xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 91d8324366f405e871aa8174ab61fc66912964dd)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/ADT/Triple.h"
54 #include "llvm/Analysis/TargetLibraryInfo.h"
55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/X86TargetParser.h"
71 #include "llvm/Support/xxhash.h"
72 
73 using namespace clang;
74 using namespace CodeGen;
75 
76 static llvm::cl::opt<bool> LimitedCoverage(
77     "limited-coverage-experimental", llvm::cl::Hidden,
78     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
79 
80 static const char AnnotationSection[] = "llvm.metadata";
81 
82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
83   switch (CGM.getContext().getCXXABIKind()) {
84   case TargetCXXABI::AppleARM64:
85   case TargetCXXABI::Fuchsia:
86   case TargetCXXABI::GenericAArch64:
87   case TargetCXXABI::GenericARM:
88   case TargetCXXABI::iOS:
89   case TargetCXXABI::WatchOS:
90   case TargetCXXABI::GenericMIPS:
91   case TargetCXXABI::GenericItanium:
92   case TargetCXXABI::WebAssembly:
93   case TargetCXXABI::XL:
94     return CreateItaniumCXXABI(CGM);
95   case TargetCXXABI::Microsoft:
96     return CreateMicrosoftCXXABI(CGM);
97   }
98 
99   llvm_unreachable("invalid C++ ABI kind");
100 }
101 
102 CodeGenModule::CodeGenModule(ASTContext &C,
103                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
104                              const HeaderSearchOptions &HSO,
105                              const PreprocessorOptions &PPO,
106                              const CodeGenOptions &CGO, llvm::Module &M,
107                              DiagnosticsEngine &diags,
108                              CoverageSourceInfo *CoverageInfo)
109     : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
110       HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
111       TheModule(M), Diags(diags), Target(C.getTargetInfo()),
112       ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
113       VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
114 
115   // Initialize the type cache.
116   llvm::LLVMContext &LLVMContext = M.getContext();
117   VoidTy = llvm::Type::getVoidTy(LLVMContext);
118   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
119   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
120   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
121   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
122   HalfTy = llvm::Type::getHalfTy(LLVMContext);
123   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
124   FloatTy = llvm::Type::getFloatTy(LLVMContext);
125   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
126   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
127   PointerAlignInBytes =
128     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
129   SizeSizeInBytes =
130     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
131   IntAlignInBytes =
132     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
133   CharTy =
134     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
135   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
136   IntPtrTy = llvm::IntegerType::get(LLVMContext,
137     C.getTargetInfo().getMaxPointerWidth());
138   Int8PtrTy = Int8Ty->getPointerTo(0);
139   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
140   const llvm::DataLayout &DL = M.getDataLayout();
141   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
142   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
143   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
144 
145   // Build C++20 Module initializers.
146   // TODO: Add Microsoft here once we know the mangling required for the
147   // initializers.
148   CXX20ModuleInits =
149       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
150                                        ItaniumMangleContext::MK_Itanium;
151 
152   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
153 
154   if (LangOpts.ObjC)
155     createObjCRuntime();
156   if (LangOpts.OpenCL)
157     createOpenCLRuntime();
158   if (LangOpts.OpenMP)
159     createOpenMPRuntime();
160   if (LangOpts.CUDA)
161     createCUDARuntime();
162   if (LangOpts.HLSL)
163     createHLSLRuntime();
164 
165   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
166   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
167       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
168     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
169                                getCXXABI().getMangleContext()));
170 
171   // If debug info or coverage generation is enabled, create the CGDebugInfo
172   // object.
173   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
174       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
175     DebugInfo.reset(new CGDebugInfo(*this));
176 
177   Block.GlobalUniqueCount = 0;
178 
179   if (C.getLangOpts().ObjC)
180     ObjCData.reset(new ObjCEntrypoints());
181 
182   if (CodeGenOpts.hasProfileClangUse()) {
183     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
184         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
185     if (auto E = ReaderOrErr.takeError()) {
186       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
187                                               "Could not read profile %0: %1");
188       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
189         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
190                                   << EI.message();
191       });
192     } else
193       PGOReader = std::move(ReaderOrErr.get());
194   }
195 
196   // If coverage mapping generation is enabled, create the
197   // CoverageMappingModuleGen object.
198   if (CodeGenOpts.CoverageMapping)
199     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
200 
201   // Generate the module name hash here if needed.
202   if (CodeGenOpts.UniqueInternalLinkageNames &&
203       !getModule().getSourceFileName().empty()) {
204     std::string Path = getModule().getSourceFileName();
205     // Check if a path substitution is needed from the MacroPrefixMap.
206     for (const auto &Entry : LangOpts.MacroPrefixMap)
207       if (Path.rfind(Entry.first, 0) != std::string::npos) {
208         Path = Entry.second + Path.substr(Entry.first.size());
209         break;
210       }
211     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
212   }
213 }
214 
215 CodeGenModule::~CodeGenModule() {}
216 
217 void CodeGenModule::createObjCRuntime() {
218   // This is just isGNUFamily(), but we want to force implementors of
219   // new ABIs to decide how best to do this.
220   switch (LangOpts.ObjCRuntime.getKind()) {
221   case ObjCRuntime::GNUstep:
222   case ObjCRuntime::GCC:
223   case ObjCRuntime::ObjFW:
224     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
225     return;
226 
227   case ObjCRuntime::FragileMacOSX:
228   case ObjCRuntime::MacOSX:
229   case ObjCRuntime::iOS:
230   case ObjCRuntime::WatchOS:
231     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
232     return;
233   }
234   llvm_unreachable("bad runtime kind");
235 }
236 
237 void CodeGenModule::createOpenCLRuntime() {
238   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
239 }
240 
241 void CodeGenModule::createOpenMPRuntime() {
242   // Select a specialized code generation class based on the target, if any.
243   // If it does not exist use the default implementation.
244   switch (getTriple().getArch()) {
245   case llvm::Triple::nvptx:
246   case llvm::Triple::nvptx64:
247   case llvm::Triple::amdgcn:
248     assert(getLangOpts().OpenMPIsDevice &&
249            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
250     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
251     break;
252   default:
253     if (LangOpts.OpenMPSimd)
254       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
255     else
256       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
257     break;
258   }
259 }
260 
261 void CodeGenModule::createCUDARuntime() {
262   CUDARuntime.reset(CreateNVCUDARuntime(*this));
263 }
264 
265 void CodeGenModule::createHLSLRuntime() {
266   HLSLRuntime.reset(new CGHLSLRuntime(*this));
267 }
268 
269 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
270   Replacements[Name] = C;
271 }
272 
273 void CodeGenModule::applyReplacements() {
274   for (auto &I : Replacements) {
275     StringRef MangledName = I.first();
276     llvm::Constant *Replacement = I.second;
277     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
278     if (!Entry)
279       continue;
280     auto *OldF = cast<llvm::Function>(Entry);
281     auto *NewF = dyn_cast<llvm::Function>(Replacement);
282     if (!NewF) {
283       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
284         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
285       } else {
286         auto *CE = cast<llvm::ConstantExpr>(Replacement);
287         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
288                CE->getOpcode() == llvm::Instruction::GetElementPtr);
289         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
290       }
291     }
292 
293     // Replace old with new, but keep the old order.
294     OldF->replaceAllUsesWith(Replacement);
295     if (NewF) {
296       NewF->removeFromParent();
297       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
298                                                        NewF);
299     }
300     OldF->eraseFromParent();
301   }
302 }
303 
304 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
305   GlobalValReplacements.push_back(std::make_pair(GV, C));
306 }
307 
308 void CodeGenModule::applyGlobalValReplacements() {
309   for (auto &I : GlobalValReplacements) {
310     llvm::GlobalValue *GV = I.first;
311     llvm::Constant *C = I.second;
312 
313     GV->replaceAllUsesWith(C);
314     GV->eraseFromParent();
315   }
316 }
317 
318 // This is only used in aliases that we created and we know they have a
319 // linear structure.
320 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
321   const llvm::Constant *C;
322   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
323     C = GA->getAliasee();
324   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
325     C = GI->getResolver();
326   else
327     return GV;
328 
329   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
330   if (!AliaseeGV)
331     return nullptr;
332 
333   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
334   if (FinalGV == GV)
335     return nullptr;
336 
337   return FinalGV;
338 }
339 
340 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
341                                SourceLocation Location, bool IsIFunc,
342                                const llvm::GlobalValue *Alias,
343                                const llvm::GlobalValue *&GV) {
344   GV = getAliasedGlobal(Alias);
345   if (!GV) {
346     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
347     return false;
348   }
349 
350   if (GV->isDeclaration()) {
351     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
352     return false;
353   }
354 
355   if (IsIFunc) {
356     // Check resolver function type.
357     const auto *F = dyn_cast<llvm::Function>(GV);
358     if (!F) {
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361       return false;
362     }
363 
364     llvm::FunctionType *FTy = F->getFunctionType();
365     if (!FTy->getReturnType()->isPointerTy()) {
366       Diags.Report(Location, diag::err_ifunc_resolver_return);
367       return false;
368     }
369   }
370 
371   return true;
372 }
373 
374 void CodeGenModule::checkAliases() {
375   // Check if the constructed aliases are well formed. It is really unfortunate
376   // that we have to do this in CodeGen, but we only construct mangled names
377   // and aliases during codegen.
378   bool Error = false;
379   DiagnosticsEngine &Diags = getDiags();
380   for (const GlobalDecl &GD : Aliases) {
381     const auto *D = cast<ValueDecl>(GD.getDecl());
382     SourceLocation Location;
383     bool IsIFunc = D->hasAttr<IFuncAttr>();
384     if (const Attr *A = D->getDefiningAttr())
385       Location = A->getLocation();
386     else
387       llvm_unreachable("Not an alias or ifunc?");
388 
389     StringRef MangledName = getMangledName(GD);
390     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
391     const llvm::GlobalValue *GV = nullptr;
392     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
393       Error = true;
394       continue;
395     }
396 
397     llvm::Constant *Aliasee =
398         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
399                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
400 
401     llvm::GlobalValue *AliaseeGV;
402     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
403       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
404     else
405       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
406 
407     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
408       StringRef AliasSection = SA->getName();
409       if (AliasSection != AliaseeGV->getSection())
410         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
411             << AliasSection << IsIFunc << IsIFunc;
412     }
413 
414     // We have to handle alias to weak aliases in here. LLVM itself disallows
415     // this since the object semantics would not match the IL one. For
416     // compatibility with gcc we implement it by just pointing the alias
417     // to its aliasee's aliasee. We also warn, since the user is probably
418     // expecting the link to be weak.
419     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
420       if (GA->isInterposable()) {
421         Diags.Report(Location, diag::warn_alias_to_weak_alias)
422             << GV->getName() << GA->getName() << IsIFunc;
423         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
424             GA->getAliasee(), Alias->getType());
425 
426         if (IsIFunc)
427           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
428         else
429           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
430       }
431     }
432   }
433   if (!Error)
434     return;
435 
436   for (const GlobalDecl &GD : Aliases) {
437     StringRef MangledName = getMangledName(GD);
438     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
439     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
440     Alias->eraseFromParent();
441   }
442 }
443 
444 void CodeGenModule::clear() {
445   DeferredDeclsToEmit.clear();
446   EmittedDeferredDecls.clear();
447   if (OpenMPRuntime)
448     OpenMPRuntime->clear();
449 }
450 
451 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
452                                        StringRef MainFile) {
453   if (!hasDiagnostics())
454     return;
455   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
456     if (MainFile.empty())
457       MainFile = "<stdin>";
458     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
459   } else {
460     if (Mismatched > 0)
461       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
462 
463     if (Missing > 0)
464       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
465   }
466 }
467 
468 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
469                                              llvm::Module &M) {
470   if (!LO.VisibilityFromDLLStorageClass)
471     return;
472 
473   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
474       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
475   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
476       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
477   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
478       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
479   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
480       CodeGenModule::GetLLVMVisibility(
481           LO.getExternDeclNoDLLStorageClassVisibility());
482 
483   for (llvm::GlobalValue &GV : M.global_values()) {
484     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
485       continue;
486 
487     // Reset DSO locality before setting the visibility. This removes
488     // any effects that visibility options and annotations may have
489     // had on the DSO locality. Setting the visibility will implicitly set
490     // appropriate globals to DSO Local; however, this will be pessimistic
491     // w.r.t. to the normal compiler IRGen.
492     GV.setDSOLocal(false);
493 
494     if (GV.isDeclarationForLinker()) {
495       GV.setVisibility(GV.getDLLStorageClass() ==
496                                llvm::GlobalValue::DLLImportStorageClass
497                            ? ExternDeclDLLImportVisibility
498                            : ExternDeclNoDLLStorageClassVisibility);
499     } else {
500       GV.setVisibility(GV.getDLLStorageClass() ==
501                                llvm::GlobalValue::DLLExportStorageClass
502                            ? DLLExportVisibility
503                            : NoDLLStorageClassVisibility);
504     }
505 
506     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
507   }
508 }
509 
510 void CodeGenModule::Release() {
511   Module *Primary = getContext().getModuleForCodeGen();
512   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
513     EmitModuleInitializers(Primary);
514   EmitDeferred();
515   DeferredDecls.insert(EmittedDeferredDecls.begin(),
516                        EmittedDeferredDecls.end());
517   EmittedDeferredDecls.clear();
518   EmitVTablesOpportunistically();
519   applyGlobalValReplacements();
520   applyReplacements();
521   emitMultiVersionFunctions();
522   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
523     EmitCXXModuleInitFunc(Primary);
524   else
525     EmitCXXGlobalInitFunc();
526   EmitCXXGlobalCleanUpFunc();
527   registerGlobalDtorsWithAtExit();
528   EmitCXXThreadLocalInitFunc();
529   if (ObjCRuntime)
530     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
531       AddGlobalCtor(ObjCInitFunction);
532   if (Context.getLangOpts().CUDA && CUDARuntime) {
533     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
534       AddGlobalCtor(CudaCtorFunction);
535   }
536   if (OpenMPRuntime) {
537     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
538             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
539       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
540     }
541     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
542     OpenMPRuntime->clear();
543   }
544   if (PGOReader) {
545     getModule().setProfileSummary(
546         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
547         llvm::ProfileSummary::PSK_Instr);
548     if (PGOStats.hasDiagnostics())
549       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
550   }
551   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
552     return L.LexOrder < R.LexOrder;
553   });
554   EmitCtorList(GlobalCtors, "llvm.global_ctors");
555   EmitCtorList(GlobalDtors, "llvm.global_dtors");
556   EmitGlobalAnnotations();
557   EmitStaticExternCAliases();
558   checkAliases();
559   EmitDeferredUnusedCoverageMappings();
560   CodeGenPGO(*this).setValueProfilingFlag(getModule());
561   if (CoverageMapping)
562     CoverageMapping->emit();
563   if (CodeGenOpts.SanitizeCfiCrossDso) {
564     CodeGenFunction(*this).EmitCfiCheckFail();
565     CodeGenFunction(*this).EmitCfiCheckStub();
566   }
567   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
568     finalizeKCFITypes();
569   emitAtAvailableLinkGuard();
570   if (Context.getTargetInfo().getTriple().isWasm())
571     EmitMainVoidAlias();
572 
573   if (getTriple().isAMDGPU()) {
574     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
575     // preserve ASAN functions in bitcode libraries.
576     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
577       auto *FT = llvm::FunctionType::get(VoidTy, {});
578       auto *F = llvm::Function::Create(
579           FT, llvm::GlobalValue::ExternalLinkage,
580           "__amdgpu_device_library_preserve_asan_functions", &getModule());
581       auto *Var = new llvm::GlobalVariable(
582           getModule(), FT->getPointerTo(),
583           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
584           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
585           llvm::GlobalVariable::NotThreadLocal);
586       addCompilerUsedGlobal(Var);
587     }
588     // Emit amdgpu_code_object_version module flag, which is code object version
589     // times 100.
590     // ToDo: Enable module flag for all code object version when ROCm device
591     // library is ready.
592     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
593       getModule().addModuleFlag(llvm::Module::Error,
594                                 "amdgpu_code_object_version",
595                                 getTarget().getTargetOpts().CodeObjectVersion);
596     }
597   }
598 
599   // Emit a global array containing all external kernels or device variables
600   // used by host functions and mark it as used for CUDA/HIP. This is necessary
601   // to get kernels or device variables in archives linked in even if these
602   // kernels or device variables are only used in host functions.
603   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
604     SmallVector<llvm::Constant *, 8> UsedArray;
605     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
606       GlobalDecl GD;
607       if (auto *FD = dyn_cast<FunctionDecl>(D))
608         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
609       else
610         GD = GlobalDecl(D);
611       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
612           GetAddrOfGlobal(GD), Int8PtrTy));
613     }
614 
615     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
616 
617     auto *GV = new llvm::GlobalVariable(
618         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
619         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
620     addCompilerUsedGlobal(GV);
621   }
622 
623   emitLLVMUsed();
624   if (SanStats)
625     SanStats->finish();
626 
627   if (CodeGenOpts.Autolink &&
628       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
629     EmitModuleLinkOptions();
630   }
631 
632   // On ELF we pass the dependent library specifiers directly to the linker
633   // without manipulating them. This is in contrast to other platforms where
634   // they are mapped to a specific linker option by the compiler. This
635   // difference is a result of the greater variety of ELF linkers and the fact
636   // that ELF linkers tend to handle libraries in a more complicated fashion
637   // than on other platforms. This forces us to defer handling the dependent
638   // libs to the linker.
639   //
640   // CUDA/HIP device and host libraries are different. Currently there is no
641   // way to differentiate dependent libraries for host or device. Existing
642   // usage of #pragma comment(lib, *) is intended for host libraries on
643   // Windows. Therefore emit llvm.dependent-libraries only for host.
644   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
645     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
646     for (auto *MD : ELFDependentLibraries)
647       NMD->addOperand(MD);
648   }
649 
650   // Record mregparm value now so it is visible through rest of codegen.
651   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
652     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
653                               CodeGenOpts.NumRegisterParameters);
654 
655   if (CodeGenOpts.DwarfVersion) {
656     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
657                               CodeGenOpts.DwarfVersion);
658   }
659 
660   if (CodeGenOpts.Dwarf64)
661     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
662 
663   if (Context.getLangOpts().SemanticInterposition)
664     // Require various optimization to respect semantic interposition.
665     getModule().setSemanticInterposition(true);
666 
667   if (CodeGenOpts.EmitCodeView) {
668     // Indicate that we want CodeView in the metadata.
669     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
670   }
671   if (CodeGenOpts.CodeViewGHash) {
672     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
673   }
674   if (CodeGenOpts.ControlFlowGuard) {
675     // Function ID tables and checks for Control Flow Guard (cfguard=2).
676     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
677   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
678     // Function ID tables for Control Flow Guard (cfguard=1).
679     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
680   }
681   if (CodeGenOpts.EHContGuard) {
682     // Function ID tables for EH Continuation Guard.
683     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
684   }
685   if (Context.getLangOpts().Kernel) {
686     // Note if we are compiling with /kernel.
687     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
688   }
689   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
690     // We don't support LTO with 2 with different StrictVTablePointers
691     // FIXME: we could support it by stripping all the information introduced
692     // by StrictVTablePointers.
693 
694     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
695 
696     llvm::Metadata *Ops[2] = {
697               llvm::MDString::get(VMContext, "StrictVTablePointers"),
698               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
699                   llvm::Type::getInt32Ty(VMContext), 1))};
700 
701     getModule().addModuleFlag(llvm::Module::Require,
702                               "StrictVTablePointersRequirement",
703                               llvm::MDNode::get(VMContext, Ops));
704   }
705   if (getModuleDebugInfo())
706     // We support a single version in the linked module. The LLVM
707     // parser will drop debug info with a different version number
708     // (and warn about it, too).
709     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
710                               llvm::DEBUG_METADATA_VERSION);
711 
712   // We need to record the widths of enums and wchar_t, so that we can generate
713   // the correct build attributes in the ARM backend. wchar_size is also used by
714   // TargetLibraryInfo.
715   uint64_t WCharWidth =
716       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
717   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
718 
719   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
720   if (   Arch == llvm::Triple::arm
721       || Arch == llvm::Triple::armeb
722       || Arch == llvm::Triple::thumb
723       || Arch == llvm::Triple::thumbeb) {
724     // The minimum width of an enum in bytes
725     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
726     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
727   }
728 
729   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
730     StringRef ABIStr = Target.getABI();
731     llvm::LLVMContext &Ctx = TheModule.getContext();
732     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
733                               llvm::MDString::get(Ctx, ABIStr));
734   }
735 
736   if (CodeGenOpts.SanitizeCfiCrossDso) {
737     // Indicate that we want cross-DSO control flow integrity checks.
738     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
739   }
740 
741   if (CodeGenOpts.WholeProgramVTables) {
742     // Indicate whether VFE was enabled for this module, so that the
743     // vcall_visibility metadata added under whole program vtables is handled
744     // appropriately in the optimizer.
745     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
746                               CodeGenOpts.VirtualFunctionElimination);
747   }
748 
749   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
750     getModule().addModuleFlag(llvm::Module::Override,
751                               "CFI Canonical Jump Tables",
752                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
753   }
754 
755   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
756     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
757 
758   if (CodeGenOpts.CFProtectionReturn &&
759       Target.checkCFProtectionReturnSupported(getDiags())) {
760     // Indicate that we want to instrument return control flow protection.
761     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
762                               1);
763   }
764 
765   if (CodeGenOpts.CFProtectionBranch &&
766       Target.checkCFProtectionBranchSupported(getDiags())) {
767     // Indicate that we want to instrument branch control flow protection.
768     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
769                               1);
770   }
771 
772   if (CodeGenOpts.IBTSeal)
773     getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
774 
775   if (CodeGenOpts.FunctionReturnThunks)
776     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
777 
778   if (CodeGenOpts.IndirectBranchCSPrefix)
779     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
780 
781   // Add module metadata for return address signing (ignoring
782   // non-leaf/all) and stack tagging. These are actually turned on by function
783   // attributes, but we use module metadata to emit build attributes. This is
784   // needed for LTO, where the function attributes are inside bitcode
785   // serialised into a global variable by the time build attributes are
786   // emitted, so we can't access them. LTO objects could be compiled with
787   // different flags therefore module flags are set to "Min" behavior to achieve
788   // the same end result of the normal build where e.g BTI is off if any object
789   // doesn't support it.
790   if (Context.getTargetInfo().hasFeature("ptrauth") &&
791       LangOpts.getSignReturnAddressScope() !=
792           LangOptions::SignReturnAddressScopeKind::None)
793     getModule().addModuleFlag(llvm::Module::Override,
794                               "sign-return-address-buildattr", 1);
795   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
796     getModule().addModuleFlag(llvm::Module::Override,
797                               "tag-stack-memory-buildattr", 1);
798 
799   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
800       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
801       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
802       Arch == llvm::Triple::aarch64_be) {
803     if (LangOpts.BranchTargetEnforcement)
804       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
805                                 1);
806     if (LangOpts.hasSignReturnAddress())
807       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
808     if (LangOpts.isSignReturnAddressScopeAll())
809       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
810                                 1);
811     if (!LangOpts.isSignReturnAddressWithAKey())
812       getModule().addModuleFlag(llvm::Module::Min,
813                                 "sign-return-address-with-bkey", 1);
814   }
815 
816   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
817     llvm::LLVMContext &Ctx = TheModule.getContext();
818     getModule().addModuleFlag(
819         llvm::Module::Error, "MemProfProfileFilename",
820         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
821   }
822 
823   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
824     // Indicate whether __nvvm_reflect should be configured to flush denormal
825     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
826     // property.)
827     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
828                               CodeGenOpts.FP32DenormalMode.Output !=
829                                   llvm::DenormalMode::IEEE);
830   }
831 
832   if (LangOpts.EHAsynch)
833     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
834 
835   // Indicate whether this Module was compiled with -fopenmp
836   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
837     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
838   if (getLangOpts().OpenMPIsDevice)
839     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
840                               LangOpts.OpenMP);
841 
842   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
843   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
844     EmitOpenCLMetadata();
845     // Emit SPIR version.
846     if (getTriple().isSPIR()) {
847       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
848       // opencl.spir.version named metadata.
849       // C++ for OpenCL has a distinct mapping for version compatibility with
850       // OpenCL.
851       auto Version = LangOpts.getOpenCLCompatibleVersion();
852       llvm::Metadata *SPIRVerElts[] = {
853           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
854               Int32Ty, Version / 100)),
855           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
856               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
857       llvm::NamedMDNode *SPIRVerMD =
858           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
859       llvm::LLVMContext &Ctx = TheModule.getContext();
860       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
861     }
862   }
863 
864   // HLSL related end of code gen work items.
865   if (LangOpts.HLSL)
866     getHLSLRuntime().finishCodeGen();
867 
868   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
869     assert(PLevel < 3 && "Invalid PIC Level");
870     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
871     if (Context.getLangOpts().PIE)
872       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
873   }
874 
875   if (getCodeGenOpts().CodeModel.size() > 0) {
876     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
877                   .Case("tiny", llvm::CodeModel::Tiny)
878                   .Case("small", llvm::CodeModel::Small)
879                   .Case("kernel", llvm::CodeModel::Kernel)
880                   .Case("medium", llvm::CodeModel::Medium)
881                   .Case("large", llvm::CodeModel::Large)
882                   .Default(~0u);
883     if (CM != ~0u) {
884       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
885       getModule().setCodeModel(codeModel);
886     }
887   }
888 
889   if (CodeGenOpts.NoPLT)
890     getModule().setRtLibUseGOT();
891   if (CodeGenOpts.UnwindTables)
892     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
893 
894   switch (CodeGenOpts.getFramePointer()) {
895   case CodeGenOptions::FramePointerKind::None:
896     // 0 ("none") is the default.
897     break;
898   case CodeGenOptions::FramePointerKind::NonLeaf:
899     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
900     break;
901   case CodeGenOptions::FramePointerKind::All:
902     getModule().setFramePointer(llvm::FramePointerKind::All);
903     break;
904   }
905 
906   SimplifyPersonality();
907 
908   if (getCodeGenOpts().EmitDeclMetadata)
909     EmitDeclMetadata();
910 
911   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
912     EmitCoverageFile();
913 
914   if (CGDebugInfo *DI = getModuleDebugInfo())
915     DI->finalize();
916 
917   if (getCodeGenOpts().EmitVersionIdentMetadata)
918     EmitVersionIdentMetadata();
919 
920   if (!getCodeGenOpts().RecordCommandLine.empty())
921     EmitCommandLineMetadata();
922 
923   if (!getCodeGenOpts().StackProtectorGuard.empty())
924     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
925   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
926     getModule().setStackProtectorGuardReg(
927         getCodeGenOpts().StackProtectorGuardReg);
928   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
929     getModule().setStackProtectorGuardSymbol(
930         getCodeGenOpts().StackProtectorGuardSymbol);
931   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
932     getModule().setStackProtectorGuardOffset(
933         getCodeGenOpts().StackProtectorGuardOffset);
934   if (getCodeGenOpts().StackAlignment)
935     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
936   if (getCodeGenOpts().SkipRaxSetup)
937     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
938 
939   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
940 
941   EmitBackendOptionsMetadata(getCodeGenOpts());
942 
943   // If there is device offloading code embed it in the host now.
944   EmbedObject(&getModule(), CodeGenOpts, getDiags());
945 
946   // Set visibility from DLL storage class
947   // We do this at the end of LLVM IR generation; after any operation
948   // that might affect the DLL storage class or the visibility, and
949   // before anything that might act on these.
950   setVisibilityFromDLLStorageClass(LangOpts, getModule());
951 }
952 
953 void CodeGenModule::EmitOpenCLMetadata() {
954   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
955   // opencl.ocl.version named metadata node.
956   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
957   auto Version = LangOpts.getOpenCLCompatibleVersion();
958   llvm::Metadata *OCLVerElts[] = {
959       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
960           Int32Ty, Version / 100)),
961       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
962           Int32Ty, (Version % 100) / 10))};
963   llvm::NamedMDNode *OCLVerMD =
964       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
965   llvm::LLVMContext &Ctx = TheModule.getContext();
966   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
967 }
968 
969 void CodeGenModule::EmitBackendOptionsMetadata(
970     const CodeGenOptions CodeGenOpts) {
971   if (getTriple().isRISCV()) {
972     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
973                               CodeGenOpts.SmallDataLimit);
974   }
975 }
976 
977 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
978   // Make sure that this type is translated.
979   Types.UpdateCompletedType(TD);
980 }
981 
982 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
983   // Make sure that this type is translated.
984   Types.RefreshTypeCacheForClass(RD);
985 }
986 
987 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
988   if (!TBAA)
989     return nullptr;
990   return TBAA->getTypeInfo(QTy);
991 }
992 
993 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
994   if (!TBAA)
995     return TBAAAccessInfo();
996   if (getLangOpts().CUDAIsDevice) {
997     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
998     // access info.
999     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1000       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1001           nullptr)
1002         return TBAAAccessInfo();
1003     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1004       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1005           nullptr)
1006         return TBAAAccessInfo();
1007     }
1008   }
1009   return TBAA->getAccessInfo(AccessType);
1010 }
1011 
1012 TBAAAccessInfo
1013 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1014   if (!TBAA)
1015     return TBAAAccessInfo();
1016   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1017 }
1018 
1019 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1020   if (!TBAA)
1021     return nullptr;
1022   return TBAA->getTBAAStructInfo(QTy);
1023 }
1024 
1025 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1026   if (!TBAA)
1027     return nullptr;
1028   return TBAA->getBaseTypeInfo(QTy);
1029 }
1030 
1031 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1032   if (!TBAA)
1033     return nullptr;
1034   return TBAA->getAccessTagInfo(Info);
1035 }
1036 
1037 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1038                                                    TBAAAccessInfo TargetInfo) {
1039   if (!TBAA)
1040     return TBAAAccessInfo();
1041   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1042 }
1043 
1044 TBAAAccessInfo
1045 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1046                                                    TBAAAccessInfo InfoB) {
1047   if (!TBAA)
1048     return TBAAAccessInfo();
1049   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1050 }
1051 
1052 TBAAAccessInfo
1053 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1054                                               TBAAAccessInfo SrcInfo) {
1055   if (!TBAA)
1056     return TBAAAccessInfo();
1057   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1058 }
1059 
1060 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1061                                                 TBAAAccessInfo TBAAInfo) {
1062   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1063     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1064 }
1065 
1066 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1067     llvm::Instruction *I, const CXXRecordDecl *RD) {
1068   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1069                  llvm::MDNode::get(getLLVMContext(), {}));
1070 }
1071 
1072 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1073   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1074   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1075 }
1076 
1077 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1078 /// specified stmt yet.
1079 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1080   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1081                                                "cannot compile this %0 yet");
1082   std::string Msg = Type;
1083   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1084       << Msg << S->getSourceRange();
1085 }
1086 
1087 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1088 /// specified decl yet.
1089 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1090   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1091                                                "cannot compile this %0 yet");
1092   std::string Msg = Type;
1093   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1094 }
1095 
1096 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1097   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1098 }
1099 
1100 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1101                                         const NamedDecl *D) const {
1102   // Internal definitions always have default visibility.
1103   if (GV->hasLocalLinkage()) {
1104     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1105     return;
1106   }
1107   if (!D)
1108     return;
1109   // Set visibility for definitions, and for declarations if requested globally
1110   // or set explicitly.
1111   LinkageInfo LV = D->getLinkageAndVisibility();
1112   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1113     // Reject explicit non-default visibility on dllexport/dllimport.
1114     if (LV.isVisibilityExplicit() && LV.getVisibility() != DefaultVisibility)
1115       getDiags().Report(D->getLocation(),
1116                         diag::err_non_default_visibility_dllstorage)
1117           << (GV->hasDLLExportStorageClass() ? "dllexport" : "dllimport");
1118     return;
1119   }
1120   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1121       !GV->isDeclarationForLinker())
1122     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1123 }
1124 
1125 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1126                                  llvm::GlobalValue *GV) {
1127   if (GV->hasLocalLinkage())
1128     return true;
1129 
1130   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1131     return true;
1132 
1133   // DLLImport explicitly marks the GV as external.
1134   if (GV->hasDLLImportStorageClass())
1135     return false;
1136 
1137   const llvm::Triple &TT = CGM.getTriple();
1138   if (TT.isWindowsGNUEnvironment()) {
1139     // In MinGW, variables without DLLImport can still be automatically
1140     // imported from a DLL by the linker; don't mark variables that
1141     // potentially could come from another DLL as DSO local.
1142 
1143     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1144     // (and this actually happens in the public interface of libstdc++), so
1145     // such variables can't be marked as DSO local. (Native TLS variables
1146     // can't be dllimported at all, though.)
1147     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1148         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1149       return false;
1150   }
1151 
1152   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1153   // remain unresolved in the link, they can be resolved to zero, which is
1154   // outside the current DSO.
1155   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1156     return false;
1157 
1158   // Every other GV is local on COFF.
1159   // Make an exception for windows OS in the triple: Some firmware builds use
1160   // *-win32-macho triples. This (accidentally?) produced windows relocations
1161   // without GOT tables in older clang versions; Keep this behaviour.
1162   // FIXME: even thread local variables?
1163   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1164     return true;
1165 
1166   // Only handle COFF and ELF for now.
1167   if (!TT.isOSBinFormatELF())
1168     return false;
1169 
1170   // If this is not an executable, don't assume anything is local.
1171   const auto &CGOpts = CGM.getCodeGenOpts();
1172   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1173   const auto &LOpts = CGM.getLangOpts();
1174   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1175     // On ELF, if -fno-semantic-interposition is specified and the target
1176     // supports local aliases, there will be neither CC1
1177     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1178     // dso_local on the function if using a local alias is preferable (can avoid
1179     // PLT indirection).
1180     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1181       return false;
1182     return !(CGM.getLangOpts().SemanticInterposition ||
1183              CGM.getLangOpts().HalfNoSemanticInterposition);
1184   }
1185 
1186   // A definition cannot be preempted from an executable.
1187   if (!GV->isDeclarationForLinker())
1188     return true;
1189 
1190   // Most PIC code sequences that assume that a symbol is local cannot produce a
1191   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1192   // depended, it seems worth it to handle it here.
1193   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1194     return false;
1195 
1196   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1197   if (TT.isPPC64())
1198     return false;
1199 
1200   if (CGOpts.DirectAccessExternalData) {
1201     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1202     // for non-thread-local variables. If the symbol is not defined in the
1203     // executable, a copy relocation will be needed at link time. dso_local is
1204     // excluded for thread-local variables because they generally don't support
1205     // copy relocations.
1206     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1207       if (!Var->isThreadLocal())
1208         return true;
1209 
1210     // -fno-pic sets dso_local on a function declaration to allow direct
1211     // accesses when taking its address (similar to a data symbol). If the
1212     // function is not defined in the executable, a canonical PLT entry will be
1213     // needed at link time. -fno-direct-access-external-data can avoid the
1214     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1215     // it could just cause trouble without providing perceptible benefits.
1216     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1217       return true;
1218   }
1219 
1220   // If we can use copy relocations we can assume it is local.
1221 
1222   // Otherwise don't assume it is local.
1223   return false;
1224 }
1225 
1226 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1227   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1228 }
1229 
1230 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1231                                           GlobalDecl GD) const {
1232   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1233   // C++ destructors have a few C++ ABI specific special cases.
1234   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1235     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1236     return;
1237   }
1238   setDLLImportDLLExport(GV, D);
1239 }
1240 
1241 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1242                                           const NamedDecl *D) const {
1243   if (D && D->isExternallyVisible()) {
1244     if (D->hasAttr<DLLImportAttr>())
1245       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1246     else if ((D->hasAttr<DLLExportAttr>() ||
1247               shouldMapVisibilityToDLLExport(D)) &&
1248              !GV->isDeclarationForLinker())
1249       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1250   }
1251 }
1252 
1253 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1254                                     GlobalDecl GD) const {
1255   setDLLImportDLLExport(GV, GD);
1256   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1257 }
1258 
1259 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1260                                     const NamedDecl *D) const {
1261   setDLLImportDLLExport(GV, D);
1262   setGVPropertiesAux(GV, D);
1263 }
1264 
1265 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1266                                        const NamedDecl *D) const {
1267   setGlobalVisibility(GV, D);
1268   setDSOLocal(GV);
1269   GV->setPartition(CodeGenOpts.SymbolPartition);
1270 }
1271 
1272 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1273   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1274       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1275       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1276       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1277       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1278 }
1279 
1280 llvm::GlobalVariable::ThreadLocalMode
1281 CodeGenModule::GetDefaultLLVMTLSModel() const {
1282   switch (CodeGenOpts.getDefaultTLSModel()) {
1283   case CodeGenOptions::GeneralDynamicTLSModel:
1284     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1285   case CodeGenOptions::LocalDynamicTLSModel:
1286     return llvm::GlobalVariable::LocalDynamicTLSModel;
1287   case CodeGenOptions::InitialExecTLSModel:
1288     return llvm::GlobalVariable::InitialExecTLSModel;
1289   case CodeGenOptions::LocalExecTLSModel:
1290     return llvm::GlobalVariable::LocalExecTLSModel;
1291   }
1292   llvm_unreachable("Invalid TLS model!");
1293 }
1294 
1295 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1296   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1297 
1298   llvm::GlobalValue::ThreadLocalMode TLM;
1299   TLM = GetDefaultLLVMTLSModel();
1300 
1301   // Override the TLS model if it is explicitly specified.
1302   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1303     TLM = GetLLVMTLSModel(Attr->getModel());
1304   }
1305 
1306   GV->setThreadLocalMode(TLM);
1307 }
1308 
1309 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1310                                           StringRef Name) {
1311   const TargetInfo &Target = CGM.getTarget();
1312   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1313 }
1314 
1315 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1316                                                  const CPUSpecificAttr *Attr,
1317                                                  unsigned CPUIndex,
1318                                                  raw_ostream &Out) {
1319   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1320   // supported.
1321   if (Attr)
1322     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1323   else if (CGM.getTarget().supportsIFunc())
1324     Out << ".resolver";
1325 }
1326 
1327 static void AppendTargetMangling(const CodeGenModule &CGM,
1328                                  const TargetAttr *Attr, raw_ostream &Out) {
1329   if (Attr->isDefaultVersion())
1330     return;
1331 
1332   Out << '.';
1333   const TargetInfo &Target = CGM.getTarget();
1334   ParsedTargetAttr Info =
1335       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1336         // Multiversioning doesn't allow "no-${feature}", so we can
1337         // only have "+" prefixes here.
1338         assert(LHS.startswith("+") && RHS.startswith("+") &&
1339                "Features should always have a prefix.");
1340         return Target.multiVersionSortPriority(LHS.substr(1)) >
1341                Target.multiVersionSortPriority(RHS.substr(1));
1342       });
1343 
1344   bool IsFirst = true;
1345 
1346   if (!Info.Architecture.empty()) {
1347     IsFirst = false;
1348     Out << "arch_" << Info.Architecture;
1349   }
1350 
1351   for (StringRef Feat : Info.Features) {
1352     if (!IsFirst)
1353       Out << '_';
1354     IsFirst = false;
1355     Out << Feat.substr(1);
1356   }
1357 }
1358 
1359 // Returns true if GD is a function decl with internal linkage and
1360 // needs a unique suffix after the mangled name.
1361 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1362                                         CodeGenModule &CGM) {
1363   const Decl *D = GD.getDecl();
1364   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1365          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1366 }
1367 
1368 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1369                                        const TargetClonesAttr *Attr,
1370                                        unsigned VersionIndex,
1371                                        raw_ostream &Out) {
1372   Out << '.';
1373   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1374   if (FeatureStr.startswith("arch="))
1375     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1376   else
1377     Out << FeatureStr;
1378 
1379   Out << '.' << Attr->getMangledIndex(VersionIndex);
1380 }
1381 
1382 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1383                                       const NamedDecl *ND,
1384                                       bool OmitMultiVersionMangling = false) {
1385   SmallString<256> Buffer;
1386   llvm::raw_svector_ostream Out(Buffer);
1387   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1388   if (!CGM.getModuleNameHash().empty())
1389     MC.needsUniqueInternalLinkageNames();
1390   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1391   if (ShouldMangle)
1392     MC.mangleName(GD.getWithDecl(ND), Out);
1393   else {
1394     IdentifierInfo *II = ND->getIdentifier();
1395     assert(II && "Attempt to mangle unnamed decl.");
1396     const auto *FD = dyn_cast<FunctionDecl>(ND);
1397 
1398     if (FD &&
1399         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1400       Out << "__regcall3__" << II->getName();
1401     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1402                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1403       Out << "__device_stub__" << II->getName();
1404     } else {
1405       Out << II->getName();
1406     }
1407   }
1408 
1409   // Check if the module name hash should be appended for internal linkage
1410   // symbols.   This should come before multi-version target suffixes are
1411   // appended. This is to keep the name and module hash suffix of the
1412   // internal linkage function together.  The unique suffix should only be
1413   // added when name mangling is done to make sure that the final name can
1414   // be properly demangled.  For example, for C functions without prototypes,
1415   // name mangling is not done and the unique suffix should not be appeneded
1416   // then.
1417   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1418     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1419            "Hash computed when not explicitly requested");
1420     Out << CGM.getModuleNameHash();
1421   }
1422 
1423   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1424     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1425       switch (FD->getMultiVersionKind()) {
1426       case MultiVersionKind::CPUDispatch:
1427       case MultiVersionKind::CPUSpecific:
1428         AppendCPUSpecificCPUDispatchMangling(CGM,
1429                                              FD->getAttr<CPUSpecificAttr>(),
1430                                              GD.getMultiVersionIndex(), Out);
1431         break;
1432       case MultiVersionKind::Target:
1433         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1434         break;
1435       case MultiVersionKind::TargetClones:
1436         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1437                                    GD.getMultiVersionIndex(), Out);
1438         break;
1439       case MultiVersionKind::None:
1440         llvm_unreachable("None multiversion type isn't valid here");
1441       }
1442     }
1443 
1444   // Make unique name for device side static file-scope variable for HIP.
1445   if (CGM.getContext().shouldExternalize(ND) &&
1446       CGM.getLangOpts().GPURelocatableDeviceCode &&
1447       CGM.getLangOpts().CUDAIsDevice)
1448     CGM.printPostfixForExternalizedDecl(Out, ND);
1449 
1450   return std::string(Out.str());
1451 }
1452 
1453 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1454                                             const FunctionDecl *FD,
1455                                             StringRef &CurName) {
1456   if (!FD->isMultiVersion())
1457     return;
1458 
1459   // Get the name of what this would be without the 'target' attribute.  This
1460   // allows us to lookup the version that was emitted when this wasn't a
1461   // multiversion function.
1462   std::string NonTargetName =
1463       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1464   GlobalDecl OtherGD;
1465   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1466     assert(OtherGD.getCanonicalDecl()
1467                .getDecl()
1468                ->getAsFunction()
1469                ->isMultiVersion() &&
1470            "Other GD should now be a multiversioned function");
1471     // OtherFD is the version of this function that was mangled BEFORE
1472     // becoming a MultiVersion function.  It potentially needs to be updated.
1473     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1474                                       .getDecl()
1475                                       ->getAsFunction()
1476                                       ->getMostRecentDecl();
1477     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1478     // This is so that if the initial version was already the 'default'
1479     // version, we don't try to update it.
1480     if (OtherName != NonTargetName) {
1481       // Remove instead of erase, since others may have stored the StringRef
1482       // to this.
1483       const auto ExistingRecord = Manglings.find(NonTargetName);
1484       if (ExistingRecord != std::end(Manglings))
1485         Manglings.remove(&(*ExistingRecord));
1486       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1487       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1488           Result.first->first();
1489       // If this is the current decl is being created, make sure we update the name.
1490       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1491         CurName = OtherNameRef;
1492       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1493         Entry->setName(OtherName);
1494     }
1495   }
1496 }
1497 
1498 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1499   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1500 
1501   // Some ABIs don't have constructor variants.  Make sure that base and
1502   // complete constructors get mangled the same.
1503   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1504     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1505       CXXCtorType OrigCtorType = GD.getCtorType();
1506       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1507       if (OrigCtorType == Ctor_Base)
1508         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1509     }
1510   }
1511 
1512   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1513   // static device variable depends on whether the variable is referenced by
1514   // a host or device host function. Therefore the mangled name cannot be
1515   // cached.
1516   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1517     auto FoundName = MangledDeclNames.find(CanonicalGD);
1518     if (FoundName != MangledDeclNames.end())
1519       return FoundName->second;
1520   }
1521 
1522   // Keep the first result in the case of a mangling collision.
1523   const auto *ND = cast<NamedDecl>(GD.getDecl());
1524   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1525 
1526   // Ensure either we have different ABIs between host and device compilations,
1527   // says host compilation following MSVC ABI but device compilation follows
1528   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1529   // mangling should be the same after name stubbing. The later checking is
1530   // very important as the device kernel name being mangled in host-compilation
1531   // is used to resolve the device binaries to be executed. Inconsistent naming
1532   // result in undefined behavior. Even though we cannot check that naming
1533   // directly between host- and device-compilations, the host- and
1534   // device-mangling in host compilation could help catching certain ones.
1535   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1536          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1537          (getContext().getAuxTargetInfo() &&
1538           (getContext().getAuxTargetInfo()->getCXXABI() !=
1539            getContext().getTargetInfo().getCXXABI())) ||
1540          getCUDARuntime().getDeviceSideName(ND) ==
1541              getMangledNameImpl(
1542                  *this,
1543                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1544                  ND));
1545 
1546   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1547   return MangledDeclNames[CanonicalGD] = Result.first->first();
1548 }
1549 
1550 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1551                                              const BlockDecl *BD) {
1552   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1553   const Decl *D = GD.getDecl();
1554 
1555   SmallString<256> Buffer;
1556   llvm::raw_svector_ostream Out(Buffer);
1557   if (!D)
1558     MangleCtx.mangleGlobalBlock(BD,
1559       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1560   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1561     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1562   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1563     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1564   else
1565     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1566 
1567   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1568   return Result.first->first();
1569 }
1570 
1571 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1572   auto it = MangledDeclNames.begin();
1573   while (it != MangledDeclNames.end()) {
1574     if (it->second == Name)
1575       return it->first;
1576     it++;
1577   }
1578   return GlobalDecl();
1579 }
1580 
1581 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1582   return getModule().getNamedValue(Name);
1583 }
1584 
1585 /// AddGlobalCtor - Add a function to the list that will be called before
1586 /// main() runs.
1587 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1588                                   unsigned LexOrder,
1589                                   llvm::Constant *AssociatedData) {
1590   // FIXME: Type coercion of void()* types.
1591   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1592 }
1593 
1594 /// AddGlobalDtor - Add a function to the list that will be called
1595 /// when the module is unloaded.
1596 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1597                                   bool IsDtorAttrFunc) {
1598   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1599       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1600     DtorsUsingAtExit[Priority].push_back(Dtor);
1601     return;
1602   }
1603 
1604   // FIXME: Type coercion of void()* types.
1605   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1606 }
1607 
1608 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1609   if (Fns.empty()) return;
1610 
1611   // Ctor function type is void()*.
1612   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1613   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1614       TheModule.getDataLayout().getProgramAddressSpace());
1615 
1616   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1617   llvm::StructType *CtorStructTy = llvm::StructType::get(
1618       Int32Ty, CtorPFTy, VoidPtrTy);
1619 
1620   // Construct the constructor and destructor arrays.
1621   ConstantInitBuilder builder(*this);
1622   auto ctors = builder.beginArray(CtorStructTy);
1623   for (const auto &I : Fns) {
1624     auto ctor = ctors.beginStruct(CtorStructTy);
1625     ctor.addInt(Int32Ty, I.Priority);
1626     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1627     if (I.AssociatedData)
1628       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1629     else
1630       ctor.addNullPointer(VoidPtrTy);
1631     ctor.finishAndAddTo(ctors);
1632   }
1633 
1634   auto list =
1635     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1636                                 /*constant*/ false,
1637                                 llvm::GlobalValue::AppendingLinkage);
1638 
1639   // The LTO linker doesn't seem to like it when we set an alignment
1640   // on appending variables.  Take it off as a workaround.
1641   list->setAlignment(llvm::None);
1642 
1643   Fns.clear();
1644 }
1645 
1646 llvm::GlobalValue::LinkageTypes
1647 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1648   const auto *D = cast<FunctionDecl>(GD.getDecl());
1649 
1650   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1651 
1652   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1653     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1654 
1655   if (isa<CXXConstructorDecl>(D) &&
1656       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1657       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1658     // Our approach to inheriting constructors is fundamentally different from
1659     // that used by the MS ABI, so keep our inheriting constructor thunks
1660     // internal rather than trying to pick an unambiguous mangling for them.
1661     return llvm::GlobalValue::InternalLinkage;
1662   }
1663 
1664   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1665 }
1666 
1667 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1668   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1669   if (!MDS) return nullptr;
1670 
1671   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1672 }
1673 
1674 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1675   if (auto *FnType = T->getAs<FunctionProtoType>())
1676     T = getContext().getFunctionType(
1677         FnType->getReturnType(), FnType->getParamTypes(),
1678         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1679 
1680   std::string OutName;
1681   llvm::raw_string_ostream Out(OutName);
1682   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1683 
1684   return llvm::ConstantInt::get(Int32Ty,
1685                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1686 }
1687 
1688 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1689                                               const CGFunctionInfo &Info,
1690                                               llvm::Function *F, bool IsThunk) {
1691   unsigned CallingConv;
1692   llvm::AttributeList PAL;
1693   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1694                          /*AttrOnCallSite=*/false, IsThunk);
1695   F->setAttributes(PAL);
1696   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1697 }
1698 
1699 static void removeImageAccessQualifier(std::string& TyName) {
1700   std::string ReadOnlyQual("__read_only");
1701   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1702   if (ReadOnlyPos != std::string::npos)
1703     // "+ 1" for the space after access qualifier.
1704     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1705   else {
1706     std::string WriteOnlyQual("__write_only");
1707     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1708     if (WriteOnlyPos != std::string::npos)
1709       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1710     else {
1711       std::string ReadWriteQual("__read_write");
1712       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1713       if (ReadWritePos != std::string::npos)
1714         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1715     }
1716   }
1717 }
1718 
1719 // Returns the address space id that should be produced to the
1720 // kernel_arg_addr_space metadata. This is always fixed to the ids
1721 // as specified in the SPIR 2.0 specification in order to differentiate
1722 // for example in clGetKernelArgInfo() implementation between the address
1723 // spaces with targets without unique mapping to the OpenCL address spaces
1724 // (basically all single AS CPUs).
1725 static unsigned ArgInfoAddressSpace(LangAS AS) {
1726   switch (AS) {
1727   case LangAS::opencl_global:
1728     return 1;
1729   case LangAS::opencl_constant:
1730     return 2;
1731   case LangAS::opencl_local:
1732     return 3;
1733   case LangAS::opencl_generic:
1734     return 4; // Not in SPIR 2.0 specs.
1735   case LangAS::opencl_global_device:
1736     return 5;
1737   case LangAS::opencl_global_host:
1738     return 6;
1739   default:
1740     return 0; // Assume private.
1741   }
1742 }
1743 
1744 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1745                                          const FunctionDecl *FD,
1746                                          CodeGenFunction *CGF) {
1747   assert(((FD && CGF) || (!FD && !CGF)) &&
1748          "Incorrect use - FD and CGF should either be both null or not!");
1749   // Create MDNodes that represent the kernel arg metadata.
1750   // Each MDNode is a list in the form of "key", N number of values which is
1751   // the same number of values as their are kernel arguments.
1752 
1753   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1754 
1755   // MDNode for the kernel argument address space qualifiers.
1756   SmallVector<llvm::Metadata *, 8> addressQuals;
1757 
1758   // MDNode for the kernel argument access qualifiers (images only).
1759   SmallVector<llvm::Metadata *, 8> accessQuals;
1760 
1761   // MDNode for the kernel argument type names.
1762   SmallVector<llvm::Metadata *, 8> argTypeNames;
1763 
1764   // MDNode for the kernel argument base type names.
1765   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1766 
1767   // MDNode for the kernel argument type qualifiers.
1768   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1769 
1770   // MDNode for the kernel argument names.
1771   SmallVector<llvm::Metadata *, 8> argNames;
1772 
1773   if (FD && CGF)
1774     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1775       const ParmVarDecl *parm = FD->getParamDecl(i);
1776       // Get argument name.
1777       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1778 
1779       if (!getLangOpts().OpenCL)
1780         continue;
1781       QualType ty = parm->getType();
1782       std::string typeQuals;
1783 
1784       // Get image and pipe access qualifier:
1785       if (ty->isImageType() || ty->isPipeType()) {
1786         const Decl *PDecl = parm;
1787         if (const auto *TD = ty->getAs<TypedefType>())
1788           PDecl = TD->getDecl();
1789         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1790         if (A && A->isWriteOnly())
1791           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1792         else if (A && A->isReadWrite())
1793           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1794         else
1795           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1796       } else
1797         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1798 
1799       auto getTypeSpelling = [&](QualType Ty) {
1800         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1801 
1802         if (Ty.isCanonical()) {
1803           StringRef typeNameRef = typeName;
1804           // Turn "unsigned type" to "utype"
1805           if (typeNameRef.consume_front("unsigned "))
1806             return std::string("u") + typeNameRef.str();
1807           if (typeNameRef.consume_front("signed "))
1808             return typeNameRef.str();
1809         }
1810 
1811         return typeName;
1812       };
1813 
1814       if (ty->isPointerType()) {
1815         QualType pointeeTy = ty->getPointeeType();
1816 
1817         // Get address qualifier.
1818         addressQuals.push_back(
1819             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1820                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1821 
1822         // Get argument type name.
1823         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1824         std::string baseTypeName =
1825             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1826         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1827         argBaseTypeNames.push_back(
1828             llvm::MDString::get(VMContext, baseTypeName));
1829 
1830         // Get argument type qualifiers:
1831         if (ty.isRestrictQualified())
1832           typeQuals = "restrict";
1833         if (pointeeTy.isConstQualified() ||
1834             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1835           typeQuals += typeQuals.empty() ? "const" : " const";
1836         if (pointeeTy.isVolatileQualified())
1837           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1838       } else {
1839         uint32_t AddrSpc = 0;
1840         bool isPipe = ty->isPipeType();
1841         if (ty->isImageType() || isPipe)
1842           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1843 
1844         addressQuals.push_back(
1845             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1846 
1847         // Get argument type name.
1848         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1849         std::string typeName = getTypeSpelling(ty);
1850         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1851 
1852         // Remove access qualifiers on images
1853         // (as they are inseparable from type in clang implementation,
1854         // but OpenCL spec provides a special query to get access qualifier
1855         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1856         if (ty->isImageType()) {
1857           removeImageAccessQualifier(typeName);
1858           removeImageAccessQualifier(baseTypeName);
1859         }
1860 
1861         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1862         argBaseTypeNames.push_back(
1863             llvm::MDString::get(VMContext, baseTypeName));
1864 
1865         if (isPipe)
1866           typeQuals = "pipe";
1867       }
1868       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1869     }
1870 
1871   if (getLangOpts().OpenCL) {
1872     Fn->setMetadata("kernel_arg_addr_space",
1873                     llvm::MDNode::get(VMContext, addressQuals));
1874     Fn->setMetadata("kernel_arg_access_qual",
1875                     llvm::MDNode::get(VMContext, accessQuals));
1876     Fn->setMetadata("kernel_arg_type",
1877                     llvm::MDNode::get(VMContext, argTypeNames));
1878     Fn->setMetadata("kernel_arg_base_type",
1879                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1880     Fn->setMetadata("kernel_arg_type_qual",
1881                     llvm::MDNode::get(VMContext, argTypeQuals));
1882   }
1883   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1884       getCodeGenOpts().HIPSaveKernelArgName)
1885     Fn->setMetadata("kernel_arg_name",
1886                     llvm::MDNode::get(VMContext, argNames));
1887 }
1888 
1889 /// Determines whether the language options require us to model
1890 /// unwind exceptions.  We treat -fexceptions as mandating this
1891 /// except under the fragile ObjC ABI with only ObjC exceptions
1892 /// enabled.  This means, for example, that C with -fexceptions
1893 /// enables this.
1894 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1895   // If exceptions are completely disabled, obviously this is false.
1896   if (!LangOpts.Exceptions) return false;
1897 
1898   // If C++ exceptions are enabled, this is true.
1899   if (LangOpts.CXXExceptions) return true;
1900 
1901   // If ObjC exceptions are enabled, this depends on the ABI.
1902   if (LangOpts.ObjCExceptions) {
1903     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1904   }
1905 
1906   return true;
1907 }
1908 
1909 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1910                                                       const CXXMethodDecl *MD) {
1911   // Check that the type metadata can ever actually be used by a call.
1912   if (!CGM.getCodeGenOpts().LTOUnit ||
1913       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1914     return false;
1915 
1916   // Only functions whose address can be taken with a member function pointer
1917   // need this sort of type metadata.
1918   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1919          !isa<CXXDestructorDecl>(MD);
1920 }
1921 
1922 std::vector<const CXXRecordDecl *>
1923 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1924   llvm::SetVector<const CXXRecordDecl *> MostBases;
1925 
1926   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1927   CollectMostBases = [&](const CXXRecordDecl *RD) {
1928     if (RD->getNumBases() == 0)
1929       MostBases.insert(RD);
1930     for (const CXXBaseSpecifier &B : RD->bases())
1931       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1932   };
1933   CollectMostBases(RD);
1934   return MostBases.takeVector();
1935 }
1936 
1937 llvm::GlobalVariable *
1938 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1939   auto It = RTTIProxyMap.find(Addr);
1940   if (It != RTTIProxyMap.end())
1941     return It->second;
1942 
1943   auto *FTRTTIProxy = new llvm::GlobalVariable(
1944       TheModule, Addr->getType(),
1945       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1946       "__llvm_rtti_proxy");
1947   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1948 
1949   RTTIProxyMap[Addr] = FTRTTIProxy;
1950   return FTRTTIProxy;
1951 }
1952 
1953 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1954                                                            llvm::Function *F) {
1955   llvm::AttrBuilder B(F->getContext());
1956 
1957   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
1958     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1959 
1960   if (CodeGenOpts.StackClashProtector)
1961     B.addAttribute("probe-stack", "inline-asm");
1962 
1963   if (!hasUnwindExceptions(LangOpts))
1964     B.addAttribute(llvm::Attribute::NoUnwind);
1965 
1966   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1967     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1968       B.addAttribute(llvm::Attribute::StackProtect);
1969     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1970       B.addAttribute(llvm::Attribute::StackProtectStrong);
1971     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1972       B.addAttribute(llvm::Attribute::StackProtectReq);
1973   }
1974 
1975   if (!D) {
1976     // If we don't have a declaration to control inlining, the function isn't
1977     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1978     // disabled, mark the function as noinline.
1979     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1980         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1981       B.addAttribute(llvm::Attribute::NoInline);
1982 
1983     F->addFnAttrs(B);
1984     return;
1985   }
1986 
1987   // Track whether we need to add the optnone LLVM attribute,
1988   // starting with the default for this optimization level.
1989   bool ShouldAddOptNone =
1990       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1991   // We can't add optnone in the following cases, it won't pass the verifier.
1992   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1993   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1994 
1995   // Add optnone, but do so only if the function isn't always_inline.
1996   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1997       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1998     B.addAttribute(llvm::Attribute::OptimizeNone);
1999 
2000     // OptimizeNone implies noinline; we should not be inlining such functions.
2001     B.addAttribute(llvm::Attribute::NoInline);
2002 
2003     // We still need to handle naked functions even though optnone subsumes
2004     // much of their semantics.
2005     if (D->hasAttr<NakedAttr>())
2006       B.addAttribute(llvm::Attribute::Naked);
2007 
2008     // OptimizeNone wins over OptimizeForSize and MinSize.
2009     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2010     F->removeFnAttr(llvm::Attribute::MinSize);
2011   } else if (D->hasAttr<NakedAttr>()) {
2012     // Naked implies noinline: we should not be inlining such functions.
2013     B.addAttribute(llvm::Attribute::Naked);
2014     B.addAttribute(llvm::Attribute::NoInline);
2015   } else if (D->hasAttr<NoDuplicateAttr>()) {
2016     B.addAttribute(llvm::Attribute::NoDuplicate);
2017   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2018     // Add noinline if the function isn't always_inline.
2019     B.addAttribute(llvm::Attribute::NoInline);
2020   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2021              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2022     // (noinline wins over always_inline, and we can't specify both in IR)
2023     B.addAttribute(llvm::Attribute::AlwaysInline);
2024   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2025     // If we're not inlining, then force everything that isn't always_inline to
2026     // carry an explicit noinline attribute.
2027     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2028       B.addAttribute(llvm::Attribute::NoInline);
2029   } else {
2030     // Otherwise, propagate the inline hint attribute and potentially use its
2031     // absence to mark things as noinline.
2032     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2033       // Search function and template pattern redeclarations for inline.
2034       auto CheckForInline = [](const FunctionDecl *FD) {
2035         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2036           return Redecl->isInlineSpecified();
2037         };
2038         if (any_of(FD->redecls(), CheckRedeclForInline))
2039           return true;
2040         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2041         if (!Pattern)
2042           return false;
2043         return any_of(Pattern->redecls(), CheckRedeclForInline);
2044       };
2045       if (CheckForInline(FD)) {
2046         B.addAttribute(llvm::Attribute::InlineHint);
2047       } else if (CodeGenOpts.getInlining() ==
2048                      CodeGenOptions::OnlyHintInlining &&
2049                  !FD->isInlined() &&
2050                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2051         B.addAttribute(llvm::Attribute::NoInline);
2052       }
2053     }
2054   }
2055 
2056   // Add other optimization related attributes if we are optimizing this
2057   // function.
2058   if (!D->hasAttr<OptimizeNoneAttr>()) {
2059     if (D->hasAttr<ColdAttr>()) {
2060       if (!ShouldAddOptNone)
2061         B.addAttribute(llvm::Attribute::OptimizeForSize);
2062       B.addAttribute(llvm::Attribute::Cold);
2063     }
2064     if (D->hasAttr<HotAttr>())
2065       B.addAttribute(llvm::Attribute::Hot);
2066     if (D->hasAttr<MinSizeAttr>())
2067       B.addAttribute(llvm::Attribute::MinSize);
2068   }
2069 
2070   F->addFnAttrs(B);
2071 
2072   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2073   if (alignment)
2074     F->setAlignment(llvm::Align(alignment));
2075 
2076   if (!D->hasAttr<AlignedAttr>())
2077     if (LangOpts.FunctionAlignment)
2078       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2079 
2080   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2081   // reserve a bit for differentiating between virtual and non-virtual member
2082   // functions. If the current target's C++ ABI requires this and this is a
2083   // member function, set its alignment accordingly.
2084   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2085     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2086       F->setAlignment(llvm::Align(2));
2087   }
2088 
2089   // In the cross-dso CFI mode with canonical jump tables, we want !type
2090   // attributes on definitions only.
2091   if (CodeGenOpts.SanitizeCfiCrossDso &&
2092       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2093     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2094       // Skip available_externally functions. They won't be codegen'ed in the
2095       // current module anyway.
2096       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2097         CreateFunctionTypeMetadataForIcall(FD, F);
2098     }
2099   }
2100 
2101   // Emit type metadata on member functions for member function pointer checks.
2102   // These are only ever necessary on definitions; we're guaranteed that the
2103   // definition will be present in the LTO unit as a result of LTO visibility.
2104   auto *MD = dyn_cast<CXXMethodDecl>(D);
2105   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2106     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2107       llvm::Metadata *Id =
2108           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2109               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2110       F->addTypeMetadata(0, Id);
2111     }
2112   }
2113 }
2114 
2115 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2116                                                   llvm::Function *F) {
2117   if (D->hasAttr<StrictFPAttr>()) {
2118     llvm::AttrBuilder FuncAttrs(F->getContext());
2119     FuncAttrs.addAttribute("strictfp");
2120     F->addFnAttrs(FuncAttrs);
2121   }
2122 }
2123 
2124 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2125   const Decl *D = GD.getDecl();
2126   if (isa_and_nonnull<NamedDecl>(D))
2127     setGVProperties(GV, GD);
2128   else
2129     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2130 
2131   if (D && D->hasAttr<UsedAttr>())
2132     addUsedOrCompilerUsedGlobal(GV);
2133 
2134   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2135     const auto *VD = cast<VarDecl>(D);
2136     if (VD->getType().isConstQualified() &&
2137         VD->getStorageDuration() == SD_Static)
2138       addUsedOrCompilerUsedGlobal(GV);
2139   }
2140 }
2141 
2142 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2143                                                 llvm::AttrBuilder &Attrs) {
2144   // Add target-cpu and target-features attributes to functions. If
2145   // we have a decl for the function and it has a target attribute then
2146   // parse that and add it to the feature set.
2147   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2148   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2149   std::vector<std::string> Features;
2150   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2151   FD = FD ? FD->getMostRecentDecl() : FD;
2152   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2153   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2154   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2155   bool AddedAttr = false;
2156   if (TD || SD || TC) {
2157     llvm::StringMap<bool> FeatureMap;
2158     getContext().getFunctionFeatureMap(FeatureMap, GD);
2159 
2160     // Produce the canonical string for this set of features.
2161     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2162       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2163 
2164     // Now add the target-cpu and target-features to the function.
2165     // While we populated the feature map above, we still need to
2166     // get and parse the target attribute so we can get the cpu for
2167     // the function.
2168     if (TD) {
2169       ParsedTargetAttr ParsedAttr = TD->parse();
2170       if (!ParsedAttr.Architecture.empty() &&
2171           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2172         TargetCPU = ParsedAttr.Architecture;
2173         TuneCPU = ""; // Clear the tune CPU.
2174       }
2175       if (!ParsedAttr.Tune.empty() &&
2176           getTarget().isValidCPUName(ParsedAttr.Tune))
2177         TuneCPU = ParsedAttr.Tune;
2178     }
2179 
2180     if (SD) {
2181       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2182       // favor this processor.
2183       TuneCPU = getTarget().getCPUSpecificTuneName(
2184           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2185     }
2186   } else {
2187     // Otherwise just add the existing target cpu and target features to the
2188     // function.
2189     Features = getTarget().getTargetOpts().Features;
2190   }
2191 
2192   if (!TargetCPU.empty()) {
2193     Attrs.addAttribute("target-cpu", TargetCPU);
2194     AddedAttr = true;
2195   }
2196   if (!TuneCPU.empty()) {
2197     Attrs.addAttribute("tune-cpu", TuneCPU);
2198     AddedAttr = true;
2199   }
2200   if (!Features.empty()) {
2201     llvm::sort(Features);
2202     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2203     AddedAttr = true;
2204   }
2205 
2206   return AddedAttr;
2207 }
2208 
2209 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2210                                           llvm::GlobalObject *GO) {
2211   const Decl *D = GD.getDecl();
2212   SetCommonAttributes(GD, GO);
2213 
2214   if (D) {
2215     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2216       if (D->hasAttr<RetainAttr>())
2217         addUsedGlobal(GV);
2218       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2219         GV->addAttribute("bss-section", SA->getName());
2220       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2221         GV->addAttribute("data-section", SA->getName());
2222       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2223         GV->addAttribute("rodata-section", SA->getName());
2224       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2225         GV->addAttribute("relro-section", SA->getName());
2226     }
2227 
2228     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2229       if (D->hasAttr<RetainAttr>())
2230         addUsedGlobal(F);
2231       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2232         if (!D->getAttr<SectionAttr>())
2233           F->addFnAttr("implicit-section-name", SA->getName());
2234 
2235       llvm::AttrBuilder Attrs(F->getContext());
2236       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2237         // We know that GetCPUAndFeaturesAttributes will always have the
2238         // newest set, since it has the newest possible FunctionDecl, so the
2239         // new ones should replace the old.
2240         llvm::AttributeMask RemoveAttrs;
2241         RemoveAttrs.addAttribute("target-cpu");
2242         RemoveAttrs.addAttribute("target-features");
2243         RemoveAttrs.addAttribute("tune-cpu");
2244         F->removeFnAttrs(RemoveAttrs);
2245         F->addFnAttrs(Attrs);
2246       }
2247     }
2248 
2249     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2250       GO->setSection(CSA->getName());
2251     else if (const auto *SA = D->getAttr<SectionAttr>())
2252       GO->setSection(SA->getName());
2253   }
2254 
2255   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2256 }
2257 
2258 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2259                                                   llvm::Function *F,
2260                                                   const CGFunctionInfo &FI) {
2261   const Decl *D = GD.getDecl();
2262   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2263   SetLLVMFunctionAttributesForDefinition(D, F);
2264 
2265   F->setLinkage(llvm::Function::InternalLinkage);
2266 
2267   setNonAliasAttributes(GD, F);
2268 }
2269 
2270 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2271   // Set linkage and visibility in case we never see a definition.
2272   LinkageInfo LV = ND->getLinkageAndVisibility();
2273   // Don't set internal linkage on declarations.
2274   // "extern_weak" is overloaded in LLVM; we probably should have
2275   // separate linkage types for this.
2276   if (isExternallyVisible(LV.getLinkage()) &&
2277       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2278     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2279 }
2280 
2281 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2282                                                        llvm::Function *F) {
2283   // Only if we are checking indirect calls.
2284   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2285     return;
2286 
2287   // Non-static class methods are handled via vtable or member function pointer
2288   // checks elsewhere.
2289   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2290     return;
2291 
2292   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2293   F->addTypeMetadata(0, MD);
2294   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2295 
2296   // Emit a hash-based bit set entry for cross-DSO calls.
2297   if (CodeGenOpts.SanitizeCfiCrossDso)
2298     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2299       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2300 }
2301 
2302 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2303   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2304     return;
2305 
2306   llvm::LLVMContext &Ctx = F->getContext();
2307   llvm::MDBuilder MDB(Ctx);
2308   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2309                  llvm::MDNode::get(
2310                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2311 }
2312 
2313 static bool allowKCFIIdentifier(StringRef Name) {
2314   // KCFI type identifier constants are only necessary for external assembly
2315   // functions, which means it's safe to skip unusual names. Subset of
2316   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2317   return llvm::all_of(Name, [](const char &C) {
2318     return llvm::isAlnum(C) || C == '_' || C == '.';
2319   });
2320 }
2321 
2322 void CodeGenModule::finalizeKCFITypes() {
2323   llvm::Module &M = getModule();
2324   for (auto &F : M.functions()) {
2325     // Remove KCFI type metadata from non-address-taken local functions.
2326     bool AddressTaken = F.hasAddressTaken();
2327     if (!AddressTaken && F.hasLocalLinkage())
2328       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2329 
2330     // Generate a constant with the expected KCFI type identifier for all
2331     // address-taken function declarations to support annotating indirectly
2332     // called assembly functions.
2333     if (!AddressTaken || !F.isDeclaration())
2334       continue;
2335 
2336     const llvm::ConstantInt *Type;
2337     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2338       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2339     else
2340       continue;
2341 
2342     StringRef Name = F.getName();
2343     if (!allowKCFIIdentifier(Name))
2344       continue;
2345 
2346     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2347                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2348                           .str();
2349     M.appendModuleInlineAsm(Asm);
2350   }
2351 }
2352 
2353 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2354                                           bool IsIncompleteFunction,
2355                                           bool IsThunk) {
2356 
2357   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2358     // If this is an intrinsic function, set the function's attributes
2359     // to the intrinsic's attributes.
2360     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2361     return;
2362   }
2363 
2364   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2365 
2366   if (!IsIncompleteFunction)
2367     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2368                               IsThunk);
2369 
2370   // Add the Returned attribute for "this", except for iOS 5 and earlier
2371   // where substantial code, including the libstdc++ dylib, was compiled with
2372   // GCC and does not actually return "this".
2373   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2374       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2375     assert(!F->arg_empty() &&
2376            F->arg_begin()->getType()
2377              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2378            "unexpected this return");
2379     F->addParamAttr(0, llvm::Attribute::Returned);
2380   }
2381 
2382   // Only a few attributes are set on declarations; these may later be
2383   // overridden by a definition.
2384 
2385   setLinkageForGV(F, FD);
2386   setGVProperties(F, FD);
2387 
2388   // Setup target-specific attributes.
2389   if (!IsIncompleteFunction && F->isDeclaration())
2390     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2391 
2392   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2393     F->setSection(CSA->getName());
2394   else if (const auto *SA = FD->getAttr<SectionAttr>())
2395      F->setSection(SA->getName());
2396 
2397   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2398     if (EA->isError())
2399       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2400     else if (EA->isWarning())
2401       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2402   }
2403 
2404   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2405   if (FD->isInlineBuiltinDeclaration()) {
2406     const FunctionDecl *FDBody;
2407     bool HasBody = FD->hasBody(FDBody);
2408     (void)HasBody;
2409     assert(HasBody && "Inline builtin declarations should always have an "
2410                       "available body!");
2411     if (shouldEmitFunction(FDBody))
2412       F->addFnAttr(llvm::Attribute::NoBuiltin);
2413   }
2414 
2415   if (FD->isReplaceableGlobalAllocationFunction()) {
2416     // A replaceable global allocation function does not act like a builtin by
2417     // default, only if it is invoked by a new-expression or delete-expression.
2418     F->addFnAttr(llvm::Attribute::NoBuiltin);
2419   }
2420 
2421   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2422     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2423   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2424     if (MD->isVirtual())
2425       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2426 
2427   // Don't emit entries for function declarations in the cross-DSO mode. This
2428   // is handled with better precision by the receiving DSO. But if jump tables
2429   // are non-canonical then we need type metadata in order to produce the local
2430   // jump table.
2431   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2432       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2433     CreateFunctionTypeMetadataForIcall(FD, F);
2434 
2435   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2436     setKCFIType(FD, F);
2437 
2438   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2439     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2440 
2441   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2442     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2443 
2444   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2445     // Annotate the callback behavior as metadata:
2446     //  - The callback callee (as argument number).
2447     //  - The callback payloads (as argument numbers).
2448     llvm::LLVMContext &Ctx = F->getContext();
2449     llvm::MDBuilder MDB(Ctx);
2450 
2451     // The payload indices are all but the first one in the encoding. The first
2452     // identifies the callback callee.
2453     int CalleeIdx = *CB->encoding_begin();
2454     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2455     F->addMetadata(llvm::LLVMContext::MD_callback,
2456                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2457                                                CalleeIdx, PayloadIndices,
2458                                                /* VarArgsArePassed */ false)}));
2459   }
2460 }
2461 
2462 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2463   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2464          "Only globals with definition can force usage.");
2465   LLVMUsed.emplace_back(GV);
2466 }
2467 
2468 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2469   assert(!GV->isDeclaration() &&
2470          "Only globals with definition can force usage.");
2471   LLVMCompilerUsed.emplace_back(GV);
2472 }
2473 
2474 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2475   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2476          "Only globals with definition can force usage.");
2477   if (getTriple().isOSBinFormatELF())
2478     LLVMCompilerUsed.emplace_back(GV);
2479   else
2480     LLVMUsed.emplace_back(GV);
2481 }
2482 
2483 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2484                      std::vector<llvm::WeakTrackingVH> &List) {
2485   // Don't create llvm.used if there is no need.
2486   if (List.empty())
2487     return;
2488 
2489   // Convert List to what ConstantArray needs.
2490   SmallVector<llvm::Constant*, 8> UsedArray;
2491   UsedArray.resize(List.size());
2492   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2493     UsedArray[i] =
2494         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2495             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2496   }
2497 
2498   if (UsedArray.empty())
2499     return;
2500   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2501 
2502   auto *GV = new llvm::GlobalVariable(
2503       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2504       llvm::ConstantArray::get(ATy, UsedArray), Name);
2505 
2506   GV->setSection("llvm.metadata");
2507 }
2508 
2509 void CodeGenModule::emitLLVMUsed() {
2510   emitUsed(*this, "llvm.used", LLVMUsed);
2511   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2512 }
2513 
2514 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2515   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2516   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2517 }
2518 
2519 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2520   llvm::SmallString<32> Opt;
2521   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2522   if (Opt.empty())
2523     return;
2524   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2525   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2526 }
2527 
2528 void CodeGenModule::AddDependentLib(StringRef Lib) {
2529   auto &C = getLLVMContext();
2530   if (getTarget().getTriple().isOSBinFormatELF()) {
2531       ELFDependentLibraries.push_back(
2532         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2533     return;
2534   }
2535 
2536   llvm::SmallString<24> Opt;
2537   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2538   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2539   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2540 }
2541 
2542 /// Add link options implied by the given module, including modules
2543 /// it depends on, using a postorder walk.
2544 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2545                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2546                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2547   // Import this module's parent.
2548   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2549     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2550   }
2551 
2552   // Import this module's dependencies.
2553   for (Module *Import : llvm::reverse(Mod->Imports)) {
2554     if (Visited.insert(Import).second)
2555       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2556   }
2557 
2558   // Add linker options to link against the libraries/frameworks
2559   // described by this module.
2560   llvm::LLVMContext &Context = CGM.getLLVMContext();
2561   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2562 
2563   // For modules that use export_as for linking, use that module
2564   // name instead.
2565   if (Mod->UseExportAsModuleLinkName)
2566     return;
2567 
2568   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2569     // Link against a framework.  Frameworks are currently Darwin only, so we
2570     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2571     if (LL.IsFramework) {
2572       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2573                                  llvm::MDString::get(Context, LL.Library)};
2574 
2575       Metadata.push_back(llvm::MDNode::get(Context, Args));
2576       continue;
2577     }
2578 
2579     // Link against a library.
2580     if (IsELF) {
2581       llvm::Metadata *Args[2] = {
2582           llvm::MDString::get(Context, "lib"),
2583           llvm::MDString::get(Context, LL.Library),
2584       };
2585       Metadata.push_back(llvm::MDNode::get(Context, Args));
2586     } else {
2587       llvm::SmallString<24> Opt;
2588       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2589       auto *OptString = llvm::MDString::get(Context, Opt);
2590       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2591     }
2592   }
2593 }
2594 
2595 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2596   // Emit the initializers in the order that sub-modules appear in the
2597   // source, first Global Module Fragments, if present.
2598   if (auto GMF = Primary->getGlobalModuleFragment()) {
2599     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2600       if (isa<ImportDecl>(D))
2601         continue;
2602       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2603       EmitTopLevelDecl(D);
2604     }
2605   }
2606   // Second any associated with the module, itself.
2607   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2608     // Skip import decls, the inits for those are called explicitly.
2609     if (isa<ImportDecl>(D))
2610       continue;
2611     EmitTopLevelDecl(D);
2612   }
2613   // Third any associated with the Privat eMOdule Fragment, if present.
2614   if (auto PMF = Primary->getPrivateModuleFragment()) {
2615     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2616       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2617       EmitTopLevelDecl(D);
2618     }
2619   }
2620 }
2621 
2622 void CodeGenModule::EmitModuleLinkOptions() {
2623   // Collect the set of all of the modules we want to visit to emit link
2624   // options, which is essentially the imported modules and all of their
2625   // non-explicit child modules.
2626   llvm::SetVector<clang::Module *> LinkModules;
2627   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2628   SmallVector<clang::Module *, 16> Stack;
2629 
2630   // Seed the stack with imported modules.
2631   for (Module *M : ImportedModules) {
2632     // Do not add any link flags when an implementation TU of a module imports
2633     // a header of that same module.
2634     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2635         !getLangOpts().isCompilingModule())
2636       continue;
2637     if (Visited.insert(M).second)
2638       Stack.push_back(M);
2639   }
2640 
2641   // Find all of the modules to import, making a little effort to prune
2642   // non-leaf modules.
2643   while (!Stack.empty()) {
2644     clang::Module *Mod = Stack.pop_back_val();
2645 
2646     bool AnyChildren = false;
2647 
2648     // Visit the submodules of this module.
2649     for (const auto &SM : Mod->submodules()) {
2650       // Skip explicit children; they need to be explicitly imported to be
2651       // linked against.
2652       if (SM->IsExplicit)
2653         continue;
2654 
2655       if (Visited.insert(SM).second) {
2656         Stack.push_back(SM);
2657         AnyChildren = true;
2658       }
2659     }
2660 
2661     // We didn't find any children, so add this module to the list of
2662     // modules to link against.
2663     if (!AnyChildren) {
2664       LinkModules.insert(Mod);
2665     }
2666   }
2667 
2668   // Add link options for all of the imported modules in reverse topological
2669   // order.  We don't do anything to try to order import link flags with respect
2670   // to linker options inserted by things like #pragma comment().
2671   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2672   Visited.clear();
2673   for (Module *M : LinkModules)
2674     if (Visited.insert(M).second)
2675       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2676   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2677   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2678 
2679   // Add the linker options metadata flag.
2680   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2681   for (auto *MD : LinkerOptionsMetadata)
2682     NMD->addOperand(MD);
2683 }
2684 
2685 void CodeGenModule::EmitDeferred() {
2686   // Emit deferred declare target declarations.
2687   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2688     getOpenMPRuntime().emitDeferredTargetDecls();
2689 
2690   // Emit code for any potentially referenced deferred decls.  Since a
2691   // previously unused static decl may become used during the generation of code
2692   // for a static function, iterate until no changes are made.
2693 
2694   if (!DeferredVTables.empty()) {
2695     EmitDeferredVTables();
2696 
2697     // Emitting a vtable doesn't directly cause more vtables to
2698     // become deferred, although it can cause functions to be
2699     // emitted that then need those vtables.
2700     assert(DeferredVTables.empty());
2701   }
2702 
2703   // Emit CUDA/HIP static device variables referenced by host code only.
2704   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2705   // needed for further handling.
2706   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2707     llvm::append_range(DeferredDeclsToEmit,
2708                        getContext().CUDADeviceVarODRUsedByHost);
2709 
2710   // Stop if we're out of both deferred vtables and deferred declarations.
2711   if (DeferredDeclsToEmit.empty())
2712     return;
2713 
2714   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2715   // work, it will not interfere with this.
2716   std::vector<GlobalDecl> CurDeclsToEmit;
2717   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2718 
2719   for (GlobalDecl &D : CurDeclsToEmit) {
2720     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2721     // to get GlobalValue with exactly the type we need, not something that
2722     // might had been created for another decl with the same mangled name but
2723     // different type.
2724     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2725         GetAddrOfGlobal(D, ForDefinition));
2726 
2727     // In case of different address spaces, we may still get a cast, even with
2728     // IsForDefinition equal to true. Query mangled names table to get
2729     // GlobalValue.
2730     if (!GV)
2731       GV = GetGlobalValue(getMangledName(D));
2732 
2733     // Make sure GetGlobalValue returned non-null.
2734     assert(GV);
2735 
2736     // Check to see if we've already emitted this.  This is necessary
2737     // for a couple of reasons: first, decls can end up in the
2738     // deferred-decls queue multiple times, and second, decls can end
2739     // up with definitions in unusual ways (e.g. by an extern inline
2740     // function acquiring a strong function redefinition).  Just
2741     // ignore these cases.
2742     if (!GV->isDeclaration())
2743       continue;
2744 
2745     // If this is OpenMP, check if it is legal to emit this global normally.
2746     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2747       continue;
2748 
2749     // Otherwise, emit the definition and move on to the next one.
2750     EmitGlobalDefinition(D, GV);
2751 
2752     // If we found out that we need to emit more decls, do that recursively.
2753     // This has the advantage that the decls are emitted in a DFS and related
2754     // ones are close together, which is convenient for testing.
2755     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2756       EmitDeferred();
2757       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2758     }
2759   }
2760 }
2761 
2762 void CodeGenModule::EmitVTablesOpportunistically() {
2763   // Try to emit external vtables as available_externally if they have emitted
2764   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2765   // is not allowed to create new references to things that need to be emitted
2766   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2767 
2768   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2769          && "Only emit opportunistic vtables with optimizations");
2770 
2771   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2772     assert(getVTables().isVTableExternal(RD) &&
2773            "This queue should only contain external vtables");
2774     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2775       VTables.GenerateClassData(RD);
2776   }
2777   OpportunisticVTables.clear();
2778 }
2779 
2780 void CodeGenModule::EmitGlobalAnnotations() {
2781   if (Annotations.empty())
2782     return;
2783 
2784   // Create a new global variable for the ConstantStruct in the Module.
2785   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2786     Annotations[0]->getType(), Annotations.size()), Annotations);
2787   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2788                                       llvm::GlobalValue::AppendingLinkage,
2789                                       Array, "llvm.global.annotations");
2790   gv->setSection(AnnotationSection);
2791 }
2792 
2793 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2794   llvm::Constant *&AStr = AnnotationStrings[Str];
2795   if (AStr)
2796     return AStr;
2797 
2798   // Not found yet, create a new global.
2799   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2800   auto *gv =
2801       new llvm::GlobalVariable(getModule(), s->getType(), true,
2802                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2803   gv->setSection(AnnotationSection);
2804   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2805   AStr = gv;
2806   return gv;
2807 }
2808 
2809 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2810   SourceManager &SM = getContext().getSourceManager();
2811   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2812   if (PLoc.isValid())
2813     return EmitAnnotationString(PLoc.getFilename());
2814   return EmitAnnotationString(SM.getBufferName(Loc));
2815 }
2816 
2817 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2818   SourceManager &SM = getContext().getSourceManager();
2819   PresumedLoc PLoc = SM.getPresumedLoc(L);
2820   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2821     SM.getExpansionLineNumber(L);
2822   return llvm::ConstantInt::get(Int32Ty, LineNo);
2823 }
2824 
2825 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2826   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2827   if (Exprs.empty())
2828     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2829 
2830   llvm::FoldingSetNodeID ID;
2831   for (Expr *E : Exprs) {
2832     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2833   }
2834   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2835   if (Lookup)
2836     return Lookup;
2837 
2838   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2839   LLVMArgs.reserve(Exprs.size());
2840   ConstantEmitter ConstEmiter(*this);
2841   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2842     const auto *CE = cast<clang::ConstantExpr>(E);
2843     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2844                                     CE->getType());
2845   });
2846   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2847   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2848                                       llvm::GlobalValue::PrivateLinkage, Struct,
2849                                       ".args");
2850   GV->setSection(AnnotationSection);
2851   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2852   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2853 
2854   Lookup = Bitcasted;
2855   return Bitcasted;
2856 }
2857 
2858 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2859                                                 const AnnotateAttr *AA,
2860                                                 SourceLocation L) {
2861   // Get the globals for file name, annotation, and the line number.
2862   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2863                  *UnitGV = EmitAnnotationUnit(L),
2864                  *LineNoCst = EmitAnnotationLineNo(L),
2865                  *Args = EmitAnnotationArgs(AA);
2866 
2867   llvm::Constant *GVInGlobalsAS = GV;
2868   if (GV->getAddressSpace() !=
2869       getDataLayout().getDefaultGlobalsAddressSpace()) {
2870     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2871         GV, GV->getValueType()->getPointerTo(
2872                 getDataLayout().getDefaultGlobalsAddressSpace()));
2873   }
2874 
2875   // Create the ConstantStruct for the global annotation.
2876   llvm::Constant *Fields[] = {
2877       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2878       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2879       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2880       LineNoCst,
2881       Args,
2882   };
2883   return llvm::ConstantStruct::getAnon(Fields);
2884 }
2885 
2886 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2887                                          llvm::GlobalValue *GV) {
2888   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2889   // Get the struct elements for these annotations.
2890   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2891     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2892 }
2893 
2894 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2895                                        SourceLocation Loc) const {
2896   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2897   // NoSanitize by function name.
2898   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2899     return true;
2900   // NoSanitize by location. Check "mainfile" prefix.
2901   auto &SM = Context.getSourceManager();
2902   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2903   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2904     return true;
2905 
2906   // Check "src" prefix.
2907   if (Loc.isValid())
2908     return NoSanitizeL.containsLocation(Kind, Loc);
2909   // If location is unknown, this may be a compiler-generated function. Assume
2910   // it's located in the main file.
2911   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2912 }
2913 
2914 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2915                                        llvm::GlobalVariable *GV,
2916                                        SourceLocation Loc, QualType Ty,
2917                                        StringRef Category) const {
2918   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2919   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2920     return true;
2921   auto &SM = Context.getSourceManager();
2922   if (NoSanitizeL.containsMainFile(
2923           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2924     return true;
2925   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2926     return true;
2927 
2928   // Check global type.
2929   if (!Ty.isNull()) {
2930     // Drill down the array types: if global variable of a fixed type is
2931     // not sanitized, we also don't instrument arrays of them.
2932     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2933       Ty = AT->getElementType();
2934     Ty = Ty.getCanonicalType().getUnqualifiedType();
2935     // Only record types (classes, structs etc.) are ignored.
2936     if (Ty->isRecordType()) {
2937       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2938       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2939         return true;
2940     }
2941   }
2942   return false;
2943 }
2944 
2945 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2946                                    StringRef Category) const {
2947   const auto &XRayFilter = getContext().getXRayFilter();
2948   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2949   auto Attr = ImbueAttr::NONE;
2950   if (Loc.isValid())
2951     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2952   if (Attr == ImbueAttr::NONE)
2953     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2954   switch (Attr) {
2955   case ImbueAttr::NONE:
2956     return false;
2957   case ImbueAttr::ALWAYS:
2958     Fn->addFnAttr("function-instrument", "xray-always");
2959     break;
2960   case ImbueAttr::ALWAYS_ARG1:
2961     Fn->addFnAttr("function-instrument", "xray-always");
2962     Fn->addFnAttr("xray-log-args", "1");
2963     break;
2964   case ImbueAttr::NEVER:
2965     Fn->addFnAttr("function-instrument", "xray-never");
2966     break;
2967   }
2968   return true;
2969 }
2970 
2971 ProfileList::ExclusionType
2972 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2973                                               SourceLocation Loc) const {
2974   const auto &ProfileList = getContext().getProfileList();
2975   // If the profile list is empty, then instrument everything.
2976   if (ProfileList.isEmpty())
2977     return ProfileList::Allow;
2978   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2979   // First, check the function name.
2980   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
2981     return *V;
2982   // Next, check the source location.
2983   if (Loc.isValid())
2984     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
2985       return *V;
2986   // If location is unknown, this may be a compiler-generated function. Assume
2987   // it's located in the main file.
2988   auto &SM = Context.getSourceManager();
2989   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
2990     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
2991       return *V;
2992   return ProfileList.getDefault(Kind);
2993 }
2994 
2995 ProfileList::ExclusionType
2996 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
2997                                                  SourceLocation Loc) const {
2998   auto V = isFunctionBlockedByProfileList(Fn, Loc);
2999   if (V != ProfileList::Allow)
3000     return V;
3001 
3002   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3003   if (NumGroups > 1) {
3004     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3005     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3006       return ProfileList::Skip;
3007   }
3008   return ProfileList::Allow;
3009 }
3010 
3011 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3012   // Never defer when EmitAllDecls is specified.
3013   if (LangOpts.EmitAllDecls)
3014     return true;
3015 
3016   if (CodeGenOpts.KeepStaticConsts) {
3017     const auto *VD = dyn_cast<VarDecl>(Global);
3018     if (VD && VD->getType().isConstQualified() &&
3019         VD->getStorageDuration() == SD_Static)
3020       return true;
3021   }
3022 
3023   return getContext().DeclMustBeEmitted(Global);
3024 }
3025 
3026 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3027   // In OpenMP 5.0 variables and function may be marked as
3028   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3029   // that they must be emitted on the host/device. To be sure we need to have
3030   // seen a declare target with an explicit mentioning of the function, we know
3031   // we have if the level of the declare target attribute is -1. Note that we
3032   // check somewhere else if we should emit this at all.
3033   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3034     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3035         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3036     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3037       return false;
3038   }
3039 
3040   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3041     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3042       // Implicit template instantiations may change linkage if they are later
3043       // explicitly instantiated, so they should not be emitted eagerly.
3044       return false;
3045   }
3046   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3047     if (Context.getInlineVariableDefinitionKind(VD) ==
3048         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3049       // A definition of an inline constexpr static data member may change
3050       // linkage later if it's redeclared outside the class.
3051       return false;
3052     if (CXX20ModuleInits && VD->getOwningModule() &&
3053         !VD->getOwningModule()->isModuleMapModule()) {
3054       // For CXX20, module-owned initializers need to be deferred, since it is
3055       // not known at this point if they will be run for the current module or
3056       // as part of the initializer for an imported one.
3057       return false;
3058     }
3059   }
3060   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3061   // codegen for global variables, because they may be marked as threadprivate.
3062   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3063       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3064       !isTypeConstant(Global->getType(), false) &&
3065       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3066     return false;
3067 
3068   return true;
3069 }
3070 
3071 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3072   StringRef Name = getMangledName(GD);
3073 
3074   // The UUID descriptor should be pointer aligned.
3075   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3076 
3077   // Look for an existing global.
3078   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3079     return ConstantAddress(GV, GV->getValueType(), Alignment);
3080 
3081   ConstantEmitter Emitter(*this);
3082   llvm::Constant *Init;
3083 
3084   APValue &V = GD->getAsAPValue();
3085   if (!V.isAbsent()) {
3086     // If possible, emit the APValue version of the initializer. In particular,
3087     // this gets the type of the constant right.
3088     Init = Emitter.emitForInitializer(
3089         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3090   } else {
3091     // As a fallback, directly construct the constant.
3092     // FIXME: This may get padding wrong under esoteric struct layout rules.
3093     // MSVC appears to create a complete type 'struct __s_GUID' that it
3094     // presumably uses to represent these constants.
3095     MSGuidDecl::Parts Parts = GD->getParts();
3096     llvm::Constant *Fields[4] = {
3097         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3098         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3099         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3100         llvm::ConstantDataArray::getRaw(
3101             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3102             Int8Ty)};
3103     Init = llvm::ConstantStruct::getAnon(Fields);
3104   }
3105 
3106   auto *GV = new llvm::GlobalVariable(
3107       getModule(), Init->getType(),
3108       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3109   if (supportsCOMDAT())
3110     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3111   setDSOLocal(GV);
3112 
3113   if (!V.isAbsent()) {
3114     Emitter.finalize(GV);
3115     return ConstantAddress(GV, GV->getValueType(), Alignment);
3116   }
3117 
3118   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3119   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3120       GV, Ty->getPointerTo(GV->getAddressSpace()));
3121   return ConstantAddress(Addr, Ty, Alignment);
3122 }
3123 
3124 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3125     const UnnamedGlobalConstantDecl *GCD) {
3126   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3127 
3128   llvm::GlobalVariable **Entry = nullptr;
3129   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3130   if (*Entry)
3131     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3132 
3133   ConstantEmitter Emitter(*this);
3134   llvm::Constant *Init;
3135 
3136   const APValue &V = GCD->getValue();
3137 
3138   assert(!V.isAbsent());
3139   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3140                                     GCD->getType());
3141 
3142   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3143                                       /*isConstant=*/true,
3144                                       llvm::GlobalValue::PrivateLinkage, Init,
3145                                       ".constant");
3146   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3147   GV->setAlignment(Alignment.getAsAlign());
3148 
3149   Emitter.finalize(GV);
3150 
3151   *Entry = GV;
3152   return ConstantAddress(GV, GV->getValueType(), Alignment);
3153 }
3154 
3155 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3156     const TemplateParamObjectDecl *TPO) {
3157   StringRef Name = getMangledName(TPO);
3158   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3159 
3160   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3161     return ConstantAddress(GV, GV->getValueType(), Alignment);
3162 
3163   ConstantEmitter Emitter(*this);
3164   llvm::Constant *Init = Emitter.emitForInitializer(
3165         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3166 
3167   if (!Init) {
3168     ErrorUnsupported(TPO, "template parameter object");
3169     return ConstantAddress::invalid();
3170   }
3171 
3172   auto *GV = new llvm::GlobalVariable(
3173       getModule(), Init->getType(),
3174       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3175   if (supportsCOMDAT())
3176     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3177   Emitter.finalize(GV);
3178 
3179   return ConstantAddress(GV, GV->getValueType(), Alignment);
3180 }
3181 
3182 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3183   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3184   assert(AA && "No alias?");
3185 
3186   CharUnits Alignment = getContext().getDeclAlign(VD);
3187   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3188 
3189   // See if there is already something with the target's name in the module.
3190   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3191   if (Entry) {
3192     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3193     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3194     return ConstantAddress(Ptr, DeclTy, Alignment);
3195   }
3196 
3197   llvm::Constant *Aliasee;
3198   if (isa<llvm::FunctionType>(DeclTy))
3199     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3200                                       GlobalDecl(cast<FunctionDecl>(VD)),
3201                                       /*ForVTable=*/false);
3202   else
3203     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3204                                     nullptr);
3205 
3206   auto *F = cast<llvm::GlobalValue>(Aliasee);
3207   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3208   WeakRefReferences.insert(F);
3209 
3210   return ConstantAddress(Aliasee, DeclTy, Alignment);
3211 }
3212 
3213 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3214   const auto *Global = cast<ValueDecl>(GD.getDecl());
3215 
3216   // Weak references don't produce any output by themselves.
3217   if (Global->hasAttr<WeakRefAttr>())
3218     return;
3219 
3220   // If this is an alias definition (which otherwise looks like a declaration)
3221   // emit it now.
3222   if (Global->hasAttr<AliasAttr>())
3223     return EmitAliasDefinition(GD);
3224 
3225   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3226   if (Global->hasAttr<IFuncAttr>())
3227     return emitIFuncDefinition(GD);
3228 
3229   // If this is a cpu_dispatch multiversion function, emit the resolver.
3230   if (Global->hasAttr<CPUDispatchAttr>())
3231     return emitCPUDispatchDefinition(GD);
3232 
3233   // If this is CUDA, be selective about which declarations we emit.
3234   if (LangOpts.CUDA) {
3235     if (LangOpts.CUDAIsDevice) {
3236       if (!Global->hasAttr<CUDADeviceAttr>() &&
3237           !Global->hasAttr<CUDAGlobalAttr>() &&
3238           !Global->hasAttr<CUDAConstantAttr>() &&
3239           !Global->hasAttr<CUDASharedAttr>() &&
3240           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3241           !Global->getType()->isCUDADeviceBuiltinTextureType())
3242         return;
3243     } else {
3244       // We need to emit host-side 'shadows' for all global
3245       // device-side variables because the CUDA runtime needs their
3246       // size and host-side address in order to provide access to
3247       // their device-side incarnations.
3248 
3249       // So device-only functions are the only things we skip.
3250       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3251           Global->hasAttr<CUDADeviceAttr>())
3252         return;
3253 
3254       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3255              "Expected Variable or Function");
3256     }
3257   }
3258 
3259   if (LangOpts.OpenMP) {
3260     // If this is OpenMP, check if it is legal to emit this global normally.
3261     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3262       return;
3263     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3264       if (MustBeEmitted(Global))
3265         EmitOMPDeclareReduction(DRD);
3266       return;
3267     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3268       if (MustBeEmitted(Global))
3269         EmitOMPDeclareMapper(DMD);
3270       return;
3271     }
3272   }
3273 
3274   // Ignore declarations, they will be emitted on their first use.
3275   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3276     // Forward declarations are emitted lazily on first use.
3277     if (!FD->doesThisDeclarationHaveABody()) {
3278       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3279         return;
3280 
3281       StringRef MangledName = getMangledName(GD);
3282 
3283       // Compute the function info and LLVM type.
3284       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3285       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3286 
3287       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3288                               /*DontDefer=*/false);
3289       return;
3290     }
3291   } else {
3292     const auto *VD = cast<VarDecl>(Global);
3293     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3294     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3295         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3296       if (LangOpts.OpenMP) {
3297         // Emit declaration of the must-be-emitted declare target variable.
3298         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3299                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3300           bool UnifiedMemoryEnabled =
3301               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3302           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3303               !UnifiedMemoryEnabled) {
3304             (void)GetAddrOfGlobalVar(VD);
3305           } else {
3306             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3307                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3308                      UnifiedMemoryEnabled)) &&
3309                    "Link clause or to clause with unified memory expected.");
3310             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3311           }
3312 
3313           return;
3314         }
3315       }
3316       // If this declaration may have caused an inline variable definition to
3317       // change linkage, make sure that it's emitted.
3318       if (Context.getInlineVariableDefinitionKind(VD) ==
3319           ASTContext::InlineVariableDefinitionKind::Strong)
3320         GetAddrOfGlobalVar(VD);
3321       return;
3322     }
3323   }
3324 
3325   // Defer code generation to first use when possible, e.g. if this is an inline
3326   // function. If the global must always be emitted, do it eagerly if possible
3327   // to benefit from cache locality.
3328   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3329     // Emit the definition if it can't be deferred.
3330     EmitGlobalDefinition(GD);
3331     return;
3332   }
3333 
3334   // If we're deferring emission of a C++ variable with an
3335   // initializer, remember the order in which it appeared in the file.
3336   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3337       cast<VarDecl>(Global)->hasInit()) {
3338     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3339     CXXGlobalInits.push_back(nullptr);
3340   }
3341 
3342   StringRef MangledName = getMangledName(GD);
3343   if (GetGlobalValue(MangledName) != nullptr) {
3344     // The value has already been used and should therefore be emitted.
3345     addDeferredDeclToEmit(GD);
3346   } else if (MustBeEmitted(Global)) {
3347     // The value must be emitted, but cannot be emitted eagerly.
3348     assert(!MayBeEmittedEagerly(Global));
3349     addDeferredDeclToEmit(GD);
3350     EmittedDeferredDecls[MangledName] = GD;
3351   } else {
3352     // Otherwise, remember that we saw a deferred decl with this name.  The
3353     // first use of the mangled name will cause it to move into
3354     // DeferredDeclsToEmit.
3355     DeferredDecls[MangledName] = GD;
3356   }
3357 }
3358 
3359 // Check if T is a class type with a destructor that's not dllimport.
3360 static bool HasNonDllImportDtor(QualType T) {
3361   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3362     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3363       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3364         return true;
3365 
3366   return false;
3367 }
3368 
3369 namespace {
3370   struct FunctionIsDirectlyRecursive
3371       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3372     const StringRef Name;
3373     const Builtin::Context &BI;
3374     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3375         : Name(N), BI(C) {}
3376 
3377     bool VisitCallExpr(const CallExpr *E) {
3378       const FunctionDecl *FD = E->getDirectCallee();
3379       if (!FD)
3380         return false;
3381       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3382       if (Attr && Name == Attr->getLabel())
3383         return true;
3384       unsigned BuiltinID = FD->getBuiltinID();
3385       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3386         return false;
3387       StringRef BuiltinName = BI.getName(BuiltinID);
3388       if (BuiltinName.startswith("__builtin_") &&
3389           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3390         return true;
3391       }
3392       return false;
3393     }
3394 
3395     bool VisitStmt(const Stmt *S) {
3396       for (const Stmt *Child : S->children())
3397         if (Child && this->Visit(Child))
3398           return true;
3399       return false;
3400     }
3401   };
3402 
3403   // Make sure we're not referencing non-imported vars or functions.
3404   struct DLLImportFunctionVisitor
3405       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3406     bool SafeToInline = true;
3407 
3408     bool shouldVisitImplicitCode() const { return true; }
3409 
3410     bool VisitVarDecl(VarDecl *VD) {
3411       if (VD->getTLSKind()) {
3412         // A thread-local variable cannot be imported.
3413         SafeToInline = false;
3414         return SafeToInline;
3415       }
3416 
3417       // A variable definition might imply a destructor call.
3418       if (VD->isThisDeclarationADefinition())
3419         SafeToInline = !HasNonDllImportDtor(VD->getType());
3420 
3421       return SafeToInline;
3422     }
3423 
3424     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3425       if (const auto *D = E->getTemporary()->getDestructor())
3426         SafeToInline = D->hasAttr<DLLImportAttr>();
3427       return SafeToInline;
3428     }
3429 
3430     bool VisitDeclRefExpr(DeclRefExpr *E) {
3431       ValueDecl *VD = E->getDecl();
3432       if (isa<FunctionDecl>(VD))
3433         SafeToInline = VD->hasAttr<DLLImportAttr>();
3434       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3435         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3436       return SafeToInline;
3437     }
3438 
3439     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3440       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3441       return SafeToInline;
3442     }
3443 
3444     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3445       CXXMethodDecl *M = E->getMethodDecl();
3446       if (!M) {
3447         // Call through a pointer to member function. This is safe to inline.
3448         SafeToInline = true;
3449       } else {
3450         SafeToInline = M->hasAttr<DLLImportAttr>();
3451       }
3452       return SafeToInline;
3453     }
3454 
3455     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3456       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3457       return SafeToInline;
3458     }
3459 
3460     bool VisitCXXNewExpr(CXXNewExpr *E) {
3461       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3462       return SafeToInline;
3463     }
3464   };
3465 }
3466 
3467 // isTriviallyRecursive - Check if this function calls another
3468 // decl that, because of the asm attribute or the other decl being a builtin,
3469 // ends up pointing to itself.
3470 bool
3471 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3472   StringRef Name;
3473   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3474     // asm labels are a special kind of mangling we have to support.
3475     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3476     if (!Attr)
3477       return false;
3478     Name = Attr->getLabel();
3479   } else {
3480     Name = FD->getName();
3481   }
3482 
3483   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3484   const Stmt *Body = FD->getBody();
3485   return Body ? Walker.Visit(Body) : false;
3486 }
3487 
3488 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3489   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3490     return true;
3491   const auto *F = cast<FunctionDecl>(GD.getDecl());
3492   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3493     return false;
3494 
3495   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3496     // Check whether it would be safe to inline this dllimport function.
3497     DLLImportFunctionVisitor Visitor;
3498     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3499     if (!Visitor.SafeToInline)
3500       return false;
3501 
3502     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3503       // Implicit destructor invocations aren't captured in the AST, so the
3504       // check above can't see them. Check for them manually here.
3505       for (const Decl *Member : Dtor->getParent()->decls())
3506         if (isa<FieldDecl>(Member))
3507           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3508             return false;
3509       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3510         if (HasNonDllImportDtor(B.getType()))
3511           return false;
3512     }
3513   }
3514 
3515   // Inline builtins declaration must be emitted. They often are fortified
3516   // functions.
3517   if (F->isInlineBuiltinDeclaration())
3518     return true;
3519 
3520   // PR9614. Avoid cases where the source code is lying to us. An available
3521   // externally function should have an equivalent function somewhere else,
3522   // but a function that calls itself through asm label/`__builtin_` trickery is
3523   // clearly not equivalent to the real implementation.
3524   // This happens in glibc's btowc and in some configure checks.
3525   return !isTriviallyRecursive(F);
3526 }
3527 
3528 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3529   return CodeGenOpts.OptimizationLevel > 0;
3530 }
3531 
3532 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3533                                                        llvm::GlobalValue *GV) {
3534   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3535 
3536   if (FD->isCPUSpecificMultiVersion()) {
3537     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3538     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3539       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3540   } else if (FD->isTargetClonesMultiVersion()) {
3541     auto *Clone = FD->getAttr<TargetClonesAttr>();
3542     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3543       if (Clone->isFirstOfVersion(I))
3544         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3545     // Ensure that the resolver function is also emitted.
3546     GetOrCreateMultiVersionResolver(GD);
3547   } else
3548     EmitGlobalFunctionDefinition(GD, GV);
3549 }
3550 
3551 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3552   const auto *D = cast<ValueDecl>(GD.getDecl());
3553 
3554   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3555                                  Context.getSourceManager(),
3556                                  "Generating code for declaration");
3557 
3558   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3559     // At -O0, don't generate IR for functions with available_externally
3560     // linkage.
3561     if (!shouldEmitFunction(GD))
3562       return;
3563 
3564     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3565       std::string Name;
3566       llvm::raw_string_ostream OS(Name);
3567       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3568                                /*Qualified=*/true);
3569       return Name;
3570     });
3571 
3572     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3573       // Make sure to emit the definition(s) before we emit the thunks.
3574       // This is necessary for the generation of certain thunks.
3575       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3576         ABI->emitCXXStructor(GD);
3577       else if (FD->isMultiVersion())
3578         EmitMultiVersionFunctionDefinition(GD, GV);
3579       else
3580         EmitGlobalFunctionDefinition(GD, GV);
3581 
3582       if (Method->isVirtual())
3583         getVTables().EmitThunks(GD);
3584 
3585       return;
3586     }
3587 
3588     if (FD->isMultiVersion())
3589       return EmitMultiVersionFunctionDefinition(GD, GV);
3590     return EmitGlobalFunctionDefinition(GD, GV);
3591   }
3592 
3593   if (const auto *VD = dyn_cast<VarDecl>(D))
3594     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3595 
3596   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3597 }
3598 
3599 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3600                                                       llvm::Function *NewFn);
3601 
3602 static unsigned
3603 TargetMVPriority(const TargetInfo &TI,
3604                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3605   unsigned Priority = 0;
3606   for (StringRef Feat : RO.Conditions.Features)
3607     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3608 
3609   if (!RO.Conditions.Architecture.empty())
3610     Priority = std::max(
3611         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3612   return Priority;
3613 }
3614 
3615 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3616 // TU can forward declare the function without causing problems.  Particularly
3617 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3618 // work with internal linkage functions, so that the same function name can be
3619 // used with internal linkage in multiple TUs.
3620 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3621                                                        GlobalDecl GD) {
3622   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3623   if (FD->getFormalLinkage() == InternalLinkage)
3624     return llvm::GlobalValue::InternalLinkage;
3625   return llvm::GlobalValue::WeakODRLinkage;
3626 }
3627 
3628 void CodeGenModule::emitMultiVersionFunctions() {
3629   std::vector<GlobalDecl> MVFuncsToEmit;
3630   MultiVersionFuncs.swap(MVFuncsToEmit);
3631   for (GlobalDecl GD : MVFuncsToEmit) {
3632     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3633     assert(FD && "Expected a FunctionDecl");
3634 
3635     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3636     if (FD->isTargetMultiVersion()) {
3637       getContext().forEachMultiversionedFunctionVersion(
3638           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3639             GlobalDecl CurGD{
3640                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3641             StringRef MangledName = getMangledName(CurGD);
3642             llvm::Constant *Func = GetGlobalValue(MangledName);
3643             if (!Func) {
3644               if (CurFD->isDefined()) {
3645                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3646                 Func = GetGlobalValue(MangledName);
3647               } else {
3648                 const CGFunctionInfo &FI =
3649                     getTypes().arrangeGlobalDeclaration(GD);
3650                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3651                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3652                                          /*DontDefer=*/false, ForDefinition);
3653               }
3654               assert(Func && "This should have just been created");
3655             }
3656 
3657             const auto *TA = CurFD->getAttr<TargetAttr>();
3658             llvm::SmallVector<StringRef, 8> Feats;
3659             TA->getAddedFeatures(Feats);
3660 
3661             Options.emplace_back(cast<llvm::Function>(Func),
3662                                  TA->getArchitecture(), Feats);
3663           });
3664     } else if (FD->isTargetClonesMultiVersion()) {
3665       const auto *TC = FD->getAttr<TargetClonesAttr>();
3666       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3667            ++VersionIndex) {
3668         if (!TC->isFirstOfVersion(VersionIndex))
3669           continue;
3670         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3671                          VersionIndex};
3672         StringRef Version = TC->getFeatureStr(VersionIndex);
3673         StringRef MangledName = getMangledName(CurGD);
3674         llvm::Constant *Func = GetGlobalValue(MangledName);
3675         if (!Func) {
3676           if (FD->isDefined()) {
3677             EmitGlobalFunctionDefinition(CurGD, nullptr);
3678             Func = GetGlobalValue(MangledName);
3679           } else {
3680             const CGFunctionInfo &FI =
3681                 getTypes().arrangeGlobalDeclaration(CurGD);
3682             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3683             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3684                                      /*DontDefer=*/false, ForDefinition);
3685           }
3686           assert(Func && "This should have just been created");
3687         }
3688 
3689         StringRef Architecture;
3690         llvm::SmallVector<StringRef, 1> Feature;
3691 
3692         if (Version.startswith("arch="))
3693           Architecture = Version.drop_front(sizeof("arch=") - 1);
3694         else if (Version != "default")
3695           Feature.push_back(Version);
3696 
3697         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3698       }
3699     } else {
3700       assert(0 && "Expected a target or target_clones multiversion function");
3701       continue;
3702     }
3703 
3704     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3705     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3706       ResolverConstant = IFunc->getResolver();
3707     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3708 
3709     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3710 
3711     if (supportsCOMDAT())
3712       ResolverFunc->setComdat(
3713           getModule().getOrInsertComdat(ResolverFunc->getName()));
3714 
3715     const TargetInfo &TI = getTarget();
3716     llvm::stable_sort(
3717         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3718                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3719           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3720         });
3721     CodeGenFunction CGF(*this);
3722     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3723   }
3724 
3725   // Ensure that any additions to the deferred decls list caused by emitting a
3726   // variant are emitted.  This can happen when the variant itself is inline and
3727   // calls a function without linkage.
3728   if (!MVFuncsToEmit.empty())
3729     EmitDeferred();
3730 
3731   // Ensure that any additions to the multiversion funcs list from either the
3732   // deferred decls or the multiversion functions themselves are emitted.
3733   if (!MultiVersionFuncs.empty())
3734     emitMultiVersionFunctions();
3735 }
3736 
3737 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3738   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3739   assert(FD && "Not a FunctionDecl?");
3740   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3741   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3742   assert(DD && "Not a cpu_dispatch Function?");
3743 
3744   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3745   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3746 
3747   StringRef ResolverName = getMangledName(GD);
3748   UpdateMultiVersionNames(GD, FD, ResolverName);
3749 
3750   llvm::Type *ResolverType;
3751   GlobalDecl ResolverGD;
3752   if (getTarget().supportsIFunc()) {
3753     ResolverType = llvm::FunctionType::get(
3754         llvm::PointerType::get(DeclTy,
3755                                Context.getTargetAddressSpace(FD->getType())),
3756         false);
3757   }
3758   else {
3759     ResolverType = DeclTy;
3760     ResolverGD = GD;
3761   }
3762 
3763   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3764       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3765   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3766   if (supportsCOMDAT())
3767     ResolverFunc->setComdat(
3768         getModule().getOrInsertComdat(ResolverFunc->getName()));
3769 
3770   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3771   const TargetInfo &Target = getTarget();
3772   unsigned Index = 0;
3773   for (const IdentifierInfo *II : DD->cpus()) {
3774     // Get the name of the target function so we can look it up/create it.
3775     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3776                               getCPUSpecificMangling(*this, II->getName());
3777 
3778     llvm::Constant *Func = GetGlobalValue(MangledName);
3779 
3780     if (!Func) {
3781       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3782       if (ExistingDecl.getDecl() &&
3783           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3784         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3785         Func = GetGlobalValue(MangledName);
3786       } else {
3787         if (!ExistingDecl.getDecl())
3788           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3789 
3790       Func = GetOrCreateLLVMFunction(
3791           MangledName, DeclTy, ExistingDecl,
3792           /*ForVTable=*/false, /*DontDefer=*/true,
3793           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3794       }
3795     }
3796 
3797     llvm::SmallVector<StringRef, 32> Features;
3798     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3799     llvm::transform(Features, Features.begin(),
3800                     [](StringRef Str) { return Str.substr(1); });
3801     llvm::erase_if(Features, [&Target](StringRef Feat) {
3802       return !Target.validateCpuSupports(Feat);
3803     });
3804     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3805     ++Index;
3806   }
3807 
3808   llvm::stable_sort(
3809       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3810                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3811         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3812                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3813       });
3814 
3815   // If the list contains multiple 'default' versions, such as when it contains
3816   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3817   // always run on at least a 'pentium'). We do this by deleting the 'least
3818   // advanced' (read, lowest mangling letter).
3819   while (Options.size() > 1 &&
3820          llvm::X86::getCpuSupportsMask(
3821              (Options.end() - 2)->Conditions.Features) == 0) {
3822     StringRef LHSName = (Options.end() - 2)->Function->getName();
3823     StringRef RHSName = (Options.end() - 1)->Function->getName();
3824     if (LHSName.compare(RHSName) < 0)
3825       Options.erase(Options.end() - 2);
3826     else
3827       Options.erase(Options.end() - 1);
3828   }
3829 
3830   CodeGenFunction CGF(*this);
3831   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3832 
3833   if (getTarget().supportsIFunc()) {
3834     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3835     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3836 
3837     // Fix up function declarations that were created for cpu_specific before
3838     // cpu_dispatch was known
3839     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3840       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3841       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3842                                            &getModule());
3843       GI->takeName(IFunc);
3844       IFunc->replaceAllUsesWith(GI);
3845       IFunc->eraseFromParent();
3846       IFunc = GI;
3847     }
3848 
3849     std::string AliasName = getMangledNameImpl(
3850         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3851     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3852     if (!AliasFunc) {
3853       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3854                                            &getModule());
3855       SetCommonAttributes(GD, GA);
3856     }
3857   }
3858 }
3859 
3860 /// If a dispatcher for the specified mangled name is not in the module, create
3861 /// and return an llvm Function with the specified type.
3862 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3863   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3864   assert(FD && "Not a FunctionDecl?");
3865 
3866   std::string MangledName =
3867       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3868 
3869   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3870   // a separate resolver).
3871   std::string ResolverName = MangledName;
3872   if (getTarget().supportsIFunc())
3873     ResolverName += ".ifunc";
3874   else if (FD->isTargetMultiVersion())
3875     ResolverName += ".resolver";
3876 
3877   // If the resolver has already been created, just return it.
3878   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3879     return ResolverGV;
3880 
3881   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3882   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3883 
3884   // The resolver needs to be created. For target and target_clones, defer
3885   // creation until the end of the TU.
3886   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3887     MultiVersionFuncs.push_back(GD);
3888 
3889   // For cpu_specific, don't create an ifunc yet because we don't know if the
3890   // cpu_dispatch will be emitted in this translation unit.
3891   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3892     llvm::Type *ResolverType = llvm::FunctionType::get(
3893         llvm::PointerType::get(
3894             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3895         false);
3896     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3897         MangledName + ".resolver", ResolverType, GlobalDecl{},
3898         /*ForVTable=*/false);
3899     llvm::GlobalIFunc *GIF =
3900         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3901                                   "", Resolver, &getModule());
3902     GIF->setName(ResolverName);
3903     SetCommonAttributes(FD, GIF);
3904 
3905     return GIF;
3906   }
3907 
3908   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3909       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3910   assert(isa<llvm::GlobalValue>(Resolver) &&
3911          "Resolver should be created for the first time");
3912   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3913   return Resolver;
3914 }
3915 
3916 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3917 /// module, create and return an llvm Function with the specified type. If there
3918 /// is something in the module with the specified name, return it potentially
3919 /// bitcasted to the right type.
3920 ///
3921 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3922 /// to set the attributes on the function when it is first created.
3923 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3924     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3925     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3926     ForDefinition_t IsForDefinition) {
3927   const Decl *D = GD.getDecl();
3928 
3929   // Any attempts to use a MultiVersion function should result in retrieving
3930   // the iFunc instead. Name Mangling will handle the rest of the changes.
3931   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3932     // For the device mark the function as one that should be emitted.
3933     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3934         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3935         !DontDefer && !IsForDefinition) {
3936       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3937         GlobalDecl GDDef;
3938         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3939           GDDef = GlobalDecl(CD, GD.getCtorType());
3940         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3941           GDDef = GlobalDecl(DD, GD.getDtorType());
3942         else
3943           GDDef = GlobalDecl(FDDef);
3944         EmitGlobal(GDDef);
3945       }
3946     }
3947 
3948     if (FD->isMultiVersion()) {
3949       UpdateMultiVersionNames(GD, FD, MangledName);
3950       if (!IsForDefinition)
3951         return GetOrCreateMultiVersionResolver(GD);
3952     }
3953   }
3954 
3955   // Lookup the entry, lazily creating it if necessary.
3956   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3957   if (Entry) {
3958     if (WeakRefReferences.erase(Entry)) {
3959       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3960       if (FD && !FD->hasAttr<WeakAttr>())
3961         Entry->setLinkage(llvm::Function::ExternalLinkage);
3962     }
3963 
3964     // Handle dropped DLL attributes.
3965     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3966         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3967       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3968       setDSOLocal(Entry);
3969     }
3970 
3971     // If there are two attempts to define the same mangled name, issue an
3972     // error.
3973     if (IsForDefinition && !Entry->isDeclaration()) {
3974       GlobalDecl OtherGD;
3975       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3976       // to make sure that we issue an error only once.
3977       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3978           (GD.getCanonicalDecl().getDecl() !=
3979            OtherGD.getCanonicalDecl().getDecl()) &&
3980           DiagnosedConflictingDefinitions.insert(GD).second) {
3981         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3982             << MangledName;
3983         getDiags().Report(OtherGD.getDecl()->getLocation(),
3984                           diag::note_previous_definition);
3985       }
3986     }
3987 
3988     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3989         (Entry->getValueType() == Ty)) {
3990       return Entry;
3991     }
3992 
3993     // Make sure the result is of the correct type.
3994     // (If function is requested for a definition, we always need to create a new
3995     // function, not just return a bitcast.)
3996     if (!IsForDefinition)
3997       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3998   }
3999 
4000   // This function doesn't have a complete type (for example, the return
4001   // type is an incomplete struct). Use a fake type instead, and make
4002   // sure not to try to set attributes.
4003   bool IsIncompleteFunction = false;
4004 
4005   llvm::FunctionType *FTy;
4006   if (isa<llvm::FunctionType>(Ty)) {
4007     FTy = cast<llvm::FunctionType>(Ty);
4008   } else {
4009     FTy = llvm::FunctionType::get(VoidTy, false);
4010     IsIncompleteFunction = true;
4011   }
4012 
4013   llvm::Function *F =
4014       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4015                              Entry ? StringRef() : MangledName, &getModule());
4016 
4017   // If we already created a function with the same mangled name (but different
4018   // type) before, take its name and add it to the list of functions to be
4019   // replaced with F at the end of CodeGen.
4020   //
4021   // This happens if there is a prototype for a function (e.g. "int f()") and
4022   // then a definition of a different type (e.g. "int f(int x)").
4023   if (Entry) {
4024     F->takeName(Entry);
4025 
4026     // This might be an implementation of a function without a prototype, in
4027     // which case, try to do special replacement of calls which match the new
4028     // prototype.  The really key thing here is that we also potentially drop
4029     // arguments from the call site so as to make a direct call, which makes the
4030     // inliner happier and suppresses a number of optimizer warnings (!) about
4031     // dropping arguments.
4032     if (!Entry->use_empty()) {
4033       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4034       Entry->removeDeadConstantUsers();
4035     }
4036 
4037     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4038         F, Entry->getValueType()->getPointerTo());
4039     addGlobalValReplacement(Entry, BC);
4040   }
4041 
4042   assert(F->getName() == MangledName && "name was uniqued!");
4043   if (D)
4044     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4045   if (ExtraAttrs.hasFnAttrs()) {
4046     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4047     F->addFnAttrs(B);
4048   }
4049 
4050   if (!DontDefer) {
4051     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4052     // each other bottoming out with the base dtor.  Therefore we emit non-base
4053     // dtors on usage, even if there is no dtor definition in the TU.
4054     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4055         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4056                                            GD.getDtorType()))
4057       addDeferredDeclToEmit(GD);
4058 
4059     // This is the first use or definition of a mangled name.  If there is a
4060     // deferred decl with this name, remember that we need to emit it at the end
4061     // of the file.
4062     auto DDI = DeferredDecls.find(MangledName);
4063     if (DDI != DeferredDecls.end()) {
4064       // Move the potentially referenced deferred decl to the
4065       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4066       // don't need it anymore).
4067       addDeferredDeclToEmit(DDI->second);
4068       EmittedDeferredDecls[DDI->first] = DDI->second;
4069       DeferredDecls.erase(DDI);
4070 
4071       // Otherwise, there are cases we have to worry about where we're
4072       // using a declaration for which we must emit a definition but where
4073       // we might not find a top-level definition:
4074       //   - member functions defined inline in their classes
4075       //   - friend functions defined inline in some class
4076       //   - special member functions with implicit definitions
4077       // If we ever change our AST traversal to walk into class methods,
4078       // this will be unnecessary.
4079       //
4080       // We also don't emit a definition for a function if it's going to be an
4081       // entry in a vtable, unless it's already marked as used.
4082     } else if (getLangOpts().CPlusPlus && D) {
4083       // Look for a declaration that's lexically in a record.
4084       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4085            FD = FD->getPreviousDecl()) {
4086         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4087           if (FD->doesThisDeclarationHaveABody()) {
4088             addDeferredDeclToEmit(GD.getWithDecl(FD));
4089             break;
4090           }
4091         }
4092       }
4093     }
4094   }
4095 
4096   // Make sure the result is of the requested type.
4097   if (!IsIncompleteFunction) {
4098     assert(F->getFunctionType() == Ty);
4099     return F;
4100   }
4101 
4102   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4103   return llvm::ConstantExpr::getBitCast(F, PTy);
4104 }
4105 
4106 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4107 /// non-null, then this function will use the specified type if it has to
4108 /// create it (this occurs when we see a definition of the function).
4109 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4110                                                  llvm::Type *Ty,
4111                                                  bool ForVTable,
4112                                                  bool DontDefer,
4113                                               ForDefinition_t IsForDefinition) {
4114   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4115          "consteval function should never be emitted");
4116   // If there was no specific requested type, just convert it now.
4117   if (!Ty) {
4118     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4119     Ty = getTypes().ConvertType(FD->getType());
4120   }
4121 
4122   // Devirtualized destructor calls may come through here instead of via
4123   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4124   // of the complete destructor when necessary.
4125   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4126     if (getTarget().getCXXABI().isMicrosoft() &&
4127         GD.getDtorType() == Dtor_Complete &&
4128         DD->getParent()->getNumVBases() == 0)
4129       GD = GlobalDecl(DD, Dtor_Base);
4130   }
4131 
4132   StringRef MangledName = getMangledName(GD);
4133   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4134                                     /*IsThunk=*/false, llvm::AttributeList(),
4135                                     IsForDefinition);
4136   // Returns kernel handle for HIP kernel stub function.
4137   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4138       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4139     auto *Handle = getCUDARuntime().getKernelHandle(
4140         cast<llvm::Function>(F->stripPointerCasts()), GD);
4141     if (IsForDefinition)
4142       return F;
4143     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4144   }
4145   return F;
4146 }
4147 
4148 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4149   llvm::GlobalValue *F =
4150       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4151 
4152   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4153                                         llvm::Type::getInt8PtrTy(VMContext));
4154 }
4155 
4156 static const FunctionDecl *
4157 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4158   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4159   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4160 
4161   IdentifierInfo &CII = C.Idents.get(Name);
4162   for (const auto *Result : DC->lookup(&CII))
4163     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4164       return FD;
4165 
4166   if (!C.getLangOpts().CPlusPlus)
4167     return nullptr;
4168 
4169   // Demangle the premangled name from getTerminateFn()
4170   IdentifierInfo &CXXII =
4171       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4172           ? C.Idents.get("terminate")
4173           : C.Idents.get(Name);
4174 
4175   for (const auto &N : {"__cxxabiv1", "std"}) {
4176     IdentifierInfo &NS = C.Idents.get(N);
4177     for (const auto *Result : DC->lookup(&NS)) {
4178       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4179       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4180         for (const auto *Result : LSD->lookup(&NS))
4181           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4182             break;
4183 
4184       if (ND)
4185         for (const auto *Result : ND->lookup(&CXXII))
4186           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4187             return FD;
4188     }
4189   }
4190 
4191   return nullptr;
4192 }
4193 
4194 /// CreateRuntimeFunction - Create a new runtime function with the specified
4195 /// type and name.
4196 llvm::FunctionCallee
4197 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4198                                      llvm::AttributeList ExtraAttrs, bool Local,
4199                                      bool AssumeConvergent) {
4200   if (AssumeConvergent) {
4201     ExtraAttrs =
4202         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4203   }
4204 
4205   llvm::Constant *C =
4206       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4207                               /*DontDefer=*/false, /*IsThunk=*/false,
4208                               ExtraAttrs);
4209 
4210   if (auto *F = dyn_cast<llvm::Function>(C)) {
4211     if (F->empty()) {
4212       F->setCallingConv(getRuntimeCC());
4213 
4214       // In Windows Itanium environments, try to mark runtime functions
4215       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4216       // will link their standard library statically or dynamically. Marking
4217       // functions imported when they are not imported can cause linker errors
4218       // and warnings.
4219       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4220           !getCodeGenOpts().LTOVisibilityPublicStd) {
4221         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4222         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4223           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4224           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4225         }
4226       }
4227       setDSOLocal(F);
4228     }
4229   }
4230 
4231   return {FTy, C};
4232 }
4233 
4234 /// isTypeConstant - Determine whether an object of this type can be emitted
4235 /// as a constant.
4236 ///
4237 /// If ExcludeCtor is true, the duration when the object's constructor runs
4238 /// will not be considered. The caller will need to verify that the object is
4239 /// not written to during its construction.
4240 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4241   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4242     return false;
4243 
4244   if (Context.getLangOpts().CPlusPlus) {
4245     if (const CXXRecordDecl *Record
4246           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4247       return ExcludeCtor && !Record->hasMutableFields() &&
4248              Record->hasTrivialDestructor();
4249   }
4250 
4251   return true;
4252 }
4253 
4254 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4255 /// create and return an llvm GlobalVariable with the specified type and address
4256 /// space. If there is something in the module with the specified name, return
4257 /// it potentially bitcasted to the right type.
4258 ///
4259 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4260 /// to set the attributes on the global when it is first created.
4261 ///
4262 /// If IsForDefinition is true, it is guaranteed that an actual global with
4263 /// type Ty will be returned, not conversion of a variable with the same
4264 /// mangled name but some other type.
4265 llvm::Constant *
4266 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4267                                      LangAS AddrSpace, const VarDecl *D,
4268                                      ForDefinition_t IsForDefinition) {
4269   // Lookup the entry, lazily creating it if necessary.
4270   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4271   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4272   if (Entry) {
4273     if (WeakRefReferences.erase(Entry)) {
4274       if (D && !D->hasAttr<WeakAttr>())
4275         Entry->setLinkage(llvm::Function::ExternalLinkage);
4276     }
4277 
4278     // Handle dropped DLL attributes.
4279     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4280         !shouldMapVisibilityToDLLExport(D))
4281       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4282 
4283     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4284       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4285 
4286     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4287       return Entry;
4288 
4289     // If there are two attempts to define the same mangled name, issue an
4290     // error.
4291     if (IsForDefinition && !Entry->isDeclaration()) {
4292       GlobalDecl OtherGD;
4293       const VarDecl *OtherD;
4294 
4295       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4296       // to make sure that we issue an error only once.
4297       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4298           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4299           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4300           OtherD->hasInit() &&
4301           DiagnosedConflictingDefinitions.insert(D).second) {
4302         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4303             << MangledName;
4304         getDiags().Report(OtherGD.getDecl()->getLocation(),
4305                           diag::note_previous_definition);
4306       }
4307     }
4308 
4309     // Make sure the result is of the correct type.
4310     if (Entry->getType()->getAddressSpace() != TargetAS) {
4311       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4312                                                   Ty->getPointerTo(TargetAS));
4313     }
4314 
4315     // (If global is requested for a definition, we always need to create a new
4316     // global, not just return a bitcast.)
4317     if (!IsForDefinition)
4318       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4319   }
4320 
4321   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4322 
4323   auto *GV = new llvm::GlobalVariable(
4324       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4325       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4326       getContext().getTargetAddressSpace(DAddrSpace));
4327 
4328   // If we already created a global with the same mangled name (but different
4329   // type) before, take its name and remove it from its parent.
4330   if (Entry) {
4331     GV->takeName(Entry);
4332 
4333     if (!Entry->use_empty()) {
4334       llvm::Constant *NewPtrForOldDecl =
4335           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4336       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4337     }
4338 
4339     Entry->eraseFromParent();
4340   }
4341 
4342   // This is the first use or definition of a mangled name.  If there is a
4343   // deferred decl with this name, remember that we need to emit it at the end
4344   // of the file.
4345   auto DDI = DeferredDecls.find(MangledName);
4346   if (DDI != DeferredDecls.end()) {
4347     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4348     // list, and remove it from DeferredDecls (since we don't need it anymore).
4349     addDeferredDeclToEmit(DDI->second);
4350     EmittedDeferredDecls[DDI->first] = DDI->second;
4351     DeferredDecls.erase(DDI);
4352   }
4353 
4354   // Handle things which are present even on external declarations.
4355   if (D) {
4356     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4357       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4358 
4359     // FIXME: This code is overly simple and should be merged with other global
4360     // handling.
4361     GV->setConstant(isTypeConstant(D->getType(), false));
4362 
4363     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4364 
4365     setLinkageForGV(GV, D);
4366 
4367     if (D->getTLSKind()) {
4368       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4369         CXXThreadLocals.push_back(D);
4370       setTLSMode(GV, *D);
4371     }
4372 
4373     setGVProperties(GV, D);
4374 
4375     // If required by the ABI, treat declarations of static data members with
4376     // inline initializers as definitions.
4377     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4378       EmitGlobalVarDefinition(D);
4379     }
4380 
4381     // Emit section information for extern variables.
4382     if (D->hasExternalStorage()) {
4383       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4384         GV->setSection(SA->getName());
4385     }
4386 
4387     // Handle XCore specific ABI requirements.
4388     if (getTriple().getArch() == llvm::Triple::xcore &&
4389         D->getLanguageLinkage() == CLanguageLinkage &&
4390         D->getType().isConstant(Context) &&
4391         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4392       GV->setSection(".cp.rodata");
4393 
4394     // Check if we a have a const declaration with an initializer, we may be
4395     // able to emit it as available_externally to expose it's value to the
4396     // optimizer.
4397     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4398         D->getType().isConstQualified() && !GV->hasInitializer() &&
4399         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4400       const auto *Record =
4401           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4402       bool HasMutableFields = Record && Record->hasMutableFields();
4403       if (!HasMutableFields) {
4404         const VarDecl *InitDecl;
4405         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4406         if (InitExpr) {
4407           ConstantEmitter emitter(*this);
4408           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4409           if (Init) {
4410             auto *InitType = Init->getType();
4411             if (GV->getValueType() != InitType) {
4412               // The type of the initializer does not match the definition.
4413               // This happens when an initializer has a different type from
4414               // the type of the global (because of padding at the end of a
4415               // structure for instance).
4416               GV->setName(StringRef());
4417               // Make a new global with the correct type, this is now guaranteed
4418               // to work.
4419               auto *NewGV = cast<llvm::GlobalVariable>(
4420                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4421                       ->stripPointerCasts());
4422 
4423               // Erase the old global, since it is no longer used.
4424               GV->eraseFromParent();
4425               GV = NewGV;
4426             } else {
4427               GV->setInitializer(Init);
4428               GV->setConstant(true);
4429               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4430             }
4431             emitter.finalize(GV);
4432           }
4433         }
4434       }
4435     }
4436   }
4437 
4438   if (GV->isDeclaration()) {
4439     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4440     // External HIP managed variables needed to be recorded for transformation
4441     // in both device and host compilations.
4442     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4443         D->hasExternalStorage())
4444       getCUDARuntime().handleVarRegistration(D, *GV);
4445   }
4446 
4447   if (D)
4448     SanitizerMD->reportGlobal(GV, *D);
4449 
4450   LangAS ExpectedAS =
4451       D ? D->getType().getAddressSpace()
4452         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4453   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4454   if (DAddrSpace != ExpectedAS) {
4455     return getTargetCodeGenInfo().performAddrSpaceCast(
4456         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4457   }
4458 
4459   return GV;
4460 }
4461 
4462 llvm::Constant *
4463 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4464   const Decl *D = GD.getDecl();
4465 
4466   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4467     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4468                                 /*DontDefer=*/false, IsForDefinition);
4469 
4470   if (isa<CXXMethodDecl>(D)) {
4471     auto FInfo =
4472         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4473     auto Ty = getTypes().GetFunctionType(*FInfo);
4474     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4475                              IsForDefinition);
4476   }
4477 
4478   if (isa<FunctionDecl>(D)) {
4479     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4480     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4481     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4482                              IsForDefinition);
4483   }
4484 
4485   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4486 }
4487 
4488 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4489     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4490     unsigned Alignment) {
4491   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4492   llvm::GlobalVariable *OldGV = nullptr;
4493 
4494   if (GV) {
4495     // Check if the variable has the right type.
4496     if (GV->getValueType() == Ty)
4497       return GV;
4498 
4499     // Because C++ name mangling, the only way we can end up with an already
4500     // existing global with the same name is if it has been declared extern "C".
4501     assert(GV->isDeclaration() && "Declaration has wrong type!");
4502     OldGV = GV;
4503   }
4504 
4505   // Create a new variable.
4506   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4507                                 Linkage, nullptr, Name);
4508 
4509   if (OldGV) {
4510     // Replace occurrences of the old variable if needed.
4511     GV->takeName(OldGV);
4512 
4513     if (!OldGV->use_empty()) {
4514       llvm::Constant *NewPtrForOldDecl =
4515       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4516       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4517     }
4518 
4519     OldGV->eraseFromParent();
4520   }
4521 
4522   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4523       !GV->hasAvailableExternallyLinkage())
4524     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4525 
4526   GV->setAlignment(llvm::MaybeAlign(Alignment));
4527 
4528   return GV;
4529 }
4530 
4531 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4532 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4533 /// then it will be created with the specified type instead of whatever the
4534 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4535 /// that an actual global with type Ty will be returned, not conversion of a
4536 /// variable with the same mangled name but some other type.
4537 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4538                                                   llvm::Type *Ty,
4539                                            ForDefinition_t IsForDefinition) {
4540   assert(D->hasGlobalStorage() && "Not a global variable");
4541   QualType ASTTy = D->getType();
4542   if (!Ty)
4543     Ty = getTypes().ConvertTypeForMem(ASTTy);
4544 
4545   StringRef MangledName = getMangledName(D);
4546   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4547                                IsForDefinition);
4548 }
4549 
4550 /// CreateRuntimeVariable - Create a new runtime global variable with the
4551 /// specified type and name.
4552 llvm::Constant *
4553 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4554                                      StringRef Name) {
4555   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4556                                                        : LangAS::Default;
4557   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4558   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4559   return Ret;
4560 }
4561 
4562 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4563   assert(!D->getInit() && "Cannot emit definite definitions here!");
4564 
4565   StringRef MangledName = getMangledName(D);
4566   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4567 
4568   // We already have a definition, not declaration, with the same mangled name.
4569   // Emitting of declaration is not required (and actually overwrites emitted
4570   // definition).
4571   if (GV && !GV->isDeclaration())
4572     return;
4573 
4574   // If we have not seen a reference to this variable yet, place it into the
4575   // deferred declarations table to be emitted if needed later.
4576   if (!MustBeEmitted(D) && !GV) {
4577       DeferredDecls[MangledName] = D;
4578       return;
4579   }
4580 
4581   // The tentative definition is the only definition.
4582   EmitGlobalVarDefinition(D);
4583 }
4584 
4585 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4586   EmitExternalVarDeclaration(D);
4587 }
4588 
4589 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4590   return Context.toCharUnitsFromBits(
4591       getDataLayout().getTypeStoreSizeInBits(Ty));
4592 }
4593 
4594 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4595   if (LangOpts.OpenCL) {
4596     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4597     assert(AS == LangAS::opencl_global ||
4598            AS == LangAS::opencl_global_device ||
4599            AS == LangAS::opencl_global_host ||
4600            AS == LangAS::opencl_constant ||
4601            AS == LangAS::opencl_local ||
4602            AS >= LangAS::FirstTargetAddressSpace);
4603     return AS;
4604   }
4605 
4606   if (LangOpts.SYCLIsDevice &&
4607       (!D || D->getType().getAddressSpace() == LangAS::Default))
4608     return LangAS::sycl_global;
4609 
4610   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4611     if (D && D->hasAttr<CUDAConstantAttr>())
4612       return LangAS::cuda_constant;
4613     else if (D && D->hasAttr<CUDASharedAttr>())
4614       return LangAS::cuda_shared;
4615     else if (D && D->hasAttr<CUDADeviceAttr>())
4616       return LangAS::cuda_device;
4617     else if (D && D->getType().isConstQualified())
4618       return LangAS::cuda_constant;
4619     else
4620       return LangAS::cuda_device;
4621   }
4622 
4623   if (LangOpts.OpenMP) {
4624     LangAS AS;
4625     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4626       return AS;
4627   }
4628   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4629 }
4630 
4631 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4632   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4633   if (LangOpts.OpenCL)
4634     return LangAS::opencl_constant;
4635   if (LangOpts.SYCLIsDevice)
4636     return LangAS::sycl_global;
4637   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4638     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4639     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4640     // with OpVariable instructions with Generic storage class which is not
4641     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4642     // UniformConstant storage class is not viable as pointers to it may not be
4643     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4644     return LangAS::cuda_device;
4645   if (auto AS = getTarget().getConstantAddressSpace())
4646     return *AS;
4647   return LangAS::Default;
4648 }
4649 
4650 // In address space agnostic languages, string literals are in default address
4651 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4652 // emitted in constant address space in LLVM IR. To be consistent with other
4653 // parts of AST, string literal global variables in constant address space
4654 // need to be casted to default address space before being put into address
4655 // map and referenced by other part of CodeGen.
4656 // In OpenCL, string literals are in constant address space in AST, therefore
4657 // they should not be casted to default address space.
4658 static llvm::Constant *
4659 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4660                                        llvm::GlobalVariable *GV) {
4661   llvm::Constant *Cast = GV;
4662   if (!CGM.getLangOpts().OpenCL) {
4663     auto AS = CGM.GetGlobalConstantAddressSpace();
4664     if (AS != LangAS::Default)
4665       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4666           CGM, GV, AS, LangAS::Default,
4667           GV->getValueType()->getPointerTo(
4668               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4669   }
4670   return Cast;
4671 }
4672 
4673 template<typename SomeDecl>
4674 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4675                                                llvm::GlobalValue *GV) {
4676   if (!getLangOpts().CPlusPlus)
4677     return;
4678 
4679   // Must have 'used' attribute, or else inline assembly can't rely on
4680   // the name existing.
4681   if (!D->template hasAttr<UsedAttr>())
4682     return;
4683 
4684   // Must have internal linkage and an ordinary name.
4685   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4686     return;
4687 
4688   // Must be in an extern "C" context. Entities declared directly within
4689   // a record are not extern "C" even if the record is in such a context.
4690   const SomeDecl *First = D->getFirstDecl();
4691   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4692     return;
4693 
4694   // OK, this is an internal linkage entity inside an extern "C" linkage
4695   // specification. Make a note of that so we can give it the "expected"
4696   // mangled name if nothing else is using that name.
4697   std::pair<StaticExternCMap::iterator, bool> R =
4698       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4699 
4700   // If we have multiple internal linkage entities with the same name
4701   // in extern "C" regions, none of them gets that name.
4702   if (!R.second)
4703     R.first->second = nullptr;
4704 }
4705 
4706 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4707   if (!CGM.supportsCOMDAT())
4708     return false;
4709 
4710   if (D.hasAttr<SelectAnyAttr>())
4711     return true;
4712 
4713   GVALinkage Linkage;
4714   if (auto *VD = dyn_cast<VarDecl>(&D))
4715     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4716   else
4717     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4718 
4719   switch (Linkage) {
4720   case GVA_Internal:
4721   case GVA_AvailableExternally:
4722   case GVA_StrongExternal:
4723     return false;
4724   case GVA_DiscardableODR:
4725   case GVA_StrongODR:
4726     return true;
4727   }
4728   llvm_unreachable("No such linkage");
4729 }
4730 
4731 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4732                                           llvm::GlobalObject &GO) {
4733   if (!shouldBeInCOMDAT(*this, D))
4734     return;
4735   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4736 }
4737 
4738 /// Pass IsTentative as true if you want to create a tentative definition.
4739 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4740                                             bool IsTentative) {
4741   // OpenCL global variables of sampler type are translated to function calls,
4742   // therefore no need to be translated.
4743   QualType ASTTy = D->getType();
4744   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4745     return;
4746 
4747   // If this is OpenMP device, check if it is legal to emit this global
4748   // normally.
4749   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4750       OpenMPRuntime->emitTargetGlobalVariable(D))
4751     return;
4752 
4753   llvm::TrackingVH<llvm::Constant> Init;
4754   bool NeedsGlobalCtor = false;
4755   bool NeedsGlobalDtor =
4756       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4757 
4758   const VarDecl *InitDecl;
4759   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4760 
4761   Optional<ConstantEmitter> emitter;
4762 
4763   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4764   // as part of their declaration."  Sema has already checked for
4765   // error cases, so we just need to set Init to UndefValue.
4766   bool IsCUDASharedVar =
4767       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4768   // Shadows of initialized device-side global variables are also left
4769   // undefined.
4770   // Managed Variables should be initialized on both host side and device side.
4771   bool IsCUDAShadowVar =
4772       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4773       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4774        D->hasAttr<CUDASharedAttr>());
4775   bool IsCUDADeviceShadowVar =
4776       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4777       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4778        D->getType()->isCUDADeviceBuiltinTextureType());
4779   if (getLangOpts().CUDA &&
4780       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4781     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4782   else if (D->hasAttr<LoaderUninitializedAttr>())
4783     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4784   else if (!InitExpr) {
4785     // This is a tentative definition; tentative definitions are
4786     // implicitly initialized with { 0 }.
4787     //
4788     // Note that tentative definitions are only emitted at the end of
4789     // a translation unit, so they should never have incomplete
4790     // type. In addition, EmitTentativeDefinition makes sure that we
4791     // never attempt to emit a tentative definition if a real one
4792     // exists. A use may still exists, however, so we still may need
4793     // to do a RAUW.
4794     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4795     Init = EmitNullConstant(D->getType());
4796   } else {
4797     initializedGlobalDecl = GlobalDecl(D);
4798     emitter.emplace(*this);
4799     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4800     if (!Initializer) {
4801       QualType T = InitExpr->getType();
4802       if (D->getType()->isReferenceType())
4803         T = D->getType();
4804 
4805       if (getLangOpts().CPlusPlus) {
4806         if (InitDecl->hasFlexibleArrayInit(getContext()))
4807           ErrorUnsupported(D, "flexible array initializer");
4808         Init = EmitNullConstant(T);
4809         NeedsGlobalCtor = true;
4810       } else {
4811         ErrorUnsupported(D, "static initializer");
4812         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4813       }
4814     } else {
4815       Init = Initializer;
4816       // We don't need an initializer, so remove the entry for the delayed
4817       // initializer position (just in case this entry was delayed) if we
4818       // also don't need to register a destructor.
4819       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4820         DelayedCXXInitPosition.erase(D);
4821 
4822 #ifndef NDEBUG
4823       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4824                           InitDecl->getFlexibleArrayInitChars(getContext());
4825       CharUnits CstSize = CharUnits::fromQuantity(
4826           getDataLayout().getTypeAllocSize(Init->getType()));
4827       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4828 #endif
4829     }
4830   }
4831 
4832   llvm::Type* InitType = Init->getType();
4833   llvm::Constant *Entry =
4834       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4835 
4836   // Strip off pointer casts if we got them.
4837   Entry = Entry->stripPointerCasts();
4838 
4839   // Entry is now either a Function or GlobalVariable.
4840   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4841 
4842   // We have a definition after a declaration with the wrong type.
4843   // We must make a new GlobalVariable* and update everything that used OldGV
4844   // (a declaration or tentative definition) with the new GlobalVariable*
4845   // (which will be a definition).
4846   //
4847   // This happens if there is a prototype for a global (e.g.
4848   // "extern int x[];") and then a definition of a different type (e.g.
4849   // "int x[10];"). This also happens when an initializer has a different type
4850   // from the type of the global (this happens with unions).
4851   if (!GV || GV->getValueType() != InitType ||
4852       GV->getType()->getAddressSpace() !=
4853           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4854 
4855     // Move the old entry aside so that we'll create a new one.
4856     Entry->setName(StringRef());
4857 
4858     // Make a new global with the correct type, this is now guaranteed to work.
4859     GV = cast<llvm::GlobalVariable>(
4860         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4861             ->stripPointerCasts());
4862 
4863     // Replace all uses of the old global with the new global
4864     llvm::Constant *NewPtrForOldDecl =
4865         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4866                                                              Entry->getType());
4867     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4868 
4869     // Erase the old global, since it is no longer used.
4870     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4871   }
4872 
4873   MaybeHandleStaticInExternC(D, GV);
4874 
4875   if (D->hasAttr<AnnotateAttr>())
4876     AddGlobalAnnotations(D, GV);
4877 
4878   // Set the llvm linkage type as appropriate.
4879   llvm::GlobalValue::LinkageTypes Linkage =
4880       getLLVMLinkageVarDefinition(D, GV->isConstant());
4881 
4882   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4883   // the device. [...]"
4884   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4885   // __device__, declares a variable that: [...]
4886   // Is accessible from all the threads within the grid and from the host
4887   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4888   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4889   if (GV && LangOpts.CUDA) {
4890     if (LangOpts.CUDAIsDevice) {
4891       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4892           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4893            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4894            D->getType()->isCUDADeviceBuiltinTextureType()))
4895         GV->setExternallyInitialized(true);
4896     } else {
4897       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4898     }
4899     getCUDARuntime().handleVarRegistration(D, *GV);
4900   }
4901 
4902   GV->setInitializer(Init);
4903   if (emitter)
4904     emitter->finalize(GV);
4905 
4906   // If it is safe to mark the global 'constant', do so now.
4907   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4908                   isTypeConstant(D->getType(), true));
4909 
4910   // If it is in a read-only section, mark it 'constant'.
4911   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4912     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4913     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4914       GV->setConstant(true);
4915   }
4916 
4917   CharUnits AlignVal = getContext().getDeclAlign(D);
4918   // Check for alignment specifed in an 'omp allocate' directive.
4919   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4920           getOMPAllocateAlignment(D))
4921     AlignVal = *AlignValFromAllocate;
4922   GV->setAlignment(AlignVal.getAsAlign());
4923 
4924   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4925   // function is only defined alongside the variable, not also alongside
4926   // callers. Normally, all accesses to a thread_local go through the
4927   // thread-wrapper in order to ensure initialization has occurred, underlying
4928   // variable will never be used other than the thread-wrapper, so it can be
4929   // converted to internal linkage.
4930   //
4931   // However, if the variable has the 'constinit' attribute, it _can_ be
4932   // referenced directly, without calling the thread-wrapper, so the linkage
4933   // must not be changed.
4934   //
4935   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4936   // weak or linkonce, the de-duplication semantics are important to preserve,
4937   // so we don't change the linkage.
4938   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4939       Linkage == llvm::GlobalValue::ExternalLinkage &&
4940       Context.getTargetInfo().getTriple().isOSDarwin() &&
4941       !D->hasAttr<ConstInitAttr>())
4942     Linkage = llvm::GlobalValue::InternalLinkage;
4943 
4944   GV->setLinkage(Linkage);
4945   if (D->hasAttr<DLLImportAttr>())
4946     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4947   else if (D->hasAttr<DLLExportAttr>())
4948     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4949   else
4950     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4951 
4952   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4953     // common vars aren't constant even if declared const.
4954     GV->setConstant(false);
4955     // Tentative definition of global variables may be initialized with
4956     // non-zero null pointers. In this case they should have weak linkage
4957     // since common linkage must have zero initializer and must not have
4958     // explicit section therefore cannot have non-zero initial value.
4959     if (!GV->getInitializer()->isNullValue())
4960       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4961   }
4962 
4963   setNonAliasAttributes(D, GV);
4964 
4965   if (D->getTLSKind() && !GV->isThreadLocal()) {
4966     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4967       CXXThreadLocals.push_back(D);
4968     setTLSMode(GV, *D);
4969   }
4970 
4971   maybeSetTrivialComdat(*D, *GV);
4972 
4973   // Emit the initializer function if necessary.
4974   if (NeedsGlobalCtor || NeedsGlobalDtor)
4975     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4976 
4977   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4978 
4979   // Emit global variable debug information.
4980   if (CGDebugInfo *DI = getModuleDebugInfo())
4981     if (getCodeGenOpts().hasReducedDebugInfo())
4982       DI->EmitGlobalVariable(GV, D);
4983 }
4984 
4985 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4986   if (CGDebugInfo *DI = getModuleDebugInfo())
4987     if (getCodeGenOpts().hasReducedDebugInfo()) {
4988       QualType ASTTy = D->getType();
4989       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4990       llvm::Constant *GV =
4991           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4992       DI->EmitExternalVariable(
4993           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4994     }
4995 }
4996 
4997 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4998                                       CodeGenModule &CGM, const VarDecl *D,
4999                                       bool NoCommon) {
5000   // Don't give variables common linkage if -fno-common was specified unless it
5001   // was overridden by a NoCommon attribute.
5002   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5003     return true;
5004 
5005   // C11 6.9.2/2:
5006   //   A declaration of an identifier for an object that has file scope without
5007   //   an initializer, and without a storage-class specifier or with the
5008   //   storage-class specifier static, constitutes a tentative definition.
5009   if (D->getInit() || D->hasExternalStorage())
5010     return true;
5011 
5012   // A variable cannot be both common and exist in a section.
5013   if (D->hasAttr<SectionAttr>())
5014     return true;
5015 
5016   // A variable cannot be both common and exist in a section.
5017   // We don't try to determine which is the right section in the front-end.
5018   // If no specialized section name is applicable, it will resort to default.
5019   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5020       D->hasAttr<PragmaClangDataSectionAttr>() ||
5021       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5022       D->hasAttr<PragmaClangRodataSectionAttr>())
5023     return true;
5024 
5025   // Thread local vars aren't considered common linkage.
5026   if (D->getTLSKind())
5027     return true;
5028 
5029   // Tentative definitions marked with WeakImportAttr are true definitions.
5030   if (D->hasAttr<WeakImportAttr>())
5031     return true;
5032 
5033   // A variable cannot be both common and exist in a comdat.
5034   if (shouldBeInCOMDAT(CGM, *D))
5035     return true;
5036 
5037   // Declarations with a required alignment do not have common linkage in MSVC
5038   // mode.
5039   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5040     if (D->hasAttr<AlignedAttr>())
5041       return true;
5042     QualType VarType = D->getType();
5043     if (Context.isAlignmentRequired(VarType))
5044       return true;
5045 
5046     if (const auto *RT = VarType->getAs<RecordType>()) {
5047       const RecordDecl *RD = RT->getDecl();
5048       for (const FieldDecl *FD : RD->fields()) {
5049         if (FD->isBitField())
5050           continue;
5051         if (FD->hasAttr<AlignedAttr>())
5052           return true;
5053         if (Context.isAlignmentRequired(FD->getType()))
5054           return true;
5055       }
5056     }
5057   }
5058 
5059   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5060   // common symbols, so symbols with greater alignment requirements cannot be
5061   // common.
5062   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5063   // alignments for common symbols via the aligncomm directive, so this
5064   // restriction only applies to MSVC environments.
5065   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5066       Context.getTypeAlignIfKnown(D->getType()) >
5067           Context.toBits(CharUnits::fromQuantity(32)))
5068     return true;
5069 
5070   return false;
5071 }
5072 
5073 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5074     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5075   if (Linkage == GVA_Internal)
5076     return llvm::Function::InternalLinkage;
5077 
5078   if (D->hasAttr<WeakAttr>())
5079     return llvm::GlobalVariable::WeakAnyLinkage;
5080 
5081   if (const auto *FD = D->getAsFunction())
5082     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5083       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5084 
5085   // We are guaranteed to have a strong definition somewhere else,
5086   // so we can use available_externally linkage.
5087   if (Linkage == GVA_AvailableExternally)
5088     return llvm::GlobalValue::AvailableExternallyLinkage;
5089 
5090   // Note that Apple's kernel linker doesn't support symbol
5091   // coalescing, so we need to avoid linkonce and weak linkages there.
5092   // Normally, this means we just map to internal, but for explicit
5093   // instantiations we'll map to external.
5094 
5095   // In C++, the compiler has to emit a definition in every translation unit
5096   // that references the function.  We should use linkonce_odr because
5097   // a) if all references in this translation unit are optimized away, we
5098   // don't need to codegen it.  b) if the function persists, it needs to be
5099   // merged with other definitions. c) C++ has the ODR, so we know the
5100   // definition is dependable.
5101   if (Linkage == GVA_DiscardableODR)
5102     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5103                                             : llvm::Function::InternalLinkage;
5104 
5105   // An explicit instantiation of a template has weak linkage, since
5106   // explicit instantiations can occur in multiple translation units
5107   // and must all be equivalent. However, we are not allowed to
5108   // throw away these explicit instantiations.
5109   //
5110   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5111   // so say that CUDA templates are either external (for kernels) or internal.
5112   // This lets llvm perform aggressive inter-procedural optimizations. For
5113   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5114   // therefore we need to follow the normal linkage paradigm.
5115   if (Linkage == GVA_StrongODR) {
5116     if (getLangOpts().AppleKext)
5117       return llvm::Function::ExternalLinkage;
5118     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5119         !getLangOpts().GPURelocatableDeviceCode)
5120       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5121                                           : llvm::Function::InternalLinkage;
5122     return llvm::Function::WeakODRLinkage;
5123   }
5124 
5125   // C++ doesn't have tentative definitions and thus cannot have common
5126   // linkage.
5127   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5128       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5129                                  CodeGenOpts.NoCommon))
5130     return llvm::GlobalVariable::CommonLinkage;
5131 
5132   // selectany symbols are externally visible, so use weak instead of
5133   // linkonce.  MSVC optimizes away references to const selectany globals, so
5134   // all definitions should be the same and ODR linkage should be used.
5135   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5136   if (D->hasAttr<SelectAnyAttr>())
5137     return llvm::GlobalVariable::WeakODRLinkage;
5138 
5139   // Otherwise, we have strong external linkage.
5140   assert(Linkage == GVA_StrongExternal);
5141   return llvm::GlobalVariable::ExternalLinkage;
5142 }
5143 
5144 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5145     const VarDecl *VD, bool IsConstant) {
5146   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5147   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5148 }
5149 
5150 /// Replace the uses of a function that was declared with a non-proto type.
5151 /// We want to silently drop extra arguments from call sites
5152 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5153                                           llvm::Function *newFn) {
5154   // Fast path.
5155   if (old->use_empty()) return;
5156 
5157   llvm::Type *newRetTy = newFn->getReturnType();
5158   SmallVector<llvm::Value*, 4> newArgs;
5159 
5160   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5161          ui != ue; ) {
5162     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5163     llvm::User *user = use->getUser();
5164 
5165     // Recognize and replace uses of bitcasts.  Most calls to
5166     // unprototyped functions will use bitcasts.
5167     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5168       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5169         replaceUsesOfNonProtoConstant(bitcast, newFn);
5170       continue;
5171     }
5172 
5173     // Recognize calls to the function.
5174     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5175     if (!callSite) continue;
5176     if (!callSite->isCallee(&*use))
5177       continue;
5178 
5179     // If the return types don't match exactly, then we can't
5180     // transform this call unless it's dead.
5181     if (callSite->getType() != newRetTy && !callSite->use_empty())
5182       continue;
5183 
5184     // Get the call site's attribute list.
5185     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5186     llvm::AttributeList oldAttrs = callSite->getAttributes();
5187 
5188     // If the function was passed too few arguments, don't transform.
5189     unsigned newNumArgs = newFn->arg_size();
5190     if (callSite->arg_size() < newNumArgs)
5191       continue;
5192 
5193     // If extra arguments were passed, we silently drop them.
5194     // If any of the types mismatch, we don't transform.
5195     unsigned argNo = 0;
5196     bool dontTransform = false;
5197     for (llvm::Argument &A : newFn->args()) {
5198       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5199         dontTransform = true;
5200         break;
5201       }
5202 
5203       // Add any parameter attributes.
5204       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5205       argNo++;
5206     }
5207     if (dontTransform)
5208       continue;
5209 
5210     // Okay, we can transform this.  Create the new call instruction and copy
5211     // over the required information.
5212     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5213 
5214     // Copy over any operand bundles.
5215     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5216     callSite->getOperandBundlesAsDefs(newBundles);
5217 
5218     llvm::CallBase *newCall;
5219     if (isa<llvm::CallInst>(callSite)) {
5220       newCall =
5221           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5222     } else {
5223       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5224       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5225                                          oldInvoke->getUnwindDest(), newArgs,
5226                                          newBundles, "", callSite);
5227     }
5228     newArgs.clear(); // for the next iteration
5229 
5230     if (!newCall->getType()->isVoidTy())
5231       newCall->takeName(callSite);
5232     newCall->setAttributes(
5233         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5234                                  oldAttrs.getRetAttrs(), newArgAttrs));
5235     newCall->setCallingConv(callSite->getCallingConv());
5236 
5237     // Finally, remove the old call, replacing any uses with the new one.
5238     if (!callSite->use_empty())
5239       callSite->replaceAllUsesWith(newCall);
5240 
5241     // Copy debug location attached to CI.
5242     if (callSite->getDebugLoc())
5243       newCall->setDebugLoc(callSite->getDebugLoc());
5244 
5245     callSite->eraseFromParent();
5246   }
5247 }
5248 
5249 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5250 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5251 /// existing call uses of the old function in the module, this adjusts them to
5252 /// call the new function directly.
5253 ///
5254 /// This is not just a cleanup: the always_inline pass requires direct calls to
5255 /// functions to be able to inline them.  If there is a bitcast in the way, it
5256 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5257 /// run at -O0.
5258 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5259                                                       llvm::Function *NewFn) {
5260   // If we're redefining a global as a function, don't transform it.
5261   if (!isa<llvm::Function>(Old)) return;
5262 
5263   replaceUsesOfNonProtoConstant(Old, NewFn);
5264 }
5265 
5266 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5267   auto DK = VD->isThisDeclarationADefinition();
5268   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5269     return;
5270 
5271   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5272   // If we have a definition, this might be a deferred decl. If the
5273   // instantiation is explicit, make sure we emit it at the end.
5274   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5275     GetAddrOfGlobalVar(VD);
5276 
5277   EmitTopLevelDecl(VD);
5278 }
5279 
5280 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5281                                                  llvm::GlobalValue *GV) {
5282   const auto *D = cast<FunctionDecl>(GD.getDecl());
5283 
5284   // Compute the function info and LLVM type.
5285   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5286   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5287 
5288   // Get or create the prototype for the function.
5289   if (!GV || (GV->getValueType() != Ty))
5290     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5291                                                    /*DontDefer=*/true,
5292                                                    ForDefinition));
5293 
5294   // Already emitted.
5295   if (!GV->isDeclaration())
5296     return;
5297 
5298   // We need to set linkage and visibility on the function before
5299   // generating code for it because various parts of IR generation
5300   // want to propagate this information down (e.g. to local static
5301   // declarations).
5302   auto *Fn = cast<llvm::Function>(GV);
5303   setFunctionLinkage(GD, Fn);
5304 
5305   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5306   setGVProperties(Fn, GD);
5307 
5308   MaybeHandleStaticInExternC(D, Fn);
5309 
5310   maybeSetTrivialComdat(*D, *Fn);
5311 
5312   // Set CodeGen attributes that represent floating point environment.
5313   setLLVMFunctionFEnvAttributes(D, Fn);
5314 
5315   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5316 
5317   setNonAliasAttributes(GD, Fn);
5318   SetLLVMFunctionAttributesForDefinition(D, Fn);
5319 
5320   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5321     AddGlobalCtor(Fn, CA->getPriority());
5322   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5323     AddGlobalDtor(Fn, DA->getPriority(), true);
5324   if (D->hasAttr<AnnotateAttr>())
5325     AddGlobalAnnotations(D, Fn);
5326 }
5327 
5328 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5329   const auto *D = cast<ValueDecl>(GD.getDecl());
5330   const AliasAttr *AA = D->getAttr<AliasAttr>();
5331   assert(AA && "Not an alias?");
5332 
5333   StringRef MangledName = getMangledName(GD);
5334 
5335   if (AA->getAliasee() == MangledName) {
5336     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5337     return;
5338   }
5339 
5340   // If there is a definition in the module, then it wins over the alias.
5341   // This is dubious, but allow it to be safe.  Just ignore the alias.
5342   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5343   if (Entry && !Entry->isDeclaration())
5344     return;
5345 
5346   Aliases.push_back(GD);
5347 
5348   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5349 
5350   // Create a reference to the named value.  This ensures that it is emitted
5351   // if a deferred decl.
5352   llvm::Constant *Aliasee;
5353   llvm::GlobalValue::LinkageTypes LT;
5354   if (isa<llvm::FunctionType>(DeclTy)) {
5355     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5356                                       /*ForVTable=*/false);
5357     LT = getFunctionLinkage(GD);
5358   } else {
5359     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5360                                     /*D=*/nullptr);
5361     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5362       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5363     else
5364       LT = getFunctionLinkage(GD);
5365   }
5366 
5367   // Create the new alias itself, but don't set a name yet.
5368   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5369   auto *GA =
5370       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5371 
5372   if (Entry) {
5373     if (GA->getAliasee() == Entry) {
5374       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5375       return;
5376     }
5377 
5378     assert(Entry->isDeclaration());
5379 
5380     // If there is a declaration in the module, then we had an extern followed
5381     // by the alias, as in:
5382     //   extern int test6();
5383     //   ...
5384     //   int test6() __attribute__((alias("test7")));
5385     //
5386     // Remove it and replace uses of it with the alias.
5387     GA->takeName(Entry);
5388 
5389     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5390                                                           Entry->getType()));
5391     Entry->eraseFromParent();
5392   } else {
5393     GA->setName(MangledName);
5394   }
5395 
5396   // Set attributes which are particular to an alias; this is a
5397   // specialization of the attributes which may be set on a global
5398   // variable/function.
5399   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5400       D->isWeakImported()) {
5401     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5402   }
5403 
5404   if (const auto *VD = dyn_cast<VarDecl>(D))
5405     if (VD->getTLSKind())
5406       setTLSMode(GA, *VD);
5407 
5408   SetCommonAttributes(GD, GA);
5409 
5410   // Emit global alias debug information.
5411   if (isa<VarDecl>(D))
5412     if (CGDebugInfo *DI = getModuleDebugInfo())
5413       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5414 }
5415 
5416 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5417   const auto *D = cast<ValueDecl>(GD.getDecl());
5418   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5419   assert(IFA && "Not an ifunc?");
5420 
5421   StringRef MangledName = getMangledName(GD);
5422 
5423   if (IFA->getResolver() == MangledName) {
5424     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5425     return;
5426   }
5427 
5428   // Report an error if some definition overrides ifunc.
5429   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5430   if (Entry && !Entry->isDeclaration()) {
5431     GlobalDecl OtherGD;
5432     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5433         DiagnosedConflictingDefinitions.insert(GD).second) {
5434       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5435           << MangledName;
5436       Diags.Report(OtherGD.getDecl()->getLocation(),
5437                    diag::note_previous_definition);
5438     }
5439     return;
5440   }
5441 
5442   Aliases.push_back(GD);
5443 
5444   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5445   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5446   llvm::Constant *Resolver =
5447       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5448                               /*ForVTable=*/false);
5449   llvm::GlobalIFunc *GIF =
5450       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5451                                 "", Resolver, &getModule());
5452   if (Entry) {
5453     if (GIF->getResolver() == Entry) {
5454       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5455       return;
5456     }
5457     assert(Entry->isDeclaration());
5458 
5459     // If there is a declaration in the module, then we had an extern followed
5460     // by the ifunc, as in:
5461     //   extern int test();
5462     //   ...
5463     //   int test() __attribute__((ifunc("resolver")));
5464     //
5465     // Remove it and replace uses of it with the ifunc.
5466     GIF->takeName(Entry);
5467 
5468     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5469                                                           Entry->getType()));
5470     Entry->eraseFromParent();
5471   } else
5472     GIF->setName(MangledName);
5473 
5474   SetCommonAttributes(GD, GIF);
5475 }
5476 
5477 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5478                                             ArrayRef<llvm::Type*> Tys) {
5479   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5480                                          Tys);
5481 }
5482 
5483 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5484 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5485                          const StringLiteral *Literal, bool TargetIsLSB,
5486                          bool &IsUTF16, unsigned &StringLength) {
5487   StringRef String = Literal->getString();
5488   unsigned NumBytes = String.size();
5489 
5490   // Check for simple case.
5491   if (!Literal->containsNonAsciiOrNull()) {
5492     StringLength = NumBytes;
5493     return *Map.insert(std::make_pair(String, nullptr)).first;
5494   }
5495 
5496   // Otherwise, convert the UTF8 literals into a string of shorts.
5497   IsUTF16 = true;
5498 
5499   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5500   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5501   llvm::UTF16 *ToPtr = &ToBuf[0];
5502 
5503   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5504                                  ToPtr + NumBytes, llvm::strictConversion);
5505 
5506   // ConvertUTF8toUTF16 returns the length in ToPtr.
5507   StringLength = ToPtr - &ToBuf[0];
5508 
5509   // Add an explicit null.
5510   *ToPtr = 0;
5511   return *Map.insert(std::make_pair(
5512                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5513                                    (StringLength + 1) * 2),
5514                          nullptr)).first;
5515 }
5516 
5517 ConstantAddress
5518 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5519   unsigned StringLength = 0;
5520   bool isUTF16 = false;
5521   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5522       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5523                                getDataLayout().isLittleEndian(), isUTF16,
5524                                StringLength);
5525 
5526   if (auto *C = Entry.second)
5527     return ConstantAddress(
5528         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5529 
5530   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5531   llvm::Constant *Zeros[] = { Zero, Zero };
5532 
5533   const ASTContext &Context = getContext();
5534   const llvm::Triple &Triple = getTriple();
5535 
5536   const auto CFRuntime = getLangOpts().CFRuntime;
5537   const bool IsSwiftABI =
5538       static_cast<unsigned>(CFRuntime) >=
5539       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5540   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5541 
5542   // If we don't already have it, get __CFConstantStringClassReference.
5543   if (!CFConstantStringClassRef) {
5544     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5545     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5546     Ty = llvm::ArrayType::get(Ty, 0);
5547 
5548     switch (CFRuntime) {
5549     default: break;
5550     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5551     case LangOptions::CoreFoundationABI::Swift5_0:
5552       CFConstantStringClassName =
5553           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5554                               : "$s10Foundation19_NSCFConstantStringCN";
5555       Ty = IntPtrTy;
5556       break;
5557     case LangOptions::CoreFoundationABI::Swift4_2:
5558       CFConstantStringClassName =
5559           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5560                               : "$S10Foundation19_NSCFConstantStringCN";
5561       Ty = IntPtrTy;
5562       break;
5563     case LangOptions::CoreFoundationABI::Swift4_1:
5564       CFConstantStringClassName =
5565           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5566                               : "__T010Foundation19_NSCFConstantStringCN";
5567       Ty = IntPtrTy;
5568       break;
5569     }
5570 
5571     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5572 
5573     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5574       llvm::GlobalValue *GV = nullptr;
5575 
5576       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5577         IdentifierInfo &II = Context.Idents.get(GV->getName());
5578         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5579         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5580 
5581         const VarDecl *VD = nullptr;
5582         for (const auto *Result : DC->lookup(&II))
5583           if ((VD = dyn_cast<VarDecl>(Result)))
5584             break;
5585 
5586         if (Triple.isOSBinFormatELF()) {
5587           if (!VD)
5588             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5589         } else {
5590           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5591           if (!VD || !VD->hasAttr<DLLExportAttr>())
5592             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5593           else
5594             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5595         }
5596 
5597         setDSOLocal(GV);
5598       }
5599     }
5600 
5601     // Decay array -> ptr
5602     CFConstantStringClassRef =
5603         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5604                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5605   }
5606 
5607   QualType CFTy = Context.getCFConstantStringType();
5608 
5609   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5610 
5611   ConstantInitBuilder Builder(*this);
5612   auto Fields = Builder.beginStruct(STy);
5613 
5614   // Class pointer.
5615   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5616 
5617   // Flags.
5618   if (IsSwiftABI) {
5619     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5620     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5621   } else {
5622     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5623   }
5624 
5625   // String pointer.
5626   llvm::Constant *C = nullptr;
5627   if (isUTF16) {
5628     auto Arr = llvm::makeArrayRef(
5629         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5630         Entry.first().size() / 2);
5631     C = llvm::ConstantDataArray::get(VMContext, Arr);
5632   } else {
5633     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5634   }
5635 
5636   // Note: -fwritable-strings doesn't make the backing store strings of
5637   // CFStrings writable. (See <rdar://problem/10657500>)
5638   auto *GV =
5639       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5640                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5641   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5642   // Don't enforce the target's minimum global alignment, since the only use
5643   // of the string is via this class initializer.
5644   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5645                             : Context.getTypeAlignInChars(Context.CharTy);
5646   GV->setAlignment(Align.getAsAlign());
5647 
5648   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5649   // Without it LLVM can merge the string with a non unnamed_addr one during
5650   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5651   if (Triple.isOSBinFormatMachO())
5652     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5653                            : "__TEXT,__cstring,cstring_literals");
5654   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5655   // the static linker to adjust permissions to read-only later on.
5656   else if (Triple.isOSBinFormatELF())
5657     GV->setSection(".rodata");
5658 
5659   // String.
5660   llvm::Constant *Str =
5661       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5662 
5663   if (isUTF16)
5664     // Cast the UTF16 string to the correct type.
5665     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5666   Fields.add(Str);
5667 
5668   // String length.
5669   llvm::IntegerType *LengthTy =
5670       llvm::IntegerType::get(getModule().getContext(),
5671                              Context.getTargetInfo().getLongWidth());
5672   if (IsSwiftABI) {
5673     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5674         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5675       LengthTy = Int32Ty;
5676     else
5677       LengthTy = IntPtrTy;
5678   }
5679   Fields.addInt(LengthTy, StringLength);
5680 
5681   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5682   // properly aligned on 32-bit platforms.
5683   CharUnits Alignment =
5684       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5685 
5686   // The struct.
5687   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5688                                     /*isConstant=*/false,
5689                                     llvm::GlobalVariable::PrivateLinkage);
5690   GV->addAttribute("objc_arc_inert");
5691   switch (Triple.getObjectFormat()) {
5692   case llvm::Triple::UnknownObjectFormat:
5693     llvm_unreachable("unknown file format");
5694   case llvm::Triple::DXContainer:
5695   case llvm::Triple::GOFF:
5696   case llvm::Triple::SPIRV:
5697   case llvm::Triple::XCOFF:
5698     llvm_unreachable("unimplemented");
5699   case llvm::Triple::COFF:
5700   case llvm::Triple::ELF:
5701   case llvm::Triple::Wasm:
5702     GV->setSection("cfstring");
5703     break;
5704   case llvm::Triple::MachO:
5705     GV->setSection("__DATA,__cfstring");
5706     break;
5707   }
5708   Entry.second = GV;
5709 
5710   return ConstantAddress(GV, GV->getValueType(), Alignment);
5711 }
5712 
5713 bool CodeGenModule::getExpressionLocationsEnabled() const {
5714   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5715 }
5716 
5717 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5718   if (ObjCFastEnumerationStateType.isNull()) {
5719     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5720     D->startDefinition();
5721 
5722     QualType FieldTypes[] = {
5723       Context.UnsignedLongTy,
5724       Context.getPointerType(Context.getObjCIdType()),
5725       Context.getPointerType(Context.UnsignedLongTy),
5726       Context.getConstantArrayType(Context.UnsignedLongTy,
5727                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5728     };
5729 
5730     for (size_t i = 0; i < 4; ++i) {
5731       FieldDecl *Field = FieldDecl::Create(Context,
5732                                            D,
5733                                            SourceLocation(),
5734                                            SourceLocation(), nullptr,
5735                                            FieldTypes[i], /*TInfo=*/nullptr,
5736                                            /*BitWidth=*/nullptr,
5737                                            /*Mutable=*/false,
5738                                            ICIS_NoInit);
5739       Field->setAccess(AS_public);
5740       D->addDecl(Field);
5741     }
5742 
5743     D->completeDefinition();
5744     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5745   }
5746 
5747   return ObjCFastEnumerationStateType;
5748 }
5749 
5750 llvm::Constant *
5751 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5752   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5753 
5754   // Don't emit it as the address of the string, emit the string data itself
5755   // as an inline array.
5756   if (E->getCharByteWidth() == 1) {
5757     SmallString<64> Str(E->getString());
5758 
5759     // Resize the string to the right size, which is indicated by its type.
5760     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5761     Str.resize(CAT->getSize().getZExtValue());
5762     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5763   }
5764 
5765   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5766   llvm::Type *ElemTy = AType->getElementType();
5767   unsigned NumElements = AType->getNumElements();
5768 
5769   // Wide strings have either 2-byte or 4-byte elements.
5770   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5771     SmallVector<uint16_t, 32> Elements;
5772     Elements.reserve(NumElements);
5773 
5774     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5775       Elements.push_back(E->getCodeUnit(i));
5776     Elements.resize(NumElements);
5777     return llvm::ConstantDataArray::get(VMContext, Elements);
5778   }
5779 
5780   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5781   SmallVector<uint32_t, 32> Elements;
5782   Elements.reserve(NumElements);
5783 
5784   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5785     Elements.push_back(E->getCodeUnit(i));
5786   Elements.resize(NumElements);
5787   return llvm::ConstantDataArray::get(VMContext, Elements);
5788 }
5789 
5790 static llvm::GlobalVariable *
5791 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5792                       CodeGenModule &CGM, StringRef GlobalName,
5793                       CharUnits Alignment) {
5794   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5795       CGM.GetGlobalConstantAddressSpace());
5796 
5797   llvm::Module &M = CGM.getModule();
5798   // Create a global variable for this string
5799   auto *GV = new llvm::GlobalVariable(
5800       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5801       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5802   GV->setAlignment(Alignment.getAsAlign());
5803   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5804   if (GV->isWeakForLinker()) {
5805     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5806     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5807   }
5808   CGM.setDSOLocal(GV);
5809 
5810   return GV;
5811 }
5812 
5813 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5814 /// constant array for the given string literal.
5815 ConstantAddress
5816 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5817                                                   StringRef Name) {
5818   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5819 
5820   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5821   llvm::GlobalVariable **Entry = nullptr;
5822   if (!LangOpts.WritableStrings) {
5823     Entry = &ConstantStringMap[C];
5824     if (auto GV = *Entry) {
5825       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5826         GV->setAlignment(Alignment.getAsAlign());
5827       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5828                              GV->getValueType(), Alignment);
5829     }
5830   }
5831 
5832   SmallString<256> MangledNameBuffer;
5833   StringRef GlobalVariableName;
5834   llvm::GlobalValue::LinkageTypes LT;
5835 
5836   // Mangle the string literal if that's how the ABI merges duplicate strings.
5837   // Don't do it if they are writable, since we don't want writes in one TU to
5838   // affect strings in another.
5839   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5840       !LangOpts.WritableStrings) {
5841     llvm::raw_svector_ostream Out(MangledNameBuffer);
5842     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5843     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5844     GlobalVariableName = MangledNameBuffer;
5845   } else {
5846     LT = llvm::GlobalValue::PrivateLinkage;
5847     GlobalVariableName = Name;
5848   }
5849 
5850   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5851 
5852   CGDebugInfo *DI = getModuleDebugInfo();
5853   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5854     DI->AddStringLiteralDebugInfo(GV, S);
5855 
5856   if (Entry)
5857     *Entry = GV;
5858 
5859   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5860 
5861   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5862                          GV->getValueType(), Alignment);
5863 }
5864 
5865 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5866 /// array for the given ObjCEncodeExpr node.
5867 ConstantAddress
5868 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5869   std::string Str;
5870   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5871 
5872   return GetAddrOfConstantCString(Str);
5873 }
5874 
5875 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5876 /// the literal and a terminating '\0' character.
5877 /// The result has pointer to array type.
5878 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5879     const std::string &Str, const char *GlobalName) {
5880   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5881   CharUnits Alignment =
5882     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5883 
5884   llvm::Constant *C =
5885       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5886 
5887   // Don't share any string literals if strings aren't constant.
5888   llvm::GlobalVariable **Entry = nullptr;
5889   if (!LangOpts.WritableStrings) {
5890     Entry = &ConstantStringMap[C];
5891     if (auto GV = *Entry) {
5892       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5893         GV->setAlignment(Alignment.getAsAlign());
5894       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5895                              GV->getValueType(), Alignment);
5896     }
5897   }
5898 
5899   // Get the default prefix if a name wasn't specified.
5900   if (!GlobalName)
5901     GlobalName = ".str";
5902   // Create a global variable for this.
5903   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5904                                   GlobalName, Alignment);
5905   if (Entry)
5906     *Entry = GV;
5907 
5908   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5909                          GV->getValueType(), Alignment);
5910 }
5911 
5912 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5913     const MaterializeTemporaryExpr *E, const Expr *Init) {
5914   assert((E->getStorageDuration() == SD_Static ||
5915           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5916   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5917 
5918   // If we're not materializing a subobject of the temporary, keep the
5919   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5920   QualType MaterializedType = Init->getType();
5921   if (Init == E->getSubExpr())
5922     MaterializedType = E->getType();
5923 
5924   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5925 
5926   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5927   if (!InsertResult.second) {
5928     // We've seen this before: either we already created it or we're in the
5929     // process of doing so.
5930     if (!InsertResult.first->second) {
5931       // We recursively re-entered this function, probably during emission of
5932       // the initializer. Create a placeholder. We'll clean this up in the
5933       // outer call, at the end of this function.
5934       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5935       InsertResult.first->second = new llvm::GlobalVariable(
5936           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5937           nullptr);
5938     }
5939     return ConstantAddress(InsertResult.first->second,
5940                            llvm::cast<llvm::GlobalVariable>(
5941                                InsertResult.first->second->stripPointerCasts())
5942                                ->getValueType(),
5943                            Align);
5944   }
5945 
5946   // FIXME: If an externally-visible declaration extends multiple temporaries,
5947   // we need to give each temporary the same name in every translation unit (and
5948   // we also need to make the temporaries externally-visible).
5949   SmallString<256> Name;
5950   llvm::raw_svector_ostream Out(Name);
5951   getCXXABI().getMangleContext().mangleReferenceTemporary(
5952       VD, E->getManglingNumber(), Out);
5953 
5954   APValue *Value = nullptr;
5955   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5956     // If the initializer of the extending declaration is a constant
5957     // initializer, we should have a cached constant initializer for this
5958     // temporary. Note that this might have a different value from the value
5959     // computed by evaluating the initializer if the surrounding constant
5960     // expression modifies the temporary.
5961     Value = E->getOrCreateValue(false);
5962   }
5963 
5964   // Try evaluating it now, it might have a constant initializer.
5965   Expr::EvalResult EvalResult;
5966   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5967       !EvalResult.hasSideEffects())
5968     Value = &EvalResult.Val;
5969 
5970   LangAS AddrSpace =
5971       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5972 
5973   Optional<ConstantEmitter> emitter;
5974   llvm::Constant *InitialValue = nullptr;
5975   bool Constant = false;
5976   llvm::Type *Type;
5977   if (Value) {
5978     // The temporary has a constant initializer, use it.
5979     emitter.emplace(*this);
5980     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5981                                                MaterializedType);
5982     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5983     Type = InitialValue->getType();
5984   } else {
5985     // No initializer, the initialization will be provided when we
5986     // initialize the declaration which performed lifetime extension.
5987     Type = getTypes().ConvertTypeForMem(MaterializedType);
5988   }
5989 
5990   // Create a global variable for this lifetime-extended temporary.
5991   llvm::GlobalValue::LinkageTypes Linkage =
5992       getLLVMLinkageVarDefinition(VD, Constant);
5993   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5994     const VarDecl *InitVD;
5995     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5996         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5997       // Temporaries defined inside a class get linkonce_odr linkage because the
5998       // class can be defined in multiple translation units.
5999       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6000     } else {
6001       // There is no need for this temporary to have external linkage if the
6002       // VarDecl has external linkage.
6003       Linkage = llvm::GlobalVariable::InternalLinkage;
6004     }
6005   }
6006   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6007   auto *GV = new llvm::GlobalVariable(
6008       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6009       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6010   if (emitter) emitter->finalize(GV);
6011   setGVProperties(GV, VD);
6012   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6013     // The reference temporary should never be dllexport.
6014     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6015   GV->setAlignment(Align.getAsAlign());
6016   if (supportsCOMDAT() && GV->isWeakForLinker())
6017     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6018   if (VD->getTLSKind())
6019     setTLSMode(GV, *VD);
6020   llvm::Constant *CV = GV;
6021   if (AddrSpace != LangAS::Default)
6022     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6023         *this, GV, AddrSpace, LangAS::Default,
6024         Type->getPointerTo(
6025             getContext().getTargetAddressSpace(LangAS::Default)));
6026 
6027   // Update the map with the new temporary. If we created a placeholder above,
6028   // replace it with the new global now.
6029   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6030   if (Entry) {
6031     Entry->replaceAllUsesWith(
6032         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6033     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6034   }
6035   Entry = CV;
6036 
6037   return ConstantAddress(CV, Type, Align);
6038 }
6039 
6040 /// EmitObjCPropertyImplementations - Emit information for synthesized
6041 /// properties for an implementation.
6042 void CodeGenModule::EmitObjCPropertyImplementations(const
6043                                                     ObjCImplementationDecl *D) {
6044   for (const auto *PID : D->property_impls()) {
6045     // Dynamic is just for type-checking.
6046     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6047       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6048 
6049       // Determine which methods need to be implemented, some may have
6050       // been overridden. Note that ::isPropertyAccessor is not the method
6051       // we want, that just indicates if the decl came from a
6052       // property. What we want to know is if the method is defined in
6053       // this implementation.
6054       auto *Getter = PID->getGetterMethodDecl();
6055       if (!Getter || Getter->isSynthesizedAccessorStub())
6056         CodeGenFunction(*this).GenerateObjCGetter(
6057             const_cast<ObjCImplementationDecl *>(D), PID);
6058       auto *Setter = PID->getSetterMethodDecl();
6059       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6060         CodeGenFunction(*this).GenerateObjCSetter(
6061                                  const_cast<ObjCImplementationDecl *>(D), PID);
6062     }
6063   }
6064 }
6065 
6066 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6067   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6068   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6069        ivar; ivar = ivar->getNextIvar())
6070     if (ivar->getType().isDestructedType())
6071       return true;
6072 
6073   return false;
6074 }
6075 
6076 static bool AllTrivialInitializers(CodeGenModule &CGM,
6077                                    ObjCImplementationDecl *D) {
6078   CodeGenFunction CGF(CGM);
6079   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6080        E = D->init_end(); B != E; ++B) {
6081     CXXCtorInitializer *CtorInitExp = *B;
6082     Expr *Init = CtorInitExp->getInit();
6083     if (!CGF.isTrivialInitializer(Init))
6084       return false;
6085   }
6086   return true;
6087 }
6088 
6089 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6090 /// for an implementation.
6091 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6092   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6093   if (needsDestructMethod(D)) {
6094     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6095     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6096     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6097         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6098         getContext().VoidTy, nullptr, D,
6099         /*isInstance=*/true, /*isVariadic=*/false,
6100         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6101         /*isImplicitlyDeclared=*/true,
6102         /*isDefined=*/false, ObjCMethodDecl::Required);
6103     D->addInstanceMethod(DTORMethod);
6104     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6105     D->setHasDestructors(true);
6106   }
6107 
6108   // If the implementation doesn't have any ivar initializers, we don't need
6109   // a .cxx_construct.
6110   if (D->getNumIvarInitializers() == 0 ||
6111       AllTrivialInitializers(*this, D))
6112     return;
6113 
6114   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6115   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6116   // The constructor returns 'self'.
6117   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6118       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6119       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6120       /*isVariadic=*/false,
6121       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6122       /*isImplicitlyDeclared=*/true,
6123       /*isDefined=*/false, ObjCMethodDecl::Required);
6124   D->addInstanceMethod(CTORMethod);
6125   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6126   D->setHasNonZeroConstructors(true);
6127 }
6128 
6129 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6130 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6131   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6132       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6133     ErrorUnsupported(LSD, "linkage spec");
6134     return;
6135   }
6136 
6137   EmitDeclContext(LSD);
6138 }
6139 
6140 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6141   for (auto *I : DC->decls()) {
6142     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6143     // are themselves considered "top-level", so EmitTopLevelDecl on an
6144     // ObjCImplDecl does not recursively visit them. We need to do that in
6145     // case they're nested inside another construct (LinkageSpecDecl /
6146     // ExportDecl) that does stop them from being considered "top-level".
6147     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6148       for (auto *M : OID->methods())
6149         EmitTopLevelDecl(M);
6150     }
6151 
6152     EmitTopLevelDecl(I);
6153   }
6154 }
6155 
6156 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6157 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6158   // Ignore dependent declarations.
6159   if (D->isTemplated())
6160     return;
6161 
6162   // Consteval function shouldn't be emitted.
6163   if (auto *FD = dyn_cast<FunctionDecl>(D))
6164     if (FD->isConsteval())
6165       return;
6166 
6167   switch (D->getKind()) {
6168   case Decl::CXXConversion:
6169   case Decl::CXXMethod:
6170   case Decl::Function:
6171     EmitGlobal(cast<FunctionDecl>(D));
6172     // Always provide some coverage mapping
6173     // even for the functions that aren't emitted.
6174     AddDeferredUnusedCoverageMapping(D);
6175     break;
6176 
6177   case Decl::CXXDeductionGuide:
6178     // Function-like, but does not result in code emission.
6179     break;
6180 
6181   case Decl::Var:
6182   case Decl::Decomposition:
6183   case Decl::VarTemplateSpecialization:
6184     EmitGlobal(cast<VarDecl>(D));
6185     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6186       for (auto *B : DD->bindings())
6187         if (auto *HD = B->getHoldingVar())
6188           EmitGlobal(HD);
6189     break;
6190 
6191   // Indirect fields from global anonymous structs and unions can be
6192   // ignored; only the actual variable requires IR gen support.
6193   case Decl::IndirectField:
6194     break;
6195 
6196   // C++ Decls
6197   case Decl::Namespace:
6198     EmitDeclContext(cast<NamespaceDecl>(D));
6199     break;
6200   case Decl::ClassTemplateSpecialization: {
6201     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6202     if (CGDebugInfo *DI = getModuleDebugInfo())
6203       if (Spec->getSpecializationKind() ==
6204               TSK_ExplicitInstantiationDefinition &&
6205           Spec->hasDefinition())
6206         DI->completeTemplateDefinition(*Spec);
6207   } [[fallthrough]];
6208   case Decl::CXXRecord: {
6209     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6210     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6211       if (CRD->hasDefinition())
6212         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6213       if (auto *ES = D->getASTContext().getExternalSource())
6214         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6215           DI->completeUnusedClass(*CRD);
6216     }
6217     // Emit any static data members, they may be definitions.
6218     for (auto *I : CRD->decls())
6219       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6220         EmitTopLevelDecl(I);
6221     break;
6222   }
6223     // No code generation needed.
6224   case Decl::UsingShadow:
6225   case Decl::ClassTemplate:
6226   case Decl::VarTemplate:
6227   case Decl::Concept:
6228   case Decl::VarTemplatePartialSpecialization:
6229   case Decl::FunctionTemplate:
6230   case Decl::TypeAliasTemplate:
6231   case Decl::Block:
6232   case Decl::Empty:
6233   case Decl::Binding:
6234     break;
6235   case Decl::Using:          // using X; [C++]
6236     if (CGDebugInfo *DI = getModuleDebugInfo())
6237         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6238     break;
6239   case Decl::UsingEnum: // using enum X; [C++]
6240     if (CGDebugInfo *DI = getModuleDebugInfo())
6241       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6242     break;
6243   case Decl::NamespaceAlias:
6244     if (CGDebugInfo *DI = getModuleDebugInfo())
6245         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6246     break;
6247   case Decl::UsingDirective: // using namespace X; [C++]
6248     if (CGDebugInfo *DI = getModuleDebugInfo())
6249       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6250     break;
6251   case Decl::CXXConstructor:
6252     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6253     break;
6254   case Decl::CXXDestructor:
6255     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6256     break;
6257 
6258   case Decl::StaticAssert:
6259     // Nothing to do.
6260     break;
6261 
6262   // Objective-C Decls
6263 
6264   // Forward declarations, no (immediate) code generation.
6265   case Decl::ObjCInterface:
6266   case Decl::ObjCCategory:
6267     break;
6268 
6269   case Decl::ObjCProtocol: {
6270     auto *Proto = cast<ObjCProtocolDecl>(D);
6271     if (Proto->isThisDeclarationADefinition())
6272       ObjCRuntime->GenerateProtocol(Proto);
6273     break;
6274   }
6275 
6276   case Decl::ObjCCategoryImpl:
6277     // Categories have properties but don't support synthesize so we
6278     // can ignore them here.
6279     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6280     break;
6281 
6282   case Decl::ObjCImplementation: {
6283     auto *OMD = cast<ObjCImplementationDecl>(D);
6284     EmitObjCPropertyImplementations(OMD);
6285     EmitObjCIvarInitializations(OMD);
6286     ObjCRuntime->GenerateClass(OMD);
6287     // Emit global variable debug information.
6288     if (CGDebugInfo *DI = getModuleDebugInfo())
6289       if (getCodeGenOpts().hasReducedDebugInfo())
6290         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6291             OMD->getClassInterface()), OMD->getLocation());
6292     break;
6293   }
6294   case Decl::ObjCMethod: {
6295     auto *OMD = cast<ObjCMethodDecl>(D);
6296     // If this is not a prototype, emit the body.
6297     if (OMD->getBody())
6298       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6299     break;
6300   }
6301   case Decl::ObjCCompatibleAlias:
6302     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6303     break;
6304 
6305   case Decl::PragmaComment: {
6306     const auto *PCD = cast<PragmaCommentDecl>(D);
6307     switch (PCD->getCommentKind()) {
6308     case PCK_Unknown:
6309       llvm_unreachable("unexpected pragma comment kind");
6310     case PCK_Linker:
6311       AppendLinkerOptions(PCD->getArg());
6312       break;
6313     case PCK_Lib:
6314         AddDependentLib(PCD->getArg());
6315       break;
6316     case PCK_Compiler:
6317     case PCK_ExeStr:
6318     case PCK_User:
6319       break; // We ignore all of these.
6320     }
6321     break;
6322   }
6323 
6324   case Decl::PragmaDetectMismatch: {
6325     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6326     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6327     break;
6328   }
6329 
6330   case Decl::LinkageSpec:
6331     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6332     break;
6333 
6334   case Decl::FileScopeAsm: {
6335     // File-scope asm is ignored during device-side CUDA compilation.
6336     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6337       break;
6338     // File-scope asm is ignored during device-side OpenMP compilation.
6339     if (LangOpts.OpenMPIsDevice)
6340       break;
6341     // File-scope asm is ignored during device-side SYCL compilation.
6342     if (LangOpts.SYCLIsDevice)
6343       break;
6344     auto *AD = cast<FileScopeAsmDecl>(D);
6345     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6346     break;
6347   }
6348 
6349   case Decl::Import: {
6350     auto *Import = cast<ImportDecl>(D);
6351 
6352     // If we've already imported this module, we're done.
6353     if (!ImportedModules.insert(Import->getImportedModule()))
6354       break;
6355 
6356     // Emit debug information for direct imports.
6357     if (!Import->getImportedOwningModule()) {
6358       if (CGDebugInfo *DI = getModuleDebugInfo())
6359         DI->EmitImportDecl(*Import);
6360     }
6361 
6362     // For C++ standard modules we are done - we will call the module
6363     // initializer for imported modules, and that will likewise call those for
6364     // any imports it has.
6365     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6366         !Import->getImportedOwningModule()->isModuleMapModule())
6367       break;
6368 
6369     // For clang C++ module map modules the initializers for sub-modules are
6370     // emitted here.
6371 
6372     // Find all of the submodules and emit the module initializers.
6373     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6374     SmallVector<clang::Module *, 16> Stack;
6375     Visited.insert(Import->getImportedModule());
6376     Stack.push_back(Import->getImportedModule());
6377 
6378     while (!Stack.empty()) {
6379       clang::Module *Mod = Stack.pop_back_val();
6380       if (!EmittedModuleInitializers.insert(Mod).second)
6381         continue;
6382 
6383       for (auto *D : Context.getModuleInitializers(Mod))
6384         EmitTopLevelDecl(D);
6385 
6386       // Visit the submodules of this module.
6387       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6388                                              SubEnd = Mod->submodule_end();
6389            Sub != SubEnd; ++Sub) {
6390         // Skip explicit children; they need to be explicitly imported to emit
6391         // the initializers.
6392         if ((*Sub)->IsExplicit)
6393           continue;
6394 
6395         if (Visited.insert(*Sub).second)
6396           Stack.push_back(*Sub);
6397       }
6398     }
6399     break;
6400   }
6401 
6402   case Decl::Export:
6403     EmitDeclContext(cast<ExportDecl>(D));
6404     break;
6405 
6406   case Decl::OMPThreadPrivate:
6407     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6408     break;
6409 
6410   case Decl::OMPAllocate:
6411     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6412     break;
6413 
6414   case Decl::OMPDeclareReduction:
6415     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6416     break;
6417 
6418   case Decl::OMPDeclareMapper:
6419     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6420     break;
6421 
6422   case Decl::OMPRequires:
6423     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6424     break;
6425 
6426   case Decl::Typedef:
6427   case Decl::TypeAlias: // using foo = bar; [C++11]
6428     if (CGDebugInfo *DI = getModuleDebugInfo())
6429       DI->EmitAndRetainType(
6430           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6431     break;
6432 
6433   case Decl::Record:
6434     if (CGDebugInfo *DI = getModuleDebugInfo())
6435       if (cast<RecordDecl>(D)->getDefinition())
6436         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6437     break;
6438 
6439   case Decl::Enum:
6440     if (CGDebugInfo *DI = getModuleDebugInfo())
6441       if (cast<EnumDecl>(D)->getDefinition())
6442         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6443     break;
6444 
6445   default:
6446     // Make sure we handled everything we should, every other kind is a
6447     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6448     // function. Need to recode Decl::Kind to do that easily.
6449     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6450     break;
6451   }
6452 }
6453 
6454 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6455   // Do we need to generate coverage mapping?
6456   if (!CodeGenOpts.CoverageMapping)
6457     return;
6458   switch (D->getKind()) {
6459   case Decl::CXXConversion:
6460   case Decl::CXXMethod:
6461   case Decl::Function:
6462   case Decl::ObjCMethod:
6463   case Decl::CXXConstructor:
6464   case Decl::CXXDestructor: {
6465     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6466       break;
6467     SourceManager &SM = getContext().getSourceManager();
6468     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6469       break;
6470     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6471     if (I == DeferredEmptyCoverageMappingDecls.end())
6472       DeferredEmptyCoverageMappingDecls[D] = true;
6473     break;
6474   }
6475   default:
6476     break;
6477   };
6478 }
6479 
6480 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6481   // Do we need to generate coverage mapping?
6482   if (!CodeGenOpts.CoverageMapping)
6483     return;
6484   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6485     if (Fn->isTemplateInstantiation())
6486       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6487   }
6488   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6489   if (I == DeferredEmptyCoverageMappingDecls.end())
6490     DeferredEmptyCoverageMappingDecls[D] = false;
6491   else
6492     I->second = false;
6493 }
6494 
6495 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6496   // We call takeVector() here to avoid use-after-free.
6497   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6498   // we deserialize function bodies to emit coverage info for them, and that
6499   // deserializes more declarations. How should we handle that case?
6500   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6501     if (!Entry.second)
6502       continue;
6503     const Decl *D = Entry.first;
6504     switch (D->getKind()) {
6505     case Decl::CXXConversion:
6506     case Decl::CXXMethod:
6507     case Decl::Function:
6508     case Decl::ObjCMethod: {
6509       CodeGenPGO PGO(*this);
6510       GlobalDecl GD(cast<FunctionDecl>(D));
6511       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6512                                   getFunctionLinkage(GD));
6513       break;
6514     }
6515     case Decl::CXXConstructor: {
6516       CodeGenPGO PGO(*this);
6517       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6518       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6519                                   getFunctionLinkage(GD));
6520       break;
6521     }
6522     case Decl::CXXDestructor: {
6523       CodeGenPGO PGO(*this);
6524       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6525       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6526                                   getFunctionLinkage(GD));
6527       break;
6528     }
6529     default:
6530       break;
6531     };
6532   }
6533 }
6534 
6535 void CodeGenModule::EmitMainVoidAlias() {
6536   // In order to transition away from "__original_main" gracefully, emit an
6537   // alias for "main" in the no-argument case so that libc can detect when
6538   // new-style no-argument main is in used.
6539   if (llvm::Function *F = getModule().getFunction("main")) {
6540     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6541         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6542       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6543       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6544     }
6545   }
6546 }
6547 
6548 /// Turns the given pointer into a constant.
6549 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6550                                           const void *Ptr) {
6551   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6552   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6553   return llvm::ConstantInt::get(i64, PtrInt);
6554 }
6555 
6556 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6557                                    llvm::NamedMDNode *&GlobalMetadata,
6558                                    GlobalDecl D,
6559                                    llvm::GlobalValue *Addr) {
6560   if (!GlobalMetadata)
6561     GlobalMetadata =
6562       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6563 
6564   // TODO: should we report variant information for ctors/dtors?
6565   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6566                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6567                                CGM.getLLVMContext(), D.getDecl()))};
6568   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6569 }
6570 
6571 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6572                                                  llvm::GlobalValue *CppFunc) {
6573   // Store the list of ifuncs we need to replace uses in.
6574   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6575   // List of ConstantExprs that we should be able to delete when we're done
6576   // here.
6577   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6578 
6579   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6580   if (Elem == CppFunc)
6581     return false;
6582 
6583   // First make sure that all users of this are ifuncs (or ifuncs via a
6584   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6585   // later.
6586   for (llvm::User *User : Elem->users()) {
6587     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6588     // ifunc directly. In any other case, just give up, as we don't know what we
6589     // could break by changing those.
6590     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6591       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6592         return false;
6593 
6594       for (llvm::User *CEUser : ConstExpr->users()) {
6595         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6596           IFuncs.push_back(IFunc);
6597         } else {
6598           return false;
6599         }
6600       }
6601       CEs.push_back(ConstExpr);
6602     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6603       IFuncs.push_back(IFunc);
6604     } else {
6605       // This user is one we don't know how to handle, so fail redirection. This
6606       // will result in an ifunc retaining a resolver name that will ultimately
6607       // fail to be resolved to a defined function.
6608       return false;
6609     }
6610   }
6611 
6612   // Now we know this is a valid case where we can do this alias replacement, we
6613   // need to remove all of the references to Elem (and the bitcasts!) so we can
6614   // delete it.
6615   for (llvm::GlobalIFunc *IFunc : IFuncs)
6616     IFunc->setResolver(nullptr);
6617   for (llvm::ConstantExpr *ConstExpr : CEs)
6618     ConstExpr->destroyConstant();
6619 
6620   // We should now be out of uses for the 'old' version of this function, so we
6621   // can erase it as well.
6622   Elem->eraseFromParent();
6623 
6624   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6625     // The type of the resolver is always just a function-type that returns the
6626     // type of the IFunc, so create that here. If the type of the actual
6627     // resolver doesn't match, it just gets bitcast to the right thing.
6628     auto *ResolverTy =
6629         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6630     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6631         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6632     IFunc->setResolver(Resolver);
6633   }
6634   return true;
6635 }
6636 
6637 /// For each function which is declared within an extern "C" region and marked
6638 /// as 'used', but has internal linkage, create an alias from the unmangled
6639 /// name to the mangled name if possible. People expect to be able to refer
6640 /// to such functions with an unmangled name from inline assembly within the
6641 /// same translation unit.
6642 void CodeGenModule::EmitStaticExternCAliases() {
6643   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6644     return;
6645   for (auto &I : StaticExternCValues) {
6646     IdentifierInfo *Name = I.first;
6647     llvm::GlobalValue *Val = I.second;
6648 
6649     // If Val is null, that implies there were multiple declarations that each
6650     // had a claim to the unmangled name. In this case, generation of the alias
6651     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6652     if (!Val)
6653       break;
6654 
6655     llvm::GlobalValue *ExistingElem =
6656         getModule().getNamedValue(Name->getName());
6657 
6658     // If there is either not something already by this name, or we were able to
6659     // replace all uses from IFuncs, create the alias.
6660     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6661       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6662   }
6663 }
6664 
6665 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6666                                              GlobalDecl &Result) const {
6667   auto Res = Manglings.find(MangledName);
6668   if (Res == Manglings.end())
6669     return false;
6670   Result = Res->getValue();
6671   return true;
6672 }
6673 
6674 /// Emits metadata nodes associating all the global values in the
6675 /// current module with the Decls they came from.  This is useful for
6676 /// projects using IR gen as a subroutine.
6677 ///
6678 /// Since there's currently no way to associate an MDNode directly
6679 /// with an llvm::GlobalValue, we create a global named metadata
6680 /// with the name 'clang.global.decl.ptrs'.
6681 void CodeGenModule::EmitDeclMetadata() {
6682   llvm::NamedMDNode *GlobalMetadata = nullptr;
6683 
6684   for (auto &I : MangledDeclNames) {
6685     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6686     // Some mangled names don't necessarily have an associated GlobalValue
6687     // in this module, e.g. if we mangled it for DebugInfo.
6688     if (Addr)
6689       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6690   }
6691 }
6692 
6693 /// Emits metadata nodes for all the local variables in the current
6694 /// function.
6695 void CodeGenFunction::EmitDeclMetadata() {
6696   if (LocalDeclMap.empty()) return;
6697 
6698   llvm::LLVMContext &Context = getLLVMContext();
6699 
6700   // Find the unique metadata ID for this name.
6701   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6702 
6703   llvm::NamedMDNode *GlobalMetadata = nullptr;
6704 
6705   for (auto &I : LocalDeclMap) {
6706     const Decl *D = I.first;
6707     llvm::Value *Addr = I.second.getPointer();
6708     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6709       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6710       Alloca->setMetadata(
6711           DeclPtrKind, llvm::MDNode::get(
6712                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6713     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6714       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6715       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6716     }
6717   }
6718 }
6719 
6720 void CodeGenModule::EmitVersionIdentMetadata() {
6721   llvm::NamedMDNode *IdentMetadata =
6722     TheModule.getOrInsertNamedMetadata("llvm.ident");
6723   std::string Version = getClangFullVersion();
6724   llvm::LLVMContext &Ctx = TheModule.getContext();
6725 
6726   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6727   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6728 }
6729 
6730 void CodeGenModule::EmitCommandLineMetadata() {
6731   llvm::NamedMDNode *CommandLineMetadata =
6732     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6733   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6734   llvm::LLVMContext &Ctx = TheModule.getContext();
6735 
6736   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6737   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6738 }
6739 
6740 void CodeGenModule::EmitCoverageFile() {
6741   if (getCodeGenOpts().CoverageDataFile.empty() &&
6742       getCodeGenOpts().CoverageNotesFile.empty())
6743     return;
6744 
6745   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6746   if (!CUNode)
6747     return;
6748 
6749   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6750   llvm::LLVMContext &Ctx = TheModule.getContext();
6751   auto *CoverageDataFile =
6752       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6753   auto *CoverageNotesFile =
6754       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6755   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6756     llvm::MDNode *CU = CUNode->getOperand(i);
6757     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6758     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6759   }
6760 }
6761 
6762 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6763                                                        bool ForEH) {
6764   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6765   // FIXME: should we even be calling this method if RTTI is disabled
6766   // and it's not for EH?
6767   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6768       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6769        getTriple().isNVPTX()))
6770     return llvm::Constant::getNullValue(Int8PtrTy);
6771 
6772   if (ForEH && Ty->isObjCObjectPointerType() &&
6773       LangOpts.ObjCRuntime.isGNUFamily())
6774     return ObjCRuntime->GetEHType(Ty);
6775 
6776   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6777 }
6778 
6779 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6780   // Do not emit threadprivates in simd-only mode.
6781   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6782     return;
6783   for (auto RefExpr : D->varlists()) {
6784     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6785     bool PerformInit =
6786         VD->getAnyInitializer() &&
6787         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6788                                                         /*ForRef=*/false);
6789 
6790     Address Addr(GetAddrOfGlobalVar(VD),
6791                  getTypes().ConvertTypeForMem(VD->getType()),
6792                  getContext().getDeclAlign(VD));
6793     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6794             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6795       CXXGlobalInits.push_back(InitFunction);
6796   }
6797 }
6798 
6799 llvm::Metadata *
6800 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6801                                             StringRef Suffix) {
6802   if (auto *FnType = T->getAs<FunctionProtoType>())
6803     T = getContext().getFunctionType(
6804         FnType->getReturnType(), FnType->getParamTypes(),
6805         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6806 
6807   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6808   if (InternalId)
6809     return InternalId;
6810 
6811   if (isExternallyVisible(T->getLinkage())) {
6812     std::string OutName;
6813     llvm::raw_string_ostream Out(OutName);
6814     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6815     Out << Suffix;
6816 
6817     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6818   } else {
6819     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6820                                            llvm::ArrayRef<llvm::Metadata *>());
6821   }
6822 
6823   return InternalId;
6824 }
6825 
6826 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6827   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6828 }
6829 
6830 llvm::Metadata *
6831 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6832   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6833 }
6834 
6835 // Generalize pointer types to a void pointer with the qualifiers of the
6836 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6837 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6838 // 'void *'.
6839 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6840   if (!Ty->isPointerType())
6841     return Ty;
6842 
6843   return Ctx.getPointerType(
6844       QualType(Ctx.VoidTy).withCVRQualifiers(
6845           Ty->getPointeeType().getCVRQualifiers()));
6846 }
6847 
6848 // Apply type generalization to a FunctionType's return and argument types
6849 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6850   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6851     SmallVector<QualType, 8> GeneralizedParams;
6852     for (auto &Param : FnType->param_types())
6853       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6854 
6855     return Ctx.getFunctionType(
6856         GeneralizeType(Ctx, FnType->getReturnType()),
6857         GeneralizedParams, FnType->getExtProtoInfo());
6858   }
6859 
6860   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6861     return Ctx.getFunctionNoProtoType(
6862         GeneralizeType(Ctx, FnType->getReturnType()));
6863 
6864   llvm_unreachable("Encountered unknown FunctionType");
6865 }
6866 
6867 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6868   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6869                                       GeneralizedMetadataIdMap, ".generalized");
6870 }
6871 
6872 /// Returns whether this module needs the "all-vtables" type identifier.
6873 bool CodeGenModule::NeedAllVtablesTypeId() const {
6874   // Returns true if at least one of vtable-based CFI checkers is enabled and
6875   // is not in the trapping mode.
6876   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6877            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6878           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6879            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6880           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6881            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6882           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6883            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6884 }
6885 
6886 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6887                                           CharUnits Offset,
6888                                           const CXXRecordDecl *RD) {
6889   llvm::Metadata *MD =
6890       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6891   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6892 
6893   if (CodeGenOpts.SanitizeCfiCrossDso)
6894     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6895       VTable->addTypeMetadata(Offset.getQuantity(),
6896                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6897 
6898   if (NeedAllVtablesTypeId()) {
6899     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6900     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6901   }
6902 }
6903 
6904 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6905   if (!SanStats)
6906     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6907 
6908   return *SanStats;
6909 }
6910 
6911 llvm::Value *
6912 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6913                                                   CodeGenFunction &CGF) {
6914   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6915   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6916   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6917   auto *Call = CGF.EmitRuntimeCall(
6918       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6919   return Call;
6920 }
6921 
6922 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6923     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6924   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6925                                  /* forPointeeType= */ true);
6926 }
6927 
6928 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6929                                                  LValueBaseInfo *BaseInfo,
6930                                                  TBAAAccessInfo *TBAAInfo,
6931                                                  bool forPointeeType) {
6932   if (TBAAInfo)
6933     *TBAAInfo = getTBAAAccessInfo(T);
6934 
6935   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6936   // that doesn't return the information we need to compute BaseInfo.
6937 
6938   // Honor alignment typedef attributes even on incomplete types.
6939   // We also honor them straight for C++ class types, even as pointees;
6940   // there's an expressivity gap here.
6941   if (auto TT = T->getAs<TypedefType>()) {
6942     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6943       if (BaseInfo)
6944         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6945       return getContext().toCharUnitsFromBits(Align);
6946     }
6947   }
6948 
6949   bool AlignForArray = T->isArrayType();
6950 
6951   // Analyze the base element type, so we don't get confused by incomplete
6952   // array types.
6953   T = getContext().getBaseElementType(T);
6954 
6955   if (T->isIncompleteType()) {
6956     // We could try to replicate the logic from
6957     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6958     // type is incomplete, so it's impossible to test. We could try to reuse
6959     // getTypeAlignIfKnown, but that doesn't return the information we need
6960     // to set BaseInfo.  So just ignore the possibility that the alignment is
6961     // greater than one.
6962     if (BaseInfo)
6963       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6964     return CharUnits::One();
6965   }
6966 
6967   if (BaseInfo)
6968     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6969 
6970   CharUnits Alignment;
6971   const CXXRecordDecl *RD;
6972   if (T.getQualifiers().hasUnaligned()) {
6973     Alignment = CharUnits::One();
6974   } else if (forPointeeType && !AlignForArray &&
6975              (RD = T->getAsCXXRecordDecl())) {
6976     // For C++ class pointees, we don't know whether we're pointing at a
6977     // base or a complete object, so we generally need to use the
6978     // non-virtual alignment.
6979     Alignment = getClassPointerAlignment(RD);
6980   } else {
6981     Alignment = getContext().getTypeAlignInChars(T);
6982   }
6983 
6984   // Cap to the global maximum type alignment unless the alignment
6985   // was somehow explicit on the type.
6986   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6987     if (Alignment.getQuantity() > MaxAlign &&
6988         !getContext().isAlignmentRequired(T))
6989       Alignment = CharUnits::fromQuantity(MaxAlign);
6990   }
6991   return Alignment;
6992 }
6993 
6994 bool CodeGenModule::stopAutoInit() {
6995   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6996   if (StopAfter) {
6997     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6998     // used
6999     if (NumAutoVarInit >= StopAfter) {
7000       return true;
7001     }
7002     if (!NumAutoVarInit) {
7003       unsigned DiagID = getDiags().getCustomDiagID(
7004           DiagnosticsEngine::Warning,
7005           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7006           "number of times ftrivial-auto-var-init=%1 gets applied.");
7007       getDiags().Report(DiagID)
7008           << StopAfter
7009           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7010                       LangOptions::TrivialAutoVarInitKind::Zero
7011                   ? "zero"
7012                   : "pattern");
7013     }
7014     ++NumAutoVarInit;
7015   }
7016   return false;
7017 }
7018 
7019 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7020                                                     const Decl *D) const {
7021   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7022   // postfix beginning with '.' since the symbol name can be demangled.
7023   if (LangOpts.HIP)
7024     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7025   else
7026     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7027 
7028   // If the CUID is not specified we try to generate a unique postfix.
7029   if (getLangOpts().CUID.empty()) {
7030     SourceManager &SM = getContext().getSourceManager();
7031     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7032     assert(PLoc.isValid() && "Source location is expected to be valid.");
7033 
7034     // Get the hash of the user defined macros.
7035     llvm::MD5 Hash;
7036     llvm::MD5::MD5Result Result;
7037     for (const auto &Arg : PreprocessorOpts.Macros)
7038       Hash.update(Arg.first);
7039     Hash.final(Result);
7040 
7041     // Get the UniqueID for the file containing the decl.
7042     llvm::sys::fs::UniqueID ID;
7043     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7044       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7045       assert(PLoc.isValid() && "Source location is expected to be valid.");
7046       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7047         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7048             << PLoc.getFilename() << EC.message();
7049     }
7050     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7051        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7052   } else {
7053     OS << getContext().getCUIDHash();
7054   }
7055 }
7056 
7057 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7058   assert(DeferredDeclsToEmit.empty() &&
7059          "Should have emitted all decls deferred to emit.");
7060   assert(NewBuilder->DeferredDecls.empty() &&
7061          "Newly created module should not have deferred decls");
7062   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7063 
7064   assert(NewBuilder->DeferredVTables.empty() &&
7065          "Newly created module should not have deferred vtables");
7066   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7067 
7068   assert(NewBuilder->MangledDeclNames.empty() &&
7069          "Newly created module should not have mangled decl names");
7070   assert(NewBuilder->Manglings.empty() &&
7071          "Newly created module should not have manglings");
7072   NewBuilder->Manglings = std::move(Manglings);
7073 
7074   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7075   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7076 
7077   NewBuilder->TBAA = std::move(TBAA);
7078 
7079   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7080          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7081 
7082   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7083 
7084   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7085 }
7086