check for them manually here.
4146       for (const Decl *Member : Dtor->getParent()->decls())
4147         if (isa<FieldDecl>(Member))
4148           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4149             return false;
4150       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4151         if (HasNonDllImportDtor(B.getType()))
4152           return false;
4153     }
4154   }
4155 
4156   // PR9614. Avoid cases where the source code is lying to us. An available
4157   // externally function should have an equivalent function somewhere else,
4158   // but a function that calls itself through asm label/`__builtin_` trickery is
4159   // clearly not equivalent to the real implementation.
4160   // This happens in glibc's btowc and in some configure checks.
4161   return !isTriviallyRecursive(F);
4162 }
4163 
4164 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4165   return CodeGenOpts.OptimizationLevel > 0;
4166 }
4167 
4168 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4169                                                        llvm::GlobalValue *GV) {
4170   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4171 
4172   if (FD->isCPUSpecificMultiVersion()) {
4173     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4174     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4175       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4176   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4177     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4178       // AArch64 favors the default target version over the clone if any.
4179       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4180           TC->isFirstOfVersion(I))
4181         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4182     // Ensure that the resolver function is also emitted.
4183     GetOrCreateMultiVersionResolver(GD);
4184   } else
4185     EmitGlobalFunctionDefinition(GD, GV);
4186 
4187   // Defer the resolver emission until we can reason whether the TU
4188   // contains a default target version implementation.
4189   if (FD->isTargetVersionMultiVersion())
4190     AddDeferredMultiVersionResolverToEmit(GD);
4191 }
4192 
4193 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4194   const auto *D = cast<ValueDecl>(GD.getDecl());
4195 
4196   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4197                                  Context.getSourceManager(),
4198                                  "Generating code for declaration");
4199 
4200   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4201     // At -O0, don't generate IR for functions with available_externally
4202     // linkage.
4203     if (!shouldEmitFunction(GD))
4204       return;
4205 
4206     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4207       std::string Name;
4208       llvm::raw_string_ostream OS(Name);
4209       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4210                                /*Qualified=*/true);
4211       return Name;
4212     });
4213 
4214     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4215       // Make sure to emit the definition(s) before we emit the thunks.
4216       // This is necessary for the generation of certain thunks.
4217       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4218         ABI->emitCXXStructor(GD);
4219       else if (FD->isMultiVersion())
4220         EmitMultiVersionFunctionDefinition(GD, GV);
4221       else
4222         EmitGlobalFunctionDefinition(GD, GV);
4223 
4224       if (Method->isVirtual())
4225         getVTables().EmitThunks(GD);
4226 
4227       return;
4228     }
4229 
4230     if (FD->isMultiVersion())
4231       return EmitMultiVersionFunctionDefinition(GD, GV);
4232     return EmitGlobalFunctionDefinition(GD, GV);
4233   }
4234 
4235   if (const auto *VD = dyn_cast<VarDecl>(D))
4236     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4237 
4238   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4239 }
4240 
4241 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4242                                                       llvm::Function *NewFn);
4243 
4244 static unsigned getFMVPriority(const TargetInfo &TI,
4245                                const CodeGenFunction::FMVResolverOption &RO) {
4246   llvm::SmallVector<StringRef, 8> Features{RO.Features};
4247   if (RO.Architecture)
4248     Features.push_back(*RO.Architecture);
4249   return TI.getFMVPriority(Features);
4250 }
4251 
4252 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4253 // TU can forward declare the function without causing problems.  Particularly
4254 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4255 // work with internal linkage functions, so that the same function name can be
4256 // used with internal linkage in multiple TUs.
4257 static llvm::GlobalValue::LinkageTypes
4258 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) {
4259   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4260   if (FD->getFormalLinkage() == Linkage::Internal)
4261     return llvm::GlobalValue::InternalLinkage;
4262   return llvm::GlobalValue::WeakODRLinkage;
4263 }
4264 
4265 void CodeGenModule::emitMultiVersionFunctions() {
4266   std::vector<GlobalDecl> MVFuncsToEmit;
4267   MultiVersionFuncs.swap(MVFuncsToEmit);
4268   for (GlobalDecl GD : MVFuncsToEmit) {
4269     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4270     assert(FD && "Expected a FunctionDecl");
4271 
4272     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4273       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4274       StringRef MangledName = getMangledName(CurGD);
4275       llvm::Constant *Func = GetGlobalValue(MangledName);
4276       if (!Func) {
4277         if (Decl->isDefined()) {
4278           EmitGlobalFunctionDefinition(CurGD, nullptr);
4279           Func = GetGlobalValue(MangledName);
4280         } else {
4281           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4282           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4283           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4284                                    /*DontDefer=*/false, ForDefinition);
4285         }
4286         assert(Func && "This should have just been created");
4287       }
4288       return cast<llvm::Function>(Func);
4289     };
4290 
4291     // For AArch64, a resolver is only emitted if a function marked with
4292     // target_version("default")) or target_clones() is present and defined
4293     // in this TU. For other architectures it is always emitted.
4294     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4295     SmallVector<CodeGenFunction::FMVResolverOption, 10> Options;
4296 
4297     getContext().forEachMultiversionedFunctionVersion(
4298         FD, [&](const FunctionDecl *CurFD) {
4299           llvm::SmallVector<StringRef, 8> Feats;
4300           bool IsDefined = CurFD->getDefinition() != nullptr;
4301 
4302           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4303             assert(getTarget().getTriple().isX86() && "Unsupported target");
4304             TA->getX86AddedFeatures(Feats);
4305             llvm::Function *Func = createFunction(CurFD);
4306             Options.emplace_back(Func, Feats, TA->getX86Architecture());
4307           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4308             if (TVA->isDefaultVersion() && IsDefined)
4309               ShouldEmitResolver = true;
4310             llvm::Function *Func = createFunction(CurFD);
4311             char Delim = getTarget().getTriple().isAArch64() ? '+' : ',';
4312             TVA->getFeatures(Feats, Delim);
4313             Options.emplace_back(Func, Feats);
4314           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4315             if (IsDefined)
4316               ShouldEmitResolver = true;
4317             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4318               if (!TC->isFirstOfVersion(I))
4319                 continue;
4320 
4321               llvm::Function *Func = createFunction(CurFD, I);
4322               Feats.clear();
4323               if (getTarget().getTriple().isX86()) {
4324                 TC->getX86Feature(Feats, I);
4325                 Options.emplace_back(Func, Feats, TC->getX86Architecture(I));
4326               } else {
4327                 char Delim = getTarget().getTriple().isAArch64() ? '+' : ',';
4328                 TC->getFeatures(Feats, I, Delim);
4329                 Options.emplace_back(Func, Feats);
4330               }
4331             }
4332           } else
4333             llvm_unreachable("unexpected MultiVersionKind");
4334         });
4335 
4336     if (!ShouldEmitResolver)
4337       continue;
4338 
4339     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4340     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4341       ResolverConstant = IFunc->getResolver();
4342       if (FD->isTargetClonesMultiVersion() &&
4343           !getTarget().getTriple().isAArch64()) {
4344         std::string MangledName = getMangledNameImpl(
4345             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4346         if (!GetGlobalValue(MangledName + ".ifunc")) {
4347           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4348           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4349           // In prior versions of Clang, the mangling for ifuncs incorrectly
4350           // included an .ifunc suffix. This alias is generated for backward
4351           // compatibility. It is deprecated, and may be removed in the future.
4352           auto *Alias = llvm::GlobalAlias::create(
4353               DeclTy, 0, getMultiversionLinkage(*this, GD),
4354               MangledName + ".ifunc", IFunc, &getModule());
4355           SetCommonAttributes(FD, Alias);
4356         }
4357       }
4358     }
4359     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4360 
4361     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4362 
4363     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4364       ResolverFunc->setComdat(
4365           getModule().getOrInsertComdat(ResolverFunc->getName()));
4366 
4367     const TargetInfo &TI = getTarget();
4368     llvm::stable_sort(
4369         Options, [&TI](const CodeGenFunction::FMVResolverOption &LHS,
4370                        const CodeGenFunction::FMVResolverOption &RHS) {
4371           return getFMVPriority(TI, LHS) > getFMVPriority(TI, RHS);
4372         });
4373     CodeGenFunction CGF(*this);
4374     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4375   }
4376 
4377   // Ensure that any additions to the deferred decls list caused by emitting a
4378   // variant are emitted.  This can happen when the variant itself is inline and
4379   // calls a function without linkage.
4380   if (!MVFuncsToEmit.empty())
4381     EmitDeferred();
4382 
4383   // Ensure that any additions to the multiversion funcs list from either the
4384   // deferred decls or the multiversion functions themselves are emitted.
4385   if (!MultiVersionFuncs.empty())
4386     emitMultiVersionFunctions();
4387 }
4388 
4389 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4390                                    llvm::Constant *New) {
4391   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4392   New->takeName(Old);
4393   Old->replaceAllUsesWith(New);
4394   Old->eraseFromParent();
4395 }
4396 
4397 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4398   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4399   assert(FD && "Not a FunctionDecl?");
4400   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4401   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4402   assert(DD && "Not a cpu_dispatch Function?");
4403 
4404   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4405   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4406 
4407   StringRef ResolverName = getMangledName(GD);
4408   UpdateMultiVersionNames(GD, FD, ResolverName);
4409 
4410   llvm::Type *ResolverType;
4411   GlobalDecl ResolverGD;
4412   if (getTarget().supportsIFunc()) {
4413     ResolverType = llvm::FunctionType::get(
4414         llvm::PointerType::get(DeclTy,
4415                                getTypes().getTargetAddressSpace(FD->getType())),
4416         false);
4417   }
4418   else {
4419     ResolverType = DeclTy;
4420     ResolverGD = GD;
4421   }
4422 
4423   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4424       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4425   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4426   if (supportsCOMDAT())
4427     ResolverFunc->setComdat(
4428         getModule().getOrInsertComdat(ResolverFunc->getName()));
4429 
4430   SmallVector<CodeGenFunction::FMVResolverOption, 10> Options;
4431   const TargetInfo &Target = getTarget();
4432   unsigned Index = 0;
4433   for (const IdentifierInfo *II : DD->cpus()) {
4434     // Get the name of the target function so we can look it up/create it.
4435     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4436                               getCPUSpecificMangling(*this, II->getName());
4437 
4438     llvm::Constant *Func = GetGlobalValue(MangledName);
4439 
4440     if (!Func) {
4441       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4442       if (ExistingDecl.getDecl() &&
4443           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4444         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4445         Func = GetGlobalValue(MangledName);
4446       } else {
4447         if (!ExistingDecl.getDecl())
4448           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4449 
4450       Func = GetOrCreateLLVMFunction(
4451           MangledName, DeclTy, ExistingDecl,
4452           /*ForVTable=*/false, /*DontDefer=*/true,
4453           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4454       }
4455     }
4456 
4457     llvm::SmallVector<StringRef, 32> Features;
4458     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4459     llvm::transform(Features, Features.begin(),
4460                     [](StringRef Str) { return Str.substr(1); });
4461     llvm::erase_if(Features, [&Target](StringRef Feat) {
4462       return !Target.validateCpuSupports(Feat);
4463     });
4464     Options.emplace_back(cast<llvm::Function>(Func), Features);
4465     ++Index;
4466   }
4467 
4468   llvm::stable_sort(Options, [](const CodeGenFunction::FMVResolverOption &LHS,
4469                                 const CodeGenFunction::FMVResolverOption &RHS) {
4470     return llvm::X86::getCpuSupportsMask(LHS.Features) >
4471            llvm::X86::getCpuSupportsMask(RHS.Features);
4472   });
4473 
4474   // If the list contains multiple 'default' versions, such as when it contains
4475   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4476   // always run on at least a 'pentium'). We do this by deleting the 'least
4477   // advanced' (read, lowest mangling letter).
4478   while (Options.size() > 1 && llvm::all_of(llvm::X86::getCpuSupportsMask(
4479                                                 (Options.end() - 2)->Features),
4480                                             [](auto X) { return X == 0; })) {
4481     StringRef LHSName = (Options.end() - 2)->Function->getName();
4482     StringRef RHSName = (Options.end() - 1)->Function->getName();
4483     if (LHSName.compare(RHSName) < 0)
4484       Options.erase(Options.end() - 2);
4485     else
4486       Options.erase(Options.end() - 1);
4487   }
4488 
4489   CodeGenFunction CGF(*this);
4490   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4491 
4492   if (getTarget().supportsIFunc()) {
4493     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4494     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4495     unsigned AS = IFunc->getType()->getPointerAddressSpace();
4496 
4497     // Fix up function declarations that were created for cpu_specific before
4498     // cpu_dispatch was known
4499     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4500       auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4501                                            ResolverFunc, &getModule());
4502       replaceDeclarationWith(IFunc, GI);
4503       IFunc = GI;
4504     }
4505 
4506     std::string AliasName = getMangledNameImpl(
4507         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4508     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4509     if (!AliasFunc) {
4510       auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4511                                            IFunc, &getModule());
4512       SetCommonAttributes(GD, GA);
4513     }
4514   }
4515 }
4516 
4517 /// Adds a declaration to the list of multi version functions if not present.
4518 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4519   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4520   assert(FD && "Not a FunctionDecl?");
4521 
4522   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4523     std::string MangledName =
4524         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4525     if (!DeferredResolversToEmit.insert(MangledName).second)
4526       return;
4527   }
4528   MultiVersionFuncs.push_back(GD);
4529 }
4530 
4531 /// If a dispatcher for the specified mangled name is not in the module, create
4532 /// and return it. The dispatcher is either an llvm Function with the specified
4533 /// type, or a global ifunc.
4534 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4535   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4536   assert(FD && "Not a FunctionDecl?");
4537 
4538   std::string MangledName =
4539       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4540 
4541   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4542   // a separate resolver).
4543   std::string ResolverName = MangledName;
4544   if (getTarget().supportsIFunc()) {
4545     switch (FD->getMultiVersionKind()) {
4546     case MultiVersionKind::None:
4547       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4548     case MultiVersionKind::Target:
4549     case MultiVersionKind::CPUSpecific:
4550     case MultiVersionKind::CPUDispatch:
4551       ResolverName += ".ifunc";
4552       break;
4553     case MultiVersionKind::TargetClones:
4554     case MultiVersionKind::TargetVersion:
4555       break;
4556     }
4557   } else if (FD->isTargetMultiVersion()) {
4558     ResolverName += ".resolver";
4559   }
4560 
4561   bool ShouldReturnIFunc =
4562       getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion();
4563 
4564   // If the resolver has already been created, just return it. This lookup may
4565   // yield a function declaration instead of a resolver on AArch64. That is
4566   // because we didn't know whether a resolver will be generated when we first
4567   // encountered a use of the symbol named after this resolver. Therefore,
4568   // targets which support ifuncs should not return here unless we actually
4569   // found an ifunc.
4570   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4571   if (ResolverGV && (isa<llvm::GlobalIFunc>(ResolverGV) || !ShouldReturnIFunc))
4572     return ResolverGV;
4573 
4574   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4575   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4576 
4577   // The resolver needs to be created. For target and target_clones, defer
4578   // creation until the end of the TU.
4579   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4580     AddDeferredMultiVersionResolverToEmit(GD);
4581 
4582   // For cpu_specific, don't create an ifunc yet because we don't know if the
4583   // cpu_dispatch will be emitted in this translation unit.
4584   if (ShouldReturnIFunc) {
4585     unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4586     llvm::Type *ResolverType =
4587         llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4588     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4589         MangledName + ".resolver", ResolverType, GlobalDecl{},
4590         /*ForVTable=*/false);
4591     llvm::GlobalIFunc *GIF =
4592         llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4593                                   "", Resolver, &getModule());
4594     GIF->setName(ResolverName);
4595     SetCommonAttributes(FD, GIF);
4596     if (ResolverGV)
4597       replaceDeclarationWith(ResolverGV, GIF);
4598     return GIF;
4599   }
4600 
4601   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4602       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4603   assert(isa<llvm::GlobalValue>(Resolver) && !ResolverGV &&
4604          "Resolver should be created for the first time");
4605   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4606   return Resolver;
4607 }
4608 
4609 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4610                                            const llvm::GlobalValue *GV) const {
4611   auto SC = GV->getDLLStorageClass();
4612   if (SC == llvm::GlobalValue::DefaultStorageClass)
4613     return false;
4614   const Decl *MRD = D->getMostRecentDecl();
4615   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4616             !MRD->hasAttr<DLLImportAttr>()) ||
4617            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4618             !MRD->hasAttr<DLLExportAttr>())) &&
4619           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4620 }
4621 
4622 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4623 /// module, create and return an llvm Function with the specified type. If there
4624 /// is something in the module with the specified name, return it potentially
4625 /// bitcasted to the right type.
4626 ///
4627 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4628 /// to set the attributes on the function when it is first created.
4629 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4630     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4631     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4632     ForDefinition_t IsForDefinition) {
4633   const Decl *D = GD.getDecl();
4634 
4635   std::string NameWithoutMultiVersionMangling;
4636   // Any attempts to use a MultiVersion function should result in retrieving
4637   // the iFunc instead. Name Mangling will handle the rest of the changes.
4638   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4639     // For the device mark the function as one that should be emitted.
4640     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4641         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4642         !DontDefer && !IsForDefinition) {
4643       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4644         GlobalDecl GDDef;
4645         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4646           GDDef = GlobalDecl(CD, GD.getCtorType());
4647         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4648           GDDef = GlobalDecl(DD, GD.getDtorType());
4649         else
4650           GDDef = GlobalDecl(FDDef);
4651         EmitGlobal(GDDef);
4652       }
4653     }
4654 
4655     if (FD->isMultiVersion()) {
4656       UpdateMultiVersionNames(GD, FD, MangledName);
4657       if (!IsForDefinition) {
4658         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4659         // function is used. Instead we defer the emission until we see a
4660         // default definition. In the meantime we just reference the symbol
4661         // without FMV mangling (it may or may not be replaced later).
4662         if (getTarget().getTriple().isAArch64()) {
4663           AddDeferredMultiVersionResolverToEmit(GD);
4664           NameWithoutMultiVersionMangling = getMangledNameImpl(
4665               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4666         } else
4667           return GetOrCreateMultiVersionResolver(GD);
4668       }
4669     }
4670   }
4671 
4672   if (!NameWithoutMultiVersionMangling.empty())
4673     MangledName = NameWithoutMultiVersionMangling;
4674 
4675   // Lookup the entry, lazily creating it if necessary.
4676   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4677   if (Entry) {
4678     if (WeakRefReferences.erase(Entry)) {
4679       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4680       if (FD && !FD->hasAttr<WeakAttr>())
4681         Entry->setLinkage(llvm::Function::ExternalLinkage);
4682     }
4683 
4684     // Handle dropped DLL attributes.
4685     if (D && shouldDropDLLAttribute(D, Entry)) {
4686       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4687       setDSOLocal(Entry);
4688     }
4689 
4690     // If there are two attempts to define the same mangled name, issue an
4691     // error.
4692     if (IsForDefinition && !Entry->isDeclaration()) {
4693       GlobalDecl OtherGD;
4694       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4695       // to make sure that we issue an error only once.
4696       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4697           (GD.getCanonicalDecl().getDecl() !=
4698            OtherGD.getCanonicalDecl().getDecl()) &&
4699           DiagnosedConflictingDefinitions.insert(GD).second) {
4700         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4701             << MangledName;
4702         getDiags().Report(OtherGD.getDecl()->getLocation(),
4703                           diag::note_previous_definition);
4704       }
4705     }
4706 
4707     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4708         (Entry->getValueType() == Ty)) {
4709       return Entry;
4710     }
4711 
4712     // Make sure the result is of the correct type.
4713     // (If function is requested for a definition, we always need to create a new
4714     // function, not just return a bitcast.)
4715     if (!IsForDefinition)
4716       return Entry;
4717   }
4718 
4719   // This function doesn't have a complete type (for example, the return
4720   // type is an incomplete struct). Use a fake type instead, and make
4721   // sure not to try to set attributes.
4722   bool IsIncompleteFunction = false;
4723 
4724   llvm::FunctionType *FTy;
4725   if (isa<llvm::FunctionType>(Ty)) {
4726     FTy = cast<llvm::FunctionType>(Ty);
4727   } else {
4728     FTy = llvm::FunctionType::get(VoidTy, false);
4729     IsIncompleteFunction = true;
4730   }
4731 
4732   llvm::Function *F =
4733       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4734                              Entry ? StringRef() : MangledName, &getModule());
4735 
4736   // Store the declaration associated with this function so it is potentially
4737   // updated by further declarations or definitions and emitted at the end.
4738   if (D && D->hasAttr<AnnotateAttr>())
4739     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4740 
4741   // If we already created a function with the same mangled name (but different
4742   // type) before, take its name and add it to the list of functions to be
4743   // replaced with F at the end of CodeGen.
4744   //
4745   // This happens if there is a prototype for a function (e.g. "int f()") and
4746   // then a definition of a different type (e.g. "int f(int x)").
4747   if (Entry) {
4748     F->takeName(Entry);
4749 
4750     // This might be an implementation of a function without a prototype, in
4751     // which case, try to do special replacement of calls which match the new
4752     // prototype.  The really key thing here is that we also potentially drop
4753     // arguments from the call site so as to make a direct call, which makes the
4754     // inliner happier and suppresses a number of optimizer warnings (!) about
4755     // dropping arguments.
4756     if (!Entry->use_empty()) {
4757       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4758       Entry->removeDeadConstantUsers();
4759     }
4760 
4761     addGlobalValReplacement(Entry, F);
4762   }
4763 
4764   assert(F->getName() == MangledName && "name was uniqued!");
4765   if (D)
4766     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4767   if (ExtraAttrs.hasFnAttrs()) {
4768     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4769     F->addFnAttrs(B);
4770   }
4771 
4772   if (!DontDefer) {
4773     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4774     // each other bottoming out with the base dtor.  Therefore we emit non-base
4775     // dtors on usage, even if there is no dtor definition in the TU.
4776     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4777         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4778                                            GD.getDtorType()))
4779       addDeferredDeclToEmit(GD);
4780 
4781     // This is the first use or definition of a mangled name.  If there is a
4782     // deferred decl with this name, remember that we need to emit it at the end
4783     // of the file.
4784     auto DDI = DeferredDecls.find(MangledName);
4785     if (DDI != DeferredDecls.end()) {
4786       // Move the potentially referenced deferred decl to the
4787       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4788       // don't need it anymore).
4789       addDeferredDeclToEmit(DDI->second);
4790       DeferredDecls.erase(DDI);
4791 
4792       // Otherwise, there are cases we have to worry about where we're
4793       // using a declaration for which we must emit a definition but where
4794       // we might not find a top-level definition:
4795       //   - member functions defined inline in their classes
4796       //   - friend functions defined inline in some class
4797       //   - special member functions with implicit definitions
4798       // If we ever change our AST traversal to walk into class methods,
4799       // this will be unnecessary.
4800       //
4801       // We also don't emit a definition for a function if it's going to be an
4802       // entry in a vtable, unless it's already marked as used.
4803     } else if (getLangOpts().CPlusPlus && D) {
4804       // Look for a declaration that's lexically in a record.
4805       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4806            FD = FD->getPreviousDecl()) {
4807         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4808           if (FD->doesThisDeclarationHaveABody()) {
4809             addDeferredDeclToEmit(GD.getWithDecl(FD));
4810             break;
4811           }
4812         }
4813       }
4814     }
4815   }
4816 
4817   // Make sure the result is of the requested type.
4818   if (!IsIncompleteFunction) {
4819     assert(F->getFunctionType() == Ty);
4820     return F;
4821   }
4822 
4823   return F;
4824 }
4825 
4826 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4827 /// non-null, then this function will use the specified type if it has to
4828 /// create it (this occurs when we see a definition of the function).
4829 llvm::Constant *
4830 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4831                                  bool DontDefer,
4832                                  ForDefinition_t IsForDefinition) {
4833   // If there was no specific requested type, just convert it now.
4834   if (!Ty) {
4835     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4836     Ty = getTypes().ConvertType(FD->getType());
4837   }
4838 
4839   // Devirtualized destructor calls may come through here instead of via
4840   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4841   // of the complete destructor when necessary.
4842   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4843     if (getTarget().getCXXABI().isMicrosoft() &&
4844         GD.getDtorType() == Dtor_Complete &&
4845         DD->getParent()->getNumVBases() == 0)
4846       GD = GlobalDecl(DD, Dtor_Base);
4847   }
4848 
4849   StringRef MangledName = getMangledName(GD);
4850   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4851                                     /*IsThunk=*/false, llvm::AttributeList(),
4852                                     IsForDefinition);
4853   // Returns kernel handle for HIP kernel stub function.
4854   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4855       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4856     auto *Handle = getCUDARuntime().getKernelHandle(
4857         cast<llvm::Function>(F->stripPointerCasts()), GD);
4858     if (IsForDefinition)
4859       return F;
4860     return Handle;
4861   }
4862   return F;
4863 }
4864 
4865 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4866   llvm::GlobalValue *F =
4867       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4868 
4869   return llvm::NoCFIValue::get(F);
4870 }
4871 
4872 static const FunctionDecl *
4873 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4874   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4875   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4876 
4877   IdentifierInfo &CII = C.Idents.get(Name);
4878   for (const auto *Result : DC->lookup(&CII))
4879     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4880       return FD;
4881 
4882   if (!C.getLangOpts().CPlusPlus)
4883     return nullptr;
4884 
4885   // Demangle the premangled name from getTerminateFn()
4886   IdentifierInfo &CXXII =
4887       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4888           ? C.Idents.get("terminate")
4889           : C.Idents.get(Name);
4890 
4891   for (const auto &N : {"__cxxabiv1", "std"}) {
4892     IdentifierInfo &NS = C.Idents.get(N);
4893     for (const auto *Result : DC->lookup(&NS)) {
4894       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4895       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4896         for (const auto *Result : LSD->lookup(&NS))
4897           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4898             break;
4899 
4900       if (ND)
4901         for (const auto *Result : ND->lookup(&CXXII))
4902           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4903             return FD;
4904     }
4905   }
4906 
4907   return nullptr;
4908 }
4909 
4910 static void setWindowsItaniumDLLImport(CodeGenModule &CGM, bool Local,
4911                                        llvm::Function *F, StringRef Name) {
4912   // In Windows Itanium environments, try to mark runtime functions
4913   // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4914   // will link their standard library statically or dynamically. Marking
4915   // functions imported when they are not imported can cause linker errors
4916   // and warnings.
4917   if (!Local && CGM.getTriple().isWindowsItaniumEnvironment() &&
4918       !CGM.getCodeGenOpts().LTOVisibilityPublicStd) {
4919     const FunctionDecl *FD = GetRuntimeFunctionDecl(CGM.getContext(), Name);
4920     if (!FD || FD->hasAttr<DLLImportAttr>()) {
4921       F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4922       F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4923     }
4924   }
4925 }
4926 
4927 llvm::FunctionCallee CodeGenModule::CreateRuntimeFunction(
4928     QualType ReturnTy, ArrayRef<QualType> ArgTys, StringRef Name,
4929     llvm::AttributeList ExtraAttrs, bool Local, bool AssumeConvergent) {
4930   if (AssumeConvergent) {
4931     ExtraAttrs =
4932         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4933   }
4934 
4935   QualType FTy = Context.getFunctionType(ReturnTy, ArgTys,
4936                                          FunctionProtoType::ExtProtoInfo());
4937   const CGFunctionInfo &Info = getTypes().arrangeFreeFunctionType(
4938       Context.getCanonicalType(FTy).castAs<FunctionProtoType>());
4939   auto *ConvTy = getTypes().GetFunctionType(Info);
4940   llvm::Constant *C = GetOrCreateLLVMFunction(
4941       Name, ConvTy, GlobalDecl(), /*ForVTable=*/false,
4942       /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
4943 
4944   if (auto *F = dyn_cast<llvm::Function>(C)) {
4945     if (F->empty()) {
4946       SetLLVMFunctionAttributes(GlobalDecl(), Info, F, /*IsThunk*/ false);
4947       // FIXME: Set calling-conv properly in ExtProtoInfo
4948       F->setCallingConv(getRuntimeCC());
4949       setWindowsItaniumDLLImport(*this, Local, F, Name);
4950       setDSOLocal(F);
4951     }
4952   }
4953   return {ConvTy, C};
4954 }
4955 
4956 /// CreateRuntimeFunction - Create a new runtime function with the specified
4957 /// type and name.
4958 llvm::FunctionCallee
4959 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4960                                      llvm::AttributeList ExtraAttrs, bool Local,
4961                                      bool AssumeConvergent) {
4962   if (AssumeConvergent) {
4963     ExtraAttrs =
4964         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4965   }
4966 
4967   llvm::Constant *C =
4968       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4969                               /*DontDefer=*/false, /*IsThunk=*/false,
4970                               ExtraAttrs);
4971 
4972   if (auto *F = dyn_cast<llvm::Function>(C)) {
4973     if (F->empty()) {
4974       F->setCallingConv(getRuntimeCC());
4975       setWindowsItaniumDLLImport(*this, Local, F, Name);
4976       setDSOLocal(F);
4977       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4978       // of trying to approximate the attributes using the LLVM function
4979       // signature.  The other overload of CreateRuntimeFunction does this; it
4980       // should be used for new code.
4981       markRegisterParameterAttributes(F);
4982     }
4983   }
4984 
4985   return {FTy, C};
4986 }
4987 
4988 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4989 /// create and return an llvm GlobalVariable with the specified type and address
4990 /// space. If there is something in the module with the specified name, return
4991 /// it potentially bitcasted to the right type.
4992 ///
4993 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4994 /// to set the attributes on the global when it is first created.
4995 ///
4996 /// If IsForDefinition is true, it is guaranteed that an actual global with
4997 /// type Ty will be returned, not conversion of a variable with the same
4998 /// mangled name but some other type.
4999 llvm::Constant *
5000 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
5001                                      LangAS AddrSpace, const VarDecl *D,
5002                                      ForDefinition_t IsForDefinition) {
5003   // Lookup the entry, lazily creating it if necessary.
5004   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5005   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5006   if (Entry) {
5007     if (WeakRefReferences.erase(Entry)) {
5008       if (D && !D->hasAttr<WeakAttr>())
5009         Entry->setLinkage(llvm::Function::ExternalLinkage);
5010     }
5011 
5012     // Handle dropped DLL attributes.
5013     if (D && shouldDropDLLAttribute(D, Entry))
5014       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
5015 
5016     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
5017       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
5018 
5019     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
5020       return Entry;
5021 
5022     // If there are two attempts to define the same mangled name, issue an
5023     // error.
5024     if (IsForDefinition && !Entry->isDeclaration()) {
5025       GlobalDecl OtherGD;
5026       const VarDecl *OtherD;
5027 
5028       // Check that D is not yet in DiagnosedConflictingDefinitions is required
5029       // to make sure that we issue an error only once.
5030       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
5031           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
5032           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
5033           OtherD->hasInit() &&
5034           DiagnosedConflictingDefinitions.insert(D).second) {
5035         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
5036             << MangledName;
5037         getDiags().Report(OtherGD.getDecl()->getLocation(),
5038                           diag::note_previous_definition);
5039       }
5040     }
5041 
5042     // Make sure the result is of the correct type.
5043     if (Entry->getType()->getAddressSpace() != TargetAS)
5044       return llvm::ConstantExpr::getAddrSpaceCast(
5045           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
5046 
5047     // (If global is requested for a definition, we always need to create a new
5048     // global, not just return a bitcast.)
5049     if (!IsForDefinition)
5050       return Entry;
5051   }
5052 
5053   auto DAddrSpace = GetGlobalVarAddressSpace(D);
5054 
5055   auto *GV = new llvm::GlobalVariable(
5056       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
5057       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
5058       getContext().getTargetAddressSpace(DAddrSpace));
5059 
5060   // If we already created a global with the same mangled name (but different
5061   // type) before, take its name and remove it from its parent.
5062   if (Entry) {
5063     GV->takeName(Entry);
5064 
5065     if (!Entry->use_empty()) {
5066       Entry->replaceAllUsesWith(GV);
5067     }
5068 
5069     Entry->eraseFromParent();
5070   }
5071 
5072   // This is the first use or definition of a mangled name.  If there is a
5073   // deferred decl with this name, remember that we need to emit it at the end
5074   // of the file.
5075   auto DDI = DeferredDecls.find(MangledName);
5076   if (DDI != DeferredDecls.end()) {
5077     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5078     // list, and remove it from DeferredDecls (since we don't need it anymore).
5079     addDeferredDeclToEmit(DDI->second);
5080     DeferredDecls.erase(DDI);
5081   }
5082 
5083   // Handle things which are present even on external declarations.
5084   if (D) {
5085     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5086       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5087 
5088     // FIXME: This code is overly simple and should be merged with other global
5089     // handling.
5090     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5091 
5092     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5093 
5094     setLinkageForGV(GV, D);
5095 
5096     if (D->getTLSKind()) {
5097       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5098         CXXThreadLocals.push_back(D);
5099       setTLSMode(GV, *D);
5100     }
5101 
5102     setGVProperties(GV, D);
5103 
5104     // If required by the ABI, treat declarations of static data members with
5105     // inline initializers as definitions.
5106     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5107       EmitGlobalVarDefinition(D);
5108     }
5109 
5110     // Emit section information for extern variables.
5111     if (D->hasExternalStorage()) {
5112       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5113         GV->setSection(SA->getName());
5114     }
5115 
5116     // Handle XCore specific ABI requirements.
5117     if (getTriple().getArch() == llvm::Triple::xcore &&
5118         D->getLanguageLinkage() == CLanguageLinkage &&
5119         D->getType().isConstant(Context) &&
5120         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5121       GV->setSection(".cp.rodata");
5122 
5123     // Handle code model attribute
5124     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5125       GV->setCodeModel(CMA->getModel());
5126 
5127     // Check if we a have a const declaration with an initializer, we may be
5128     // able to emit it as available_externally to expose it's value to the
5129     // optimizer.
5130     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5131         D->getType().isConstQualified() && !GV->hasInitializer() &&
5132         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5133       const auto *Record =
5134           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5135       bool HasMutableFields = Record && Record->hasMutableFields();
5136       if (!HasMutableFields) {
5137         const VarDecl *InitDecl;
5138         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5139         if (InitExpr) {
5140           ConstantEmitter emitter(*this);
5141           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5142           if (Init) {
5143             auto *InitType = Init->getType();
5144             if (GV->getValueType() != InitType) {
5145               // The type of the initializer does not match the definition.
5146               // This happens when an initializer has a different type from
5147               // the type of the global (because of padding at the end of a
5148               // structure for instance).
5149               GV->setName(StringRef());
5150               // Make a new global with the correct type, this is now guaranteed
5151               // to work.
5152               auto *NewGV = cast<llvm::GlobalVariable>(
5153                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5154                       ->stripPointerCasts());
5155 
5156               // Erase the old global, since it is no longer used.
5157               GV->eraseFromParent();
5158               GV = NewGV;
5159             } else {
5160               GV->setInitializer(Init);
5161               GV->setConstant(true);
5162               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5163             }
5164             emitter.finalize(GV);
5165           }
5166         }
5167       }
5168     }
5169   }
5170 
5171   if (D &&
5172       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5173     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5174     // External HIP managed variables needed to be recorded for transformation
5175     // in both device and host compilations.
5176     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5177         D->hasExternalStorage())
5178       getCUDARuntime().handleVarRegistration(D, *GV);
5179   }
5180 
5181   if (D)
5182     SanitizerMD->reportGlobal(GV, *D);
5183 
5184   LangAS ExpectedAS =
5185       D ? D->getType().getAddressSpace()
5186         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5187   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5188   if (DAddrSpace != ExpectedAS) {
5189     return getTargetCodeGenInfo().performAddrSpaceCast(
5190         *this, GV, DAddrSpace, ExpectedAS,
5191         llvm::PointerType::get(getLLVMContext(), TargetAS));
5192   }
5193 
5194   return GV;
5195 }
5196 
5197 llvm::Constant *
5198 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5199   const Decl *D = GD.getDecl();
5200 
5201   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5202     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5203                                 /*DontDefer=*/false, IsForDefinition);
5204 
5205   if (isa<CXXMethodDecl>(D)) {
5206     auto FInfo =
5207         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5208     auto Ty = getTypes().GetFunctionType(*FInfo);
5209     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5210                              IsForDefinition);
5211   }
5212 
5213   if (isa<FunctionDecl>(D)) {
5214     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5215     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5216     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5217                              IsForDefinition);
5218   }
5219 
5220   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5221 }
5222 
5223 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5224     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5225     llvm::Align Alignment) {
5226   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5227   llvm::GlobalVariable *OldGV = nullptr;
5228 
5229   if (GV) {
5230     // Check if the variable has the right type.
5231     if (GV->getValueType() == Ty)
5232       return GV;
5233 
5234     // Because C++ name mangling, the only way we can end up with an already
5235     // existing global with the same name is if it has been declared extern "C".
5236     assert(GV->isDeclaration() && "Declaration has wrong type!");
5237     OldGV = GV;
5238   }
5239 
5240   // Create a new variable.
5241   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5242                                 Linkage, nullptr, Name);
5243 
5244   if (OldGV) {
5245     // Replace occurrences of the old variable if needed.
5246     GV->takeName(OldGV);
5247 
5248     if (!OldGV->use_empty()) {
5249       OldGV->replaceAllUsesWith(GV);
5250     }
5251 
5252     OldGV->eraseFromParent();
5253   }
5254 
5255   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5256       !GV->hasAvailableExternallyLinkage())
5257     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5258 
5259   GV->setAlignment(Alignment);
5260 
5261   return GV;
5262 }
5263 
5264 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5265 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5266 /// then it will be created with the specified type instead of whatever the
5267 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5268 /// that an actual global with type Ty will be returned, not conversion of a
5269 /// variable with the same mangled name but some other type.
5270 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5271                                                   llvm::Type *Ty,
5272                                            ForDefinition_t IsForDefinition) {
5273   assert(D->hasGlobalStorage() && "Not a global variable");
5274   QualType ASTTy = D->getType();
5275   if (!Ty)
5276     Ty = getTypes().ConvertTypeForMem(ASTTy);
5277 
5278   StringRef MangledName = getMangledName(D);
5279   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5280                                IsForDefinition);
5281 }
5282 
5283 /// CreateRuntimeVariable - Create a new runtime global variable with the
5284 /// specified type and name.
5285 llvm::Constant *
5286 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5287                                      StringRef Name) {
5288   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5289                                                        : LangAS::Default;
5290   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5291   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5292   return Ret;
5293 }
5294 
5295 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5296   assert(!D->getInit() && "Cannot emit definite definitions here!");
5297 
5298   StringRef MangledName = getMangledName(D);
5299   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5300 
5301   // We already have a definition, not declaration, with the same mangled name.
5302   // Emitting of declaration is not required (and actually overwrites emitted
5303   // definition).
5304   if (GV && !GV->isDeclaration())
5305     return;
5306 
5307   // If we have not seen a reference to this variable yet, place it into the
5308   // deferred declarations table to be emitted if needed later.
5309   if (!MustBeEmitted(D) && !GV) {
5310       DeferredDecls[MangledName] = D;
5311       return;
5312   }
5313 
5314   // The tentative definition is the only definition.
5315   EmitGlobalVarDefinition(D);
5316 }
5317 
5318 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5319   if (auto const *V = dyn_cast<const VarDecl>(D))
5320     EmitExternalVarDeclaration(V);
5321   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5322     EmitExternalFunctionDeclaration(FD);
5323 }
5324 
5325 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5326   return Context.toCharUnitsFromBits(
5327       getDataLayout().getTypeStoreSizeInBits(Ty));
5328 }
5329 
5330 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5331   if (LangOpts.OpenCL) {
5332     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5333     assert(AS == LangAS::opencl_global ||
5334            AS == LangAS::opencl_global_device ||
5335            AS == LangAS::opencl_global_host ||
5336            AS == LangAS::opencl_constant ||
5337            AS == LangAS::opencl_local ||
5338            AS >= LangAS::FirstTargetAddressSpace);
5339     return AS;
5340   }
5341 
5342   if (LangOpts.SYCLIsDevice &&
5343       (!D || D->getType().getAddressSpace() == LangAS::Default))
5344     return LangAS::sycl_global;
5345 
5346   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5347     if (D) {
5348       if (D->hasAttr<CUDAConstantAttr>())
5349         return LangAS::cuda_constant;
5350       if (D->hasAttr<CUDASharedAttr>())
5351         return LangAS::cuda_shared;
5352       if (D->hasAttr<CUDADeviceAttr>())
5353         return LangAS::cuda_device;
5354       if (D->getType().isConstQualified())
5355         return LangAS::cuda_constant;
5356     }
5357     return LangAS::cuda_device;
5358   }
5359 
5360   if (LangOpts.OpenMP) {
5361     LangAS AS;
5362     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5363       return AS;
5364   }
5365   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5366 }
5367 
5368 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5369   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5370   if (LangOpts.OpenCL)
5371     return LangAS::opencl_constant;
5372   if (LangOpts.SYCLIsDevice)
5373     return LangAS::sycl_global;
5374   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5375     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5376     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5377     // with OpVariable instructions with Generic storage class which is not
5378     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5379     // UniformConstant storage class is not viable as pointers to it may not be
5380     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5381     return LangAS::cuda_device;
5382   if (auto AS = getTarget().getConstantAddressSpace())
5383     return *AS;
5384   return LangAS::Default;
5385 }
5386 
5387 // In address space agnostic languages, string literals are in default address
5388 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5389 // emitted in constant address space in LLVM IR. To be consistent with other
5390 // parts of AST, string literal global variables in constant address space
5391 // need to be casted to default address space before being put into address
5392 // map and referenced by other part of CodeGen.
5393 // In OpenCL, string literals are in constant address space in AST, therefore
5394 // they should not be casted to default address space.
5395 static llvm::Constant *
5396 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5397                                        llvm::GlobalVariable *GV) {
5398   llvm::Constant *Cast = GV;
5399   if (!CGM.getLangOpts().OpenCL) {
5400     auto AS = CGM.GetGlobalConstantAddressSpace();
5401     if (AS != LangAS::Default)
5402       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5403           CGM, GV, AS, LangAS::Default,
5404           llvm::PointerType::get(
5405               CGM.getLLVMContext(),
5406               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5407   }
5408   return Cast;
5409 }
5410 
5411 template<typename SomeDecl>
5412 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5413                                                llvm::GlobalValue *GV) {
5414   if (!getLangOpts().CPlusPlus)
5415     return;
5416 
5417   // Must have 'used' attribute, or else inline assembly can't rely on
5418   // the name existing.
5419   if (!D->template hasAttr<UsedAttr>())
5420     return;
5421 
5422   // Must have internal linkage and an ordinary name.
5423   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5424     return;
5425 
5426   // Must be in an extern "C" context. Entities declared directly within
5427   // a record are not extern "C" even if the record is in such a context.
5428   const SomeDecl *First = D->getFirstDecl();
5429   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5430     return;
5431 
5432   // OK, this is an internal linkage entity inside an extern "C" linkage
5433   // specification. Make a note of that so we can give it the "expected"
5434   // mangled name if nothing else is using that name.
5435   std::pair<StaticExternCMap::iterator, bool> R =
5436       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5437 
5438   // If we have multiple internal linkage entities with the same name
5439   // in extern "C" regions, none of them gets that name.
5440   if (!R.second)
5441     R.first->second = nullptr;
5442 }
5443 
5444 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5445   if (!CGM.supportsCOMDAT())
5446     return false;
5447 
5448   if (D.hasAttr<SelectAnyAttr>())
5449     return true;
5450 
5451   GVALinkage Linkage;
5452   if (auto *VD = dyn_cast<VarDecl>(&D))
5453     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5454   else
5455     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5456 
5457   switch (Linkage) {
5458   case GVA_Internal:
5459   case GVA_AvailableExternally:
5460   case GVA_StrongExternal:
5461     return false;
5462   case GVA_DiscardableODR:
5463   case GVA_StrongODR:
5464     return true;
5465   }
5466   llvm_unreachable("No such linkage");
5467 }
5468 
5469 bool CodeGenModule::supportsCOMDAT() const {
5470   return getTriple().supportsCOMDAT();
5471 }
5472 
5473 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5474                                           llvm::GlobalObject &GO) {
5475   if (!shouldBeInCOMDAT(*this, D))
5476     return;
5477   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5478 }
5479 
5480 const ABIInfo &CodeGenModule::getABIInfo() {
5481   return getTargetCodeGenInfo().getABIInfo();
5482 }
5483 
5484 /// Pass IsTentative as true if you want to create a tentative definition.
5485 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5486                                             bool IsTentative) {
5487   // OpenCL global variables of sampler type are translated to function calls,
5488   // therefore no need to be translated.
5489   QualType ASTTy = D->getType();
5490   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5491     return;
5492 
5493   // If this is OpenMP device, check if it is legal to emit this global
5494   // normally.
5495   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5496       OpenMPRuntime->emitTargetGlobalVariable(D))
5497     return;
5498 
5499   llvm::TrackingVH<llvm::Constant> Init;
5500   bool NeedsGlobalCtor = false;
5501   // Whether the definition of the variable is available externally.
5502   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5503   // since this is the job for its original source.
5504   bool IsDefinitionAvailableExternally =
5505       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5506   bool NeedsGlobalDtor =
5507       !IsDefinitionAvailableExternally &&
5508       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5509 
5510   // It is helpless to emit the definition for an available_externally variable
5511   // which can't be marked as const.
5512   // We don't need to check if it needs global ctor or dtor. See the above
5513   // comment for ideas.
5514   if (IsDefinitionAvailableExternally &&
5515       (!D->hasConstantInitialization() ||
5516        // TODO: Update this when we have interface to check constexpr
5517        // destructor.
5518        D->needsDestruction(getContext()) ||
5519        !D->getType().isConstantStorage(getContext(), true, true)))
5520     return;
5521 
5522   const VarDecl *InitDecl;
5523   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5524 
5525   std::optional<ConstantEmitter> emitter;
5526 
5527   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5528   // as part of their declaration."  Sema has already checked for
5529   // error cases, so we just need to set Init to UndefValue.
5530   bool IsCUDASharedVar =
5531       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5532   // Shadows of initialized device-side global variables are also left
5533   // undefined.
5534   // Managed Variables should be initialized on both host side and device side.
5535   bool IsCUDAShadowVar =
5536       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5537       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5538        D->hasAttr<CUDASharedAttr>());
5539   bool IsCUDADeviceShadowVar =
5540       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5541       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5542        D->getType()->isCUDADeviceBuiltinTextureType());
5543   if (getLangOpts().CUDA &&
5544       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5545     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5546   else if (D->hasAttr<LoaderUninitializedAttr>())
5547     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5548   else if (!InitExpr) {
5549     // This is a tentative definition; tentative definitions are
5550     // implicitly initialized with { 0 }.
5551     //
5552     // Note that tentative definitions are only emitted at the end of
5553     // a translation unit, so they should never have incomplete
5554     // type. In addition, EmitTentativeDefinition makes sure that we
5555     // never attempt to emit a tentative definition if a real one
5556     // exists. A use may still exists, however, so we still may need
5557     // to do a RAUW.
5558     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5559     Init = EmitNullConstant(D->getType());
5560   } else {
5561     initializedGlobalDecl = GlobalDecl(D);
5562     emitter.emplace(*this);
5563     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5564     if (!Initializer) {
5565       QualType T = InitExpr->getType();
5566       if (D->getType()->isReferenceType())
5567         T = D->getType();
5568 
5569       if (getLangOpts().CPlusPlus) {
5570         Init = EmitNullConstant(T);
5571         if (!IsDefinitionAvailableExternally)
5572           NeedsGlobalCtor = true;
5573         if (InitDecl->hasFlexibleArrayInit(getContext())) {
5574           ErrorUnsupported(D, "flexible array initializer");
5575           // We cannot create ctor for flexible array initializer
5576           NeedsGlobalCtor = false;
5577         }
5578       } else {
5579         ErrorUnsupported(D, "static initializer");
5580         Init = llvm::PoisonValue::get(getTypes().ConvertType(T));
5581       }
5582     } else {
5583       Init = Initializer;
5584       // We don't need an initializer, so remove the entry for the delayed
5585       // initializer position (just in case this entry was delayed) if we
5586       // also don't need to register a destructor.
5587       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5588         DelayedCXXInitPosition.erase(D);
5589 
5590 #ifndef NDEBUG
5591       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5592                           InitDecl->getFlexibleArrayInitChars(getContext());
5593       CharUnits CstSize = CharUnits::fromQuantity(
5594           getDataLayout().getTypeAllocSize(Init->getType()));
5595       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5596 #endif
5597     }
5598   }
5599 
5600   llvm::Type* InitType = Init->getType();
5601   llvm::Constant *Entry =
5602       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5603 
5604   // Strip off pointer casts if we got them.
5605   Entry = Entry->stripPointerCasts();
5606 
5607   // Entry is now either a Function or GlobalVariable.
5608   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5609 
5610   // We have a definition after a declaration with the wrong type.
5611   // We must make a new GlobalVariable* and update everything that used OldGV
5612   // (a declaration or tentative definition) with the new GlobalVariable*
5613   // (which will be a definition).
5614   //
5615   // This happens if there is a prototype for a global (e.g.
5616   // "extern int x[];") and then a definition of a different type (e.g.
5617   // "int x[10];"). This also happens when an initializer has a different type
5618   // from the type of the global (this happens with unions).
5619   if (!GV || GV->getValueType() != InitType ||
5620       GV->getType()->getAddressSpace() !=
5621           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5622 
5623     // Move the old entry aside so that we'll create a new one.
5624     Entry->setName(StringRef());
5625 
5626     // Make a new global with the correct type, this is now guaranteed to work.
5627     GV = cast<llvm::GlobalVariable>(
5628         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5629             ->stripPointerCasts());
5630 
5631     // Replace all uses of the old global with the new global
5632     llvm::Constant *NewPtrForOldDecl =
5633         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5634                                                              Entry->getType());
5635     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5636 
5637     // Erase the old global, since it is no longer used.
5638     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5639   }
5640 
5641   MaybeHandleStaticInExternC(D, GV);
5642 
5643   if (D->hasAttr<AnnotateAttr>())
5644     AddGlobalAnnotations(D, GV);
5645 
5646   // Set the llvm linkage type as appropriate.
5647   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5648 
5649   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5650   // the device. [...]"
5651   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5652   // __device__, declares a variable that: [...]
5653   // Is accessible from all the threads within the grid and from the host
5654   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5655   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5656   if (LangOpts.CUDA) {
5657     if (LangOpts.CUDAIsDevice) {
5658       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5659           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5660            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5661            D->getType()->isCUDADeviceBuiltinTextureType()))
5662         GV->setExternallyInitialized(true);
5663     } else {
5664       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5665     }
5666     getCUDARuntime().handleVarRegistration(D, *GV);
5667   }
5668 
5669   if (LangOpts.HLSL)
5670     getHLSLRuntime().handleGlobalVarDefinition(D, GV);
5671 
5672   GV->setInitializer(Init);
5673   if (emitter)
5674     emitter->finalize(GV);
5675 
5676   // If it is safe to mark the global 'constant', do so now.
5677   GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) ||
5678                   (!NeedsGlobalCtor && !NeedsGlobalDtor &&
5679                    D->getType().isConstantStorage(getContext(), true, true)));
5680 
5681   // If it is in a read-only section, mark it 'constant'.
5682   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5683     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5684     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5685       GV->setConstant(true);
5686   }
5687 
5688   CharUnits AlignVal = getContext().getDeclAlign(D);
5689   // Check for alignment specifed in an 'omp allocate' directive.
5690   if (std::optional<CharUnits> AlignValFromAllocate =
5691           getOMPAllocateAlignment(D))
5692     AlignVal = *AlignValFromAllocate;
5693   GV->setAlignment(AlignVal.getAsAlign());
5694 
5695   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5696   // function is only defined alongside the variable, not also alongside
5697   // callers. Normally, all accesses to a thread_local go through the
5698   // thread-wrapper in order to ensure initialization has occurred, underlying
5699   // variable will never be used other than the thread-wrapper, so it can be
5700   // converted to internal linkage.
5701   //
5702   // However, if the variable has the 'constinit' attribute, it _can_ be
5703   // referenced directly, without calling the thread-wrapper, so the linkage
5704   // must not be changed.
5705   //
5706   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5707   // weak or linkonce, the de-duplication semantics are important to preserve,
5708   // so we don't change the linkage.
5709   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5710       Linkage == llvm::GlobalValue::ExternalLinkage &&
5711       Context.getTargetInfo().getTriple().isOSDarwin() &&
5712       !D->hasAttr<ConstInitAttr>())
5713     Linkage = llvm::GlobalValue::InternalLinkage;
5714 
5715   GV->setLinkage(Linkage);
5716   if (D->hasAttr<DLLImportAttr>())
5717     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5718   else if (D->hasAttr<DLLExportAttr>())
5719     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5720   else
5721     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5722 
5723   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5724     // common vars aren't constant even if declared const.
5725     GV->setConstant(false);
5726     // Tentative definition of global variables may be initialized with
5727     // non-zero null pointers. In this case they should have weak linkage
5728     // since common linkage must have zero initializer and must not have
5729     // explicit section therefore cannot have non-zero initial value.
5730     if (!GV->getInitializer()->isNullValue())
5731       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5732   }
5733 
5734   setNonAliasAttributes(D, GV);
5735 
5736   if (D->getTLSKind() && !GV->isThreadLocal()) {
5737     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5738       CXXThreadLocals.push_back(D);
5739     setTLSMode(GV, *D);
5740   }
5741 
5742   maybeSetTrivialComdat(*D, *GV);
5743 
5744   // Emit the initializer function if necessary.
5745   if (NeedsGlobalCtor || NeedsGlobalDtor)
5746     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5747 
5748   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5749 
5750   // Emit global variable debug information.
5751   if (CGDebugInfo *DI = getModuleDebugInfo())
5752     if (getCodeGenOpts().hasReducedDebugInfo())
5753       DI->EmitGlobalVariable(GV, D);
5754 }
5755 
5756 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5757   if (CGDebugInfo *DI = getModuleDebugInfo())
5758     if (getCodeGenOpts().hasReducedDebugInfo()) {
5759       QualType ASTTy = D->getType();
5760       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5761       llvm::Constant *GV =
5762           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5763       DI->EmitExternalVariable(
5764           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5765     }
5766 }
5767 
5768 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5769   if (CGDebugInfo *DI = getModuleDebugInfo())
5770     if (getCodeGenOpts().hasReducedDebugInfo()) {
5771       auto *Ty = getTypes().ConvertType(FD->getType());
5772       StringRef MangledName = getMangledName(FD);
5773       auto *Fn = cast<llvm::Function>(
5774           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5775       if (!Fn->getSubprogram())
5776         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5777     }
5778 }
5779 
5780 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5781                                       CodeGenModule &CGM, const VarDecl *D,
5782                                       bool NoCommon) {
5783   // Don't give variables common linkage if -fno-common was specified unless it
5784   // was overridden by a NoCommon attribute.
5785   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5786     return true;
5787 
5788   // C11 6.9.2/2:
5789   //   A declaration of an identifier for an object that has file scope without
5790   //   an initializer, and without a storage-class specifier or with the
5791   //   storage-class specifier static, constitutes a tentative definition.
5792   if (D->getInit() || D->hasExternalStorage())
5793     return true;
5794 
5795   // A variable cannot be both common and exist in a section.
5796   if (D->hasAttr<SectionAttr>())
5797     return true;
5798 
5799   // A variable cannot be both common and exist in a section.
5800   // We don't try to determine which is the right section in the front-end.
5801   // If no specialized section name is applicable, it will resort to default.
5802   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5803       D->hasAttr<PragmaClangDataSectionAttr>() ||
5804       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5805       D->hasAttr<PragmaClangRodataSectionAttr>())
5806     return true;
5807 
5808   // Thread local vars aren't considered common linkage.
5809   if (D->getTLSKind())
5810     return true;
5811 
5812   // Tentative definitions marked with WeakImportAttr are true definitions.
5813   if (D->hasAttr<WeakImportAttr>())
5814     return true;
5815 
5816   // A variable cannot be both common and exist in a comdat.
5817   if (shouldBeInCOMDAT(CGM, *D))
5818     return true;
5819 
5820   // Declarations with a required alignment do not have common linkage in MSVC
5821   // mode.
5822   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5823     if (D->hasAttr<AlignedAttr>())
5824       return true;
5825     QualType VarType = D->getType();
5826     if (Context.isAlignmentRequired(VarType))
5827       return true;
5828 
5829     if (const auto *RT = VarType->getAs<RecordType>()) {
5830       const RecordDecl *RD = RT->getDecl();
5831       for (const FieldDecl *FD : RD->fields()) {
5832         if (FD->isBitField())
5833           continue;
5834         if (FD->hasAttr<AlignedAttr>())
5835           return true;
5836         if (Context.isAlignmentRequired(FD->getType()))
5837           return true;
5838       }
5839     }
5840   }
5841 
5842   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5843   // common symbols, so symbols with greater alignment requirements cannot be
5844   // common.
5845   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5846   // alignments for common symbols via the aligncomm directive, so this
5847   // restriction only applies to MSVC environments.
5848   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5849       Context.getTypeAlignIfKnown(D->getType()) >
5850           Context.toBits(CharUnits::fromQuantity(32)))
5851     return true;
5852 
5853   return false;
5854 }
5855 
5856 llvm::GlobalValue::LinkageTypes
5857 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5858                                            GVALinkage Linkage) {
5859   if (Linkage == GVA_Internal)
5860     return llvm::Function::InternalLinkage;
5861 
5862   if (D->hasAttr<WeakAttr>())
5863     return llvm::GlobalVariable::WeakAnyLinkage;
5864 
5865   if (const auto *FD = D->getAsFunction())
5866     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5867       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5868 
5869   // We are guaranteed to have a strong definition somewhere else,
5870   // so we can use available_externally linkage.
5871   if (Linkage == GVA_AvailableExternally)
5872     return llvm::GlobalValue::AvailableExternallyLinkage;
5873 
5874   // Note that Apple's kernel linker doesn't support symbol
5875   // coalescing, so we need to avoid linkonce and weak linkages there.
5876   // Normally, this means we just map to internal, but for explicit
5877   // instantiations we'll map to external.
5878 
5879   // In C++, the compiler has to emit a definition in every translation unit
5880   // that references the function.  We should use linkonce_odr because
5881   // a) if all references in this translation unit are optimized away, we
5882   // don't need to codegen it.  b) if the function persists, it needs to be
5883   // merged with other definitions. c) C++ has the ODR, so we know the
5884   // definition is dependable.
5885   if (Linkage == GVA_DiscardableODR)
5886     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5887                                             : llvm::Function::InternalLinkage;
5888 
5889   // An explicit instantiation of a template has weak linkage, since
5890   // explicit instantiations can occur in multiple translation units
5891   // and must all be equivalent. However, we are not allowed to
5892   // throw away these explicit instantiations.
5893   //
5894   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5895   // so say that CUDA templates are either external (for kernels) or internal.
5896   // This lets llvm perform aggressive inter-procedural optimizations. For
5897   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5898   // therefore we need to follow the normal linkage paradigm.
5899   if (Linkage == GVA_StrongODR) {
5900     if (getLangOpts().AppleKext)
5901       return llvm::Function::ExternalLinkage;
5902     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5903         !getLangOpts().GPURelocatableDeviceCode)
5904       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5905                                           : llvm::Function::InternalLinkage;
5906     return llvm::Function::WeakODRLinkage;
5907   }
5908 
5909   // C++ doesn't have tentative definitions and thus cannot have common
5910   // linkage.
5911   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5912       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5913                                  CodeGenOpts.NoCommon))
5914     return llvm::GlobalVariable::CommonLinkage;
5915 
5916   // selectany symbols are externally visible, so use weak instead of
5917   // linkonce.  MSVC optimizes away references to const selectany globals, so
5918   // all definitions should be the same and ODR linkage should be used.
5919   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5920   if (D->hasAttr<SelectAnyAttr>())
5921     return llvm::GlobalVariable::WeakODRLinkage;
5922 
5923   // Otherwise, we have strong external linkage.
5924   assert(Linkage == GVA_StrongExternal);
5925   return llvm::GlobalVariable::ExternalLinkage;
5926 }
5927 
5928 llvm::GlobalValue::LinkageTypes
5929 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5930   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5931   return getLLVMLinkageForDeclarator(VD, Linkage);
5932 }
5933 
5934 /// Replace the uses of a function that was declared with a non-proto type.
5935 /// We want to silently drop extra arguments from call sites
5936 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5937                                           llvm::Function *newFn) {
5938   // Fast path.
5939   if (old->use_empty())
5940     return;
5941 
5942   llvm::Type *newRetTy = newFn->getReturnType();
5943   SmallVector<llvm::Value *, 4> newArgs;
5944 
5945   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5946 
5947   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5948        ui != ue; ui++) {
5949     llvm::User *user = ui->getUser();
5950 
5951     // Recognize and replace uses of bitcasts.  Most calls to
5952     // unprototyped functions will use bitcasts.
5953     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5954       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5955         replaceUsesOfNonProtoConstant(bitcast, newFn);
5956       continue;
5957     }
5958 
5959     // Recognize calls to the function.
5960     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5961     if (!callSite)
5962       continue;
5963     if (!callSite->isCallee(&*ui))
5964       continue;
5965 
5966     // If the return types don't match exactly, then we can't
5967     // transform this call unless it's dead.
5968     if (callSite->getType() != newRetTy && !callSite->use_empty())
5969       continue;
5970 
5971     // Get the call site's attribute list.
5972     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5973     llvm::AttributeList oldAttrs = callSite->getAttributes();
5974 
5975     // If the function was passed too few arguments, don't transform.
5976     unsigned newNumArgs = newFn->arg_size();
5977     if (callSite->arg_size() < newNumArgs)
5978       continue;
5979 
5980     // If extra arguments were passed, we silently drop them.
5981     // If any of the types mismatch, we don't transform.
5982     unsigned argNo = 0;
5983     bool dontTransform = false;
5984     for (llvm::Argument &A : newFn->args()) {
5985       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5986         dontTransform = true;
5987         break;
5988       }
5989 
5990       // Add any parameter attributes.
5991       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5992       argNo++;
5993     }
5994     if (dontTransform)
5995       continue;
5996 
5997     // Okay, we can transform this.  Create the new call instruction and copy
5998     // over the required information.
5999     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
6000 
6001     // Copy over any operand bundles.
6002     SmallVector<llvm::OperandBundleDef, 1> newBundles;
6003     callSite->getOperandBundlesAsDefs(newBundles);
6004 
6005     llvm::CallBase *newCall;
6006     if (isa<llvm::CallInst>(callSite)) {
6007       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
6008                                        callSite->getIterator());
6009     } else {
6010       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
6011       newCall = llvm::InvokeInst::Create(
6012           newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
6013           newArgs, newBundles, "", callSite->getIterator());
6014     }
6015     newArgs.clear(); // for the next iteration
6016 
6017     if (!newCall->getType()->isVoidTy())
6018       newCall->takeName(callSite);
6019     newCall->setAttributes(
6020         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
6021                                  oldAttrs.getRetAttrs(), newArgAttrs));
6022     newCall->setCallingConv(callSite->getCallingConv());
6023 
6024     // Finally, remove the old call, replacing any uses with the new one.
6025     if (!callSite->use_empty())
6026       callSite->replaceAllUsesWith(newCall);
6027 
6028     // Copy debug location attached to CI.
6029     if (callSite->getDebugLoc())
6030       newCall->setDebugLoc(callSite->getDebugLoc());
6031 
6032     callSitesToBeRemovedFromParent.push_back(callSite);
6033   }
6034 
6035   for (auto *callSite : callSitesToBeRemovedFromParent) {
6036     callSite->eraseFromParent();
6037   }
6038 }
6039 
6040 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
6041 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
6042 /// existing call uses of the old function in the module, this adjusts them to
6043 /// call the new function directly.
6044 ///
6045 /// This is not just a cleanup: the always_inline pass requires direct calls to
6046 /// functions to be able to inline them.  If there is a bitcast in the way, it
6047 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
6048 /// run at -O0.
6049 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
6050                                                       llvm::Function *NewFn) {
6051   // If we're redefining a global as a function, don't transform it.
6052   if (!isa<llvm::Function>(Old)) return;
6053 
6054   replaceUsesOfNonProtoConstant(Old, NewFn);
6055 }
6056 
6057 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
6058   auto DK = VD->isThisDeclarationADefinition();
6059   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
6060       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
6061     return;
6062 
6063   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
6064   // If we have a definition, this might be a deferred decl. If the
6065   // instantiation is explicit, make sure we emit it at the end.
6066   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
6067     GetAddrOfGlobalVar(VD);
6068 
6069   EmitTopLevelDecl(VD);
6070 }
6071 
6072 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6073                                                  llvm::GlobalValue *GV) {
6074   const auto *D = cast<FunctionDecl>(GD.getDecl());
6075 
6076   // Compute the function info and LLVM type.
6077   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6078   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6079 
6080   // Get or create the prototype for the function.
6081   if (!GV || (GV->getValueType() != Ty))
6082     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6083                                                    /*DontDefer=*/true,
6084                                                    ForDefinition));
6085 
6086   // Already emitted.
6087   if (!GV->isDeclaration())
6088     return;
6089 
6090   // We need to set linkage and visibility on the function before
6091   // generating code for it because various parts of IR generation
6092   // want to propagate this information down (e.g. to local static
6093   // declarations).
6094   auto *Fn = cast<llvm::Function>(GV);
6095   setFunctionLinkage(GD, Fn);
6096 
6097   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6098   setGVProperties(Fn, GD);
6099 
6100   MaybeHandleStaticInExternC(D, Fn);
6101 
6102   maybeSetTrivialComdat(*D, *Fn);
6103 
6104   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6105 
6106   setNonAliasAttributes(GD, Fn);
6107   SetLLVMFunctionAttributesForDefinition(D, Fn);
6108 
6109   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6110     AddGlobalCtor(Fn, CA->getPriority());
6111   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6112     AddGlobalDtor(Fn, DA->getPriority(), true);
6113   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6114     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6115 }
6116 
6117 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6118   const auto *D = cast<ValueDecl>(GD.getDecl());
6119   const AliasAttr *AA = D->getAttr<AliasAttr>();
6120   assert(AA && "Not an alias?");
6121 
6122   StringRef MangledName = getMangledName(GD);
6123 
6124   if (AA->getAliasee() == MangledName) {
6125     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6126     return;
6127   }
6128 
6129   // If there is a definition in the module, then it wins over the alias.
6130   // This is dubious, but allow it to be safe.  Just ignore the alias.
6131   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6132   if (Entry && !Entry->isDeclaration())
6133     return;
6134 
6135   Aliases.push_back(GD);
6136 
6137   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6138 
6139   // Create a reference to the named value.  This ensures that it is emitted
6140   // if a deferred decl.
6141   llvm::Constant *Aliasee;
6142   llvm::GlobalValue::LinkageTypes LT;
6143   if (isa<llvm::FunctionType>(DeclTy)) {
6144     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6145                                       /*ForVTable=*/false);
6146     LT = getFunctionLinkage(GD);
6147   } else {
6148     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6149                                     /*D=*/nullptr);
6150     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6151       LT = getLLVMLinkageVarDefinition(VD);
6152     else
6153       LT = getFunctionLinkage(GD);
6154   }
6155 
6156   // Create the new alias itself, but don't set a name yet.
6157   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6158   auto *GA =
6159       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6160 
6161   if (Entry) {
6162     if (GA->getAliasee() == Entry) {
6163       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6164       return;
6165     }
6166 
6167     assert(Entry->isDeclaration());
6168 
6169     // If there is a declaration in the module, then we had an extern followed
6170     // by the alias, as in:
6171     //   extern int test6();
6172     //   ...
6173     //   int test6() __attribute__((alias("test7")));
6174     //
6175     // Remove it and replace uses of it with the alias.
6176     GA->takeName(Entry);
6177 
6178     Entry->replaceAllUsesWith(GA);
6179     Entry->eraseFromParent();
6180   } else {
6181     GA->setName(MangledName);
6182   }
6183 
6184   // Set attributes which are particular to an alias; this is a
6185   // specialization of the attributes which may be set on a global
6186   // variable/function.
6187   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6188       D->isWeakImported()) {
6189     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6190   }
6191 
6192   if (const auto *VD = dyn_cast<VarDecl>(D))
6193     if (VD->getTLSKind())
6194       setTLSMode(GA, *VD);
6195 
6196   SetCommonAttributes(GD, GA);
6197 
6198   // Emit global alias debug information.
6199   if (isa<VarDecl>(D))
6200     if (CGDebugInfo *DI = getModuleDebugInfo())
6201       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6202 }
6203 
6204 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6205   const auto *D = cast<ValueDecl>(GD.getDecl());
6206   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6207   assert(IFA && "Not an ifunc?");
6208 
6209   StringRef MangledName = getMangledName(GD);
6210 
6211   if (IFA->getResolver() == MangledName) {
6212     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6213     return;
6214   }
6215 
6216   // Report an error if some definition overrides ifunc.
6217   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6218   if (Entry && !Entry->isDeclaration()) {
6219     GlobalDecl OtherGD;
6220     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6221         DiagnosedConflictingDefinitions.insert(GD).second) {
6222       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6223           << MangledName;
6224       Diags.Report(OtherGD.getDecl()->getLocation(),
6225                    diag::note_previous_definition);
6226     }
6227     return;
6228   }
6229 
6230   Aliases.push_back(GD);
6231 
6232   // The resolver might not be visited yet. Specify a dummy non-function type to
6233   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6234   // was emitted) or the whole function will be replaced (if the resolver has
6235   // not been emitted).
6236   llvm::Constant *Resolver =
6237       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6238                               /*ForVTable=*/false);
6239   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6240   unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6241   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6242       DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6243   if (Entry) {
6244     if (GIF->getResolver() == Entry) {
6245       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6246       return;
6247     }
6248     assert(Entry->isDeclaration());
6249 
6250     // If there is a declaration in the module, then we had an extern followed
6251     // by the ifunc, as in:
6252     //   extern int test();
6253     //   ...
6254     //   int test() __attribute__((ifunc("resolver")));
6255     //
6256     // Remove it and replace uses of it with the ifunc.
6257     GIF->takeName(Entry);
6258 
6259     Entry->replaceAllUsesWith(GIF);
6260     Entry->eraseFromParent();
6261   } else
6262     GIF->setName(MangledName);
6263   SetCommonAttributes(GD, GIF);
6264 }
6265 
6266 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6267                                             ArrayRef<llvm::Type*> Tys) {
6268   return llvm::Intrinsic::getOrInsertDeclaration(&getModule(),
6269                                                  (llvm::Intrinsic::ID)IID, Tys);
6270 }
6271 
6272 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6273 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6274                          const StringLiteral *Literal, bool TargetIsLSB,
6275                          bool &IsUTF16, unsigned &StringLength) {
6276   StringRef String = Literal->getString();
6277   unsigned NumBytes = String.size();
6278 
6279   // Check for simple case.
6280   if (!Literal->containsNonAsciiOrNull()) {
6281     StringLength = NumBytes;
6282     return *Map.insert(std::make_pair(String, nullptr)).first;
6283   }
6284 
6285   // Otherwise, convert the UTF8 literals into a string of shorts.
6286   IsUTF16 = true;
6287 
6288   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6289   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6290   llvm::UTF16 *ToPtr = &ToBuf[0];
6291 
6292   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6293                                  ToPtr + NumBytes, llvm::strictConversion);
6294 
6295   // ConvertUTF8toUTF16 returns the length in ToPtr.
6296   StringLength = ToPtr - &ToBuf[0];
6297 
6298   // Add an explicit null.
6299   *ToPtr = 0;
6300   return *Map.insert(std::make_pair(
6301                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6302                                    (StringLength + 1) * 2),
6303                          nullptr)).first;
6304 }
6305 
6306 ConstantAddress
6307 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6308   unsigned StringLength = 0;
6309   bool isUTF16 = false;
6310   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6311       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6312                                getDataLayout().isLittleEndian(), isUTF16,
6313                                StringLength);
6314 
6315   if (auto *C = Entry.second)
6316     return ConstantAddress(
6317         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6318 
6319   const ASTContext &Context = getContext();
6320   const llvm::Triple &Triple = getTriple();
6321 
6322   const auto CFRuntime = getLangOpts().CFRuntime;
6323   const bool IsSwiftABI =
6324       static_cast<unsigned>(CFRuntime) >=
6325       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6326   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6327 
6328   // If we don't already have it, get __CFConstantStringClassReference.
6329   if (!CFConstantStringClassRef) {
6330     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6331     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6332     Ty = llvm::ArrayType::get(Ty, 0);
6333 
6334     switch (CFRuntime) {
6335     default: break;
6336     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6337     case LangOptions::CoreFoundationABI::Swift5_0:
6338       CFConstantStringClassName =
6339           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6340                               : "$s10Foundation19_NSCFConstantStringCN";
6341       Ty = IntPtrTy;
6342       break;
6343     case LangOptions::CoreFoundationABI::Swift4_2:
6344       CFConstantStringClassName =
6345           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6346                               : "$S10Foundation19_NSCFConstantStringCN";
6347       Ty = IntPtrTy;
6348       break;
6349     case LangOptions::CoreFoundationABI::Swift4_1:
6350       CFConstantStringClassName =
6351           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6352                               : "__T010Foundation19_NSCFConstantStringCN";
6353       Ty = IntPtrTy;
6354       break;
6355     }
6356 
6357     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6358 
6359     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6360       llvm::GlobalValue *GV = nullptr;
6361 
6362       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6363         IdentifierInfo &II = Context.Idents.get(GV->getName());
6364         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6365         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6366 
6367         const VarDecl *VD = nullptr;
6368         for (const auto *Result : DC->lookup(&II))
6369           if ((VD = dyn_cast<VarDecl>(Result)))
6370             break;
6371 
6372         if (Triple.isOSBinFormatELF()) {
6373           if (!VD)
6374             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6375         } else {
6376           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6377           if (!VD || !VD->hasAttr<DLLExportAttr>())
6378             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6379           else
6380             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6381         }
6382 
6383         setDSOLocal(GV);
6384       }
6385     }
6386 
6387     // Decay array -> ptr
6388     CFConstantStringClassRef =
6389         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6390   }
6391 
6392   QualType CFTy = Context.getCFConstantStringType();
6393 
6394   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6395 
6396   ConstantInitBuilder Builder(*this);
6397   auto Fields = Builder.beginStruct(STy);
6398 
6399   // Class pointer.
6400   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6401 
6402   // Flags.
6403   if (IsSwiftABI) {
6404     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6405     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6406   } else {
6407     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6408   }
6409 
6410   // String pointer.
6411   llvm::Constant *C = nullptr;
6412   if (isUTF16) {
6413     auto Arr = llvm::ArrayRef(
6414         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6415         Entry.first().size() / 2);
6416     C = llvm::ConstantDataArray::get(VMContext, Arr);
6417   } else {
6418     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6419   }
6420 
6421   // Note: -fwritable-strings doesn't make the backing store strings of
6422   // CFStrings writable.
6423   auto *GV =
6424       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6425                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6426   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6427   // Don't enforce the target's minimum global alignment, since the only use
6428   // of the string is via this class initializer.
6429   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6430                             : Context.getTypeAlignInChars(Context.CharTy);
6431   GV->setAlignment(Align.getAsAlign());
6432 
6433   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6434   // Without it LLVM can merge the string with a non unnamed_addr one during
6435   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6436   if (Triple.isOSBinFormatMachO())
6437     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6438                            : "__TEXT,__cstring,cstring_literals");
6439   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6440   // the static linker to adjust permissions to read-only later on.
6441   else if (Triple.isOSBinFormatELF())
6442     GV->setSection(".rodata");
6443 
6444   // String.
6445   Fields.add(GV);
6446 
6447   // String length.
6448   llvm::IntegerType *LengthTy =
6449       llvm::IntegerType::get(getModule().getContext(),
6450                              Context.getTargetInfo().getLongWidth());
6451   if (IsSwiftABI) {
6452     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6453         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6454       LengthTy = Int32Ty;
6455     else
6456       LengthTy = IntPtrTy;
6457   }
6458   Fields.addInt(LengthTy, StringLength);
6459 
6460   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6461   // properly aligned on 32-bit platforms.
6462   CharUnits Alignment =
6463       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6464 
6465   // The struct.
6466   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6467                                     /*isConstant=*/false,
6468                                     llvm::GlobalVariable::PrivateLinkage);
6469   GV->addAttribute("objc_arc_inert");
6470   switch (Triple.getObjectFormat()) {
6471   case llvm::Triple::UnknownObjectFormat:
6472     llvm_unreachable("unknown file format");
6473   case llvm::Triple::DXContainer:
6474   case llvm::Triple::GOFF:
6475   case llvm::Triple::SPIRV:
6476   case llvm::Triple::XCOFF:
6477     llvm_unreachable("unimplemented");
6478   case llvm::Triple::COFF:
6479   case llvm::Triple::ELF:
6480   case llvm::Triple::Wasm:
6481     GV->setSection("cfstring");
6482     break;
6483   case llvm::Triple::MachO:
6484     GV->setSection("__DATA,__cfstring");
6485     break;
6486   }
6487   Entry.second = GV;
6488 
6489   return ConstantAddress(GV, GV->getValueType(), Alignment);
6490 }
6491 
6492 bool CodeGenModule::getExpressionLocationsEnabled() const {
6493   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6494 }
6495 
6496 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6497   if (ObjCFastEnumerationStateType.isNull()) {
6498     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6499     D->startDefinition();
6500 
6501     QualType FieldTypes[] = {
6502         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6503         Context.getPointerType(Context.UnsignedLongTy),
6504         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6505                                      nullptr, ArraySizeModifier::Normal, 0)};
6506 
6507     for (size_t i = 0; i < 4; ++i) {
6508       FieldDecl *Field = FieldDecl::Create(Context,
6509                                            D,
6510                                            SourceLocation(),
6511                                            SourceLocation(), nullptr,
6512                                            FieldTypes[i], /*TInfo=*/nullptr,
6513                                            /*BitWidth=*/nullptr,
6514                                            /*Mutable=*/false,
6515                                            ICIS_NoInit);
6516       Field->setAccess(AS_public);
6517       D->addDecl(Field);
6518     }
6519 
6520     D->completeDefinition();
6521     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6522   }
6523 
6524   return ObjCFastEnumerationStateType;
6525 }
6526 
6527 llvm::Constant *
6528 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6529   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6530 
6531   // Don't emit it as the address of the string, emit the string data itself
6532   // as an inline array.
6533   if (E->getCharByteWidth() == 1) {
6534     SmallString<64> Str(E->getString());
6535 
6536     // Resize the string to the right size, which is indicated by its type.
6537     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6538     assert(CAT && "String literal not of constant array type!");
6539     Str.resize(CAT->getZExtSize());
6540     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6541   }
6542 
6543   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6544   llvm::Type *ElemTy = AType->getElementType();
6545   unsigned NumElements = AType->getNumElements();
6546 
6547   // Wide strings have either 2-byte or 4-byte elements.
6548   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6549     SmallVector<uint16_t, 32> Elements;
6550     Elements.reserve(NumElements);
6551 
6552     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6553       Elements.push_back(E->getCodeUnit(i));
6554     Elements.resize(NumElements);
6555     return llvm::ConstantDataArray::get(VMContext, Elements);
6556   }
6557 
6558   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6559   SmallVector<uint32_t, 32> Elements;
6560   Elements.reserve(NumElements);
6561 
6562   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6563     Elements.push_back(E->getCodeUnit(i));
6564   Elements.resize(NumElements);
6565   return llvm::ConstantDataArray::get(VMContext, Elements);
6566 }
6567 
6568 static llvm::GlobalVariable *
6569 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6570                       CodeGenModule &CGM, StringRef GlobalName,
6571                       CharUnits Alignment) {
6572   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6573       CGM.GetGlobalConstantAddressSpace());
6574 
6575   llvm::Module &M = CGM.getModule();
6576   // Create a global variable for this string
6577   auto *GV = new llvm::GlobalVariable(
6578       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6579       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6580   GV->setAlignment(Alignment.getAsAlign());
6581   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6582   if (GV->isWeakForLinker()) {
6583     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6584     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6585   }
6586   CGM.setDSOLocal(GV);
6587 
6588   return GV;
6589 }
6590 
6591 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6592 /// constant array for the given string literal.
6593 ConstantAddress
6594 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6595                                                   StringRef Name) {
6596   CharUnits Alignment =
6597       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6598 
6599   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6600   llvm::GlobalVariable **Entry = nullptr;
6601   if (!LangOpts.WritableStrings) {
6602     Entry = &ConstantStringMap[C];
6603     if (auto GV = *Entry) {
6604       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6605         GV->setAlignment(Alignment.getAsAlign());
6606       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6607                              GV->getValueType(), Alignment);
6608     }
6609   }
6610 
6611   SmallString<256> MangledNameBuffer;
6612   StringRef GlobalVariableName;
6613   llvm::GlobalValue::LinkageTypes LT;
6614 
6615   // Mangle the string literal if that's how the ABI merges duplicate strings.
6616   // Don't do it if they are writable, since we don't want writes in one TU to
6617   // affect strings in another.
6618   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6619       !LangOpts.WritableStrings) {
6620     llvm::raw_svector_ostream Out(MangledNameBuffer);
6621     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6622     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6623     GlobalVariableName = MangledNameBuffer;
6624   } else {
6625     LT = llvm::GlobalValue::PrivateLinkage;
6626     GlobalVariableName = Name;
6627   }
6628 
6629   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6630 
6631   CGDebugInfo *DI = getModuleDebugInfo();
6632   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6633     DI->AddStringLiteralDebugInfo(GV, S);
6634 
6635   if (Entry)
6636     *Entry = GV;
6637 
6638   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6639 
6640   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6641                          GV->getValueType(), Alignment);
6642 }
6643 
6644 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6645 /// array for the given ObjCEncodeExpr node.
6646 ConstantAddress
6647 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6648   std::string Str;
6649   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6650 
6651   return GetAddrOfConstantCString(Str);
6652 }
6653 
6654 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6655 /// the literal and a terminating '\0' character.
6656 /// The result has pointer to array type.
6657 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6658     const std::string &Str, const char *GlobalName) {
6659   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6660   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6661       getContext().CharTy, /*VD=*/nullptr);
6662 
6663   llvm::Constant *C =
6664       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6665 
6666   // Don't share any string literals if strings aren't constant.
6667   llvm::GlobalVariable **Entry = nullptr;
6668   if (!LangOpts.WritableStrings) {
6669     Entry = &ConstantStringMap[C];
6670     if (auto GV = *Entry) {
6671       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6672         GV->setAlignment(Alignment.getAsAlign());
6673       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6674                              GV->getValueType(), Alignment);
6675     }
6676   }
6677 
6678   // Get the default prefix if a name wasn't specified.
6679   if (!GlobalName)
6680     GlobalName = ".str";
6681   // Create a global variable for this.
6682   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6683                                   GlobalName, Alignment);
6684   if (Entry)
6685     *Entry = GV;
6686 
6687   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6688                          GV->getValueType(), Alignment);
6689 }
6690 
6691 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6692     const MaterializeTemporaryExpr *E, const Expr *Init) {
6693   assert((E->getStorageDuration() == SD_Static ||
6694           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6695   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6696 
6697   // If we're not materializing a subobject of the temporary, keep the
6698   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6699   QualType MaterializedType = Init->getType();
6700   if (Init == E->getSubExpr())
6701     MaterializedType = E->getType();
6702 
6703   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6704 
6705   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6706   if (!InsertResult.second) {
6707     // We've seen this before: either we already created it or we're in the
6708     // process of doing so.
6709     if (!InsertResult.first->second) {
6710       // We recursively re-entered this function, probably during emission of
6711       // the initializer. Create a placeholder. We'll clean this up in the
6712       // outer call, at the end of this function.
6713       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6714       InsertResult.first->second = new llvm::GlobalVariable(
6715           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6716           nullptr);
6717     }
6718     return ConstantAddress(InsertResult.first->second,
6719                            llvm::cast<llvm::GlobalVariable>(
6720                                InsertResult.first->second->stripPointerCasts())
6721                                ->getValueType(),
6722                            Align);
6723   }
6724 
6725   // FIXME: If an externally-visible declaration extends multiple temporaries,
6726   // we need to give each temporary the same name in every translation unit (and
6727   // we also need to make the temporaries externally-visible).
6728   SmallString<256> Name;
6729   llvm::raw_svector_ostream Out(Name);
6730   getCXXABI().getMangleContext().mangleReferenceTemporary(
6731       VD, E->getManglingNumber(), Out);
6732 
6733   APValue *Value = nullptr;
6734   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6735     // If the initializer of the extending declaration is a constant
6736     // initializer, we should have a cached constant initializer for this
6737     // temporary. Note that this might have a different value from the value
6738     // computed by evaluating the initializer if the surrounding constant
6739     // expression modifies the temporary.
6740     Value = E->getOrCreateValue(false);
6741   }
6742 
6743   // Try evaluating it now, it might have a constant initializer.
6744   Expr::EvalResult EvalResult;
6745   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6746       !EvalResult.hasSideEffects())
6747     Value = &EvalResult.Val;
6748 
6749   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6750 
6751   std::optional<ConstantEmitter> emitter;
6752   llvm::Constant *InitialValue = nullptr;
6753   bool Constant = false;
6754   llvm::Type *Type;
6755   if (Value) {
6756     // The temporary has a constant initializer, use it.
6757     emitter.emplace(*this);
6758     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6759                                                MaterializedType);
6760     Constant =
6761         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6762                                            /*ExcludeDtor*/ false);
6763     Type = InitialValue->getType();
6764   } else {
6765     // No initializer, the initialization will be provided when we
6766     // initialize the declaration which performed lifetime extension.
6767     Type = getTypes().ConvertTypeForMem(MaterializedType);
6768   }
6769 
6770   // Create a global variable for this lifetime-extended temporary.
6771   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6772   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6773     const VarDecl *InitVD;
6774     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6775         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6776       // Temporaries defined inside a class get linkonce_odr linkage because the
6777       // class can be defined in multiple translation units.
6778       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6779     } else {
6780       // There is no need for this temporary to have external linkage if the
6781       // VarDecl has external linkage.
6782       Linkage = llvm::GlobalVariable::InternalLinkage;
6783     }
6784   }
6785   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6786   auto *GV = new llvm::GlobalVariable(
6787       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6788       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6789   if (emitter) emitter->finalize(GV);
6790   // Don't assign dllimport or dllexport to local linkage globals.
6791   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6792     setGVProperties(GV, VD);
6793     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6794       // The reference temporary should never be dllexport.
6795       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6796   }
6797   GV->setAlignment(Align.getAsAlign());
6798   if (supportsCOMDAT() && GV->isWeakForLinker())
6799     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6800   if (VD->getTLSKind())
6801     setTLSMode(GV, *VD);
6802   llvm::Constant *CV = GV;
6803   if (AddrSpace != LangAS::Default)
6804     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6805         *this, GV, AddrSpace, LangAS::Default,
6806         llvm::PointerType::get(
6807             getLLVMContext(),
6808             getContext().getTargetAddressSpace(LangAS::Default)));
6809 
6810   // Update the map with the new temporary. If we created a placeholder above,
6811   // replace it with the new global now.
6812   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6813   if (Entry) {
6814     Entry->replaceAllUsesWith(CV);
6815     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6816   }
6817   Entry = CV;
6818 
6819   return ConstantAddress(CV, Type, Align);
6820 }
6821 
6822 /// EmitObjCPropertyImplementations - Emit information for synthesized
6823 /// properties for an implementation.
6824 void CodeGenModule::EmitObjCPropertyImplementations(const
6825                                                     ObjCImplementationDecl *D) {
6826   for (const auto *PID : D->property_impls()) {
6827     // Dynamic is just for type-checking.
6828     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6829       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6830 
6831       // Determine which methods need to be implemented, some may have
6832       // been overridden. Note that ::isPropertyAccessor is not the method
6833       // we want, that just indicates if the decl came from a
6834       // property. What we want to know is if the method is defined in
6835       // this implementation.
6836       auto *Getter = PID->getGetterMethodDecl();
6837       if (!Getter || Getter->isSynthesizedAccessorStub())
6838         CodeGenFunction(*this).GenerateObjCGetter(
6839             const_cast<ObjCImplementationDecl *>(D), PID);
6840       auto *Setter = PID->getSetterMethodDecl();
6841       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6842         CodeGenFunction(*this).GenerateObjCSetter(
6843                                  const_cast<ObjCImplementationDecl *>(D), PID);
6844     }
6845   }
6846 }
6847 
6848 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6849   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6850   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6851        ivar; ivar = ivar->getNextIvar())
6852     if (ivar->getType().isDestructedType())
6853       return true;
6854 
6855   return false;
6856 }
6857 
6858 static bool AllTrivialInitializers(CodeGenModule &CGM,
6859                                    ObjCImplementationDecl *D) {
6860   CodeGenFunction CGF(CGM);
6861   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6862        E = D->init_end(); B != E; ++B) {
6863     CXXCtorInitializer *CtorInitExp = *B;
6864     Expr *Init = CtorInitExp->getInit();
6865     if (!CGF.isTrivialInitializer(Init))
6866       return false;
6867   }
6868   return true;
6869 }
6870 
6871 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6872 /// for an implementation.
6873 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6874   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6875   if (needsDestructMethod(D)) {
6876     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6877     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6878     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6879         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6880         getContext().VoidTy, nullptr, D,
6881         /*isInstance=*/true, /*isVariadic=*/false,
6882         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6883         /*isImplicitlyDeclared=*/true,
6884         /*isDefined=*/false, ObjCImplementationControl::Required);
6885     D->addInstanceMethod(DTORMethod);
6886     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6887     D->setHasDestructors(true);
6888   }
6889 
6890   // If the implementation doesn't have any ivar initializers, we don't need
6891   // a .cxx_construct.
6892   if (D->getNumIvarInitializers() == 0 ||
6893       AllTrivialInitializers(*this, D))
6894     return;
6895 
6896   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6897   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6898   // The constructor returns 'self'.
6899   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6900       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6901       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6902       /*isVariadic=*/false,
6903       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6904       /*isImplicitlyDeclared=*/true,
6905       /*isDefined=*/false, ObjCImplementationControl::Required);
6906   D->addInstanceMethod(CTORMethod);
6907   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6908   D->setHasNonZeroConstructors(true);
6909 }
6910 
6911 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6912 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6913   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6914       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6915     ErrorUnsupported(LSD, "linkage spec");
6916     return;
6917   }
6918 
6919   EmitDeclContext(LSD);
6920 }
6921 
6922 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6923   // Device code should not be at top level.
6924   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6925     return;
6926 
6927   std::unique_ptr<CodeGenFunction> &CurCGF =
6928       GlobalTopLevelStmtBlockInFlight.first;
6929 
6930   // We emitted a top-level stmt but after it there is initialization.
6931   // Stop squashing the top-level stmts into a single function.
6932   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6933     CurCGF->FinishFunction(D->getEndLoc());
6934     CurCGF = nullptr;
6935   }
6936 
6937   if (!CurCGF) {
6938     // void __stmts__N(void)
6939     // FIXME: Ask the ABI name mangler to pick a name.
6940     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6941     FunctionArgList Args;
6942     QualType RetTy = getContext().VoidTy;
6943     const CGFunctionInfo &FnInfo =
6944         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6945     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6946     llvm::Function *Fn = llvm::Function::Create(
6947         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6948 
6949     CurCGF.reset(new CodeGenFunction(*this));
6950     GlobalTopLevelStmtBlockInFlight.second = D;
6951     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6952                           D->getBeginLoc(), D->getBeginLoc());
6953     CXXGlobalInits.push_back(Fn);
6954   }
6955 
6956   CurCGF->EmitStmt(D->getStmt());
6957 }
6958 
6959 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6960   for (auto *I : DC->decls()) {
6961     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6962     // are themselves considered "top-level", so EmitTopLevelDecl on an
6963     // ObjCImplDecl does not recursively visit them. We need to do that in
6964     // case they're nested inside another construct (LinkageSpecDecl /
6965     // ExportDecl) that does stop them from being considered "top-level".
6966     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6967       for (auto *M : OID->methods())
6968         EmitTopLevelDecl(M);
6969     }
6970 
6971     EmitTopLevelDecl(I);
6972   }
6973 }
6974 
6975 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6976 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6977   // Ignore dependent declarations.
6978   if (D->isTemplated())
6979     return;
6980 
6981   // Consteval function shouldn't be emitted.
6982   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6983     return;
6984 
6985   switch (D->getKind()) {
6986   case Decl::CXXConversion:
6987   case Decl::CXXMethod:
6988   case Decl::Function:
6989     EmitGlobal(cast<FunctionDecl>(D));
6990     // Always provide some coverage mapping
6991     // even for the functions that aren't emitted.
6992     AddDeferredUnusedCoverageMapping(D);
6993     break;
6994 
6995   case Decl::CXXDeductionGuide:
6996     // Function-like, but does not result in code emission.
6997     break;
6998 
6999   case Decl::Var:
7000   case Decl::Decomposition:
7001   case Decl::VarTemplateSpecialization:
7002     EmitGlobal(cast<VarDecl>(D));
7003     if (auto *DD = dyn_cast<DecompositionDecl>(D))
7004       for (auto *B : DD->bindings())
7005         if (auto *HD = B->getHoldingVar())
7006           EmitGlobal(HD);
7007     break;
7008 
7009   // Indirect fields from global anonymous structs and unions can be
7010   // ignored; only the actual variable requires IR gen support.
7011   case Decl::IndirectField:
7012     break;
7013 
7014   // C++ Decls
7015   case Decl::Namespace:
7016     EmitDeclContext(cast<NamespaceDecl>(D));
7017     break;
7018   case Decl::ClassTemplateSpecialization: {
7019     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
7020     if (CGDebugInfo *DI = getModuleDebugInfo())
7021       if (Spec->getSpecializationKind() ==
7022               TSK_ExplicitInstantiationDefinition &&
7023           Spec->hasDefinition())
7024         DI->completeTemplateDefinition(*Spec);
7025   } [[fallthrough]];
7026   case Decl::CXXRecord: {
7027     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
7028     if (CGDebugInfo *DI = getModuleDebugInfo()) {
7029       if (CRD->hasDefinition())
7030         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7031       if (auto *ES = D->getASTContext().getExternalSource())
7032         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
7033           DI->completeUnusedClass(*CRD);
7034     }
7035     // Emit any static data members, they may be definitions.
7036     for (auto *I : CRD->decls())
7037       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
7038         EmitTopLevelDecl(I);
7039     break;
7040   }
7041     // No code generation needed.
7042   case Decl::UsingShadow:
7043   case Decl::ClassTemplate:
7044   case Decl::VarTemplate:
7045   case Decl::Concept:
7046   case Decl::VarTemplatePartialSpecialization:
7047   case Decl::FunctionTemplate:
7048   case Decl::TypeAliasTemplate:
7049   case Decl::Block:
7050   case Decl::Empty:
7051   case Decl::Binding:
7052     break;
7053   case Decl::Using:          // using X; [C++]
7054     if (CGDebugInfo *DI = getModuleDebugInfo())
7055         DI->EmitUsingDecl(cast<UsingDecl>(*D));
7056     break;
7057   case Decl::UsingEnum: // using enum X; [C++]
7058     if (CGDebugInfo *DI = getModuleDebugInfo())
7059       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
7060     break;
7061   case Decl::NamespaceAlias:
7062     if (CGDebugInfo *DI = getModuleDebugInfo())
7063         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
7064     break;
7065   case Decl::UsingDirective: // using namespace X; [C++]
7066     if (CGDebugInfo *DI = getModuleDebugInfo())
7067       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
7068     break;
7069   case Decl::CXXConstructor:
7070     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
7071     break;
7072   case Decl::CXXDestructor:
7073     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7074     break;
7075 
7076   case Decl::StaticAssert:
7077     // Nothing to do.
7078     break;
7079 
7080   // Objective-C Decls
7081 
7082   // Forward declarations, no (immediate) code generation.
7083   case Decl::ObjCInterface:
7084   case Decl::ObjCCategory:
7085     break;
7086 
7087   case Decl::ObjCProtocol: {
7088     auto *Proto = cast<ObjCProtocolDecl>(D);
7089     if (Proto->isThisDeclarationADefinition())
7090       ObjCRuntime->GenerateProtocol(Proto);
7091     break;
7092   }
7093 
7094   case Decl::ObjCCategoryImpl:
7095     // Categories have properties but don't support synthesize so we
7096     // can ignore them here.
7097     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7098     break;
7099 
7100   case Decl::ObjCImplementation: {
7101     auto *OMD = cast<ObjCImplementationDecl>(D);
7102     EmitObjCPropertyImplementations(OMD);
7103     EmitObjCIvarInitializations(OMD);
7104     ObjCRuntime->GenerateClass(OMD);
7105     // Emit global variable debug information.
7106     if (CGDebugInfo *DI = getModuleDebugInfo())
7107       if (getCodeGenOpts().hasReducedDebugInfo())
7108         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7109             OMD->getClassInterface()), OMD->getLocation());
7110     break;
7111   }
7112   case Decl::ObjCMethod: {
7113     auto *OMD = cast<ObjCMethodDecl>(D);
7114     // If this is not a prototype, emit the body.
7115     if (OMD->getBody())
7116       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7117     break;
7118   }
7119   case Decl::ObjCCompatibleAlias:
7120     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7121     break;
7122 
7123   case Decl::PragmaComment: {
7124     const auto *PCD = cast<PragmaCommentDecl>(D);
7125     switch (PCD->getCommentKind()) {
7126     case PCK_Unknown:
7127       llvm_unreachable("unexpected pragma comment kind");
7128     case PCK_Linker:
7129       AppendLinkerOptions(PCD->getArg());
7130       break;
7131     case PCK_Lib:
7132         AddDependentLib(PCD->getArg());
7133       break;
7134     case PCK_Compiler:
7135     case PCK_ExeStr:
7136     case PCK_User:
7137       break; // We ignore all of these.
7138     }
7139     break;
7140   }
7141 
7142   case Decl::PragmaDetectMismatch: {
7143     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7144     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7145     break;
7146   }
7147 
7148   case Decl::LinkageSpec:
7149     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7150     break;
7151 
7152   case Decl::FileScopeAsm: {
7153     // File-scope asm is ignored during device-side CUDA compilation.
7154     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7155       break;
7156     // File-scope asm is ignored during device-side OpenMP compilation.
7157     if (LangOpts.OpenMPIsTargetDevice)
7158       break;
7159     // File-scope asm is ignored during device-side SYCL compilation.
7160     if (LangOpts.SYCLIsDevice)
7161       break;
7162     auto *AD = cast<FileScopeAsmDecl>(D);
7163     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7164     break;
7165   }
7166 
7167   case Decl::TopLevelStmt:
7168     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7169     break;
7170 
7171   case Decl::Import: {
7172     auto *Import = cast<ImportDecl>(D);
7173 
7174     // If we've already imported this module, we're done.
7175     if (!ImportedModules.insert(Import->getImportedModule()))
7176       break;
7177 
7178     // Emit debug information for direct imports.
7179     if (!Import->getImportedOwningModule()) {
7180       if (CGDebugInfo *DI = getModuleDebugInfo())
7181         DI->EmitImportDecl(*Import);
7182     }
7183 
7184     // For C++ standard modules we are done - we will call the module
7185     // initializer for imported modules, and that will likewise call those for
7186     // any imports it has.
7187     if (CXX20ModuleInits && Import->getImportedModule() &&
7188         Import->getImportedModule()->isNamedModule())
7189       break;
7190 
7191     // For clang C++ module map modules the initializers for sub-modules are
7192     // emitted here.
7193 
7194     // Find all of the submodules and emit the module initializers.
7195     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7196     SmallVector<clang::Module *, 16> Stack;
7197     Visited.insert(Import->getImportedModule());
7198     Stack.push_back(Import->getImportedModule());
7199 
7200     while (!Stack.empty()) {
7201       clang::Module *Mod = Stack.pop_back_val();
7202       if (!EmittedModuleInitializers.insert(Mod).second)
7203         continue;
7204 
7205       for (auto *D : Context.getModuleInitializers(Mod))
7206         EmitTopLevelDecl(D);
7207 
7208       // Visit the submodules of this module.
7209       for (auto *Submodule : Mod->submodules()) {
7210         // Skip explicit children; they need to be explicitly imported to emit
7211         // the initializers.
7212         if (Submodule->IsExplicit)
7213           continue;
7214 
7215         if (Visited.insert(Submodule).second)
7216           Stack.push_back(Submodule);
7217       }
7218     }
7219     break;
7220   }
7221 
7222   case Decl::Export:
7223     EmitDeclContext(cast<ExportDecl>(D));
7224     break;
7225 
7226   case Decl::OMPThreadPrivate:
7227     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7228     break;
7229 
7230   case Decl::OMPAllocate:
7231     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7232     break;
7233 
7234   case Decl::OMPDeclareReduction:
7235     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7236     break;
7237 
7238   case Decl::OMPDeclareMapper:
7239     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7240     break;
7241 
7242   case Decl::OMPRequires:
7243     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7244     break;
7245 
7246   case Decl::Typedef:
7247   case Decl::TypeAlias: // using foo = bar; [C++11]
7248     if (CGDebugInfo *DI = getModuleDebugInfo())
7249       DI->EmitAndRetainType(
7250           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7251     break;
7252 
7253   case Decl::Record:
7254     if (CGDebugInfo *DI = getModuleDebugInfo())
7255       if (cast<RecordDecl>(D)->getDefinition())
7256         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7257     break;
7258 
7259   case Decl::Enum:
7260     if (CGDebugInfo *DI = getModuleDebugInfo())
7261       if (cast<EnumDecl>(D)->getDefinition())
7262         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7263     break;
7264 
7265   case Decl::HLSLBuffer:
7266     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7267     break;
7268 
7269   default:
7270     // Make sure we handled everything we should, every other kind is a
7271     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7272     // function. Need to recode Decl::Kind to do that easily.
7273     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7274     break;
7275   }
7276 }
7277 
7278 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7279   // Do we need to generate coverage mapping?
7280   if (!CodeGenOpts.CoverageMapping)
7281     return;
7282   switch (D->getKind()) {
7283   case Decl::CXXConversion:
7284   case Decl::CXXMethod:
7285   case Decl::Function:
7286   case Decl::ObjCMethod:
7287   case Decl::CXXConstructor:
7288   case Decl::CXXDestructor: {
7289     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7290       break;
7291     SourceManager &SM = getContext().getSourceManager();
7292     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7293       break;
7294     if (!llvm::coverage::SystemHeadersCoverage &&
7295         SM.isInSystemHeader(D->getBeginLoc()))
7296       break;
7297     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7298     break;
7299   }
7300   default:
7301     break;
7302   };
7303 }
7304 
7305 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7306   // Do we need to generate coverage mapping?
7307   if (!CodeGenOpts.CoverageMapping)
7308     return;
7309   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7310     if (Fn->isTemplateInstantiation())
7311       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7312   }
7313   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7314 }
7315 
7316 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7317   // We call takeVector() here to avoid use-after-free.
7318   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7319   // we deserialize function bodies to emit coverage info for them, and that
7320   // deserializes more declarations. How should we handle that case?
7321   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7322     if (!Entry.second)
7323       continue;
7324     const Decl *D = Entry.first;
7325     switch (D->getKind()) {
7326     case Decl::CXXConversion:
7327     case Decl::CXXMethod:
7328     case Decl::Function:
7329     case Decl::ObjCMethod: {
7330       CodeGenPGO PGO(*this);
7331       GlobalDecl GD(cast<FunctionDecl>(D));
7332       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7333                                   getFunctionLinkage(GD));
7334       break;
7335     }
7336     case Decl::CXXConstructor: {
7337       CodeGenPGO PGO(*this);
7338       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7339       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7340                                   getFunctionLinkage(GD));
7341       break;
7342     }
7343     case Decl::CXXDestructor: {
7344       CodeGenPGO PGO(*this);
7345       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7346       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7347                                   getFunctionLinkage(GD));
7348       break;
7349     }
7350     default:
7351       break;
7352     };
7353   }
7354 }
7355 
7356 void CodeGenModule::EmitMainVoidAlias() {
7357   // In order to transition away from "__original_main" gracefully, emit an
7358   // alias for "main" in the no-argument case so that libc can detect when
7359   // new-style no-argument main is in used.
7360   if (llvm::Function *F = getModule().getFunction("main")) {
7361     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7362         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7363       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7364       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7365     }
7366   }
7367 }
7368 
7369 /// Turns the given pointer into a constant.
7370 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7371                                           const void *Ptr) {
7372   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7373   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7374   return llvm::ConstantInt::get(i64, PtrInt);
7375 }
7376 
7377 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7378                                    llvm::NamedMDNode *&GlobalMetadata,
7379                                    GlobalDecl D,
7380                                    llvm::GlobalValue *Addr) {
7381   if (!GlobalMetadata)
7382     GlobalMetadata =
7383       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7384 
7385   // TODO: should we report variant information for ctors/dtors?
7386   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7387                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7388                                CGM.getLLVMContext(), D.getDecl()))};
7389   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7390 }
7391 
7392 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7393                                                  llvm::GlobalValue *CppFunc) {
7394   // Store the list of ifuncs we need to replace uses in.
7395   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7396   // List of ConstantExprs that we should be able to delete when we're done
7397   // here.
7398   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7399 
7400   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7401   if (Elem == CppFunc)
7402     return false;
7403 
7404   // First make sure that all users of this are ifuncs (or ifuncs via a
7405   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7406   // later.
7407   for (llvm::User *User : Elem->users()) {
7408     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7409     // ifunc directly. In any other case, just give up, as we don't know what we
7410     // could break by changing those.
7411     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7412       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7413         return false;
7414 
7415       for (llvm::User *CEUser : ConstExpr->users()) {
7416         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7417           IFuncs.push_back(IFunc);
7418         } else {
7419           return false;
7420         }
7421       }
7422       CEs.push_back(ConstExpr);
7423     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7424       IFuncs.push_back(IFunc);
7425     } else {
7426       // This user is one we don't know how to handle, so fail redirection. This
7427       // will result in an ifunc retaining a resolver name that will ultimately
7428       // fail to be resolved to a defined function.
7429       return false;
7430     }
7431   }
7432 
7433   // Now we know this is a valid case where we can do this alias replacement, we
7434   // need to remove all of the references to Elem (and the bitcasts!) so we can
7435   // delete it.
7436   for (llvm::GlobalIFunc *IFunc : IFuncs)
7437     IFunc->setResolver(nullptr);
7438   for (llvm::ConstantExpr *ConstExpr : CEs)
7439     ConstExpr->destroyConstant();
7440 
7441   // We should now be out of uses for the 'old' version of this function, so we
7442   // can erase it as well.
7443   Elem->eraseFromParent();
7444 
7445   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7446     // The type of the resolver is always just a function-type that returns the
7447     // type of the IFunc, so create that here. If the type of the actual
7448     // resolver doesn't match, it just gets bitcast to the right thing.
7449     auto *ResolverTy =
7450         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7451     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7452         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7453     IFunc->setResolver(Resolver);
7454   }
7455   return true;
7456 }
7457 
7458 /// For each function which is declared within an extern "C" region and marked
7459 /// as 'used', but has internal linkage, create an alias from the unmangled
7460 /// name to the mangled name if possible. People expect to be able to refer
7461 /// to such functions with an unmangled name from inline assembly within the
7462 /// same translation unit.
7463 void CodeGenModule::EmitStaticExternCAliases() {
7464   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7465     return;
7466   for (auto &I : StaticExternCValues) {
7467     const IdentifierInfo *Name = I.first;
7468     llvm::GlobalValue *Val = I.second;
7469 
7470     // If Val is null, that implies there were multiple declarations that each
7471     // had a claim to the unmangled name. In this case, generation of the alias
7472     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7473     if (!Val)
7474       break;
7475 
7476     llvm::GlobalValue *ExistingElem =
7477         getModule().getNamedValue(Name->getName());
7478 
7479     // If there is either not something already by this name, or we were able to
7480     // replace all uses from IFuncs, create the alias.
7481     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7482       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7483   }
7484 }
7485 
7486 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7487                                              GlobalDecl &Result) const {
7488   auto Res = Manglings.find(MangledName);
7489   if (Res == Manglings.end())
7490     return false;
7491   Result = Res->getValue();
7492   return true;
7493 }
7494 
7495 /// Emits metadata nodes associating all the global values in the
7496 /// current module with the Decls they came from.  This is useful for
7497 /// projects using IR gen as a subroutine.
7498 ///
7499 /// Since there's currently no way to associate an MDNode directly
7500 /// with an llvm::GlobalValue, we create a global named metadata
7501 /// with the name 'clang.global.decl.ptrs'.
7502 void CodeGenModule::EmitDeclMetadata() {
7503   llvm::NamedMDNode *GlobalMetadata = nullptr;
7504 
7505   for (auto &I : MangledDeclNames) {
7506     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7507     // Some mangled names don't necessarily have an associated GlobalValue
7508     // in this module, e.g. if we mangled it for DebugInfo.
7509     if (Addr)
7510       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7511   }
7512 }
7513 
7514 /// Emits metadata nodes for all the local variables in the current
7515 /// function.
7516 void CodeGenFunction::EmitDeclMetadata() {
7517   if (LocalDeclMap.empty()) return;
7518 
7519   llvm::LLVMContext &Context = getLLVMContext();
7520 
7521   // Find the unique metadata ID for this name.
7522   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7523 
7524   llvm::NamedMDNode *GlobalMetadata = nullptr;
7525 
7526   for (auto &I : LocalDeclMap) {
7527     const Decl *D = I.first;
7528     llvm::Value *Addr = I.second.emitRawPointer(*this);
7529     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7530       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7531       Alloca->setMetadata(
7532           DeclPtrKind, llvm::MDNode::get(
7533                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7534     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7535       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7536       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7537     }
7538   }
7539 }
7540 
7541 void CodeGenModule::EmitVersionIdentMetadata() {
7542   llvm::NamedMDNode *IdentMetadata =
7543     TheModule.getOrInsertNamedMetadata("llvm.ident");
7544   std::string Version = getClangFullVersion();
7545   llvm::LLVMContext &Ctx = TheModule.getContext();
7546 
7547   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7548   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7549 }
7550 
7551 void CodeGenModule::EmitCommandLineMetadata() {
7552   llvm::NamedMDNode *CommandLineMetadata =
7553     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7554   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7555   llvm::LLVMContext &Ctx = TheModule.getContext();
7556 
7557   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7558   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7559 }
7560 
7561 void CodeGenModule::EmitCoverageFile() {
7562   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7563   if (!CUNode)
7564     return;
7565 
7566   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7567   llvm::LLVMContext &Ctx = TheModule.getContext();
7568   auto *CoverageDataFile =
7569       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7570   auto *CoverageNotesFile =
7571       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7572   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7573     llvm::MDNode *CU = CUNode->getOperand(i);
7574     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7575     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7576   }
7577 }
7578 
7579 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7580                                                        bool ForEH) {
7581   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7582   // FIXME: should we even be calling this method if RTTI is disabled
7583   // and it's not for EH?
7584   if (!shouldEmitRTTI(ForEH))
7585     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7586 
7587   if (ForEH && Ty->isObjCObjectPointerType() &&
7588       LangOpts.ObjCRuntime.isGNUFamily())
7589     return ObjCRuntime->GetEHType(Ty);
7590 
7591   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7592 }
7593 
7594 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7595   // Do not emit threadprivates in simd-only mode.
7596   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7597     return;
7598   for (auto RefExpr : D->varlist()) {
7599     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7600     bool PerformInit =
7601         VD->getAnyInitializer() &&
7602         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7603                                                         /*ForRef=*/false);
7604 
7605     Address Addr(GetAddrOfGlobalVar(VD),
7606                  getTypes().ConvertTypeForMem(VD->getType()),
7607                  getContext().getDeclAlign(VD));
7608     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7609             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7610       CXXGlobalInits.push_back(InitFunction);
7611   }
7612 }
7613 
7614 llvm::Metadata *
7615 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7616                                             StringRef Suffix) {
7617   if (auto *FnType = T->getAs<FunctionProtoType>())
7618     T = getContext().getFunctionType(
7619         FnType->getReturnType(), FnType->getParamTypes(),
7620         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7621 
7622   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7623   if (InternalId)
7624     return InternalId;
7625 
7626   if (isExternallyVisible(T->getLinkage())) {
7627     std::string OutName;
7628     llvm::raw_string_ostream Out(OutName);
7629     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7630         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7631 
7632     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7633       Out << ".normalized";
7634 
7635     Out << Suffix;
7636 
7637     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7638   } else {
7639     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7640                                            llvm::ArrayRef<llvm::Metadata *>());
7641   }
7642 
7643   return InternalId;
7644 }
7645 
7646 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7647   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7648 }
7649 
7650 llvm::Metadata *
7651 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7652   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7653 }
7654 
7655 // Generalize pointer types to a void pointer with the qualifiers of the
7656 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7657 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7658 // 'void *'.
7659 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7660   if (!Ty->isPointerType())
7661     return Ty;
7662 
7663   return Ctx.getPointerType(
7664       QualType(Ctx.VoidTy).withCVRQualifiers(
7665           Ty->getPointeeType().getCVRQualifiers()));
7666 }
7667 
7668 // Apply type generalization to a FunctionType's return and argument types
7669 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7670   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7671     SmallVector<QualType, 8> GeneralizedParams;
7672     for (auto &Param : FnType->param_types())
7673       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7674 
7675     return Ctx.getFunctionType(
7676         GeneralizeType(Ctx, FnType->getReturnType()),
7677         GeneralizedParams, FnType->getExtProtoInfo());
7678   }
7679 
7680   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7681     return Ctx.getFunctionNoProtoType(
7682         GeneralizeType(Ctx, FnType->getReturnType()));
7683 
7684   llvm_unreachable("Encountered unknown FunctionType");
7685 }
7686 
7687 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7688   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7689                                       GeneralizedMetadataIdMap, ".generalized");
7690 }
7691 
7692 /// Returns whether this module needs the "all-vtables" type identifier.
7693 bool CodeGenModule::NeedAllVtablesTypeId() const {
7694   // Returns true if at least one of vtable-based CFI checkers is enabled and
7695   // is not in the trapping mode.
7696   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7697            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7698           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7699            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7700           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7701            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7702           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7703            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7704 }
7705 
7706 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7707                                           CharUnits Offset,
7708                                           const CXXRecordDecl *RD) {
7709   llvm::Metadata *MD =
7710       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7711   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7712 
7713   if (CodeGenOpts.SanitizeCfiCrossDso)
7714     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7715       VTable->addTypeMetadata(Offset.getQuantity(),
7716                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7717 
7718   if (NeedAllVtablesTypeId()) {
7719     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7720     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7721   }
7722 }
7723 
7724 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7725   if (!SanStats)
7726     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7727 
7728   return *SanStats;
7729 }
7730 
7731 llvm::Value *
7732 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7733                                                   CodeGenFunction &CGF) {
7734   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7735   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7736   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7737   auto *Call = CGF.EmitRuntimeCall(
7738       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7739   return Call;
7740 }
7741 
7742 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7743     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7744   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7745                                  /* forPointeeType= */ true);
7746 }
7747 
7748 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7749                                                  LValueBaseInfo *BaseInfo,
7750                                                  TBAAAccessInfo *TBAAInfo,
7751                                                  bool forPointeeType) {
7752   if (TBAAInfo)
7753     *TBAAInfo = getTBAAAccessInfo(T);
7754 
7755   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7756   // that doesn't return the information we need to compute BaseInfo.
7757 
7758   // Honor alignment typedef attributes even on incomplete types.
7759   // We also honor them straight for C++ class types, even as pointees;
7760   // there's an expressivity gap here.
7761   if (auto TT = T->getAs<TypedefType>()) {
7762     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7763       if (BaseInfo)
7764         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7765       return getContext().toCharUnitsFromBits(Align);
7766     }
7767   }
7768 
7769   bool AlignForArray = T->isArrayType();
7770 
7771   // Analyze the base element type, so we don't get confused by incomplete
7772   // array types.
7773   T = getContext().getBaseElementType(T);
7774 
7775   if (T->isIncompleteType()) {
7776     // We could try to replicate the logic from
7777     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7778     // type is incomplete, so it's impossible to test. We could try to reuse
7779     // getTypeAlignIfKnown, but that doesn't return the information we need
7780     // to set BaseInfo.  So just ignore the possibility that the alignment is
7781     // greater than one.
7782     if (BaseInfo)
7783       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7784     return CharUnits::One();
7785   }
7786 
7787   if (BaseInfo)
7788     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7789 
7790   CharUnits Alignment;
7791   const CXXRecordDecl *RD;
7792   if (T.getQualifiers().hasUnaligned()) {
7793     Alignment = CharUnits::One();
7794   } else if (forPointeeType && !AlignForArray &&
7795              (RD = T->getAsCXXRecordDecl())) {
7796     // For C++ class pointees, we don't know whether we're pointing at a
7797     // base or a complete object, so we generally need to use the
7798     // non-virtual alignment.
7799     Alignment = getClassPointerAlignment(RD);
7800   } else {
7801     Alignment = getContext().getTypeAlignInChars(T);
7802   }
7803 
7804   // Cap to the global maximum type alignment unless the alignment
7805   // was somehow explicit on the type.
7806   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7807     if (Alignment.getQuantity() > MaxAlign &&
7808         !getContext().isAlignmentRequired(T))
7809       Alignment = CharUnits::fromQuantity(MaxAlign);
7810   }
7811   return Alignment;
7812 }
7813 
7814 bool CodeGenModule::stopAutoInit() {
7815   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7816   if (StopAfter) {
7817     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7818     // used
7819     if (NumAutoVarInit >= StopAfter) {
7820       return true;
7821     }
7822     if (!NumAutoVarInit) {
7823       unsigned DiagID = getDiags().getCustomDiagID(
7824           DiagnosticsEngine::Warning,
7825           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7826           "number of times ftrivial-auto-var-init=%1 gets applied.");
7827       getDiags().Report(DiagID)
7828           << StopAfter
7829           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7830                       LangOptions::TrivialAutoVarInitKind::Zero
7831                   ? "zero"
7832                   : "pattern");
7833     }
7834     ++NumAutoVarInit;
7835   }
7836   return false;
7837 }
7838 
7839 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7840                                                     const Decl *D) const {
7841   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7842   // postfix beginning with '.' since the symbol name can be demangled.
7843   if (LangOpts.HIP)
7844     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7845   else
7846     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7847 
7848   // If the CUID is not specified we try to generate a unique postfix.
7849   if (getLangOpts().CUID.empty()) {
7850     SourceManager &SM = getContext().getSourceManager();
7851     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7852     assert(PLoc.isValid() && "Source location is expected to be valid.");
7853 
7854     // Get the hash of the user defined macros.
7855     llvm::MD5 Hash;
7856     llvm::MD5::MD5Result Result;
7857     for (const auto &Arg : PreprocessorOpts.Macros)
7858       Hash.update(Arg.first);
7859     Hash.final(Result);
7860 
7861     // Get the UniqueID for the file containing the decl.
7862     llvm::sys::fs::UniqueID ID;
7863     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7864       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7865       assert(PLoc.isValid() && "Source location is expected to be valid.");
7866       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7867         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7868             << PLoc.getFilename() << EC.message();
7869     }
7870     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7871        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7872   } else {
7873     OS << getContext().getCUIDHash();
7874   }
7875 }
7876 
7877 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7878   assert(DeferredDeclsToEmit.empty() &&
7879          "Should have emitted all decls deferred to emit.");
7880   assert(NewBuilder->DeferredDecls.empty() &&
7881          "Newly created module should not have deferred decls");
7882   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7883   assert(EmittedDeferredDecls.empty() &&
7884          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7885 
7886   assert(NewBuilder->DeferredVTables.empty() &&
7887          "Newly created module should not have deferred vtables");
7888   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7889 
7890   assert(NewBuilder->MangledDeclNames.empty() &&
7891          "Newly created module should not have mangled decl names");
7892   assert(NewBuilder->Manglings.empty() &&
7893          "Newly created module should not have manglings");
7894   NewBuilder->Manglings = std::move(Manglings);
7895 
7896   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7897 
7898   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7899 }
7900