1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/DataLayout.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::DataLayout &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.ThreadSanitizer || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 // This is just isGNUFamily(), but we want to force implementors of 139 // new ABIs to decide how best to do this. 140 switch (LangOpts.ObjCRuntime.getKind()) { 141 case ObjCRuntime::GNUstep: 142 case ObjCRuntime::GCC: 143 case ObjCRuntime::ObjFW: 144 ObjCRuntime = CreateGNUObjCRuntime(*this); 145 return; 146 147 case ObjCRuntime::FragileMacOSX: 148 case ObjCRuntime::MacOSX: 149 case ObjCRuntime::iOS: 150 ObjCRuntime = CreateMacObjCRuntime(*this); 151 return; 152 } 153 llvm_unreachable("bad runtime kind"); 154 } 155 156 void CodeGenModule::createOpenCLRuntime() { 157 OpenCLRuntime = new CGOpenCLRuntime(*this); 158 } 159 160 void CodeGenModule::createCUDARuntime() { 161 CUDARuntime = CreateNVCUDARuntime(*this); 162 } 163 164 void CodeGenModule::Release() { 165 EmitDeferred(); 166 EmitCXXGlobalInitFunc(); 167 EmitCXXGlobalDtorFunc(); 168 if (ObjCRuntime) 169 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 170 AddGlobalCtor(ObjCInitFunction); 171 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 172 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 173 EmitGlobalAnnotations(); 174 EmitLLVMUsed(); 175 176 SimplifyPersonality(); 177 178 if (getCodeGenOpts().EmitDeclMetadata) 179 EmitDeclMetadata(); 180 181 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 182 EmitCoverageFile(); 183 184 if (DebugInfo) 185 DebugInfo->finalize(); 186 } 187 188 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 189 // Make sure that this type is translated. 190 Types.UpdateCompletedType(TD); 191 } 192 193 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 194 if (!TBAA) 195 return 0; 196 return TBAA->getTBAAInfo(QTy); 197 } 198 199 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 200 if (!TBAA) 201 return 0; 202 return TBAA->getTBAAInfoForVTablePtr(); 203 } 204 205 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 206 if (!TBAA) 207 return 0; 208 return TBAA->getTBAAStructInfo(QTy); 209 } 210 211 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 212 llvm::MDNode *TBAAInfo) { 213 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 214 } 215 216 bool CodeGenModule::isTargetDarwin() const { 217 return getContext().getTargetInfo().getTriple().isOSDarwin(); 218 } 219 220 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 221 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 222 getDiags().Report(Context.getFullLoc(loc), diagID); 223 } 224 225 /// ErrorUnsupported - Print out an error that codegen doesn't support the 226 /// specified stmt yet. 227 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 228 bool OmitOnError) { 229 if (OmitOnError && getDiags().hasErrorOccurred()) 230 return; 231 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 232 "cannot compile this %0 yet"); 233 std::string Msg = Type; 234 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 235 << Msg << S->getSourceRange(); 236 } 237 238 /// ErrorUnsupported - Print out an error that codegen doesn't support the 239 /// specified decl yet. 240 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 241 bool OmitOnError) { 242 if (OmitOnError && getDiags().hasErrorOccurred()) 243 return; 244 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 245 "cannot compile this %0 yet"); 246 std::string Msg = Type; 247 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 248 } 249 250 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 251 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 252 } 253 254 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 255 const NamedDecl *D) const { 256 // Internal definitions always have default visibility. 257 if (GV->hasLocalLinkage()) { 258 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 259 return; 260 } 261 262 // Set visibility for definitions. 263 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 264 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 265 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 266 } 267 268 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 269 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 270 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 271 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 272 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 273 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 274 } 275 276 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 277 CodeGenOptions::TLSModel M) { 278 switch (M) { 279 case CodeGenOptions::GeneralDynamicTLSModel: 280 return llvm::GlobalVariable::GeneralDynamicTLSModel; 281 case CodeGenOptions::LocalDynamicTLSModel: 282 return llvm::GlobalVariable::LocalDynamicTLSModel; 283 case CodeGenOptions::InitialExecTLSModel: 284 return llvm::GlobalVariable::InitialExecTLSModel; 285 case CodeGenOptions::LocalExecTLSModel: 286 return llvm::GlobalVariable::LocalExecTLSModel; 287 } 288 llvm_unreachable("Invalid TLS model!"); 289 } 290 291 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 292 const VarDecl &D) const { 293 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!"); 294 295 llvm::GlobalVariable::ThreadLocalMode TLM; 296 TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel); 297 298 // Override the TLS model if it is explicitly specified. 299 if (D.hasAttr<TLSModelAttr>()) { 300 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 301 TLM = GetLLVMTLSModel(Attr->getModel()); 302 } 303 304 GV->setThreadLocalMode(TLM); 305 } 306 307 /// Set the symbol visibility of type information (vtable and RTTI) 308 /// associated with the given type. 309 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 310 const CXXRecordDecl *RD, 311 TypeVisibilityKind TVK) const { 312 setGlobalVisibility(GV, RD); 313 314 if (!CodeGenOpts.HiddenWeakVTables) 315 return; 316 317 // We never want to drop the visibility for RTTI names. 318 if (TVK == TVK_ForRTTIName) 319 return; 320 321 // We want to drop the visibility to hidden for weak type symbols. 322 // This isn't possible if there might be unresolved references 323 // elsewhere that rely on this symbol being visible. 324 325 // This should be kept roughly in sync with setThunkVisibility 326 // in CGVTables.cpp. 327 328 // Preconditions. 329 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 330 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 331 return; 332 333 // Don't override an explicit visibility attribute. 334 if (RD->getExplicitVisibility()) 335 return; 336 337 switch (RD->getTemplateSpecializationKind()) { 338 // We have to disable the optimization if this is an EI definition 339 // because there might be EI declarations in other shared objects. 340 case TSK_ExplicitInstantiationDefinition: 341 case TSK_ExplicitInstantiationDeclaration: 342 return; 343 344 // Every use of a non-template class's type information has to emit it. 345 case TSK_Undeclared: 346 break; 347 348 // In theory, implicit instantiations can ignore the possibility of 349 // an explicit instantiation declaration because there necessarily 350 // must be an EI definition somewhere with default visibility. In 351 // practice, it's possible to have an explicit instantiation for 352 // an arbitrary template class, and linkers aren't necessarily able 353 // to deal with mixed-visibility symbols. 354 case TSK_ExplicitSpecialization: 355 case TSK_ImplicitInstantiation: 356 if (!CodeGenOpts.HiddenWeakTemplateVTables) 357 return; 358 break; 359 } 360 361 // If there's a key function, there may be translation units 362 // that don't have the key function's definition. But ignore 363 // this if we're emitting RTTI under -fno-rtti. 364 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 365 if (Context.getKeyFunction(RD)) 366 return; 367 } 368 369 // Otherwise, drop the visibility to hidden. 370 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 371 GV->setUnnamedAddr(true); 372 } 373 374 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 375 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 376 377 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 378 if (!Str.empty()) 379 return Str; 380 381 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 382 IdentifierInfo *II = ND->getIdentifier(); 383 assert(II && "Attempt to mangle unnamed decl."); 384 385 Str = II->getName(); 386 return Str; 387 } 388 389 SmallString<256> Buffer; 390 llvm::raw_svector_ostream Out(Buffer); 391 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 392 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 393 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 394 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 395 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 396 getCXXABI().getMangleContext().mangleBlock(BD, Out, 397 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl())); 398 else 399 getCXXABI().getMangleContext().mangleName(ND, Out); 400 401 // Allocate space for the mangled name. 402 Out.flush(); 403 size_t Length = Buffer.size(); 404 char *Name = MangledNamesAllocator.Allocate<char>(Length); 405 std::copy(Buffer.begin(), Buffer.end(), Name); 406 407 Str = StringRef(Name, Length); 408 409 return Str; 410 } 411 412 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 413 const BlockDecl *BD) { 414 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 415 const Decl *D = GD.getDecl(); 416 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 417 if (D == 0) 418 MangleCtx.mangleGlobalBlock(BD, 419 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 420 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 421 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 422 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 423 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 424 else 425 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 426 } 427 428 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 429 return getModule().getNamedValue(Name); 430 } 431 432 /// AddGlobalCtor - Add a function to the list that will be called before 433 /// main() runs. 434 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 435 // FIXME: Type coercion of void()* types. 436 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 437 } 438 439 /// AddGlobalDtor - Add a function to the list that will be called 440 /// when the module is unloaded. 441 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 442 // FIXME: Type coercion of void()* types. 443 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 444 } 445 446 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 447 // Ctor function type is void()*. 448 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 449 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 450 451 // Get the type of a ctor entry, { i32, void ()* }. 452 llvm::StructType *CtorStructTy = 453 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 454 455 // Construct the constructor and destructor arrays. 456 SmallVector<llvm::Constant*, 8> Ctors; 457 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 458 llvm::Constant *S[] = { 459 llvm::ConstantInt::get(Int32Ty, I->second, false), 460 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 461 }; 462 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 463 } 464 465 if (!Ctors.empty()) { 466 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 467 new llvm::GlobalVariable(TheModule, AT, false, 468 llvm::GlobalValue::AppendingLinkage, 469 llvm::ConstantArray::get(AT, Ctors), 470 GlobalName); 471 } 472 } 473 474 llvm::GlobalValue::LinkageTypes 475 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 476 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 477 478 if (Linkage == GVA_Internal) 479 return llvm::Function::InternalLinkage; 480 481 if (D->hasAttr<DLLExportAttr>()) 482 return llvm::Function::DLLExportLinkage; 483 484 if (D->hasAttr<WeakAttr>()) 485 return llvm::Function::WeakAnyLinkage; 486 487 // In C99 mode, 'inline' functions are guaranteed to have a strong 488 // definition somewhere else, so we can use available_externally linkage. 489 if (Linkage == GVA_C99Inline) 490 return llvm::Function::AvailableExternallyLinkage; 491 492 // Note that Apple's kernel linker doesn't support symbol 493 // coalescing, so we need to avoid linkonce and weak linkages there. 494 // Normally, this means we just map to internal, but for explicit 495 // instantiations we'll map to external. 496 497 // In C++, the compiler has to emit a definition in every translation unit 498 // that references the function. We should use linkonce_odr because 499 // a) if all references in this translation unit are optimized away, we 500 // don't need to codegen it. b) if the function persists, it needs to be 501 // merged with other definitions. c) C++ has the ODR, so we know the 502 // definition is dependable. 503 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 504 return !Context.getLangOpts().AppleKext 505 ? llvm::Function::LinkOnceODRLinkage 506 : llvm::Function::InternalLinkage; 507 508 // An explicit instantiation of a template has weak linkage, since 509 // explicit instantiations can occur in multiple translation units 510 // and must all be equivalent. However, we are not allowed to 511 // throw away these explicit instantiations. 512 if (Linkage == GVA_ExplicitTemplateInstantiation) 513 return !Context.getLangOpts().AppleKext 514 ? llvm::Function::WeakODRLinkage 515 : llvm::Function::ExternalLinkage; 516 517 // Otherwise, we have strong external linkage. 518 assert(Linkage == GVA_StrongExternal); 519 return llvm::Function::ExternalLinkage; 520 } 521 522 523 /// SetFunctionDefinitionAttributes - Set attributes for a global. 524 /// 525 /// FIXME: This is currently only done for aliases and functions, but not for 526 /// variables (these details are set in EmitGlobalVarDefinition for variables). 527 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 528 llvm::GlobalValue *GV) { 529 SetCommonAttributes(D, GV); 530 } 531 532 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 533 const CGFunctionInfo &Info, 534 llvm::Function *F) { 535 unsigned CallingConv; 536 AttributeListType AttributeList; 537 ConstructAttributeList(Info, D, AttributeList, CallingConv); 538 F->setAttributes(llvm::AttrListPtr::get(AttributeList)); 539 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 540 } 541 542 /// Determines whether the language options require us to model 543 /// unwind exceptions. We treat -fexceptions as mandating this 544 /// except under the fragile ObjC ABI with only ObjC exceptions 545 /// enabled. This means, for example, that C with -fexceptions 546 /// enables this. 547 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 548 // If exceptions are completely disabled, obviously this is false. 549 if (!LangOpts.Exceptions) return false; 550 551 // If C++ exceptions are enabled, this is true. 552 if (LangOpts.CXXExceptions) return true; 553 554 // If ObjC exceptions are enabled, this depends on the ABI. 555 if (LangOpts.ObjCExceptions) { 556 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 557 } 558 559 return true; 560 } 561 562 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 563 llvm::Function *F) { 564 if (CodeGenOpts.UnwindTables) 565 F->setHasUWTable(); 566 567 if (!hasUnwindExceptions(LangOpts)) 568 F->addFnAttr(llvm::Attributes::NoUnwind); 569 570 if (D->hasAttr<NakedAttr>()) { 571 // Naked implies noinline: we should not be inlining such functions. 572 F->addFnAttr(llvm::Attributes::Naked); 573 F->addFnAttr(llvm::Attributes::NoInline); 574 } 575 576 if (D->hasAttr<NoInlineAttr>()) 577 F->addFnAttr(llvm::Attributes::NoInline); 578 579 // (noinline wins over always_inline, and we can't specify both in IR) 580 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 581 !F->getFnAttributes().hasAttribute(llvm::Attributes::NoInline)) 582 F->addFnAttr(llvm::Attributes::AlwaysInline); 583 584 // FIXME: Communicate hot and cold attributes to LLVM more directly. 585 if (D->hasAttr<ColdAttr>()) 586 F->addFnAttr(llvm::Attributes::OptimizeForSize); 587 588 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 589 F->setUnnamedAddr(true); 590 591 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 592 if (MD->isVirtual()) 593 F->setUnnamedAddr(true); 594 595 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 596 F->addFnAttr(llvm::Attributes::StackProtect); 597 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 598 F->addFnAttr(llvm::Attributes::StackProtectReq); 599 600 if (LangOpts.AddressSanitizer) { 601 // When AddressSanitizer is enabled, set AddressSafety attribute 602 // unless __attribute__((no_address_safety_analysis)) is used. 603 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 604 F->addFnAttr(llvm::Attributes::AddressSafety); 605 } 606 607 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 608 if (alignment) 609 F->setAlignment(alignment); 610 611 // C++ ABI requires 2-byte alignment for member functions. 612 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 613 F->setAlignment(2); 614 } 615 616 void CodeGenModule::SetCommonAttributes(const Decl *D, 617 llvm::GlobalValue *GV) { 618 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 619 setGlobalVisibility(GV, ND); 620 else 621 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 622 623 if (D->hasAttr<UsedAttr>()) 624 AddUsedGlobal(GV); 625 626 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 627 GV->setSection(SA->getName()); 628 629 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 630 } 631 632 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 633 llvm::Function *F, 634 const CGFunctionInfo &FI) { 635 SetLLVMFunctionAttributes(D, FI, F); 636 SetLLVMFunctionAttributesForDefinition(D, F); 637 638 F->setLinkage(llvm::Function::InternalLinkage); 639 640 SetCommonAttributes(D, F); 641 } 642 643 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 644 llvm::Function *F, 645 bool IsIncompleteFunction) { 646 if (unsigned IID = F->getIntrinsicID()) { 647 // If this is an intrinsic function, set the function's attributes 648 // to the intrinsic's attributes. 649 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 650 (llvm::Intrinsic::ID)IID)); 651 return; 652 } 653 654 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 655 656 if (!IsIncompleteFunction) 657 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 658 659 // Only a few attributes are set on declarations; these may later be 660 // overridden by a definition. 661 662 if (FD->hasAttr<DLLImportAttr>()) { 663 F->setLinkage(llvm::Function::DLLImportLinkage); 664 } else if (FD->hasAttr<WeakAttr>() || 665 FD->isWeakImported()) { 666 // "extern_weak" is overloaded in LLVM; we probably should have 667 // separate linkage types for this. 668 F->setLinkage(llvm::Function::ExternalWeakLinkage); 669 } else { 670 F->setLinkage(llvm::Function::ExternalLinkage); 671 672 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 673 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 674 F->setVisibility(GetLLVMVisibility(LV.visibility())); 675 } 676 } 677 678 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 679 F->setSection(SA->getName()); 680 } 681 682 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 683 assert(!GV->isDeclaration() && 684 "Only globals with definition can force usage."); 685 LLVMUsed.push_back(GV); 686 } 687 688 void CodeGenModule::EmitLLVMUsed() { 689 // Don't create llvm.used if there is no need. 690 if (LLVMUsed.empty()) 691 return; 692 693 // Convert LLVMUsed to what ConstantArray needs. 694 SmallVector<llvm::Constant*, 8> UsedArray; 695 UsedArray.resize(LLVMUsed.size()); 696 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 697 UsedArray[i] = 698 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 699 Int8PtrTy); 700 } 701 702 if (UsedArray.empty()) 703 return; 704 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 705 706 llvm::GlobalVariable *GV = 707 new llvm::GlobalVariable(getModule(), ATy, false, 708 llvm::GlobalValue::AppendingLinkage, 709 llvm::ConstantArray::get(ATy, UsedArray), 710 "llvm.used"); 711 712 GV->setSection("llvm.metadata"); 713 } 714 715 void CodeGenModule::EmitDeferred() { 716 // Emit code for any potentially referenced deferred decls. Since a 717 // previously unused static decl may become used during the generation of code 718 // for a static function, iterate until no changes are made. 719 720 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 721 if (!DeferredVTables.empty()) { 722 const CXXRecordDecl *RD = DeferredVTables.back(); 723 DeferredVTables.pop_back(); 724 getCXXABI().EmitVTables(RD); 725 continue; 726 } 727 728 GlobalDecl D = DeferredDeclsToEmit.back(); 729 DeferredDeclsToEmit.pop_back(); 730 731 // Check to see if we've already emitted this. This is necessary 732 // for a couple of reasons: first, decls can end up in the 733 // deferred-decls queue multiple times, and second, decls can end 734 // up with definitions in unusual ways (e.g. by an extern inline 735 // function acquiring a strong function redefinition). Just 736 // ignore these cases. 737 // 738 // TODO: That said, looking this up multiple times is very wasteful. 739 StringRef Name = getMangledName(D); 740 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 741 assert(CGRef && "Deferred decl wasn't referenced?"); 742 743 if (!CGRef->isDeclaration()) 744 continue; 745 746 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 747 // purposes an alias counts as a definition. 748 if (isa<llvm::GlobalAlias>(CGRef)) 749 continue; 750 751 // Otherwise, emit the definition and move on to the next one. 752 EmitGlobalDefinition(D); 753 } 754 } 755 756 void CodeGenModule::EmitGlobalAnnotations() { 757 if (Annotations.empty()) 758 return; 759 760 // Create a new global variable for the ConstantStruct in the Module. 761 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 762 Annotations[0]->getType(), Annotations.size()), Annotations); 763 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 764 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 765 "llvm.global.annotations"); 766 gv->setSection(AnnotationSection); 767 } 768 769 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 770 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 771 if (i != AnnotationStrings.end()) 772 return i->second; 773 774 // Not found yet, create a new global. 775 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 776 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 777 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 778 gv->setSection(AnnotationSection); 779 gv->setUnnamedAddr(true); 780 AnnotationStrings[Str] = gv; 781 return gv; 782 } 783 784 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 785 SourceManager &SM = getContext().getSourceManager(); 786 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 787 if (PLoc.isValid()) 788 return EmitAnnotationString(PLoc.getFilename()); 789 return EmitAnnotationString(SM.getBufferName(Loc)); 790 } 791 792 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 793 SourceManager &SM = getContext().getSourceManager(); 794 PresumedLoc PLoc = SM.getPresumedLoc(L); 795 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 796 SM.getExpansionLineNumber(L); 797 return llvm::ConstantInt::get(Int32Ty, LineNo); 798 } 799 800 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 801 const AnnotateAttr *AA, 802 SourceLocation L) { 803 // Get the globals for file name, annotation, and the line number. 804 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 805 *UnitGV = EmitAnnotationUnit(L), 806 *LineNoCst = EmitAnnotationLineNo(L); 807 808 // Create the ConstantStruct for the global annotation. 809 llvm::Constant *Fields[4] = { 810 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 811 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 812 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 813 LineNoCst 814 }; 815 return llvm::ConstantStruct::getAnon(Fields); 816 } 817 818 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 819 llvm::GlobalValue *GV) { 820 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 821 // Get the struct elements for these annotations. 822 for (specific_attr_iterator<AnnotateAttr> 823 ai = D->specific_attr_begin<AnnotateAttr>(), 824 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 825 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 826 } 827 828 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 829 // Never defer when EmitAllDecls is specified. 830 if (LangOpts.EmitAllDecls) 831 return false; 832 833 return !getContext().DeclMustBeEmitted(Global); 834 } 835 836 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 837 const CXXUuidofExpr* E) { 838 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 839 // well-formed. 840 StringRef Uuid; 841 if (E->isTypeOperand()) 842 Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid(); 843 else { 844 // Special case: __uuidof(0) means an all-zero GUID. 845 Expr *Op = E->getExprOperand(); 846 if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 847 Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid(); 848 else 849 Uuid = "00000000-0000-0000-0000-000000000000"; 850 } 851 std::string Name = "__uuid_" + Uuid.str(); 852 853 // Look for an existing global. 854 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 855 return GV; 856 857 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 858 assert(Init && "failed to initialize as constant"); 859 860 // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the 861 // first field is declared as "long", which for many targets is 8 bytes. 862 // Those architectures are not supported. (With the MS abi, long is always 4 863 // bytes.) 864 llvm::Type *GuidType = getTypes().ConvertType(E->getType()); 865 if (Init->getType() != GuidType) { 866 DiagnosticsEngine &Diags = getDiags(); 867 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 868 "__uuidof codegen is not supported on this architecture"); 869 Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange(); 870 Init = llvm::UndefValue::get(GuidType); 871 } 872 873 llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType, 874 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name); 875 GV->setUnnamedAddr(true); 876 return GV; 877 } 878 879 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 880 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 881 assert(AA && "No alias?"); 882 883 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 884 885 // See if there is already something with the target's name in the module. 886 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 887 if (Entry) { 888 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 889 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 890 } 891 892 llvm::Constant *Aliasee; 893 if (isa<llvm::FunctionType>(DeclTy)) 894 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 895 GlobalDecl(cast<FunctionDecl>(VD)), 896 /*ForVTable=*/false); 897 else 898 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 899 llvm::PointerType::getUnqual(DeclTy), 0); 900 901 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 902 F->setLinkage(llvm::Function::ExternalWeakLinkage); 903 WeakRefReferences.insert(F); 904 905 return Aliasee; 906 } 907 908 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 909 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 910 911 // Weak references don't produce any output by themselves. 912 if (Global->hasAttr<WeakRefAttr>()) 913 return; 914 915 // If this is an alias definition (which otherwise looks like a declaration) 916 // emit it now. 917 if (Global->hasAttr<AliasAttr>()) 918 return EmitAliasDefinition(GD); 919 920 // If this is CUDA, be selective about which declarations we emit. 921 if (LangOpts.CUDA) { 922 if (CodeGenOpts.CUDAIsDevice) { 923 if (!Global->hasAttr<CUDADeviceAttr>() && 924 !Global->hasAttr<CUDAGlobalAttr>() && 925 !Global->hasAttr<CUDAConstantAttr>() && 926 !Global->hasAttr<CUDASharedAttr>()) 927 return; 928 } else { 929 if (!Global->hasAttr<CUDAHostAttr>() && ( 930 Global->hasAttr<CUDADeviceAttr>() || 931 Global->hasAttr<CUDAConstantAttr>() || 932 Global->hasAttr<CUDASharedAttr>())) 933 return; 934 } 935 } 936 937 // Ignore declarations, they will be emitted on their first use. 938 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 939 // Forward declarations are emitted lazily on first use. 940 if (!FD->doesThisDeclarationHaveABody()) { 941 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 942 return; 943 944 const FunctionDecl *InlineDefinition = 0; 945 FD->getBody(InlineDefinition); 946 947 StringRef MangledName = getMangledName(GD); 948 DeferredDecls.erase(MangledName); 949 EmitGlobalDefinition(InlineDefinition); 950 return; 951 } 952 } else { 953 const VarDecl *VD = cast<VarDecl>(Global); 954 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 955 956 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 957 return; 958 } 959 960 // Defer code generation when possible if this is a static definition, inline 961 // function etc. These we only want to emit if they are used. 962 if (!MayDeferGeneration(Global)) { 963 // Emit the definition if it can't be deferred. 964 EmitGlobalDefinition(GD); 965 return; 966 } 967 968 // If we're deferring emission of a C++ variable with an 969 // initializer, remember the order in which it appeared in the file. 970 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 971 cast<VarDecl>(Global)->hasInit()) { 972 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 973 CXXGlobalInits.push_back(0); 974 } 975 976 // If the value has already been used, add it directly to the 977 // DeferredDeclsToEmit list. 978 StringRef MangledName = getMangledName(GD); 979 if (GetGlobalValue(MangledName)) 980 DeferredDeclsToEmit.push_back(GD); 981 else { 982 // Otherwise, remember that we saw a deferred decl with this name. The 983 // first use of the mangled name will cause it to move into 984 // DeferredDeclsToEmit. 985 DeferredDecls[MangledName] = GD; 986 } 987 } 988 989 namespace { 990 struct FunctionIsDirectlyRecursive : 991 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 992 const StringRef Name; 993 const Builtin::Context &BI; 994 bool Result; 995 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 996 Name(N), BI(C), Result(false) { 997 } 998 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 999 1000 bool TraverseCallExpr(CallExpr *E) { 1001 const FunctionDecl *FD = E->getDirectCallee(); 1002 if (!FD) 1003 return true; 1004 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1005 if (Attr && Name == Attr->getLabel()) { 1006 Result = true; 1007 return false; 1008 } 1009 unsigned BuiltinID = FD->getBuiltinID(); 1010 if (!BuiltinID) 1011 return true; 1012 StringRef BuiltinName = BI.GetName(BuiltinID); 1013 if (BuiltinName.startswith("__builtin_") && 1014 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1015 Result = true; 1016 return false; 1017 } 1018 return true; 1019 } 1020 }; 1021 } 1022 1023 // isTriviallyRecursive - Check if this function calls another 1024 // decl that, because of the asm attribute or the other decl being a builtin, 1025 // ends up pointing to itself. 1026 bool 1027 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1028 StringRef Name; 1029 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1030 // asm labels are a special kind of mangling we have to support. 1031 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1032 if (!Attr) 1033 return false; 1034 Name = Attr->getLabel(); 1035 } else { 1036 Name = FD->getName(); 1037 } 1038 1039 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1040 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1041 return Walker.Result; 1042 } 1043 1044 bool 1045 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 1046 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 1047 return true; 1048 if (CodeGenOpts.OptimizationLevel == 0 && 1049 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1050 return false; 1051 // PR9614. Avoid cases where the source code is lying to us. An available 1052 // externally function should have an equivalent function somewhere else, 1053 // but a function that calls itself is clearly not equivalent to the real 1054 // implementation. 1055 // This happens in glibc's btowc and in some configure checks. 1056 return !isTriviallyRecursive(F); 1057 } 1058 1059 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1060 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1061 1062 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1063 Context.getSourceManager(), 1064 "Generating code for declaration"); 1065 1066 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1067 // At -O0, don't generate IR for functions with available_externally 1068 // linkage. 1069 if (!shouldEmitFunction(Function)) 1070 return; 1071 1072 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1073 // Make sure to emit the definition(s) before we emit the thunks. 1074 // This is necessary for the generation of certain thunks. 1075 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1076 EmitCXXConstructor(CD, GD.getCtorType()); 1077 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1078 EmitCXXDestructor(DD, GD.getDtorType()); 1079 else 1080 EmitGlobalFunctionDefinition(GD); 1081 1082 if (Method->isVirtual()) 1083 getVTables().EmitThunks(GD); 1084 1085 return; 1086 } 1087 1088 return EmitGlobalFunctionDefinition(GD); 1089 } 1090 1091 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1092 return EmitGlobalVarDefinition(VD); 1093 1094 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1095 } 1096 1097 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1098 /// module, create and return an llvm Function with the specified type. If there 1099 /// is something in the module with the specified name, return it potentially 1100 /// bitcasted to the right type. 1101 /// 1102 /// If D is non-null, it specifies a decl that correspond to this. This is used 1103 /// to set the attributes on the function when it is first created. 1104 llvm::Constant * 1105 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1106 llvm::Type *Ty, 1107 GlobalDecl D, bool ForVTable, 1108 llvm::Attributes ExtraAttrs) { 1109 // Lookup the entry, lazily creating it if necessary. 1110 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1111 if (Entry) { 1112 if (WeakRefReferences.erase(Entry)) { 1113 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1114 if (FD && !FD->hasAttr<WeakAttr>()) 1115 Entry->setLinkage(llvm::Function::ExternalLinkage); 1116 } 1117 1118 if (Entry->getType()->getElementType() == Ty) 1119 return Entry; 1120 1121 // Make sure the result is of the correct type. 1122 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1123 } 1124 1125 // This function doesn't have a complete type (for example, the return 1126 // type is an incomplete struct). Use a fake type instead, and make 1127 // sure not to try to set attributes. 1128 bool IsIncompleteFunction = false; 1129 1130 llvm::FunctionType *FTy; 1131 if (isa<llvm::FunctionType>(Ty)) { 1132 FTy = cast<llvm::FunctionType>(Ty); 1133 } else { 1134 FTy = llvm::FunctionType::get(VoidTy, false); 1135 IsIncompleteFunction = true; 1136 } 1137 1138 llvm::Function *F = llvm::Function::Create(FTy, 1139 llvm::Function::ExternalLinkage, 1140 MangledName, &getModule()); 1141 assert(F->getName() == MangledName && "name was uniqued!"); 1142 if (D.getDecl()) 1143 SetFunctionAttributes(D, F, IsIncompleteFunction); 1144 if (ExtraAttrs.hasAttributes()) 1145 F->addAttribute(llvm::AttrListPtr::FunctionIndex, ExtraAttrs); 1146 1147 // This is the first use or definition of a mangled name. If there is a 1148 // deferred decl with this name, remember that we need to emit it at the end 1149 // of the file. 1150 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1151 if (DDI != DeferredDecls.end()) { 1152 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1153 // list, and remove it from DeferredDecls (since we don't need it anymore). 1154 DeferredDeclsToEmit.push_back(DDI->second); 1155 DeferredDecls.erase(DDI); 1156 1157 // Otherwise, there are cases we have to worry about where we're 1158 // using a declaration for which we must emit a definition but where 1159 // we might not find a top-level definition: 1160 // - member functions defined inline in their classes 1161 // - friend functions defined inline in some class 1162 // - special member functions with implicit definitions 1163 // If we ever change our AST traversal to walk into class methods, 1164 // this will be unnecessary. 1165 // 1166 // We also don't emit a definition for a function if it's going to be an entry 1167 // in a vtable, unless it's already marked as used. 1168 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1169 // Look for a declaration that's lexically in a record. 1170 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1171 FD = FD->getMostRecentDecl(); 1172 do { 1173 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1174 if (FD->isImplicit() && !ForVTable) { 1175 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1176 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1177 break; 1178 } else if (FD->doesThisDeclarationHaveABody()) { 1179 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1180 break; 1181 } 1182 } 1183 FD = FD->getPreviousDecl(); 1184 } while (FD); 1185 } 1186 1187 // Make sure the result is of the requested type. 1188 if (!IsIncompleteFunction) { 1189 assert(F->getType()->getElementType() == Ty); 1190 return F; 1191 } 1192 1193 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1194 return llvm::ConstantExpr::getBitCast(F, PTy); 1195 } 1196 1197 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1198 /// non-null, then this function will use the specified type if it has to 1199 /// create it (this occurs when we see a definition of the function). 1200 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1201 llvm::Type *Ty, 1202 bool ForVTable) { 1203 // If there was no specific requested type, just convert it now. 1204 if (!Ty) 1205 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1206 1207 StringRef MangledName = getMangledName(GD); 1208 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1209 } 1210 1211 /// CreateRuntimeFunction - Create a new runtime function with the specified 1212 /// type and name. 1213 llvm::Constant * 1214 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1215 StringRef Name, 1216 llvm::Attributes ExtraAttrs) { 1217 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1218 ExtraAttrs); 1219 } 1220 1221 /// isTypeConstant - Determine whether an object of this type can be emitted 1222 /// as a constant. 1223 /// 1224 /// If ExcludeCtor is true, the duration when the object's constructor runs 1225 /// will not be considered. The caller will need to verify that the object is 1226 /// not written to during its construction. 1227 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1228 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1229 return false; 1230 1231 if (Context.getLangOpts().CPlusPlus) { 1232 if (const CXXRecordDecl *Record 1233 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1234 return ExcludeCtor && !Record->hasMutableFields() && 1235 Record->hasTrivialDestructor(); 1236 } 1237 1238 return true; 1239 } 1240 1241 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1242 /// create and return an llvm GlobalVariable with the specified type. If there 1243 /// is something in the module with the specified name, return it potentially 1244 /// bitcasted to the right type. 1245 /// 1246 /// If D is non-null, it specifies a decl that correspond to this. This is used 1247 /// to set the attributes on the global when it is first created. 1248 llvm::Constant * 1249 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1250 llvm::PointerType *Ty, 1251 const VarDecl *D, 1252 bool UnnamedAddr) { 1253 // Lookup the entry, lazily creating it if necessary. 1254 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1255 if (Entry) { 1256 if (WeakRefReferences.erase(Entry)) { 1257 if (D && !D->hasAttr<WeakAttr>()) 1258 Entry->setLinkage(llvm::Function::ExternalLinkage); 1259 } 1260 1261 if (UnnamedAddr) 1262 Entry->setUnnamedAddr(true); 1263 1264 if (Entry->getType() == Ty) 1265 return Entry; 1266 1267 // Make sure the result is of the correct type. 1268 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1269 } 1270 1271 // This is the first use or definition of a mangled name. If there is a 1272 // deferred decl with this name, remember that we need to emit it at the end 1273 // of the file. 1274 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1275 if (DDI != DeferredDecls.end()) { 1276 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1277 // list, and remove it from DeferredDecls (since we don't need it anymore). 1278 DeferredDeclsToEmit.push_back(DDI->second); 1279 DeferredDecls.erase(DDI); 1280 } 1281 1282 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1283 llvm::GlobalVariable *GV = 1284 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1285 llvm::GlobalValue::ExternalLinkage, 1286 0, MangledName, 0, 1287 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1288 1289 // Handle things which are present even on external declarations. 1290 if (D) { 1291 // FIXME: This code is overly simple and should be merged with other global 1292 // handling. 1293 GV->setConstant(isTypeConstant(D->getType(), false)); 1294 1295 // Set linkage and visibility in case we never see a definition. 1296 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1297 if (LV.linkage() != ExternalLinkage) { 1298 // Don't set internal linkage on declarations. 1299 } else { 1300 if (D->hasAttr<DLLImportAttr>()) 1301 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1302 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1303 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1304 1305 // Set visibility on a declaration only if it's explicit. 1306 if (LV.visibilityExplicit()) 1307 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1308 } 1309 1310 if (D->isThreadSpecified()) 1311 setTLSMode(GV, *D); 1312 } 1313 1314 if (AddrSpace != Ty->getAddressSpace()) 1315 return llvm::ConstantExpr::getBitCast(GV, Ty); 1316 else 1317 return GV; 1318 } 1319 1320 1321 llvm::GlobalVariable * 1322 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1323 llvm::Type *Ty, 1324 llvm::GlobalValue::LinkageTypes Linkage) { 1325 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1326 llvm::GlobalVariable *OldGV = 0; 1327 1328 1329 if (GV) { 1330 // Check if the variable has the right type. 1331 if (GV->getType()->getElementType() == Ty) 1332 return GV; 1333 1334 // Because C++ name mangling, the only way we can end up with an already 1335 // existing global with the same name is if it has been declared extern "C". 1336 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1337 OldGV = GV; 1338 } 1339 1340 // Create a new variable. 1341 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1342 Linkage, 0, Name); 1343 1344 if (OldGV) { 1345 // Replace occurrences of the old variable if needed. 1346 GV->takeName(OldGV); 1347 1348 if (!OldGV->use_empty()) { 1349 llvm::Constant *NewPtrForOldDecl = 1350 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1351 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1352 } 1353 1354 OldGV->eraseFromParent(); 1355 } 1356 1357 return GV; 1358 } 1359 1360 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1361 /// given global variable. If Ty is non-null and if the global doesn't exist, 1362 /// then it will be created with the specified type instead of whatever the 1363 /// normal requested type would be. 1364 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1365 llvm::Type *Ty) { 1366 assert(D->hasGlobalStorage() && "Not a global variable"); 1367 QualType ASTTy = D->getType(); 1368 if (Ty == 0) 1369 Ty = getTypes().ConvertTypeForMem(ASTTy); 1370 1371 llvm::PointerType *PTy = 1372 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1373 1374 StringRef MangledName = getMangledName(D); 1375 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1376 } 1377 1378 /// CreateRuntimeVariable - Create a new runtime global variable with the 1379 /// specified type and name. 1380 llvm::Constant * 1381 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1382 StringRef Name) { 1383 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1384 true); 1385 } 1386 1387 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1388 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1389 1390 if (MayDeferGeneration(D)) { 1391 // If we have not seen a reference to this variable yet, place it 1392 // into the deferred declarations table to be emitted if needed 1393 // later. 1394 StringRef MangledName = getMangledName(D); 1395 if (!GetGlobalValue(MangledName)) { 1396 DeferredDecls[MangledName] = D; 1397 return; 1398 } 1399 } 1400 1401 // The tentative definition is the only definition. 1402 EmitGlobalVarDefinition(D); 1403 } 1404 1405 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1406 if (DefinitionRequired) 1407 getCXXABI().EmitVTables(Class); 1408 } 1409 1410 llvm::GlobalVariable::LinkageTypes 1411 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1412 if (RD->getLinkage() != ExternalLinkage) 1413 return llvm::GlobalVariable::InternalLinkage; 1414 1415 if (const CXXMethodDecl *KeyFunction 1416 = RD->getASTContext().getKeyFunction(RD)) { 1417 // If this class has a key function, use that to determine the linkage of 1418 // the vtable. 1419 const FunctionDecl *Def = 0; 1420 if (KeyFunction->hasBody(Def)) 1421 KeyFunction = cast<CXXMethodDecl>(Def); 1422 1423 switch (KeyFunction->getTemplateSpecializationKind()) { 1424 case TSK_Undeclared: 1425 case TSK_ExplicitSpecialization: 1426 // When compiling with optimizations turned on, we emit all vtables, 1427 // even if the key function is not defined in the current translation 1428 // unit. If this is the case, use available_externally linkage. 1429 if (!Def && CodeGenOpts.OptimizationLevel) 1430 return llvm::GlobalVariable::AvailableExternallyLinkage; 1431 1432 if (KeyFunction->isInlined()) 1433 return !Context.getLangOpts().AppleKext ? 1434 llvm::GlobalVariable::LinkOnceODRLinkage : 1435 llvm::Function::InternalLinkage; 1436 1437 return llvm::GlobalVariable::ExternalLinkage; 1438 1439 case TSK_ImplicitInstantiation: 1440 return !Context.getLangOpts().AppleKext ? 1441 llvm::GlobalVariable::LinkOnceODRLinkage : 1442 llvm::Function::InternalLinkage; 1443 1444 case TSK_ExplicitInstantiationDefinition: 1445 return !Context.getLangOpts().AppleKext ? 1446 llvm::GlobalVariable::WeakODRLinkage : 1447 llvm::Function::InternalLinkage; 1448 1449 case TSK_ExplicitInstantiationDeclaration: 1450 // FIXME: Use available_externally linkage. However, this currently 1451 // breaks LLVM's build due to undefined symbols. 1452 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1453 return !Context.getLangOpts().AppleKext ? 1454 llvm::GlobalVariable::LinkOnceODRLinkage : 1455 llvm::Function::InternalLinkage; 1456 } 1457 } 1458 1459 if (Context.getLangOpts().AppleKext) 1460 return llvm::Function::InternalLinkage; 1461 1462 switch (RD->getTemplateSpecializationKind()) { 1463 case TSK_Undeclared: 1464 case TSK_ExplicitSpecialization: 1465 case TSK_ImplicitInstantiation: 1466 // FIXME: Use available_externally linkage. However, this currently 1467 // breaks LLVM's build due to undefined symbols. 1468 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1469 case TSK_ExplicitInstantiationDeclaration: 1470 return llvm::GlobalVariable::LinkOnceODRLinkage; 1471 1472 case TSK_ExplicitInstantiationDefinition: 1473 return llvm::GlobalVariable::WeakODRLinkage; 1474 } 1475 1476 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1477 } 1478 1479 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1480 return Context.toCharUnitsFromBits( 1481 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1482 } 1483 1484 llvm::Constant * 1485 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1486 const Expr *rawInit) { 1487 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1488 if (const ExprWithCleanups *withCleanups = 1489 dyn_cast<ExprWithCleanups>(rawInit)) { 1490 cleanups = withCleanups->getObjects(); 1491 rawInit = withCleanups->getSubExpr(); 1492 } 1493 1494 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1495 if (!init || !init->initializesStdInitializerList() || 1496 init->getNumInits() == 0) 1497 return 0; 1498 1499 ASTContext &ctx = getContext(); 1500 unsigned numInits = init->getNumInits(); 1501 // FIXME: This check is here because we would otherwise silently miscompile 1502 // nested global std::initializer_lists. Better would be to have a real 1503 // implementation. 1504 for (unsigned i = 0; i < numInits; ++i) { 1505 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1506 if (inner && inner->initializesStdInitializerList()) { 1507 ErrorUnsupported(inner, "nested global std::initializer_list"); 1508 return 0; 1509 } 1510 } 1511 1512 // Synthesize a fake VarDecl for the array and initialize that. 1513 QualType elementType = init->getInit(0)->getType(); 1514 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1515 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1516 ArrayType::Normal, 0); 1517 1518 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1519 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1520 arrayType, D->getLocation()); 1521 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1522 D->getDeclContext()), 1523 D->getLocStart(), D->getLocation(), 1524 name, arrayType, sourceInfo, 1525 SC_Static, SC_Static); 1526 1527 // Now clone the InitListExpr to initialize the array instead. 1528 // Incredible hack: we want to use the existing InitListExpr here, so we need 1529 // to tell it that it no longer initializes a std::initializer_list. 1530 ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(), 1531 init->getNumInits()); 1532 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits, 1533 init->getRBraceLoc()); 1534 arrayInit->setType(arrayType); 1535 1536 if (!cleanups.empty()) 1537 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1538 1539 backingArray->setInit(arrayInit); 1540 1541 // Emit the definition of the array. 1542 EmitGlobalVarDefinition(backingArray); 1543 1544 // Inspect the initializer list to validate it and determine its type. 1545 // FIXME: doing this every time is probably inefficient; caching would be nice 1546 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1547 RecordDecl::field_iterator field = record->field_begin(); 1548 if (field == record->field_end()) { 1549 ErrorUnsupported(D, "weird std::initializer_list"); 1550 return 0; 1551 } 1552 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1553 // Start pointer. 1554 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1555 ErrorUnsupported(D, "weird std::initializer_list"); 1556 return 0; 1557 } 1558 ++field; 1559 if (field == record->field_end()) { 1560 ErrorUnsupported(D, "weird std::initializer_list"); 1561 return 0; 1562 } 1563 bool isStartEnd = false; 1564 if (ctx.hasSameType(field->getType(), elementPtr)) { 1565 // End pointer. 1566 isStartEnd = true; 1567 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1568 ErrorUnsupported(D, "weird std::initializer_list"); 1569 return 0; 1570 } 1571 1572 // Now build an APValue representing the std::initializer_list. 1573 APValue initListValue(APValue::UninitStruct(), 0, 2); 1574 APValue &startField = initListValue.getStructField(0); 1575 APValue::LValuePathEntry startOffsetPathEntry; 1576 startOffsetPathEntry.ArrayIndex = 0; 1577 startField = APValue(APValue::LValueBase(backingArray), 1578 CharUnits::fromQuantity(0), 1579 llvm::makeArrayRef(startOffsetPathEntry), 1580 /*IsOnePastTheEnd=*/false, 0); 1581 1582 if (isStartEnd) { 1583 APValue &endField = initListValue.getStructField(1); 1584 APValue::LValuePathEntry endOffsetPathEntry; 1585 endOffsetPathEntry.ArrayIndex = numInits; 1586 endField = APValue(APValue::LValueBase(backingArray), 1587 ctx.getTypeSizeInChars(elementType) * numInits, 1588 llvm::makeArrayRef(endOffsetPathEntry), 1589 /*IsOnePastTheEnd=*/true, 0); 1590 } else { 1591 APValue &sizeField = initListValue.getStructField(1); 1592 sizeField = APValue(llvm::APSInt(numElements)); 1593 } 1594 1595 // Emit the constant for the initializer_list. 1596 llvm::Constant *llvmInit = 1597 EmitConstantValueForMemory(initListValue, D->getType()); 1598 assert(llvmInit && "failed to initialize as constant"); 1599 return llvmInit; 1600 } 1601 1602 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1603 unsigned AddrSpace) { 1604 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1605 if (D->hasAttr<CUDAConstantAttr>()) 1606 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1607 else if (D->hasAttr<CUDASharedAttr>()) 1608 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1609 else 1610 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1611 } 1612 1613 return AddrSpace; 1614 } 1615 1616 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1617 llvm::Constant *Init = 0; 1618 QualType ASTTy = D->getType(); 1619 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1620 bool NeedsGlobalCtor = false; 1621 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1622 1623 const VarDecl *InitDecl; 1624 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1625 1626 if (!InitExpr) { 1627 // This is a tentative definition; tentative definitions are 1628 // implicitly initialized with { 0 }. 1629 // 1630 // Note that tentative definitions are only emitted at the end of 1631 // a translation unit, so they should never have incomplete 1632 // type. In addition, EmitTentativeDefinition makes sure that we 1633 // never attempt to emit a tentative definition if a real one 1634 // exists. A use may still exists, however, so we still may need 1635 // to do a RAUW. 1636 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1637 Init = EmitNullConstant(D->getType()); 1638 } else { 1639 // If this is a std::initializer_list, emit the special initializer. 1640 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1641 // An empty init list will perform zero-initialization, which happens 1642 // to be exactly what we want. 1643 // FIXME: It does so in a global constructor, which is *not* what we 1644 // want. 1645 1646 if (!Init) { 1647 initializedGlobalDecl = GlobalDecl(D); 1648 Init = EmitConstantInit(*InitDecl); 1649 } 1650 if (!Init) { 1651 QualType T = InitExpr->getType(); 1652 if (D->getType()->isReferenceType()) 1653 T = D->getType(); 1654 1655 if (getLangOpts().CPlusPlus) { 1656 Init = EmitNullConstant(T); 1657 NeedsGlobalCtor = true; 1658 } else { 1659 ErrorUnsupported(D, "static initializer"); 1660 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1661 } 1662 } else { 1663 // We don't need an initializer, so remove the entry for the delayed 1664 // initializer position (just in case this entry was delayed) if we 1665 // also don't need to register a destructor. 1666 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1667 DelayedCXXInitPosition.erase(D); 1668 } 1669 } 1670 1671 llvm::Type* InitType = Init->getType(); 1672 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1673 1674 // Strip off a bitcast if we got one back. 1675 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1676 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1677 // all zero index gep. 1678 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1679 Entry = CE->getOperand(0); 1680 } 1681 1682 // Entry is now either a Function or GlobalVariable. 1683 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1684 1685 // We have a definition after a declaration with the wrong type. 1686 // We must make a new GlobalVariable* and update everything that used OldGV 1687 // (a declaration or tentative definition) with the new GlobalVariable* 1688 // (which will be a definition). 1689 // 1690 // This happens if there is a prototype for a global (e.g. 1691 // "extern int x[];") and then a definition of a different type (e.g. 1692 // "int x[10];"). This also happens when an initializer has a different type 1693 // from the type of the global (this happens with unions). 1694 if (GV == 0 || 1695 GV->getType()->getElementType() != InitType || 1696 GV->getType()->getAddressSpace() != 1697 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1698 1699 // Move the old entry aside so that we'll create a new one. 1700 Entry->setName(StringRef()); 1701 1702 // Make a new global with the correct type, this is now guaranteed to work. 1703 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1704 1705 // Replace all uses of the old global with the new global 1706 llvm::Constant *NewPtrForOldDecl = 1707 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1708 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1709 1710 // Erase the old global, since it is no longer used. 1711 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1712 } 1713 1714 if (D->hasAttr<AnnotateAttr>()) 1715 AddGlobalAnnotations(D, GV); 1716 1717 GV->setInitializer(Init); 1718 1719 // If it is safe to mark the global 'constant', do so now. 1720 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1721 isTypeConstant(D->getType(), true)); 1722 1723 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1724 1725 // Set the llvm linkage type as appropriate. 1726 llvm::GlobalValue::LinkageTypes Linkage = 1727 GetLLVMLinkageVarDefinition(D, GV); 1728 GV->setLinkage(Linkage); 1729 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1730 // common vars aren't constant even if declared const. 1731 GV->setConstant(false); 1732 1733 SetCommonAttributes(D, GV); 1734 1735 // Emit the initializer function if necessary. 1736 if (NeedsGlobalCtor || NeedsGlobalDtor) 1737 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1738 1739 // If we are compiling with ASan, add metadata indicating dynamically 1740 // initialized globals. 1741 if (LangOpts.AddressSanitizer && NeedsGlobalCtor) { 1742 llvm::Module &M = getModule(); 1743 1744 llvm::NamedMDNode *DynamicInitializers = 1745 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1746 llvm::Value *GlobalToAdd[] = { GV }; 1747 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1748 DynamicInitializers->addOperand(ThisGlobal); 1749 } 1750 1751 // Emit global variable debug information. 1752 if (CGDebugInfo *DI = getModuleDebugInfo()) 1753 if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1754 DI->EmitGlobalVariable(GV, D); 1755 } 1756 1757 llvm::GlobalValue::LinkageTypes 1758 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1759 llvm::GlobalVariable *GV) { 1760 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1761 if (Linkage == GVA_Internal) 1762 return llvm::Function::InternalLinkage; 1763 else if (D->hasAttr<DLLImportAttr>()) 1764 return llvm::Function::DLLImportLinkage; 1765 else if (D->hasAttr<DLLExportAttr>()) 1766 return llvm::Function::DLLExportLinkage; 1767 else if (D->hasAttr<WeakAttr>()) { 1768 if (GV->isConstant()) 1769 return llvm::GlobalVariable::WeakODRLinkage; 1770 else 1771 return llvm::GlobalVariable::WeakAnyLinkage; 1772 } else if (Linkage == GVA_TemplateInstantiation || 1773 Linkage == GVA_ExplicitTemplateInstantiation) 1774 return llvm::GlobalVariable::WeakODRLinkage; 1775 else if (!getLangOpts().CPlusPlus && 1776 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1777 D->getAttr<CommonAttr>()) && 1778 !D->hasExternalStorage() && !D->getInit() && 1779 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1780 !D->getAttr<WeakImportAttr>()) { 1781 // Thread local vars aren't considered common linkage. 1782 return llvm::GlobalVariable::CommonLinkage; 1783 } 1784 return llvm::GlobalVariable::ExternalLinkage; 1785 } 1786 1787 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1788 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1789 /// existing call uses of the old function in the module, this adjusts them to 1790 /// call the new function directly. 1791 /// 1792 /// This is not just a cleanup: the always_inline pass requires direct calls to 1793 /// functions to be able to inline them. If there is a bitcast in the way, it 1794 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1795 /// run at -O0. 1796 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1797 llvm::Function *NewFn) { 1798 // If we're redefining a global as a function, don't transform it. 1799 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1800 if (OldFn == 0) return; 1801 1802 llvm::Type *NewRetTy = NewFn->getReturnType(); 1803 SmallVector<llvm::Value*, 4> ArgList; 1804 1805 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1806 UI != E; ) { 1807 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1808 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1809 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1810 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1811 llvm::CallSite CS(CI); 1812 if (!CI || !CS.isCallee(I)) continue; 1813 1814 // If the return types don't match exactly, and if the call isn't dead, then 1815 // we can't transform this call. 1816 if (CI->getType() != NewRetTy && !CI->use_empty()) 1817 continue; 1818 1819 // Get the attribute list. 1820 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1821 llvm::AttrListPtr AttrList = CI->getAttributes(); 1822 1823 // Get any return attributes. 1824 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1825 1826 // Add the return attributes. 1827 if (RAttrs.hasAttributes()) 1828 AttrVec.push_back(llvm:: 1829 AttributeWithIndex::get(llvm::AttrListPtr::ReturnIndex, 1830 RAttrs)); 1831 1832 // If the function was passed too few arguments, don't transform. If extra 1833 // arguments were passed, we silently drop them. If any of the types 1834 // mismatch, we don't transform. 1835 unsigned ArgNo = 0; 1836 bool DontTransform = false; 1837 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1838 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1839 if (CS.arg_size() == ArgNo || 1840 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1841 DontTransform = true; 1842 break; 1843 } 1844 1845 // Add any parameter attributes. 1846 llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1); 1847 if (PAttrs.hasAttributes()) 1848 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1849 } 1850 if (DontTransform) 1851 continue; 1852 1853 llvm::Attributes FnAttrs = AttrList.getFnAttributes(); 1854 if (FnAttrs.hasAttributes()) 1855 AttrVec.push_back(llvm:: 1856 AttributeWithIndex::get(llvm::AttrListPtr::FunctionIndex, 1857 FnAttrs)); 1858 1859 // Okay, we can transform this. Create the new call instruction and copy 1860 // over the required information. 1861 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1862 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1863 ArgList.clear(); 1864 if (!NewCall->getType()->isVoidTy()) 1865 NewCall->takeName(CI); 1866 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec)); 1867 NewCall->setCallingConv(CI->getCallingConv()); 1868 1869 // Finally, remove the old call, replacing any uses with the new one. 1870 if (!CI->use_empty()) 1871 CI->replaceAllUsesWith(NewCall); 1872 1873 // Copy debug location attached to CI. 1874 if (!CI->getDebugLoc().isUnknown()) 1875 NewCall->setDebugLoc(CI->getDebugLoc()); 1876 CI->eraseFromParent(); 1877 } 1878 } 1879 1880 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1881 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1882 // If we have a definition, this might be a deferred decl. If the 1883 // instantiation is explicit, make sure we emit it at the end. 1884 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1885 GetAddrOfGlobalVar(VD); 1886 } 1887 1888 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1889 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1890 1891 // Compute the function info and LLVM type. 1892 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1893 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1894 1895 // Get or create the prototype for the function. 1896 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1897 1898 // Strip off a bitcast if we got one back. 1899 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1900 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1901 Entry = CE->getOperand(0); 1902 } 1903 1904 1905 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1906 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1907 1908 // If the types mismatch then we have to rewrite the definition. 1909 assert(OldFn->isDeclaration() && 1910 "Shouldn't replace non-declaration"); 1911 1912 // F is the Function* for the one with the wrong type, we must make a new 1913 // Function* and update everything that used F (a declaration) with the new 1914 // Function* (which will be a definition). 1915 // 1916 // This happens if there is a prototype for a function 1917 // (e.g. "int f()") and then a definition of a different type 1918 // (e.g. "int f(int x)"). Move the old function aside so that it 1919 // doesn't interfere with GetAddrOfFunction. 1920 OldFn->setName(StringRef()); 1921 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1922 1923 // If this is an implementation of a function without a prototype, try to 1924 // replace any existing uses of the function (which may be calls) with uses 1925 // of the new function 1926 if (D->getType()->isFunctionNoProtoType()) { 1927 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1928 OldFn->removeDeadConstantUsers(); 1929 } 1930 1931 // Replace uses of F with the Function we will endow with a body. 1932 if (!Entry->use_empty()) { 1933 llvm::Constant *NewPtrForOldDecl = 1934 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1935 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1936 } 1937 1938 // Ok, delete the old function now, which is dead. 1939 OldFn->eraseFromParent(); 1940 1941 Entry = NewFn; 1942 } 1943 1944 // We need to set linkage and visibility on the function before 1945 // generating code for it because various parts of IR generation 1946 // want to propagate this information down (e.g. to local static 1947 // declarations). 1948 llvm::Function *Fn = cast<llvm::Function>(Entry); 1949 setFunctionLinkage(D, Fn); 1950 1951 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1952 setGlobalVisibility(Fn, D); 1953 1954 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1955 1956 SetFunctionDefinitionAttributes(D, Fn); 1957 SetLLVMFunctionAttributesForDefinition(D, Fn); 1958 1959 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1960 AddGlobalCtor(Fn, CA->getPriority()); 1961 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1962 AddGlobalDtor(Fn, DA->getPriority()); 1963 if (D->hasAttr<AnnotateAttr>()) 1964 AddGlobalAnnotations(D, Fn); 1965 } 1966 1967 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1968 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1969 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1970 assert(AA && "Not an alias?"); 1971 1972 StringRef MangledName = getMangledName(GD); 1973 1974 // If there is a definition in the module, then it wins over the alias. 1975 // This is dubious, but allow it to be safe. Just ignore the alias. 1976 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1977 if (Entry && !Entry->isDeclaration()) 1978 return; 1979 1980 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1981 1982 // Create a reference to the named value. This ensures that it is emitted 1983 // if a deferred decl. 1984 llvm::Constant *Aliasee; 1985 if (isa<llvm::FunctionType>(DeclTy)) 1986 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 1987 /*ForVTable=*/false); 1988 else 1989 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1990 llvm::PointerType::getUnqual(DeclTy), 0); 1991 1992 // Create the new alias itself, but don't set a name yet. 1993 llvm::GlobalValue *GA = 1994 new llvm::GlobalAlias(Aliasee->getType(), 1995 llvm::Function::ExternalLinkage, 1996 "", Aliasee, &getModule()); 1997 1998 if (Entry) { 1999 assert(Entry->isDeclaration()); 2000 2001 // If there is a declaration in the module, then we had an extern followed 2002 // by the alias, as in: 2003 // extern int test6(); 2004 // ... 2005 // int test6() __attribute__((alias("test7"))); 2006 // 2007 // Remove it and replace uses of it with the alias. 2008 GA->takeName(Entry); 2009 2010 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2011 Entry->getType())); 2012 Entry->eraseFromParent(); 2013 } else { 2014 GA->setName(MangledName); 2015 } 2016 2017 // Set attributes which are particular to an alias; this is a 2018 // specialization of the attributes which may be set on a global 2019 // variable/function. 2020 if (D->hasAttr<DLLExportAttr>()) { 2021 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2022 // The dllexport attribute is ignored for undefined symbols. 2023 if (FD->hasBody()) 2024 GA->setLinkage(llvm::Function::DLLExportLinkage); 2025 } else { 2026 GA->setLinkage(llvm::Function::DLLExportLinkage); 2027 } 2028 } else if (D->hasAttr<WeakAttr>() || 2029 D->hasAttr<WeakRefAttr>() || 2030 D->isWeakImported()) { 2031 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2032 } 2033 2034 SetCommonAttributes(D, GA); 2035 } 2036 2037 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2038 ArrayRef<llvm::Type*> Tys) { 2039 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2040 Tys); 2041 } 2042 2043 static llvm::StringMapEntry<llvm::Constant*> & 2044 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2045 const StringLiteral *Literal, 2046 bool TargetIsLSB, 2047 bool &IsUTF16, 2048 unsigned &StringLength) { 2049 StringRef String = Literal->getString(); 2050 unsigned NumBytes = String.size(); 2051 2052 // Check for simple case. 2053 if (!Literal->containsNonAsciiOrNull()) { 2054 StringLength = NumBytes; 2055 return Map.GetOrCreateValue(String); 2056 } 2057 2058 // Otherwise, convert the UTF8 literals into a string of shorts. 2059 IsUTF16 = true; 2060 2061 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2062 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2063 UTF16 *ToPtr = &ToBuf[0]; 2064 2065 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2066 &ToPtr, ToPtr + NumBytes, 2067 strictConversion); 2068 2069 // ConvertUTF8toUTF16 returns the length in ToPtr. 2070 StringLength = ToPtr - &ToBuf[0]; 2071 2072 // Add an explicit null. 2073 *ToPtr = 0; 2074 return Map. 2075 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2076 (StringLength + 1) * 2)); 2077 } 2078 2079 static llvm::StringMapEntry<llvm::Constant*> & 2080 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2081 const StringLiteral *Literal, 2082 unsigned &StringLength) { 2083 StringRef String = Literal->getString(); 2084 StringLength = String.size(); 2085 return Map.GetOrCreateValue(String); 2086 } 2087 2088 llvm::Constant * 2089 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2090 unsigned StringLength = 0; 2091 bool isUTF16 = false; 2092 llvm::StringMapEntry<llvm::Constant*> &Entry = 2093 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2094 getDataLayout().isLittleEndian(), 2095 isUTF16, StringLength); 2096 2097 if (llvm::Constant *C = Entry.getValue()) 2098 return C; 2099 2100 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2101 llvm::Constant *Zeros[] = { Zero, Zero }; 2102 2103 // If we don't already have it, get __CFConstantStringClassReference. 2104 if (!CFConstantStringClassRef) { 2105 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2106 Ty = llvm::ArrayType::get(Ty, 0); 2107 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2108 "__CFConstantStringClassReference"); 2109 // Decay array -> ptr 2110 CFConstantStringClassRef = 2111 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2112 } 2113 2114 QualType CFTy = getContext().getCFConstantStringType(); 2115 2116 llvm::StructType *STy = 2117 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2118 2119 llvm::Constant *Fields[4]; 2120 2121 // Class pointer. 2122 Fields[0] = CFConstantStringClassRef; 2123 2124 // Flags. 2125 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2126 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2127 llvm::ConstantInt::get(Ty, 0x07C8); 2128 2129 // String pointer. 2130 llvm::Constant *C = 0; 2131 if (isUTF16) { 2132 ArrayRef<uint16_t> Arr = 2133 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2134 Entry.getKey().size() / 2); 2135 C = llvm::ConstantDataArray::get(VMContext, Arr); 2136 } else { 2137 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2138 } 2139 2140 llvm::GlobalValue::LinkageTypes Linkage; 2141 if (isUTF16) 2142 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2143 Linkage = llvm::GlobalValue::InternalLinkage; 2144 else 2145 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2146 // when using private linkage. It is not clear if this is a bug in ld 2147 // or a reasonable new restriction. 2148 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2149 2150 // Note: -fwritable-strings doesn't make the backing store strings of 2151 // CFStrings writable. (See <rdar://problem/10657500>) 2152 llvm::GlobalVariable *GV = 2153 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2154 Linkage, C, ".str"); 2155 GV->setUnnamedAddr(true); 2156 if (isUTF16) { 2157 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2158 GV->setAlignment(Align.getQuantity()); 2159 } else { 2160 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2161 GV->setAlignment(Align.getQuantity()); 2162 } 2163 2164 // String. 2165 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2166 2167 if (isUTF16) 2168 // Cast the UTF16 string to the correct type. 2169 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2170 2171 // String length. 2172 Ty = getTypes().ConvertType(getContext().LongTy); 2173 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2174 2175 // The struct. 2176 C = llvm::ConstantStruct::get(STy, Fields); 2177 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2178 llvm::GlobalVariable::PrivateLinkage, C, 2179 "_unnamed_cfstring_"); 2180 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2181 GV->setSection(Sect); 2182 Entry.setValue(GV); 2183 2184 return GV; 2185 } 2186 2187 static RecordDecl * 2188 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2189 DeclContext *DC, IdentifierInfo *Id) { 2190 SourceLocation Loc; 2191 if (Ctx.getLangOpts().CPlusPlus) 2192 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2193 else 2194 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2195 } 2196 2197 llvm::Constant * 2198 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2199 unsigned StringLength = 0; 2200 llvm::StringMapEntry<llvm::Constant*> &Entry = 2201 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2202 2203 if (llvm::Constant *C = Entry.getValue()) 2204 return C; 2205 2206 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2207 llvm::Constant *Zeros[] = { Zero, Zero }; 2208 2209 // If we don't already have it, get _NSConstantStringClassReference. 2210 if (!ConstantStringClassRef) { 2211 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2212 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2213 llvm::Constant *GV; 2214 if (LangOpts.ObjCRuntime.isNonFragile()) { 2215 std::string str = 2216 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2217 : "OBJC_CLASS_$_" + StringClass; 2218 GV = getObjCRuntime().GetClassGlobal(str); 2219 // Make sure the result is of the correct type. 2220 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2221 ConstantStringClassRef = 2222 llvm::ConstantExpr::getBitCast(GV, PTy); 2223 } else { 2224 std::string str = 2225 StringClass.empty() ? "_NSConstantStringClassReference" 2226 : "_" + StringClass + "ClassReference"; 2227 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2228 GV = CreateRuntimeVariable(PTy, str); 2229 // Decay array -> ptr 2230 ConstantStringClassRef = 2231 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2232 } 2233 } 2234 2235 if (!NSConstantStringType) { 2236 // Construct the type for a constant NSString. 2237 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2238 Context.getTranslationUnitDecl(), 2239 &Context.Idents.get("__builtin_NSString")); 2240 D->startDefinition(); 2241 2242 QualType FieldTypes[3]; 2243 2244 // const int *isa; 2245 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2246 // const char *str; 2247 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2248 // unsigned int length; 2249 FieldTypes[2] = Context.UnsignedIntTy; 2250 2251 // Create fields 2252 for (unsigned i = 0; i < 3; ++i) { 2253 FieldDecl *Field = FieldDecl::Create(Context, D, 2254 SourceLocation(), 2255 SourceLocation(), 0, 2256 FieldTypes[i], /*TInfo=*/0, 2257 /*BitWidth=*/0, 2258 /*Mutable=*/false, 2259 ICIS_NoInit); 2260 Field->setAccess(AS_public); 2261 D->addDecl(Field); 2262 } 2263 2264 D->completeDefinition(); 2265 QualType NSTy = Context.getTagDeclType(D); 2266 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2267 } 2268 2269 llvm::Constant *Fields[3]; 2270 2271 // Class pointer. 2272 Fields[0] = ConstantStringClassRef; 2273 2274 // String pointer. 2275 llvm::Constant *C = 2276 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2277 2278 llvm::GlobalValue::LinkageTypes Linkage; 2279 bool isConstant; 2280 Linkage = llvm::GlobalValue::PrivateLinkage; 2281 isConstant = !LangOpts.WritableStrings; 2282 2283 llvm::GlobalVariable *GV = 2284 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2285 ".str"); 2286 GV->setUnnamedAddr(true); 2287 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2288 GV->setAlignment(Align.getQuantity()); 2289 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2290 2291 // String length. 2292 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2293 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2294 2295 // The struct. 2296 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2297 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2298 llvm::GlobalVariable::PrivateLinkage, C, 2299 "_unnamed_nsstring_"); 2300 // FIXME. Fix section. 2301 if (const char *Sect = 2302 LangOpts.ObjCRuntime.isNonFragile() 2303 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2304 : getContext().getTargetInfo().getNSStringSection()) 2305 GV->setSection(Sect); 2306 Entry.setValue(GV); 2307 2308 return GV; 2309 } 2310 2311 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2312 if (ObjCFastEnumerationStateType.isNull()) { 2313 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2314 Context.getTranslationUnitDecl(), 2315 &Context.Idents.get("__objcFastEnumerationState")); 2316 D->startDefinition(); 2317 2318 QualType FieldTypes[] = { 2319 Context.UnsignedLongTy, 2320 Context.getPointerType(Context.getObjCIdType()), 2321 Context.getPointerType(Context.UnsignedLongTy), 2322 Context.getConstantArrayType(Context.UnsignedLongTy, 2323 llvm::APInt(32, 5), ArrayType::Normal, 0) 2324 }; 2325 2326 for (size_t i = 0; i < 4; ++i) { 2327 FieldDecl *Field = FieldDecl::Create(Context, 2328 D, 2329 SourceLocation(), 2330 SourceLocation(), 0, 2331 FieldTypes[i], /*TInfo=*/0, 2332 /*BitWidth=*/0, 2333 /*Mutable=*/false, 2334 ICIS_NoInit); 2335 Field->setAccess(AS_public); 2336 D->addDecl(Field); 2337 } 2338 2339 D->completeDefinition(); 2340 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2341 } 2342 2343 return ObjCFastEnumerationStateType; 2344 } 2345 2346 llvm::Constant * 2347 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2348 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2349 2350 // Don't emit it as the address of the string, emit the string data itself 2351 // as an inline array. 2352 if (E->getCharByteWidth() == 1) { 2353 SmallString<64> Str(E->getString()); 2354 2355 // Resize the string to the right size, which is indicated by its type. 2356 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2357 Str.resize(CAT->getSize().getZExtValue()); 2358 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2359 } 2360 2361 llvm::ArrayType *AType = 2362 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2363 llvm::Type *ElemTy = AType->getElementType(); 2364 unsigned NumElements = AType->getNumElements(); 2365 2366 // Wide strings have either 2-byte or 4-byte elements. 2367 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2368 SmallVector<uint16_t, 32> Elements; 2369 Elements.reserve(NumElements); 2370 2371 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2372 Elements.push_back(E->getCodeUnit(i)); 2373 Elements.resize(NumElements); 2374 return llvm::ConstantDataArray::get(VMContext, Elements); 2375 } 2376 2377 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2378 SmallVector<uint32_t, 32> Elements; 2379 Elements.reserve(NumElements); 2380 2381 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2382 Elements.push_back(E->getCodeUnit(i)); 2383 Elements.resize(NumElements); 2384 return llvm::ConstantDataArray::get(VMContext, Elements); 2385 } 2386 2387 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2388 /// constant array for the given string literal. 2389 llvm::Constant * 2390 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2391 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2392 if (S->isAscii() || S->isUTF8()) { 2393 SmallString<64> Str(S->getString()); 2394 2395 // Resize the string to the right size, which is indicated by its type. 2396 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2397 Str.resize(CAT->getSize().getZExtValue()); 2398 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2399 } 2400 2401 // FIXME: the following does not memoize wide strings. 2402 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2403 llvm::GlobalVariable *GV = 2404 new llvm::GlobalVariable(getModule(),C->getType(), 2405 !LangOpts.WritableStrings, 2406 llvm::GlobalValue::PrivateLinkage, 2407 C,".str"); 2408 2409 GV->setAlignment(Align.getQuantity()); 2410 GV->setUnnamedAddr(true); 2411 return GV; 2412 } 2413 2414 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2415 /// array for the given ObjCEncodeExpr node. 2416 llvm::Constant * 2417 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2418 std::string Str; 2419 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2420 2421 return GetAddrOfConstantCString(Str); 2422 } 2423 2424 2425 /// GenerateWritableString -- Creates storage for a string literal. 2426 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2427 bool constant, 2428 CodeGenModule &CGM, 2429 const char *GlobalName, 2430 unsigned Alignment) { 2431 // Create Constant for this string literal. Don't add a '\0'. 2432 llvm::Constant *C = 2433 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2434 2435 // Create a global variable for this string 2436 llvm::GlobalVariable *GV = 2437 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2438 llvm::GlobalValue::PrivateLinkage, 2439 C, GlobalName); 2440 GV->setAlignment(Alignment); 2441 GV->setUnnamedAddr(true); 2442 return GV; 2443 } 2444 2445 /// GetAddrOfConstantString - Returns a pointer to a character array 2446 /// containing the literal. This contents are exactly that of the 2447 /// given string, i.e. it will not be null terminated automatically; 2448 /// see GetAddrOfConstantCString. Note that whether the result is 2449 /// actually a pointer to an LLVM constant depends on 2450 /// Feature.WriteableStrings. 2451 /// 2452 /// The result has pointer to array type. 2453 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2454 const char *GlobalName, 2455 unsigned Alignment) { 2456 // Get the default prefix if a name wasn't specified. 2457 if (!GlobalName) 2458 GlobalName = ".str"; 2459 2460 // Don't share any string literals if strings aren't constant. 2461 if (LangOpts.WritableStrings) 2462 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2463 2464 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2465 ConstantStringMap.GetOrCreateValue(Str); 2466 2467 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2468 if (Alignment > GV->getAlignment()) { 2469 GV->setAlignment(Alignment); 2470 } 2471 return GV; 2472 } 2473 2474 // Create a global variable for this. 2475 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2476 Alignment); 2477 Entry.setValue(GV); 2478 return GV; 2479 } 2480 2481 /// GetAddrOfConstantCString - Returns a pointer to a character 2482 /// array containing the literal and a terminating '\0' 2483 /// character. The result has pointer to array type. 2484 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2485 const char *GlobalName, 2486 unsigned Alignment) { 2487 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2488 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2489 } 2490 2491 /// EmitObjCPropertyImplementations - Emit information for synthesized 2492 /// properties for an implementation. 2493 void CodeGenModule::EmitObjCPropertyImplementations(const 2494 ObjCImplementationDecl *D) { 2495 for (ObjCImplementationDecl::propimpl_iterator 2496 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2497 ObjCPropertyImplDecl *PID = *i; 2498 2499 // Dynamic is just for type-checking. 2500 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2501 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2502 2503 // Determine which methods need to be implemented, some may have 2504 // been overridden. Note that ::isPropertyAccessor is not the method 2505 // we want, that just indicates if the decl came from a 2506 // property. What we want to know is if the method is defined in 2507 // this implementation. 2508 if (!D->getInstanceMethod(PD->getGetterName())) 2509 CodeGenFunction(*this).GenerateObjCGetter( 2510 const_cast<ObjCImplementationDecl *>(D), PID); 2511 if (!PD->isReadOnly() && 2512 !D->getInstanceMethod(PD->getSetterName())) 2513 CodeGenFunction(*this).GenerateObjCSetter( 2514 const_cast<ObjCImplementationDecl *>(D), PID); 2515 } 2516 } 2517 } 2518 2519 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2520 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2521 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2522 ivar; ivar = ivar->getNextIvar()) 2523 if (ivar->getType().isDestructedType()) 2524 return true; 2525 2526 return false; 2527 } 2528 2529 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2530 /// for an implementation. 2531 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2532 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2533 if (needsDestructMethod(D)) { 2534 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2535 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2536 ObjCMethodDecl *DTORMethod = 2537 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2538 cxxSelector, getContext().VoidTy, 0, D, 2539 /*isInstance=*/true, /*isVariadic=*/false, 2540 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2541 /*isDefined=*/false, ObjCMethodDecl::Required); 2542 D->addInstanceMethod(DTORMethod); 2543 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2544 D->setHasCXXStructors(true); 2545 } 2546 2547 // If the implementation doesn't have any ivar initializers, we don't need 2548 // a .cxx_construct. 2549 if (D->getNumIvarInitializers() == 0) 2550 return; 2551 2552 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2553 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2554 // The constructor returns 'self'. 2555 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2556 D->getLocation(), 2557 D->getLocation(), 2558 cxxSelector, 2559 getContext().getObjCIdType(), 0, 2560 D, /*isInstance=*/true, 2561 /*isVariadic=*/false, 2562 /*isPropertyAccessor=*/true, 2563 /*isImplicitlyDeclared=*/true, 2564 /*isDefined=*/false, 2565 ObjCMethodDecl::Required); 2566 D->addInstanceMethod(CTORMethod); 2567 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2568 D->setHasCXXStructors(true); 2569 } 2570 2571 /// EmitNamespace - Emit all declarations in a namespace. 2572 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2573 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2574 I != E; ++I) 2575 EmitTopLevelDecl(*I); 2576 } 2577 2578 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2579 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2580 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2581 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2582 ErrorUnsupported(LSD, "linkage spec"); 2583 return; 2584 } 2585 2586 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2587 I != E; ++I) 2588 EmitTopLevelDecl(*I); 2589 } 2590 2591 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2592 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2593 // If an error has occurred, stop code generation, but continue 2594 // parsing and semantic analysis (to ensure all warnings and errors 2595 // are emitted). 2596 if (Diags.hasErrorOccurred()) 2597 return; 2598 2599 // Ignore dependent declarations. 2600 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2601 return; 2602 2603 switch (D->getKind()) { 2604 case Decl::CXXConversion: 2605 case Decl::CXXMethod: 2606 case Decl::Function: 2607 // Skip function templates 2608 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2609 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2610 return; 2611 2612 EmitGlobal(cast<FunctionDecl>(D)); 2613 break; 2614 2615 case Decl::Var: 2616 EmitGlobal(cast<VarDecl>(D)); 2617 break; 2618 2619 // Indirect fields from global anonymous structs and unions can be 2620 // ignored; only the actual variable requires IR gen support. 2621 case Decl::IndirectField: 2622 break; 2623 2624 // C++ Decls 2625 case Decl::Namespace: 2626 EmitNamespace(cast<NamespaceDecl>(D)); 2627 break; 2628 // No code generation needed. 2629 case Decl::UsingShadow: 2630 case Decl::Using: 2631 case Decl::UsingDirective: 2632 case Decl::ClassTemplate: 2633 case Decl::FunctionTemplate: 2634 case Decl::TypeAliasTemplate: 2635 case Decl::NamespaceAlias: 2636 case Decl::Block: 2637 case Decl::Import: 2638 break; 2639 case Decl::CXXConstructor: 2640 // Skip function templates 2641 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2642 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2643 return; 2644 2645 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2646 break; 2647 case Decl::CXXDestructor: 2648 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2649 return; 2650 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2651 break; 2652 2653 case Decl::StaticAssert: 2654 // Nothing to do. 2655 break; 2656 2657 // Objective-C Decls 2658 2659 // Forward declarations, no (immediate) code generation. 2660 case Decl::ObjCInterface: 2661 case Decl::ObjCCategory: 2662 break; 2663 2664 case Decl::ObjCProtocol: { 2665 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2666 if (Proto->isThisDeclarationADefinition()) 2667 ObjCRuntime->GenerateProtocol(Proto); 2668 break; 2669 } 2670 2671 case Decl::ObjCCategoryImpl: 2672 // Categories have properties but don't support synthesize so we 2673 // can ignore them here. 2674 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2675 break; 2676 2677 case Decl::ObjCImplementation: { 2678 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2679 EmitObjCPropertyImplementations(OMD); 2680 EmitObjCIvarInitializations(OMD); 2681 ObjCRuntime->GenerateClass(OMD); 2682 // Emit global variable debug information. 2683 if (CGDebugInfo *DI = getModuleDebugInfo()) 2684 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2685 OMD->getLocation()); 2686 2687 break; 2688 } 2689 case Decl::ObjCMethod: { 2690 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2691 // If this is not a prototype, emit the body. 2692 if (OMD->getBody()) 2693 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2694 break; 2695 } 2696 case Decl::ObjCCompatibleAlias: 2697 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2698 break; 2699 2700 case Decl::LinkageSpec: 2701 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2702 break; 2703 2704 case Decl::FileScopeAsm: { 2705 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2706 StringRef AsmString = AD->getAsmString()->getString(); 2707 2708 const std::string &S = getModule().getModuleInlineAsm(); 2709 if (S.empty()) 2710 getModule().setModuleInlineAsm(AsmString); 2711 else if (S.end()[-1] == '\n') 2712 getModule().setModuleInlineAsm(S + AsmString.str()); 2713 else 2714 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2715 break; 2716 } 2717 2718 default: 2719 // Make sure we handled everything we should, every other kind is a 2720 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2721 // function. Need to recode Decl::Kind to do that easily. 2722 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2723 } 2724 } 2725 2726 /// Turns the given pointer into a constant. 2727 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2728 const void *Ptr) { 2729 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2730 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2731 return llvm::ConstantInt::get(i64, PtrInt); 2732 } 2733 2734 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2735 llvm::NamedMDNode *&GlobalMetadata, 2736 GlobalDecl D, 2737 llvm::GlobalValue *Addr) { 2738 if (!GlobalMetadata) 2739 GlobalMetadata = 2740 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2741 2742 // TODO: should we report variant information for ctors/dtors? 2743 llvm::Value *Ops[] = { 2744 Addr, 2745 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2746 }; 2747 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2748 } 2749 2750 /// Emits metadata nodes associating all the global values in the 2751 /// current module with the Decls they came from. This is useful for 2752 /// projects using IR gen as a subroutine. 2753 /// 2754 /// Since there's currently no way to associate an MDNode directly 2755 /// with an llvm::GlobalValue, we create a global named metadata 2756 /// with the name 'clang.global.decl.ptrs'. 2757 void CodeGenModule::EmitDeclMetadata() { 2758 llvm::NamedMDNode *GlobalMetadata = 0; 2759 2760 // StaticLocalDeclMap 2761 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2762 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2763 I != E; ++I) { 2764 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2765 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2766 } 2767 } 2768 2769 /// Emits metadata nodes for all the local variables in the current 2770 /// function. 2771 void CodeGenFunction::EmitDeclMetadata() { 2772 if (LocalDeclMap.empty()) return; 2773 2774 llvm::LLVMContext &Context = getLLVMContext(); 2775 2776 // Find the unique metadata ID for this name. 2777 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2778 2779 llvm::NamedMDNode *GlobalMetadata = 0; 2780 2781 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2782 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2783 const Decl *D = I->first; 2784 llvm::Value *Addr = I->second; 2785 2786 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2787 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2788 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2789 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2790 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2791 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2792 } 2793 } 2794 } 2795 2796 void CodeGenModule::EmitCoverageFile() { 2797 if (!getCodeGenOpts().CoverageFile.empty()) { 2798 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2799 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2800 llvm::LLVMContext &Ctx = TheModule.getContext(); 2801 llvm::MDString *CoverageFile = 2802 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2803 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2804 llvm::MDNode *CU = CUNode->getOperand(i); 2805 llvm::Value *node[] = { CoverageFile, CU }; 2806 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2807 GCov->addOperand(N); 2808 } 2809 } 2810 } 2811 } 2812 2813 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 2814 QualType GuidType) { 2815 // Sema has checked that all uuid strings are of the form 2816 // "12345678-1234-1234-1234-1234567890ab". 2817 assert(Uuid.size() == 36); 2818 const char *Uuidstr = Uuid.data(); 2819 for (int i = 0; i < 36; ++i) { 2820 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-'); 2821 else assert(isxdigit(Uuidstr[i])); 2822 } 2823 2824 llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16); 2825 llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16); 2826 llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16); 2827 static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 2828 2829 APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4); 2830 InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0)); 2831 InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1)); 2832 InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2)); 2833 APValue& Arr = InitStruct.getStructField(3); 2834 Arr = APValue(APValue::UninitArray(), 8, 8); 2835 for (int t = 0; t < 8; ++t) 2836 Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt( 2837 llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16))); 2838 2839 return EmitConstantValue(InitStruct, GuidType); 2840 } 2841