1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CoverageMappingGen.h" 25 #include "CodeGenTBAA.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericItanium: 68 return CreateItaniumCXXABI(CGM); 69 case TargetCXXABI::Microsoft: 70 return CreateMicrosoftCXXABI(CGM); 71 } 72 73 llvm_unreachable("invalid C++ ABI kind"); 74 } 75 76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 77 llvm::Module &M, const llvm::DataLayout &TD, 78 DiagnosticsEngine &diags, 79 CoverageSourceInfo *CoverageInfo) 80 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 81 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 82 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 83 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 84 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 85 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 86 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 87 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 88 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 89 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 90 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 91 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 92 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 113 if (LangOpts.ObjC1) 114 createObjCRuntime(); 115 if (LangOpts.OpenCL) 116 createOpenCLRuntime(); 117 if (LangOpts.OpenMP) 118 createOpenMPRuntime(); 119 if (LangOpts.CUDA) 120 createCUDARuntime(); 121 122 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 123 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 124 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 125 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 126 getCXXABI().getMangleContext()); 127 128 // If debug info or coverage generation is enabled, create the CGDebugInfo 129 // object. 130 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 131 CodeGenOpts.EmitGcovArcs || 132 CodeGenOpts.EmitGcovNotes) 133 DebugInfo = new CGDebugInfo(*this); 134 135 Block.GlobalUniqueCount = 0; 136 137 if (C.getLangOpts().ObjCAutoRefCount) 138 ARCData = new ARCEntrypoints(); 139 RRData = new RREntrypoints(); 140 141 if (!CodeGenOpts.InstrProfileInput.empty()) { 142 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 143 CodeGenOpts.InstrProfileInput, PGOReader)) { 144 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 145 "Could not read profile: %0"); 146 getDiags().Report(DiagID) << EC.message(); 147 } 148 } 149 150 // If coverage mapping generation is enabled, create the 151 // CoverageMappingModuleGen object. 152 if (CodeGenOpts.CoverageMapping) 153 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 154 } 155 156 CodeGenModule::~CodeGenModule() { 157 delete ObjCRuntime; 158 delete OpenCLRuntime; 159 delete OpenMPRuntime; 160 delete CUDARuntime; 161 delete TheTargetCodeGenInfo; 162 delete TBAA; 163 delete DebugInfo; 164 delete ARCData; 165 delete RRData; 166 } 167 168 void CodeGenModule::createObjCRuntime() { 169 // This is just isGNUFamily(), but we want to force implementors of 170 // new ABIs to decide how best to do this. 171 switch (LangOpts.ObjCRuntime.getKind()) { 172 case ObjCRuntime::GNUstep: 173 case ObjCRuntime::GCC: 174 case ObjCRuntime::ObjFW: 175 ObjCRuntime = CreateGNUObjCRuntime(*this); 176 return; 177 178 case ObjCRuntime::FragileMacOSX: 179 case ObjCRuntime::MacOSX: 180 case ObjCRuntime::iOS: 181 ObjCRuntime = CreateMacObjCRuntime(*this); 182 return; 183 } 184 llvm_unreachable("bad runtime kind"); 185 } 186 187 void CodeGenModule::createOpenCLRuntime() { 188 OpenCLRuntime = new CGOpenCLRuntime(*this); 189 } 190 191 void CodeGenModule::createOpenMPRuntime() { 192 OpenMPRuntime = new CGOpenMPRuntime(*this); 193 } 194 195 void CodeGenModule::createCUDARuntime() { 196 CUDARuntime = CreateNVCUDARuntime(*this); 197 } 198 199 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 200 Replacements[Name] = C; 201 } 202 203 void CodeGenModule::applyReplacements() { 204 for (ReplacementsTy::iterator I = Replacements.begin(), 205 E = Replacements.end(); 206 I != E; ++I) { 207 StringRef MangledName = I->first(); 208 llvm::Constant *Replacement = I->second; 209 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 210 if (!Entry) 211 continue; 212 auto *OldF = cast<llvm::Function>(Entry); 213 auto *NewF = dyn_cast<llvm::Function>(Replacement); 214 if (!NewF) { 215 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 216 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 217 } else { 218 auto *CE = cast<llvm::ConstantExpr>(Replacement); 219 assert(CE->getOpcode() == llvm::Instruction::BitCast || 220 CE->getOpcode() == llvm::Instruction::GetElementPtr); 221 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 222 } 223 } 224 225 // Replace old with new, but keep the old order. 226 OldF->replaceAllUsesWith(Replacement); 227 if (NewF) { 228 NewF->removeFromParent(); 229 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 230 } 231 OldF->eraseFromParent(); 232 } 233 } 234 235 // This is only used in aliases that we created and we know they have a 236 // linear structure. 237 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 238 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 239 const llvm::Constant *C = &GA; 240 for (;;) { 241 C = C->stripPointerCasts(); 242 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 243 return GO; 244 // stripPointerCasts will not walk over weak aliases. 245 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 246 if (!GA2) 247 return nullptr; 248 if (!Visited.insert(GA2)) 249 return nullptr; 250 C = GA2->getAliasee(); 251 } 252 } 253 254 void CodeGenModule::checkAliases() { 255 // Check if the constructed aliases are well formed. It is really unfortunate 256 // that we have to do this in CodeGen, but we only construct mangled names 257 // and aliases during codegen. 258 bool Error = false; 259 DiagnosticsEngine &Diags = getDiags(); 260 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 261 E = Aliases.end(); I != E; ++I) { 262 const GlobalDecl &GD = *I; 263 const auto *D = cast<ValueDecl>(GD.getDecl()); 264 const AliasAttr *AA = D->getAttr<AliasAttr>(); 265 StringRef MangledName = getMangledName(GD); 266 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 267 auto *Alias = cast<llvm::GlobalAlias>(Entry); 268 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 269 if (!GV) { 270 Error = true; 271 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 272 } else if (GV->isDeclaration()) { 273 Error = true; 274 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 275 } 276 277 llvm::Constant *Aliasee = Alias->getAliasee(); 278 llvm::GlobalValue *AliaseeGV; 279 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 280 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 281 else 282 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 283 284 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 285 StringRef AliasSection = SA->getName(); 286 if (AliasSection != AliaseeGV->getSection()) 287 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 288 << AliasSection; 289 } 290 291 // We have to handle alias to weak aliases in here. LLVM itself disallows 292 // this since the object semantics would not match the IL one. For 293 // compatibility with gcc we implement it by just pointing the alias 294 // to its aliasee's aliasee. We also warn, since the user is probably 295 // expecting the link to be weak. 296 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 297 if (GA->mayBeOverridden()) { 298 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 299 << GV->getName() << GA->getName(); 300 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 301 GA->getAliasee(), Alias->getType()); 302 Alias->setAliasee(Aliasee); 303 } 304 } 305 } 306 if (!Error) 307 return; 308 309 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 310 E = Aliases.end(); I != E; ++I) { 311 const GlobalDecl &GD = *I; 312 StringRef MangledName = getMangledName(GD); 313 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 314 auto *Alias = cast<llvm::GlobalAlias>(Entry); 315 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 316 Alias->eraseFromParent(); 317 } 318 } 319 320 void CodeGenModule::clear() { 321 DeferredDeclsToEmit.clear(); 322 } 323 324 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 325 StringRef MainFile) { 326 if (!hasDiagnostics()) 327 return; 328 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 329 if (MainFile.empty()) 330 MainFile = "<stdin>"; 331 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 332 } else 333 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 334 << Mismatched; 335 } 336 337 void CodeGenModule::Release() { 338 EmitDeferred(); 339 applyReplacements(); 340 checkAliases(); 341 EmitCXXGlobalInitFunc(); 342 EmitCXXGlobalDtorFunc(); 343 EmitCXXThreadLocalInitFunc(); 344 if (ObjCRuntime) 345 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 346 AddGlobalCtor(ObjCInitFunction); 347 if (getCodeGenOpts().ProfileInstrGenerate) 348 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 349 AddGlobalCtor(PGOInit, 0); 350 if (PGOReader && PGOStats.hasDiagnostics()) 351 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 352 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 353 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 354 EmitGlobalAnnotations(); 355 EmitStaticExternCAliases(); 356 EmitDeferredUnusedCoverageMappings(); 357 if (CoverageMapping) 358 CoverageMapping->emit(); 359 emitLLVMUsed(); 360 361 if (CodeGenOpts.Autolink && 362 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 363 EmitModuleLinkOptions(); 364 } 365 if (CodeGenOpts.DwarfVersion) 366 // We actually want the latest version when there are conflicts. 367 // We can change from Warning to Latest if such mode is supported. 368 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 369 CodeGenOpts.DwarfVersion); 370 if (DebugInfo) 371 // We support a single version in the linked module. The LLVM 372 // parser will drop debug info with a different version number 373 // (and warn about it, too). 374 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 375 llvm::DEBUG_METADATA_VERSION); 376 377 // We need to record the widths of enums and wchar_t, so that we can generate 378 // the correct build attributes in the ARM backend. 379 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 380 if ( Arch == llvm::Triple::arm 381 || Arch == llvm::Triple::armeb 382 || Arch == llvm::Triple::thumb 383 || Arch == llvm::Triple::thumbeb) { 384 // Width of wchar_t in bytes 385 uint64_t WCharWidth = 386 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 387 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 388 389 // The minimum width of an enum in bytes 390 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 391 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 392 } 393 394 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 395 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 396 switch (PLevel) { 397 case 0: break; 398 case 1: PL = llvm::PICLevel::Small; break; 399 case 2: PL = llvm::PICLevel::Large; break; 400 default: llvm_unreachable("Invalid PIC Level"); 401 } 402 403 getModule().setPICLevel(PL); 404 } 405 406 SimplifyPersonality(); 407 408 if (getCodeGenOpts().EmitDeclMetadata) 409 EmitDeclMetadata(); 410 411 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 412 EmitCoverageFile(); 413 414 if (DebugInfo) 415 DebugInfo->finalize(); 416 417 EmitVersionIdentMetadata(); 418 419 EmitTargetMetadata(); 420 } 421 422 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 423 // Make sure that this type is translated. 424 Types.UpdateCompletedType(TD); 425 } 426 427 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 428 if (!TBAA) 429 return nullptr; 430 return TBAA->getTBAAInfo(QTy); 431 } 432 433 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 434 if (!TBAA) 435 return nullptr; 436 return TBAA->getTBAAInfoForVTablePtr(); 437 } 438 439 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 440 if (!TBAA) 441 return nullptr; 442 return TBAA->getTBAAStructInfo(QTy); 443 } 444 445 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 446 if (!TBAA) 447 return nullptr; 448 return TBAA->getTBAAStructTypeInfo(QTy); 449 } 450 451 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 452 llvm::MDNode *AccessN, 453 uint64_t O) { 454 if (!TBAA) 455 return nullptr; 456 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 457 } 458 459 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 460 /// and struct-path aware TBAA, the tag has the same format: 461 /// base type, access type and offset. 462 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 463 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 464 llvm::MDNode *TBAAInfo, 465 bool ConvertTypeToTag) { 466 if (ConvertTypeToTag && TBAA) 467 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 468 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 469 else 470 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 471 } 472 473 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 474 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 475 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 476 } 477 478 /// ErrorUnsupported - Print out an error that codegen doesn't support the 479 /// specified stmt yet. 480 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 481 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 482 "cannot compile this %0 yet"); 483 std::string Msg = Type; 484 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 485 << Msg << S->getSourceRange(); 486 } 487 488 /// ErrorUnsupported - Print out an error that codegen doesn't support the 489 /// specified decl yet. 490 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 491 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 492 "cannot compile this %0 yet"); 493 std::string Msg = Type; 494 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 495 } 496 497 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 498 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 499 } 500 501 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 502 const NamedDecl *D) const { 503 // Internal definitions always have default visibility. 504 if (GV->hasLocalLinkage()) { 505 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 506 return; 507 } 508 509 // Set visibility for definitions. 510 LinkageInfo LV = D->getLinkageAndVisibility(); 511 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 512 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 513 } 514 515 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 516 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 517 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 518 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 519 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 520 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 521 } 522 523 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 524 CodeGenOptions::TLSModel M) { 525 switch (M) { 526 case CodeGenOptions::GeneralDynamicTLSModel: 527 return llvm::GlobalVariable::GeneralDynamicTLSModel; 528 case CodeGenOptions::LocalDynamicTLSModel: 529 return llvm::GlobalVariable::LocalDynamicTLSModel; 530 case CodeGenOptions::InitialExecTLSModel: 531 return llvm::GlobalVariable::InitialExecTLSModel; 532 case CodeGenOptions::LocalExecTLSModel: 533 return llvm::GlobalVariable::LocalExecTLSModel; 534 } 535 llvm_unreachable("Invalid TLS model!"); 536 } 537 538 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 539 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 540 541 llvm::GlobalValue::ThreadLocalMode TLM; 542 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 543 544 // Override the TLS model if it is explicitly specified. 545 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 546 TLM = GetLLVMTLSModel(Attr->getModel()); 547 } 548 549 GV->setThreadLocalMode(TLM); 550 } 551 552 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 553 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 554 if (!FoundStr.empty()) 555 return FoundStr; 556 557 const auto *ND = cast<NamedDecl>(GD.getDecl()); 558 SmallString<256> Buffer; 559 StringRef Str; 560 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 561 llvm::raw_svector_ostream Out(Buffer); 562 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 563 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 564 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 565 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 566 else 567 getCXXABI().getMangleContext().mangleName(ND, Out); 568 Str = Out.str(); 569 } else { 570 IdentifierInfo *II = ND->getIdentifier(); 571 assert(II && "Attempt to mangle unnamed decl."); 572 Str = II->getName(); 573 } 574 575 // Keep the first result in the case of a mangling collision. 576 auto Result = Manglings.insert(std::make_pair(Str, GD)); 577 return FoundStr = Result.first->first(); 578 } 579 580 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 581 const BlockDecl *BD) { 582 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 583 const Decl *D = GD.getDecl(); 584 585 SmallString<256> Buffer; 586 llvm::raw_svector_ostream Out(Buffer); 587 if (!D) 588 MangleCtx.mangleGlobalBlock(BD, 589 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 590 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 591 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 592 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 593 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 594 else 595 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 596 597 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 598 return Result.first->first(); 599 } 600 601 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 602 return getModule().getNamedValue(Name); 603 } 604 605 /// AddGlobalCtor - Add a function to the list that will be called before 606 /// main() runs. 607 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 608 llvm::Constant *AssociatedData) { 609 // FIXME: Type coercion of void()* types. 610 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 611 } 612 613 /// AddGlobalDtor - Add a function to the list that will be called 614 /// when the module is unloaded. 615 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 616 // FIXME: Type coercion of void()* types. 617 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 618 } 619 620 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 621 // Ctor function type is void()*. 622 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 623 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 624 625 // Get the type of a ctor entry, { i32, void ()*, i8* }. 626 llvm::StructType *CtorStructTy = llvm::StructType::get( 627 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL); 628 629 // Construct the constructor and destructor arrays. 630 SmallVector<llvm::Constant*, 8> Ctors; 631 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 632 llvm::Constant *S[] = { 633 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 634 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 635 (I->AssociatedData 636 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 637 : llvm::Constant::getNullValue(VoidPtrTy)) 638 }; 639 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 640 } 641 642 if (!Ctors.empty()) { 643 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 644 new llvm::GlobalVariable(TheModule, AT, false, 645 llvm::GlobalValue::AppendingLinkage, 646 llvm::ConstantArray::get(AT, Ctors), 647 GlobalName); 648 } 649 } 650 651 llvm::GlobalValue::LinkageTypes 652 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 653 const auto *D = cast<FunctionDecl>(GD.getDecl()); 654 655 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 656 657 if (isa<CXXDestructorDecl>(D) && 658 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 659 GD.getDtorType())) { 660 // Destructor variants in the Microsoft C++ ABI are always internal or 661 // linkonce_odr thunks emitted on an as-needed basis. 662 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 663 : llvm::GlobalValue::LinkOnceODRLinkage; 664 } 665 666 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 667 } 668 669 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 670 llvm::Function *F) { 671 setNonAliasAttributes(D, F); 672 } 673 674 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 675 const CGFunctionInfo &Info, 676 llvm::Function *F) { 677 unsigned CallingConv; 678 AttributeListType AttributeList; 679 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 680 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 681 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 682 } 683 684 /// Determines whether the language options require us to model 685 /// unwind exceptions. We treat -fexceptions as mandating this 686 /// except under the fragile ObjC ABI with only ObjC exceptions 687 /// enabled. This means, for example, that C with -fexceptions 688 /// enables this. 689 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 690 // If exceptions are completely disabled, obviously this is false. 691 if (!LangOpts.Exceptions) return false; 692 693 // If C++ exceptions are enabled, this is true. 694 if (LangOpts.CXXExceptions) return true; 695 696 // If ObjC exceptions are enabled, this depends on the ABI. 697 if (LangOpts.ObjCExceptions) { 698 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 699 } 700 701 return true; 702 } 703 704 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 705 llvm::Function *F) { 706 llvm::AttrBuilder B; 707 708 if (CodeGenOpts.UnwindTables) 709 B.addAttribute(llvm::Attribute::UWTable); 710 711 if (!hasUnwindExceptions(LangOpts)) 712 B.addAttribute(llvm::Attribute::NoUnwind); 713 714 if (D->hasAttr<NakedAttr>()) { 715 // Naked implies noinline: we should not be inlining such functions. 716 B.addAttribute(llvm::Attribute::Naked); 717 B.addAttribute(llvm::Attribute::NoInline); 718 } else if (D->hasAttr<OptimizeNoneAttr>()) { 719 // OptimizeNone implies noinline; we should not be inlining such functions. 720 B.addAttribute(llvm::Attribute::OptimizeNone); 721 B.addAttribute(llvm::Attribute::NoInline); 722 } else if (D->hasAttr<NoDuplicateAttr>()) { 723 B.addAttribute(llvm::Attribute::NoDuplicate); 724 } else if (D->hasAttr<NoInlineAttr>()) { 725 B.addAttribute(llvm::Attribute::NoInline); 726 } else if (D->hasAttr<AlwaysInlineAttr>() && 727 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 728 llvm::Attribute::NoInline)) { 729 // (noinline wins over always_inline, and we can't specify both in IR) 730 B.addAttribute(llvm::Attribute::AlwaysInline); 731 } 732 733 if (D->hasAttr<ColdAttr>()) { 734 B.addAttribute(llvm::Attribute::OptimizeForSize); 735 B.addAttribute(llvm::Attribute::Cold); 736 } 737 738 if (D->hasAttr<MinSizeAttr>()) 739 B.addAttribute(llvm::Attribute::MinSize); 740 741 if (D->hasAttr<OptimizeNoneAttr>()) { 742 // OptimizeNone wins over OptimizeForSize and MinSize. 743 B.removeAttribute(llvm::Attribute::OptimizeForSize); 744 B.removeAttribute(llvm::Attribute::MinSize); 745 } 746 747 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 748 B.addAttribute(llvm::Attribute::StackProtect); 749 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 750 B.addAttribute(llvm::Attribute::StackProtectStrong); 751 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 752 B.addAttribute(llvm::Attribute::StackProtectReq); 753 754 // Add sanitizer attributes if function is not blacklisted. 755 if (!isInSanitizerBlacklist(F, D->getLocation())) { 756 // When AddressSanitizer is enabled, set SanitizeAddress attribute 757 // unless __attribute__((no_sanitize_address)) is used. 758 if (LangOpts.Sanitize.has(SanitizerKind::Address) && 759 !D->hasAttr<NoSanitizeAddressAttr>()) 760 B.addAttribute(llvm::Attribute::SanitizeAddress); 761 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 762 if (LangOpts.Sanitize.has(SanitizerKind::Thread) && 763 !D->hasAttr<NoSanitizeThreadAttr>()) 764 B.addAttribute(llvm::Attribute::SanitizeThread); 765 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 766 if (LangOpts.Sanitize.has(SanitizerKind::Memory) && 767 !D->hasAttr<NoSanitizeMemoryAttr>()) 768 B.addAttribute(llvm::Attribute::SanitizeMemory); 769 } 770 771 F->addAttributes(llvm::AttributeSet::FunctionIndex, 772 llvm::AttributeSet::get( 773 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 774 775 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 776 F->setUnnamedAddr(true); 777 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 778 if (MD->isVirtual()) 779 F->setUnnamedAddr(true); 780 781 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 782 if (alignment) 783 F->setAlignment(alignment); 784 785 // C++ ABI requires 2-byte alignment for member functions. 786 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 787 F->setAlignment(2); 788 } 789 790 void CodeGenModule::SetCommonAttributes(const Decl *D, 791 llvm::GlobalValue *GV) { 792 if (const auto *ND = dyn_cast<NamedDecl>(D)) 793 setGlobalVisibility(GV, ND); 794 else 795 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 796 797 if (D->hasAttr<UsedAttr>()) 798 addUsedGlobal(GV); 799 } 800 801 void CodeGenModule::setAliasAttributes(const Decl *D, 802 llvm::GlobalValue *GV) { 803 SetCommonAttributes(D, GV); 804 805 // Process the dllexport attribute based on whether the original definition 806 // (not necessarily the aliasee) was exported. 807 if (D->hasAttr<DLLExportAttr>()) 808 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 809 } 810 811 void CodeGenModule::setNonAliasAttributes(const Decl *D, 812 llvm::GlobalObject *GO) { 813 SetCommonAttributes(D, GO); 814 815 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 816 GO->setSection(SA->getName()); 817 818 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 819 } 820 821 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 822 llvm::Function *F, 823 const CGFunctionInfo &FI) { 824 SetLLVMFunctionAttributes(D, FI, F); 825 SetLLVMFunctionAttributesForDefinition(D, F); 826 827 F->setLinkage(llvm::Function::InternalLinkage); 828 829 setNonAliasAttributes(D, F); 830 } 831 832 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 833 const NamedDecl *ND) { 834 // Set linkage and visibility in case we never see a definition. 835 LinkageInfo LV = ND->getLinkageAndVisibility(); 836 if (LV.getLinkage() != ExternalLinkage) { 837 // Don't set internal linkage on declarations. 838 } else { 839 if (ND->hasAttr<DLLImportAttr>()) { 840 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 841 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 842 } else if (ND->hasAttr<DLLExportAttr>()) { 843 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 844 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 845 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 846 // "extern_weak" is overloaded in LLVM; we probably should have 847 // separate linkage types for this. 848 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 849 } 850 851 // Set visibility on a declaration only if it's explicit. 852 if (LV.isVisibilityExplicit()) 853 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 854 } 855 } 856 857 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 858 bool IsIncompleteFunction, 859 bool IsThunk) { 860 if (unsigned IID = F->getIntrinsicID()) { 861 // If this is an intrinsic function, set the function's attributes 862 // to the intrinsic's attributes. 863 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 864 (llvm::Intrinsic::ID)IID)); 865 return; 866 } 867 868 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 869 870 if (!IsIncompleteFunction) 871 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 872 873 // Add the Returned attribute for "this", except for iOS 5 and earlier 874 // where substantial code, including the libstdc++ dylib, was compiled with 875 // GCC and does not actually return "this". 876 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 877 !(getTarget().getTriple().isiOS() && 878 getTarget().getTriple().isOSVersionLT(6))) { 879 assert(!F->arg_empty() && 880 F->arg_begin()->getType() 881 ->canLosslesslyBitCastTo(F->getReturnType()) && 882 "unexpected this return"); 883 F->addAttribute(1, llvm::Attribute::Returned); 884 } 885 886 // Only a few attributes are set on declarations; these may later be 887 // overridden by a definition. 888 889 setLinkageAndVisibilityForGV(F, FD); 890 891 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 892 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 893 // Don't dllexport/import destructor thunks. 894 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 895 } 896 } 897 898 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 899 F->setSection(SA->getName()); 900 901 // A replaceable global allocation function does not act like a builtin by 902 // default, only if it is invoked by a new-expression or delete-expression. 903 if (FD->isReplaceableGlobalAllocationFunction()) 904 F->addAttribute(llvm::AttributeSet::FunctionIndex, 905 llvm::Attribute::NoBuiltin); 906 } 907 908 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 909 assert(!GV->isDeclaration() && 910 "Only globals with definition can force usage."); 911 LLVMUsed.push_back(GV); 912 } 913 914 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 915 assert(!GV->isDeclaration() && 916 "Only globals with definition can force usage."); 917 LLVMCompilerUsed.push_back(GV); 918 } 919 920 static void emitUsed(CodeGenModule &CGM, StringRef Name, 921 std::vector<llvm::WeakVH> &List) { 922 // Don't create llvm.used if there is no need. 923 if (List.empty()) 924 return; 925 926 // Convert List to what ConstantArray needs. 927 SmallVector<llvm::Constant*, 8> UsedArray; 928 UsedArray.resize(List.size()); 929 for (unsigned i = 0, e = List.size(); i != e; ++i) { 930 UsedArray[i] = 931 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 932 CGM.Int8PtrTy); 933 } 934 935 if (UsedArray.empty()) 936 return; 937 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 938 939 auto *GV = new llvm::GlobalVariable( 940 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 941 llvm::ConstantArray::get(ATy, UsedArray), Name); 942 943 GV->setSection("llvm.metadata"); 944 } 945 946 void CodeGenModule::emitLLVMUsed() { 947 emitUsed(*this, "llvm.used", LLVMUsed); 948 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 949 } 950 951 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 952 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 953 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 954 } 955 956 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 957 llvm::SmallString<32> Opt; 958 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 959 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 960 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 961 } 962 963 void CodeGenModule::AddDependentLib(StringRef Lib) { 964 llvm::SmallString<24> Opt; 965 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 966 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 967 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 968 } 969 970 /// \brief Add link options implied by the given module, including modules 971 /// it depends on, using a postorder walk. 972 static void addLinkOptionsPostorder(CodeGenModule &CGM, 973 Module *Mod, 974 SmallVectorImpl<llvm::Value *> &Metadata, 975 llvm::SmallPtrSet<Module *, 16> &Visited) { 976 // Import this module's parent. 977 if (Mod->Parent && Visited.insert(Mod->Parent)) { 978 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 979 } 980 981 // Import this module's dependencies. 982 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 983 if (Visited.insert(Mod->Imports[I-1])) 984 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 985 } 986 987 // Add linker options to link against the libraries/frameworks 988 // described by this module. 989 llvm::LLVMContext &Context = CGM.getLLVMContext(); 990 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 991 // Link against a framework. Frameworks are currently Darwin only, so we 992 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 993 if (Mod->LinkLibraries[I-1].IsFramework) { 994 llvm::Value *Args[2] = { 995 llvm::MDString::get(Context, "-framework"), 996 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 997 }; 998 999 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1000 continue; 1001 } 1002 1003 // Link against a library. 1004 llvm::SmallString<24> Opt; 1005 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1006 Mod->LinkLibraries[I-1].Library, Opt); 1007 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 1008 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1009 } 1010 } 1011 1012 void CodeGenModule::EmitModuleLinkOptions() { 1013 // Collect the set of all of the modules we want to visit to emit link 1014 // options, which is essentially the imported modules and all of their 1015 // non-explicit child modules. 1016 llvm::SetVector<clang::Module *> LinkModules; 1017 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1018 SmallVector<clang::Module *, 16> Stack; 1019 1020 // Seed the stack with imported modules. 1021 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1022 MEnd = ImportedModules.end(); 1023 M != MEnd; ++M) { 1024 if (Visited.insert(*M)) 1025 Stack.push_back(*M); 1026 } 1027 1028 // Find all of the modules to import, making a little effort to prune 1029 // non-leaf modules. 1030 while (!Stack.empty()) { 1031 clang::Module *Mod = Stack.pop_back_val(); 1032 1033 bool AnyChildren = false; 1034 1035 // Visit the submodules of this module. 1036 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1037 SubEnd = Mod->submodule_end(); 1038 Sub != SubEnd; ++Sub) { 1039 // Skip explicit children; they need to be explicitly imported to be 1040 // linked against. 1041 if ((*Sub)->IsExplicit) 1042 continue; 1043 1044 if (Visited.insert(*Sub)) { 1045 Stack.push_back(*Sub); 1046 AnyChildren = true; 1047 } 1048 } 1049 1050 // We didn't find any children, so add this module to the list of 1051 // modules to link against. 1052 if (!AnyChildren) { 1053 LinkModules.insert(Mod); 1054 } 1055 } 1056 1057 // Add link options for all of the imported modules in reverse topological 1058 // order. We don't do anything to try to order import link flags with respect 1059 // to linker options inserted by things like #pragma comment(). 1060 SmallVector<llvm::Value *, 16> MetadataArgs; 1061 Visited.clear(); 1062 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1063 MEnd = LinkModules.end(); 1064 M != MEnd; ++M) { 1065 if (Visited.insert(*M)) 1066 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1067 } 1068 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1069 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1070 1071 // Add the linker options metadata flag. 1072 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1073 llvm::MDNode::get(getLLVMContext(), 1074 LinkerOptionsMetadata)); 1075 } 1076 1077 void CodeGenModule::EmitDeferred() { 1078 // Emit code for any potentially referenced deferred decls. Since a 1079 // previously unused static decl may become used during the generation of code 1080 // for a static function, iterate until no changes are made. 1081 1082 while (true) { 1083 if (!DeferredVTables.empty()) { 1084 EmitDeferredVTables(); 1085 1086 // Emitting a v-table doesn't directly cause more v-tables to 1087 // become deferred, although it can cause functions to be 1088 // emitted that then need those v-tables. 1089 assert(DeferredVTables.empty()); 1090 } 1091 1092 // Stop if we're out of both deferred v-tables and deferred declarations. 1093 if (DeferredDeclsToEmit.empty()) break; 1094 1095 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1096 GlobalDecl D = G.GD; 1097 llvm::GlobalValue *GV = G.GV; 1098 DeferredDeclsToEmit.pop_back(); 1099 1100 assert(GV == GetGlobalValue(getMangledName(D))); 1101 // Check to see if we've already emitted this. This is necessary 1102 // for a couple of reasons: first, decls can end up in the 1103 // deferred-decls queue multiple times, and second, decls can end 1104 // up with definitions in unusual ways (e.g. by an extern inline 1105 // function acquiring a strong function redefinition). Just 1106 // ignore these cases. 1107 if(!GV->isDeclaration()) 1108 continue; 1109 1110 // Otherwise, emit the definition and move on to the next one. 1111 EmitGlobalDefinition(D, GV); 1112 } 1113 } 1114 1115 void CodeGenModule::EmitGlobalAnnotations() { 1116 if (Annotations.empty()) 1117 return; 1118 1119 // Create a new global variable for the ConstantStruct in the Module. 1120 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1121 Annotations[0]->getType(), Annotations.size()), Annotations); 1122 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1123 llvm::GlobalValue::AppendingLinkage, 1124 Array, "llvm.global.annotations"); 1125 gv->setSection(AnnotationSection); 1126 } 1127 1128 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1129 llvm::Constant *&AStr = AnnotationStrings[Str]; 1130 if (AStr) 1131 return AStr; 1132 1133 // Not found yet, create a new global. 1134 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1135 auto *gv = 1136 new llvm::GlobalVariable(getModule(), s->getType(), true, 1137 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1138 gv->setSection(AnnotationSection); 1139 gv->setUnnamedAddr(true); 1140 AStr = gv; 1141 return gv; 1142 } 1143 1144 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1145 SourceManager &SM = getContext().getSourceManager(); 1146 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1147 if (PLoc.isValid()) 1148 return EmitAnnotationString(PLoc.getFilename()); 1149 return EmitAnnotationString(SM.getBufferName(Loc)); 1150 } 1151 1152 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1153 SourceManager &SM = getContext().getSourceManager(); 1154 PresumedLoc PLoc = SM.getPresumedLoc(L); 1155 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1156 SM.getExpansionLineNumber(L); 1157 return llvm::ConstantInt::get(Int32Ty, LineNo); 1158 } 1159 1160 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1161 const AnnotateAttr *AA, 1162 SourceLocation L) { 1163 // Get the globals for file name, annotation, and the line number. 1164 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1165 *UnitGV = EmitAnnotationUnit(L), 1166 *LineNoCst = EmitAnnotationLineNo(L); 1167 1168 // Create the ConstantStruct for the global annotation. 1169 llvm::Constant *Fields[4] = { 1170 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1171 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1172 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1173 LineNoCst 1174 }; 1175 return llvm::ConstantStruct::getAnon(Fields); 1176 } 1177 1178 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1179 llvm::GlobalValue *GV) { 1180 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1181 // Get the struct elements for these annotations. 1182 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1183 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1184 } 1185 1186 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1187 SourceLocation Loc) const { 1188 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1189 // Blacklist by function name. 1190 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1191 return true; 1192 // Blacklist by location. 1193 if (!Loc.isInvalid()) 1194 return SanitizerBL.isBlacklistedLocation(Loc); 1195 // If location is unknown, this may be a compiler-generated function. Assume 1196 // it's located in the main file. 1197 auto &SM = Context.getSourceManager(); 1198 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1199 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1200 } 1201 return false; 1202 } 1203 1204 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1205 SourceLocation Loc, QualType Ty, 1206 StringRef Category) const { 1207 // For now globals can be blacklisted only in ASan. 1208 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1209 return false; 1210 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1211 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1212 return true; 1213 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1214 return true; 1215 // Check global type. 1216 if (!Ty.isNull()) { 1217 // Drill down the array types: if global variable of a fixed type is 1218 // blacklisted, we also don't instrument arrays of them. 1219 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1220 Ty = AT->getElementType(); 1221 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1222 // We allow to blacklist only record types (classes, structs etc.) 1223 if (Ty->isRecordType()) { 1224 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1225 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1226 return true; 1227 } 1228 } 1229 return false; 1230 } 1231 1232 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1233 // Never defer when EmitAllDecls is specified. 1234 if (LangOpts.EmitAllDecls) 1235 return false; 1236 1237 return !getContext().DeclMustBeEmitted(Global); 1238 } 1239 1240 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1241 const CXXUuidofExpr* E) { 1242 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1243 // well-formed. 1244 StringRef Uuid = E->getUuidAsStringRef(Context); 1245 std::string Name = "_GUID_" + Uuid.lower(); 1246 std::replace(Name.begin(), Name.end(), '-', '_'); 1247 1248 // Look for an existing global. 1249 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1250 return GV; 1251 1252 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1253 assert(Init && "failed to initialize as constant"); 1254 1255 auto *GV = new llvm::GlobalVariable( 1256 getModule(), Init->getType(), 1257 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1258 return GV; 1259 } 1260 1261 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1262 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1263 assert(AA && "No alias?"); 1264 1265 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1266 1267 // See if there is already something with the target's name in the module. 1268 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1269 if (Entry) { 1270 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1271 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1272 } 1273 1274 llvm::Constant *Aliasee; 1275 if (isa<llvm::FunctionType>(DeclTy)) 1276 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1277 GlobalDecl(cast<FunctionDecl>(VD)), 1278 /*ForVTable=*/false); 1279 else 1280 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1281 llvm::PointerType::getUnqual(DeclTy), 1282 nullptr); 1283 1284 auto *F = cast<llvm::GlobalValue>(Aliasee); 1285 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1286 WeakRefReferences.insert(F); 1287 1288 return Aliasee; 1289 } 1290 1291 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1292 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1293 1294 // Weak references don't produce any output by themselves. 1295 if (Global->hasAttr<WeakRefAttr>()) 1296 return; 1297 1298 // If this is an alias definition (which otherwise looks like a declaration) 1299 // emit it now. 1300 if (Global->hasAttr<AliasAttr>()) 1301 return EmitAliasDefinition(GD); 1302 1303 // If this is CUDA, be selective about which declarations we emit. 1304 if (LangOpts.CUDA) { 1305 if (CodeGenOpts.CUDAIsDevice) { 1306 if (!Global->hasAttr<CUDADeviceAttr>() && 1307 !Global->hasAttr<CUDAGlobalAttr>() && 1308 !Global->hasAttr<CUDAConstantAttr>() && 1309 !Global->hasAttr<CUDASharedAttr>()) 1310 return; 1311 } else { 1312 if (!Global->hasAttr<CUDAHostAttr>() && ( 1313 Global->hasAttr<CUDADeviceAttr>() || 1314 Global->hasAttr<CUDAConstantAttr>() || 1315 Global->hasAttr<CUDASharedAttr>())) 1316 return; 1317 } 1318 } 1319 1320 // Ignore declarations, they will be emitted on their first use. 1321 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1322 // Forward declarations are emitted lazily on first use. 1323 if (!FD->doesThisDeclarationHaveABody()) { 1324 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1325 return; 1326 1327 StringRef MangledName = getMangledName(GD); 1328 1329 // Compute the function info and LLVM type. 1330 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1331 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1332 1333 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1334 /*DontDefer=*/false); 1335 return; 1336 } 1337 } else { 1338 const auto *VD = cast<VarDecl>(Global); 1339 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1340 1341 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1342 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1343 return; 1344 } 1345 1346 // Defer code generation when possible if this is a static definition, inline 1347 // function etc. These we only want to emit if they are used. 1348 if (!MayDeferGeneration(Global)) { 1349 // Emit the definition if it can't be deferred. 1350 EmitGlobalDefinition(GD); 1351 return; 1352 } 1353 1354 // If we're deferring emission of a C++ variable with an 1355 // initializer, remember the order in which it appeared in the file. 1356 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1357 cast<VarDecl>(Global)->hasInit()) { 1358 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1359 CXXGlobalInits.push_back(nullptr); 1360 } 1361 1362 // If the value has already been used, add it directly to the 1363 // DeferredDeclsToEmit list. 1364 StringRef MangledName = getMangledName(GD); 1365 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1366 addDeferredDeclToEmit(GV, GD); 1367 else { 1368 // Otherwise, remember that we saw a deferred decl with this name. The 1369 // first use of the mangled name will cause it to move into 1370 // DeferredDeclsToEmit. 1371 DeferredDecls[MangledName] = GD; 1372 } 1373 } 1374 1375 namespace { 1376 struct FunctionIsDirectlyRecursive : 1377 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1378 const StringRef Name; 1379 const Builtin::Context &BI; 1380 bool Result; 1381 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1382 Name(N), BI(C), Result(false) { 1383 } 1384 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1385 1386 bool TraverseCallExpr(CallExpr *E) { 1387 const FunctionDecl *FD = E->getDirectCallee(); 1388 if (!FD) 1389 return true; 1390 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1391 if (Attr && Name == Attr->getLabel()) { 1392 Result = true; 1393 return false; 1394 } 1395 unsigned BuiltinID = FD->getBuiltinID(); 1396 if (!BuiltinID) 1397 return true; 1398 StringRef BuiltinName = BI.GetName(BuiltinID); 1399 if (BuiltinName.startswith("__builtin_") && 1400 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1401 Result = true; 1402 return false; 1403 } 1404 return true; 1405 } 1406 }; 1407 } 1408 1409 // isTriviallyRecursive - Check if this function calls another 1410 // decl that, because of the asm attribute or the other decl being a builtin, 1411 // ends up pointing to itself. 1412 bool 1413 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1414 StringRef Name; 1415 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1416 // asm labels are a special kind of mangling we have to support. 1417 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1418 if (!Attr) 1419 return false; 1420 Name = Attr->getLabel(); 1421 } else { 1422 Name = FD->getName(); 1423 } 1424 1425 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1426 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1427 return Walker.Result; 1428 } 1429 1430 bool 1431 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1432 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1433 return true; 1434 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1435 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1436 return false; 1437 // PR9614. Avoid cases where the source code is lying to us. An available 1438 // externally function should have an equivalent function somewhere else, 1439 // but a function that calls itself is clearly not equivalent to the real 1440 // implementation. 1441 // This happens in glibc's btowc and in some configure checks. 1442 return !isTriviallyRecursive(F); 1443 } 1444 1445 /// If the type for the method's class was generated by 1446 /// CGDebugInfo::createContextChain(), the cache contains only a 1447 /// limited DIType without any declarations. Since EmitFunctionStart() 1448 /// needs to find the canonical declaration for each method, we need 1449 /// to construct the complete type prior to emitting the method. 1450 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1451 if (!D->isInstance()) 1452 return; 1453 1454 if (CGDebugInfo *DI = getModuleDebugInfo()) 1455 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1456 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1457 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1458 } 1459 } 1460 1461 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1462 const auto *D = cast<ValueDecl>(GD.getDecl()); 1463 1464 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1465 Context.getSourceManager(), 1466 "Generating code for declaration"); 1467 1468 if (isa<FunctionDecl>(D)) { 1469 // At -O0, don't generate IR for functions with available_externally 1470 // linkage. 1471 if (!shouldEmitFunction(GD)) 1472 return; 1473 1474 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1475 CompleteDIClassType(Method); 1476 // Make sure to emit the definition(s) before we emit the thunks. 1477 // This is necessary for the generation of certain thunks. 1478 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1479 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1480 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1481 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1482 else 1483 EmitGlobalFunctionDefinition(GD, GV); 1484 1485 if (Method->isVirtual()) 1486 getVTables().EmitThunks(GD); 1487 1488 return; 1489 } 1490 1491 return EmitGlobalFunctionDefinition(GD, GV); 1492 } 1493 1494 if (const auto *VD = dyn_cast<VarDecl>(D)) 1495 return EmitGlobalVarDefinition(VD); 1496 1497 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1498 } 1499 1500 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1501 /// module, create and return an llvm Function with the specified type. If there 1502 /// is something in the module with the specified name, return it potentially 1503 /// bitcasted to the right type. 1504 /// 1505 /// If D is non-null, it specifies a decl that correspond to this. This is used 1506 /// to set the attributes on the function when it is first created. 1507 llvm::Constant * 1508 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1509 llvm::Type *Ty, 1510 GlobalDecl GD, bool ForVTable, 1511 bool DontDefer, bool IsThunk, 1512 llvm::AttributeSet ExtraAttrs) { 1513 const Decl *D = GD.getDecl(); 1514 1515 // Lookup the entry, lazily creating it if necessary. 1516 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1517 if (Entry) { 1518 if (WeakRefReferences.erase(Entry)) { 1519 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1520 if (FD && !FD->hasAttr<WeakAttr>()) 1521 Entry->setLinkage(llvm::Function::ExternalLinkage); 1522 } 1523 1524 // Handle dropped DLL attributes. 1525 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1526 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1527 1528 if (Entry->getType()->getElementType() == Ty) 1529 return Entry; 1530 1531 // Make sure the result is of the correct type. 1532 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1533 } 1534 1535 // This function doesn't have a complete type (for example, the return 1536 // type is an incomplete struct). Use a fake type instead, and make 1537 // sure not to try to set attributes. 1538 bool IsIncompleteFunction = false; 1539 1540 llvm::FunctionType *FTy; 1541 if (isa<llvm::FunctionType>(Ty)) { 1542 FTy = cast<llvm::FunctionType>(Ty); 1543 } else { 1544 FTy = llvm::FunctionType::get(VoidTy, false); 1545 IsIncompleteFunction = true; 1546 } 1547 1548 llvm::Function *F = llvm::Function::Create(FTy, 1549 llvm::Function::ExternalLinkage, 1550 MangledName, &getModule()); 1551 assert(F->getName() == MangledName && "name was uniqued!"); 1552 if (D) 1553 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1554 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1555 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1556 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1557 llvm::AttributeSet::get(VMContext, 1558 llvm::AttributeSet::FunctionIndex, 1559 B)); 1560 } 1561 1562 if (!DontDefer) { 1563 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1564 // each other bottoming out with the base dtor. Therefore we emit non-base 1565 // dtors on usage, even if there is no dtor definition in the TU. 1566 if (D && isa<CXXDestructorDecl>(D) && 1567 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1568 GD.getDtorType())) 1569 addDeferredDeclToEmit(F, GD); 1570 1571 // This is the first use or definition of a mangled name. If there is a 1572 // deferred decl with this name, remember that we need to emit it at the end 1573 // of the file. 1574 auto DDI = DeferredDecls.find(MangledName); 1575 if (DDI != DeferredDecls.end()) { 1576 // Move the potentially referenced deferred decl to the 1577 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1578 // don't need it anymore). 1579 addDeferredDeclToEmit(F, DDI->second); 1580 DeferredDecls.erase(DDI); 1581 1582 // Otherwise, if this is a sized deallocation function, emit a weak 1583 // definition 1584 // for it at the end of the translation unit. 1585 } else if (D && cast<FunctionDecl>(D) 1586 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1587 addDeferredDeclToEmit(F, GD); 1588 1589 // Otherwise, there are cases we have to worry about where we're 1590 // using a declaration for which we must emit a definition but where 1591 // we might not find a top-level definition: 1592 // - member functions defined inline in their classes 1593 // - friend functions defined inline in some class 1594 // - special member functions with implicit definitions 1595 // If we ever change our AST traversal to walk into class methods, 1596 // this will be unnecessary. 1597 // 1598 // We also don't emit a definition for a function if it's going to be an 1599 // entry in a vtable, unless it's already marked as used. 1600 } else if (getLangOpts().CPlusPlus && D) { 1601 // Look for a declaration that's lexically in a record. 1602 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1603 FD = FD->getPreviousDecl()) { 1604 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1605 if (FD->doesThisDeclarationHaveABody()) { 1606 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1607 break; 1608 } 1609 } 1610 } 1611 } 1612 } 1613 1614 // Make sure the result is of the requested type. 1615 if (!IsIncompleteFunction) { 1616 assert(F->getType()->getElementType() == Ty); 1617 return F; 1618 } 1619 1620 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1621 return llvm::ConstantExpr::getBitCast(F, PTy); 1622 } 1623 1624 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1625 /// non-null, then this function will use the specified type if it has to 1626 /// create it (this occurs when we see a definition of the function). 1627 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1628 llvm::Type *Ty, 1629 bool ForVTable, 1630 bool DontDefer) { 1631 // If there was no specific requested type, just convert it now. 1632 if (!Ty) 1633 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1634 1635 StringRef MangledName = getMangledName(GD); 1636 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1637 } 1638 1639 /// CreateRuntimeFunction - Create a new runtime function with the specified 1640 /// type and name. 1641 llvm::Constant * 1642 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1643 StringRef Name, 1644 llvm::AttributeSet ExtraAttrs) { 1645 llvm::Constant *C = 1646 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1647 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1648 if (auto *F = dyn_cast<llvm::Function>(C)) 1649 if (F->empty()) 1650 F->setCallingConv(getRuntimeCC()); 1651 return C; 1652 } 1653 1654 /// isTypeConstant - Determine whether an object of this type can be emitted 1655 /// as a constant. 1656 /// 1657 /// If ExcludeCtor is true, the duration when the object's constructor runs 1658 /// will not be considered. The caller will need to verify that the object is 1659 /// not written to during its construction. 1660 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1661 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1662 return false; 1663 1664 if (Context.getLangOpts().CPlusPlus) { 1665 if (const CXXRecordDecl *Record 1666 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1667 return ExcludeCtor && !Record->hasMutableFields() && 1668 Record->hasTrivialDestructor(); 1669 } 1670 1671 return true; 1672 } 1673 1674 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1675 /// create and return an llvm GlobalVariable with the specified type. If there 1676 /// is something in the module with the specified name, return it potentially 1677 /// bitcasted to the right type. 1678 /// 1679 /// If D is non-null, it specifies a decl that correspond to this. This is used 1680 /// to set the attributes on the global when it is first created. 1681 llvm::Constant * 1682 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1683 llvm::PointerType *Ty, 1684 const VarDecl *D) { 1685 // Lookup the entry, lazily creating it if necessary. 1686 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1687 if (Entry) { 1688 if (WeakRefReferences.erase(Entry)) { 1689 if (D && !D->hasAttr<WeakAttr>()) 1690 Entry->setLinkage(llvm::Function::ExternalLinkage); 1691 } 1692 1693 // Handle dropped DLL attributes. 1694 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1695 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1696 1697 if (Entry->getType() == Ty) 1698 return Entry; 1699 1700 // Make sure the result is of the correct type. 1701 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1702 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1703 1704 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1705 } 1706 1707 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1708 auto *GV = new llvm::GlobalVariable( 1709 getModule(), Ty->getElementType(), false, 1710 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1711 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1712 1713 // This is the first use or definition of a mangled name. If there is a 1714 // deferred decl with this name, remember that we need to emit it at the end 1715 // of the file. 1716 auto DDI = DeferredDecls.find(MangledName); 1717 if (DDI != DeferredDecls.end()) { 1718 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1719 // list, and remove it from DeferredDecls (since we don't need it anymore). 1720 addDeferredDeclToEmit(GV, DDI->second); 1721 DeferredDecls.erase(DDI); 1722 } 1723 1724 // Handle things which are present even on external declarations. 1725 if (D) { 1726 // FIXME: This code is overly simple and should be merged with other global 1727 // handling. 1728 GV->setConstant(isTypeConstant(D->getType(), false)); 1729 1730 setLinkageAndVisibilityForGV(GV, D); 1731 1732 if (D->getTLSKind()) { 1733 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1734 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1735 setTLSMode(GV, *D); 1736 } 1737 1738 // If required by the ABI, treat declarations of static data members with 1739 // inline initializers as definitions. 1740 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1741 EmitGlobalVarDefinition(D); 1742 } 1743 1744 // Handle XCore specific ABI requirements. 1745 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1746 D->getLanguageLinkage() == CLanguageLinkage && 1747 D->getType().isConstant(Context) && 1748 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1749 GV->setSection(".cp.rodata"); 1750 } 1751 1752 if (AddrSpace != Ty->getAddressSpace()) 1753 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1754 1755 return GV; 1756 } 1757 1758 1759 llvm::GlobalVariable * 1760 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1761 llvm::Type *Ty, 1762 llvm::GlobalValue::LinkageTypes Linkage) { 1763 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1764 llvm::GlobalVariable *OldGV = nullptr; 1765 1766 if (GV) { 1767 // Check if the variable has the right type. 1768 if (GV->getType()->getElementType() == Ty) 1769 return GV; 1770 1771 // Because C++ name mangling, the only way we can end up with an already 1772 // existing global with the same name is if it has been declared extern "C". 1773 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1774 OldGV = GV; 1775 } 1776 1777 // Create a new variable. 1778 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1779 Linkage, nullptr, Name); 1780 1781 if (OldGV) { 1782 // Replace occurrences of the old variable if needed. 1783 GV->takeName(OldGV); 1784 1785 if (!OldGV->use_empty()) { 1786 llvm::Constant *NewPtrForOldDecl = 1787 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1788 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1789 } 1790 1791 OldGV->eraseFromParent(); 1792 } 1793 1794 return GV; 1795 } 1796 1797 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1798 /// given global variable. If Ty is non-null and if the global doesn't exist, 1799 /// then it will be created with the specified type instead of whatever the 1800 /// normal requested type would be. 1801 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1802 llvm::Type *Ty) { 1803 assert(D->hasGlobalStorage() && "Not a global variable"); 1804 QualType ASTTy = D->getType(); 1805 if (!Ty) 1806 Ty = getTypes().ConvertTypeForMem(ASTTy); 1807 1808 llvm::PointerType *PTy = 1809 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1810 1811 StringRef MangledName = getMangledName(D); 1812 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1813 } 1814 1815 /// CreateRuntimeVariable - Create a new runtime global variable with the 1816 /// specified type and name. 1817 llvm::Constant * 1818 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1819 StringRef Name) { 1820 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1821 } 1822 1823 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1824 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1825 1826 if (MayDeferGeneration(D)) { 1827 // If we have not seen a reference to this variable yet, place it 1828 // into the deferred declarations table to be emitted if needed 1829 // later. 1830 StringRef MangledName = getMangledName(D); 1831 if (!GetGlobalValue(MangledName)) { 1832 DeferredDecls[MangledName] = D; 1833 return; 1834 } 1835 } 1836 1837 // The tentative definition is the only definition. 1838 EmitGlobalVarDefinition(D); 1839 } 1840 1841 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1842 return Context.toCharUnitsFromBits( 1843 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1844 } 1845 1846 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1847 unsigned AddrSpace) { 1848 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1849 if (D->hasAttr<CUDAConstantAttr>()) 1850 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1851 else if (D->hasAttr<CUDASharedAttr>()) 1852 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1853 else 1854 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1855 } 1856 1857 return AddrSpace; 1858 } 1859 1860 template<typename SomeDecl> 1861 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1862 llvm::GlobalValue *GV) { 1863 if (!getLangOpts().CPlusPlus) 1864 return; 1865 1866 // Must have 'used' attribute, or else inline assembly can't rely on 1867 // the name existing. 1868 if (!D->template hasAttr<UsedAttr>()) 1869 return; 1870 1871 // Must have internal linkage and an ordinary name. 1872 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1873 return; 1874 1875 // Must be in an extern "C" context. Entities declared directly within 1876 // a record are not extern "C" even if the record is in such a context. 1877 const SomeDecl *First = D->getFirstDecl(); 1878 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1879 return; 1880 1881 // OK, this is an internal linkage entity inside an extern "C" linkage 1882 // specification. Make a note of that so we can give it the "expected" 1883 // mangled name if nothing else is using that name. 1884 std::pair<StaticExternCMap::iterator, bool> R = 1885 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1886 1887 // If we have multiple internal linkage entities with the same name 1888 // in extern "C" regions, none of them gets that name. 1889 if (!R.second) 1890 R.first->second = nullptr; 1891 } 1892 1893 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1894 llvm::Constant *Init = nullptr; 1895 QualType ASTTy = D->getType(); 1896 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1897 bool NeedsGlobalCtor = false; 1898 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1899 1900 const VarDecl *InitDecl; 1901 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1902 1903 if (!InitExpr) { 1904 // This is a tentative definition; tentative definitions are 1905 // implicitly initialized with { 0 }. 1906 // 1907 // Note that tentative definitions are only emitted at the end of 1908 // a translation unit, so they should never have incomplete 1909 // type. In addition, EmitTentativeDefinition makes sure that we 1910 // never attempt to emit a tentative definition if a real one 1911 // exists. A use may still exists, however, so we still may need 1912 // to do a RAUW. 1913 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1914 Init = EmitNullConstant(D->getType()); 1915 } else { 1916 initializedGlobalDecl = GlobalDecl(D); 1917 Init = EmitConstantInit(*InitDecl); 1918 1919 if (!Init) { 1920 QualType T = InitExpr->getType(); 1921 if (D->getType()->isReferenceType()) 1922 T = D->getType(); 1923 1924 if (getLangOpts().CPlusPlus) { 1925 Init = EmitNullConstant(T); 1926 NeedsGlobalCtor = true; 1927 } else { 1928 ErrorUnsupported(D, "static initializer"); 1929 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1930 } 1931 } else { 1932 // We don't need an initializer, so remove the entry for the delayed 1933 // initializer position (just in case this entry was delayed) if we 1934 // also don't need to register a destructor. 1935 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1936 DelayedCXXInitPosition.erase(D); 1937 } 1938 } 1939 1940 llvm::Type* InitType = Init->getType(); 1941 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1942 1943 // Strip off a bitcast if we got one back. 1944 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1945 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1946 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1947 // All zero index gep. 1948 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1949 Entry = CE->getOperand(0); 1950 } 1951 1952 // Entry is now either a Function or GlobalVariable. 1953 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1954 1955 // We have a definition after a declaration with the wrong type. 1956 // We must make a new GlobalVariable* and update everything that used OldGV 1957 // (a declaration or tentative definition) with the new GlobalVariable* 1958 // (which will be a definition). 1959 // 1960 // This happens if there is a prototype for a global (e.g. 1961 // "extern int x[];") and then a definition of a different type (e.g. 1962 // "int x[10];"). This also happens when an initializer has a different type 1963 // from the type of the global (this happens with unions). 1964 if (!GV || 1965 GV->getType()->getElementType() != InitType || 1966 GV->getType()->getAddressSpace() != 1967 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1968 1969 // Move the old entry aside so that we'll create a new one. 1970 Entry->setName(StringRef()); 1971 1972 // Make a new global with the correct type, this is now guaranteed to work. 1973 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1974 1975 // Replace all uses of the old global with the new global 1976 llvm::Constant *NewPtrForOldDecl = 1977 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1978 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1979 1980 // Erase the old global, since it is no longer used. 1981 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1982 } 1983 1984 MaybeHandleStaticInExternC(D, GV); 1985 1986 if (D->hasAttr<AnnotateAttr>()) 1987 AddGlobalAnnotations(D, GV); 1988 1989 GV->setInitializer(Init); 1990 1991 // If it is safe to mark the global 'constant', do so now. 1992 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1993 isTypeConstant(D->getType(), true)); 1994 1995 // If it is in a read-only section, mark it 'constant'. 1996 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 1997 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 1998 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 1999 GV->setConstant(true); 2000 } 2001 2002 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2003 2004 // Set the llvm linkage type as appropriate. 2005 llvm::GlobalValue::LinkageTypes Linkage = 2006 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2007 2008 // On Darwin, the backing variable for a C++11 thread_local variable always 2009 // has internal linkage; all accesses should just be calls to the 2010 // Itanium-specified entry point, which has the normal linkage of the 2011 // variable. 2012 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2013 Context.getTargetInfo().getTriple().isMacOSX()) 2014 Linkage = llvm::GlobalValue::InternalLinkage; 2015 2016 GV->setLinkage(Linkage); 2017 if (D->hasAttr<DLLImportAttr>()) 2018 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2019 else if (D->hasAttr<DLLExportAttr>()) 2020 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2021 else 2022 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2023 2024 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2025 // common vars aren't constant even if declared const. 2026 GV->setConstant(false); 2027 2028 setNonAliasAttributes(D, GV); 2029 2030 if (D->getTLSKind() && !GV->isThreadLocal()) { 2031 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2032 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2033 setTLSMode(GV, *D); 2034 } 2035 2036 // Emit the initializer function if necessary. 2037 if (NeedsGlobalCtor || NeedsGlobalDtor) 2038 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2039 2040 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2041 2042 // Emit global variable debug information. 2043 if (CGDebugInfo *DI = getModuleDebugInfo()) 2044 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2045 DI->EmitGlobalVariable(GV, D); 2046 } 2047 2048 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2049 const VarDecl *D, bool NoCommon) { 2050 // Don't give variables common linkage if -fno-common was specified unless it 2051 // was overridden by a NoCommon attribute. 2052 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2053 return true; 2054 2055 // C11 6.9.2/2: 2056 // A declaration of an identifier for an object that has file scope without 2057 // an initializer, and without a storage-class specifier or with the 2058 // storage-class specifier static, constitutes a tentative definition. 2059 if (D->getInit() || D->hasExternalStorage()) 2060 return true; 2061 2062 // A variable cannot be both common and exist in a section. 2063 if (D->hasAttr<SectionAttr>()) 2064 return true; 2065 2066 // Thread local vars aren't considered common linkage. 2067 if (D->getTLSKind()) 2068 return true; 2069 2070 // Tentative definitions marked with WeakImportAttr are true definitions. 2071 if (D->hasAttr<WeakImportAttr>()) 2072 return true; 2073 2074 // Declarations with a required alignment do not have common linakge in MSVC 2075 // mode. 2076 if (Context.getLangOpts().MSVCCompat && 2077 (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>())) 2078 return true; 2079 2080 return false; 2081 } 2082 2083 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2084 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2085 if (Linkage == GVA_Internal) 2086 return llvm::Function::InternalLinkage; 2087 2088 if (D->hasAttr<WeakAttr>()) { 2089 if (IsConstantVariable) 2090 return llvm::GlobalVariable::WeakODRLinkage; 2091 else 2092 return llvm::GlobalVariable::WeakAnyLinkage; 2093 } 2094 2095 // We are guaranteed to have a strong definition somewhere else, 2096 // so we can use available_externally linkage. 2097 if (Linkage == GVA_AvailableExternally) 2098 return llvm::Function::AvailableExternallyLinkage; 2099 2100 // Note that Apple's kernel linker doesn't support symbol 2101 // coalescing, so we need to avoid linkonce and weak linkages there. 2102 // Normally, this means we just map to internal, but for explicit 2103 // instantiations we'll map to external. 2104 2105 // In C++, the compiler has to emit a definition in every translation unit 2106 // that references the function. We should use linkonce_odr because 2107 // a) if all references in this translation unit are optimized away, we 2108 // don't need to codegen it. b) if the function persists, it needs to be 2109 // merged with other definitions. c) C++ has the ODR, so we know the 2110 // definition is dependable. 2111 if (Linkage == GVA_DiscardableODR) 2112 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2113 : llvm::Function::InternalLinkage; 2114 2115 // An explicit instantiation of a template has weak linkage, since 2116 // explicit instantiations can occur in multiple translation units 2117 // and must all be equivalent. However, we are not allowed to 2118 // throw away these explicit instantiations. 2119 if (Linkage == GVA_StrongODR) 2120 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2121 : llvm::Function::ExternalLinkage; 2122 2123 // C++ doesn't have tentative definitions and thus cannot have common 2124 // linkage. 2125 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2126 !isVarDeclStrongDefinition(Context, cast<VarDecl>(D), 2127 CodeGenOpts.NoCommon)) 2128 return llvm::GlobalVariable::CommonLinkage; 2129 2130 // selectany symbols are externally visible, so use weak instead of 2131 // linkonce. MSVC optimizes away references to const selectany globals, so 2132 // all definitions should be the same and ODR linkage should be used. 2133 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2134 if (D->hasAttr<SelectAnyAttr>()) 2135 return llvm::GlobalVariable::WeakODRLinkage; 2136 2137 // Otherwise, we have strong external linkage. 2138 assert(Linkage == GVA_StrongExternal); 2139 return llvm::GlobalVariable::ExternalLinkage; 2140 } 2141 2142 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2143 const VarDecl *VD, bool IsConstant) { 2144 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2145 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2146 } 2147 2148 /// Replace the uses of a function that was declared with a non-proto type. 2149 /// We want to silently drop extra arguments from call sites 2150 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2151 llvm::Function *newFn) { 2152 // Fast path. 2153 if (old->use_empty()) return; 2154 2155 llvm::Type *newRetTy = newFn->getReturnType(); 2156 SmallVector<llvm::Value*, 4> newArgs; 2157 2158 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2159 ui != ue; ) { 2160 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2161 llvm::User *user = use->getUser(); 2162 2163 // Recognize and replace uses of bitcasts. Most calls to 2164 // unprototyped functions will use bitcasts. 2165 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2166 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2167 replaceUsesOfNonProtoConstant(bitcast, newFn); 2168 continue; 2169 } 2170 2171 // Recognize calls to the function. 2172 llvm::CallSite callSite(user); 2173 if (!callSite) continue; 2174 if (!callSite.isCallee(&*use)) continue; 2175 2176 // If the return types don't match exactly, then we can't 2177 // transform this call unless it's dead. 2178 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2179 continue; 2180 2181 // Get the call site's attribute list. 2182 SmallVector<llvm::AttributeSet, 8> newAttrs; 2183 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2184 2185 // Collect any return attributes from the call. 2186 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2187 newAttrs.push_back( 2188 llvm::AttributeSet::get(newFn->getContext(), 2189 oldAttrs.getRetAttributes())); 2190 2191 // If the function was passed too few arguments, don't transform. 2192 unsigned newNumArgs = newFn->arg_size(); 2193 if (callSite.arg_size() < newNumArgs) continue; 2194 2195 // If extra arguments were passed, we silently drop them. 2196 // If any of the types mismatch, we don't transform. 2197 unsigned argNo = 0; 2198 bool dontTransform = false; 2199 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2200 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2201 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2202 dontTransform = true; 2203 break; 2204 } 2205 2206 // Add any parameter attributes. 2207 if (oldAttrs.hasAttributes(argNo + 1)) 2208 newAttrs. 2209 push_back(llvm:: 2210 AttributeSet::get(newFn->getContext(), 2211 oldAttrs.getParamAttributes(argNo + 1))); 2212 } 2213 if (dontTransform) 2214 continue; 2215 2216 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2217 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2218 oldAttrs.getFnAttributes())); 2219 2220 // Okay, we can transform this. Create the new call instruction and copy 2221 // over the required information. 2222 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2223 2224 llvm::CallSite newCall; 2225 if (callSite.isCall()) { 2226 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2227 callSite.getInstruction()); 2228 } else { 2229 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2230 newCall = llvm::InvokeInst::Create(newFn, 2231 oldInvoke->getNormalDest(), 2232 oldInvoke->getUnwindDest(), 2233 newArgs, "", 2234 callSite.getInstruction()); 2235 } 2236 newArgs.clear(); // for the next iteration 2237 2238 if (!newCall->getType()->isVoidTy()) 2239 newCall->takeName(callSite.getInstruction()); 2240 newCall.setAttributes( 2241 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2242 newCall.setCallingConv(callSite.getCallingConv()); 2243 2244 // Finally, remove the old call, replacing any uses with the new one. 2245 if (!callSite->use_empty()) 2246 callSite->replaceAllUsesWith(newCall.getInstruction()); 2247 2248 // Copy debug location attached to CI. 2249 if (!callSite->getDebugLoc().isUnknown()) 2250 newCall->setDebugLoc(callSite->getDebugLoc()); 2251 callSite->eraseFromParent(); 2252 } 2253 } 2254 2255 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2256 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2257 /// existing call uses of the old function in the module, this adjusts them to 2258 /// call the new function directly. 2259 /// 2260 /// This is not just a cleanup: the always_inline pass requires direct calls to 2261 /// functions to be able to inline them. If there is a bitcast in the way, it 2262 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2263 /// run at -O0. 2264 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2265 llvm::Function *NewFn) { 2266 // If we're redefining a global as a function, don't transform it. 2267 if (!isa<llvm::Function>(Old)) return; 2268 2269 replaceUsesOfNonProtoConstant(Old, NewFn); 2270 } 2271 2272 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2273 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2274 // If we have a definition, this might be a deferred decl. If the 2275 // instantiation is explicit, make sure we emit it at the end. 2276 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2277 GetAddrOfGlobalVar(VD); 2278 2279 EmitTopLevelDecl(VD); 2280 } 2281 2282 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2283 llvm::GlobalValue *GV) { 2284 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2285 2286 // Compute the function info and LLVM type. 2287 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2288 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2289 2290 // Get or create the prototype for the function. 2291 if (!GV) { 2292 llvm::Constant *C = 2293 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2294 2295 // Strip off a bitcast if we got one back. 2296 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2297 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2298 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2299 } else { 2300 GV = cast<llvm::GlobalValue>(C); 2301 } 2302 } 2303 2304 if (!GV->isDeclaration()) { 2305 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2306 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2307 if (auto *Prev = OldGD.getDecl()) 2308 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2309 return; 2310 } 2311 2312 if (GV->getType()->getElementType() != Ty) { 2313 // If the types mismatch then we have to rewrite the definition. 2314 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2315 2316 // F is the Function* for the one with the wrong type, we must make a new 2317 // Function* and update everything that used F (a declaration) with the new 2318 // Function* (which will be a definition). 2319 // 2320 // This happens if there is a prototype for a function 2321 // (e.g. "int f()") and then a definition of a different type 2322 // (e.g. "int f(int x)"). Move the old function aside so that it 2323 // doesn't interfere with GetAddrOfFunction. 2324 GV->setName(StringRef()); 2325 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2326 2327 // This might be an implementation of a function without a 2328 // prototype, in which case, try to do special replacement of 2329 // calls which match the new prototype. The really key thing here 2330 // is that we also potentially drop arguments from the call site 2331 // so as to make a direct call, which makes the inliner happier 2332 // and suppresses a number of optimizer warnings (!) about 2333 // dropping arguments. 2334 if (!GV->use_empty()) { 2335 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2336 GV->removeDeadConstantUsers(); 2337 } 2338 2339 // Replace uses of F with the Function we will endow with a body. 2340 if (!GV->use_empty()) { 2341 llvm::Constant *NewPtrForOldDecl = 2342 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2343 GV->replaceAllUsesWith(NewPtrForOldDecl); 2344 } 2345 2346 // Ok, delete the old function now, which is dead. 2347 GV->eraseFromParent(); 2348 2349 GV = NewFn; 2350 } 2351 2352 // We need to set linkage and visibility on the function before 2353 // generating code for it because various parts of IR generation 2354 // want to propagate this information down (e.g. to local static 2355 // declarations). 2356 auto *Fn = cast<llvm::Function>(GV); 2357 setFunctionLinkage(GD, Fn); 2358 if (D->hasAttr<DLLImportAttr>()) 2359 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2360 else if (D->hasAttr<DLLExportAttr>()) 2361 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2362 else 2363 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2364 2365 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2366 setGlobalVisibility(Fn, D); 2367 2368 MaybeHandleStaticInExternC(D, Fn); 2369 2370 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2371 2372 setFunctionDefinitionAttributes(D, Fn); 2373 SetLLVMFunctionAttributesForDefinition(D, Fn); 2374 2375 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2376 AddGlobalCtor(Fn, CA->getPriority()); 2377 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2378 AddGlobalDtor(Fn, DA->getPriority()); 2379 if (D->hasAttr<AnnotateAttr>()) 2380 AddGlobalAnnotations(D, Fn); 2381 } 2382 2383 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2384 const auto *D = cast<ValueDecl>(GD.getDecl()); 2385 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2386 assert(AA && "Not an alias?"); 2387 2388 StringRef MangledName = getMangledName(GD); 2389 2390 // If there is a definition in the module, then it wins over the alias. 2391 // This is dubious, but allow it to be safe. Just ignore the alias. 2392 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2393 if (Entry && !Entry->isDeclaration()) 2394 return; 2395 2396 Aliases.push_back(GD); 2397 2398 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2399 2400 // Create a reference to the named value. This ensures that it is emitted 2401 // if a deferred decl. 2402 llvm::Constant *Aliasee; 2403 if (isa<llvm::FunctionType>(DeclTy)) 2404 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2405 /*ForVTable=*/false); 2406 else 2407 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2408 llvm::PointerType::getUnqual(DeclTy), 2409 /*D=*/nullptr); 2410 2411 // Create the new alias itself, but don't set a name yet. 2412 auto *GA = llvm::GlobalAlias::create( 2413 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2414 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2415 2416 if (Entry) { 2417 if (GA->getAliasee() == Entry) { 2418 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2419 return; 2420 } 2421 2422 assert(Entry->isDeclaration()); 2423 2424 // If there is a declaration in the module, then we had an extern followed 2425 // by the alias, as in: 2426 // extern int test6(); 2427 // ... 2428 // int test6() __attribute__((alias("test7"))); 2429 // 2430 // Remove it and replace uses of it with the alias. 2431 GA->takeName(Entry); 2432 2433 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2434 Entry->getType())); 2435 Entry->eraseFromParent(); 2436 } else { 2437 GA->setName(MangledName); 2438 } 2439 2440 // Set attributes which are particular to an alias; this is a 2441 // specialization of the attributes which may be set on a global 2442 // variable/function. 2443 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2444 D->isWeakImported()) { 2445 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2446 } 2447 2448 if (const auto *VD = dyn_cast<VarDecl>(D)) 2449 if (VD->getTLSKind()) 2450 setTLSMode(GA, *VD); 2451 2452 setAliasAttributes(D, GA); 2453 } 2454 2455 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2456 ArrayRef<llvm::Type*> Tys) { 2457 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2458 Tys); 2459 } 2460 2461 static llvm::StringMapEntry<llvm::Constant*> & 2462 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2463 const StringLiteral *Literal, 2464 bool TargetIsLSB, 2465 bool &IsUTF16, 2466 unsigned &StringLength) { 2467 StringRef String = Literal->getString(); 2468 unsigned NumBytes = String.size(); 2469 2470 // Check for simple case. 2471 if (!Literal->containsNonAsciiOrNull()) { 2472 StringLength = NumBytes; 2473 return Map.GetOrCreateValue(String); 2474 } 2475 2476 // Otherwise, convert the UTF8 literals into a string of shorts. 2477 IsUTF16 = true; 2478 2479 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2480 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2481 UTF16 *ToPtr = &ToBuf[0]; 2482 2483 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2484 &ToPtr, ToPtr + NumBytes, 2485 strictConversion); 2486 2487 // ConvertUTF8toUTF16 returns the length in ToPtr. 2488 StringLength = ToPtr - &ToBuf[0]; 2489 2490 // Add an explicit null. 2491 *ToPtr = 0; 2492 return Map. 2493 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2494 (StringLength + 1) * 2)); 2495 } 2496 2497 static llvm::StringMapEntry<llvm::Constant*> & 2498 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2499 const StringLiteral *Literal, 2500 unsigned &StringLength) { 2501 StringRef String = Literal->getString(); 2502 StringLength = String.size(); 2503 return Map.GetOrCreateValue(String); 2504 } 2505 2506 llvm::Constant * 2507 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2508 unsigned StringLength = 0; 2509 bool isUTF16 = false; 2510 llvm::StringMapEntry<llvm::Constant*> &Entry = 2511 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2512 getDataLayout().isLittleEndian(), 2513 isUTF16, StringLength); 2514 2515 if (llvm::Constant *C = Entry.getValue()) 2516 return C; 2517 2518 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2519 llvm::Constant *Zeros[] = { Zero, Zero }; 2520 llvm::Value *V; 2521 2522 // If we don't already have it, get __CFConstantStringClassReference. 2523 if (!CFConstantStringClassRef) { 2524 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2525 Ty = llvm::ArrayType::get(Ty, 0); 2526 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2527 "__CFConstantStringClassReference"); 2528 // Decay array -> ptr 2529 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2530 CFConstantStringClassRef = V; 2531 } 2532 else 2533 V = CFConstantStringClassRef; 2534 2535 QualType CFTy = getContext().getCFConstantStringType(); 2536 2537 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2538 2539 llvm::Constant *Fields[4]; 2540 2541 // Class pointer. 2542 Fields[0] = cast<llvm::ConstantExpr>(V); 2543 2544 // Flags. 2545 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2546 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2547 llvm::ConstantInt::get(Ty, 0x07C8); 2548 2549 // String pointer. 2550 llvm::Constant *C = nullptr; 2551 if (isUTF16) { 2552 ArrayRef<uint16_t> Arr = 2553 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2554 const_cast<char *>(Entry.getKey().data())), 2555 Entry.getKey().size() / 2); 2556 C = llvm::ConstantDataArray::get(VMContext, Arr); 2557 } else { 2558 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2559 } 2560 2561 // Note: -fwritable-strings doesn't make the backing store strings of 2562 // CFStrings writable. (See <rdar://problem/10657500>) 2563 auto *GV = 2564 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2565 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2566 GV->setUnnamedAddr(true); 2567 // Don't enforce the target's minimum global alignment, since the only use 2568 // of the string is via this class initializer. 2569 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2570 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2571 // that changes the section it ends in, which surprises ld64. 2572 if (isUTF16) { 2573 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2574 GV->setAlignment(Align.getQuantity()); 2575 GV->setSection("__TEXT,__ustring"); 2576 } else { 2577 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2578 GV->setAlignment(Align.getQuantity()); 2579 GV->setSection("__TEXT,__cstring,cstring_literals"); 2580 } 2581 2582 // String. 2583 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2584 2585 if (isUTF16) 2586 // Cast the UTF16 string to the correct type. 2587 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2588 2589 // String length. 2590 Ty = getTypes().ConvertType(getContext().LongTy); 2591 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2592 2593 // The struct. 2594 C = llvm::ConstantStruct::get(STy, Fields); 2595 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2596 llvm::GlobalVariable::PrivateLinkage, C, 2597 "_unnamed_cfstring_"); 2598 GV->setSection("__DATA,__cfstring"); 2599 Entry.setValue(GV); 2600 2601 return GV; 2602 } 2603 2604 llvm::Constant * 2605 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2606 unsigned StringLength = 0; 2607 llvm::StringMapEntry<llvm::Constant*> &Entry = 2608 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2609 2610 if (llvm::Constant *C = Entry.getValue()) 2611 return C; 2612 2613 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2614 llvm::Constant *Zeros[] = { Zero, Zero }; 2615 llvm::Value *V; 2616 // If we don't already have it, get _NSConstantStringClassReference. 2617 if (!ConstantStringClassRef) { 2618 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2619 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2620 llvm::Constant *GV; 2621 if (LangOpts.ObjCRuntime.isNonFragile()) { 2622 std::string str = 2623 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2624 : "OBJC_CLASS_$_" + StringClass; 2625 GV = getObjCRuntime().GetClassGlobal(str); 2626 // Make sure the result is of the correct type. 2627 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2628 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2629 ConstantStringClassRef = V; 2630 } else { 2631 std::string str = 2632 StringClass.empty() ? "_NSConstantStringClassReference" 2633 : "_" + StringClass + "ClassReference"; 2634 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2635 GV = CreateRuntimeVariable(PTy, str); 2636 // Decay array -> ptr 2637 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2638 ConstantStringClassRef = V; 2639 } 2640 } 2641 else 2642 V = ConstantStringClassRef; 2643 2644 if (!NSConstantStringType) { 2645 // Construct the type for a constant NSString. 2646 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2647 D->startDefinition(); 2648 2649 QualType FieldTypes[3]; 2650 2651 // const int *isa; 2652 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2653 // const char *str; 2654 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2655 // unsigned int length; 2656 FieldTypes[2] = Context.UnsignedIntTy; 2657 2658 // Create fields 2659 for (unsigned i = 0; i < 3; ++i) { 2660 FieldDecl *Field = FieldDecl::Create(Context, D, 2661 SourceLocation(), 2662 SourceLocation(), nullptr, 2663 FieldTypes[i], /*TInfo=*/nullptr, 2664 /*BitWidth=*/nullptr, 2665 /*Mutable=*/false, 2666 ICIS_NoInit); 2667 Field->setAccess(AS_public); 2668 D->addDecl(Field); 2669 } 2670 2671 D->completeDefinition(); 2672 QualType NSTy = Context.getTagDeclType(D); 2673 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2674 } 2675 2676 llvm::Constant *Fields[3]; 2677 2678 // Class pointer. 2679 Fields[0] = cast<llvm::ConstantExpr>(V); 2680 2681 // String pointer. 2682 llvm::Constant *C = 2683 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2684 2685 llvm::GlobalValue::LinkageTypes Linkage; 2686 bool isConstant; 2687 Linkage = llvm::GlobalValue::PrivateLinkage; 2688 isConstant = !LangOpts.WritableStrings; 2689 2690 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2691 Linkage, C, ".str"); 2692 GV->setUnnamedAddr(true); 2693 // Don't enforce the target's minimum global alignment, since the only use 2694 // of the string is via this class initializer. 2695 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2696 GV->setAlignment(Align.getQuantity()); 2697 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2698 2699 // String length. 2700 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2701 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2702 2703 // The struct. 2704 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2705 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2706 llvm::GlobalVariable::PrivateLinkage, C, 2707 "_unnamed_nsstring_"); 2708 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2709 const char *NSStringNonFragileABISection = 2710 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2711 // FIXME. Fix section. 2712 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2713 ? NSStringNonFragileABISection 2714 : NSStringSection); 2715 Entry.setValue(GV); 2716 2717 return GV; 2718 } 2719 2720 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2721 if (ObjCFastEnumerationStateType.isNull()) { 2722 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2723 D->startDefinition(); 2724 2725 QualType FieldTypes[] = { 2726 Context.UnsignedLongTy, 2727 Context.getPointerType(Context.getObjCIdType()), 2728 Context.getPointerType(Context.UnsignedLongTy), 2729 Context.getConstantArrayType(Context.UnsignedLongTy, 2730 llvm::APInt(32, 5), ArrayType::Normal, 0) 2731 }; 2732 2733 for (size_t i = 0; i < 4; ++i) { 2734 FieldDecl *Field = FieldDecl::Create(Context, 2735 D, 2736 SourceLocation(), 2737 SourceLocation(), nullptr, 2738 FieldTypes[i], /*TInfo=*/nullptr, 2739 /*BitWidth=*/nullptr, 2740 /*Mutable=*/false, 2741 ICIS_NoInit); 2742 Field->setAccess(AS_public); 2743 D->addDecl(Field); 2744 } 2745 2746 D->completeDefinition(); 2747 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2748 } 2749 2750 return ObjCFastEnumerationStateType; 2751 } 2752 2753 llvm::Constant * 2754 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2755 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2756 2757 // Don't emit it as the address of the string, emit the string data itself 2758 // as an inline array. 2759 if (E->getCharByteWidth() == 1) { 2760 SmallString<64> Str(E->getString()); 2761 2762 // Resize the string to the right size, which is indicated by its type. 2763 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2764 Str.resize(CAT->getSize().getZExtValue()); 2765 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2766 } 2767 2768 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2769 llvm::Type *ElemTy = AType->getElementType(); 2770 unsigned NumElements = AType->getNumElements(); 2771 2772 // Wide strings have either 2-byte or 4-byte elements. 2773 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2774 SmallVector<uint16_t, 32> Elements; 2775 Elements.reserve(NumElements); 2776 2777 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2778 Elements.push_back(E->getCodeUnit(i)); 2779 Elements.resize(NumElements); 2780 return llvm::ConstantDataArray::get(VMContext, Elements); 2781 } 2782 2783 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2784 SmallVector<uint32_t, 32> Elements; 2785 Elements.reserve(NumElements); 2786 2787 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2788 Elements.push_back(E->getCodeUnit(i)); 2789 Elements.resize(NumElements); 2790 return llvm::ConstantDataArray::get(VMContext, Elements); 2791 } 2792 2793 static llvm::GlobalVariable * 2794 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2795 CodeGenModule &CGM, StringRef GlobalName, 2796 unsigned Alignment) { 2797 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2798 unsigned AddrSpace = 0; 2799 if (CGM.getLangOpts().OpenCL) 2800 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2801 2802 // Create a global variable for this string 2803 auto *GV = new llvm::GlobalVariable( 2804 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2805 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2806 GV->setAlignment(Alignment); 2807 GV->setUnnamedAddr(true); 2808 return GV; 2809 } 2810 2811 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2812 /// constant array for the given string literal. 2813 llvm::GlobalVariable * 2814 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2815 StringRef Name) { 2816 auto Alignment = 2817 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2818 2819 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2820 llvm::GlobalVariable **Entry = nullptr; 2821 if (!LangOpts.WritableStrings) { 2822 Entry = &ConstantStringMap[C]; 2823 if (auto GV = *Entry) { 2824 if (Alignment > GV->getAlignment()) 2825 GV->setAlignment(Alignment); 2826 return GV; 2827 } 2828 } 2829 2830 SmallString<256> MangledNameBuffer; 2831 StringRef GlobalVariableName; 2832 llvm::GlobalValue::LinkageTypes LT; 2833 2834 // Mangle the string literal if the ABI allows for it. However, we cannot 2835 // do this if we are compiling with ASan or -fwritable-strings because they 2836 // rely on strings having normal linkage. 2837 if (!LangOpts.WritableStrings && 2838 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2839 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2840 llvm::raw_svector_ostream Out(MangledNameBuffer); 2841 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2842 Out.flush(); 2843 2844 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2845 GlobalVariableName = MangledNameBuffer; 2846 } else { 2847 LT = llvm::GlobalValue::PrivateLinkage; 2848 GlobalVariableName = Name; 2849 } 2850 2851 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2852 if (Entry) 2853 *Entry = GV; 2854 2855 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2856 QualType()); 2857 return GV; 2858 } 2859 2860 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2861 /// array for the given ObjCEncodeExpr node. 2862 llvm::GlobalVariable * 2863 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2864 std::string Str; 2865 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2866 2867 return GetAddrOfConstantCString(Str); 2868 } 2869 2870 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2871 /// the literal and a terminating '\0' character. 2872 /// The result has pointer to array type. 2873 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2874 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2875 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2876 if (Alignment == 0) { 2877 Alignment = getContext() 2878 .getAlignOfGlobalVarInChars(getContext().CharTy) 2879 .getQuantity(); 2880 } 2881 2882 llvm::Constant *C = 2883 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2884 2885 // Don't share any string literals if strings aren't constant. 2886 llvm::GlobalVariable **Entry = nullptr; 2887 if (!LangOpts.WritableStrings) { 2888 Entry = &ConstantStringMap[C]; 2889 if (auto GV = *Entry) { 2890 if (Alignment > GV->getAlignment()) 2891 GV->setAlignment(Alignment); 2892 return GV; 2893 } 2894 } 2895 2896 // Get the default prefix if a name wasn't specified. 2897 if (!GlobalName) 2898 GlobalName = ".str"; 2899 // Create a global variable for this. 2900 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2901 GlobalName, Alignment); 2902 if (Entry) 2903 *Entry = GV; 2904 return GV; 2905 } 2906 2907 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2908 const MaterializeTemporaryExpr *E, const Expr *Init) { 2909 assert((E->getStorageDuration() == SD_Static || 2910 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2911 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2912 2913 // If we're not materializing a subobject of the temporary, keep the 2914 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2915 QualType MaterializedType = Init->getType(); 2916 if (Init == E->GetTemporaryExpr()) 2917 MaterializedType = E->getType(); 2918 2919 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2920 if (Slot) 2921 return Slot; 2922 2923 // FIXME: If an externally-visible declaration extends multiple temporaries, 2924 // we need to give each temporary the same name in every translation unit (and 2925 // we also need to make the temporaries externally-visible). 2926 SmallString<256> Name; 2927 llvm::raw_svector_ostream Out(Name); 2928 getCXXABI().getMangleContext().mangleReferenceTemporary( 2929 VD, E->getManglingNumber(), Out); 2930 Out.flush(); 2931 2932 APValue *Value = nullptr; 2933 if (E->getStorageDuration() == SD_Static) { 2934 // We might have a cached constant initializer for this temporary. Note 2935 // that this might have a different value from the value computed by 2936 // evaluating the initializer if the surrounding constant expression 2937 // modifies the temporary. 2938 Value = getContext().getMaterializedTemporaryValue(E, false); 2939 if (Value && Value->isUninit()) 2940 Value = nullptr; 2941 } 2942 2943 // Try evaluating it now, it might have a constant initializer. 2944 Expr::EvalResult EvalResult; 2945 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2946 !EvalResult.hasSideEffects()) 2947 Value = &EvalResult.Val; 2948 2949 llvm::Constant *InitialValue = nullptr; 2950 bool Constant = false; 2951 llvm::Type *Type; 2952 if (Value) { 2953 // The temporary has a constant initializer, use it. 2954 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2955 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2956 Type = InitialValue->getType(); 2957 } else { 2958 // No initializer, the initialization will be provided when we 2959 // initialize the declaration which performed lifetime extension. 2960 Type = getTypes().ConvertTypeForMem(MaterializedType); 2961 } 2962 2963 // Create a global variable for this lifetime-extended temporary. 2964 llvm::GlobalValue::LinkageTypes Linkage = 2965 getLLVMLinkageVarDefinition(VD, Constant); 2966 // There is no need for this temporary to have global linkage if the global 2967 // variable has external linkage. 2968 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2969 Linkage = llvm::GlobalVariable::PrivateLinkage; 2970 unsigned AddrSpace = GetGlobalVarAddressSpace( 2971 VD, getContext().getTargetAddressSpace(MaterializedType)); 2972 auto *GV = new llvm::GlobalVariable( 2973 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2974 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2975 AddrSpace); 2976 setGlobalVisibility(GV, VD); 2977 GV->setAlignment( 2978 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2979 if (VD->getTLSKind()) 2980 setTLSMode(GV, *VD); 2981 Slot = GV; 2982 return GV; 2983 } 2984 2985 /// EmitObjCPropertyImplementations - Emit information for synthesized 2986 /// properties for an implementation. 2987 void CodeGenModule::EmitObjCPropertyImplementations(const 2988 ObjCImplementationDecl *D) { 2989 for (const auto *PID : D->property_impls()) { 2990 // Dynamic is just for type-checking. 2991 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2992 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2993 2994 // Determine which methods need to be implemented, some may have 2995 // been overridden. Note that ::isPropertyAccessor is not the method 2996 // we want, that just indicates if the decl came from a 2997 // property. What we want to know is if the method is defined in 2998 // this implementation. 2999 if (!D->getInstanceMethod(PD->getGetterName())) 3000 CodeGenFunction(*this).GenerateObjCGetter( 3001 const_cast<ObjCImplementationDecl *>(D), PID); 3002 if (!PD->isReadOnly() && 3003 !D->getInstanceMethod(PD->getSetterName())) 3004 CodeGenFunction(*this).GenerateObjCSetter( 3005 const_cast<ObjCImplementationDecl *>(D), PID); 3006 } 3007 } 3008 } 3009 3010 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3011 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3012 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3013 ivar; ivar = ivar->getNextIvar()) 3014 if (ivar->getType().isDestructedType()) 3015 return true; 3016 3017 return false; 3018 } 3019 3020 static bool AllTrivialInitializers(CodeGenModule &CGM, 3021 ObjCImplementationDecl *D) { 3022 CodeGenFunction CGF(CGM); 3023 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3024 E = D->init_end(); B != E; ++B) { 3025 CXXCtorInitializer *CtorInitExp = *B; 3026 Expr *Init = CtorInitExp->getInit(); 3027 if (!CGF.isTrivialInitializer(Init)) 3028 return false; 3029 } 3030 return true; 3031 } 3032 3033 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3034 /// for an implementation. 3035 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3036 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3037 if (needsDestructMethod(D)) { 3038 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3039 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3040 ObjCMethodDecl *DTORMethod = 3041 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3042 cxxSelector, getContext().VoidTy, nullptr, D, 3043 /*isInstance=*/true, /*isVariadic=*/false, 3044 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3045 /*isDefined=*/false, ObjCMethodDecl::Required); 3046 D->addInstanceMethod(DTORMethod); 3047 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3048 D->setHasDestructors(true); 3049 } 3050 3051 // If the implementation doesn't have any ivar initializers, we don't need 3052 // a .cxx_construct. 3053 if (D->getNumIvarInitializers() == 0 || 3054 AllTrivialInitializers(*this, D)) 3055 return; 3056 3057 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3058 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3059 // The constructor returns 'self'. 3060 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3061 D->getLocation(), 3062 D->getLocation(), 3063 cxxSelector, 3064 getContext().getObjCIdType(), 3065 nullptr, D, /*isInstance=*/true, 3066 /*isVariadic=*/false, 3067 /*isPropertyAccessor=*/true, 3068 /*isImplicitlyDeclared=*/true, 3069 /*isDefined=*/false, 3070 ObjCMethodDecl::Required); 3071 D->addInstanceMethod(CTORMethod); 3072 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3073 D->setHasNonZeroConstructors(true); 3074 } 3075 3076 /// EmitNamespace - Emit all declarations in a namespace. 3077 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3078 for (auto *I : ND->decls()) { 3079 if (const auto *VD = dyn_cast<VarDecl>(I)) 3080 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3081 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3082 continue; 3083 EmitTopLevelDecl(I); 3084 } 3085 } 3086 3087 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3088 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3089 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3090 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3091 ErrorUnsupported(LSD, "linkage spec"); 3092 return; 3093 } 3094 3095 for (auto *I : LSD->decls()) { 3096 // Meta-data for ObjC class includes references to implemented methods. 3097 // Generate class's method definitions first. 3098 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3099 for (auto *M : OID->methods()) 3100 EmitTopLevelDecl(M); 3101 } 3102 EmitTopLevelDecl(I); 3103 } 3104 } 3105 3106 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3107 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3108 // Ignore dependent declarations. 3109 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3110 return; 3111 3112 switch (D->getKind()) { 3113 case Decl::CXXConversion: 3114 case Decl::CXXMethod: 3115 case Decl::Function: 3116 // Skip function templates 3117 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3118 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3119 return; 3120 3121 EmitGlobal(cast<FunctionDecl>(D)); 3122 // Always provide some coverage mapping 3123 // even for the functions that aren't emitted. 3124 AddDeferredUnusedCoverageMapping(D); 3125 break; 3126 3127 case Decl::Var: 3128 // Skip variable templates 3129 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3130 return; 3131 case Decl::VarTemplateSpecialization: 3132 EmitGlobal(cast<VarDecl>(D)); 3133 break; 3134 3135 // Indirect fields from global anonymous structs and unions can be 3136 // ignored; only the actual variable requires IR gen support. 3137 case Decl::IndirectField: 3138 break; 3139 3140 // C++ Decls 3141 case Decl::Namespace: 3142 EmitNamespace(cast<NamespaceDecl>(D)); 3143 break; 3144 // No code generation needed. 3145 case Decl::UsingShadow: 3146 case Decl::ClassTemplate: 3147 case Decl::VarTemplate: 3148 case Decl::VarTemplatePartialSpecialization: 3149 case Decl::FunctionTemplate: 3150 case Decl::TypeAliasTemplate: 3151 case Decl::Block: 3152 case Decl::Empty: 3153 break; 3154 case Decl::Using: // using X; [C++] 3155 if (CGDebugInfo *DI = getModuleDebugInfo()) 3156 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3157 return; 3158 case Decl::NamespaceAlias: 3159 if (CGDebugInfo *DI = getModuleDebugInfo()) 3160 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3161 return; 3162 case Decl::UsingDirective: // using namespace X; [C++] 3163 if (CGDebugInfo *DI = getModuleDebugInfo()) 3164 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3165 return; 3166 case Decl::CXXConstructor: 3167 // Skip function templates 3168 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3169 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3170 return; 3171 3172 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3173 break; 3174 case Decl::CXXDestructor: 3175 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3176 return; 3177 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3178 break; 3179 3180 case Decl::StaticAssert: 3181 // Nothing to do. 3182 break; 3183 3184 // Objective-C Decls 3185 3186 // Forward declarations, no (immediate) code generation. 3187 case Decl::ObjCInterface: 3188 case Decl::ObjCCategory: 3189 break; 3190 3191 case Decl::ObjCProtocol: { 3192 auto *Proto = cast<ObjCProtocolDecl>(D); 3193 if (Proto->isThisDeclarationADefinition()) 3194 ObjCRuntime->GenerateProtocol(Proto); 3195 break; 3196 } 3197 3198 case Decl::ObjCCategoryImpl: 3199 // Categories have properties but don't support synthesize so we 3200 // can ignore them here. 3201 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3202 break; 3203 3204 case Decl::ObjCImplementation: { 3205 auto *OMD = cast<ObjCImplementationDecl>(D); 3206 EmitObjCPropertyImplementations(OMD); 3207 EmitObjCIvarInitializations(OMD); 3208 ObjCRuntime->GenerateClass(OMD); 3209 // Emit global variable debug information. 3210 if (CGDebugInfo *DI = getModuleDebugInfo()) 3211 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3212 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3213 OMD->getClassInterface()), OMD->getLocation()); 3214 break; 3215 } 3216 case Decl::ObjCMethod: { 3217 auto *OMD = cast<ObjCMethodDecl>(D); 3218 // If this is not a prototype, emit the body. 3219 if (OMD->getBody()) 3220 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3221 break; 3222 } 3223 case Decl::ObjCCompatibleAlias: 3224 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3225 break; 3226 3227 case Decl::LinkageSpec: 3228 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3229 break; 3230 3231 case Decl::FileScopeAsm: { 3232 auto *AD = cast<FileScopeAsmDecl>(D); 3233 StringRef AsmString = AD->getAsmString()->getString(); 3234 3235 const std::string &S = getModule().getModuleInlineAsm(); 3236 if (S.empty()) 3237 getModule().setModuleInlineAsm(AsmString); 3238 else if (S.end()[-1] == '\n') 3239 getModule().setModuleInlineAsm(S + AsmString.str()); 3240 else 3241 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3242 break; 3243 } 3244 3245 case Decl::Import: { 3246 auto *Import = cast<ImportDecl>(D); 3247 3248 // Ignore import declarations that come from imported modules. 3249 if (clang::Module *Owner = Import->getOwningModule()) { 3250 if (getLangOpts().CurrentModule.empty() || 3251 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3252 break; 3253 } 3254 3255 ImportedModules.insert(Import->getImportedModule()); 3256 break; 3257 } 3258 3259 case Decl::OMPThreadPrivate: 3260 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3261 break; 3262 3263 case Decl::ClassTemplateSpecialization: { 3264 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3265 if (DebugInfo && 3266 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3267 DebugInfo->completeTemplateDefinition(*Spec); 3268 } 3269 3270 default: 3271 // Make sure we handled everything we should, every other kind is a 3272 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3273 // function. Need to recode Decl::Kind to do that easily. 3274 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3275 } 3276 } 3277 3278 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3279 // Do we need to generate coverage mapping? 3280 if (!CodeGenOpts.CoverageMapping) 3281 return; 3282 switch (D->getKind()) { 3283 case Decl::CXXConversion: 3284 case Decl::CXXMethod: 3285 case Decl::Function: 3286 case Decl::ObjCMethod: 3287 case Decl::CXXConstructor: 3288 case Decl::CXXDestructor: { 3289 if (!cast<FunctionDecl>(D)->hasBody()) 3290 return; 3291 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3292 if (I == DeferredEmptyCoverageMappingDecls.end()) 3293 DeferredEmptyCoverageMappingDecls[D] = true; 3294 break; 3295 } 3296 default: 3297 break; 3298 }; 3299 } 3300 3301 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3302 // Do we need to generate coverage mapping? 3303 if (!CodeGenOpts.CoverageMapping) 3304 return; 3305 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3306 if (Fn->isTemplateInstantiation()) 3307 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3308 } 3309 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3310 if (I == DeferredEmptyCoverageMappingDecls.end()) 3311 DeferredEmptyCoverageMappingDecls[D] = false; 3312 else 3313 I->second = false; 3314 } 3315 3316 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3317 std::vector<const Decl *> DeferredDecls; 3318 for (const auto I : DeferredEmptyCoverageMappingDecls) { 3319 if (!I.second) 3320 continue; 3321 DeferredDecls.push_back(I.first); 3322 } 3323 // Sort the declarations by their location to make sure that the tests get a 3324 // predictable order for the coverage mapping for the unused declarations. 3325 if (CodeGenOpts.DumpCoverageMapping) 3326 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3327 [] (const Decl *LHS, const Decl *RHS) { 3328 return LHS->getLocStart() < RHS->getLocStart(); 3329 }); 3330 for (const auto *D : DeferredDecls) { 3331 switch (D->getKind()) { 3332 case Decl::CXXConversion: 3333 case Decl::CXXMethod: 3334 case Decl::Function: 3335 case Decl::ObjCMethod: { 3336 CodeGenPGO PGO(*this); 3337 GlobalDecl GD(cast<FunctionDecl>(D)); 3338 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3339 getFunctionLinkage(GD)); 3340 break; 3341 } 3342 case Decl::CXXConstructor: { 3343 CodeGenPGO PGO(*this); 3344 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3345 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3346 getFunctionLinkage(GD)); 3347 break; 3348 } 3349 case Decl::CXXDestructor: { 3350 CodeGenPGO PGO(*this); 3351 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3352 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3353 getFunctionLinkage(GD)); 3354 break; 3355 } 3356 default: 3357 break; 3358 }; 3359 } 3360 } 3361 3362 /// Turns the given pointer into a constant. 3363 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3364 const void *Ptr) { 3365 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3366 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3367 return llvm::ConstantInt::get(i64, PtrInt); 3368 } 3369 3370 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3371 llvm::NamedMDNode *&GlobalMetadata, 3372 GlobalDecl D, 3373 llvm::GlobalValue *Addr) { 3374 if (!GlobalMetadata) 3375 GlobalMetadata = 3376 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3377 3378 // TODO: should we report variant information for ctors/dtors? 3379 llvm::Value *Ops[] = { 3380 Addr, 3381 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3382 }; 3383 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3384 } 3385 3386 /// For each function which is declared within an extern "C" region and marked 3387 /// as 'used', but has internal linkage, create an alias from the unmangled 3388 /// name to the mangled name if possible. People expect to be able to refer 3389 /// to such functions with an unmangled name from inline assembly within the 3390 /// same translation unit. 3391 void CodeGenModule::EmitStaticExternCAliases() { 3392 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3393 E = StaticExternCValues.end(); 3394 I != E; ++I) { 3395 IdentifierInfo *Name = I->first; 3396 llvm::GlobalValue *Val = I->second; 3397 if (Val && !getModule().getNamedValue(Name->getName())) 3398 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3399 } 3400 } 3401 3402 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3403 GlobalDecl &Result) const { 3404 auto Res = Manglings.find(MangledName); 3405 if (Res == Manglings.end()) 3406 return false; 3407 Result = Res->getValue(); 3408 return true; 3409 } 3410 3411 /// Emits metadata nodes associating all the global values in the 3412 /// current module with the Decls they came from. This is useful for 3413 /// projects using IR gen as a subroutine. 3414 /// 3415 /// Since there's currently no way to associate an MDNode directly 3416 /// with an llvm::GlobalValue, we create a global named metadata 3417 /// with the name 'clang.global.decl.ptrs'. 3418 void CodeGenModule::EmitDeclMetadata() { 3419 llvm::NamedMDNode *GlobalMetadata = nullptr; 3420 3421 // StaticLocalDeclMap 3422 for (auto &I : MangledDeclNames) { 3423 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3424 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3425 } 3426 } 3427 3428 /// Emits metadata nodes for all the local variables in the current 3429 /// function. 3430 void CodeGenFunction::EmitDeclMetadata() { 3431 if (LocalDeclMap.empty()) return; 3432 3433 llvm::LLVMContext &Context = getLLVMContext(); 3434 3435 // Find the unique metadata ID for this name. 3436 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3437 3438 llvm::NamedMDNode *GlobalMetadata = nullptr; 3439 3440 for (auto &I : LocalDeclMap) { 3441 const Decl *D = I.first; 3442 llvm::Value *Addr = I.second; 3443 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3444 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3445 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3446 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3447 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3448 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3449 } 3450 } 3451 } 3452 3453 void CodeGenModule::EmitVersionIdentMetadata() { 3454 llvm::NamedMDNode *IdentMetadata = 3455 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3456 std::string Version = getClangFullVersion(); 3457 llvm::LLVMContext &Ctx = TheModule.getContext(); 3458 3459 llvm::Value *IdentNode[] = { 3460 llvm::MDString::get(Ctx, Version) 3461 }; 3462 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3463 } 3464 3465 void CodeGenModule::EmitTargetMetadata() { 3466 // Warning, new MangledDeclNames may be appended within this loop. 3467 // We rely on MapVector insertions adding new elements to the end 3468 // of the container. 3469 // FIXME: Move this loop into the one target that needs it, and only 3470 // loop over those declarations for which we couldn't emit the target 3471 // metadata when we emitted the declaration. 3472 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3473 auto Val = *(MangledDeclNames.begin() + I); 3474 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3475 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3476 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3477 } 3478 } 3479 3480 void CodeGenModule::EmitCoverageFile() { 3481 if (!getCodeGenOpts().CoverageFile.empty()) { 3482 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3483 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3484 llvm::LLVMContext &Ctx = TheModule.getContext(); 3485 llvm::MDString *CoverageFile = 3486 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3487 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3488 llvm::MDNode *CU = CUNode->getOperand(i); 3489 llvm::Value *node[] = { CoverageFile, CU }; 3490 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3491 GCov->addOperand(N); 3492 } 3493 } 3494 } 3495 } 3496 3497 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3498 // Sema has checked that all uuid strings are of the form 3499 // "12345678-1234-1234-1234-1234567890ab". 3500 assert(Uuid.size() == 36); 3501 for (unsigned i = 0; i < 36; ++i) { 3502 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3503 else assert(isHexDigit(Uuid[i])); 3504 } 3505 3506 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3507 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3508 3509 llvm::Constant *Field3[8]; 3510 for (unsigned Idx = 0; Idx < 8; ++Idx) 3511 Field3[Idx] = llvm::ConstantInt::get( 3512 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3513 3514 llvm::Constant *Fields[4] = { 3515 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3516 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3517 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3518 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3519 }; 3520 3521 return llvm::ConstantStruct::getAnon(Fields); 3522 } 3523 3524 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3525 bool ForEH) { 3526 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3527 // FIXME: should we even be calling this method if RTTI is disabled 3528 // and it's not for EH? 3529 if (!ForEH && !getLangOpts().RTTI) 3530 return llvm::Constant::getNullValue(Int8PtrTy); 3531 3532 if (ForEH && Ty->isObjCObjectPointerType() && 3533 LangOpts.ObjCRuntime.isGNUFamily()) 3534 return ObjCRuntime->GetEHType(Ty); 3535 3536 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3537 } 3538 3539 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3540 for (auto RefExpr : D->varlists()) { 3541 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3542 bool PerformInit = 3543 VD->getAnyInitializer() && 3544 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3545 /*ForRef=*/false); 3546 if (auto InitFunction = 3547 getOpenMPRuntime().EmitOMPThreadPrivateVarDefinition( 3548 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), 3549 PerformInit)) 3550 CXXGlobalInits.push_back(InitFunction); 3551 } 3552 } 3553 3554