1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 58 #include "llvm/IR/AttributeMask.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/ProfileSummary.h" 65 #include "llvm/ProfileData/InstrProfReader.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/Support/CRC.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ConvertUTF.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/RISCVISAInfo.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include "llvm/TargetParser/X86TargetParser.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include <optional> 79 80 using namespace clang; 81 using namespace CodeGen; 82 83 static llvm::cl::opt<bool> LimitedCoverage( 84 "limited-coverage-experimental", llvm::cl::Hidden, 85 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 86 87 static const char AnnotationSection[] = "llvm.metadata"; 88 89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 90 switch (CGM.getContext().getCXXABIKind()) { 91 case TargetCXXABI::AppleARM64: 92 case TargetCXXABI::Fuchsia: 93 case TargetCXXABI::GenericAArch64: 94 case TargetCXXABI::GenericARM: 95 case TargetCXXABI::iOS: 96 case TargetCXXABI::WatchOS: 97 case TargetCXXABI::GenericMIPS: 98 case TargetCXXABI::GenericItanium: 99 case TargetCXXABI::WebAssembly: 100 case TargetCXXABI::XL: 101 return CreateItaniumCXXABI(CGM); 102 case TargetCXXABI::Microsoft: 103 return CreateMicrosoftCXXABI(CGM); 104 } 105 106 llvm_unreachable("invalid C++ ABI kind"); 107 } 108 109 static std::unique_ptr<TargetCodeGenInfo> 110 createTargetCodeGenInfo(CodeGenModule &CGM) { 111 const TargetInfo &Target = CGM.getTarget(); 112 const llvm::Triple &Triple = Target.getTriple(); 113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 114 115 switch (Triple.getArch()) { 116 default: 117 return createDefaultTargetCodeGenInfo(CGM); 118 119 case llvm::Triple::m68k: 120 return createM68kTargetCodeGenInfo(CGM); 121 case llvm::Triple::mips: 122 case llvm::Triple::mipsel: 123 if (Triple.getOS() == llvm::Triple::NaCl) 124 return createPNaClTargetCodeGenInfo(CGM); 125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 126 127 case llvm::Triple::mips64: 128 case llvm::Triple::mips64el: 129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 130 131 case llvm::Triple::avr: { 132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 133 // on avrtiny. For passing return value, R18~R25 are used on avr, and 134 // R22~R25 are used on avrtiny. 135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 138 } 139 140 case llvm::Triple::aarch64: 141 case llvm::Triple::aarch64_32: 142 case llvm::Triple::aarch64_be: { 143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 144 if (Target.getABI() == "darwinpcs") 145 Kind = AArch64ABIKind::DarwinPCS; 146 else if (Triple.isOSWindows()) 147 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 148 else if (Target.getABI() == "aapcs-soft") 149 Kind = AArch64ABIKind::AAPCSSoft; 150 else if (Target.getABI() == "pauthtest") 151 Kind = AArch64ABIKind::PAuthTest; 152 153 return createAArch64TargetCodeGenInfo(CGM, Kind); 154 } 155 156 case llvm::Triple::wasm32: 157 case llvm::Triple::wasm64: { 158 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 159 if (Target.getABI() == "experimental-mv") 160 Kind = WebAssemblyABIKind::ExperimentalMV; 161 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 162 } 163 164 case llvm::Triple::arm: 165 case llvm::Triple::armeb: 166 case llvm::Triple::thumb: 167 case llvm::Triple::thumbeb: { 168 if (Triple.getOS() == llvm::Triple::Win32) 169 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 170 171 ARMABIKind Kind = ARMABIKind::AAPCS; 172 StringRef ABIStr = Target.getABI(); 173 if (ABIStr == "apcs-gnu") 174 Kind = ARMABIKind::APCS; 175 else if (ABIStr == "aapcs16") 176 Kind = ARMABIKind::AAPCS16_VFP; 177 else if (CodeGenOpts.FloatABI == "hard" || 178 (CodeGenOpts.FloatABI != "soft" && 179 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 180 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 181 Triple.getEnvironment() == llvm::Triple::EABIHF))) 182 Kind = ARMABIKind::AAPCS_VFP; 183 184 return createARMTargetCodeGenInfo(CGM, Kind); 185 } 186 187 case llvm::Triple::ppc: { 188 if (Triple.isOSAIX()) 189 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 190 191 bool IsSoftFloat = 192 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 193 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 194 } 195 case llvm::Triple::ppcle: { 196 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 197 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 198 } 199 case llvm::Triple::ppc64: 200 if (Triple.isOSAIX()) 201 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 202 203 if (Triple.isOSBinFormatELF()) { 204 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 205 if (Target.getABI() == "elfv2") 206 Kind = PPC64_SVR4_ABIKind::ELFv2; 207 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 208 209 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 210 } 211 return createPPC64TargetCodeGenInfo(CGM); 212 case llvm::Triple::ppc64le: { 213 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 214 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 215 if (Target.getABI() == "elfv1") 216 Kind = PPC64_SVR4_ABIKind::ELFv1; 217 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 218 219 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 220 } 221 222 case llvm::Triple::nvptx: 223 case llvm::Triple::nvptx64: 224 return createNVPTXTargetCodeGenInfo(CGM); 225 226 case llvm::Triple::msp430: 227 return createMSP430TargetCodeGenInfo(CGM); 228 229 case llvm::Triple::riscv32: 230 case llvm::Triple::riscv64: { 231 StringRef ABIStr = Target.getABI(); 232 unsigned XLen = Target.getPointerWidth(LangAS::Default); 233 unsigned ABIFLen = 0; 234 if (ABIStr.ends_with("f")) 235 ABIFLen = 32; 236 else if (ABIStr.ends_with("d")) 237 ABIFLen = 64; 238 bool EABI = ABIStr.ends_with("e"); 239 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 240 } 241 242 case llvm::Triple::systemz: { 243 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 244 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 245 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 246 } 247 248 case llvm::Triple::tce: 249 case llvm::Triple::tcele: 250 return createTCETargetCodeGenInfo(CGM); 251 252 case llvm::Triple::x86: { 253 bool IsDarwinVectorABI = Triple.isOSDarwin(); 254 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 255 256 if (Triple.getOS() == llvm::Triple::Win32) { 257 return createWinX86_32TargetCodeGenInfo( 258 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 259 CodeGenOpts.NumRegisterParameters); 260 } 261 return createX86_32TargetCodeGenInfo( 262 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 263 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 264 } 265 266 case llvm::Triple::x86_64: { 267 StringRef ABI = Target.getABI(); 268 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 269 : ABI == "avx" ? X86AVXABILevel::AVX 270 : X86AVXABILevel::None); 271 272 switch (Triple.getOS()) { 273 case llvm::Triple::Win32: 274 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 275 default: 276 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 277 } 278 } 279 case llvm::Triple::hexagon: 280 return createHexagonTargetCodeGenInfo(CGM); 281 case llvm::Triple::lanai: 282 return createLanaiTargetCodeGenInfo(CGM); 283 case llvm::Triple::r600: 284 return createAMDGPUTargetCodeGenInfo(CGM); 285 case llvm::Triple::amdgcn: 286 return createAMDGPUTargetCodeGenInfo(CGM); 287 case llvm::Triple::sparc: 288 return createSparcV8TargetCodeGenInfo(CGM); 289 case llvm::Triple::sparcv9: 290 return createSparcV9TargetCodeGenInfo(CGM); 291 case llvm::Triple::xcore: 292 return createXCoreTargetCodeGenInfo(CGM); 293 case llvm::Triple::arc: 294 return createARCTargetCodeGenInfo(CGM); 295 case llvm::Triple::spir: 296 case llvm::Triple::spir64: 297 return createCommonSPIRTargetCodeGenInfo(CGM); 298 case llvm::Triple::spirv32: 299 case llvm::Triple::spirv64: 300 return createSPIRVTargetCodeGenInfo(CGM); 301 case llvm::Triple::ve: 302 return createVETargetCodeGenInfo(CGM); 303 case llvm::Triple::csky: { 304 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 305 bool hasFP64 = 306 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 307 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 308 : hasFP64 ? 64 309 : 32); 310 } 311 case llvm::Triple::bpfeb: 312 case llvm::Triple::bpfel: 313 return createBPFTargetCodeGenInfo(CGM); 314 case llvm::Triple::loongarch32: 315 case llvm::Triple::loongarch64: { 316 StringRef ABIStr = Target.getABI(); 317 unsigned ABIFRLen = 0; 318 if (ABIStr.ends_with("f")) 319 ABIFRLen = 32; 320 else if (ABIStr.ends_with("d")) 321 ABIFRLen = 64; 322 return createLoongArchTargetCodeGenInfo( 323 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 324 } 325 } 326 } 327 328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 329 if (!TheTargetCodeGenInfo) 330 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 331 return *TheTargetCodeGenInfo; 332 } 333 334 CodeGenModule::CodeGenModule(ASTContext &C, 335 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 336 const HeaderSearchOptions &HSO, 337 const PreprocessorOptions &PPO, 338 const CodeGenOptions &CGO, llvm::Module &M, 339 DiagnosticsEngine &diags, 340 CoverageSourceInfo *CoverageInfo) 341 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 342 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 343 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 344 VMContext(M.getContext()), Types(*this), VTables(*this), 345 SanitizerMD(new SanitizerMetadata(*this)) { 346 347 // Initialize the type cache. 348 llvm::LLVMContext &LLVMContext = M.getContext(); 349 VoidTy = llvm::Type::getVoidTy(LLVMContext); 350 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 351 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 352 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 353 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 354 HalfTy = llvm::Type::getHalfTy(LLVMContext); 355 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 356 FloatTy = llvm::Type::getFloatTy(LLVMContext); 357 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 358 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 359 PointerAlignInBytes = 360 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 361 .getQuantity(); 362 SizeSizeInBytes = 363 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 364 IntAlignInBytes = 365 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 366 CharTy = 367 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 368 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 369 IntPtrTy = llvm::IntegerType::get(LLVMContext, 370 C.getTargetInfo().getMaxPointerWidth()); 371 Int8PtrTy = llvm::PointerType::get(LLVMContext, 372 C.getTargetAddressSpace(LangAS::Default)); 373 const llvm::DataLayout &DL = M.getDataLayout(); 374 AllocaInt8PtrTy = 375 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 376 GlobalsInt8PtrTy = 377 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 378 ConstGlobalsPtrTy = llvm::PointerType::get( 379 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 380 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 381 382 // Build C++20 Module initializers. 383 // TODO: Add Microsoft here once we know the mangling required for the 384 // initializers. 385 CXX20ModuleInits = 386 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 387 ItaniumMangleContext::MK_Itanium; 388 389 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 390 391 if (LangOpts.ObjC) 392 createObjCRuntime(); 393 if (LangOpts.OpenCL) 394 createOpenCLRuntime(); 395 if (LangOpts.OpenMP) 396 createOpenMPRuntime(); 397 if (LangOpts.CUDA) 398 createCUDARuntime(); 399 if (LangOpts.HLSL) 400 createHLSLRuntime(); 401 402 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 403 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 404 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 405 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 406 getLangOpts(), getCXXABI().getMangleContext())); 407 408 // If debug info or coverage generation is enabled, create the CGDebugInfo 409 // object. 410 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 411 CodeGenOpts.CoverageNotesFile.size() || 412 CodeGenOpts.CoverageDataFile.size()) 413 DebugInfo.reset(new CGDebugInfo(*this)); 414 415 Block.GlobalUniqueCount = 0; 416 417 if (C.getLangOpts().ObjC) 418 ObjCData.reset(new ObjCEntrypoints()); 419 420 if (CodeGenOpts.hasProfileClangUse()) { 421 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 422 CodeGenOpts.ProfileInstrumentUsePath, *FS, 423 CodeGenOpts.ProfileRemappingFile); 424 // We're checking for profile read errors in CompilerInvocation, so if 425 // there was an error it should've already been caught. If it hasn't been 426 // somehow, trip an assertion. 427 assert(ReaderOrErr); 428 PGOReader = std::move(ReaderOrErr.get()); 429 } 430 431 // If coverage mapping generation is enabled, create the 432 // CoverageMappingModuleGen object. 433 if (CodeGenOpts.CoverageMapping) 434 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 435 436 // Generate the module name hash here if needed. 437 if (CodeGenOpts.UniqueInternalLinkageNames && 438 !getModule().getSourceFileName().empty()) { 439 std::string Path = getModule().getSourceFileName(); 440 // Check if a path substitution is needed from the MacroPrefixMap. 441 for (const auto &Entry : LangOpts.MacroPrefixMap) 442 if (Path.rfind(Entry.first, 0) != std::string::npos) { 443 Path = Entry.second + Path.substr(Entry.first.size()); 444 break; 445 } 446 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 447 } 448 449 // Record mregparm value now so it is visible through all of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 } 454 455 CodeGenModule::~CodeGenModule() {} 456 457 void CodeGenModule::createObjCRuntime() { 458 // This is just isGNUFamily(), but we want to force implementors of 459 // new ABIs to decide how best to do this. 460 switch (LangOpts.ObjCRuntime.getKind()) { 461 case ObjCRuntime::GNUstep: 462 case ObjCRuntime::GCC: 463 case ObjCRuntime::ObjFW: 464 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 465 return; 466 467 case ObjCRuntime::FragileMacOSX: 468 case ObjCRuntime::MacOSX: 469 case ObjCRuntime::iOS: 470 case ObjCRuntime::WatchOS: 471 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 472 return; 473 } 474 llvm_unreachable("bad runtime kind"); 475 } 476 477 void CodeGenModule::createOpenCLRuntime() { 478 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 479 } 480 481 void CodeGenModule::createOpenMPRuntime() { 482 // Select a specialized code generation class based on the target, if any. 483 // If it does not exist use the default implementation. 484 switch (getTriple().getArch()) { 485 case llvm::Triple::nvptx: 486 case llvm::Triple::nvptx64: 487 case llvm::Triple::amdgcn: 488 assert(getLangOpts().OpenMPIsTargetDevice && 489 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 490 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 491 break; 492 default: 493 if (LangOpts.OpenMPSimd) 494 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 495 else 496 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 497 break; 498 } 499 } 500 501 void CodeGenModule::createCUDARuntime() { 502 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 503 } 504 505 void CodeGenModule::createHLSLRuntime() { 506 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 507 } 508 509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 510 Replacements[Name] = C; 511 } 512 513 void CodeGenModule::applyReplacements() { 514 for (auto &I : Replacements) { 515 StringRef MangledName = I.first; 516 llvm::Constant *Replacement = I.second; 517 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 518 if (!Entry) 519 continue; 520 auto *OldF = cast<llvm::Function>(Entry); 521 auto *NewF = dyn_cast<llvm::Function>(Replacement); 522 if (!NewF) { 523 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 524 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 525 } else { 526 auto *CE = cast<llvm::ConstantExpr>(Replacement); 527 assert(CE->getOpcode() == llvm::Instruction::BitCast || 528 CE->getOpcode() == llvm::Instruction::GetElementPtr); 529 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 530 } 531 } 532 533 // Replace old with new, but keep the old order. 534 OldF->replaceAllUsesWith(Replacement); 535 if (NewF) { 536 NewF->removeFromParent(); 537 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 538 NewF); 539 } 540 OldF->eraseFromParent(); 541 } 542 } 543 544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 545 GlobalValReplacements.push_back(std::make_pair(GV, C)); 546 } 547 548 void CodeGenModule::applyGlobalValReplacements() { 549 for (auto &I : GlobalValReplacements) { 550 llvm::GlobalValue *GV = I.first; 551 llvm::Constant *C = I.second; 552 553 GV->replaceAllUsesWith(C); 554 GV->eraseFromParent(); 555 } 556 } 557 558 // This is only used in aliases that we created and we know they have a 559 // linear structure. 560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 561 const llvm::Constant *C; 562 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 563 C = GA->getAliasee(); 564 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 565 C = GI->getResolver(); 566 else 567 return GV; 568 569 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 570 if (!AliaseeGV) 571 return nullptr; 572 573 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 574 if (FinalGV == GV) 575 return nullptr; 576 577 return FinalGV; 578 } 579 580 static bool checkAliasedGlobal( 581 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 582 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 583 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 584 SourceRange AliasRange) { 585 GV = getAliasedGlobal(Alias); 586 if (!GV) { 587 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 588 return false; 589 } 590 591 if (GV->hasCommonLinkage()) { 592 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 593 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 594 Diags.Report(Location, diag::err_alias_to_common); 595 return false; 596 } 597 } 598 599 if (GV->isDeclaration()) { 600 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 601 Diags.Report(Location, diag::note_alias_requires_mangled_name) 602 << IsIFunc << IsIFunc; 603 // Provide a note if the given function is not found and exists as a 604 // mangled name. 605 for (const auto &[Decl, Name] : MangledDeclNames) { 606 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 607 if (ND->getName() == GV->getName()) { 608 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 609 << Name 610 << FixItHint::CreateReplacement( 611 AliasRange, 612 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 613 .str()); 614 } 615 } 616 } 617 return false; 618 } 619 620 if (IsIFunc) { 621 // Check resolver function type. 622 const auto *F = dyn_cast<llvm::Function>(GV); 623 if (!F) { 624 Diags.Report(Location, diag::err_alias_to_undefined) 625 << IsIFunc << IsIFunc; 626 return false; 627 } 628 629 llvm::FunctionType *FTy = F->getFunctionType(); 630 if (!FTy->getReturnType()->isPointerTy()) { 631 Diags.Report(Location, diag::err_ifunc_resolver_return); 632 return false; 633 } 634 } 635 636 return true; 637 } 638 639 // Emit a warning if toc-data attribute is requested for global variables that 640 // have aliases and remove the toc-data attribute. 641 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 642 const CodeGenOptions &CodeGenOpts, 643 DiagnosticsEngine &Diags, 644 SourceLocation Location) { 645 if (GVar->hasAttribute("toc-data")) { 646 auto GVId = GVar->getName(); 647 // Is this a global variable specified by the user as local? 648 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 649 Diags.Report(Location, diag::warn_toc_unsupported_type) 650 << GVId << "the variable has an alias"; 651 } 652 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 653 llvm::AttributeSet NewAttributes = 654 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 655 GVar->setAttributes(NewAttributes); 656 } 657 } 658 659 void CodeGenModule::checkAliases() { 660 // Check if the constructed aliases are well formed. It is really unfortunate 661 // that we have to do this in CodeGen, but we only construct mangled names 662 // and aliases during codegen. 663 bool Error = false; 664 DiagnosticsEngine &Diags = getDiags(); 665 for (const GlobalDecl &GD : Aliases) { 666 const auto *D = cast<ValueDecl>(GD.getDecl()); 667 SourceLocation Location; 668 SourceRange Range; 669 bool IsIFunc = D->hasAttr<IFuncAttr>(); 670 if (const Attr *A = D->getDefiningAttr()) { 671 Location = A->getLocation(); 672 Range = A->getRange(); 673 } else 674 llvm_unreachable("Not an alias or ifunc?"); 675 676 StringRef MangledName = getMangledName(GD); 677 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 678 const llvm::GlobalValue *GV = nullptr; 679 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 680 MangledDeclNames, Range)) { 681 Error = true; 682 continue; 683 } 684 685 if (getContext().getTargetInfo().getTriple().isOSAIX()) 686 if (const llvm::GlobalVariable *GVar = 687 dyn_cast<const llvm::GlobalVariable>(GV)) 688 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 689 getCodeGenOpts(), Diags, Location); 690 691 llvm::Constant *Aliasee = 692 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 693 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 694 695 llvm::GlobalValue *AliaseeGV; 696 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 697 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 698 else 699 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 700 701 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 702 StringRef AliasSection = SA->getName(); 703 if (AliasSection != AliaseeGV->getSection()) 704 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 705 << AliasSection << IsIFunc << IsIFunc; 706 } 707 708 // We have to handle alias to weak aliases in here. LLVM itself disallows 709 // this since the object semantics would not match the IL one. For 710 // compatibility with gcc we implement it by just pointing the alias 711 // to its aliasee's aliasee. We also warn, since the user is probably 712 // expecting the link to be weak. 713 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 714 if (GA->isInterposable()) { 715 Diags.Report(Location, diag::warn_alias_to_weak_alias) 716 << GV->getName() << GA->getName() << IsIFunc; 717 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 718 GA->getAliasee(), Alias->getType()); 719 720 if (IsIFunc) 721 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 722 else 723 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 724 } 725 } 726 // ifunc resolvers are usually implemented to run before sanitizer 727 // initialization. Disable instrumentation to prevent the ordering issue. 728 if (IsIFunc) 729 cast<llvm::Function>(Aliasee)->addFnAttr( 730 llvm::Attribute::DisableSanitizerInstrumentation); 731 } 732 if (!Error) 733 return; 734 735 for (const GlobalDecl &GD : Aliases) { 736 StringRef MangledName = getMangledName(GD); 737 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 738 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 739 Alias->eraseFromParent(); 740 } 741 } 742 743 void CodeGenModule::clear() { 744 DeferredDeclsToEmit.clear(); 745 EmittedDeferredDecls.clear(); 746 DeferredAnnotations.clear(); 747 if (OpenMPRuntime) 748 OpenMPRuntime->clear(); 749 } 750 751 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 752 StringRef MainFile) { 753 if (!hasDiagnostics()) 754 return; 755 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 756 if (MainFile.empty()) 757 MainFile = "<stdin>"; 758 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 759 } else { 760 if (Mismatched > 0) 761 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 762 763 if (Missing > 0) 764 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 765 } 766 } 767 768 static std::optional<llvm::GlobalValue::VisibilityTypes> 769 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 770 // Map to LLVM visibility. 771 switch (K) { 772 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 773 return std::nullopt; 774 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 775 return llvm::GlobalValue::DefaultVisibility; 776 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 777 return llvm::GlobalValue::HiddenVisibility; 778 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 779 return llvm::GlobalValue::ProtectedVisibility; 780 } 781 llvm_unreachable("unknown option value!"); 782 } 783 784 void setLLVMVisibility(llvm::GlobalValue &GV, 785 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 786 if (!V) 787 return; 788 789 // Reset DSO locality before setting the visibility. This removes 790 // any effects that visibility options and annotations may have 791 // had on the DSO locality. Setting the visibility will implicitly set 792 // appropriate globals to DSO Local; however, this will be pessimistic 793 // w.r.t. to the normal compiler IRGen. 794 GV.setDSOLocal(false); 795 GV.setVisibility(*V); 796 } 797 798 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 799 llvm::Module &M) { 800 if (!LO.VisibilityFromDLLStorageClass) 801 return; 802 803 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 804 getLLVMVisibility(LO.getDLLExportVisibility()); 805 806 std::optional<llvm::GlobalValue::VisibilityTypes> 807 NoDLLStorageClassVisibility = 808 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 809 810 std::optional<llvm::GlobalValue::VisibilityTypes> 811 ExternDeclDLLImportVisibility = 812 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 813 814 std::optional<llvm::GlobalValue::VisibilityTypes> 815 ExternDeclNoDLLStorageClassVisibility = 816 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 817 818 for (llvm::GlobalValue &GV : M.global_values()) { 819 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 820 continue; 821 822 if (GV.isDeclarationForLinker()) 823 setLLVMVisibility(GV, GV.getDLLStorageClass() == 824 llvm::GlobalValue::DLLImportStorageClass 825 ? ExternDeclDLLImportVisibility 826 : ExternDeclNoDLLStorageClassVisibility); 827 else 828 setLLVMVisibility(GV, GV.getDLLStorageClass() == 829 llvm::GlobalValue::DLLExportStorageClass 830 ? DLLExportVisibility 831 : NoDLLStorageClassVisibility); 832 833 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 834 } 835 } 836 837 static bool isStackProtectorOn(const LangOptions &LangOpts, 838 const llvm::Triple &Triple, 839 clang::LangOptions::StackProtectorMode Mode) { 840 if (Triple.isAMDGPU() || Triple.isNVPTX()) 841 return false; 842 return LangOpts.getStackProtector() == Mode; 843 } 844 845 void CodeGenModule::Release() { 846 Module *Primary = getContext().getCurrentNamedModule(); 847 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 848 EmitModuleInitializers(Primary); 849 EmitDeferred(); 850 DeferredDecls.insert(EmittedDeferredDecls.begin(), 851 EmittedDeferredDecls.end()); 852 EmittedDeferredDecls.clear(); 853 EmitVTablesOpportunistically(); 854 applyGlobalValReplacements(); 855 applyReplacements(); 856 emitMultiVersionFunctions(); 857 858 if (Context.getLangOpts().IncrementalExtensions && 859 GlobalTopLevelStmtBlockInFlight.first) { 860 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 861 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 862 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 863 } 864 865 // Module implementations are initialized the same way as a regular TU that 866 // imports one or more modules. 867 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 868 EmitCXXModuleInitFunc(Primary); 869 else 870 EmitCXXGlobalInitFunc(); 871 EmitCXXGlobalCleanUpFunc(); 872 registerGlobalDtorsWithAtExit(); 873 EmitCXXThreadLocalInitFunc(); 874 if (ObjCRuntime) 875 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 876 AddGlobalCtor(ObjCInitFunction); 877 if (Context.getLangOpts().CUDA && CUDARuntime) { 878 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 879 AddGlobalCtor(CudaCtorFunction); 880 } 881 if (OpenMPRuntime) { 882 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 883 OpenMPRuntime->clear(); 884 } 885 if (PGOReader) { 886 getModule().setProfileSummary( 887 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 888 llvm::ProfileSummary::PSK_Instr); 889 if (PGOStats.hasDiagnostics()) 890 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 891 } 892 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 893 return L.LexOrder < R.LexOrder; 894 }); 895 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 896 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 897 EmitGlobalAnnotations(); 898 EmitStaticExternCAliases(); 899 checkAliases(); 900 EmitDeferredUnusedCoverageMappings(); 901 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 902 CodeGenPGO(*this).setProfileVersion(getModule()); 903 if (CoverageMapping) 904 CoverageMapping->emit(); 905 if (CodeGenOpts.SanitizeCfiCrossDso) { 906 CodeGenFunction(*this).EmitCfiCheckFail(); 907 CodeGenFunction(*this).EmitCfiCheckStub(); 908 } 909 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 910 finalizeKCFITypes(); 911 emitAtAvailableLinkGuard(); 912 if (Context.getTargetInfo().getTriple().isWasm()) 913 EmitMainVoidAlias(); 914 915 if (getTriple().isAMDGPU() || 916 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 917 // Emit amdhsa_code_object_version module flag, which is code object version 918 // times 100. 919 if (getTarget().getTargetOpts().CodeObjectVersion != 920 llvm::CodeObjectVersionKind::COV_None) { 921 getModule().addModuleFlag(llvm::Module::Error, 922 "amdhsa_code_object_version", 923 getTarget().getTargetOpts().CodeObjectVersion); 924 } 925 926 // Currently, "-mprintf-kind" option is only supported for HIP 927 if (LangOpts.HIP) { 928 auto *MDStr = llvm::MDString::get( 929 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 930 TargetOptions::AMDGPUPrintfKind::Hostcall) 931 ? "hostcall" 932 : "buffered"); 933 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 934 MDStr); 935 } 936 } 937 938 // Emit a global array containing all external kernels or device variables 939 // used by host functions and mark it as used for CUDA/HIP. This is necessary 940 // to get kernels or device variables in archives linked in even if these 941 // kernels or device variables are only used in host functions. 942 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 943 SmallVector<llvm::Constant *, 8> UsedArray; 944 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 945 GlobalDecl GD; 946 if (auto *FD = dyn_cast<FunctionDecl>(D)) 947 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 948 else 949 GD = GlobalDecl(D); 950 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 951 GetAddrOfGlobal(GD), Int8PtrTy)); 952 } 953 954 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 955 956 auto *GV = new llvm::GlobalVariable( 957 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 958 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 959 addCompilerUsedGlobal(GV); 960 } 961 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 962 // Emit a unique ID so that host and device binaries from the same 963 // compilation unit can be associated. 964 auto *GV = new llvm::GlobalVariable( 965 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 966 llvm::Constant::getNullValue(Int8Ty), 967 "__hip_cuid_" + getContext().getCUIDHash()); 968 addCompilerUsedGlobal(GV); 969 } 970 emitLLVMUsed(); 971 if (SanStats) 972 SanStats->finish(); 973 974 if (CodeGenOpts.Autolink && 975 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 976 EmitModuleLinkOptions(); 977 } 978 979 // On ELF we pass the dependent library specifiers directly to the linker 980 // without manipulating them. This is in contrast to other platforms where 981 // they are mapped to a specific linker option by the compiler. This 982 // difference is a result of the greater variety of ELF linkers and the fact 983 // that ELF linkers tend to handle libraries in a more complicated fashion 984 // than on other platforms. This forces us to defer handling the dependent 985 // libs to the linker. 986 // 987 // CUDA/HIP device and host libraries are different. Currently there is no 988 // way to differentiate dependent libraries for host or device. Existing 989 // usage of #pragma comment(lib, *) is intended for host libraries on 990 // Windows. Therefore emit llvm.dependent-libraries only for host. 991 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 992 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 993 for (auto *MD : ELFDependentLibraries) 994 NMD->addOperand(MD); 995 } 996 997 if (CodeGenOpts.DwarfVersion) { 998 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 999 CodeGenOpts.DwarfVersion); 1000 } 1001 1002 if (CodeGenOpts.Dwarf64) 1003 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 1004 1005 if (Context.getLangOpts().SemanticInterposition) 1006 // Require various optimization to respect semantic interposition. 1007 getModule().setSemanticInterposition(true); 1008 1009 if (CodeGenOpts.EmitCodeView) { 1010 // Indicate that we want CodeView in the metadata. 1011 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1012 } 1013 if (CodeGenOpts.CodeViewGHash) { 1014 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1015 } 1016 if (CodeGenOpts.ControlFlowGuard) { 1017 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1018 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1019 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1020 // Function ID tables for Control Flow Guard (cfguard=1). 1021 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1022 } 1023 if (CodeGenOpts.EHContGuard) { 1024 // Function ID tables for EH Continuation Guard. 1025 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1026 } 1027 if (Context.getLangOpts().Kernel) { 1028 // Note if we are compiling with /kernel. 1029 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1030 } 1031 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1032 // We don't support LTO with 2 with different StrictVTablePointers 1033 // FIXME: we could support it by stripping all the information introduced 1034 // by StrictVTablePointers. 1035 1036 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1037 1038 llvm::Metadata *Ops[2] = { 1039 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1040 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1041 llvm::Type::getInt32Ty(VMContext), 1))}; 1042 1043 getModule().addModuleFlag(llvm::Module::Require, 1044 "StrictVTablePointersRequirement", 1045 llvm::MDNode::get(VMContext, Ops)); 1046 } 1047 if (getModuleDebugInfo()) 1048 // We support a single version in the linked module. The LLVM 1049 // parser will drop debug info with a different version number 1050 // (and warn about it, too). 1051 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1052 llvm::DEBUG_METADATA_VERSION); 1053 1054 // We need to record the widths of enums and wchar_t, so that we can generate 1055 // the correct build attributes in the ARM backend. wchar_size is also used by 1056 // TargetLibraryInfo. 1057 uint64_t WCharWidth = 1058 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1059 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1060 1061 if (getTriple().isOSzOS()) { 1062 getModule().addModuleFlag(llvm::Module::Warning, 1063 "zos_product_major_version", 1064 uint32_t(CLANG_VERSION_MAJOR)); 1065 getModule().addModuleFlag(llvm::Module::Warning, 1066 "zos_product_minor_version", 1067 uint32_t(CLANG_VERSION_MINOR)); 1068 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1069 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1070 std::string ProductId = getClangVendor() + "clang"; 1071 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1072 llvm::MDString::get(VMContext, ProductId)); 1073 1074 // Record the language because we need it for the PPA2. 1075 StringRef lang_str = languageToString( 1076 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1077 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1078 llvm::MDString::get(VMContext, lang_str)); 1079 1080 time_t TT = PreprocessorOpts.SourceDateEpoch 1081 ? *PreprocessorOpts.SourceDateEpoch 1082 : std::time(nullptr); 1083 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1084 static_cast<uint64_t>(TT)); 1085 1086 // Multiple modes will be supported here. 1087 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1088 llvm::MDString::get(VMContext, "ascii")); 1089 } 1090 1091 llvm::Triple T = Context.getTargetInfo().getTriple(); 1092 if (T.isARM() || T.isThumb()) { 1093 // The minimum width of an enum in bytes 1094 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1095 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1096 } 1097 1098 if (T.isRISCV()) { 1099 StringRef ABIStr = Target.getABI(); 1100 llvm::LLVMContext &Ctx = TheModule.getContext(); 1101 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1102 llvm::MDString::get(Ctx, ABIStr)); 1103 1104 // Add the canonical ISA string as metadata so the backend can set the ELF 1105 // attributes correctly. We use AppendUnique so LTO will keep all of the 1106 // unique ISA strings that were linked together. 1107 const std::vector<std::string> &Features = 1108 getTarget().getTargetOpts().Features; 1109 auto ParseResult = 1110 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1111 if (!errorToBool(ParseResult.takeError())) 1112 getModule().addModuleFlag( 1113 llvm::Module::AppendUnique, "riscv-isa", 1114 llvm::MDNode::get( 1115 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1116 } 1117 1118 if (CodeGenOpts.SanitizeCfiCrossDso) { 1119 // Indicate that we want cross-DSO control flow integrity checks. 1120 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1121 } 1122 1123 if (CodeGenOpts.WholeProgramVTables) { 1124 // Indicate whether VFE was enabled for this module, so that the 1125 // vcall_visibility metadata added under whole program vtables is handled 1126 // appropriately in the optimizer. 1127 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1128 CodeGenOpts.VirtualFunctionElimination); 1129 } 1130 1131 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1132 getModule().addModuleFlag(llvm::Module::Override, 1133 "CFI Canonical Jump Tables", 1134 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1135 } 1136 1137 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1138 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1139 // KCFI assumes patchable-function-prefix is the same for all indirectly 1140 // called functions. Store the expected offset for code generation. 1141 if (CodeGenOpts.PatchableFunctionEntryOffset) 1142 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1143 CodeGenOpts.PatchableFunctionEntryOffset); 1144 } 1145 1146 if (CodeGenOpts.CFProtectionReturn && 1147 Target.checkCFProtectionReturnSupported(getDiags())) { 1148 // Indicate that we want to instrument return control flow protection. 1149 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1150 1); 1151 } 1152 1153 if (CodeGenOpts.CFProtectionBranch && 1154 Target.checkCFProtectionBranchSupported(getDiags())) { 1155 // Indicate that we want to instrument branch control flow protection. 1156 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1157 1); 1158 } 1159 1160 if (CodeGenOpts.FunctionReturnThunks) 1161 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1162 1163 if (CodeGenOpts.IndirectBranchCSPrefix) 1164 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1165 1166 // Add module metadata for return address signing (ignoring 1167 // non-leaf/all) and stack tagging. These are actually turned on by function 1168 // attributes, but we use module metadata to emit build attributes. This is 1169 // needed for LTO, where the function attributes are inside bitcode 1170 // serialised into a global variable by the time build attributes are 1171 // emitted, so we can't access them. LTO objects could be compiled with 1172 // different flags therefore module flags are set to "Min" behavior to achieve 1173 // the same end result of the normal build where e.g BTI is off if any object 1174 // doesn't support it. 1175 if (Context.getTargetInfo().hasFeature("ptrauth") && 1176 LangOpts.getSignReturnAddressScope() != 1177 LangOptions::SignReturnAddressScopeKind::None) 1178 getModule().addModuleFlag(llvm::Module::Override, 1179 "sign-return-address-buildattr", 1); 1180 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1181 getModule().addModuleFlag(llvm::Module::Override, 1182 "tag-stack-memory-buildattr", 1); 1183 1184 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1185 if (LangOpts.BranchTargetEnforcement) 1186 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1187 1); 1188 if (LangOpts.BranchProtectionPAuthLR) 1189 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1190 1); 1191 if (LangOpts.GuardedControlStack) 1192 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1193 if (LangOpts.hasSignReturnAddress()) 1194 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1195 if (LangOpts.isSignReturnAddressScopeAll()) 1196 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1197 1); 1198 if (!LangOpts.isSignReturnAddressWithAKey()) 1199 getModule().addModuleFlag(llvm::Module::Min, 1200 "sign-return-address-with-bkey", 1); 1201 1202 if (getTriple().isOSLinux()) { 1203 assert(getTriple().isOSBinFormatELF()); 1204 using namespace llvm::ELF; 1205 uint64_t PAuthABIVersion = 1206 (LangOpts.PointerAuthIntrinsics 1207 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1208 (LangOpts.PointerAuthCalls 1209 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1210 (LangOpts.PointerAuthReturns 1211 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1212 (LangOpts.PointerAuthAuthTraps 1213 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1214 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1215 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1216 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1217 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1218 (LangOpts.PointerAuthInitFini 1219 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) | 1220 (LangOpts.PointerAuthInitFiniAddressDiscrimination 1221 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) | 1222 (LangOpts.PointerAuthELFGOT 1223 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT); 1224 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT == 1225 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1226 "Update when new enum items are defined"); 1227 if (PAuthABIVersion != 0) { 1228 getModule().addModuleFlag(llvm::Module::Error, 1229 "aarch64-elf-pauthabi-platform", 1230 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1231 getModule().addModuleFlag(llvm::Module::Error, 1232 "aarch64-elf-pauthabi-version", 1233 PAuthABIVersion); 1234 } 1235 } 1236 } 1237 1238 if (CodeGenOpts.StackClashProtector) 1239 getModule().addModuleFlag( 1240 llvm::Module::Override, "probe-stack", 1241 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1242 1243 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1244 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1245 CodeGenOpts.StackProbeSize); 1246 1247 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1248 llvm::LLVMContext &Ctx = TheModule.getContext(); 1249 getModule().addModuleFlag( 1250 llvm::Module::Error, "MemProfProfileFilename", 1251 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1252 } 1253 1254 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1255 // Indicate whether __nvvm_reflect should be configured to flush denormal 1256 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1257 // property.) 1258 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1259 CodeGenOpts.FP32DenormalMode.Output != 1260 llvm::DenormalMode::IEEE); 1261 } 1262 1263 if (LangOpts.EHAsynch) 1264 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1265 1266 // Indicate whether this Module was compiled with -fopenmp 1267 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1268 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1269 if (getLangOpts().OpenMPIsTargetDevice) 1270 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1271 LangOpts.OpenMP); 1272 1273 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1274 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1275 EmitOpenCLMetadata(); 1276 // Emit SPIR version. 1277 if (getTriple().isSPIR()) { 1278 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1279 // opencl.spir.version named metadata. 1280 // C++ for OpenCL has a distinct mapping for version compatibility with 1281 // OpenCL. 1282 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1283 llvm::Metadata *SPIRVerElts[] = { 1284 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1285 Int32Ty, Version / 100)), 1286 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1287 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1288 llvm::NamedMDNode *SPIRVerMD = 1289 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1290 llvm::LLVMContext &Ctx = TheModule.getContext(); 1291 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1292 } 1293 } 1294 1295 // HLSL related end of code gen work items. 1296 if (LangOpts.HLSL) 1297 getHLSLRuntime().finishCodeGen(); 1298 1299 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1300 assert(PLevel < 3 && "Invalid PIC Level"); 1301 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1302 if (Context.getLangOpts().PIE) 1303 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1304 } 1305 1306 if (getCodeGenOpts().CodeModel.size() > 0) { 1307 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1308 .Case("tiny", llvm::CodeModel::Tiny) 1309 .Case("small", llvm::CodeModel::Small) 1310 .Case("kernel", llvm::CodeModel::Kernel) 1311 .Case("medium", llvm::CodeModel::Medium) 1312 .Case("large", llvm::CodeModel::Large) 1313 .Default(~0u); 1314 if (CM != ~0u) { 1315 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1316 getModule().setCodeModel(codeModel); 1317 1318 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1319 Context.getTargetInfo().getTriple().getArch() == 1320 llvm::Triple::x86_64) { 1321 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1322 } 1323 } 1324 } 1325 1326 if (CodeGenOpts.NoPLT) 1327 getModule().setRtLibUseGOT(); 1328 if (getTriple().isOSBinFormatELF() && 1329 CodeGenOpts.DirectAccessExternalData != 1330 getModule().getDirectAccessExternalData()) { 1331 getModule().setDirectAccessExternalData( 1332 CodeGenOpts.DirectAccessExternalData); 1333 } 1334 if (CodeGenOpts.UnwindTables) 1335 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1336 1337 switch (CodeGenOpts.getFramePointer()) { 1338 case CodeGenOptions::FramePointerKind::None: 1339 // 0 ("none") is the default. 1340 break; 1341 case CodeGenOptions::FramePointerKind::Reserved: 1342 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1343 break; 1344 case CodeGenOptions::FramePointerKind::NonLeaf: 1345 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1346 break; 1347 case CodeGenOptions::FramePointerKind::All: 1348 getModule().setFramePointer(llvm::FramePointerKind::All); 1349 break; 1350 } 1351 1352 SimplifyPersonality(); 1353 1354 if (getCodeGenOpts().EmitDeclMetadata) 1355 EmitDeclMetadata(); 1356 1357 if (getCodeGenOpts().CoverageNotesFile.size() || 1358 getCodeGenOpts().CoverageDataFile.size()) 1359 EmitCoverageFile(); 1360 1361 if (CGDebugInfo *DI = getModuleDebugInfo()) 1362 DI->finalize(); 1363 1364 if (getCodeGenOpts().EmitVersionIdentMetadata) 1365 EmitVersionIdentMetadata(); 1366 1367 if (!getCodeGenOpts().RecordCommandLine.empty()) 1368 EmitCommandLineMetadata(); 1369 1370 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1371 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1372 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1373 getModule().setStackProtectorGuardReg( 1374 getCodeGenOpts().StackProtectorGuardReg); 1375 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1376 getModule().setStackProtectorGuardSymbol( 1377 getCodeGenOpts().StackProtectorGuardSymbol); 1378 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1379 getModule().setStackProtectorGuardOffset( 1380 getCodeGenOpts().StackProtectorGuardOffset); 1381 if (getCodeGenOpts().StackAlignment) 1382 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1383 if (getCodeGenOpts().SkipRaxSetup) 1384 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1385 if (getLangOpts().RegCall4) 1386 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1387 1388 if (getContext().getTargetInfo().getMaxTLSAlign()) 1389 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1390 getContext().getTargetInfo().getMaxTLSAlign()); 1391 1392 getTargetCodeGenInfo().emitTargetGlobals(*this); 1393 1394 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1395 1396 EmitBackendOptionsMetadata(getCodeGenOpts()); 1397 1398 // If there is device offloading code embed it in the host now. 1399 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1400 1401 // Set visibility from DLL storage class 1402 // We do this at the end of LLVM IR generation; after any operation 1403 // that might affect the DLL storage class or the visibility, and 1404 // before anything that might act on these. 1405 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1406 1407 // Check the tail call symbols are truly undefined. 1408 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1409 for (auto &I : MustTailCallUndefinedGlobals) { 1410 if (!I.first->isDefined()) 1411 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1412 else { 1413 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1414 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1415 if (!Entry || Entry->isWeakForLinker() || 1416 Entry->isDeclarationForLinker()) 1417 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1418 } 1419 } 1420 } 1421 } 1422 1423 void CodeGenModule::EmitOpenCLMetadata() { 1424 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1425 // opencl.ocl.version named metadata node. 1426 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1427 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1428 1429 auto EmitVersion = [this](StringRef MDName, int Version) { 1430 llvm::Metadata *OCLVerElts[] = { 1431 llvm::ConstantAsMetadata::get( 1432 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1433 llvm::ConstantAsMetadata::get( 1434 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1435 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1436 llvm::LLVMContext &Ctx = TheModule.getContext(); 1437 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1438 }; 1439 1440 EmitVersion("opencl.ocl.version", CLVersion); 1441 if (LangOpts.OpenCLCPlusPlus) { 1442 // In addition to the OpenCL compatible version, emit the C++ version. 1443 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1444 } 1445 } 1446 1447 void CodeGenModule::EmitBackendOptionsMetadata( 1448 const CodeGenOptions &CodeGenOpts) { 1449 if (getTriple().isRISCV()) { 1450 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1451 CodeGenOpts.SmallDataLimit); 1452 } 1453 } 1454 1455 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1456 // Make sure that this type is translated. 1457 Types.UpdateCompletedType(TD); 1458 } 1459 1460 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1461 // Make sure that this type is translated. 1462 Types.RefreshTypeCacheForClass(RD); 1463 } 1464 1465 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1466 if (!TBAA) 1467 return nullptr; 1468 return TBAA->getTypeInfo(QTy); 1469 } 1470 1471 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1472 if (!TBAA) 1473 return TBAAAccessInfo(); 1474 if (getLangOpts().CUDAIsDevice) { 1475 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1476 // access info. 1477 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1478 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1479 nullptr) 1480 return TBAAAccessInfo(); 1481 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1482 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1483 nullptr) 1484 return TBAAAccessInfo(); 1485 } 1486 } 1487 return TBAA->getAccessInfo(AccessType); 1488 } 1489 1490 TBAAAccessInfo 1491 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1492 if (!TBAA) 1493 return TBAAAccessInfo(); 1494 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1495 } 1496 1497 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1498 if (!TBAA) 1499 return nullptr; 1500 return TBAA->getTBAAStructInfo(QTy); 1501 } 1502 1503 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1504 if (!TBAA) 1505 return nullptr; 1506 return TBAA->getBaseTypeInfo(QTy); 1507 } 1508 1509 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1510 if (!TBAA) 1511 return nullptr; 1512 return TBAA->getAccessTagInfo(Info); 1513 } 1514 1515 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1516 TBAAAccessInfo TargetInfo) { 1517 if (!TBAA) 1518 return TBAAAccessInfo(); 1519 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1520 } 1521 1522 TBAAAccessInfo 1523 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1524 TBAAAccessInfo InfoB) { 1525 if (!TBAA) 1526 return TBAAAccessInfo(); 1527 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1528 } 1529 1530 TBAAAccessInfo 1531 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1532 TBAAAccessInfo SrcInfo) { 1533 if (!TBAA) 1534 return TBAAAccessInfo(); 1535 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1536 } 1537 1538 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1539 TBAAAccessInfo TBAAInfo) { 1540 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1541 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1542 } 1543 1544 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1545 llvm::Instruction *I, const CXXRecordDecl *RD) { 1546 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1547 llvm::MDNode::get(getLLVMContext(), {})); 1548 } 1549 1550 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1551 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1552 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1553 } 1554 1555 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1556 /// specified stmt yet. 1557 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1558 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1559 "cannot compile this %0 yet"); 1560 std::string Msg = Type; 1561 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1562 << Msg << S->getSourceRange(); 1563 } 1564 1565 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1566 /// specified decl yet. 1567 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1568 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1569 "cannot compile this %0 yet"); 1570 std::string Msg = Type; 1571 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1572 } 1573 1574 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1575 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1576 } 1577 1578 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1579 const NamedDecl *D) const { 1580 // Internal definitions always have default visibility. 1581 if (GV->hasLocalLinkage()) { 1582 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1583 return; 1584 } 1585 if (!D) 1586 return; 1587 1588 // Set visibility for definitions, and for declarations if requested globally 1589 // or set explicitly. 1590 LinkageInfo LV = D->getLinkageAndVisibility(); 1591 1592 // OpenMP declare target variables must be visible to the host so they can 1593 // be registered. We require protected visibility unless the variable has 1594 // the DT_nohost modifier and does not need to be registered. 1595 if (Context.getLangOpts().OpenMP && 1596 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1597 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1598 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1599 OMPDeclareTargetDeclAttr::DT_NoHost && 1600 LV.getVisibility() == HiddenVisibility) { 1601 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1602 return; 1603 } 1604 1605 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1606 // Reject incompatible dlllstorage and visibility annotations. 1607 if (!LV.isVisibilityExplicit()) 1608 return; 1609 if (GV->hasDLLExportStorageClass()) { 1610 if (LV.getVisibility() == HiddenVisibility) 1611 getDiags().Report(D->getLocation(), 1612 diag::err_hidden_visibility_dllexport); 1613 } else if (LV.getVisibility() != DefaultVisibility) { 1614 getDiags().Report(D->getLocation(), 1615 diag::err_non_default_visibility_dllimport); 1616 } 1617 return; 1618 } 1619 1620 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1621 !GV->isDeclarationForLinker()) 1622 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1623 } 1624 1625 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1626 llvm::GlobalValue *GV) { 1627 if (GV->hasLocalLinkage()) 1628 return true; 1629 1630 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1631 return true; 1632 1633 // DLLImport explicitly marks the GV as external. 1634 if (GV->hasDLLImportStorageClass()) 1635 return false; 1636 1637 const llvm::Triple &TT = CGM.getTriple(); 1638 const auto &CGOpts = CGM.getCodeGenOpts(); 1639 if (TT.isWindowsGNUEnvironment()) { 1640 // In MinGW, variables without DLLImport can still be automatically 1641 // imported from a DLL by the linker; don't mark variables that 1642 // potentially could come from another DLL as DSO local. 1643 1644 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1645 // (and this actually happens in the public interface of libstdc++), so 1646 // such variables can't be marked as DSO local. (Native TLS variables 1647 // can't be dllimported at all, though.) 1648 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1649 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1650 CGOpts.AutoImport) 1651 return false; 1652 } 1653 1654 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1655 // remain unresolved in the link, they can be resolved to zero, which is 1656 // outside the current DSO. 1657 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1658 return false; 1659 1660 // Every other GV is local on COFF. 1661 // Make an exception for windows OS in the triple: Some firmware builds use 1662 // *-win32-macho triples. This (accidentally?) produced windows relocations 1663 // without GOT tables in older clang versions; Keep this behaviour. 1664 // FIXME: even thread local variables? 1665 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1666 return true; 1667 1668 // Only handle COFF and ELF for now. 1669 if (!TT.isOSBinFormatELF()) 1670 return false; 1671 1672 // If this is not an executable, don't assume anything is local. 1673 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1674 const auto &LOpts = CGM.getLangOpts(); 1675 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1676 // On ELF, if -fno-semantic-interposition is specified and the target 1677 // supports local aliases, there will be neither CC1 1678 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1679 // dso_local on the function if using a local alias is preferable (can avoid 1680 // PLT indirection). 1681 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1682 return false; 1683 return !(CGM.getLangOpts().SemanticInterposition || 1684 CGM.getLangOpts().HalfNoSemanticInterposition); 1685 } 1686 1687 // A definition cannot be preempted from an executable. 1688 if (!GV->isDeclarationForLinker()) 1689 return true; 1690 1691 // Most PIC code sequences that assume that a symbol is local cannot produce a 1692 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1693 // depended, it seems worth it to handle it here. 1694 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1695 return false; 1696 1697 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1698 if (TT.isPPC64()) 1699 return false; 1700 1701 if (CGOpts.DirectAccessExternalData) { 1702 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1703 // for non-thread-local variables. If the symbol is not defined in the 1704 // executable, a copy relocation will be needed at link time. dso_local is 1705 // excluded for thread-local variables because they generally don't support 1706 // copy relocations. 1707 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1708 if (!Var->isThreadLocal()) 1709 return true; 1710 1711 // -fno-pic sets dso_local on a function declaration to allow direct 1712 // accesses when taking its address (similar to a data symbol). If the 1713 // function is not defined in the executable, a canonical PLT entry will be 1714 // needed at link time. -fno-direct-access-external-data can avoid the 1715 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1716 // it could just cause trouble without providing perceptible benefits. 1717 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1718 return true; 1719 } 1720 1721 // If we can use copy relocations we can assume it is local. 1722 1723 // Otherwise don't assume it is local. 1724 return false; 1725 } 1726 1727 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1728 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1729 } 1730 1731 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1732 GlobalDecl GD) const { 1733 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1734 // C++ destructors have a few C++ ABI specific special cases. 1735 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1736 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1737 return; 1738 } 1739 setDLLImportDLLExport(GV, D); 1740 } 1741 1742 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1743 const NamedDecl *D) const { 1744 if (D && D->isExternallyVisible()) { 1745 if (D->hasAttr<DLLImportAttr>()) 1746 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1747 else if ((D->hasAttr<DLLExportAttr>() || 1748 shouldMapVisibilityToDLLExport(D)) && 1749 !GV->isDeclarationForLinker()) 1750 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1751 } 1752 } 1753 1754 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1755 GlobalDecl GD) const { 1756 setDLLImportDLLExport(GV, GD); 1757 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1758 } 1759 1760 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1761 const NamedDecl *D) const { 1762 setDLLImportDLLExport(GV, D); 1763 setGVPropertiesAux(GV, D); 1764 } 1765 1766 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1767 const NamedDecl *D) const { 1768 setGlobalVisibility(GV, D); 1769 setDSOLocal(GV); 1770 GV->setPartition(CodeGenOpts.SymbolPartition); 1771 } 1772 1773 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1774 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1775 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1776 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1777 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1778 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1779 } 1780 1781 llvm::GlobalVariable::ThreadLocalMode 1782 CodeGenModule::GetDefaultLLVMTLSModel() const { 1783 switch (CodeGenOpts.getDefaultTLSModel()) { 1784 case CodeGenOptions::GeneralDynamicTLSModel: 1785 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1786 case CodeGenOptions::LocalDynamicTLSModel: 1787 return llvm::GlobalVariable::LocalDynamicTLSModel; 1788 case CodeGenOptions::InitialExecTLSModel: 1789 return llvm::GlobalVariable::InitialExecTLSModel; 1790 case CodeGenOptions::LocalExecTLSModel: 1791 return llvm::GlobalVariable::LocalExecTLSModel; 1792 } 1793 llvm_unreachable("Invalid TLS model!"); 1794 } 1795 1796 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1797 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1798 1799 llvm::GlobalValue::ThreadLocalMode TLM; 1800 TLM = GetDefaultLLVMTLSModel(); 1801 1802 // Override the TLS model if it is explicitly specified. 1803 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1804 TLM = GetLLVMTLSModel(Attr->getModel()); 1805 } 1806 1807 GV->setThreadLocalMode(TLM); 1808 } 1809 1810 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1811 StringRef Name) { 1812 const TargetInfo &Target = CGM.getTarget(); 1813 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1814 } 1815 1816 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1817 const CPUSpecificAttr *Attr, 1818 unsigned CPUIndex, 1819 raw_ostream &Out) { 1820 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1821 // supported. 1822 if (Attr) 1823 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1824 else if (CGM.getTarget().supportsIFunc()) 1825 Out << ".resolver"; 1826 } 1827 1828 // Returns true if GD is a function decl with internal linkage and 1829 // needs a unique suffix after the mangled name. 1830 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1831 CodeGenModule &CGM) { 1832 const Decl *D = GD.getDecl(); 1833 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1834 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1835 } 1836 1837 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1838 const NamedDecl *ND, 1839 bool OmitMultiVersionMangling = false) { 1840 SmallString<256> Buffer; 1841 llvm::raw_svector_ostream Out(Buffer); 1842 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1843 if (!CGM.getModuleNameHash().empty()) 1844 MC.needsUniqueInternalLinkageNames(); 1845 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1846 if (ShouldMangle) 1847 MC.mangleName(GD.getWithDecl(ND), Out); 1848 else { 1849 IdentifierInfo *II = ND->getIdentifier(); 1850 assert(II && "Attempt to mangle unnamed decl."); 1851 const auto *FD = dyn_cast<FunctionDecl>(ND); 1852 1853 if (FD && 1854 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1855 if (CGM.getLangOpts().RegCall4) 1856 Out << "__regcall4__" << II->getName(); 1857 else 1858 Out << "__regcall3__" << II->getName(); 1859 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1860 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1861 Out << "__device_stub__" << II->getName(); 1862 } else { 1863 Out << II->getName(); 1864 } 1865 } 1866 1867 // Check if the module name hash should be appended for internal linkage 1868 // symbols. This should come before multi-version target suffixes are 1869 // appended. This is to keep the name and module hash suffix of the 1870 // internal linkage function together. The unique suffix should only be 1871 // added when name mangling is done to make sure that the final name can 1872 // be properly demangled. For example, for C functions without prototypes, 1873 // name mangling is not done and the unique suffix should not be appeneded 1874 // then. 1875 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1876 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1877 "Hash computed when not explicitly requested"); 1878 Out << CGM.getModuleNameHash(); 1879 } 1880 1881 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1882 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1883 switch (FD->getMultiVersionKind()) { 1884 case MultiVersionKind::CPUDispatch: 1885 case MultiVersionKind::CPUSpecific: 1886 AppendCPUSpecificCPUDispatchMangling(CGM, 1887 FD->getAttr<CPUSpecificAttr>(), 1888 GD.getMultiVersionIndex(), Out); 1889 break; 1890 case MultiVersionKind::Target: { 1891 auto *Attr = FD->getAttr<TargetAttr>(); 1892 assert(Attr && "Expected TargetAttr to be present " 1893 "for attribute mangling"); 1894 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1895 Info.appendAttributeMangling(Attr, Out); 1896 break; 1897 } 1898 case MultiVersionKind::TargetVersion: { 1899 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1900 assert(Attr && "Expected TargetVersionAttr to be present " 1901 "for attribute mangling"); 1902 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1903 Info.appendAttributeMangling(Attr, Out); 1904 break; 1905 } 1906 case MultiVersionKind::TargetClones: { 1907 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1908 assert(Attr && "Expected TargetClonesAttr to be present " 1909 "for attribute mangling"); 1910 unsigned Index = GD.getMultiVersionIndex(); 1911 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1912 Info.appendAttributeMangling(Attr, Index, Out); 1913 break; 1914 } 1915 case MultiVersionKind::None: 1916 llvm_unreachable("None multiversion type isn't valid here"); 1917 } 1918 } 1919 1920 // Make unique name for device side static file-scope variable for HIP. 1921 if (CGM.getContext().shouldExternalize(ND) && 1922 CGM.getLangOpts().GPURelocatableDeviceCode && 1923 CGM.getLangOpts().CUDAIsDevice) 1924 CGM.printPostfixForExternalizedDecl(Out, ND); 1925 1926 return std::string(Out.str()); 1927 } 1928 1929 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1930 const FunctionDecl *FD, 1931 StringRef &CurName) { 1932 if (!FD->isMultiVersion()) 1933 return; 1934 1935 // Get the name of what this would be without the 'target' attribute. This 1936 // allows us to lookup the version that was emitted when this wasn't a 1937 // multiversion function. 1938 std::string NonTargetName = 1939 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1940 GlobalDecl OtherGD; 1941 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1942 assert(OtherGD.getCanonicalDecl() 1943 .getDecl() 1944 ->getAsFunction() 1945 ->isMultiVersion() && 1946 "Other GD should now be a multiversioned function"); 1947 // OtherFD is the version of this function that was mangled BEFORE 1948 // becoming a MultiVersion function. It potentially needs to be updated. 1949 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1950 .getDecl() 1951 ->getAsFunction() 1952 ->getMostRecentDecl(); 1953 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1954 // This is so that if the initial version was already the 'default' 1955 // version, we don't try to update it. 1956 if (OtherName != NonTargetName) { 1957 // Remove instead of erase, since others may have stored the StringRef 1958 // to this. 1959 const auto ExistingRecord = Manglings.find(NonTargetName); 1960 if (ExistingRecord != std::end(Manglings)) 1961 Manglings.remove(&(*ExistingRecord)); 1962 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1963 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1964 Result.first->first(); 1965 // If this is the current decl is being created, make sure we update the name. 1966 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1967 CurName = OtherNameRef; 1968 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1969 Entry->setName(OtherName); 1970 } 1971 } 1972 } 1973 1974 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1975 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1976 1977 // Some ABIs don't have constructor variants. Make sure that base and 1978 // complete constructors get mangled the same. 1979 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1980 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1981 CXXCtorType OrigCtorType = GD.getCtorType(); 1982 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1983 if (OrigCtorType == Ctor_Base) 1984 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1985 } 1986 } 1987 1988 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1989 // static device variable depends on whether the variable is referenced by 1990 // a host or device host function. Therefore the mangled name cannot be 1991 // cached. 1992 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1993 auto FoundName = MangledDeclNames.find(CanonicalGD); 1994 if (FoundName != MangledDeclNames.end()) 1995 return FoundName->second; 1996 } 1997 1998 // Keep the first result in the case of a mangling collision. 1999 const auto *ND = cast<NamedDecl>(GD.getDecl()); 2000 std::string MangledName = getMangledNameImpl(*this, GD, ND); 2001 2002 // Ensure either we have different ABIs between host and device compilations, 2003 // says host compilation following MSVC ABI but device compilation follows 2004 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 2005 // mangling should be the same after name stubbing. The later checking is 2006 // very important as the device kernel name being mangled in host-compilation 2007 // is used to resolve the device binaries to be executed. Inconsistent naming 2008 // result in undefined behavior. Even though we cannot check that naming 2009 // directly between host- and device-compilations, the host- and 2010 // device-mangling in host compilation could help catching certain ones. 2011 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2012 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2013 (getContext().getAuxTargetInfo() && 2014 (getContext().getAuxTargetInfo()->getCXXABI() != 2015 getContext().getTargetInfo().getCXXABI())) || 2016 getCUDARuntime().getDeviceSideName(ND) == 2017 getMangledNameImpl( 2018 *this, 2019 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2020 ND)); 2021 2022 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2023 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2024 } 2025 2026 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2027 const BlockDecl *BD) { 2028 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2029 const Decl *D = GD.getDecl(); 2030 2031 SmallString<256> Buffer; 2032 llvm::raw_svector_ostream Out(Buffer); 2033 if (!D) 2034 MangleCtx.mangleGlobalBlock(BD, 2035 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2036 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2037 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2038 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2039 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2040 else 2041 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2042 2043 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2044 return Result.first->first(); 2045 } 2046 2047 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2048 auto it = MangledDeclNames.begin(); 2049 while (it != MangledDeclNames.end()) { 2050 if (it->second == Name) 2051 return it->first; 2052 it++; 2053 } 2054 return GlobalDecl(); 2055 } 2056 2057 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2058 return getModule().getNamedValue(Name); 2059 } 2060 2061 /// AddGlobalCtor - Add a function to the list that will be called before 2062 /// main() runs. 2063 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2064 unsigned LexOrder, 2065 llvm::Constant *AssociatedData) { 2066 // FIXME: Type coercion of void()* types. 2067 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2068 } 2069 2070 /// AddGlobalDtor - Add a function to the list that will be called 2071 /// when the module is unloaded. 2072 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2073 bool IsDtorAttrFunc) { 2074 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2075 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2076 DtorsUsingAtExit[Priority].push_back(Dtor); 2077 return; 2078 } 2079 2080 // FIXME: Type coercion of void()* types. 2081 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2082 } 2083 2084 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2085 if (Fns.empty()) return; 2086 2087 const PointerAuthSchema &InitFiniAuthSchema = 2088 getCodeGenOpts().PointerAuth.InitFiniPointers; 2089 2090 // Ctor function type is ptr. 2091 llvm::PointerType *PtrTy = llvm::PointerType::get( 2092 getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace()); 2093 2094 // Get the type of a ctor entry, { i32, ptr, ptr }. 2095 llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy); 2096 2097 // Construct the constructor and destructor arrays. 2098 ConstantInitBuilder Builder(*this); 2099 auto Ctors = Builder.beginArray(CtorStructTy); 2100 for (const auto &I : Fns) { 2101 auto Ctor = Ctors.beginStruct(CtorStructTy); 2102 Ctor.addInt(Int32Ty, I.Priority); 2103 if (InitFiniAuthSchema) { 2104 llvm::Constant *StorageAddress = 2105 (InitFiniAuthSchema.isAddressDiscriminated() 2106 ? llvm::ConstantExpr::getIntToPtr( 2107 llvm::ConstantInt::get( 2108 IntPtrTy, 2109 llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors), 2110 PtrTy) 2111 : nullptr); 2112 llvm::Constant *SignedCtorPtr = getConstantSignedPointer( 2113 I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress, 2114 llvm::ConstantInt::get( 2115 SizeTy, InitFiniAuthSchema.getConstantDiscrimination())); 2116 Ctor.add(SignedCtorPtr); 2117 } else { 2118 Ctor.add(I.Initializer); 2119 } 2120 if (I.AssociatedData) 2121 Ctor.add(I.AssociatedData); 2122 else 2123 Ctor.addNullPointer(PtrTy); 2124 Ctor.finishAndAddTo(Ctors); 2125 } 2126 2127 auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2128 /*constant*/ false, 2129 llvm::GlobalValue::AppendingLinkage); 2130 2131 // The LTO linker doesn't seem to like it when we set an alignment 2132 // on appending variables. Take it off as a workaround. 2133 List->setAlignment(std::nullopt); 2134 2135 Fns.clear(); 2136 } 2137 2138 llvm::GlobalValue::LinkageTypes 2139 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2140 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2141 2142 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2143 2144 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2145 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2146 2147 return getLLVMLinkageForDeclarator(D, Linkage); 2148 } 2149 2150 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2151 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2152 if (!MDS) return nullptr; 2153 2154 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2155 } 2156 2157 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2158 if (auto *FnType = T->getAs<FunctionProtoType>()) 2159 T = getContext().getFunctionType( 2160 FnType->getReturnType(), FnType->getParamTypes(), 2161 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2162 2163 std::string OutName; 2164 llvm::raw_string_ostream Out(OutName); 2165 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2166 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2167 2168 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2169 Out << ".normalized"; 2170 2171 return llvm::ConstantInt::get(Int32Ty, 2172 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2173 } 2174 2175 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2176 const CGFunctionInfo &Info, 2177 llvm::Function *F, bool IsThunk) { 2178 unsigned CallingConv; 2179 llvm::AttributeList PAL; 2180 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2181 /*AttrOnCallSite=*/false, IsThunk); 2182 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2183 getTarget().getTriple().isWindowsArm64EC()) { 2184 SourceLocation Loc; 2185 if (const Decl *D = GD.getDecl()) 2186 Loc = D->getLocation(); 2187 2188 Error(Loc, "__vectorcall calling convention is not currently supported"); 2189 } 2190 F->setAttributes(PAL); 2191 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2192 } 2193 2194 static void removeImageAccessQualifier(std::string& TyName) { 2195 std::string ReadOnlyQual("__read_only"); 2196 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2197 if (ReadOnlyPos != std::string::npos) 2198 // "+ 1" for the space after access qualifier. 2199 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2200 else { 2201 std::string WriteOnlyQual("__write_only"); 2202 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2203 if (WriteOnlyPos != std::string::npos) 2204 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2205 else { 2206 std::string ReadWriteQual("__read_write"); 2207 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2208 if (ReadWritePos != std::string::npos) 2209 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2210 } 2211 } 2212 } 2213 2214 // Returns the address space id that should be produced to the 2215 // kernel_arg_addr_space metadata. This is always fixed to the ids 2216 // as specified in the SPIR 2.0 specification in order to differentiate 2217 // for example in clGetKernelArgInfo() implementation between the address 2218 // spaces with targets without unique mapping to the OpenCL address spaces 2219 // (basically all single AS CPUs). 2220 static unsigned ArgInfoAddressSpace(LangAS AS) { 2221 switch (AS) { 2222 case LangAS::opencl_global: 2223 return 1; 2224 case LangAS::opencl_constant: 2225 return 2; 2226 case LangAS::opencl_local: 2227 return 3; 2228 case LangAS::opencl_generic: 2229 return 4; // Not in SPIR 2.0 specs. 2230 case LangAS::opencl_global_device: 2231 return 5; 2232 case LangAS::opencl_global_host: 2233 return 6; 2234 default: 2235 return 0; // Assume private. 2236 } 2237 } 2238 2239 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2240 const FunctionDecl *FD, 2241 CodeGenFunction *CGF) { 2242 assert(((FD && CGF) || (!FD && !CGF)) && 2243 "Incorrect use - FD and CGF should either be both null or not!"); 2244 // Create MDNodes that represent the kernel arg metadata. 2245 // Each MDNode is a list in the form of "key", N number of values which is 2246 // the same number of values as their are kernel arguments. 2247 2248 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2249 2250 // MDNode for the kernel argument address space qualifiers. 2251 SmallVector<llvm::Metadata *, 8> addressQuals; 2252 2253 // MDNode for the kernel argument access qualifiers (images only). 2254 SmallVector<llvm::Metadata *, 8> accessQuals; 2255 2256 // MDNode for the kernel argument type names. 2257 SmallVector<llvm::Metadata *, 8> argTypeNames; 2258 2259 // MDNode for the kernel argument base type names. 2260 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2261 2262 // MDNode for the kernel argument type qualifiers. 2263 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2264 2265 // MDNode for the kernel argument names. 2266 SmallVector<llvm::Metadata *, 8> argNames; 2267 2268 if (FD && CGF) 2269 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2270 const ParmVarDecl *parm = FD->getParamDecl(i); 2271 // Get argument name. 2272 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2273 2274 if (!getLangOpts().OpenCL) 2275 continue; 2276 QualType ty = parm->getType(); 2277 std::string typeQuals; 2278 2279 // Get image and pipe access qualifier: 2280 if (ty->isImageType() || ty->isPipeType()) { 2281 const Decl *PDecl = parm; 2282 if (const auto *TD = ty->getAs<TypedefType>()) 2283 PDecl = TD->getDecl(); 2284 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2285 if (A && A->isWriteOnly()) 2286 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2287 else if (A && A->isReadWrite()) 2288 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2289 else 2290 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2291 } else 2292 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2293 2294 auto getTypeSpelling = [&](QualType Ty) { 2295 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2296 2297 if (Ty.isCanonical()) { 2298 StringRef typeNameRef = typeName; 2299 // Turn "unsigned type" to "utype" 2300 if (typeNameRef.consume_front("unsigned ")) 2301 return std::string("u") + typeNameRef.str(); 2302 if (typeNameRef.consume_front("signed ")) 2303 return typeNameRef.str(); 2304 } 2305 2306 return typeName; 2307 }; 2308 2309 if (ty->isPointerType()) { 2310 QualType pointeeTy = ty->getPointeeType(); 2311 2312 // Get address qualifier. 2313 addressQuals.push_back( 2314 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2315 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2316 2317 // Get argument type name. 2318 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2319 std::string baseTypeName = 2320 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2321 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2322 argBaseTypeNames.push_back( 2323 llvm::MDString::get(VMContext, baseTypeName)); 2324 2325 // Get argument type qualifiers: 2326 if (ty.isRestrictQualified()) 2327 typeQuals = "restrict"; 2328 if (pointeeTy.isConstQualified() || 2329 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2330 typeQuals += typeQuals.empty() ? "const" : " const"; 2331 if (pointeeTy.isVolatileQualified()) 2332 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2333 } else { 2334 uint32_t AddrSpc = 0; 2335 bool isPipe = ty->isPipeType(); 2336 if (ty->isImageType() || isPipe) 2337 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2338 2339 addressQuals.push_back( 2340 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2341 2342 // Get argument type name. 2343 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2344 std::string typeName = getTypeSpelling(ty); 2345 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2346 2347 // Remove access qualifiers on images 2348 // (as they are inseparable from type in clang implementation, 2349 // but OpenCL spec provides a special query to get access qualifier 2350 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2351 if (ty->isImageType()) { 2352 removeImageAccessQualifier(typeName); 2353 removeImageAccessQualifier(baseTypeName); 2354 } 2355 2356 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2357 argBaseTypeNames.push_back( 2358 llvm::MDString::get(VMContext, baseTypeName)); 2359 2360 if (isPipe) 2361 typeQuals = "pipe"; 2362 } 2363 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2364 } 2365 2366 if (getLangOpts().OpenCL) { 2367 Fn->setMetadata("kernel_arg_addr_space", 2368 llvm::MDNode::get(VMContext, addressQuals)); 2369 Fn->setMetadata("kernel_arg_access_qual", 2370 llvm::MDNode::get(VMContext, accessQuals)); 2371 Fn->setMetadata("kernel_arg_type", 2372 llvm::MDNode::get(VMContext, argTypeNames)); 2373 Fn->setMetadata("kernel_arg_base_type", 2374 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2375 Fn->setMetadata("kernel_arg_type_qual", 2376 llvm::MDNode::get(VMContext, argTypeQuals)); 2377 } 2378 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2379 getCodeGenOpts().HIPSaveKernelArgName) 2380 Fn->setMetadata("kernel_arg_name", 2381 llvm::MDNode::get(VMContext, argNames)); 2382 } 2383 2384 /// Determines whether the language options require us to model 2385 /// unwind exceptions. We treat -fexceptions as mandating this 2386 /// except under the fragile ObjC ABI with only ObjC exceptions 2387 /// enabled. This means, for example, that C with -fexceptions 2388 /// enables this. 2389 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2390 // If exceptions are completely disabled, obviously this is false. 2391 if (!LangOpts.Exceptions) return false; 2392 2393 // If C++ exceptions are enabled, this is true. 2394 if (LangOpts.CXXExceptions) return true; 2395 2396 // If ObjC exceptions are enabled, this depends on the ABI. 2397 if (LangOpts.ObjCExceptions) { 2398 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2399 } 2400 2401 return true; 2402 } 2403 2404 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2405 const CXXMethodDecl *MD) { 2406 // Check that the type metadata can ever actually be used by a call. 2407 if (!CGM.getCodeGenOpts().LTOUnit || 2408 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2409 return false; 2410 2411 // Only functions whose address can be taken with a member function pointer 2412 // need this sort of type metadata. 2413 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2414 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2415 } 2416 2417 SmallVector<const CXXRecordDecl *, 0> 2418 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2419 llvm::SetVector<const CXXRecordDecl *> MostBases; 2420 2421 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2422 CollectMostBases = [&](const CXXRecordDecl *RD) { 2423 if (RD->getNumBases() == 0) 2424 MostBases.insert(RD); 2425 for (const CXXBaseSpecifier &B : RD->bases()) 2426 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2427 }; 2428 CollectMostBases(RD); 2429 return MostBases.takeVector(); 2430 } 2431 2432 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2433 llvm::Function *F) { 2434 llvm::AttrBuilder B(F->getContext()); 2435 2436 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2437 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2438 2439 if (CodeGenOpts.StackClashProtector) 2440 B.addAttribute("probe-stack", "inline-asm"); 2441 2442 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2443 B.addAttribute("stack-probe-size", 2444 std::to_string(CodeGenOpts.StackProbeSize)); 2445 2446 if (!hasUnwindExceptions(LangOpts)) 2447 B.addAttribute(llvm::Attribute::NoUnwind); 2448 2449 if (D && D->hasAttr<NoStackProtectorAttr>()) 2450 ; // Do nothing. 2451 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2452 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2453 B.addAttribute(llvm::Attribute::StackProtectStrong); 2454 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2455 B.addAttribute(llvm::Attribute::StackProtect); 2456 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2457 B.addAttribute(llvm::Attribute::StackProtectStrong); 2458 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2459 B.addAttribute(llvm::Attribute::StackProtectReq); 2460 2461 if (!D) { 2462 // If we don't have a declaration to control inlining, the function isn't 2463 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2464 // disabled, mark the function as noinline. 2465 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2466 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2467 B.addAttribute(llvm::Attribute::NoInline); 2468 2469 F->addFnAttrs(B); 2470 return; 2471 } 2472 2473 // Handle SME attributes that apply to function definitions, 2474 // rather than to function prototypes. 2475 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2476 B.addAttribute("aarch64_pstate_sm_body"); 2477 2478 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2479 if (Attr->isNewZA()) 2480 B.addAttribute("aarch64_new_za"); 2481 if (Attr->isNewZT0()) 2482 B.addAttribute("aarch64_new_zt0"); 2483 } 2484 2485 // Track whether we need to add the optnone LLVM attribute, 2486 // starting with the default for this optimization level. 2487 bool ShouldAddOptNone = 2488 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2489 // We can't add optnone in the following cases, it won't pass the verifier. 2490 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2491 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2492 2493 // Add optnone, but do so only if the function isn't always_inline. 2494 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2495 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2496 B.addAttribute(llvm::Attribute::OptimizeNone); 2497 2498 // OptimizeNone implies noinline; we should not be inlining such functions. 2499 B.addAttribute(llvm::Attribute::NoInline); 2500 2501 // We still need to handle naked functions even though optnone subsumes 2502 // much of their semantics. 2503 if (D->hasAttr<NakedAttr>()) 2504 B.addAttribute(llvm::Attribute::Naked); 2505 2506 // OptimizeNone wins over OptimizeForSize and MinSize. 2507 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2508 F->removeFnAttr(llvm::Attribute::MinSize); 2509 } else if (D->hasAttr<NakedAttr>()) { 2510 // Naked implies noinline: we should not be inlining such functions. 2511 B.addAttribute(llvm::Attribute::Naked); 2512 B.addAttribute(llvm::Attribute::NoInline); 2513 } else if (D->hasAttr<NoDuplicateAttr>()) { 2514 B.addAttribute(llvm::Attribute::NoDuplicate); 2515 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2516 // Add noinline if the function isn't always_inline. 2517 B.addAttribute(llvm::Attribute::NoInline); 2518 } else if (D->hasAttr<AlwaysInlineAttr>() && 2519 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2520 // (noinline wins over always_inline, and we can't specify both in IR) 2521 B.addAttribute(llvm::Attribute::AlwaysInline); 2522 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2523 // If we're not inlining, then force everything that isn't always_inline to 2524 // carry an explicit noinline attribute. 2525 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2526 B.addAttribute(llvm::Attribute::NoInline); 2527 } else { 2528 // Otherwise, propagate the inline hint attribute and potentially use its 2529 // absence to mark things as noinline. 2530 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2531 // Search function and template pattern redeclarations for inline. 2532 auto CheckForInline = [](const FunctionDecl *FD) { 2533 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2534 return Redecl->isInlineSpecified(); 2535 }; 2536 if (any_of(FD->redecls(), CheckRedeclForInline)) 2537 return true; 2538 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2539 if (!Pattern) 2540 return false; 2541 return any_of(Pattern->redecls(), CheckRedeclForInline); 2542 }; 2543 if (CheckForInline(FD)) { 2544 B.addAttribute(llvm::Attribute::InlineHint); 2545 } else if (CodeGenOpts.getInlining() == 2546 CodeGenOptions::OnlyHintInlining && 2547 !FD->isInlined() && 2548 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2549 B.addAttribute(llvm::Attribute::NoInline); 2550 } 2551 } 2552 } 2553 2554 // Add other optimization related attributes if we are optimizing this 2555 // function. 2556 if (!D->hasAttr<OptimizeNoneAttr>()) { 2557 if (D->hasAttr<ColdAttr>()) { 2558 if (!ShouldAddOptNone) 2559 B.addAttribute(llvm::Attribute::OptimizeForSize); 2560 B.addAttribute(llvm::Attribute::Cold); 2561 } 2562 if (D->hasAttr<HotAttr>()) 2563 B.addAttribute(llvm::Attribute::Hot); 2564 if (D->hasAttr<MinSizeAttr>()) 2565 B.addAttribute(llvm::Attribute::MinSize); 2566 } 2567 2568 F->addFnAttrs(B); 2569 2570 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2571 if (alignment) 2572 F->setAlignment(llvm::Align(alignment)); 2573 2574 if (!D->hasAttr<AlignedAttr>()) 2575 if (LangOpts.FunctionAlignment) 2576 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2577 2578 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2579 // reserve a bit for differentiating between virtual and non-virtual member 2580 // functions. If the current target's C++ ABI requires this and this is a 2581 // member function, set its alignment accordingly. 2582 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2583 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2584 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2585 } 2586 2587 // In the cross-dso CFI mode with canonical jump tables, we want !type 2588 // attributes on definitions only. 2589 if (CodeGenOpts.SanitizeCfiCrossDso && 2590 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2591 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2592 // Skip available_externally functions. They won't be codegen'ed in the 2593 // current module anyway. 2594 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2595 CreateFunctionTypeMetadataForIcall(FD, F); 2596 } 2597 } 2598 2599 // Emit type metadata on member functions for member function pointer checks. 2600 // These are only ever necessary on definitions; we're guaranteed that the 2601 // definition will be present in the LTO unit as a result of LTO visibility. 2602 auto *MD = dyn_cast<CXXMethodDecl>(D); 2603 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2604 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2605 llvm::Metadata *Id = 2606 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2607 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2608 F->addTypeMetadata(0, Id); 2609 } 2610 } 2611 } 2612 2613 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2614 const Decl *D = GD.getDecl(); 2615 if (isa_and_nonnull<NamedDecl>(D)) 2616 setGVProperties(GV, GD); 2617 else 2618 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2619 2620 if (D && D->hasAttr<UsedAttr>()) 2621 addUsedOrCompilerUsedGlobal(GV); 2622 2623 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2624 VD && 2625 ((CodeGenOpts.KeepPersistentStorageVariables && 2626 (VD->getStorageDuration() == SD_Static || 2627 VD->getStorageDuration() == SD_Thread)) || 2628 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2629 VD->getType().isConstQualified()))) 2630 addUsedOrCompilerUsedGlobal(GV); 2631 } 2632 2633 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2634 llvm::AttrBuilder &Attrs, 2635 bool SetTargetFeatures) { 2636 // Add target-cpu and target-features attributes to functions. If 2637 // we have a decl for the function and it has a target attribute then 2638 // parse that and add it to the feature set. 2639 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2640 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2641 std::vector<std::string> Features; 2642 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2643 FD = FD ? FD->getMostRecentDecl() : FD; 2644 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2645 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2646 assert((!TD || !TV) && "both target_version and target specified"); 2647 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2648 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2649 bool AddedAttr = false; 2650 if (TD || TV || SD || TC) { 2651 llvm::StringMap<bool> FeatureMap; 2652 getContext().getFunctionFeatureMap(FeatureMap, GD); 2653 2654 // Produce the canonical string for this set of features. 2655 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2656 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2657 2658 // Now add the target-cpu and target-features to the function. 2659 // While we populated the feature map above, we still need to 2660 // get and parse the target attribute so we can get the cpu for 2661 // the function. 2662 if (TD) { 2663 ParsedTargetAttr ParsedAttr = 2664 Target.parseTargetAttr(TD->getFeaturesStr()); 2665 if (!ParsedAttr.CPU.empty() && 2666 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2667 TargetCPU = ParsedAttr.CPU; 2668 TuneCPU = ""; // Clear the tune CPU. 2669 } 2670 if (!ParsedAttr.Tune.empty() && 2671 getTarget().isValidCPUName(ParsedAttr.Tune)) 2672 TuneCPU = ParsedAttr.Tune; 2673 } 2674 2675 if (SD) { 2676 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2677 // favor this processor. 2678 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2679 } 2680 } else { 2681 // Otherwise just add the existing target cpu and target features to the 2682 // function. 2683 Features = getTarget().getTargetOpts().Features; 2684 } 2685 2686 if (!TargetCPU.empty()) { 2687 Attrs.addAttribute("target-cpu", TargetCPU); 2688 AddedAttr = true; 2689 } 2690 if (!TuneCPU.empty()) { 2691 Attrs.addAttribute("tune-cpu", TuneCPU); 2692 AddedAttr = true; 2693 } 2694 if (!Features.empty() && SetTargetFeatures) { 2695 llvm::erase_if(Features, [&](const std::string& F) { 2696 return getTarget().isReadOnlyFeature(F.substr(1)); 2697 }); 2698 llvm::sort(Features); 2699 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2700 AddedAttr = true; 2701 } 2702 2703 return AddedAttr; 2704 } 2705 2706 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2707 llvm::GlobalObject *GO) { 2708 const Decl *D = GD.getDecl(); 2709 SetCommonAttributes(GD, GO); 2710 2711 if (D) { 2712 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2713 if (D->hasAttr<RetainAttr>()) 2714 addUsedGlobal(GV); 2715 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2716 GV->addAttribute("bss-section", SA->getName()); 2717 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2718 GV->addAttribute("data-section", SA->getName()); 2719 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2720 GV->addAttribute("rodata-section", SA->getName()); 2721 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2722 GV->addAttribute("relro-section", SA->getName()); 2723 } 2724 2725 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2726 if (D->hasAttr<RetainAttr>()) 2727 addUsedGlobal(F); 2728 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2729 if (!D->getAttr<SectionAttr>()) 2730 F->setSection(SA->getName()); 2731 2732 llvm::AttrBuilder Attrs(F->getContext()); 2733 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2734 // We know that GetCPUAndFeaturesAttributes will always have the 2735 // newest set, since it has the newest possible FunctionDecl, so the 2736 // new ones should replace the old. 2737 llvm::AttributeMask RemoveAttrs; 2738 RemoveAttrs.addAttribute("target-cpu"); 2739 RemoveAttrs.addAttribute("target-features"); 2740 RemoveAttrs.addAttribute("tune-cpu"); 2741 F->removeFnAttrs(RemoveAttrs); 2742 F->addFnAttrs(Attrs); 2743 } 2744 } 2745 2746 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2747 GO->setSection(CSA->getName()); 2748 else if (const auto *SA = D->getAttr<SectionAttr>()) 2749 GO->setSection(SA->getName()); 2750 } 2751 2752 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2753 } 2754 2755 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2756 llvm::Function *F, 2757 const CGFunctionInfo &FI) { 2758 const Decl *D = GD.getDecl(); 2759 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2760 SetLLVMFunctionAttributesForDefinition(D, F); 2761 2762 F->setLinkage(llvm::Function::InternalLinkage); 2763 2764 setNonAliasAttributes(GD, F); 2765 } 2766 2767 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2768 // Set linkage and visibility in case we never see a definition. 2769 LinkageInfo LV = ND->getLinkageAndVisibility(); 2770 // Don't set internal linkage on declarations. 2771 // "extern_weak" is overloaded in LLVM; we probably should have 2772 // separate linkage types for this. 2773 if (isExternallyVisible(LV.getLinkage()) && 2774 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2775 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2776 } 2777 2778 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2779 llvm::Function *F) { 2780 // Only if we are checking indirect calls. 2781 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2782 return; 2783 2784 // Non-static class methods are handled via vtable or member function pointer 2785 // checks elsewhere. 2786 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2787 return; 2788 2789 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2790 F->addTypeMetadata(0, MD); 2791 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2792 2793 // Emit a hash-based bit set entry for cross-DSO calls. 2794 if (CodeGenOpts.SanitizeCfiCrossDso) 2795 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2796 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2797 } 2798 2799 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2800 llvm::LLVMContext &Ctx = F->getContext(); 2801 llvm::MDBuilder MDB(Ctx); 2802 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2803 llvm::MDNode::get( 2804 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2805 } 2806 2807 static bool allowKCFIIdentifier(StringRef Name) { 2808 // KCFI type identifier constants are only necessary for external assembly 2809 // functions, which means it's safe to skip unusual names. Subset of 2810 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2811 return llvm::all_of(Name, [](const char &C) { 2812 return llvm::isAlnum(C) || C == '_' || C == '.'; 2813 }); 2814 } 2815 2816 void CodeGenModule::finalizeKCFITypes() { 2817 llvm::Module &M = getModule(); 2818 for (auto &F : M.functions()) { 2819 // Remove KCFI type metadata from non-address-taken local functions. 2820 bool AddressTaken = F.hasAddressTaken(); 2821 if (!AddressTaken && F.hasLocalLinkage()) 2822 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2823 2824 // Generate a constant with the expected KCFI type identifier for all 2825 // address-taken function declarations to support annotating indirectly 2826 // called assembly functions. 2827 if (!AddressTaken || !F.isDeclaration()) 2828 continue; 2829 2830 const llvm::ConstantInt *Type; 2831 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2832 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2833 else 2834 continue; 2835 2836 StringRef Name = F.getName(); 2837 if (!allowKCFIIdentifier(Name)) 2838 continue; 2839 2840 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2841 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2842 .str(); 2843 M.appendModuleInlineAsm(Asm); 2844 } 2845 } 2846 2847 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2848 bool IsIncompleteFunction, 2849 bool IsThunk) { 2850 2851 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2852 // If this is an intrinsic function, set the function's attributes 2853 // to the intrinsic's attributes. 2854 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2855 return; 2856 } 2857 2858 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2859 2860 if (!IsIncompleteFunction) 2861 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2862 IsThunk); 2863 2864 // Add the Returned attribute for "this", except for iOS 5 and earlier 2865 // where substantial code, including the libstdc++ dylib, was compiled with 2866 // GCC and does not actually return "this". 2867 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2868 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2869 assert(!F->arg_empty() && 2870 F->arg_begin()->getType() 2871 ->canLosslesslyBitCastTo(F->getReturnType()) && 2872 "unexpected this return"); 2873 F->addParamAttr(0, llvm::Attribute::Returned); 2874 } 2875 2876 // Only a few attributes are set on declarations; these may later be 2877 // overridden by a definition. 2878 2879 setLinkageForGV(F, FD); 2880 setGVProperties(F, FD); 2881 2882 // Setup target-specific attributes. 2883 if (!IsIncompleteFunction && F->isDeclaration()) 2884 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2885 2886 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2887 F->setSection(CSA->getName()); 2888 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2889 F->setSection(SA->getName()); 2890 2891 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2892 if (EA->isError()) 2893 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2894 else if (EA->isWarning()) 2895 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2896 } 2897 2898 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2899 if (FD->isInlineBuiltinDeclaration()) { 2900 const FunctionDecl *FDBody; 2901 bool HasBody = FD->hasBody(FDBody); 2902 (void)HasBody; 2903 assert(HasBody && "Inline builtin declarations should always have an " 2904 "available body!"); 2905 if (shouldEmitFunction(FDBody)) 2906 F->addFnAttr(llvm::Attribute::NoBuiltin); 2907 } 2908 2909 if (FD->isReplaceableGlobalAllocationFunction()) { 2910 // A replaceable global allocation function does not act like a builtin by 2911 // default, only if it is invoked by a new-expression or delete-expression. 2912 F->addFnAttr(llvm::Attribute::NoBuiltin); 2913 } 2914 2915 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2916 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2917 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2918 if (MD->isVirtual()) 2919 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2920 2921 // Don't emit entries for function declarations in the cross-DSO mode. This 2922 // is handled with better precision by the receiving DSO. But if jump tables 2923 // are non-canonical then we need type metadata in order to produce the local 2924 // jump table. 2925 if (!CodeGenOpts.SanitizeCfiCrossDso || 2926 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2927 CreateFunctionTypeMetadataForIcall(FD, F); 2928 2929 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2930 setKCFIType(FD, F); 2931 2932 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2933 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2934 2935 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2936 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2937 2938 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2939 // Annotate the callback behavior as metadata: 2940 // - The callback callee (as argument number). 2941 // - The callback payloads (as argument numbers). 2942 llvm::LLVMContext &Ctx = F->getContext(); 2943 llvm::MDBuilder MDB(Ctx); 2944 2945 // The payload indices are all but the first one in the encoding. The first 2946 // identifies the callback callee. 2947 int CalleeIdx = *CB->encoding_begin(); 2948 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2949 F->addMetadata(llvm::LLVMContext::MD_callback, 2950 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2951 CalleeIdx, PayloadIndices, 2952 /* VarArgsArePassed */ false)})); 2953 } 2954 } 2955 2956 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2957 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2958 "Only globals with definition can force usage."); 2959 LLVMUsed.emplace_back(GV); 2960 } 2961 2962 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2963 assert(!GV->isDeclaration() && 2964 "Only globals with definition can force usage."); 2965 LLVMCompilerUsed.emplace_back(GV); 2966 } 2967 2968 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2969 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2970 "Only globals with definition can force usage."); 2971 if (getTriple().isOSBinFormatELF()) 2972 LLVMCompilerUsed.emplace_back(GV); 2973 else 2974 LLVMUsed.emplace_back(GV); 2975 } 2976 2977 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2978 std::vector<llvm::WeakTrackingVH> &List) { 2979 // Don't create llvm.used if there is no need. 2980 if (List.empty()) 2981 return; 2982 2983 // Convert List to what ConstantArray needs. 2984 SmallVector<llvm::Constant*, 8> UsedArray; 2985 UsedArray.resize(List.size()); 2986 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2987 UsedArray[i] = 2988 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2989 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2990 } 2991 2992 if (UsedArray.empty()) 2993 return; 2994 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2995 2996 auto *GV = new llvm::GlobalVariable( 2997 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2998 llvm::ConstantArray::get(ATy, UsedArray), Name); 2999 3000 GV->setSection("llvm.metadata"); 3001 } 3002 3003 void CodeGenModule::emitLLVMUsed() { 3004 emitUsed(*this, "llvm.used", LLVMUsed); 3005 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 3006 } 3007 3008 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 3009 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 3010 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3011 } 3012 3013 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 3014 llvm::SmallString<32> Opt; 3015 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 3016 if (Opt.empty()) 3017 return; 3018 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3019 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3020 } 3021 3022 void CodeGenModule::AddDependentLib(StringRef Lib) { 3023 auto &C = getLLVMContext(); 3024 if (getTarget().getTriple().isOSBinFormatELF()) { 3025 ELFDependentLibraries.push_back( 3026 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3027 return; 3028 } 3029 3030 llvm::SmallString<24> Opt; 3031 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3032 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3033 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3034 } 3035 3036 /// Add link options implied by the given module, including modules 3037 /// it depends on, using a postorder walk. 3038 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3039 SmallVectorImpl<llvm::MDNode *> &Metadata, 3040 llvm::SmallPtrSet<Module *, 16> &Visited) { 3041 // Import this module's parent. 3042 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3043 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3044 } 3045 3046 // Import this module's dependencies. 3047 for (Module *Import : llvm::reverse(Mod->Imports)) { 3048 if (Visited.insert(Import).second) 3049 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3050 } 3051 3052 // Add linker options to link against the libraries/frameworks 3053 // described by this module. 3054 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3055 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3056 3057 // For modules that use export_as for linking, use that module 3058 // name instead. 3059 if (Mod->UseExportAsModuleLinkName) 3060 return; 3061 3062 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3063 // Link against a framework. Frameworks are currently Darwin only, so we 3064 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3065 if (LL.IsFramework) { 3066 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3067 llvm::MDString::get(Context, LL.Library)}; 3068 3069 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3070 continue; 3071 } 3072 3073 // Link against a library. 3074 if (IsELF) { 3075 llvm::Metadata *Args[2] = { 3076 llvm::MDString::get(Context, "lib"), 3077 llvm::MDString::get(Context, LL.Library), 3078 }; 3079 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3080 } else { 3081 llvm::SmallString<24> Opt; 3082 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3083 auto *OptString = llvm::MDString::get(Context, Opt); 3084 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3085 } 3086 } 3087 } 3088 3089 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3090 assert(Primary->isNamedModuleUnit() && 3091 "We should only emit module initializers for named modules."); 3092 3093 // Emit the initializers in the order that sub-modules appear in the 3094 // source, first Global Module Fragments, if present. 3095 if (auto GMF = Primary->getGlobalModuleFragment()) { 3096 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3097 if (isa<ImportDecl>(D)) 3098 continue; 3099 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3100 EmitTopLevelDecl(D); 3101 } 3102 } 3103 // Second any associated with the module, itself. 3104 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3105 // Skip import decls, the inits for those are called explicitly. 3106 if (isa<ImportDecl>(D)) 3107 continue; 3108 EmitTopLevelDecl(D); 3109 } 3110 // Third any associated with the Privat eMOdule Fragment, if present. 3111 if (auto PMF = Primary->getPrivateModuleFragment()) { 3112 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3113 // Skip import decls, the inits for those are called explicitly. 3114 if (isa<ImportDecl>(D)) 3115 continue; 3116 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3117 EmitTopLevelDecl(D); 3118 } 3119 } 3120 } 3121 3122 void CodeGenModule::EmitModuleLinkOptions() { 3123 // Collect the set of all of the modules we want to visit to emit link 3124 // options, which is essentially the imported modules and all of their 3125 // non-explicit child modules. 3126 llvm::SetVector<clang::Module *> LinkModules; 3127 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3128 SmallVector<clang::Module *, 16> Stack; 3129 3130 // Seed the stack with imported modules. 3131 for (Module *M : ImportedModules) { 3132 // Do not add any link flags when an implementation TU of a module imports 3133 // a header of that same module. 3134 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3135 !getLangOpts().isCompilingModule()) 3136 continue; 3137 if (Visited.insert(M).second) 3138 Stack.push_back(M); 3139 } 3140 3141 // Find all of the modules to import, making a little effort to prune 3142 // non-leaf modules. 3143 while (!Stack.empty()) { 3144 clang::Module *Mod = Stack.pop_back_val(); 3145 3146 bool AnyChildren = false; 3147 3148 // Visit the submodules of this module. 3149 for (const auto &SM : Mod->submodules()) { 3150 // Skip explicit children; they need to be explicitly imported to be 3151 // linked against. 3152 if (SM->IsExplicit) 3153 continue; 3154 3155 if (Visited.insert(SM).second) { 3156 Stack.push_back(SM); 3157 AnyChildren = true; 3158 } 3159 } 3160 3161 // We didn't find any children, so add this module to the list of 3162 // modules to link against. 3163 if (!AnyChildren) { 3164 LinkModules.insert(Mod); 3165 } 3166 } 3167 3168 // Add link options for all of the imported modules in reverse topological 3169 // order. We don't do anything to try to order import link flags with respect 3170 // to linker options inserted by things like #pragma comment(). 3171 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3172 Visited.clear(); 3173 for (Module *M : LinkModules) 3174 if (Visited.insert(M).second) 3175 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3176 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3177 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3178 3179 // Add the linker options metadata flag. 3180 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3181 for (auto *MD : LinkerOptionsMetadata) 3182 NMD->addOperand(MD); 3183 } 3184 3185 void CodeGenModule::EmitDeferred() { 3186 // Emit deferred declare target declarations. 3187 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3188 getOpenMPRuntime().emitDeferredTargetDecls(); 3189 3190 // Emit code for any potentially referenced deferred decls. Since a 3191 // previously unused static decl may become used during the generation of code 3192 // for a static function, iterate until no changes are made. 3193 3194 if (!DeferredVTables.empty()) { 3195 EmitDeferredVTables(); 3196 3197 // Emitting a vtable doesn't directly cause more vtables to 3198 // become deferred, although it can cause functions to be 3199 // emitted that then need those vtables. 3200 assert(DeferredVTables.empty()); 3201 } 3202 3203 // Emit CUDA/HIP static device variables referenced by host code only. 3204 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3205 // needed for further handling. 3206 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3207 llvm::append_range(DeferredDeclsToEmit, 3208 getContext().CUDADeviceVarODRUsedByHost); 3209 3210 // Stop if we're out of both deferred vtables and deferred declarations. 3211 if (DeferredDeclsToEmit.empty()) 3212 return; 3213 3214 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3215 // work, it will not interfere with this. 3216 std::vector<GlobalDecl> CurDeclsToEmit; 3217 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3218 3219 for (GlobalDecl &D : CurDeclsToEmit) { 3220 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3221 // to get GlobalValue with exactly the type we need, not something that 3222 // might had been created for another decl with the same mangled name but 3223 // different type. 3224 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3225 GetAddrOfGlobal(D, ForDefinition)); 3226 3227 // In case of different address spaces, we may still get a cast, even with 3228 // IsForDefinition equal to true. Query mangled names table to get 3229 // GlobalValue. 3230 if (!GV) 3231 GV = GetGlobalValue(getMangledName(D)); 3232 3233 // Make sure GetGlobalValue returned non-null. 3234 assert(GV); 3235 3236 // Check to see if we've already emitted this. This is necessary 3237 // for a couple of reasons: first, decls can end up in the 3238 // deferred-decls queue multiple times, and second, decls can end 3239 // up with definitions in unusual ways (e.g. by an extern inline 3240 // function acquiring a strong function redefinition). Just 3241 // ignore these cases. 3242 if (!GV->isDeclaration()) 3243 continue; 3244 3245 // If this is OpenMP, check if it is legal to emit this global normally. 3246 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3247 continue; 3248 3249 // Otherwise, emit the definition and move on to the next one. 3250 EmitGlobalDefinition(D, GV); 3251 3252 // If we found out that we need to emit more decls, do that recursively. 3253 // This has the advantage that the decls are emitted in a DFS and related 3254 // ones are close together, which is convenient for testing. 3255 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3256 EmitDeferred(); 3257 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3258 } 3259 } 3260 } 3261 3262 void CodeGenModule::EmitVTablesOpportunistically() { 3263 // Try to emit external vtables as available_externally if they have emitted 3264 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3265 // is not allowed to create new references to things that need to be emitted 3266 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3267 3268 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3269 && "Only emit opportunistic vtables with optimizations"); 3270 3271 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3272 assert(getVTables().isVTableExternal(RD) && 3273 "This queue should only contain external vtables"); 3274 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3275 VTables.GenerateClassData(RD); 3276 } 3277 OpportunisticVTables.clear(); 3278 } 3279 3280 void CodeGenModule::EmitGlobalAnnotations() { 3281 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3282 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3283 if (GV) 3284 AddGlobalAnnotations(VD, GV); 3285 } 3286 DeferredAnnotations.clear(); 3287 3288 if (Annotations.empty()) 3289 return; 3290 3291 // Create a new global variable for the ConstantStruct in the Module. 3292 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3293 Annotations[0]->getType(), Annotations.size()), Annotations); 3294 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3295 llvm::GlobalValue::AppendingLinkage, 3296 Array, "llvm.global.annotations"); 3297 gv->setSection(AnnotationSection); 3298 } 3299 3300 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3301 llvm::Constant *&AStr = AnnotationStrings[Str]; 3302 if (AStr) 3303 return AStr; 3304 3305 // Not found yet, create a new global. 3306 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3307 auto *gv = new llvm::GlobalVariable( 3308 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3309 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3310 ConstGlobalsPtrTy->getAddressSpace()); 3311 gv->setSection(AnnotationSection); 3312 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3313 AStr = gv; 3314 return gv; 3315 } 3316 3317 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3318 SourceManager &SM = getContext().getSourceManager(); 3319 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3320 if (PLoc.isValid()) 3321 return EmitAnnotationString(PLoc.getFilename()); 3322 return EmitAnnotationString(SM.getBufferName(Loc)); 3323 } 3324 3325 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3326 SourceManager &SM = getContext().getSourceManager(); 3327 PresumedLoc PLoc = SM.getPresumedLoc(L); 3328 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3329 SM.getExpansionLineNumber(L); 3330 return llvm::ConstantInt::get(Int32Ty, LineNo); 3331 } 3332 3333 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3334 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3335 if (Exprs.empty()) 3336 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3337 3338 llvm::FoldingSetNodeID ID; 3339 for (Expr *E : Exprs) { 3340 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3341 } 3342 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3343 if (Lookup) 3344 return Lookup; 3345 3346 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3347 LLVMArgs.reserve(Exprs.size()); 3348 ConstantEmitter ConstEmiter(*this); 3349 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3350 const auto *CE = cast<clang::ConstantExpr>(E); 3351 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3352 CE->getType()); 3353 }); 3354 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3355 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3356 llvm::GlobalValue::PrivateLinkage, Struct, 3357 ".args"); 3358 GV->setSection(AnnotationSection); 3359 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3360 3361 Lookup = GV; 3362 return GV; 3363 } 3364 3365 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3366 const AnnotateAttr *AA, 3367 SourceLocation L) { 3368 // Get the globals for file name, annotation, and the line number. 3369 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3370 *UnitGV = EmitAnnotationUnit(L), 3371 *LineNoCst = EmitAnnotationLineNo(L), 3372 *Args = EmitAnnotationArgs(AA); 3373 3374 llvm::Constant *GVInGlobalsAS = GV; 3375 if (GV->getAddressSpace() != 3376 getDataLayout().getDefaultGlobalsAddressSpace()) { 3377 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3378 GV, 3379 llvm::PointerType::get( 3380 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3381 } 3382 3383 // Create the ConstantStruct for the global annotation. 3384 llvm::Constant *Fields[] = { 3385 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3386 }; 3387 return llvm::ConstantStruct::getAnon(Fields); 3388 } 3389 3390 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3391 llvm::GlobalValue *GV) { 3392 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3393 // Get the struct elements for these annotations. 3394 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3395 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3396 } 3397 3398 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3399 SourceLocation Loc) const { 3400 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3401 // NoSanitize by function name. 3402 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3403 return true; 3404 // NoSanitize by location. Check "mainfile" prefix. 3405 auto &SM = Context.getSourceManager(); 3406 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3407 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3408 return true; 3409 3410 // Check "src" prefix. 3411 if (Loc.isValid()) 3412 return NoSanitizeL.containsLocation(Kind, Loc); 3413 // If location is unknown, this may be a compiler-generated function. Assume 3414 // it's located in the main file. 3415 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3416 } 3417 3418 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3419 llvm::GlobalVariable *GV, 3420 SourceLocation Loc, QualType Ty, 3421 StringRef Category) const { 3422 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3423 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3424 return true; 3425 auto &SM = Context.getSourceManager(); 3426 if (NoSanitizeL.containsMainFile( 3427 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3428 Category)) 3429 return true; 3430 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3431 return true; 3432 3433 // Check global type. 3434 if (!Ty.isNull()) { 3435 // Drill down the array types: if global variable of a fixed type is 3436 // not sanitized, we also don't instrument arrays of them. 3437 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3438 Ty = AT->getElementType(); 3439 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3440 // Only record types (classes, structs etc.) are ignored. 3441 if (Ty->isRecordType()) { 3442 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3443 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3444 return true; 3445 } 3446 } 3447 return false; 3448 } 3449 3450 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3451 StringRef Category) const { 3452 const auto &XRayFilter = getContext().getXRayFilter(); 3453 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3454 auto Attr = ImbueAttr::NONE; 3455 if (Loc.isValid()) 3456 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3457 if (Attr == ImbueAttr::NONE) 3458 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3459 switch (Attr) { 3460 case ImbueAttr::NONE: 3461 return false; 3462 case ImbueAttr::ALWAYS: 3463 Fn->addFnAttr("function-instrument", "xray-always"); 3464 break; 3465 case ImbueAttr::ALWAYS_ARG1: 3466 Fn->addFnAttr("function-instrument", "xray-always"); 3467 Fn->addFnAttr("xray-log-args", "1"); 3468 break; 3469 case ImbueAttr::NEVER: 3470 Fn->addFnAttr("function-instrument", "xray-never"); 3471 break; 3472 } 3473 return true; 3474 } 3475 3476 ProfileList::ExclusionType 3477 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3478 SourceLocation Loc) const { 3479 const auto &ProfileList = getContext().getProfileList(); 3480 // If the profile list is empty, then instrument everything. 3481 if (ProfileList.isEmpty()) 3482 return ProfileList::Allow; 3483 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3484 // First, check the function name. 3485 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3486 return *V; 3487 // Next, check the source location. 3488 if (Loc.isValid()) 3489 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3490 return *V; 3491 // If location is unknown, this may be a compiler-generated function. Assume 3492 // it's located in the main file. 3493 auto &SM = Context.getSourceManager(); 3494 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3495 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3496 return *V; 3497 return ProfileList.getDefault(Kind); 3498 } 3499 3500 ProfileList::ExclusionType 3501 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3502 SourceLocation Loc) const { 3503 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3504 if (V != ProfileList::Allow) 3505 return V; 3506 3507 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3508 if (NumGroups > 1) { 3509 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3510 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3511 return ProfileList::Skip; 3512 } 3513 return ProfileList::Allow; 3514 } 3515 3516 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3517 // Never defer when EmitAllDecls is specified. 3518 if (LangOpts.EmitAllDecls) 3519 return true; 3520 3521 const auto *VD = dyn_cast<VarDecl>(Global); 3522 if (VD && 3523 ((CodeGenOpts.KeepPersistentStorageVariables && 3524 (VD->getStorageDuration() == SD_Static || 3525 VD->getStorageDuration() == SD_Thread)) || 3526 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3527 VD->getType().isConstQualified()))) 3528 return true; 3529 3530 return getContext().DeclMustBeEmitted(Global); 3531 } 3532 3533 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3534 // In OpenMP 5.0 variables and function may be marked as 3535 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3536 // that they must be emitted on the host/device. To be sure we need to have 3537 // seen a declare target with an explicit mentioning of the function, we know 3538 // we have if the level of the declare target attribute is -1. Note that we 3539 // check somewhere else if we should emit this at all. 3540 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3541 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3542 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3543 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3544 return false; 3545 } 3546 3547 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3548 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3549 // Implicit template instantiations may change linkage if they are later 3550 // explicitly instantiated, so they should not be emitted eagerly. 3551 return false; 3552 // Defer until all versions have been semantically checked. 3553 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3554 return false; 3555 } 3556 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3557 if (Context.getInlineVariableDefinitionKind(VD) == 3558 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3559 // A definition of an inline constexpr static data member may change 3560 // linkage later if it's redeclared outside the class. 3561 return false; 3562 if (CXX20ModuleInits && VD->getOwningModule() && 3563 !VD->getOwningModule()->isModuleMapModule()) { 3564 // For CXX20, module-owned initializers need to be deferred, since it is 3565 // not known at this point if they will be run for the current module or 3566 // as part of the initializer for an imported one. 3567 return false; 3568 } 3569 } 3570 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3571 // codegen for global variables, because they may be marked as threadprivate. 3572 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3573 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3574 !Global->getType().isConstantStorage(getContext(), false, false) && 3575 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3576 return false; 3577 3578 return true; 3579 } 3580 3581 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3582 StringRef Name = getMangledName(GD); 3583 3584 // The UUID descriptor should be pointer aligned. 3585 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3586 3587 // Look for an existing global. 3588 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3589 return ConstantAddress(GV, GV->getValueType(), Alignment); 3590 3591 ConstantEmitter Emitter(*this); 3592 llvm::Constant *Init; 3593 3594 APValue &V = GD->getAsAPValue(); 3595 if (!V.isAbsent()) { 3596 // If possible, emit the APValue version of the initializer. In particular, 3597 // this gets the type of the constant right. 3598 Init = Emitter.emitForInitializer( 3599 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3600 } else { 3601 // As a fallback, directly construct the constant. 3602 // FIXME: This may get padding wrong under esoteric struct layout rules. 3603 // MSVC appears to create a complete type 'struct __s_GUID' that it 3604 // presumably uses to represent these constants. 3605 MSGuidDecl::Parts Parts = GD->getParts(); 3606 llvm::Constant *Fields[4] = { 3607 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3608 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3609 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3610 llvm::ConstantDataArray::getRaw( 3611 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3612 Int8Ty)}; 3613 Init = llvm::ConstantStruct::getAnon(Fields); 3614 } 3615 3616 auto *GV = new llvm::GlobalVariable( 3617 getModule(), Init->getType(), 3618 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3619 if (supportsCOMDAT()) 3620 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3621 setDSOLocal(GV); 3622 3623 if (!V.isAbsent()) { 3624 Emitter.finalize(GV); 3625 return ConstantAddress(GV, GV->getValueType(), Alignment); 3626 } 3627 3628 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3629 return ConstantAddress(GV, Ty, Alignment); 3630 } 3631 3632 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3633 const UnnamedGlobalConstantDecl *GCD) { 3634 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3635 3636 llvm::GlobalVariable **Entry = nullptr; 3637 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3638 if (*Entry) 3639 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3640 3641 ConstantEmitter Emitter(*this); 3642 llvm::Constant *Init; 3643 3644 const APValue &V = GCD->getValue(); 3645 3646 assert(!V.isAbsent()); 3647 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3648 GCD->getType()); 3649 3650 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3651 /*isConstant=*/true, 3652 llvm::GlobalValue::PrivateLinkage, Init, 3653 ".constant"); 3654 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3655 GV->setAlignment(Alignment.getAsAlign()); 3656 3657 Emitter.finalize(GV); 3658 3659 *Entry = GV; 3660 return ConstantAddress(GV, GV->getValueType(), Alignment); 3661 } 3662 3663 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3664 const TemplateParamObjectDecl *TPO) { 3665 StringRef Name = getMangledName(TPO); 3666 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3667 3668 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3669 return ConstantAddress(GV, GV->getValueType(), Alignment); 3670 3671 ConstantEmitter Emitter(*this); 3672 llvm::Constant *Init = Emitter.emitForInitializer( 3673 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3674 3675 if (!Init) { 3676 ErrorUnsupported(TPO, "template parameter object"); 3677 return ConstantAddress::invalid(); 3678 } 3679 3680 llvm::GlobalValue::LinkageTypes Linkage = 3681 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3682 ? llvm::GlobalValue::LinkOnceODRLinkage 3683 : llvm::GlobalValue::InternalLinkage; 3684 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3685 /*isConstant=*/true, Linkage, Init, Name); 3686 setGVProperties(GV, TPO); 3687 if (supportsCOMDAT()) 3688 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3689 Emitter.finalize(GV); 3690 3691 return ConstantAddress(GV, GV->getValueType(), Alignment); 3692 } 3693 3694 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3695 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3696 assert(AA && "No alias?"); 3697 3698 CharUnits Alignment = getContext().getDeclAlign(VD); 3699 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3700 3701 // See if there is already something with the target's name in the module. 3702 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3703 if (Entry) 3704 return ConstantAddress(Entry, DeclTy, Alignment); 3705 3706 llvm::Constant *Aliasee; 3707 if (isa<llvm::FunctionType>(DeclTy)) 3708 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3709 GlobalDecl(cast<FunctionDecl>(VD)), 3710 /*ForVTable=*/false); 3711 else 3712 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3713 nullptr); 3714 3715 auto *F = cast<llvm::GlobalValue>(Aliasee); 3716 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3717 WeakRefReferences.insert(F); 3718 3719 return ConstantAddress(Aliasee, DeclTy, Alignment); 3720 } 3721 3722 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3723 if (!D) 3724 return false; 3725 if (auto *A = D->getAttr<AttrT>()) 3726 return A->isImplicit(); 3727 return D->isImplicit(); 3728 } 3729 3730 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3731 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3732 // We need to emit host-side 'shadows' for all global 3733 // device-side variables because the CUDA runtime needs their 3734 // size and host-side address in order to provide access to 3735 // their device-side incarnations. 3736 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3737 Global->hasAttr<CUDAConstantAttr>() || 3738 Global->hasAttr<CUDASharedAttr>() || 3739 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3740 Global->getType()->isCUDADeviceBuiltinTextureType(); 3741 } 3742 3743 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3744 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3745 3746 // Weak references don't produce any output by themselves. 3747 if (Global->hasAttr<WeakRefAttr>()) 3748 return; 3749 3750 // If this is an alias definition (which otherwise looks like a declaration) 3751 // emit it now. 3752 if (Global->hasAttr<AliasAttr>()) 3753 return EmitAliasDefinition(GD); 3754 3755 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3756 if (Global->hasAttr<IFuncAttr>()) 3757 return emitIFuncDefinition(GD); 3758 3759 // If this is a cpu_dispatch multiversion function, emit the resolver. 3760 if (Global->hasAttr<CPUDispatchAttr>()) 3761 return emitCPUDispatchDefinition(GD); 3762 3763 // If this is CUDA, be selective about which declarations we emit. 3764 // Non-constexpr non-lambda implicit host device functions are not emitted 3765 // unless they are used on device side. 3766 if (LangOpts.CUDA) { 3767 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3768 "Expected Variable or Function"); 3769 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3770 if (!shouldEmitCUDAGlobalVar(VD)) 3771 return; 3772 } else if (LangOpts.CUDAIsDevice) { 3773 const auto *FD = dyn_cast<FunctionDecl>(Global); 3774 if ((!Global->hasAttr<CUDADeviceAttr>() || 3775 (LangOpts.OffloadImplicitHostDeviceTemplates && 3776 hasImplicitAttr<CUDAHostAttr>(FD) && 3777 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3778 !isLambdaCallOperator(FD) && 3779 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3780 !Global->hasAttr<CUDAGlobalAttr>() && 3781 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3782 !Global->hasAttr<CUDAHostAttr>())) 3783 return; 3784 // Device-only functions are the only things we skip. 3785 } else if (!Global->hasAttr<CUDAHostAttr>() && 3786 Global->hasAttr<CUDADeviceAttr>()) 3787 return; 3788 } 3789 3790 if (LangOpts.OpenMP) { 3791 // If this is OpenMP, check if it is legal to emit this global normally. 3792 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3793 return; 3794 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3795 if (MustBeEmitted(Global)) 3796 EmitOMPDeclareReduction(DRD); 3797 return; 3798 } 3799 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3800 if (MustBeEmitted(Global)) 3801 EmitOMPDeclareMapper(DMD); 3802 return; 3803 } 3804 } 3805 3806 // Ignore declarations, they will be emitted on their first use. 3807 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3808 // Update deferred annotations with the latest declaration if the function 3809 // function was already used or defined. 3810 if (FD->hasAttr<AnnotateAttr>()) { 3811 StringRef MangledName = getMangledName(GD); 3812 if (GetGlobalValue(MangledName)) 3813 DeferredAnnotations[MangledName] = FD; 3814 } 3815 3816 // Forward declarations are emitted lazily on first use. 3817 if (!FD->doesThisDeclarationHaveABody()) { 3818 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3819 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64())) 3820 return; 3821 3822 StringRef MangledName = getMangledName(GD); 3823 3824 // Compute the function info and LLVM type. 3825 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3826 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3827 3828 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3829 /*DontDefer=*/false); 3830 return; 3831 } 3832 } else { 3833 const auto *VD = cast<VarDecl>(Global); 3834 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3835 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3836 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3837 if (LangOpts.OpenMP) { 3838 // Emit declaration of the must-be-emitted declare target variable. 3839 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3840 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3841 3842 // If this variable has external storage and doesn't require special 3843 // link handling we defer to its canonical definition. 3844 if (VD->hasExternalStorage() && 3845 Res != OMPDeclareTargetDeclAttr::MT_Link) 3846 return; 3847 3848 bool UnifiedMemoryEnabled = 3849 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3850 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3851 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3852 !UnifiedMemoryEnabled) { 3853 (void)GetAddrOfGlobalVar(VD); 3854 } else { 3855 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3856 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3857 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3858 UnifiedMemoryEnabled)) && 3859 "Link clause or to clause with unified memory expected."); 3860 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3861 } 3862 3863 return; 3864 } 3865 } 3866 // If this declaration may have caused an inline variable definition to 3867 // change linkage, make sure that it's emitted. 3868 if (Context.getInlineVariableDefinitionKind(VD) == 3869 ASTContext::InlineVariableDefinitionKind::Strong) 3870 GetAddrOfGlobalVar(VD); 3871 return; 3872 } 3873 } 3874 3875 // Defer code generation to first use when possible, e.g. if this is an inline 3876 // function. If the global must always be emitted, do it eagerly if possible 3877 // to benefit from cache locality. 3878 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3879 // Emit the definition if it can't be deferred. 3880 EmitGlobalDefinition(GD); 3881 addEmittedDeferredDecl(GD); 3882 return; 3883 } 3884 3885 // If we're deferring emission of a C++ variable with an 3886 // initializer, remember the order in which it appeared in the file. 3887 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3888 cast<VarDecl>(Global)->hasInit()) { 3889 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3890 CXXGlobalInits.push_back(nullptr); 3891 } 3892 3893 StringRef MangledName = getMangledName(GD); 3894 if (GetGlobalValue(MangledName) != nullptr) { 3895 // The value has already been used and should therefore be emitted. 3896 addDeferredDeclToEmit(GD); 3897 } else if (MustBeEmitted(Global)) { 3898 // The value must be emitted, but cannot be emitted eagerly. 3899 assert(!MayBeEmittedEagerly(Global)); 3900 addDeferredDeclToEmit(GD); 3901 } else { 3902 // Otherwise, remember that we saw a deferred decl with this name. The 3903 // first use of the mangled name will cause it to move into 3904 // DeferredDeclsToEmit. 3905 DeferredDecls[MangledName] = GD; 3906 } 3907 } 3908 3909 // Check if T is a class type with a destructor that's not dllimport. 3910 static bool HasNonDllImportDtor(QualType T) { 3911 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3912 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3913 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3914 return true; 3915 3916 return false; 3917 } 3918 3919 namespace { 3920 struct FunctionIsDirectlyRecursive 3921 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3922 const StringRef Name; 3923 const Builtin::Context &BI; 3924 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3925 : Name(N), BI(C) {} 3926 3927 bool VisitCallExpr(const CallExpr *E) { 3928 const FunctionDecl *FD = E->getDirectCallee(); 3929 if (!FD) 3930 return false; 3931 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3932 if (Attr && Name == Attr->getLabel()) 3933 return true; 3934 unsigned BuiltinID = FD->getBuiltinID(); 3935 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3936 return false; 3937 StringRef BuiltinName = BI.getName(BuiltinID); 3938 if (BuiltinName.starts_with("__builtin_") && 3939 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3940 return true; 3941 } 3942 return false; 3943 } 3944 3945 bool VisitStmt(const Stmt *S) { 3946 for (const Stmt *Child : S->children()) 3947 if (Child && this->Visit(Child)) 3948 return true; 3949 return false; 3950 } 3951 }; 3952 3953 // Make sure we're not referencing non-imported vars or functions. 3954 struct DLLImportFunctionVisitor 3955 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3956 bool SafeToInline = true; 3957 3958 bool shouldVisitImplicitCode() const { return true; } 3959 3960 bool VisitVarDecl(VarDecl *VD) { 3961 if (VD->getTLSKind()) { 3962 // A thread-local variable cannot be imported. 3963 SafeToInline = false; 3964 return SafeToInline; 3965 } 3966 3967 // A variable definition might imply a destructor call. 3968 if (VD->isThisDeclarationADefinition()) 3969 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3970 3971 return SafeToInline; 3972 } 3973 3974 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3975 if (const auto *D = E->getTemporary()->getDestructor()) 3976 SafeToInline = D->hasAttr<DLLImportAttr>(); 3977 return SafeToInline; 3978 } 3979 3980 bool VisitDeclRefExpr(DeclRefExpr *E) { 3981 ValueDecl *VD = E->getDecl(); 3982 if (isa<FunctionDecl>(VD)) 3983 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3984 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3985 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3986 return SafeToInline; 3987 } 3988 3989 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3990 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3991 return SafeToInline; 3992 } 3993 3994 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3995 CXXMethodDecl *M = E->getMethodDecl(); 3996 if (!M) { 3997 // Call through a pointer to member function. This is safe to inline. 3998 SafeToInline = true; 3999 } else { 4000 SafeToInline = M->hasAttr<DLLImportAttr>(); 4001 } 4002 return SafeToInline; 4003 } 4004 4005 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 4006 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 4007 return SafeToInline; 4008 } 4009 4010 bool VisitCXXNewExpr(CXXNewExpr *E) { 4011 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 4012 return SafeToInline; 4013 } 4014 }; 4015 } 4016 4017 // isTriviallyRecursive - Check if this function calls another 4018 // decl that, because of the asm attribute or the other decl being a builtin, 4019 // ends up pointing to itself. 4020 bool 4021 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 4022 StringRef Name; 4023 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 4024 // asm labels are a special kind of mangling we have to support. 4025 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4026 if (!Attr) 4027 return false; 4028 Name = Attr->getLabel(); 4029 } else { 4030 Name = FD->getName(); 4031 } 4032 4033 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4034 const Stmt *Body = FD->getBody(); 4035 return Body ? Walker.Visit(Body) : false; 4036 } 4037 4038 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4039 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4040 return true; 4041 4042 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4043 // Inline builtins declaration must be emitted. They often are fortified 4044 // functions. 4045 if (F->isInlineBuiltinDeclaration()) 4046 return true; 4047 4048 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4049 return false; 4050 4051 // We don't import function bodies from other named module units since that 4052 // behavior may break ABI compatibility of the current unit. 4053 if (const Module *M = F->getOwningModule(); 4054 M && M->getTopLevelModule()->isNamedModule() && 4055 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4056 // There are practices to mark template member function as always-inline 4057 // and mark the template as extern explicit instantiation but not give 4058 // the definition for member function. So we have to emit the function 4059 // from explicitly instantiation with always-inline. 4060 // 4061 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4062 // 4063 // TODO: Maybe it is better to give it a warning if we call a non-inline 4064 // function from other module units which is marked as always-inline. 4065 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4066 return false; 4067 } 4068 } 4069 4070 if (F->hasAttr<NoInlineAttr>()) 4071 return false; 4072 4073 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4074 // Check whether it would be safe to inline this dllimport function. 4075 DLLImportFunctionVisitor Visitor; 4076 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4077 if (!Visitor.SafeToInline) 4078 return false; 4079 4080 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4081 // Implicit destructor invocations aren't captured in the AST, so the 4082 // check above can't see them. Check for them manually here. 4083 for (const Decl *Member : Dtor->getParent()->decls()) 4084 if (isa<FieldDecl>(Member)) 4085 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4086 return false; 4087 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4088 if (HasNonDllImportDtor(B.getType())) 4089 return false; 4090 } 4091 } 4092 4093 // PR9614. Avoid cases where the source code is lying to us. An available 4094 // externally function should have an equivalent function somewhere else, 4095 // but a function that calls itself through asm label/`__builtin_` trickery is 4096 // clearly not equivalent to the real implementation. 4097 // This happens in glibc's btowc and in some configure checks. 4098 return !isTriviallyRecursive(F); 4099 } 4100 4101 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4102 return CodeGenOpts.OptimizationLevel > 0; 4103 } 4104 4105 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4106 llvm::GlobalValue *GV) { 4107 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4108 4109 if (FD->isCPUSpecificMultiVersion()) { 4110 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4111 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4112 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4113 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4114 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4115 // AArch64 favors the default target version over the clone if any. 4116 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4117 TC->isFirstOfVersion(I)) 4118 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4119 // Ensure that the resolver function is also emitted. 4120 GetOrCreateMultiVersionResolver(GD); 4121 } else 4122 EmitGlobalFunctionDefinition(GD, GV); 4123 4124 // Defer the resolver emission until we can reason whether the TU 4125 // contains a default target version implementation. 4126 if (FD->isTargetVersionMultiVersion()) 4127 AddDeferredMultiVersionResolverToEmit(GD); 4128 } 4129 4130 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4131 const auto *D = cast<ValueDecl>(GD.getDecl()); 4132 4133 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4134 Context.getSourceManager(), 4135 "Generating code for declaration"); 4136 4137 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4138 // At -O0, don't generate IR for functions with available_externally 4139 // linkage. 4140 if (!shouldEmitFunction(GD)) 4141 return; 4142 4143 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4144 std::string Name; 4145 llvm::raw_string_ostream OS(Name); 4146 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4147 /*Qualified=*/true); 4148 return Name; 4149 }); 4150 4151 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4152 // Make sure to emit the definition(s) before we emit the thunks. 4153 // This is necessary for the generation of certain thunks. 4154 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4155 ABI->emitCXXStructor(GD); 4156 else if (FD->isMultiVersion()) 4157 EmitMultiVersionFunctionDefinition(GD, GV); 4158 else 4159 EmitGlobalFunctionDefinition(GD, GV); 4160 4161 if (Method->isVirtual()) 4162 getVTables().EmitThunks(GD); 4163 4164 return; 4165 } 4166 4167 if (FD->isMultiVersion()) 4168 return EmitMultiVersionFunctionDefinition(GD, GV); 4169 return EmitGlobalFunctionDefinition(GD, GV); 4170 } 4171 4172 if (const auto *VD = dyn_cast<VarDecl>(D)) 4173 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4174 4175 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4176 } 4177 4178 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4179 llvm::Function *NewFn); 4180 4181 static unsigned 4182 TargetMVPriority(const TargetInfo &TI, 4183 const CodeGenFunction::MultiVersionResolverOption &RO) { 4184 unsigned Priority = 0; 4185 unsigned NumFeatures = 0; 4186 for (StringRef Feat : RO.Conditions.Features) { 4187 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4188 NumFeatures++; 4189 } 4190 4191 if (!RO.Conditions.Architecture.empty()) 4192 Priority = std::max( 4193 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4194 4195 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4196 4197 return Priority; 4198 } 4199 4200 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4201 // TU can forward declare the function without causing problems. Particularly 4202 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4203 // work with internal linkage functions, so that the same function name can be 4204 // used with internal linkage in multiple TUs. 4205 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4206 GlobalDecl GD) { 4207 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4208 if (FD->getFormalLinkage() == Linkage::Internal) 4209 return llvm::GlobalValue::InternalLinkage; 4210 return llvm::GlobalValue::WeakODRLinkage; 4211 } 4212 4213 void CodeGenModule::emitMultiVersionFunctions() { 4214 std::vector<GlobalDecl> MVFuncsToEmit; 4215 MultiVersionFuncs.swap(MVFuncsToEmit); 4216 for (GlobalDecl GD : MVFuncsToEmit) { 4217 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4218 assert(FD && "Expected a FunctionDecl"); 4219 4220 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4221 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4222 StringRef MangledName = getMangledName(CurGD); 4223 llvm::Constant *Func = GetGlobalValue(MangledName); 4224 if (!Func) { 4225 if (Decl->isDefined()) { 4226 EmitGlobalFunctionDefinition(CurGD, nullptr); 4227 Func = GetGlobalValue(MangledName); 4228 } else { 4229 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4230 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4231 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4232 /*DontDefer=*/false, ForDefinition); 4233 } 4234 assert(Func && "This should have just been created"); 4235 } 4236 return cast<llvm::Function>(Func); 4237 }; 4238 4239 // For AArch64, a resolver is only emitted if a function marked with 4240 // target_version("default")) or target_clones() is present and defined 4241 // in this TU. For other architectures it is always emitted. 4242 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64(); 4243 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4244 4245 getContext().forEachMultiversionedFunctionVersion( 4246 FD, [&](const FunctionDecl *CurFD) { 4247 llvm::SmallVector<StringRef, 8> Feats; 4248 bool IsDefined = CurFD->doesThisDeclarationHaveABody(); 4249 4250 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4251 TA->getAddedFeatures(Feats); 4252 llvm::Function *Func = createFunction(CurFD); 4253 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4254 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4255 if (TVA->isDefaultVersion() && IsDefined) 4256 ShouldEmitResolver = true; 4257 TVA->getFeatures(Feats); 4258 llvm::Function *Func = createFunction(CurFD); 4259 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4260 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4261 if (IsDefined) 4262 ShouldEmitResolver = true; 4263 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4264 if (!TC->isFirstOfVersion(I)) 4265 continue; 4266 4267 llvm::Function *Func = createFunction(CurFD, I); 4268 StringRef Architecture; 4269 Feats.clear(); 4270 if (getTarget().getTriple().isAArch64()) 4271 TC->getFeatures(Feats, I); 4272 else { 4273 StringRef Version = TC->getFeatureStr(I); 4274 if (Version.starts_with("arch=")) 4275 Architecture = Version.drop_front(sizeof("arch=") - 1); 4276 else if (Version != "default") 4277 Feats.push_back(Version); 4278 } 4279 Options.emplace_back(Func, Architecture, Feats); 4280 } 4281 } else 4282 llvm_unreachable("unexpected MultiVersionKind"); 4283 }); 4284 4285 if (!ShouldEmitResolver) 4286 continue; 4287 4288 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4289 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4290 ResolverConstant = IFunc->getResolver(); 4291 if (FD->isTargetClonesMultiVersion() && 4292 !getTarget().getTriple().isAArch64()) { 4293 std::string MangledName = getMangledNameImpl( 4294 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4295 if (!GetGlobalValue(MangledName + ".ifunc")) { 4296 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4297 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4298 // In prior versions of Clang, the mangling for ifuncs incorrectly 4299 // included an .ifunc suffix. This alias is generated for backward 4300 // compatibility. It is deprecated, and may be removed in the future. 4301 auto *Alias = llvm::GlobalAlias::create( 4302 DeclTy, 0, getMultiversionLinkage(*this, GD), 4303 MangledName + ".ifunc", IFunc, &getModule()); 4304 SetCommonAttributes(FD, Alias); 4305 } 4306 } 4307 } 4308 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4309 4310 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4311 4312 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4313 ResolverFunc->setComdat( 4314 getModule().getOrInsertComdat(ResolverFunc->getName())); 4315 4316 const TargetInfo &TI = getTarget(); 4317 llvm::stable_sort( 4318 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4319 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4320 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4321 }); 4322 CodeGenFunction CGF(*this); 4323 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4324 } 4325 4326 // Ensure that any additions to the deferred decls list caused by emitting a 4327 // variant are emitted. This can happen when the variant itself is inline and 4328 // calls a function without linkage. 4329 if (!MVFuncsToEmit.empty()) 4330 EmitDeferred(); 4331 4332 // Ensure that any additions to the multiversion funcs list from either the 4333 // deferred decls or the multiversion functions themselves are emitted. 4334 if (!MultiVersionFuncs.empty()) 4335 emitMultiVersionFunctions(); 4336 } 4337 4338 static void replaceDeclarationWith(llvm::GlobalValue *Old, 4339 llvm::Constant *New) { 4340 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration"); 4341 New->takeName(Old); 4342 Old->replaceAllUsesWith(New); 4343 Old->eraseFromParent(); 4344 } 4345 4346 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4347 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4348 assert(FD && "Not a FunctionDecl?"); 4349 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4350 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4351 assert(DD && "Not a cpu_dispatch Function?"); 4352 4353 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4354 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4355 4356 StringRef ResolverName = getMangledName(GD); 4357 UpdateMultiVersionNames(GD, FD, ResolverName); 4358 4359 llvm::Type *ResolverType; 4360 GlobalDecl ResolverGD; 4361 if (getTarget().supportsIFunc()) { 4362 ResolverType = llvm::FunctionType::get( 4363 llvm::PointerType::get(DeclTy, 4364 getTypes().getTargetAddressSpace(FD->getType())), 4365 false); 4366 } 4367 else { 4368 ResolverType = DeclTy; 4369 ResolverGD = GD; 4370 } 4371 4372 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4373 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4374 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4375 if (supportsCOMDAT()) 4376 ResolverFunc->setComdat( 4377 getModule().getOrInsertComdat(ResolverFunc->getName())); 4378 4379 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4380 const TargetInfo &Target = getTarget(); 4381 unsigned Index = 0; 4382 for (const IdentifierInfo *II : DD->cpus()) { 4383 // Get the name of the target function so we can look it up/create it. 4384 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4385 getCPUSpecificMangling(*this, II->getName()); 4386 4387 llvm::Constant *Func = GetGlobalValue(MangledName); 4388 4389 if (!Func) { 4390 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4391 if (ExistingDecl.getDecl() && 4392 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4393 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4394 Func = GetGlobalValue(MangledName); 4395 } else { 4396 if (!ExistingDecl.getDecl()) 4397 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4398 4399 Func = GetOrCreateLLVMFunction( 4400 MangledName, DeclTy, ExistingDecl, 4401 /*ForVTable=*/false, /*DontDefer=*/true, 4402 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4403 } 4404 } 4405 4406 llvm::SmallVector<StringRef, 32> Features; 4407 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4408 llvm::transform(Features, Features.begin(), 4409 [](StringRef Str) { return Str.substr(1); }); 4410 llvm::erase_if(Features, [&Target](StringRef Feat) { 4411 return !Target.validateCpuSupports(Feat); 4412 }); 4413 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4414 ++Index; 4415 } 4416 4417 llvm::stable_sort( 4418 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4419 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4420 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4421 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4422 }); 4423 4424 // If the list contains multiple 'default' versions, such as when it contains 4425 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4426 // always run on at least a 'pentium'). We do this by deleting the 'least 4427 // advanced' (read, lowest mangling letter). 4428 while (Options.size() > 1 && 4429 llvm::all_of(llvm::X86::getCpuSupportsMask( 4430 (Options.end() - 2)->Conditions.Features), 4431 [](auto X) { return X == 0; })) { 4432 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4433 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4434 if (LHSName.compare(RHSName) < 0) 4435 Options.erase(Options.end() - 2); 4436 else 4437 Options.erase(Options.end() - 1); 4438 } 4439 4440 CodeGenFunction CGF(*this); 4441 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4442 4443 if (getTarget().supportsIFunc()) { 4444 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4445 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4446 4447 // Fix up function declarations that were created for cpu_specific before 4448 // cpu_dispatch was known 4449 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4450 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4451 &getModule()); 4452 replaceDeclarationWith(IFunc, GI); 4453 IFunc = GI; 4454 } 4455 4456 std::string AliasName = getMangledNameImpl( 4457 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4458 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4459 if (!AliasFunc) { 4460 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4461 &getModule()); 4462 SetCommonAttributes(GD, GA); 4463 } 4464 } 4465 } 4466 4467 /// Adds a declaration to the list of multi version functions if not present. 4468 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4469 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4470 assert(FD && "Not a FunctionDecl?"); 4471 4472 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4473 std::string MangledName = 4474 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4475 if (!DeferredResolversToEmit.insert(MangledName).second) 4476 return; 4477 } 4478 MultiVersionFuncs.push_back(GD); 4479 } 4480 4481 /// If a dispatcher for the specified mangled name is not in the module, create 4482 /// and return it. The dispatcher is either an llvm Function with the specified 4483 /// type, or a global ifunc. 4484 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4485 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4486 assert(FD && "Not a FunctionDecl?"); 4487 4488 std::string MangledName = 4489 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4490 4491 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4492 // a separate resolver). 4493 std::string ResolverName = MangledName; 4494 if (getTarget().supportsIFunc()) { 4495 switch (FD->getMultiVersionKind()) { 4496 case MultiVersionKind::None: 4497 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4498 case MultiVersionKind::Target: 4499 case MultiVersionKind::CPUSpecific: 4500 case MultiVersionKind::CPUDispatch: 4501 ResolverName += ".ifunc"; 4502 break; 4503 case MultiVersionKind::TargetClones: 4504 case MultiVersionKind::TargetVersion: 4505 break; 4506 } 4507 } else if (FD->isTargetMultiVersion()) { 4508 ResolverName += ".resolver"; 4509 } 4510 4511 // If the resolver has already been created, just return it. This lookup may 4512 // yield a function declaration instead of a resolver on AArch64. That is 4513 // because we didn't know whether a resolver will be generated when we first 4514 // encountered a use of the symbol named after this resolver. Therefore, 4515 // targets which support ifuncs should not return here unless we actually 4516 // found an ifunc. 4517 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName); 4518 if (ResolverGV && 4519 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc())) 4520 return ResolverGV; 4521 4522 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4523 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4524 4525 // The resolver needs to be created. For target and target_clones, defer 4526 // creation until the end of the TU. 4527 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4528 AddDeferredMultiVersionResolverToEmit(GD); 4529 4530 // For cpu_specific, don't create an ifunc yet because we don't know if the 4531 // cpu_dispatch will be emitted in this translation unit. 4532 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4533 llvm::Type *ResolverType = llvm::FunctionType::get( 4534 llvm::PointerType::get(DeclTy, 4535 getTypes().getTargetAddressSpace(FD->getType())), 4536 false); 4537 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4538 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4539 /*ForVTable=*/false); 4540 llvm::GlobalIFunc *GIF = 4541 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4542 "", Resolver, &getModule()); 4543 GIF->setName(ResolverName); 4544 SetCommonAttributes(FD, GIF); 4545 if (ResolverGV) 4546 replaceDeclarationWith(ResolverGV, GIF); 4547 return GIF; 4548 } 4549 4550 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4551 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4552 assert(isa<llvm::GlobalValue>(Resolver) && 4553 "Resolver should be created for the first time"); 4554 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4555 if (ResolverGV) 4556 replaceDeclarationWith(ResolverGV, Resolver); 4557 return Resolver; 4558 } 4559 4560 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4561 const llvm::GlobalValue *GV) const { 4562 auto SC = GV->getDLLStorageClass(); 4563 if (SC == llvm::GlobalValue::DefaultStorageClass) 4564 return false; 4565 const Decl *MRD = D->getMostRecentDecl(); 4566 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4567 !MRD->hasAttr<DLLImportAttr>()) || 4568 (SC == llvm::GlobalValue::DLLExportStorageClass && 4569 !MRD->hasAttr<DLLExportAttr>())) && 4570 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4571 } 4572 4573 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4574 /// module, create and return an llvm Function with the specified type. If there 4575 /// is something in the module with the specified name, return it potentially 4576 /// bitcasted to the right type. 4577 /// 4578 /// If D is non-null, it specifies a decl that correspond to this. This is used 4579 /// to set the attributes on the function when it is first created. 4580 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4581 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4582 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4583 ForDefinition_t IsForDefinition) { 4584 const Decl *D = GD.getDecl(); 4585 4586 std::string NameWithoutMultiVersionMangling; 4587 // Any attempts to use a MultiVersion function should result in retrieving 4588 // the iFunc instead. Name Mangling will handle the rest of the changes. 4589 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4590 // For the device mark the function as one that should be emitted. 4591 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4592 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4593 !DontDefer && !IsForDefinition) { 4594 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4595 GlobalDecl GDDef; 4596 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4597 GDDef = GlobalDecl(CD, GD.getCtorType()); 4598 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4599 GDDef = GlobalDecl(DD, GD.getDtorType()); 4600 else 4601 GDDef = GlobalDecl(FDDef); 4602 EmitGlobal(GDDef); 4603 } 4604 } 4605 4606 if (FD->isMultiVersion()) { 4607 UpdateMultiVersionNames(GD, FD, MangledName); 4608 if (!IsForDefinition) { 4609 // On AArch64 we do not immediatelly emit an ifunc resolver when a 4610 // function is used. Instead we defer the emission until we see a 4611 // default definition. In the meantime we just reference the symbol 4612 // without FMV mangling (it may or may not be replaced later). 4613 if (getTarget().getTriple().isAArch64()) { 4614 AddDeferredMultiVersionResolverToEmit(GD); 4615 NameWithoutMultiVersionMangling = getMangledNameImpl( 4616 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4617 } else 4618 return GetOrCreateMultiVersionResolver(GD); 4619 } 4620 } 4621 } 4622 4623 if (!NameWithoutMultiVersionMangling.empty()) 4624 MangledName = NameWithoutMultiVersionMangling; 4625 4626 // Lookup the entry, lazily creating it if necessary. 4627 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4628 if (Entry) { 4629 if (WeakRefReferences.erase(Entry)) { 4630 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4631 if (FD && !FD->hasAttr<WeakAttr>()) 4632 Entry->setLinkage(llvm::Function::ExternalLinkage); 4633 } 4634 4635 // Handle dropped DLL attributes. 4636 if (D && shouldDropDLLAttribute(D, Entry)) { 4637 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4638 setDSOLocal(Entry); 4639 } 4640 4641 // If there are two attempts to define the same mangled name, issue an 4642 // error. 4643 if (IsForDefinition && !Entry->isDeclaration()) { 4644 GlobalDecl OtherGD; 4645 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4646 // to make sure that we issue an error only once. 4647 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4648 (GD.getCanonicalDecl().getDecl() != 4649 OtherGD.getCanonicalDecl().getDecl()) && 4650 DiagnosedConflictingDefinitions.insert(GD).second) { 4651 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4652 << MangledName; 4653 getDiags().Report(OtherGD.getDecl()->getLocation(), 4654 diag::note_previous_definition); 4655 } 4656 } 4657 4658 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4659 (Entry->getValueType() == Ty)) { 4660 return Entry; 4661 } 4662 4663 // Make sure the result is of the correct type. 4664 // (If function is requested for a definition, we always need to create a new 4665 // function, not just return a bitcast.) 4666 if (!IsForDefinition) 4667 return Entry; 4668 } 4669 4670 // This function doesn't have a complete type (for example, the return 4671 // type is an incomplete struct). Use a fake type instead, and make 4672 // sure not to try to set attributes. 4673 bool IsIncompleteFunction = false; 4674 4675 llvm::FunctionType *FTy; 4676 if (isa<llvm::FunctionType>(Ty)) { 4677 FTy = cast<llvm::FunctionType>(Ty); 4678 } else { 4679 FTy = llvm::FunctionType::get(VoidTy, false); 4680 IsIncompleteFunction = true; 4681 } 4682 4683 llvm::Function *F = 4684 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4685 Entry ? StringRef() : MangledName, &getModule()); 4686 4687 // Store the declaration associated with this function so it is potentially 4688 // updated by further declarations or definitions and emitted at the end. 4689 if (D && D->hasAttr<AnnotateAttr>()) 4690 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4691 4692 // If we already created a function with the same mangled name (but different 4693 // type) before, take its name and add it to the list of functions to be 4694 // replaced with F at the end of CodeGen. 4695 // 4696 // This happens if there is a prototype for a function (e.g. "int f()") and 4697 // then a definition of a different type (e.g. "int f(int x)"). 4698 if (Entry) { 4699 F->takeName(Entry); 4700 4701 // This might be an implementation of a function without a prototype, in 4702 // which case, try to do special replacement of calls which match the new 4703 // prototype. The really key thing here is that we also potentially drop 4704 // arguments from the call site so as to make a direct call, which makes the 4705 // inliner happier and suppresses a number of optimizer warnings (!) about 4706 // dropping arguments. 4707 if (!Entry->use_empty()) { 4708 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4709 Entry->removeDeadConstantUsers(); 4710 } 4711 4712 addGlobalValReplacement(Entry, F); 4713 } 4714 4715 assert(F->getName() == MangledName && "name was uniqued!"); 4716 if (D) 4717 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4718 if (ExtraAttrs.hasFnAttrs()) { 4719 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4720 F->addFnAttrs(B); 4721 } 4722 4723 if (!DontDefer) { 4724 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4725 // each other bottoming out with the base dtor. Therefore we emit non-base 4726 // dtors on usage, even if there is no dtor definition in the TU. 4727 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4728 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4729 GD.getDtorType())) 4730 addDeferredDeclToEmit(GD); 4731 4732 // This is the first use or definition of a mangled name. If there is a 4733 // deferred decl with this name, remember that we need to emit it at the end 4734 // of the file. 4735 auto DDI = DeferredDecls.find(MangledName); 4736 if (DDI != DeferredDecls.end()) { 4737 // Move the potentially referenced deferred decl to the 4738 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4739 // don't need it anymore). 4740 addDeferredDeclToEmit(DDI->second); 4741 DeferredDecls.erase(DDI); 4742 4743 // Otherwise, there are cases we have to worry about where we're 4744 // using a declaration for which we must emit a definition but where 4745 // we might not find a top-level definition: 4746 // - member functions defined inline in their classes 4747 // - friend functions defined inline in some class 4748 // - special member functions with implicit definitions 4749 // If we ever change our AST traversal to walk into class methods, 4750 // this will be unnecessary. 4751 // 4752 // We also don't emit a definition for a function if it's going to be an 4753 // entry in a vtable, unless it's already marked as used. 4754 } else if (getLangOpts().CPlusPlus && D) { 4755 // Look for a declaration that's lexically in a record. 4756 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4757 FD = FD->getPreviousDecl()) { 4758 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4759 if (FD->doesThisDeclarationHaveABody()) { 4760 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4761 break; 4762 } 4763 } 4764 } 4765 } 4766 } 4767 4768 // Make sure the result is of the requested type. 4769 if (!IsIncompleteFunction) { 4770 assert(F->getFunctionType() == Ty); 4771 return F; 4772 } 4773 4774 return F; 4775 } 4776 4777 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4778 /// non-null, then this function will use the specified type if it has to 4779 /// create it (this occurs when we see a definition of the function). 4780 llvm::Constant * 4781 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4782 bool DontDefer, 4783 ForDefinition_t IsForDefinition) { 4784 // If there was no specific requested type, just convert it now. 4785 if (!Ty) { 4786 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4787 Ty = getTypes().ConvertType(FD->getType()); 4788 } 4789 4790 // Devirtualized destructor calls may come through here instead of via 4791 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4792 // of the complete destructor when necessary. 4793 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4794 if (getTarget().getCXXABI().isMicrosoft() && 4795 GD.getDtorType() == Dtor_Complete && 4796 DD->getParent()->getNumVBases() == 0) 4797 GD = GlobalDecl(DD, Dtor_Base); 4798 } 4799 4800 StringRef MangledName = getMangledName(GD); 4801 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4802 /*IsThunk=*/false, llvm::AttributeList(), 4803 IsForDefinition); 4804 // Returns kernel handle for HIP kernel stub function. 4805 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4806 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4807 auto *Handle = getCUDARuntime().getKernelHandle( 4808 cast<llvm::Function>(F->stripPointerCasts()), GD); 4809 if (IsForDefinition) 4810 return F; 4811 return Handle; 4812 } 4813 return F; 4814 } 4815 4816 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4817 llvm::GlobalValue *F = 4818 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4819 4820 return llvm::NoCFIValue::get(F); 4821 } 4822 4823 static const FunctionDecl * 4824 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4825 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4826 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4827 4828 IdentifierInfo &CII = C.Idents.get(Name); 4829 for (const auto *Result : DC->lookup(&CII)) 4830 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4831 return FD; 4832 4833 if (!C.getLangOpts().CPlusPlus) 4834 return nullptr; 4835 4836 // Demangle the premangled name from getTerminateFn() 4837 IdentifierInfo &CXXII = 4838 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4839 ? C.Idents.get("terminate") 4840 : C.Idents.get(Name); 4841 4842 for (const auto &N : {"__cxxabiv1", "std"}) { 4843 IdentifierInfo &NS = C.Idents.get(N); 4844 for (const auto *Result : DC->lookup(&NS)) { 4845 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4846 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4847 for (const auto *Result : LSD->lookup(&NS)) 4848 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4849 break; 4850 4851 if (ND) 4852 for (const auto *Result : ND->lookup(&CXXII)) 4853 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4854 return FD; 4855 } 4856 } 4857 4858 return nullptr; 4859 } 4860 4861 /// CreateRuntimeFunction - Create a new runtime function with the specified 4862 /// type and name. 4863 llvm::FunctionCallee 4864 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4865 llvm::AttributeList ExtraAttrs, bool Local, 4866 bool AssumeConvergent) { 4867 if (AssumeConvergent) { 4868 ExtraAttrs = 4869 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4870 } 4871 4872 llvm::Constant *C = 4873 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4874 /*DontDefer=*/false, /*IsThunk=*/false, 4875 ExtraAttrs); 4876 4877 if (auto *F = dyn_cast<llvm::Function>(C)) { 4878 if (F->empty()) { 4879 F->setCallingConv(getRuntimeCC()); 4880 4881 // In Windows Itanium environments, try to mark runtime functions 4882 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4883 // will link their standard library statically or dynamically. Marking 4884 // functions imported when they are not imported can cause linker errors 4885 // and warnings. 4886 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4887 !getCodeGenOpts().LTOVisibilityPublicStd) { 4888 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4889 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4890 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4891 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4892 } 4893 } 4894 setDSOLocal(F); 4895 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4896 // of trying to approximate the attributes using the LLVM function 4897 // signature. This requires revising the API of CreateRuntimeFunction(). 4898 markRegisterParameterAttributes(F); 4899 } 4900 } 4901 4902 return {FTy, C}; 4903 } 4904 4905 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4906 /// create and return an llvm GlobalVariable with the specified type and address 4907 /// space. If there is something in the module with the specified name, return 4908 /// it potentially bitcasted to the right type. 4909 /// 4910 /// If D is non-null, it specifies a decl that correspond to this. This is used 4911 /// to set the attributes on the global when it is first created. 4912 /// 4913 /// If IsForDefinition is true, it is guaranteed that an actual global with 4914 /// type Ty will be returned, not conversion of a variable with the same 4915 /// mangled name but some other type. 4916 llvm::Constant * 4917 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4918 LangAS AddrSpace, const VarDecl *D, 4919 ForDefinition_t IsForDefinition) { 4920 // Lookup the entry, lazily creating it if necessary. 4921 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4922 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4923 if (Entry) { 4924 if (WeakRefReferences.erase(Entry)) { 4925 if (D && !D->hasAttr<WeakAttr>()) 4926 Entry->setLinkage(llvm::Function::ExternalLinkage); 4927 } 4928 4929 // Handle dropped DLL attributes. 4930 if (D && shouldDropDLLAttribute(D, Entry)) 4931 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4932 4933 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4934 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4935 4936 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4937 return Entry; 4938 4939 // If there are two attempts to define the same mangled name, issue an 4940 // error. 4941 if (IsForDefinition && !Entry->isDeclaration()) { 4942 GlobalDecl OtherGD; 4943 const VarDecl *OtherD; 4944 4945 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4946 // to make sure that we issue an error only once. 4947 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4948 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4949 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4950 OtherD->hasInit() && 4951 DiagnosedConflictingDefinitions.insert(D).second) { 4952 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4953 << MangledName; 4954 getDiags().Report(OtherGD.getDecl()->getLocation(), 4955 diag::note_previous_definition); 4956 } 4957 } 4958 4959 // Make sure the result is of the correct type. 4960 if (Entry->getType()->getAddressSpace() != TargetAS) 4961 return llvm::ConstantExpr::getAddrSpaceCast( 4962 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4963 4964 // (If global is requested for a definition, we always need to create a new 4965 // global, not just return a bitcast.) 4966 if (!IsForDefinition) 4967 return Entry; 4968 } 4969 4970 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4971 4972 auto *GV = new llvm::GlobalVariable( 4973 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4974 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4975 getContext().getTargetAddressSpace(DAddrSpace)); 4976 4977 // If we already created a global with the same mangled name (but different 4978 // type) before, take its name and remove it from its parent. 4979 if (Entry) { 4980 GV->takeName(Entry); 4981 4982 if (!Entry->use_empty()) { 4983 Entry->replaceAllUsesWith(GV); 4984 } 4985 4986 Entry->eraseFromParent(); 4987 } 4988 4989 // This is the first use or definition of a mangled name. If there is a 4990 // deferred decl with this name, remember that we need to emit it at the end 4991 // of the file. 4992 auto DDI = DeferredDecls.find(MangledName); 4993 if (DDI != DeferredDecls.end()) { 4994 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4995 // list, and remove it from DeferredDecls (since we don't need it anymore). 4996 addDeferredDeclToEmit(DDI->second); 4997 DeferredDecls.erase(DDI); 4998 } 4999 5000 // Handle things which are present even on external declarations. 5001 if (D) { 5002 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 5003 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 5004 5005 // FIXME: This code is overly simple and should be merged with other global 5006 // handling. 5007 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 5008 5009 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 5010 5011 setLinkageForGV(GV, D); 5012 5013 if (D->getTLSKind()) { 5014 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5015 CXXThreadLocals.push_back(D); 5016 setTLSMode(GV, *D); 5017 } 5018 5019 setGVProperties(GV, D); 5020 5021 // If required by the ABI, treat declarations of static data members with 5022 // inline initializers as definitions. 5023 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 5024 EmitGlobalVarDefinition(D); 5025 } 5026 5027 // Emit section information for extern variables. 5028 if (D->hasExternalStorage()) { 5029 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5030 GV->setSection(SA->getName()); 5031 } 5032 5033 // Handle XCore specific ABI requirements. 5034 if (getTriple().getArch() == llvm::Triple::xcore && 5035 D->getLanguageLinkage() == CLanguageLinkage && 5036 D->getType().isConstant(Context) && 5037 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5038 GV->setSection(".cp.rodata"); 5039 5040 // Handle code model attribute 5041 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5042 GV->setCodeModel(CMA->getModel()); 5043 5044 // Check if we a have a const declaration with an initializer, we may be 5045 // able to emit it as available_externally to expose it's value to the 5046 // optimizer. 5047 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5048 D->getType().isConstQualified() && !GV->hasInitializer() && 5049 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5050 const auto *Record = 5051 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5052 bool HasMutableFields = Record && Record->hasMutableFields(); 5053 if (!HasMutableFields) { 5054 const VarDecl *InitDecl; 5055 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5056 if (InitExpr) { 5057 ConstantEmitter emitter(*this); 5058 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5059 if (Init) { 5060 auto *InitType = Init->getType(); 5061 if (GV->getValueType() != InitType) { 5062 // The type of the initializer does not match the definition. 5063 // This happens when an initializer has a different type from 5064 // the type of the global (because of padding at the end of a 5065 // structure for instance). 5066 GV->setName(StringRef()); 5067 // Make a new global with the correct type, this is now guaranteed 5068 // to work. 5069 auto *NewGV = cast<llvm::GlobalVariable>( 5070 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5071 ->stripPointerCasts()); 5072 5073 // Erase the old global, since it is no longer used. 5074 GV->eraseFromParent(); 5075 GV = NewGV; 5076 } else { 5077 GV->setInitializer(Init); 5078 GV->setConstant(true); 5079 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5080 } 5081 emitter.finalize(GV); 5082 } 5083 } 5084 } 5085 } 5086 } 5087 5088 if (D && 5089 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5090 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5091 // External HIP managed variables needed to be recorded for transformation 5092 // in both device and host compilations. 5093 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5094 D->hasExternalStorage()) 5095 getCUDARuntime().handleVarRegistration(D, *GV); 5096 } 5097 5098 if (D) 5099 SanitizerMD->reportGlobal(GV, *D); 5100 5101 LangAS ExpectedAS = 5102 D ? D->getType().getAddressSpace() 5103 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5104 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5105 if (DAddrSpace != ExpectedAS) { 5106 return getTargetCodeGenInfo().performAddrSpaceCast( 5107 *this, GV, DAddrSpace, ExpectedAS, 5108 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5109 } 5110 5111 return GV; 5112 } 5113 5114 llvm::Constant * 5115 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5116 const Decl *D = GD.getDecl(); 5117 5118 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5119 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5120 /*DontDefer=*/false, IsForDefinition); 5121 5122 if (isa<CXXMethodDecl>(D)) { 5123 auto FInfo = 5124 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5125 auto Ty = getTypes().GetFunctionType(*FInfo); 5126 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5127 IsForDefinition); 5128 } 5129 5130 if (isa<FunctionDecl>(D)) { 5131 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5132 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5133 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5134 IsForDefinition); 5135 } 5136 5137 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5138 } 5139 5140 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5141 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5142 llvm::Align Alignment) { 5143 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5144 llvm::GlobalVariable *OldGV = nullptr; 5145 5146 if (GV) { 5147 // Check if the variable has the right type. 5148 if (GV->getValueType() == Ty) 5149 return GV; 5150 5151 // Because C++ name mangling, the only way we can end up with an already 5152 // existing global with the same name is if it has been declared extern "C". 5153 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5154 OldGV = GV; 5155 } 5156 5157 // Create a new variable. 5158 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5159 Linkage, nullptr, Name); 5160 5161 if (OldGV) { 5162 // Replace occurrences of the old variable if needed. 5163 GV->takeName(OldGV); 5164 5165 if (!OldGV->use_empty()) { 5166 OldGV->replaceAllUsesWith(GV); 5167 } 5168 5169 OldGV->eraseFromParent(); 5170 } 5171 5172 if (supportsCOMDAT() && GV->isWeakForLinker() && 5173 !GV->hasAvailableExternallyLinkage()) 5174 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5175 5176 GV->setAlignment(Alignment); 5177 5178 return GV; 5179 } 5180 5181 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5182 /// given global variable. If Ty is non-null and if the global doesn't exist, 5183 /// then it will be created with the specified type instead of whatever the 5184 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5185 /// that an actual global with type Ty will be returned, not conversion of a 5186 /// variable with the same mangled name but some other type. 5187 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5188 llvm::Type *Ty, 5189 ForDefinition_t IsForDefinition) { 5190 assert(D->hasGlobalStorage() && "Not a global variable"); 5191 QualType ASTTy = D->getType(); 5192 if (!Ty) 5193 Ty = getTypes().ConvertTypeForMem(ASTTy); 5194 5195 StringRef MangledName = getMangledName(D); 5196 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5197 IsForDefinition); 5198 } 5199 5200 /// CreateRuntimeVariable - Create a new runtime global variable with the 5201 /// specified type and name. 5202 llvm::Constant * 5203 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5204 StringRef Name) { 5205 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5206 : LangAS::Default; 5207 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5208 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5209 return Ret; 5210 } 5211 5212 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5213 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5214 5215 StringRef MangledName = getMangledName(D); 5216 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5217 5218 // We already have a definition, not declaration, with the same mangled name. 5219 // Emitting of declaration is not required (and actually overwrites emitted 5220 // definition). 5221 if (GV && !GV->isDeclaration()) 5222 return; 5223 5224 // If we have not seen a reference to this variable yet, place it into the 5225 // deferred declarations table to be emitted if needed later. 5226 if (!MustBeEmitted(D) && !GV) { 5227 DeferredDecls[MangledName] = D; 5228 return; 5229 } 5230 5231 // The tentative definition is the only definition. 5232 EmitGlobalVarDefinition(D); 5233 } 5234 5235 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5236 if (auto const *V = dyn_cast<const VarDecl>(D)) 5237 EmitExternalVarDeclaration(V); 5238 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5239 EmitExternalFunctionDeclaration(FD); 5240 } 5241 5242 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5243 return Context.toCharUnitsFromBits( 5244 getDataLayout().getTypeStoreSizeInBits(Ty)); 5245 } 5246 5247 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5248 if (LangOpts.OpenCL) { 5249 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5250 assert(AS == LangAS::opencl_global || 5251 AS == LangAS::opencl_global_device || 5252 AS == LangAS::opencl_global_host || 5253 AS == LangAS::opencl_constant || 5254 AS == LangAS::opencl_local || 5255 AS >= LangAS::FirstTargetAddressSpace); 5256 return AS; 5257 } 5258 5259 if (LangOpts.SYCLIsDevice && 5260 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5261 return LangAS::sycl_global; 5262 5263 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5264 if (D) { 5265 if (D->hasAttr<CUDAConstantAttr>()) 5266 return LangAS::cuda_constant; 5267 if (D->hasAttr<CUDASharedAttr>()) 5268 return LangAS::cuda_shared; 5269 if (D->hasAttr<CUDADeviceAttr>()) 5270 return LangAS::cuda_device; 5271 if (D->getType().isConstQualified()) 5272 return LangAS::cuda_constant; 5273 } 5274 return LangAS::cuda_device; 5275 } 5276 5277 if (LangOpts.OpenMP) { 5278 LangAS AS; 5279 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5280 return AS; 5281 } 5282 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5283 } 5284 5285 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5286 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5287 if (LangOpts.OpenCL) 5288 return LangAS::opencl_constant; 5289 if (LangOpts.SYCLIsDevice) 5290 return LangAS::sycl_global; 5291 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5292 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5293 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5294 // with OpVariable instructions with Generic storage class which is not 5295 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5296 // UniformConstant storage class is not viable as pointers to it may not be 5297 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5298 return LangAS::cuda_device; 5299 if (auto AS = getTarget().getConstantAddressSpace()) 5300 return *AS; 5301 return LangAS::Default; 5302 } 5303 5304 // In address space agnostic languages, string literals are in default address 5305 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5306 // emitted in constant address space in LLVM IR. To be consistent with other 5307 // parts of AST, string literal global variables in constant address space 5308 // need to be casted to default address space before being put into address 5309 // map and referenced by other part of CodeGen. 5310 // In OpenCL, string literals are in constant address space in AST, therefore 5311 // they should not be casted to default address space. 5312 static llvm::Constant * 5313 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5314 llvm::GlobalVariable *GV) { 5315 llvm::Constant *Cast = GV; 5316 if (!CGM.getLangOpts().OpenCL) { 5317 auto AS = CGM.GetGlobalConstantAddressSpace(); 5318 if (AS != LangAS::Default) 5319 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5320 CGM, GV, AS, LangAS::Default, 5321 llvm::PointerType::get( 5322 CGM.getLLVMContext(), 5323 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5324 } 5325 return Cast; 5326 } 5327 5328 template<typename SomeDecl> 5329 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5330 llvm::GlobalValue *GV) { 5331 if (!getLangOpts().CPlusPlus) 5332 return; 5333 5334 // Must have 'used' attribute, or else inline assembly can't rely on 5335 // the name existing. 5336 if (!D->template hasAttr<UsedAttr>()) 5337 return; 5338 5339 // Must have internal linkage and an ordinary name. 5340 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5341 return; 5342 5343 // Must be in an extern "C" context. Entities declared directly within 5344 // a record are not extern "C" even if the record is in such a context. 5345 const SomeDecl *First = D->getFirstDecl(); 5346 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5347 return; 5348 5349 // OK, this is an internal linkage entity inside an extern "C" linkage 5350 // specification. Make a note of that so we can give it the "expected" 5351 // mangled name if nothing else is using that name. 5352 std::pair<StaticExternCMap::iterator, bool> R = 5353 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5354 5355 // If we have multiple internal linkage entities with the same name 5356 // in extern "C" regions, none of them gets that name. 5357 if (!R.second) 5358 R.first->second = nullptr; 5359 } 5360 5361 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5362 if (!CGM.supportsCOMDAT()) 5363 return false; 5364 5365 if (D.hasAttr<SelectAnyAttr>()) 5366 return true; 5367 5368 GVALinkage Linkage; 5369 if (auto *VD = dyn_cast<VarDecl>(&D)) 5370 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5371 else 5372 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5373 5374 switch (Linkage) { 5375 case GVA_Internal: 5376 case GVA_AvailableExternally: 5377 case GVA_StrongExternal: 5378 return false; 5379 case GVA_DiscardableODR: 5380 case GVA_StrongODR: 5381 return true; 5382 } 5383 llvm_unreachable("No such linkage"); 5384 } 5385 5386 bool CodeGenModule::supportsCOMDAT() const { 5387 return getTriple().supportsCOMDAT(); 5388 } 5389 5390 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5391 llvm::GlobalObject &GO) { 5392 if (!shouldBeInCOMDAT(*this, D)) 5393 return; 5394 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5395 } 5396 5397 /// Pass IsTentative as true if you want to create a tentative definition. 5398 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5399 bool IsTentative) { 5400 // OpenCL global variables of sampler type are translated to function calls, 5401 // therefore no need to be translated. 5402 QualType ASTTy = D->getType(); 5403 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5404 return; 5405 5406 // If this is OpenMP device, check if it is legal to emit this global 5407 // normally. 5408 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5409 OpenMPRuntime->emitTargetGlobalVariable(D)) 5410 return; 5411 5412 llvm::TrackingVH<llvm::Constant> Init; 5413 bool NeedsGlobalCtor = false; 5414 // Whether the definition of the variable is available externally. 5415 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5416 // since this is the job for its original source. 5417 bool IsDefinitionAvailableExternally = 5418 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5419 bool NeedsGlobalDtor = 5420 !IsDefinitionAvailableExternally && 5421 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5422 5423 // It is helpless to emit the definition for an available_externally variable 5424 // which can't be marked as const. 5425 // We don't need to check if it needs global ctor or dtor. See the above 5426 // comment for ideas. 5427 if (IsDefinitionAvailableExternally && 5428 (!D->hasConstantInitialization() || 5429 // TODO: Update this when we have interface to check constexpr 5430 // destructor. 5431 D->needsDestruction(getContext()) || 5432 !D->getType().isConstantStorage(getContext(), true, true))) 5433 return; 5434 5435 const VarDecl *InitDecl; 5436 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5437 5438 std::optional<ConstantEmitter> emitter; 5439 5440 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5441 // as part of their declaration." Sema has already checked for 5442 // error cases, so we just need to set Init to UndefValue. 5443 bool IsCUDASharedVar = 5444 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5445 // Shadows of initialized device-side global variables are also left 5446 // undefined. 5447 // Managed Variables should be initialized on both host side and device side. 5448 bool IsCUDAShadowVar = 5449 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5450 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5451 D->hasAttr<CUDASharedAttr>()); 5452 bool IsCUDADeviceShadowVar = 5453 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5454 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5455 D->getType()->isCUDADeviceBuiltinTextureType()); 5456 if (getLangOpts().CUDA && 5457 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5458 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5459 else if (D->hasAttr<LoaderUninitializedAttr>()) 5460 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5461 else if (!InitExpr) { 5462 // This is a tentative definition; tentative definitions are 5463 // implicitly initialized with { 0 }. 5464 // 5465 // Note that tentative definitions are only emitted at the end of 5466 // a translation unit, so they should never have incomplete 5467 // type. In addition, EmitTentativeDefinition makes sure that we 5468 // never attempt to emit a tentative definition if a real one 5469 // exists. A use may still exists, however, so we still may need 5470 // to do a RAUW. 5471 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5472 Init = EmitNullConstant(D->getType()); 5473 } else { 5474 initializedGlobalDecl = GlobalDecl(D); 5475 emitter.emplace(*this); 5476 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5477 if (!Initializer) { 5478 QualType T = InitExpr->getType(); 5479 if (D->getType()->isReferenceType()) 5480 T = D->getType(); 5481 5482 if (getLangOpts().CPlusPlus) { 5483 if (InitDecl->hasFlexibleArrayInit(getContext())) 5484 ErrorUnsupported(D, "flexible array initializer"); 5485 Init = EmitNullConstant(T); 5486 5487 if (!IsDefinitionAvailableExternally) 5488 NeedsGlobalCtor = true; 5489 } else { 5490 ErrorUnsupported(D, "static initializer"); 5491 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5492 } 5493 } else { 5494 Init = Initializer; 5495 // We don't need an initializer, so remove the entry for the delayed 5496 // initializer position (just in case this entry was delayed) if we 5497 // also don't need to register a destructor. 5498 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5499 DelayedCXXInitPosition.erase(D); 5500 5501 #ifndef NDEBUG 5502 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5503 InitDecl->getFlexibleArrayInitChars(getContext()); 5504 CharUnits CstSize = CharUnits::fromQuantity( 5505 getDataLayout().getTypeAllocSize(Init->getType())); 5506 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5507 #endif 5508 } 5509 } 5510 5511 llvm::Type* InitType = Init->getType(); 5512 llvm::Constant *Entry = 5513 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5514 5515 // Strip off pointer casts if we got them. 5516 Entry = Entry->stripPointerCasts(); 5517 5518 // Entry is now either a Function or GlobalVariable. 5519 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5520 5521 // We have a definition after a declaration with the wrong type. 5522 // We must make a new GlobalVariable* and update everything that used OldGV 5523 // (a declaration or tentative definition) with the new GlobalVariable* 5524 // (which will be a definition). 5525 // 5526 // This happens if there is a prototype for a global (e.g. 5527 // "extern int x[];") and then a definition of a different type (e.g. 5528 // "int x[10];"). This also happens when an initializer has a different type 5529 // from the type of the global (this happens with unions). 5530 if (!GV || GV->getValueType() != InitType || 5531 GV->getType()->getAddressSpace() != 5532 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5533 5534 // Move the old entry aside so that we'll create a new one. 5535 Entry->setName(StringRef()); 5536 5537 // Make a new global with the correct type, this is now guaranteed to work. 5538 GV = cast<llvm::GlobalVariable>( 5539 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5540 ->stripPointerCasts()); 5541 5542 // Replace all uses of the old global with the new global 5543 llvm::Constant *NewPtrForOldDecl = 5544 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5545 Entry->getType()); 5546 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5547 5548 // Erase the old global, since it is no longer used. 5549 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5550 } 5551 5552 MaybeHandleStaticInExternC(D, GV); 5553 5554 if (D->hasAttr<AnnotateAttr>()) 5555 AddGlobalAnnotations(D, GV); 5556 5557 // Set the llvm linkage type as appropriate. 5558 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5559 5560 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5561 // the device. [...]" 5562 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5563 // __device__, declares a variable that: [...] 5564 // Is accessible from all the threads within the grid and from the host 5565 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5566 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5567 if (LangOpts.CUDA) { 5568 if (LangOpts.CUDAIsDevice) { 5569 if (Linkage != llvm::GlobalValue::InternalLinkage && 5570 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5571 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5572 D->getType()->isCUDADeviceBuiltinTextureType())) 5573 GV->setExternallyInitialized(true); 5574 } else { 5575 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5576 } 5577 getCUDARuntime().handleVarRegistration(D, *GV); 5578 } 5579 5580 GV->setInitializer(Init); 5581 if (emitter) 5582 emitter->finalize(GV); 5583 5584 // If it is safe to mark the global 'constant', do so now. 5585 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5586 D->getType().isConstantStorage(getContext(), true, true)); 5587 5588 // If it is in a read-only section, mark it 'constant'. 5589 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5590 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5591 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5592 GV->setConstant(true); 5593 } 5594 5595 CharUnits AlignVal = getContext().getDeclAlign(D); 5596 // Check for alignment specifed in an 'omp allocate' directive. 5597 if (std::optional<CharUnits> AlignValFromAllocate = 5598 getOMPAllocateAlignment(D)) 5599 AlignVal = *AlignValFromAllocate; 5600 GV->setAlignment(AlignVal.getAsAlign()); 5601 5602 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5603 // function is only defined alongside the variable, not also alongside 5604 // callers. Normally, all accesses to a thread_local go through the 5605 // thread-wrapper in order to ensure initialization has occurred, underlying 5606 // variable will never be used other than the thread-wrapper, so it can be 5607 // converted to internal linkage. 5608 // 5609 // However, if the variable has the 'constinit' attribute, it _can_ be 5610 // referenced directly, without calling the thread-wrapper, so the linkage 5611 // must not be changed. 5612 // 5613 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5614 // weak or linkonce, the de-duplication semantics are important to preserve, 5615 // so we don't change the linkage. 5616 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5617 Linkage == llvm::GlobalValue::ExternalLinkage && 5618 Context.getTargetInfo().getTriple().isOSDarwin() && 5619 !D->hasAttr<ConstInitAttr>()) 5620 Linkage = llvm::GlobalValue::InternalLinkage; 5621 5622 GV->setLinkage(Linkage); 5623 if (D->hasAttr<DLLImportAttr>()) 5624 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5625 else if (D->hasAttr<DLLExportAttr>()) 5626 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5627 else 5628 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5629 5630 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5631 // common vars aren't constant even if declared const. 5632 GV->setConstant(false); 5633 // Tentative definition of global variables may be initialized with 5634 // non-zero null pointers. In this case they should have weak linkage 5635 // since common linkage must have zero initializer and must not have 5636 // explicit section therefore cannot have non-zero initial value. 5637 if (!GV->getInitializer()->isNullValue()) 5638 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5639 } 5640 5641 setNonAliasAttributes(D, GV); 5642 5643 if (D->getTLSKind() && !GV->isThreadLocal()) { 5644 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5645 CXXThreadLocals.push_back(D); 5646 setTLSMode(GV, *D); 5647 } 5648 5649 maybeSetTrivialComdat(*D, *GV); 5650 5651 // Emit the initializer function if necessary. 5652 if (NeedsGlobalCtor || NeedsGlobalDtor) 5653 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5654 5655 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5656 5657 // Emit global variable debug information. 5658 if (CGDebugInfo *DI = getModuleDebugInfo()) 5659 if (getCodeGenOpts().hasReducedDebugInfo()) 5660 DI->EmitGlobalVariable(GV, D); 5661 } 5662 5663 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5664 if (CGDebugInfo *DI = getModuleDebugInfo()) 5665 if (getCodeGenOpts().hasReducedDebugInfo()) { 5666 QualType ASTTy = D->getType(); 5667 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5668 llvm::Constant *GV = 5669 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5670 DI->EmitExternalVariable( 5671 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5672 } 5673 } 5674 5675 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5676 if (CGDebugInfo *DI = getModuleDebugInfo()) 5677 if (getCodeGenOpts().hasReducedDebugInfo()) { 5678 auto *Ty = getTypes().ConvertType(FD->getType()); 5679 StringRef MangledName = getMangledName(FD); 5680 auto *Fn = cast<llvm::Function>( 5681 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5682 if (!Fn->getSubprogram()) 5683 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5684 } 5685 } 5686 5687 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5688 CodeGenModule &CGM, const VarDecl *D, 5689 bool NoCommon) { 5690 // Don't give variables common linkage if -fno-common was specified unless it 5691 // was overridden by a NoCommon attribute. 5692 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5693 return true; 5694 5695 // C11 6.9.2/2: 5696 // A declaration of an identifier for an object that has file scope without 5697 // an initializer, and without a storage-class specifier or with the 5698 // storage-class specifier static, constitutes a tentative definition. 5699 if (D->getInit() || D->hasExternalStorage()) 5700 return true; 5701 5702 // A variable cannot be both common and exist in a section. 5703 if (D->hasAttr<SectionAttr>()) 5704 return true; 5705 5706 // A variable cannot be both common and exist in a section. 5707 // We don't try to determine which is the right section in the front-end. 5708 // If no specialized section name is applicable, it will resort to default. 5709 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5710 D->hasAttr<PragmaClangDataSectionAttr>() || 5711 D->hasAttr<PragmaClangRelroSectionAttr>() || 5712 D->hasAttr<PragmaClangRodataSectionAttr>()) 5713 return true; 5714 5715 // Thread local vars aren't considered common linkage. 5716 if (D->getTLSKind()) 5717 return true; 5718 5719 // Tentative definitions marked with WeakImportAttr are true definitions. 5720 if (D->hasAttr<WeakImportAttr>()) 5721 return true; 5722 5723 // A variable cannot be both common and exist in a comdat. 5724 if (shouldBeInCOMDAT(CGM, *D)) 5725 return true; 5726 5727 // Declarations with a required alignment do not have common linkage in MSVC 5728 // mode. 5729 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5730 if (D->hasAttr<AlignedAttr>()) 5731 return true; 5732 QualType VarType = D->getType(); 5733 if (Context.isAlignmentRequired(VarType)) 5734 return true; 5735 5736 if (const auto *RT = VarType->getAs<RecordType>()) { 5737 const RecordDecl *RD = RT->getDecl(); 5738 for (const FieldDecl *FD : RD->fields()) { 5739 if (FD->isBitField()) 5740 continue; 5741 if (FD->hasAttr<AlignedAttr>()) 5742 return true; 5743 if (Context.isAlignmentRequired(FD->getType())) 5744 return true; 5745 } 5746 } 5747 } 5748 5749 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5750 // common symbols, so symbols with greater alignment requirements cannot be 5751 // common. 5752 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5753 // alignments for common symbols via the aligncomm directive, so this 5754 // restriction only applies to MSVC environments. 5755 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5756 Context.getTypeAlignIfKnown(D->getType()) > 5757 Context.toBits(CharUnits::fromQuantity(32))) 5758 return true; 5759 5760 return false; 5761 } 5762 5763 llvm::GlobalValue::LinkageTypes 5764 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5765 GVALinkage Linkage) { 5766 if (Linkage == GVA_Internal) 5767 return llvm::Function::InternalLinkage; 5768 5769 if (D->hasAttr<WeakAttr>()) 5770 return llvm::GlobalVariable::WeakAnyLinkage; 5771 5772 if (const auto *FD = D->getAsFunction()) 5773 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5774 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5775 5776 // We are guaranteed to have a strong definition somewhere else, 5777 // so we can use available_externally linkage. 5778 if (Linkage == GVA_AvailableExternally) 5779 return llvm::GlobalValue::AvailableExternallyLinkage; 5780 5781 // Note that Apple's kernel linker doesn't support symbol 5782 // coalescing, so we need to avoid linkonce and weak linkages there. 5783 // Normally, this means we just map to internal, but for explicit 5784 // instantiations we'll map to external. 5785 5786 // In C++, the compiler has to emit a definition in every translation unit 5787 // that references the function. We should use linkonce_odr because 5788 // a) if all references in this translation unit are optimized away, we 5789 // don't need to codegen it. b) if the function persists, it needs to be 5790 // merged with other definitions. c) C++ has the ODR, so we know the 5791 // definition is dependable. 5792 if (Linkage == GVA_DiscardableODR) 5793 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5794 : llvm::Function::InternalLinkage; 5795 5796 // An explicit instantiation of a template has weak linkage, since 5797 // explicit instantiations can occur in multiple translation units 5798 // and must all be equivalent. However, we are not allowed to 5799 // throw away these explicit instantiations. 5800 // 5801 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5802 // so say that CUDA templates are either external (for kernels) or internal. 5803 // This lets llvm perform aggressive inter-procedural optimizations. For 5804 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5805 // therefore we need to follow the normal linkage paradigm. 5806 if (Linkage == GVA_StrongODR) { 5807 if (getLangOpts().AppleKext) 5808 return llvm::Function::ExternalLinkage; 5809 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5810 !getLangOpts().GPURelocatableDeviceCode) 5811 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5812 : llvm::Function::InternalLinkage; 5813 return llvm::Function::WeakODRLinkage; 5814 } 5815 5816 // C++ doesn't have tentative definitions and thus cannot have common 5817 // linkage. 5818 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5819 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5820 CodeGenOpts.NoCommon)) 5821 return llvm::GlobalVariable::CommonLinkage; 5822 5823 // selectany symbols are externally visible, so use weak instead of 5824 // linkonce. MSVC optimizes away references to const selectany globals, so 5825 // all definitions should be the same and ODR linkage should be used. 5826 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5827 if (D->hasAttr<SelectAnyAttr>()) 5828 return llvm::GlobalVariable::WeakODRLinkage; 5829 5830 // Otherwise, we have strong external linkage. 5831 assert(Linkage == GVA_StrongExternal); 5832 return llvm::GlobalVariable::ExternalLinkage; 5833 } 5834 5835 llvm::GlobalValue::LinkageTypes 5836 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5837 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5838 return getLLVMLinkageForDeclarator(VD, Linkage); 5839 } 5840 5841 /// Replace the uses of a function that was declared with a non-proto type. 5842 /// We want to silently drop extra arguments from call sites 5843 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5844 llvm::Function *newFn) { 5845 // Fast path. 5846 if (old->use_empty()) 5847 return; 5848 5849 llvm::Type *newRetTy = newFn->getReturnType(); 5850 SmallVector<llvm::Value *, 4> newArgs; 5851 5852 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5853 5854 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5855 ui != ue; ui++) { 5856 llvm::User *user = ui->getUser(); 5857 5858 // Recognize and replace uses of bitcasts. Most calls to 5859 // unprototyped functions will use bitcasts. 5860 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5861 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5862 replaceUsesOfNonProtoConstant(bitcast, newFn); 5863 continue; 5864 } 5865 5866 // Recognize calls to the function. 5867 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5868 if (!callSite) 5869 continue; 5870 if (!callSite->isCallee(&*ui)) 5871 continue; 5872 5873 // If the return types don't match exactly, then we can't 5874 // transform this call unless it's dead. 5875 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5876 continue; 5877 5878 // Get the call site's attribute list. 5879 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5880 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5881 5882 // If the function was passed too few arguments, don't transform. 5883 unsigned newNumArgs = newFn->arg_size(); 5884 if (callSite->arg_size() < newNumArgs) 5885 continue; 5886 5887 // If extra arguments were passed, we silently drop them. 5888 // If any of the types mismatch, we don't transform. 5889 unsigned argNo = 0; 5890 bool dontTransform = false; 5891 for (llvm::Argument &A : newFn->args()) { 5892 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5893 dontTransform = true; 5894 break; 5895 } 5896 5897 // Add any parameter attributes. 5898 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5899 argNo++; 5900 } 5901 if (dontTransform) 5902 continue; 5903 5904 // Okay, we can transform this. Create the new call instruction and copy 5905 // over the required information. 5906 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5907 5908 // Copy over any operand bundles. 5909 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5910 callSite->getOperandBundlesAsDefs(newBundles); 5911 5912 llvm::CallBase *newCall; 5913 if (isa<llvm::CallInst>(callSite)) { 5914 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 5915 callSite->getIterator()); 5916 } else { 5917 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5918 newCall = llvm::InvokeInst::Create( 5919 newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(), 5920 newArgs, newBundles, "", callSite->getIterator()); 5921 } 5922 newArgs.clear(); // for the next iteration 5923 5924 if (!newCall->getType()->isVoidTy()) 5925 newCall->takeName(callSite); 5926 newCall->setAttributes( 5927 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5928 oldAttrs.getRetAttrs(), newArgAttrs)); 5929 newCall->setCallingConv(callSite->getCallingConv()); 5930 5931 // Finally, remove the old call, replacing any uses with the new one. 5932 if (!callSite->use_empty()) 5933 callSite->replaceAllUsesWith(newCall); 5934 5935 // Copy debug location attached to CI. 5936 if (callSite->getDebugLoc()) 5937 newCall->setDebugLoc(callSite->getDebugLoc()); 5938 5939 callSitesToBeRemovedFromParent.push_back(callSite); 5940 } 5941 5942 for (auto *callSite : callSitesToBeRemovedFromParent) { 5943 callSite->eraseFromParent(); 5944 } 5945 } 5946 5947 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5948 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5949 /// existing call uses of the old function in the module, this adjusts them to 5950 /// call the new function directly. 5951 /// 5952 /// This is not just a cleanup: the always_inline pass requires direct calls to 5953 /// functions to be able to inline them. If there is a bitcast in the way, it 5954 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5955 /// run at -O0. 5956 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5957 llvm::Function *NewFn) { 5958 // If we're redefining a global as a function, don't transform it. 5959 if (!isa<llvm::Function>(Old)) return; 5960 5961 replaceUsesOfNonProtoConstant(Old, NewFn); 5962 } 5963 5964 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5965 auto DK = VD->isThisDeclarationADefinition(); 5966 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) || 5967 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD))) 5968 return; 5969 5970 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5971 // If we have a definition, this might be a deferred decl. If the 5972 // instantiation is explicit, make sure we emit it at the end. 5973 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5974 GetAddrOfGlobalVar(VD); 5975 5976 EmitTopLevelDecl(VD); 5977 } 5978 5979 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5980 llvm::GlobalValue *GV) { 5981 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5982 5983 // Compute the function info and LLVM type. 5984 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5985 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5986 5987 // Get or create the prototype for the function. 5988 if (!GV || (GV->getValueType() != Ty)) 5989 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5990 /*DontDefer=*/true, 5991 ForDefinition)); 5992 5993 // Already emitted. 5994 if (!GV->isDeclaration()) 5995 return; 5996 5997 // We need to set linkage and visibility on the function before 5998 // generating code for it because various parts of IR generation 5999 // want to propagate this information down (e.g. to local static 6000 // declarations). 6001 auto *Fn = cast<llvm::Function>(GV); 6002 setFunctionLinkage(GD, Fn); 6003 6004 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 6005 setGVProperties(Fn, GD); 6006 6007 MaybeHandleStaticInExternC(D, Fn); 6008 6009 maybeSetTrivialComdat(*D, *Fn); 6010 6011 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 6012 6013 setNonAliasAttributes(GD, Fn); 6014 SetLLVMFunctionAttributesForDefinition(D, Fn); 6015 6016 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 6017 AddGlobalCtor(Fn, CA->getPriority()); 6018 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 6019 AddGlobalDtor(Fn, DA->getPriority(), true); 6020 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 6021 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 6022 } 6023 6024 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 6025 const auto *D = cast<ValueDecl>(GD.getDecl()); 6026 const AliasAttr *AA = D->getAttr<AliasAttr>(); 6027 assert(AA && "Not an alias?"); 6028 6029 StringRef MangledName = getMangledName(GD); 6030 6031 if (AA->getAliasee() == MangledName) { 6032 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6033 return; 6034 } 6035 6036 // If there is a definition in the module, then it wins over the alias. 6037 // This is dubious, but allow it to be safe. Just ignore the alias. 6038 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6039 if (Entry && !Entry->isDeclaration()) 6040 return; 6041 6042 Aliases.push_back(GD); 6043 6044 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6045 6046 // Create a reference to the named value. This ensures that it is emitted 6047 // if a deferred decl. 6048 llvm::Constant *Aliasee; 6049 llvm::GlobalValue::LinkageTypes LT; 6050 if (isa<llvm::FunctionType>(DeclTy)) { 6051 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6052 /*ForVTable=*/false); 6053 LT = getFunctionLinkage(GD); 6054 } else { 6055 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6056 /*D=*/nullptr); 6057 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6058 LT = getLLVMLinkageVarDefinition(VD); 6059 else 6060 LT = getFunctionLinkage(GD); 6061 } 6062 6063 // Create the new alias itself, but don't set a name yet. 6064 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6065 auto *GA = 6066 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6067 6068 if (Entry) { 6069 if (GA->getAliasee() == Entry) { 6070 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6071 return; 6072 } 6073 6074 assert(Entry->isDeclaration()); 6075 6076 // If there is a declaration in the module, then we had an extern followed 6077 // by the alias, as in: 6078 // extern int test6(); 6079 // ... 6080 // int test6() __attribute__((alias("test7"))); 6081 // 6082 // Remove it and replace uses of it with the alias. 6083 GA->takeName(Entry); 6084 6085 Entry->replaceAllUsesWith(GA); 6086 Entry->eraseFromParent(); 6087 } else { 6088 GA->setName(MangledName); 6089 } 6090 6091 // Set attributes which are particular to an alias; this is a 6092 // specialization of the attributes which may be set on a global 6093 // variable/function. 6094 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6095 D->isWeakImported()) { 6096 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6097 } 6098 6099 if (const auto *VD = dyn_cast<VarDecl>(D)) 6100 if (VD->getTLSKind()) 6101 setTLSMode(GA, *VD); 6102 6103 SetCommonAttributes(GD, GA); 6104 6105 // Emit global alias debug information. 6106 if (isa<VarDecl>(D)) 6107 if (CGDebugInfo *DI = getModuleDebugInfo()) 6108 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6109 } 6110 6111 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6112 const auto *D = cast<ValueDecl>(GD.getDecl()); 6113 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6114 assert(IFA && "Not an ifunc?"); 6115 6116 StringRef MangledName = getMangledName(GD); 6117 6118 if (IFA->getResolver() == MangledName) { 6119 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6120 return; 6121 } 6122 6123 // Report an error if some definition overrides ifunc. 6124 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6125 if (Entry && !Entry->isDeclaration()) { 6126 GlobalDecl OtherGD; 6127 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6128 DiagnosedConflictingDefinitions.insert(GD).second) { 6129 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6130 << MangledName; 6131 Diags.Report(OtherGD.getDecl()->getLocation(), 6132 diag::note_previous_definition); 6133 } 6134 return; 6135 } 6136 6137 Aliases.push_back(GD); 6138 6139 // The resolver might not be visited yet. Specify a dummy non-function type to 6140 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver 6141 // was emitted) or the whole function will be replaced (if the resolver has 6142 // not been emitted). 6143 llvm::Constant *Resolver = 6144 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {}, 6145 /*ForVTable=*/false); 6146 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6147 llvm::GlobalIFunc *GIF = 6148 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 6149 "", Resolver, &getModule()); 6150 if (Entry) { 6151 if (GIF->getResolver() == Entry) { 6152 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6153 return; 6154 } 6155 assert(Entry->isDeclaration()); 6156 6157 // If there is a declaration in the module, then we had an extern followed 6158 // by the ifunc, as in: 6159 // extern int test(); 6160 // ... 6161 // int test() __attribute__((ifunc("resolver"))); 6162 // 6163 // Remove it and replace uses of it with the ifunc. 6164 GIF->takeName(Entry); 6165 6166 Entry->replaceAllUsesWith(GIF); 6167 Entry->eraseFromParent(); 6168 } else 6169 GIF->setName(MangledName); 6170 SetCommonAttributes(GD, GIF); 6171 } 6172 6173 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6174 ArrayRef<llvm::Type*> Tys) { 6175 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6176 Tys); 6177 } 6178 6179 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6180 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6181 const StringLiteral *Literal, bool TargetIsLSB, 6182 bool &IsUTF16, unsigned &StringLength) { 6183 StringRef String = Literal->getString(); 6184 unsigned NumBytes = String.size(); 6185 6186 // Check for simple case. 6187 if (!Literal->containsNonAsciiOrNull()) { 6188 StringLength = NumBytes; 6189 return *Map.insert(std::make_pair(String, nullptr)).first; 6190 } 6191 6192 // Otherwise, convert the UTF8 literals into a string of shorts. 6193 IsUTF16 = true; 6194 6195 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6196 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6197 llvm::UTF16 *ToPtr = &ToBuf[0]; 6198 6199 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6200 ToPtr + NumBytes, llvm::strictConversion); 6201 6202 // ConvertUTF8toUTF16 returns the length in ToPtr. 6203 StringLength = ToPtr - &ToBuf[0]; 6204 6205 // Add an explicit null. 6206 *ToPtr = 0; 6207 return *Map.insert(std::make_pair( 6208 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6209 (StringLength + 1) * 2), 6210 nullptr)).first; 6211 } 6212 6213 ConstantAddress 6214 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6215 unsigned StringLength = 0; 6216 bool isUTF16 = false; 6217 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6218 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6219 getDataLayout().isLittleEndian(), isUTF16, 6220 StringLength); 6221 6222 if (auto *C = Entry.second) 6223 return ConstantAddress( 6224 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6225 6226 const ASTContext &Context = getContext(); 6227 const llvm::Triple &Triple = getTriple(); 6228 6229 const auto CFRuntime = getLangOpts().CFRuntime; 6230 const bool IsSwiftABI = 6231 static_cast<unsigned>(CFRuntime) >= 6232 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6233 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6234 6235 // If we don't already have it, get __CFConstantStringClassReference. 6236 if (!CFConstantStringClassRef) { 6237 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6238 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6239 Ty = llvm::ArrayType::get(Ty, 0); 6240 6241 switch (CFRuntime) { 6242 default: break; 6243 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6244 case LangOptions::CoreFoundationABI::Swift5_0: 6245 CFConstantStringClassName = 6246 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6247 : "$s10Foundation19_NSCFConstantStringCN"; 6248 Ty = IntPtrTy; 6249 break; 6250 case LangOptions::CoreFoundationABI::Swift4_2: 6251 CFConstantStringClassName = 6252 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6253 : "$S10Foundation19_NSCFConstantStringCN"; 6254 Ty = IntPtrTy; 6255 break; 6256 case LangOptions::CoreFoundationABI::Swift4_1: 6257 CFConstantStringClassName = 6258 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6259 : "__T010Foundation19_NSCFConstantStringCN"; 6260 Ty = IntPtrTy; 6261 break; 6262 } 6263 6264 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6265 6266 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6267 llvm::GlobalValue *GV = nullptr; 6268 6269 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6270 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6271 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6272 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6273 6274 const VarDecl *VD = nullptr; 6275 for (const auto *Result : DC->lookup(&II)) 6276 if ((VD = dyn_cast<VarDecl>(Result))) 6277 break; 6278 6279 if (Triple.isOSBinFormatELF()) { 6280 if (!VD) 6281 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6282 } else { 6283 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6284 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6285 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6286 else 6287 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6288 } 6289 6290 setDSOLocal(GV); 6291 } 6292 } 6293 6294 // Decay array -> ptr 6295 CFConstantStringClassRef = 6296 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6297 } 6298 6299 QualType CFTy = Context.getCFConstantStringType(); 6300 6301 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6302 6303 ConstantInitBuilder Builder(*this); 6304 auto Fields = Builder.beginStruct(STy); 6305 6306 // Class pointer. 6307 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6308 6309 // Flags. 6310 if (IsSwiftABI) { 6311 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6312 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6313 } else { 6314 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6315 } 6316 6317 // String pointer. 6318 llvm::Constant *C = nullptr; 6319 if (isUTF16) { 6320 auto Arr = llvm::ArrayRef( 6321 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6322 Entry.first().size() / 2); 6323 C = llvm::ConstantDataArray::get(VMContext, Arr); 6324 } else { 6325 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6326 } 6327 6328 // Note: -fwritable-strings doesn't make the backing store strings of 6329 // CFStrings writable. 6330 auto *GV = 6331 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6332 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6333 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6334 // Don't enforce the target's minimum global alignment, since the only use 6335 // of the string is via this class initializer. 6336 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6337 : Context.getTypeAlignInChars(Context.CharTy); 6338 GV->setAlignment(Align.getAsAlign()); 6339 6340 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6341 // Without it LLVM can merge the string with a non unnamed_addr one during 6342 // LTO. Doing that changes the section it ends in, which surprises ld64. 6343 if (Triple.isOSBinFormatMachO()) 6344 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6345 : "__TEXT,__cstring,cstring_literals"); 6346 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6347 // the static linker to adjust permissions to read-only later on. 6348 else if (Triple.isOSBinFormatELF()) 6349 GV->setSection(".rodata"); 6350 6351 // String. 6352 Fields.add(GV); 6353 6354 // String length. 6355 llvm::IntegerType *LengthTy = 6356 llvm::IntegerType::get(getModule().getContext(), 6357 Context.getTargetInfo().getLongWidth()); 6358 if (IsSwiftABI) { 6359 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6360 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6361 LengthTy = Int32Ty; 6362 else 6363 LengthTy = IntPtrTy; 6364 } 6365 Fields.addInt(LengthTy, StringLength); 6366 6367 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6368 // properly aligned on 32-bit platforms. 6369 CharUnits Alignment = 6370 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6371 6372 // The struct. 6373 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6374 /*isConstant=*/false, 6375 llvm::GlobalVariable::PrivateLinkage); 6376 GV->addAttribute("objc_arc_inert"); 6377 switch (Triple.getObjectFormat()) { 6378 case llvm::Triple::UnknownObjectFormat: 6379 llvm_unreachable("unknown file format"); 6380 case llvm::Triple::DXContainer: 6381 case llvm::Triple::GOFF: 6382 case llvm::Triple::SPIRV: 6383 case llvm::Triple::XCOFF: 6384 llvm_unreachable("unimplemented"); 6385 case llvm::Triple::COFF: 6386 case llvm::Triple::ELF: 6387 case llvm::Triple::Wasm: 6388 GV->setSection("cfstring"); 6389 break; 6390 case llvm::Triple::MachO: 6391 GV->setSection("__DATA,__cfstring"); 6392 break; 6393 } 6394 Entry.second = GV; 6395 6396 return ConstantAddress(GV, GV->getValueType(), Alignment); 6397 } 6398 6399 bool CodeGenModule::getExpressionLocationsEnabled() const { 6400 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6401 } 6402 6403 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6404 if (ObjCFastEnumerationStateType.isNull()) { 6405 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6406 D->startDefinition(); 6407 6408 QualType FieldTypes[] = { 6409 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6410 Context.getPointerType(Context.UnsignedLongTy), 6411 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6412 nullptr, ArraySizeModifier::Normal, 0)}; 6413 6414 for (size_t i = 0; i < 4; ++i) { 6415 FieldDecl *Field = FieldDecl::Create(Context, 6416 D, 6417 SourceLocation(), 6418 SourceLocation(), nullptr, 6419 FieldTypes[i], /*TInfo=*/nullptr, 6420 /*BitWidth=*/nullptr, 6421 /*Mutable=*/false, 6422 ICIS_NoInit); 6423 Field->setAccess(AS_public); 6424 D->addDecl(Field); 6425 } 6426 6427 D->completeDefinition(); 6428 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6429 } 6430 6431 return ObjCFastEnumerationStateType; 6432 } 6433 6434 llvm::Constant * 6435 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6436 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6437 6438 // Don't emit it as the address of the string, emit the string data itself 6439 // as an inline array. 6440 if (E->getCharByteWidth() == 1) { 6441 SmallString<64> Str(E->getString()); 6442 6443 // Resize the string to the right size, which is indicated by its type. 6444 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6445 assert(CAT && "String literal not of constant array type!"); 6446 Str.resize(CAT->getZExtSize()); 6447 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6448 } 6449 6450 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6451 llvm::Type *ElemTy = AType->getElementType(); 6452 unsigned NumElements = AType->getNumElements(); 6453 6454 // Wide strings have either 2-byte or 4-byte elements. 6455 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6456 SmallVector<uint16_t, 32> Elements; 6457 Elements.reserve(NumElements); 6458 6459 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6460 Elements.push_back(E->getCodeUnit(i)); 6461 Elements.resize(NumElements); 6462 return llvm::ConstantDataArray::get(VMContext, Elements); 6463 } 6464 6465 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6466 SmallVector<uint32_t, 32> Elements; 6467 Elements.reserve(NumElements); 6468 6469 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6470 Elements.push_back(E->getCodeUnit(i)); 6471 Elements.resize(NumElements); 6472 return llvm::ConstantDataArray::get(VMContext, Elements); 6473 } 6474 6475 static llvm::GlobalVariable * 6476 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6477 CodeGenModule &CGM, StringRef GlobalName, 6478 CharUnits Alignment) { 6479 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6480 CGM.GetGlobalConstantAddressSpace()); 6481 6482 llvm::Module &M = CGM.getModule(); 6483 // Create a global variable for this string 6484 auto *GV = new llvm::GlobalVariable( 6485 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6486 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6487 GV->setAlignment(Alignment.getAsAlign()); 6488 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6489 if (GV->isWeakForLinker()) { 6490 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6491 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6492 } 6493 CGM.setDSOLocal(GV); 6494 6495 return GV; 6496 } 6497 6498 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6499 /// constant array for the given string literal. 6500 ConstantAddress 6501 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6502 StringRef Name) { 6503 CharUnits Alignment = 6504 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6505 6506 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6507 llvm::GlobalVariable **Entry = nullptr; 6508 if (!LangOpts.WritableStrings) { 6509 Entry = &ConstantStringMap[C]; 6510 if (auto GV = *Entry) { 6511 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6512 GV->setAlignment(Alignment.getAsAlign()); 6513 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6514 GV->getValueType(), Alignment); 6515 } 6516 } 6517 6518 SmallString<256> MangledNameBuffer; 6519 StringRef GlobalVariableName; 6520 llvm::GlobalValue::LinkageTypes LT; 6521 6522 // Mangle the string literal if that's how the ABI merges duplicate strings. 6523 // Don't do it if they are writable, since we don't want writes in one TU to 6524 // affect strings in another. 6525 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6526 !LangOpts.WritableStrings) { 6527 llvm::raw_svector_ostream Out(MangledNameBuffer); 6528 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6529 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6530 GlobalVariableName = MangledNameBuffer; 6531 } else { 6532 LT = llvm::GlobalValue::PrivateLinkage; 6533 GlobalVariableName = Name; 6534 } 6535 6536 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6537 6538 CGDebugInfo *DI = getModuleDebugInfo(); 6539 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6540 DI->AddStringLiteralDebugInfo(GV, S); 6541 6542 if (Entry) 6543 *Entry = GV; 6544 6545 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6546 6547 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6548 GV->getValueType(), Alignment); 6549 } 6550 6551 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6552 /// array for the given ObjCEncodeExpr node. 6553 ConstantAddress 6554 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6555 std::string Str; 6556 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6557 6558 return GetAddrOfConstantCString(Str); 6559 } 6560 6561 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6562 /// the literal and a terminating '\0' character. 6563 /// The result has pointer to array type. 6564 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6565 const std::string &Str, const char *GlobalName) { 6566 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6567 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6568 getContext().CharTy, /*VD=*/nullptr); 6569 6570 llvm::Constant *C = 6571 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6572 6573 // Don't share any string literals if strings aren't constant. 6574 llvm::GlobalVariable **Entry = nullptr; 6575 if (!LangOpts.WritableStrings) { 6576 Entry = &ConstantStringMap[C]; 6577 if (auto GV = *Entry) { 6578 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6579 GV->setAlignment(Alignment.getAsAlign()); 6580 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6581 GV->getValueType(), Alignment); 6582 } 6583 } 6584 6585 // Get the default prefix if a name wasn't specified. 6586 if (!GlobalName) 6587 GlobalName = ".str"; 6588 // Create a global variable for this. 6589 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6590 GlobalName, Alignment); 6591 if (Entry) 6592 *Entry = GV; 6593 6594 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6595 GV->getValueType(), Alignment); 6596 } 6597 6598 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6599 const MaterializeTemporaryExpr *E, const Expr *Init) { 6600 assert((E->getStorageDuration() == SD_Static || 6601 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6602 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6603 6604 // If we're not materializing a subobject of the temporary, keep the 6605 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6606 QualType MaterializedType = Init->getType(); 6607 if (Init == E->getSubExpr()) 6608 MaterializedType = E->getType(); 6609 6610 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6611 6612 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6613 if (!InsertResult.second) { 6614 // We've seen this before: either we already created it or we're in the 6615 // process of doing so. 6616 if (!InsertResult.first->second) { 6617 // We recursively re-entered this function, probably during emission of 6618 // the initializer. Create a placeholder. We'll clean this up in the 6619 // outer call, at the end of this function. 6620 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6621 InsertResult.first->second = new llvm::GlobalVariable( 6622 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6623 nullptr); 6624 } 6625 return ConstantAddress(InsertResult.first->second, 6626 llvm::cast<llvm::GlobalVariable>( 6627 InsertResult.first->second->stripPointerCasts()) 6628 ->getValueType(), 6629 Align); 6630 } 6631 6632 // FIXME: If an externally-visible declaration extends multiple temporaries, 6633 // we need to give each temporary the same name in every translation unit (and 6634 // we also need to make the temporaries externally-visible). 6635 SmallString<256> Name; 6636 llvm::raw_svector_ostream Out(Name); 6637 getCXXABI().getMangleContext().mangleReferenceTemporary( 6638 VD, E->getManglingNumber(), Out); 6639 6640 APValue *Value = nullptr; 6641 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6642 // If the initializer of the extending declaration is a constant 6643 // initializer, we should have a cached constant initializer for this 6644 // temporary. Note that this might have a different value from the value 6645 // computed by evaluating the initializer if the surrounding constant 6646 // expression modifies the temporary. 6647 Value = E->getOrCreateValue(false); 6648 } 6649 6650 // Try evaluating it now, it might have a constant initializer. 6651 Expr::EvalResult EvalResult; 6652 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6653 !EvalResult.hasSideEffects()) 6654 Value = &EvalResult.Val; 6655 6656 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6657 6658 std::optional<ConstantEmitter> emitter; 6659 llvm::Constant *InitialValue = nullptr; 6660 bool Constant = false; 6661 llvm::Type *Type; 6662 if (Value) { 6663 // The temporary has a constant initializer, use it. 6664 emitter.emplace(*this); 6665 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6666 MaterializedType); 6667 Constant = 6668 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6669 /*ExcludeDtor*/ false); 6670 Type = InitialValue->getType(); 6671 } else { 6672 // No initializer, the initialization will be provided when we 6673 // initialize the declaration which performed lifetime extension. 6674 Type = getTypes().ConvertTypeForMem(MaterializedType); 6675 } 6676 6677 // Create a global variable for this lifetime-extended temporary. 6678 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6679 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6680 const VarDecl *InitVD; 6681 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6682 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6683 // Temporaries defined inside a class get linkonce_odr linkage because the 6684 // class can be defined in multiple translation units. 6685 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6686 } else { 6687 // There is no need for this temporary to have external linkage if the 6688 // VarDecl has external linkage. 6689 Linkage = llvm::GlobalVariable::InternalLinkage; 6690 } 6691 } 6692 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6693 auto *GV = new llvm::GlobalVariable( 6694 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6695 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6696 if (emitter) emitter->finalize(GV); 6697 // Don't assign dllimport or dllexport to local linkage globals. 6698 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6699 setGVProperties(GV, VD); 6700 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6701 // The reference temporary should never be dllexport. 6702 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6703 } 6704 GV->setAlignment(Align.getAsAlign()); 6705 if (supportsCOMDAT() && GV->isWeakForLinker()) 6706 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6707 if (VD->getTLSKind()) 6708 setTLSMode(GV, *VD); 6709 llvm::Constant *CV = GV; 6710 if (AddrSpace != LangAS::Default) 6711 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6712 *this, GV, AddrSpace, LangAS::Default, 6713 llvm::PointerType::get( 6714 getLLVMContext(), 6715 getContext().getTargetAddressSpace(LangAS::Default))); 6716 6717 // Update the map with the new temporary. If we created a placeholder above, 6718 // replace it with the new global now. 6719 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6720 if (Entry) { 6721 Entry->replaceAllUsesWith(CV); 6722 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6723 } 6724 Entry = CV; 6725 6726 return ConstantAddress(CV, Type, Align); 6727 } 6728 6729 /// EmitObjCPropertyImplementations - Emit information for synthesized 6730 /// properties for an implementation. 6731 void CodeGenModule::EmitObjCPropertyImplementations(const 6732 ObjCImplementationDecl *D) { 6733 for (const auto *PID : D->property_impls()) { 6734 // Dynamic is just for type-checking. 6735 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6736 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6737 6738 // Determine which methods need to be implemented, some may have 6739 // been overridden. Note that ::isPropertyAccessor is not the method 6740 // we want, that just indicates if the decl came from a 6741 // property. What we want to know is if the method is defined in 6742 // this implementation. 6743 auto *Getter = PID->getGetterMethodDecl(); 6744 if (!Getter || Getter->isSynthesizedAccessorStub()) 6745 CodeGenFunction(*this).GenerateObjCGetter( 6746 const_cast<ObjCImplementationDecl *>(D), PID); 6747 auto *Setter = PID->getSetterMethodDecl(); 6748 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6749 CodeGenFunction(*this).GenerateObjCSetter( 6750 const_cast<ObjCImplementationDecl *>(D), PID); 6751 } 6752 } 6753 } 6754 6755 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6756 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6757 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6758 ivar; ivar = ivar->getNextIvar()) 6759 if (ivar->getType().isDestructedType()) 6760 return true; 6761 6762 return false; 6763 } 6764 6765 static bool AllTrivialInitializers(CodeGenModule &CGM, 6766 ObjCImplementationDecl *D) { 6767 CodeGenFunction CGF(CGM); 6768 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6769 E = D->init_end(); B != E; ++B) { 6770 CXXCtorInitializer *CtorInitExp = *B; 6771 Expr *Init = CtorInitExp->getInit(); 6772 if (!CGF.isTrivialInitializer(Init)) 6773 return false; 6774 } 6775 return true; 6776 } 6777 6778 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6779 /// for an implementation. 6780 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6781 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6782 if (needsDestructMethod(D)) { 6783 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6784 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6785 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6786 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6787 getContext().VoidTy, nullptr, D, 6788 /*isInstance=*/true, /*isVariadic=*/false, 6789 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6790 /*isImplicitlyDeclared=*/true, 6791 /*isDefined=*/false, ObjCImplementationControl::Required); 6792 D->addInstanceMethod(DTORMethod); 6793 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6794 D->setHasDestructors(true); 6795 } 6796 6797 // If the implementation doesn't have any ivar initializers, we don't need 6798 // a .cxx_construct. 6799 if (D->getNumIvarInitializers() == 0 || 6800 AllTrivialInitializers(*this, D)) 6801 return; 6802 6803 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6804 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6805 // The constructor returns 'self'. 6806 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6807 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6808 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6809 /*isVariadic=*/false, 6810 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6811 /*isImplicitlyDeclared=*/true, 6812 /*isDefined=*/false, ObjCImplementationControl::Required); 6813 D->addInstanceMethod(CTORMethod); 6814 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6815 D->setHasNonZeroConstructors(true); 6816 } 6817 6818 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6819 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6820 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6821 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6822 ErrorUnsupported(LSD, "linkage spec"); 6823 return; 6824 } 6825 6826 EmitDeclContext(LSD); 6827 } 6828 6829 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6830 // Device code should not be at top level. 6831 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6832 return; 6833 6834 std::unique_ptr<CodeGenFunction> &CurCGF = 6835 GlobalTopLevelStmtBlockInFlight.first; 6836 6837 // We emitted a top-level stmt but after it there is initialization. 6838 // Stop squashing the top-level stmts into a single function. 6839 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6840 CurCGF->FinishFunction(D->getEndLoc()); 6841 CurCGF = nullptr; 6842 } 6843 6844 if (!CurCGF) { 6845 // void __stmts__N(void) 6846 // FIXME: Ask the ABI name mangler to pick a name. 6847 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6848 FunctionArgList Args; 6849 QualType RetTy = getContext().VoidTy; 6850 const CGFunctionInfo &FnInfo = 6851 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6852 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6853 llvm::Function *Fn = llvm::Function::Create( 6854 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6855 6856 CurCGF.reset(new CodeGenFunction(*this)); 6857 GlobalTopLevelStmtBlockInFlight.second = D; 6858 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6859 D->getBeginLoc(), D->getBeginLoc()); 6860 CXXGlobalInits.push_back(Fn); 6861 } 6862 6863 CurCGF->EmitStmt(D->getStmt()); 6864 } 6865 6866 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6867 for (auto *I : DC->decls()) { 6868 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6869 // are themselves considered "top-level", so EmitTopLevelDecl on an 6870 // ObjCImplDecl does not recursively visit them. We need to do that in 6871 // case they're nested inside another construct (LinkageSpecDecl / 6872 // ExportDecl) that does stop them from being considered "top-level". 6873 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6874 for (auto *M : OID->methods()) 6875 EmitTopLevelDecl(M); 6876 } 6877 6878 EmitTopLevelDecl(I); 6879 } 6880 } 6881 6882 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6883 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6884 // Ignore dependent declarations. 6885 if (D->isTemplated()) 6886 return; 6887 6888 // Consteval function shouldn't be emitted. 6889 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6890 return; 6891 6892 switch (D->getKind()) { 6893 case Decl::CXXConversion: 6894 case Decl::CXXMethod: 6895 case Decl::Function: 6896 EmitGlobal(cast<FunctionDecl>(D)); 6897 // Always provide some coverage mapping 6898 // even for the functions that aren't emitted. 6899 AddDeferredUnusedCoverageMapping(D); 6900 break; 6901 6902 case Decl::CXXDeductionGuide: 6903 // Function-like, but does not result in code emission. 6904 break; 6905 6906 case Decl::Var: 6907 case Decl::Decomposition: 6908 case Decl::VarTemplateSpecialization: 6909 EmitGlobal(cast<VarDecl>(D)); 6910 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6911 for (auto *B : DD->bindings()) 6912 if (auto *HD = B->getHoldingVar()) 6913 EmitGlobal(HD); 6914 break; 6915 6916 // Indirect fields from global anonymous structs and unions can be 6917 // ignored; only the actual variable requires IR gen support. 6918 case Decl::IndirectField: 6919 break; 6920 6921 // C++ Decls 6922 case Decl::Namespace: 6923 EmitDeclContext(cast<NamespaceDecl>(D)); 6924 break; 6925 case Decl::ClassTemplateSpecialization: { 6926 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6927 if (CGDebugInfo *DI = getModuleDebugInfo()) 6928 if (Spec->getSpecializationKind() == 6929 TSK_ExplicitInstantiationDefinition && 6930 Spec->hasDefinition()) 6931 DI->completeTemplateDefinition(*Spec); 6932 } [[fallthrough]]; 6933 case Decl::CXXRecord: { 6934 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6935 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6936 if (CRD->hasDefinition()) 6937 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6938 if (auto *ES = D->getASTContext().getExternalSource()) 6939 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6940 DI->completeUnusedClass(*CRD); 6941 } 6942 // Emit any static data members, they may be definitions. 6943 for (auto *I : CRD->decls()) 6944 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6945 EmitTopLevelDecl(I); 6946 break; 6947 } 6948 // No code generation needed. 6949 case Decl::UsingShadow: 6950 case Decl::ClassTemplate: 6951 case Decl::VarTemplate: 6952 case Decl::Concept: 6953 case Decl::VarTemplatePartialSpecialization: 6954 case Decl::FunctionTemplate: 6955 case Decl::TypeAliasTemplate: 6956 case Decl::Block: 6957 case Decl::Empty: 6958 case Decl::Binding: 6959 break; 6960 case Decl::Using: // using X; [C++] 6961 if (CGDebugInfo *DI = getModuleDebugInfo()) 6962 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6963 break; 6964 case Decl::UsingEnum: // using enum X; [C++] 6965 if (CGDebugInfo *DI = getModuleDebugInfo()) 6966 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6967 break; 6968 case Decl::NamespaceAlias: 6969 if (CGDebugInfo *DI = getModuleDebugInfo()) 6970 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6971 break; 6972 case Decl::UsingDirective: // using namespace X; [C++] 6973 if (CGDebugInfo *DI = getModuleDebugInfo()) 6974 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6975 break; 6976 case Decl::CXXConstructor: 6977 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6978 break; 6979 case Decl::CXXDestructor: 6980 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6981 break; 6982 6983 case Decl::StaticAssert: 6984 // Nothing to do. 6985 break; 6986 6987 // Objective-C Decls 6988 6989 // Forward declarations, no (immediate) code generation. 6990 case Decl::ObjCInterface: 6991 case Decl::ObjCCategory: 6992 break; 6993 6994 case Decl::ObjCProtocol: { 6995 auto *Proto = cast<ObjCProtocolDecl>(D); 6996 if (Proto->isThisDeclarationADefinition()) 6997 ObjCRuntime->GenerateProtocol(Proto); 6998 break; 6999 } 7000 7001 case Decl::ObjCCategoryImpl: 7002 // Categories have properties but don't support synthesize so we 7003 // can ignore them here. 7004 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 7005 break; 7006 7007 case Decl::ObjCImplementation: { 7008 auto *OMD = cast<ObjCImplementationDecl>(D); 7009 EmitObjCPropertyImplementations(OMD); 7010 EmitObjCIvarInitializations(OMD); 7011 ObjCRuntime->GenerateClass(OMD); 7012 // Emit global variable debug information. 7013 if (CGDebugInfo *DI = getModuleDebugInfo()) 7014 if (getCodeGenOpts().hasReducedDebugInfo()) 7015 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 7016 OMD->getClassInterface()), OMD->getLocation()); 7017 break; 7018 } 7019 case Decl::ObjCMethod: { 7020 auto *OMD = cast<ObjCMethodDecl>(D); 7021 // If this is not a prototype, emit the body. 7022 if (OMD->getBody()) 7023 CodeGenFunction(*this).GenerateObjCMethod(OMD); 7024 break; 7025 } 7026 case Decl::ObjCCompatibleAlias: 7027 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 7028 break; 7029 7030 case Decl::PragmaComment: { 7031 const auto *PCD = cast<PragmaCommentDecl>(D); 7032 switch (PCD->getCommentKind()) { 7033 case PCK_Unknown: 7034 llvm_unreachable("unexpected pragma comment kind"); 7035 case PCK_Linker: 7036 AppendLinkerOptions(PCD->getArg()); 7037 break; 7038 case PCK_Lib: 7039 AddDependentLib(PCD->getArg()); 7040 break; 7041 case PCK_Compiler: 7042 case PCK_ExeStr: 7043 case PCK_User: 7044 break; // We ignore all of these. 7045 } 7046 break; 7047 } 7048 7049 case Decl::PragmaDetectMismatch: { 7050 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7051 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7052 break; 7053 } 7054 7055 case Decl::LinkageSpec: 7056 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7057 break; 7058 7059 case Decl::FileScopeAsm: { 7060 // File-scope asm is ignored during device-side CUDA compilation. 7061 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7062 break; 7063 // File-scope asm is ignored during device-side OpenMP compilation. 7064 if (LangOpts.OpenMPIsTargetDevice) 7065 break; 7066 // File-scope asm is ignored during device-side SYCL compilation. 7067 if (LangOpts.SYCLIsDevice) 7068 break; 7069 auto *AD = cast<FileScopeAsmDecl>(D); 7070 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7071 break; 7072 } 7073 7074 case Decl::TopLevelStmt: 7075 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7076 break; 7077 7078 case Decl::Import: { 7079 auto *Import = cast<ImportDecl>(D); 7080 7081 // If we've already imported this module, we're done. 7082 if (!ImportedModules.insert(Import->getImportedModule())) 7083 break; 7084 7085 // Emit debug information for direct imports. 7086 if (!Import->getImportedOwningModule()) { 7087 if (CGDebugInfo *DI = getModuleDebugInfo()) 7088 DI->EmitImportDecl(*Import); 7089 } 7090 7091 // For C++ standard modules we are done - we will call the module 7092 // initializer for imported modules, and that will likewise call those for 7093 // any imports it has. 7094 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7095 !Import->getImportedOwningModule()->isModuleMapModule()) 7096 break; 7097 7098 // For clang C++ module map modules the initializers for sub-modules are 7099 // emitted here. 7100 7101 // Find all of the submodules and emit the module initializers. 7102 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7103 SmallVector<clang::Module *, 16> Stack; 7104 Visited.insert(Import->getImportedModule()); 7105 Stack.push_back(Import->getImportedModule()); 7106 7107 while (!Stack.empty()) { 7108 clang::Module *Mod = Stack.pop_back_val(); 7109 if (!EmittedModuleInitializers.insert(Mod).second) 7110 continue; 7111 7112 for (auto *D : Context.getModuleInitializers(Mod)) 7113 EmitTopLevelDecl(D); 7114 7115 // Visit the submodules of this module. 7116 for (auto *Submodule : Mod->submodules()) { 7117 // Skip explicit children; they need to be explicitly imported to emit 7118 // the initializers. 7119 if (Submodule->IsExplicit) 7120 continue; 7121 7122 if (Visited.insert(Submodule).second) 7123 Stack.push_back(Submodule); 7124 } 7125 } 7126 break; 7127 } 7128 7129 case Decl::Export: 7130 EmitDeclContext(cast<ExportDecl>(D)); 7131 break; 7132 7133 case Decl::OMPThreadPrivate: 7134 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7135 break; 7136 7137 case Decl::OMPAllocate: 7138 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7139 break; 7140 7141 case Decl::OMPDeclareReduction: 7142 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7143 break; 7144 7145 case Decl::OMPDeclareMapper: 7146 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7147 break; 7148 7149 case Decl::OMPRequires: 7150 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7151 break; 7152 7153 case Decl::Typedef: 7154 case Decl::TypeAlias: // using foo = bar; [C++11] 7155 if (CGDebugInfo *DI = getModuleDebugInfo()) 7156 DI->EmitAndRetainType( 7157 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7158 break; 7159 7160 case Decl::Record: 7161 if (CGDebugInfo *DI = getModuleDebugInfo()) 7162 if (cast<RecordDecl>(D)->getDefinition()) 7163 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7164 break; 7165 7166 case Decl::Enum: 7167 if (CGDebugInfo *DI = getModuleDebugInfo()) 7168 if (cast<EnumDecl>(D)->getDefinition()) 7169 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7170 break; 7171 7172 case Decl::HLSLBuffer: 7173 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7174 break; 7175 7176 default: 7177 // Make sure we handled everything we should, every other kind is a 7178 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7179 // function. Need to recode Decl::Kind to do that easily. 7180 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7181 break; 7182 } 7183 } 7184 7185 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7186 // Do we need to generate coverage mapping? 7187 if (!CodeGenOpts.CoverageMapping) 7188 return; 7189 switch (D->getKind()) { 7190 case Decl::CXXConversion: 7191 case Decl::CXXMethod: 7192 case Decl::Function: 7193 case Decl::ObjCMethod: 7194 case Decl::CXXConstructor: 7195 case Decl::CXXDestructor: { 7196 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7197 break; 7198 SourceManager &SM = getContext().getSourceManager(); 7199 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7200 break; 7201 if (!llvm::coverage::SystemHeadersCoverage && 7202 SM.isInSystemHeader(D->getBeginLoc())) 7203 break; 7204 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7205 break; 7206 } 7207 default: 7208 break; 7209 }; 7210 } 7211 7212 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7213 // Do we need to generate coverage mapping? 7214 if (!CodeGenOpts.CoverageMapping) 7215 return; 7216 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7217 if (Fn->isTemplateInstantiation()) 7218 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7219 } 7220 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7221 } 7222 7223 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7224 // We call takeVector() here to avoid use-after-free. 7225 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7226 // we deserialize function bodies to emit coverage info for them, and that 7227 // deserializes more declarations. How should we handle that case? 7228 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7229 if (!Entry.second) 7230 continue; 7231 const Decl *D = Entry.first; 7232 switch (D->getKind()) { 7233 case Decl::CXXConversion: 7234 case Decl::CXXMethod: 7235 case Decl::Function: 7236 case Decl::ObjCMethod: { 7237 CodeGenPGO PGO(*this); 7238 GlobalDecl GD(cast<FunctionDecl>(D)); 7239 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7240 getFunctionLinkage(GD)); 7241 break; 7242 } 7243 case Decl::CXXConstructor: { 7244 CodeGenPGO PGO(*this); 7245 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7246 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7247 getFunctionLinkage(GD)); 7248 break; 7249 } 7250 case Decl::CXXDestructor: { 7251 CodeGenPGO PGO(*this); 7252 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7253 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7254 getFunctionLinkage(GD)); 7255 break; 7256 } 7257 default: 7258 break; 7259 }; 7260 } 7261 } 7262 7263 void CodeGenModule::EmitMainVoidAlias() { 7264 // In order to transition away from "__original_main" gracefully, emit an 7265 // alias for "main" in the no-argument case so that libc can detect when 7266 // new-style no-argument main is in used. 7267 if (llvm::Function *F = getModule().getFunction("main")) { 7268 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7269 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7270 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7271 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7272 } 7273 } 7274 } 7275 7276 /// Turns the given pointer into a constant. 7277 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7278 const void *Ptr) { 7279 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7280 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7281 return llvm::ConstantInt::get(i64, PtrInt); 7282 } 7283 7284 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7285 llvm::NamedMDNode *&GlobalMetadata, 7286 GlobalDecl D, 7287 llvm::GlobalValue *Addr) { 7288 if (!GlobalMetadata) 7289 GlobalMetadata = 7290 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7291 7292 // TODO: should we report variant information for ctors/dtors? 7293 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7294 llvm::ConstantAsMetadata::get(GetPointerConstant( 7295 CGM.getLLVMContext(), D.getDecl()))}; 7296 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7297 } 7298 7299 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7300 llvm::GlobalValue *CppFunc) { 7301 // Store the list of ifuncs we need to replace uses in. 7302 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7303 // List of ConstantExprs that we should be able to delete when we're done 7304 // here. 7305 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7306 7307 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7308 if (Elem == CppFunc) 7309 return false; 7310 7311 // First make sure that all users of this are ifuncs (or ifuncs via a 7312 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7313 // later. 7314 for (llvm::User *User : Elem->users()) { 7315 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7316 // ifunc directly. In any other case, just give up, as we don't know what we 7317 // could break by changing those. 7318 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7319 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7320 return false; 7321 7322 for (llvm::User *CEUser : ConstExpr->users()) { 7323 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7324 IFuncs.push_back(IFunc); 7325 } else { 7326 return false; 7327 } 7328 } 7329 CEs.push_back(ConstExpr); 7330 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7331 IFuncs.push_back(IFunc); 7332 } else { 7333 // This user is one we don't know how to handle, so fail redirection. This 7334 // will result in an ifunc retaining a resolver name that will ultimately 7335 // fail to be resolved to a defined function. 7336 return false; 7337 } 7338 } 7339 7340 // Now we know this is a valid case where we can do this alias replacement, we 7341 // need to remove all of the references to Elem (and the bitcasts!) so we can 7342 // delete it. 7343 for (llvm::GlobalIFunc *IFunc : IFuncs) 7344 IFunc->setResolver(nullptr); 7345 for (llvm::ConstantExpr *ConstExpr : CEs) 7346 ConstExpr->destroyConstant(); 7347 7348 // We should now be out of uses for the 'old' version of this function, so we 7349 // can erase it as well. 7350 Elem->eraseFromParent(); 7351 7352 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7353 // The type of the resolver is always just a function-type that returns the 7354 // type of the IFunc, so create that here. If the type of the actual 7355 // resolver doesn't match, it just gets bitcast to the right thing. 7356 auto *ResolverTy = 7357 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7358 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7359 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7360 IFunc->setResolver(Resolver); 7361 } 7362 return true; 7363 } 7364 7365 /// For each function which is declared within an extern "C" region and marked 7366 /// as 'used', but has internal linkage, create an alias from the unmangled 7367 /// name to the mangled name if possible. People expect to be able to refer 7368 /// to such functions with an unmangled name from inline assembly within the 7369 /// same translation unit. 7370 void CodeGenModule::EmitStaticExternCAliases() { 7371 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7372 return; 7373 for (auto &I : StaticExternCValues) { 7374 const IdentifierInfo *Name = I.first; 7375 llvm::GlobalValue *Val = I.second; 7376 7377 // If Val is null, that implies there were multiple declarations that each 7378 // had a claim to the unmangled name. In this case, generation of the alias 7379 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7380 if (!Val) 7381 break; 7382 7383 llvm::GlobalValue *ExistingElem = 7384 getModule().getNamedValue(Name->getName()); 7385 7386 // If there is either not something already by this name, or we were able to 7387 // replace all uses from IFuncs, create the alias. 7388 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7389 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7390 } 7391 } 7392 7393 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7394 GlobalDecl &Result) const { 7395 auto Res = Manglings.find(MangledName); 7396 if (Res == Manglings.end()) 7397 return false; 7398 Result = Res->getValue(); 7399 return true; 7400 } 7401 7402 /// Emits metadata nodes associating all the global values in the 7403 /// current module with the Decls they came from. This is useful for 7404 /// projects using IR gen as a subroutine. 7405 /// 7406 /// Since there's currently no way to associate an MDNode directly 7407 /// with an llvm::GlobalValue, we create a global named metadata 7408 /// with the name 'clang.global.decl.ptrs'. 7409 void CodeGenModule::EmitDeclMetadata() { 7410 llvm::NamedMDNode *GlobalMetadata = nullptr; 7411 7412 for (auto &I : MangledDeclNames) { 7413 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7414 // Some mangled names don't necessarily have an associated GlobalValue 7415 // in this module, e.g. if we mangled it for DebugInfo. 7416 if (Addr) 7417 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7418 } 7419 } 7420 7421 /// Emits metadata nodes for all the local variables in the current 7422 /// function. 7423 void CodeGenFunction::EmitDeclMetadata() { 7424 if (LocalDeclMap.empty()) return; 7425 7426 llvm::LLVMContext &Context = getLLVMContext(); 7427 7428 // Find the unique metadata ID for this name. 7429 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7430 7431 llvm::NamedMDNode *GlobalMetadata = nullptr; 7432 7433 for (auto &I : LocalDeclMap) { 7434 const Decl *D = I.first; 7435 llvm::Value *Addr = I.second.emitRawPointer(*this); 7436 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7437 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7438 Alloca->setMetadata( 7439 DeclPtrKind, llvm::MDNode::get( 7440 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7441 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7442 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7443 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7444 } 7445 } 7446 } 7447 7448 void CodeGenModule::EmitVersionIdentMetadata() { 7449 llvm::NamedMDNode *IdentMetadata = 7450 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7451 std::string Version = getClangFullVersion(); 7452 llvm::LLVMContext &Ctx = TheModule.getContext(); 7453 7454 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7455 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7456 } 7457 7458 void CodeGenModule::EmitCommandLineMetadata() { 7459 llvm::NamedMDNode *CommandLineMetadata = 7460 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7461 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7462 llvm::LLVMContext &Ctx = TheModule.getContext(); 7463 7464 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7465 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7466 } 7467 7468 void CodeGenModule::EmitCoverageFile() { 7469 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7470 if (!CUNode) 7471 return; 7472 7473 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7474 llvm::LLVMContext &Ctx = TheModule.getContext(); 7475 auto *CoverageDataFile = 7476 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7477 auto *CoverageNotesFile = 7478 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7479 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7480 llvm::MDNode *CU = CUNode->getOperand(i); 7481 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7482 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7483 } 7484 } 7485 7486 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7487 bool ForEH) { 7488 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7489 // FIXME: should we even be calling this method if RTTI is disabled 7490 // and it's not for EH? 7491 if (!shouldEmitRTTI(ForEH)) 7492 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7493 7494 if (ForEH && Ty->isObjCObjectPointerType() && 7495 LangOpts.ObjCRuntime.isGNUFamily()) 7496 return ObjCRuntime->GetEHType(Ty); 7497 7498 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7499 } 7500 7501 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7502 // Do not emit threadprivates in simd-only mode. 7503 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7504 return; 7505 for (auto RefExpr : D->varlist()) { 7506 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7507 bool PerformInit = 7508 VD->getAnyInitializer() && 7509 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7510 /*ForRef=*/false); 7511 7512 Address Addr(GetAddrOfGlobalVar(VD), 7513 getTypes().ConvertTypeForMem(VD->getType()), 7514 getContext().getDeclAlign(VD)); 7515 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7516 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7517 CXXGlobalInits.push_back(InitFunction); 7518 } 7519 } 7520 7521 llvm::Metadata * 7522 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7523 StringRef Suffix) { 7524 if (auto *FnType = T->getAs<FunctionProtoType>()) 7525 T = getContext().getFunctionType( 7526 FnType->getReturnType(), FnType->getParamTypes(), 7527 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7528 7529 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7530 if (InternalId) 7531 return InternalId; 7532 7533 if (isExternallyVisible(T->getLinkage())) { 7534 std::string OutName; 7535 llvm::raw_string_ostream Out(OutName); 7536 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7537 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7538 7539 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7540 Out << ".normalized"; 7541 7542 Out << Suffix; 7543 7544 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7545 } else { 7546 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7547 llvm::ArrayRef<llvm::Metadata *>()); 7548 } 7549 7550 return InternalId; 7551 } 7552 7553 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7554 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7555 } 7556 7557 llvm::Metadata * 7558 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7559 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7560 } 7561 7562 // Generalize pointer types to a void pointer with the qualifiers of the 7563 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7564 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7565 // 'void *'. 7566 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7567 if (!Ty->isPointerType()) 7568 return Ty; 7569 7570 return Ctx.getPointerType( 7571 QualType(Ctx.VoidTy).withCVRQualifiers( 7572 Ty->getPointeeType().getCVRQualifiers())); 7573 } 7574 7575 // Apply type generalization to a FunctionType's return and argument types 7576 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7577 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7578 SmallVector<QualType, 8> GeneralizedParams; 7579 for (auto &Param : FnType->param_types()) 7580 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7581 7582 return Ctx.getFunctionType( 7583 GeneralizeType(Ctx, FnType->getReturnType()), 7584 GeneralizedParams, FnType->getExtProtoInfo()); 7585 } 7586 7587 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7588 return Ctx.getFunctionNoProtoType( 7589 GeneralizeType(Ctx, FnType->getReturnType())); 7590 7591 llvm_unreachable("Encountered unknown FunctionType"); 7592 } 7593 7594 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7595 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7596 GeneralizedMetadataIdMap, ".generalized"); 7597 } 7598 7599 /// Returns whether this module needs the "all-vtables" type identifier. 7600 bool CodeGenModule::NeedAllVtablesTypeId() const { 7601 // Returns true if at least one of vtable-based CFI checkers is enabled and 7602 // is not in the trapping mode. 7603 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7604 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7605 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7606 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7607 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7608 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7609 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7610 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7611 } 7612 7613 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7614 CharUnits Offset, 7615 const CXXRecordDecl *RD) { 7616 llvm::Metadata *MD = 7617 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7618 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7619 7620 if (CodeGenOpts.SanitizeCfiCrossDso) 7621 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7622 VTable->addTypeMetadata(Offset.getQuantity(), 7623 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7624 7625 if (NeedAllVtablesTypeId()) { 7626 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7627 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7628 } 7629 } 7630 7631 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7632 if (!SanStats) 7633 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7634 7635 return *SanStats; 7636 } 7637 7638 llvm::Value * 7639 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7640 CodeGenFunction &CGF) { 7641 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7642 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7643 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7644 auto *Call = CGF.EmitRuntimeCall( 7645 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7646 return Call; 7647 } 7648 7649 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7650 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7651 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7652 /* forPointeeType= */ true); 7653 } 7654 7655 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7656 LValueBaseInfo *BaseInfo, 7657 TBAAAccessInfo *TBAAInfo, 7658 bool forPointeeType) { 7659 if (TBAAInfo) 7660 *TBAAInfo = getTBAAAccessInfo(T); 7661 7662 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7663 // that doesn't return the information we need to compute BaseInfo. 7664 7665 // Honor alignment typedef attributes even on incomplete types. 7666 // We also honor them straight for C++ class types, even as pointees; 7667 // there's an expressivity gap here. 7668 if (auto TT = T->getAs<TypedefType>()) { 7669 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7670 if (BaseInfo) 7671 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7672 return getContext().toCharUnitsFromBits(Align); 7673 } 7674 } 7675 7676 bool AlignForArray = T->isArrayType(); 7677 7678 // Analyze the base element type, so we don't get confused by incomplete 7679 // array types. 7680 T = getContext().getBaseElementType(T); 7681 7682 if (T->isIncompleteType()) { 7683 // We could try to replicate the logic from 7684 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7685 // type is incomplete, so it's impossible to test. We could try to reuse 7686 // getTypeAlignIfKnown, but that doesn't return the information we need 7687 // to set BaseInfo. So just ignore the possibility that the alignment is 7688 // greater than one. 7689 if (BaseInfo) 7690 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7691 return CharUnits::One(); 7692 } 7693 7694 if (BaseInfo) 7695 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7696 7697 CharUnits Alignment; 7698 const CXXRecordDecl *RD; 7699 if (T.getQualifiers().hasUnaligned()) { 7700 Alignment = CharUnits::One(); 7701 } else if (forPointeeType && !AlignForArray && 7702 (RD = T->getAsCXXRecordDecl())) { 7703 // For C++ class pointees, we don't know whether we're pointing at a 7704 // base or a complete object, so we generally need to use the 7705 // non-virtual alignment. 7706 Alignment = getClassPointerAlignment(RD); 7707 } else { 7708 Alignment = getContext().getTypeAlignInChars(T); 7709 } 7710 7711 // Cap to the global maximum type alignment unless the alignment 7712 // was somehow explicit on the type. 7713 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7714 if (Alignment.getQuantity() > MaxAlign && 7715 !getContext().isAlignmentRequired(T)) 7716 Alignment = CharUnits::fromQuantity(MaxAlign); 7717 } 7718 return Alignment; 7719 } 7720 7721 bool CodeGenModule::stopAutoInit() { 7722 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7723 if (StopAfter) { 7724 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7725 // used 7726 if (NumAutoVarInit >= StopAfter) { 7727 return true; 7728 } 7729 if (!NumAutoVarInit) { 7730 unsigned DiagID = getDiags().getCustomDiagID( 7731 DiagnosticsEngine::Warning, 7732 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7733 "number of times ftrivial-auto-var-init=%1 gets applied."); 7734 getDiags().Report(DiagID) 7735 << StopAfter 7736 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7737 LangOptions::TrivialAutoVarInitKind::Zero 7738 ? "zero" 7739 : "pattern"); 7740 } 7741 ++NumAutoVarInit; 7742 } 7743 return false; 7744 } 7745 7746 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7747 const Decl *D) const { 7748 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7749 // postfix beginning with '.' since the symbol name can be demangled. 7750 if (LangOpts.HIP) 7751 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7752 else 7753 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7754 7755 // If the CUID is not specified we try to generate a unique postfix. 7756 if (getLangOpts().CUID.empty()) { 7757 SourceManager &SM = getContext().getSourceManager(); 7758 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7759 assert(PLoc.isValid() && "Source location is expected to be valid."); 7760 7761 // Get the hash of the user defined macros. 7762 llvm::MD5 Hash; 7763 llvm::MD5::MD5Result Result; 7764 for (const auto &Arg : PreprocessorOpts.Macros) 7765 Hash.update(Arg.first); 7766 Hash.final(Result); 7767 7768 // Get the UniqueID for the file containing the decl. 7769 llvm::sys::fs::UniqueID ID; 7770 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7771 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7772 assert(PLoc.isValid() && "Source location is expected to be valid."); 7773 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7774 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7775 << PLoc.getFilename() << EC.message(); 7776 } 7777 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7778 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7779 } else { 7780 OS << getContext().getCUIDHash(); 7781 } 7782 } 7783 7784 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7785 assert(DeferredDeclsToEmit.empty() && 7786 "Should have emitted all decls deferred to emit."); 7787 assert(NewBuilder->DeferredDecls.empty() && 7788 "Newly created module should not have deferred decls"); 7789 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7790 assert(EmittedDeferredDecls.empty() && 7791 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7792 7793 assert(NewBuilder->DeferredVTables.empty() && 7794 "Newly created module should not have deferred vtables"); 7795 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7796 7797 assert(NewBuilder->MangledDeclNames.empty() && 7798 "Newly created module should not have mangled decl names"); 7799 assert(NewBuilder->Manglings.empty() && 7800 "Newly created module should not have manglings"); 7801 NewBuilder->Manglings = std::move(Manglings); 7802 7803 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7804 7805 NewBuilder->TBAA = std::move(TBAA); 7806 7807 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7808 } 7809