xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 90abdf83e273586a43e1270e5f0a11de5cc35383)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::le32:
120     return createPNaClTargetCodeGenInfo(CGM);
121   case llvm::Triple::m68k:
122     return createM68kTargetCodeGenInfo(CGM);
123   case llvm::Triple::mips:
124   case llvm::Triple::mipsel:
125     if (Triple.getOS() == llvm::Triple::NaCl)
126       return createPNaClTargetCodeGenInfo(CGM);
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
128 
129   case llvm::Triple::mips64:
130   case llvm::Triple::mips64el:
131     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
132 
133   case llvm::Triple::avr: {
134     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135     // on avrtiny. For passing return value, R18~R25 are used on avr, and
136     // R22~R25 are used on avrtiny.
137     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
138     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
139     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
140   }
141 
142   case llvm::Triple::aarch64:
143   case llvm::Triple::aarch64_32:
144   case llvm::Triple::aarch64_be: {
145     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
146     if (Target.getABI() == "darwinpcs")
147       Kind = AArch64ABIKind::DarwinPCS;
148     else if (Triple.isOSWindows())
149       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
150     else if (Target.getABI() == "aapcs-soft")
151       Kind = AArch64ABIKind::AAPCSSoft;
152 
153     return createAArch64TargetCodeGenInfo(CGM, Kind);
154   }
155 
156   case llvm::Triple::wasm32:
157   case llvm::Triple::wasm64: {
158     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
159     if (Target.getABI() == "experimental-mv")
160       Kind = WebAssemblyABIKind::ExperimentalMV;
161     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
162   }
163 
164   case llvm::Triple::arm:
165   case llvm::Triple::armeb:
166   case llvm::Triple::thumb:
167   case llvm::Triple::thumbeb: {
168     if (Triple.getOS() == llvm::Triple::Win32)
169       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
170 
171     ARMABIKind Kind = ARMABIKind::AAPCS;
172     StringRef ABIStr = Target.getABI();
173     if (ABIStr == "apcs-gnu")
174       Kind = ARMABIKind::APCS;
175     else if (ABIStr == "aapcs16")
176       Kind = ARMABIKind::AAPCS16_VFP;
177     else if (CodeGenOpts.FloatABI == "hard" ||
178              (CodeGenOpts.FloatABI != "soft" &&
179               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
180                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
181                Triple.getEnvironment() == llvm::Triple::EABIHF)))
182       Kind = ARMABIKind::AAPCS_VFP;
183 
184     return createARMTargetCodeGenInfo(CGM, Kind);
185   }
186 
187   case llvm::Triple::ppc: {
188     if (Triple.isOSAIX())
189       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
190 
191     bool IsSoftFloat =
192         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
193     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
194   }
195   case llvm::Triple::ppcle: {
196     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
197     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
198   }
199   case llvm::Triple::ppc64:
200     if (Triple.isOSAIX())
201       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
202 
203     if (Triple.isOSBinFormatELF()) {
204       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
205       if (Target.getABI() == "elfv2")
206         Kind = PPC64_SVR4_ABIKind::ELFv2;
207       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
208 
209       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
210     }
211     return createPPC64TargetCodeGenInfo(CGM);
212   case llvm::Triple::ppc64le: {
213     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
214     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
215     if (Target.getABI() == "elfv1")
216       Kind = PPC64_SVR4_ABIKind::ELFv1;
217     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
218 
219     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
220   }
221 
222   case llvm::Triple::nvptx:
223   case llvm::Triple::nvptx64:
224     return createNVPTXTargetCodeGenInfo(CGM);
225 
226   case llvm::Triple::msp430:
227     return createMSP430TargetCodeGenInfo(CGM);
228 
229   case llvm::Triple::riscv32:
230   case llvm::Triple::riscv64: {
231     StringRef ABIStr = Target.getABI();
232     unsigned XLen = Target.getPointerWidth(LangAS::Default);
233     unsigned ABIFLen = 0;
234     if (ABIStr.ends_with("f"))
235       ABIFLen = 32;
236     else if (ABIStr.ends_with("d"))
237       ABIFLen = 64;
238     bool EABI = ABIStr.ends_with("e");
239     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
240   }
241 
242   case llvm::Triple::systemz: {
243     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
244     bool HasVector = !SoftFloat && Target.getABI() == "vector";
245     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
246   }
247 
248   case llvm::Triple::tce:
249   case llvm::Triple::tcele:
250     return createTCETargetCodeGenInfo(CGM);
251 
252   case llvm::Triple::x86: {
253     bool IsDarwinVectorABI = Triple.isOSDarwin();
254     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
255 
256     if (Triple.getOS() == llvm::Triple::Win32) {
257       return createWinX86_32TargetCodeGenInfo(
258           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
259           CodeGenOpts.NumRegisterParameters);
260     }
261     return createX86_32TargetCodeGenInfo(
262         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
263         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
264   }
265 
266   case llvm::Triple::x86_64: {
267     StringRef ABI = Target.getABI();
268     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
269                                : ABI == "avx"  ? X86AVXABILevel::AVX
270                                                : X86AVXABILevel::None);
271 
272     switch (Triple.getOS()) {
273     case llvm::Triple::Win32:
274       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
275     default:
276       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
277     }
278   }
279   case llvm::Triple::hexagon:
280     return createHexagonTargetCodeGenInfo(CGM);
281   case llvm::Triple::lanai:
282     return createLanaiTargetCodeGenInfo(CGM);
283   case llvm::Triple::r600:
284     return createAMDGPUTargetCodeGenInfo(CGM);
285   case llvm::Triple::amdgcn:
286     return createAMDGPUTargetCodeGenInfo(CGM);
287   case llvm::Triple::sparc:
288     return createSparcV8TargetCodeGenInfo(CGM);
289   case llvm::Triple::sparcv9:
290     return createSparcV9TargetCodeGenInfo(CGM);
291   case llvm::Triple::xcore:
292     return createXCoreTargetCodeGenInfo(CGM);
293   case llvm::Triple::arc:
294     return createARCTargetCodeGenInfo(CGM);
295   case llvm::Triple::spir:
296   case llvm::Triple::spir64:
297     return createCommonSPIRTargetCodeGenInfo(CGM);
298   case llvm::Triple::spirv32:
299   case llvm::Triple::spirv64:
300     return createSPIRVTargetCodeGenInfo(CGM);
301   case llvm::Triple::ve:
302     return createVETargetCodeGenInfo(CGM);
303   case llvm::Triple::csky: {
304     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
305     bool hasFP64 =
306         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
307     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
308                                             : hasFP64   ? 64
309                                                         : 32);
310   }
311   case llvm::Triple::bpfeb:
312   case llvm::Triple::bpfel:
313     return createBPFTargetCodeGenInfo(CGM);
314   case llvm::Triple::loongarch32:
315   case llvm::Triple::loongarch64: {
316     StringRef ABIStr = Target.getABI();
317     unsigned ABIFRLen = 0;
318     if (ABIStr.ends_with("f"))
319       ABIFRLen = 32;
320     else if (ABIStr.ends_with("d"))
321       ABIFRLen = 64;
322     return createLoongArchTargetCodeGenInfo(
323         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
324   }
325   }
326 }
327 
328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
329   if (!TheTargetCodeGenInfo)
330     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
331   return *TheTargetCodeGenInfo;
332 }
333 
334 CodeGenModule::CodeGenModule(ASTContext &C,
335                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
336                              const HeaderSearchOptions &HSO,
337                              const PreprocessorOptions &PPO,
338                              const CodeGenOptions &CGO, llvm::Module &M,
339                              DiagnosticsEngine &diags,
340                              CoverageSourceInfo *CoverageInfo)
341     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
342       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
343       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
344       VMContext(M.getContext()), Types(*this), VTables(*this),
345       SanitizerMD(new SanitizerMetadata(*this)) {
346 
347   // Initialize the type cache.
348   llvm::LLVMContext &LLVMContext = M.getContext();
349   VoidTy = llvm::Type::getVoidTy(LLVMContext);
350   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
351   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
352   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
353   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
354   HalfTy = llvm::Type::getHalfTy(LLVMContext);
355   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
356   FloatTy = llvm::Type::getFloatTy(LLVMContext);
357   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
358   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
359   PointerAlignInBytes =
360       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
361           .getQuantity();
362   SizeSizeInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
364   IntAlignInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
366   CharTy =
367     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
368   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
369   IntPtrTy = llvm::IntegerType::get(LLVMContext,
370     C.getTargetInfo().getMaxPointerWidth());
371   Int8PtrTy = llvm::PointerType::get(LLVMContext,
372                                      C.getTargetAddressSpace(LangAS::Default));
373   const llvm::DataLayout &DL = M.getDataLayout();
374   AllocaInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
376   GlobalsInt8PtrTy =
377       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
378   ConstGlobalsPtrTy = llvm::PointerType::get(
379       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
380   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
381 
382   // Build C++20 Module initializers.
383   // TODO: Add Microsoft here once we know the mangling required for the
384   // initializers.
385   CXX20ModuleInits =
386       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
387                                        ItaniumMangleContext::MK_Itanium;
388 
389   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
390 
391   if (LangOpts.ObjC)
392     createObjCRuntime();
393   if (LangOpts.OpenCL)
394     createOpenCLRuntime();
395   if (LangOpts.OpenMP)
396     createOpenMPRuntime();
397   if (LangOpts.CUDA)
398     createCUDARuntime();
399   if (LangOpts.HLSL)
400     createHLSLRuntime();
401 
402   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
403   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
404       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
405     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
406                                getLangOpts(), getCXXABI().getMangleContext()));
407 
408   // If debug info or coverage generation is enabled, create the CGDebugInfo
409   // object.
410   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
411       CodeGenOpts.CoverageNotesFile.size() ||
412       CodeGenOpts.CoverageDataFile.size())
413     DebugInfo.reset(new CGDebugInfo(*this));
414 
415   Block.GlobalUniqueCount = 0;
416 
417   if (C.getLangOpts().ObjC)
418     ObjCData.reset(new ObjCEntrypoints());
419 
420   if (CodeGenOpts.hasProfileClangUse()) {
421     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
422         CodeGenOpts.ProfileInstrumentUsePath, *FS,
423         CodeGenOpts.ProfileRemappingFile);
424     // We're checking for profile read errors in CompilerInvocation, so if
425     // there was an error it should've already been caught. If it hasn't been
426     // somehow, trip an assertion.
427     assert(ReaderOrErr);
428     PGOReader = std::move(ReaderOrErr.get());
429   }
430 
431   // If coverage mapping generation is enabled, create the
432   // CoverageMappingModuleGen object.
433   if (CodeGenOpts.CoverageMapping)
434     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
435 
436   // Generate the module name hash here if needed.
437   if (CodeGenOpts.UniqueInternalLinkageNames &&
438       !getModule().getSourceFileName().empty()) {
439     std::string Path = getModule().getSourceFileName();
440     // Check if a path substitution is needed from the MacroPrefixMap.
441     for (const auto &Entry : LangOpts.MacroPrefixMap)
442       if (Path.rfind(Entry.first, 0) != std::string::npos) {
443         Path = Entry.second + Path.substr(Entry.first.size());
444         break;
445       }
446     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
447   }
448 
449   // Record mregparm value now so it is visible through all of codegen.
450   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
451     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
452                               CodeGenOpts.NumRegisterParameters);
453 }
454 
455 CodeGenModule::~CodeGenModule() {}
456 
457 void CodeGenModule::createObjCRuntime() {
458   // This is just isGNUFamily(), but we want to force implementors of
459   // new ABIs to decide how best to do this.
460   switch (LangOpts.ObjCRuntime.getKind()) {
461   case ObjCRuntime::GNUstep:
462   case ObjCRuntime::GCC:
463   case ObjCRuntime::ObjFW:
464     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
465     return;
466 
467   case ObjCRuntime::FragileMacOSX:
468   case ObjCRuntime::MacOSX:
469   case ObjCRuntime::iOS:
470   case ObjCRuntime::WatchOS:
471     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
472     return;
473   }
474   llvm_unreachable("bad runtime kind");
475 }
476 
477 void CodeGenModule::createOpenCLRuntime() {
478   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
479 }
480 
481 void CodeGenModule::createOpenMPRuntime() {
482   // Select a specialized code generation class based on the target, if any.
483   // If it does not exist use the default implementation.
484   switch (getTriple().getArch()) {
485   case llvm::Triple::nvptx:
486   case llvm::Triple::nvptx64:
487   case llvm::Triple::amdgcn:
488     assert(getLangOpts().OpenMPIsTargetDevice &&
489            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
490     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
491     break;
492   default:
493     if (LangOpts.OpenMPSimd)
494       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
495     else
496       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
497     break;
498   }
499 }
500 
501 void CodeGenModule::createCUDARuntime() {
502   CUDARuntime.reset(CreateNVCUDARuntime(*this));
503 }
504 
505 void CodeGenModule::createHLSLRuntime() {
506   HLSLRuntime.reset(new CGHLSLRuntime(*this));
507 }
508 
509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
510   Replacements[Name] = C;
511 }
512 
513 void CodeGenModule::applyReplacements() {
514   for (auto &I : Replacements) {
515     StringRef MangledName = I.first;
516     llvm::Constant *Replacement = I.second;
517     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
518     if (!Entry)
519       continue;
520     auto *OldF = cast<llvm::Function>(Entry);
521     auto *NewF = dyn_cast<llvm::Function>(Replacement);
522     if (!NewF) {
523       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
524         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
525       } else {
526         auto *CE = cast<llvm::ConstantExpr>(Replacement);
527         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
528                CE->getOpcode() == llvm::Instruction::GetElementPtr);
529         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
530       }
531     }
532 
533     // Replace old with new, but keep the old order.
534     OldF->replaceAllUsesWith(Replacement);
535     if (NewF) {
536       NewF->removeFromParent();
537       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
538                                                        NewF);
539     }
540     OldF->eraseFromParent();
541   }
542 }
543 
544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
545   GlobalValReplacements.push_back(std::make_pair(GV, C));
546 }
547 
548 void CodeGenModule::applyGlobalValReplacements() {
549   for (auto &I : GlobalValReplacements) {
550     llvm::GlobalValue *GV = I.first;
551     llvm::Constant *C = I.second;
552 
553     GV->replaceAllUsesWith(C);
554     GV->eraseFromParent();
555   }
556 }
557 
558 // This is only used in aliases that we created and we know they have a
559 // linear structure.
560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
561   const llvm::Constant *C;
562   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
563     C = GA->getAliasee();
564   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
565     C = GI->getResolver();
566   else
567     return GV;
568 
569   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
570   if (!AliaseeGV)
571     return nullptr;
572 
573   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
574   if (FinalGV == GV)
575     return nullptr;
576 
577   return FinalGV;
578 }
579 
580 static bool checkAliasedGlobal(
581     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
582     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
583     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
584     SourceRange AliasRange) {
585   GV = getAliasedGlobal(Alias);
586   if (!GV) {
587     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
588     return false;
589   }
590 
591   if (GV->hasCommonLinkage()) {
592     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
593     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
594       Diags.Report(Location, diag::err_alias_to_common);
595       return false;
596     }
597   }
598 
599   if (GV->isDeclaration()) {
600     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
601     Diags.Report(Location, diag::note_alias_requires_mangled_name)
602         << IsIFunc << IsIFunc;
603     // Provide a note if the given function is not found and exists as a
604     // mangled name.
605     for (const auto &[Decl, Name] : MangledDeclNames) {
606       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
607         if (ND->getName() == GV->getName()) {
608           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
609               << Name
610               << FixItHint::CreateReplacement(
611                      AliasRange,
612                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
613                          .str());
614         }
615       }
616     }
617     return false;
618   }
619 
620   if (IsIFunc) {
621     // Check resolver function type.
622     const auto *F = dyn_cast<llvm::Function>(GV);
623     if (!F) {
624       Diags.Report(Location, diag::err_alias_to_undefined)
625           << IsIFunc << IsIFunc;
626       return false;
627     }
628 
629     llvm::FunctionType *FTy = F->getFunctionType();
630     if (!FTy->getReturnType()->isPointerTy()) {
631       Diags.Report(Location, diag::err_ifunc_resolver_return);
632       return false;
633     }
634   }
635 
636   return true;
637 }
638 
639 // Emit a warning if toc-data attribute is requested for global variables that
640 // have aliases and remove the toc-data attribute.
641 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
642                                  const CodeGenOptions &CodeGenOpts,
643                                  DiagnosticsEngine &Diags,
644                                  SourceLocation Location) {
645   if (GVar->hasAttribute("toc-data")) {
646     auto GVId = GVar->getName();
647     // Is this a global variable specified by the user as local?
648     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
649       Diags.Report(Location, diag::warn_toc_unsupported_type)
650           << GVId << "the variable has an alias";
651     }
652     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
653     llvm::AttributeSet NewAttributes =
654         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
655     GVar->setAttributes(NewAttributes);
656   }
657 }
658 
659 void CodeGenModule::checkAliases() {
660   // Check if the constructed aliases are well formed. It is really unfortunate
661   // that we have to do this in CodeGen, but we only construct mangled names
662   // and aliases during codegen.
663   bool Error = false;
664   DiagnosticsEngine &Diags = getDiags();
665   for (const GlobalDecl &GD : Aliases) {
666     const auto *D = cast<ValueDecl>(GD.getDecl());
667     SourceLocation Location;
668     SourceRange Range;
669     bool IsIFunc = D->hasAttr<IFuncAttr>();
670     if (const Attr *A = D->getDefiningAttr()) {
671       Location = A->getLocation();
672       Range = A->getRange();
673     } else
674       llvm_unreachable("Not an alias or ifunc?");
675 
676     StringRef MangledName = getMangledName(GD);
677     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
678     const llvm::GlobalValue *GV = nullptr;
679     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
680                             MangledDeclNames, Range)) {
681       Error = true;
682       continue;
683     }
684 
685     if (getContext().getTargetInfo().getTriple().isOSAIX())
686       if (const llvm::GlobalVariable *GVar =
687               dyn_cast<const llvm::GlobalVariable>(GV))
688         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
689                              getCodeGenOpts(), Diags, Location);
690 
691     llvm::Constant *Aliasee =
692         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
693                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
694 
695     llvm::GlobalValue *AliaseeGV;
696     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
697       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
698     else
699       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
700 
701     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
702       StringRef AliasSection = SA->getName();
703       if (AliasSection != AliaseeGV->getSection())
704         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
705             << AliasSection << IsIFunc << IsIFunc;
706     }
707 
708     // We have to handle alias to weak aliases in here. LLVM itself disallows
709     // this since the object semantics would not match the IL one. For
710     // compatibility with gcc we implement it by just pointing the alias
711     // to its aliasee's aliasee. We also warn, since the user is probably
712     // expecting the link to be weak.
713     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
714       if (GA->isInterposable()) {
715         Diags.Report(Location, diag::warn_alias_to_weak_alias)
716             << GV->getName() << GA->getName() << IsIFunc;
717         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
718             GA->getAliasee(), Alias->getType());
719 
720         if (IsIFunc)
721           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
722         else
723           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
724       }
725     }
726   }
727   if (!Error)
728     return;
729 
730   for (const GlobalDecl &GD : Aliases) {
731     StringRef MangledName = getMangledName(GD);
732     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
733     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
734     Alias->eraseFromParent();
735   }
736 }
737 
738 void CodeGenModule::clear() {
739   DeferredDeclsToEmit.clear();
740   EmittedDeferredDecls.clear();
741   DeferredAnnotations.clear();
742   if (OpenMPRuntime)
743     OpenMPRuntime->clear();
744 }
745 
746 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
747                                        StringRef MainFile) {
748   if (!hasDiagnostics())
749     return;
750   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
751     if (MainFile.empty())
752       MainFile = "<stdin>";
753     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
754   } else {
755     if (Mismatched > 0)
756       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
757 
758     if (Missing > 0)
759       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
760   }
761 }
762 
763 static std::optional<llvm::GlobalValue::VisibilityTypes>
764 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
765   // Map to LLVM visibility.
766   switch (K) {
767   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
768     return std::nullopt;
769   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
770     return llvm::GlobalValue::DefaultVisibility;
771   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
772     return llvm::GlobalValue::HiddenVisibility;
773   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
774     return llvm::GlobalValue::ProtectedVisibility;
775   }
776   llvm_unreachable("unknown option value!");
777 }
778 
779 void setLLVMVisibility(llvm::GlobalValue &GV,
780                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
781   if (!V)
782     return;
783 
784   // Reset DSO locality before setting the visibility. This removes
785   // any effects that visibility options and annotations may have
786   // had on the DSO locality. Setting the visibility will implicitly set
787   // appropriate globals to DSO Local; however, this will be pessimistic
788   // w.r.t. to the normal compiler IRGen.
789   GV.setDSOLocal(false);
790   GV.setVisibility(*V);
791 }
792 
793 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
794                                              llvm::Module &M) {
795   if (!LO.VisibilityFromDLLStorageClass)
796     return;
797 
798   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
799       getLLVMVisibility(LO.getDLLExportVisibility());
800 
801   std::optional<llvm::GlobalValue::VisibilityTypes>
802       NoDLLStorageClassVisibility =
803           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
804 
805   std::optional<llvm::GlobalValue::VisibilityTypes>
806       ExternDeclDLLImportVisibility =
807           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
808 
809   std::optional<llvm::GlobalValue::VisibilityTypes>
810       ExternDeclNoDLLStorageClassVisibility =
811           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
812 
813   for (llvm::GlobalValue &GV : M.global_values()) {
814     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
815       continue;
816 
817     if (GV.isDeclarationForLinker())
818       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
819                                     llvm::GlobalValue::DLLImportStorageClass
820                                 ? ExternDeclDLLImportVisibility
821                                 : ExternDeclNoDLLStorageClassVisibility);
822     else
823       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
824                                     llvm::GlobalValue::DLLExportStorageClass
825                                 ? DLLExportVisibility
826                                 : NoDLLStorageClassVisibility);
827 
828     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
829   }
830 }
831 
832 static bool isStackProtectorOn(const LangOptions &LangOpts,
833                                const llvm::Triple &Triple,
834                                clang::LangOptions::StackProtectorMode Mode) {
835   if (Triple.isAMDGPU() || Triple.isNVPTX())
836     return false;
837   return LangOpts.getStackProtector() == Mode;
838 }
839 
840 void CodeGenModule::Release() {
841   Module *Primary = getContext().getCurrentNamedModule();
842   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
843     EmitModuleInitializers(Primary);
844   EmitDeferred();
845   DeferredDecls.insert(EmittedDeferredDecls.begin(),
846                        EmittedDeferredDecls.end());
847   EmittedDeferredDecls.clear();
848   EmitVTablesOpportunistically();
849   applyGlobalValReplacements();
850   applyReplacements();
851   emitMultiVersionFunctions();
852 
853   if (Context.getLangOpts().IncrementalExtensions &&
854       GlobalTopLevelStmtBlockInFlight.first) {
855     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
856     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
857     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
858   }
859 
860   // Module implementations are initialized the same way as a regular TU that
861   // imports one or more modules.
862   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
863     EmitCXXModuleInitFunc(Primary);
864   else
865     EmitCXXGlobalInitFunc();
866   EmitCXXGlobalCleanUpFunc();
867   registerGlobalDtorsWithAtExit();
868   EmitCXXThreadLocalInitFunc();
869   if (ObjCRuntime)
870     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
871       AddGlobalCtor(ObjCInitFunction);
872   if (Context.getLangOpts().CUDA && CUDARuntime) {
873     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
874       AddGlobalCtor(CudaCtorFunction);
875   }
876   if (OpenMPRuntime) {
877     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
878     OpenMPRuntime->clear();
879   }
880   if (PGOReader) {
881     getModule().setProfileSummary(
882         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
883         llvm::ProfileSummary::PSK_Instr);
884     if (PGOStats.hasDiagnostics())
885       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
886   }
887   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
888     return L.LexOrder < R.LexOrder;
889   });
890   EmitCtorList(GlobalCtors, "llvm.global_ctors");
891   EmitCtorList(GlobalDtors, "llvm.global_dtors");
892   EmitGlobalAnnotations();
893   EmitStaticExternCAliases();
894   checkAliases();
895   EmitDeferredUnusedCoverageMappings();
896   CodeGenPGO(*this).setValueProfilingFlag(getModule());
897   CodeGenPGO(*this).setProfileVersion(getModule());
898   if (CoverageMapping)
899     CoverageMapping->emit();
900   if (CodeGenOpts.SanitizeCfiCrossDso) {
901     CodeGenFunction(*this).EmitCfiCheckFail();
902     CodeGenFunction(*this).EmitCfiCheckStub();
903   }
904   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
905     finalizeKCFITypes();
906   emitAtAvailableLinkGuard();
907   if (Context.getTargetInfo().getTriple().isWasm())
908     EmitMainVoidAlias();
909 
910   if (getTriple().isAMDGPU() ||
911       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
912     // Emit amdhsa_code_object_version module flag, which is code object version
913     // times 100.
914     if (getTarget().getTargetOpts().CodeObjectVersion !=
915         llvm::CodeObjectVersionKind::COV_None) {
916       getModule().addModuleFlag(llvm::Module::Error,
917                                 "amdhsa_code_object_version",
918                                 getTarget().getTargetOpts().CodeObjectVersion);
919     }
920 
921     // Currently, "-mprintf-kind" option is only supported for HIP
922     if (LangOpts.HIP) {
923       auto *MDStr = llvm::MDString::get(
924           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
925                              TargetOptions::AMDGPUPrintfKind::Hostcall)
926                                 ? "hostcall"
927                                 : "buffered");
928       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
929                                 MDStr);
930     }
931   }
932 
933   // Emit a global array containing all external kernels or device variables
934   // used by host functions and mark it as used for CUDA/HIP. This is necessary
935   // to get kernels or device variables in archives linked in even if these
936   // kernels or device variables are only used in host functions.
937   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
938     SmallVector<llvm::Constant *, 8> UsedArray;
939     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
940       GlobalDecl GD;
941       if (auto *FD = dyn_cast<FunctionDecl>(D))
942         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
943       else
944         GD = GlobalDecl(D);
945       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
946           GetAddrOfGlobal(GD), Int8PtrTy));
947     }
948 
949     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
950 
951     auto *GV = new llvm::GlobalVariable(
952         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
953         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
954     addCompilerUsedGlobal(GV);
955   }
956   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
957     // Emit a unique ID so that host and device binaries from the same
958     // compilation unit can be associated.
959     auto *GV = new llvm::GlobalVariable(
960         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
961         llvm::Constant::getNullValue(Int8Ty),
962         "__hip_cuid_" + getContext().getCUIDHash());
963     addCompilerUsedGlobal(GV);
964   }
965   emitLLVMUsed();
966   if (SanStats)
967     SanStats->finish();
968 
969   if (CodeGenOpts.Autolink &&
970       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
971     EmitModuleLinkOptions();
972   }
973 
974   // On ELF we pass the dependent library specifiers directly to the linker
975   // without manipulating them. This is in contrast to other platforms where
976   // they are mapped to a specific linker option by the compiler. This
977   // difference is a result of the greater variety of ELF linkers and the fact
978   // that ELF linkers tend to handle libraries in a more complicated fashion
979   // than on other platforms. This forces us to defer handling the dependent
980   // libs to the linker.
981   //
982   // CUDA/HIP device and host libraries are different. Currently there is no
983   // way to differentiate dependent libraries for host or device. Existing
984   // usage of #pragma comment(lib, *) is intended for host libraries on
985   // Windows. Therefore emit llvm.dependent-libraries only for host.
986   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
987     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
988     for (auto *MD : ELFDependentLibraries)
989       NMD->addOperand(MD);
990   }
991 
992   if (CodeGenOpts.DwarfVersion) {
993     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
994                               CodeGenOpts.DwarfVersion);
995   }
996 
997   if (CodeGenOpts.Dwarf64)
998     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
999 
1000   if (Context.getLangOpts().SemanticInterposition)
1001     // Require various optimization to respect semantic interposition.
1002     getModule().setSemanticInterposition(true);
1003 
1004   if (CodeGenOpts.EmitCodeView) {
1005     // Indicate that we want CodeView in the metadata.
1006     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1007   }
1008   if (CodeGenOpts.CodeViewGHash) {
1009     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1010   }
1011   if (CodeGenOpts.ControlFlowGuard) {
1012     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1013     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1014   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1015     // Function ID tables for Control Flow Guard (cfguard=1).
1016     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1017   }
1018   if (CodeGenOpts.EHContGuard) {
1019     // Function ID tables for EH Continuation Guard.
1020     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1021   }
1022   if (Context.getLangOpts().Kernel) {
1023     // Note if we are compiling with /kernel.
1024     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1025   }
1026   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1027     // We don't support LTO with 2 with different StrictVTablePointers
1028     // FIXME: we could support it by stripping all the information introduced
1029     // by StrictVTablePointers.
1030 
1031     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1032 
1033     llvm::Metadata *Ops[2] = {
1034               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1035               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1036                   llvm::Type::getInt32Ty(VMContext), 1))};
1037 
1038     getModule().addModuleFlag(llvm::Module::Require,
1039                               "StrictVTablePointersRequirement",
1040                               llvm::MDNode::get(VMContext, Ops));
1041   }
1042   if (getModuleDebugInfo())
1043     // We support a single version in the linked module. The LLVM
1044     // parser will drop debug info with a different version number
1045     // (and warn about it, too).
1046     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1047                               llvm::DEBUG_METADATA_VERSION);
1048 
1049   // We need to record the widths of enums and wchar_t, so that we can generate
1050   // the correct build attributes in the ARM backend. wchar_size is also used by
1051   // TargetLibraryInfo.
1052   uint64_t WCharWidth =
1053       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1054   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1055 
1056   if (getTriple().isOSzOS()) {
1057     getModule().addModuleFlag(llvm::Module::Warning,
1058                               "zos_product_major_version",
1059                               uint32_t(CLANG_VERSION_MAJOR));
1060     getModule().addModuleFlag(llvm::Module::Warning,
1061                               "zos_product_minor_version",
1062                               uint32_t(CLANG_VERSION_MINOR));
1063     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1064                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1065     std::string ProductId = getClangVendor() + "clang";
1066     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1067                               llvm::MDString::get(VMContext, ProductId));
1068 
1069     // Record the language because we need it for the PPA2.
1070     StringRef lang_str = languageToString(
1071         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1072     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1073                               llvm::MDString::get(VMContext, lang_str));
1074 
1075     time_t TT = PreprocessorOpts.SourceDateEpoch
1076                     ? *PreprocessorOpts.SourceDateEpoch
1077                     : std::time(nullptr);
1078     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1079                               static_cast<uint64_t>(TT));
1080 
1081     // Multiple modes will be supported here.
1082     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1083                               llvm::MDString::get(VMContext, "ascii"));
1084   }
1085 
1086   llvm::Triple T = Context.getTargetInfo().getTriple();
1087   if (T.isARM() || T.isThumb()) {
1088     // The minimum width of an enum in bytes
1089     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1090     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1091   }
1092 
1093   if (T.isRISCV()) {
1094     StringRef ABIStr = Target.getABI();
1095     llvm::LLVMContext &Ctx = TheModule.getContext();
1096     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1097                               llvm::MDString::get(Ctx, ABIStr));
1098 
1099     // Add the canonical ISA string as metadata so the backend can set the ELF
1100     // attributes correctly. We use AppendUnique so LTO will keep all of the
1101     // unique ISA strings that were linked together.
1102     const std::vector<std::string> &Features =
1103         getTarget().getTargetOpts().Features;
1104     auto ParseResult =
1105         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1106     if (!errorToBool(ParseResult.takeError()))
1107       getModule().addModuleFlag(
1108           llvm::Module::AppendUnique, "riscv-isa",
1109           llvm::MDNode::get(
1110               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1111   }
1112 
1113   if (CodeGenOpts.SanitizeCfiCrossDso) {
1114     // Indicate that we want cross-DSO control flow integrity checks.
1115     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1116   }
1117 
1118   if (CodeGenOpts.WholeProgramVTables) {
1119     // Indicate whether VFE was enabled for this module, so that the
1120     // vcall_visibility metadata added under whole program vtables is handled
1121     // appropriately in the optimizer.
1122     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1123                               CodeGenOpts.VirtualFunctionElimination);
1124   }
1125 
1126   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1127     getModule().addModuleFlag(llvm::Module::Override,
1128                               "CFI Canonical Jump Tables",
1129                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1130   }
1131 
1132   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1133     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1134     // KCFI assumes patchable-function-prefix is the same for all indirectly
1135     // called functions. Store the expected offset for code generation.
1136     if (CodeGenOpts.PatchableFunctionEntryOffset)
1137       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1138                                 CodeGenOpts.PatchableFunctionEntryOffset);
1139   }
1140 
1141   if (CodeGenOpts.CFProtectionReturn &&
1142       Target.checkCFProtectionReturnSupported(getDiags())) {
1143     // Indicate that we want to instrument return control flow protection.
1144     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1145                               1);
1146   }
1147 
1148   if (CodeGenOpts.CFProtectionBranch &&
1149       Target.checkCFProtectionBranchSupported(getDiags())) {
1150     // Indicate that we want to instrument branch control flow protection.
1151     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1152                               1);
1153   }
1154 
1155   if (CodeGenOpts.FunctionReturnThunks)
1156     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1157 
1158   if (CodeGenOpts.IndirectBranchCSPrefix)
1159     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1160 
1161   // Add module metadata for return address signing (ignoring
1162   // non-leaf/all) and stack tagging. These are actually turned on by function
1163   // attributes, but we use module metadata to emit build attributes. This is
1164   // needed for LTO, where the function attributes are inside bitcode
1165   // serialised into a global variable by the time build attributes are
1166   // emitted, so we can't access them. LTO objects could be compiled with
1167   // different flags therefore module flags are set to "Min" behavior to achieve
1168   // the same end result of the normal build where e.g BTI is off if any object
1169   // doesn't support it.
1170   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1171       LangOpts.getSignReturnAddressScope() !=
1172           LangOptions::SignReturnAddressScopeKind::None)
1173     getModule().addModuleFlag(llvm::Module::Override,
1174                               "sign-return-address-buildattr", 1);
1175   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1176     getModule().addModuleFlag(llvm::Module::Override,
1177                               "tag-stack-memory-buildattr", 1);
1178 
1179   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1180     if (LangOpts.BranchTargetEnforcement)
1181       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1182                                 1);
1183     if (LangOpts.BranchProtectionPAuthLR)
1184       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1185                                 1);
1186     if (LangOpts.GuardedControlStack)
1187       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1188     if (LangOpts.hasSignReturnAddress())
1189       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1190     if (LangOpts.isSignReturnAddressScopeAll())
1191       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1192                                 1);
1193     if (!LangOpts.isSignReturnAddressWithAKey())
1194       getModule().addModuleFlag(llvm::Module::Min,
1195                                 "sign-return-address-with-bkey", 1);
1196 
1197     if (getTriple().isOSLinux()) {
1198       assert(getTriple().isOSBinFormatELF());
1199       using namespace llvm::ELF;
1200       uint64_t PAuthABIVersion =
1201           (LangOpts.PointerAuthIntrinsics
1202            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1203           (LangOpts.PointerAuthCalls
1204            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1205           (LangOpts.PointerAuthReturns
1206            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1207           (LangOpts.PointerAuthAuthTraps
1208            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1209           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1210            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1211           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1212            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1213           (LangOpts.PointerAuthInitFini
1214            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI);
1215       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
1216                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1217                     "Update when new enum items are defined");
1218       if (PAuthABIVersion != 0) {
1219         getModule().addModuleFlag(llvm::Module::Error,
1220                                   "aarch64-elf-pauthabi-platform",
1221                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1222         getModule().addModuleFlag(llvm::Module::Error,
1223                                   "aarch64-elf-pauthabi-version",
1224                                   PAuthABIVersion);
1225       }
1226     }
1227   }
1228 
1229   if (CodeGenOpts.StackClashProtector)
1230     getModule().addModuleFlag(
1231         llvm::Module::Override, "probe-stack",
1232         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1233 
1234   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1235     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1236                               CodeGenOpts.StackProbeSize);
1237 
1238   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1239     llvm::LLVMContext &Ctx = TheModule.getContext();
1240     getModule().addModuleFlag(
1241         llvm::Module::Error, "MemProfProfileFilename",
1242         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1243   }
1244 
1245   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1246     // Indicate whether __nvvm_reflect should be configured to flush denormal
1247     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1248     // property.)
1249     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1250                               CodeGenOpts.FP32DenormalMode.Output !=
1251                                   llvm::DenormalMode::IEEE);
1252   }
1253 
1254   if (LangOpts.EHAsynch)
1255     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1256 
1257   // Indicate whether this Module was compiled with -fopenmp
1258   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1259     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1260   if (getLangOpts().OpenMPIsTargetDevice)
1261     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1262                               LangOpts.OpenMP);
1263 
1264   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1265   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1266     EmitOpenCLMetadata();
1267     // Emit SPIR version.
1268     if (getTriple().isSPIR()) {
1269       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1270       // opencl.spir.version named metadata.
1271       // C++ for OpenCL has a distinct mapping for version compatibility with
1272       // OpenCL.
1273       auto Version = LangOpts.getOpenCLCompatibleVersion();
1274       llvm::Metadata *SPIRVerElts[] = {
1275           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1276               Int32Ty, Version / 100)),
1277           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1278               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1279       llvm::NamedMDNode *SPIRVerMD =
1280           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1281       llvm::LLVMContext &Ctx = TheModule.getContext();
1282       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1283     }
1284   }
1285 
1286   // HLSL related end of code gen work items.
1287   if (LangOpts.HLSL)
1288     getHLSLRuntime().finishCodeGen();
1289 
1290   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1291     assert(PLevel < 3 && "Invalid PIC Level");
1292     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1293     if (Context.getLangOpts().PIE)
1294       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1295   }
1296 
1297   if (getCodeGenOpts().CodeModel.size() > 0) {
1298     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1299                   .Case("tiny", llvm::CodeModel::Tiny)
1300                   .Case("small", llvm::CodeModel::Small)
1301                   .Case("kernel", llvm::CodeModel::Kernel)
1302                   .Case("medium", llvm::CodeModel::Medium)
1303                   .Case("large", llvm::CodeModel::Large)
1304                   .Default(~0u);
1305     if (CM != ~0u) {
1306       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1307       getModule().setCodeModel(codeModel);
1308 
1309       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1310           Context.getTargetInfo().getTriple().getArch() ==
1311               llvm::Triple::x86_64) {
1312         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1313       }
1314     }
1315   }
1316 
1317   if (CodeGenOpts.NoPLT)
1318     getModule().setRtLibUseGOT();
1319   if (getTriple().isOSBinFormatELF() &&
1320       CodeGenOpts.DirectAccessExternalData !=
1321           getModule().getDirectAccessExternalData()) {
1322     getModule().setDirectAccessExternalData(
1323         CodeGenOpts.DirectAccessExternalData);
1324   }
1325   if (CodeGenOpts.UnwindTables)
1326     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1327 
1328   switch (CodeGenOpts.getFramePointer()) {
1329   case CodeGenOptions::FramePointerKind::None:
1330     // 0 ("none") is the default.
1331     break;
1332   case CodeGenOptions::FramePointerKind::Reserved:
1333     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1334     break;
1335   case CodeGenOptions::FramePointerKind::NonLeaf:
1336     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1337     break;
1338   case CodeGenOptions::FramePointerKind::All:
1339     getModule().setFramePointer(llvm::FramePointerKind::All);
1340     break;
1341   }
1342 
1343   SimplifyPersonality();
1344 
1345   if (getCodeGenOpts().EmitDeclMetadata)
1346     EmitDeclMetadata();
1347 
1348   if (getCodeGenOpts().CoverageNotesFile.size() ||
1349       getCodeGenOpts().CoverageDataFile.size())
1350     EmitCoverageFile();
1351 
1352   if (CGDebugInfo *DI = getModuleDebugInfo())
1353     DI->finalize();
1354 
1355   if (getCodeGenOpts().EmitVersionIdentMetadata)
1356     EmitVersionIdentMetadata();
1357 
1358   if (!getCodeGenOpts().RecordCommandLine.empty())
1359     EmitCommandLineMetadata();
1360 
1361   if (!getCodeGenOpts().StackProtectorGuard.empty())
1362     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1363   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1364     getModule().setStackProtectorGuardReg(
1365         getCodeGenOpts().StackProtectorGuardReg);
1366   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1367     getModule().setStackProtectorGuardSymbol(
1368         getCodeGenOpts().StackProtectorGuardSymbol);
1369   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1370     getModule().setStackProtectorGuardOffset(
1371         getCodeGenOpts().StackProtectorGuardOffset);
1372   if (getCodeGenOpts().StackAlignment)
1373     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1374   if (getCodeGenOpts().SkipRaxSetup)
1375     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1376   if (getLangOpts().RegCall4)
1377     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1378 
1379   if (getContext().getTargetInfo().getMaxTLSAlign())
1380     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1381                               getContext().getTargetInfo().getMaxTLSAlign());
1382 
1383   getTargetCodeGenInfo().emitTargetGlobals(*this);
1384 
1385   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1386 
1387   EmitBackendOptionsMetadata(getCodeGenOpts());
1388 
1389   // If there is device offloading code embed it in the host now.
1390   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1391 
1392   // Set visibility from DLL storage class
1393   // We do this at the end of LLVM IR generation; after any operation
1394   // that might affect the DLL storage class or the visibility, and
1395   // before anything that might act on these.
1396   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1397 
1398   // Check the tail call symbols are truly undefined.
1399   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1400     for (auto &I : MustTailCallUndefinedGlobals) {
1401       if (!I.first->isDefined())
1402         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1403       else {
1404         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1405         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1406         if (!Entry || Entry->isWeakForLinker() ||
1407             Entry->isDeclarationForLinker())
1408           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1409       }
1410     }
1411   }
1412 }
1413 
1414 void CodeGenModule::EmitOpenCLMetadata() {
1415   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1416   // opencl.ocl.version named metadata node.
1417   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1418   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1419 
1420   auto EmitVersion = [this](StringRef MDName, int Version) {
1421     llvm::Metadata *OCLVerElts[] = {
1422         llvm::ConstantAsMetadata::get(
1423             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1424         llvm::ConstantAsMetadata::get(
1425             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1426     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1427     llvm::LLVMContext &Ctx = TheModule.getContext();
1428     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1429   };
1430 
1431   EmitVersion("opencl.ocl.version", CLVersion);
1432   if (LangOpts.OpenCLCPlusPlus) {
1433     // In addition to the OpenCL compatible version, emit the C++ version.
1434     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1435   }
1436 }
1437 
1438 void CodeGenModule::EmitBackendOptionsMetadata(
1439     const CodeGenOptions &CodeGenOpts) {
1440   if (getTriple().isRISCV()) {
1441     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1442                               CodeGenOpts.SmallDataLimit);
1443   }
1444 }
1445 
1446 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1447   // Make sure that this type is translated.
1448   Types.UpdateCompletedType(TD);
1449 }
1450 
1451 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1452   // Make sure that this type is translated.
1453   Types.RefreshTypeCacheForClass(RD);
1454 }
1455 
1456 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1457   if (!TBAA)
1458     return nullptr;
1459   return TBAA->getTypeInfo(QTy);
1460 }
1461 
1462 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1463   if (!TBAA)
1464     return TBAAAccessInfo();
1465   if (getLangOpts().CUDAIsDevice) {
1466     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1467     // access info.
1468     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1469       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1470           nullptr)
1471         return TBAAAccessInfo();
1472     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1473       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1474           nullptr)
1475         return TBAAAccessInfo();
1476     }
1477   }
1478   return TBAA->getAccessInfo(AccessType);
1479 }
1480 
1481 TBAAAccessInfo
1482 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1483   if (!TBAA)
1484     return TBAAAccessInfo();
1485   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1486 }
1487 
1488 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1489   if (!TBAA)
1490     return nullptr;
1491   return TBAA->getTBAAStructInfo(QTy);
1492 }
1493 
1494 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1495   if (!TBAA)
1496     return nullptr;
1497   return TBAA->getBaseTypeInfo(QTy);
1498 }
1499 
1500 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1501   if (!TBAA)
1502     return nullptr;
1503   return TBAA->getAccessTagInfo(Info);
1504 }
1505 
1506 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1507                                                    TBAAAccessInfo TargetInfo) {
1508   if (!TBAA)
1509     return TBAAAccessInfo();
1510   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1511 }
1512 
1513 TBAAAccessInfo
1514 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1515                                                    TBAAAccessInfo InfoB) {
1516   if (!TBAA)
1517     return TBAAAccessInfo();
1518   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1519 }
1520 
1521 TBAAAccessInfo
1522 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1523                                               TBAAAccessInfo SrcInfo) {
1524   if (!TBAA)
1525     return TBAAAccessInfo();
1526   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1527 }
1528 
1529 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1530                                                 TBAAAccessInfo TBAAInfo) {
1531   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1532     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1533 }
1534 
1535 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1536     llvm::Instruction *I, const CXXRecordDecl *RD) {
1537   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1538                  llvm::MDNode::get(getLLVMContext(), {}));
1539 }
1540 
1541 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1542   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1543   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1544 }
1545 
1546 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1547 /// specified stmt yet.
1548 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1549   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1550                                                "cannot compile this %0 yet");
1551   std::string Msg = Type;
1552   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1553       << Msg << S->getSourceRange();
1554 }
1555 
1556 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1557 /// specified decl yet.
1558 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1559   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1560                                                "cannot compile this %0 yet");
1561   std::string Msg = Type;
1562   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1563 }
1564 
1565 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1566   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1567 }
1568 
1569 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1570                                         const NamedDecl *D) const {
1571   // Internal definitions always have default visibility.
1572   if (GV->hasLocalLinkage()) {
1573     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1574     return;
1575   }
1576   if (!D)
1577     return;
1578 
1579   // Set visibility for definitions, and for declarations if requested globally
1580   // or set explicitly.
1581   LinkageInfo LV = D->getLinkageAndVisibility();
1582 
1583   // OpenMP declare target variables must be visible to the host so they can
1584   // be registered. We require protected visibility unless the variable has
1585   // the DT_nohost modifier and does not need to be registered.
1586   if (Context.getLangOpts().OpenMP &&
1587       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1588       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1589       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1590           OMPDeclareTargetDeclAttr::DT_NoHost &&
1591       LV.getVisibility() == HiddenVisibility) {
1592     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1593     return;
1594   }
1595 
1596   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1597     // Reject incompatible dlllstorage and visibility annotations.
1598     if (!LV.isVisibilityExplicit())
1599       return;
1600     if (GV->hasDLLExportStorageClass()) {
1601       if (LV.getVisibility() == HiddenVisibility)
1602         getDiags().Report(D->getLocation(),
1603                           diag::err_hidden_visibility_dllexport);
1604     } else if (LV.getVisibility() != DefaultVisibility) {
1605       getDiags().Report(D->getLocation(),
1606                         diag::err_non_default_visibility_dllimport);
1607     }
1608     return;
1609   }
1610 
1611   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1612       !GV->isDeclarationForLinker())
1613     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1614 }
1615 
1616 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1617                                  llvm::GlobalValue *GV) {
1618   if (GV->hasLocalLinkage())
1619     return true;
1620 
1621   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1622     return true;
1623 
1624   // DLLImport explicitly marks the GV as external.
1625   if (GV->hasDLLImportStorageClass())
1626     return false;
1627 
1628   const llvm::Triple &TT = CGM.getTriple();
1629   const auto &CGOpts = CGM.getCodeGenOpts();
1630   if (TT.isWindowsGNUEnvironment()) {
1631     // In MinGW, variables without DLLImport can still be automatically
1632     // imported from a DLL by the linker; don't mark variables that
1633     // potentially could come from another DLL as DSO local.
1634 
1635     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1636     // (and this actually happens in the public interface of libstdc++), so
1637     // such variables can't be marked as DSO local. (Native TLS variables
1638     // can't be dllimported at all, though.)
1639     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1640         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1641         CGOpts.AutoImport)
1642       return false;
1643   }
1644 
1645   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1646   // remain unresolved in the link, they can be resolved to zero, which is
1647   // outside the current DSO.
1648   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1649     return false;
1650 
1651   // Every other GV is local on COFF.
1652   // Make an exception for windows OS in the triple: Some firmware builds use
1653   // *-win32-macho triples. This (accidentally?) produced windows relocations
1654   // without GOT tables in older clang versions; Keep this behaviour.
1655   // FIXME: even thread local variables?
1656   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1657     return true;
1658 
1659   // Only handle COFF and ELF for now.
1660   if (!TT.isOSBinFormatELF())
1661     return false;
1662 
1663   // If this is not an executable, don't assume anything is local.
1664   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1665   const auto &LOpts = CGM.getLangOpts();
1666   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1667     // On ELF, if -fno-semantic-interposition is specified and the target
1668     // supports local aliases, there will be neither CC1
1669     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1670     // dso_local on the function if using a local alias is preferable (can avoid
1671     // PLT indirection).
1672     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1673       return false;
1674     return !(CGM.getLangOpts().SemanticInterposition ||
1675              CGM.getLangOpts().HalfNoSemanticInterposition);
1676   }
1677 
1678   // A definition cannot be preempted from an executable.
1679   if (!GV->isDeclarationForLinker())
1680     return true;
1681 
1682   // Most PIC code sequences that assume that a symbol is local cannot produce a
1683   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1684   // depended, it seems worth it to handle it here.
1685   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1686     return false;
1687 
1688   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1689   if (TT.isPPC64())
1690     return false;
1691 
1692   if (CGOpts.DirectAccessExternalData) {
1693     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1694     // for non-thread-local variables. If the symbol is not defined in the
1695     // executable, a copy relocation will be needed at link time. dso_local is
1696     // excluded for thread-local variables because they generally don't support
1697     // copy relocations.
1698     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1699       if (!Var->isThreadLocal())
1700         return true;
1701 
1702     // -fno-pic sets dso_local on a function declaration to allow direct
1703     // accesses when taking its address (similar to a data symbol). If the
1704     // function is not defined in the executable, a canonical PLT entry will be
1705     // needed at link time. -fno-direct-access-external-data can avoid the
1706     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1707     // it could just cause trouble without providing perceptible benefits.
1708     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1709       return true;
1710   }
1711 
1712   // If we can use copy relocations we can assume it is local.
1713 
1714   // Otherwise don't assume it is local.
1715   return false;
1716 }
1717 
1718 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1719   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1720 }
1721 
1722 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1723                                           GlobalDecl GD) const {
1724   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1725   // C++ destructors have a few C++ ABI specific special cases.
1726   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1727     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1728     return;
1729   }
1730   setDLLImportDLLExport(GV, D);
1731 }
1732 
1733 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1734                                           const NamedDecl *D) const {
1735   if (D && D->isExternallyVisible()) {
1736     if (D->hasAttr<DLLImportAttr>())
1737       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1738     else if ((D->hasAttr<DLLExportAttr>() ||
1739               shouldMapVisibilityToDLLExport(D)) &&
1740              !GV->isDeclarationForLinker())
1741       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1742   }
1743 }
1744 
1745 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1746                                     GlobalDecl GD) const {
1747   setDLLImportDLLExport(GV, GD);
1748   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1749 }
1750 
1751 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1752                                     const NamedDecl *D) const {
1753   setDLLImportDLLExport(GV, D);
1754   setGVPropertiesAux(GV, D);
1755 }
1756 
1757 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1758                                        const NamedDecl *D) const {
1759   setGlobalVisibility(GV, D);
1760   setDSOLocal(GV);
1761   GV->setPartition(CodeGenOpts.SymbolPartition);
1762 }
1763 
1764 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1765   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1766       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1767       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1768       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1769       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1770 }
1771 
1772 llvm::GlobalVariable::ThreadLocalMode
1773 CodeGenModule::GetDefaultLLVMTLSModel() const {
1774   switch (CodeGenOpts.getDefaultTLSModel()) {
1775   case CodeGenOptions::GeneralDynamicTLSModel:
1776     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1777   case CodeGenOptions::LocalDynamicTLSModel:
1778     return llvm::GlobalVariable::LocalDynamicTLSModel;
1779   case CodeGenOptions::InitialExecTLSModel:
1780     return llvm::GlobalVariable::InitialExecTLSModel;
1781   case CodeGenOptions::LocalExecTLSModel:
1782     return llvm::GlobalVariable::LocalExecTLSModel;
1783   }
1784   llvm_unreachable("Invalid TLS model!");
1785 }
1786 
1787 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1788   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1789 
1790   llvm::GlobalValue::ThreadLocalMode TLM;
1791   TLM = GetDefaultLLVMTLSModel();
1792 
1793   // Override the TLS model if it is explicitly specified.
1794   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1795     TLM = GetLLVMTLSModel(Attr->getModel());
1796   }
1797 
1798   GV->setThreadLocalMode(TLM);
1799 }
1800 
1801 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1802                                           StringRef Name) {
1803   const TargetInfo &Target = CGM.getTarget();
1804   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1805 }
1806 
1807 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1808                                                  const CPUSpecificAttr *Attr,
1809                                                  unsigned CPUIndex,
1810                                                  raw_ostream &Out) {
1811   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1812   // supported.
1813   if (Attr)
1814     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1815   else if (CGM.getTarget().supportsIFunc())
1816     Out << ".resolver";
1817 }
1818 
1819 // Returns true if GD is a function decl with internal linkage and
1820 // needs a unique suffix after the mangled name.
1821 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1822                                         CodeGenModule &CGM) {
1823   const Decl *D = GD.getDecl();
1824   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1825          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1826 }
1827 
1828 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1829                                       const NamedDecl *ND,
1830                                       bool OmitMultiVersionMangling = false) {
1831   SmallString<256> Buffer;
1832   llvm::raw_svector_ostream Out(Buffer);
1833   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1834   if (!CGM.getModuleNameHash().empty())
1835     MC.needsUniqueInternalLinkageNames();
1836   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1837   if (ShouldMangle)
1838     MC.mangleName(GD.getWithDecl(ND), Out);
1839   else {
1840     IdentifierInfo *II = ND->getIdentifier();
1841     assert(II && "Attempt to mangle unnamed decl.");
1842     const auto *FD = dyn_cast<FunctionDecl>(ND);
1843 
1844     if (FD &&
1845         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1846       if (CGM.getLangOpts().RegCall4)
1847         Out << "__regcall4__" << II->getName();
1848       else
1849         Out << "__regcall3__" << II->getName();
1850     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1851                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1852       Out << "__device_stub__" << II->getName();
1853     } else {
1854       Out << II->getName();
1855     }
1856   }
1857 
1858   // Check if the module name hash should be appended for internal linkage
1859   // symbols.   This should come before multi-version target suffixes are
1860   // appended. This is to keep the name and module hash suffix of the
1861   // internal linkage function together.  The unique suffix should only be
1862   // added when name mangling is done to make sure that the final name can
1863   // be properly demangled.  For example, for C functions without prototypes,
1864   // name mangling is not done and the unique suffix should not be appeneded
1865   // then.
1866   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1867     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1868            "Hash computed when not explicitly requested");
1869     Out << CGM.getModuleNameHash();
1870   }
1871 
1872   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1873     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1874       switch (FD->getMultiVersionKind()) {
1875       case MultiVersionKind::CPUDispatch:
1876       case MultiVersionKind::CPUSpecific:
1877         AppendCPUSpecificCPUDispatchMangling(CGM,
1878                                              FD->getAttr<CPUSpecificAttr>(),
1879                                              GD.getMultiVersionIndex(), Out);
1880         break;
1881       case MultiVersionKind::Target: {
1882         auto *Attr = FD->getAttr<TargetAttr>();
1883         assert(Attr && "Expected TargetAttr to be present "
1884                        "for attribute mangling");
1885         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1886         Info.appendAttributeMangling(Attr, Out);
1887         break;
1888       }
1889       case MultiVersionKind::TargetVersion: {
1890         auto *Attr = FD->getAttr<TargetVersionAttr>();
1891         assert(Attr && "Expected TargetVersionAttr to be present "
1892                        "for attribute mangling");
1893         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1894         Info.appendAttributeMangling(Attr, Out);
1895         break;
1896       }
1897       case MultiVersionKind::TargetClones: {
1898         auto *Attr = FD->getAttr<TargetClonesAttr>();
1899         assert(Attr && "Expected TargetClonesAttr to be present "
1900                        "for attribute mangling");
1901         unsigned Index = GD.getMultiVersionIndex();
1902         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1903         Info.appendAttributeMangling(Attr, Index, Out);
1904         break;
1905       }
1906       case MultiVersionKind::None:
1907         llvm_unreachable("None multiversion type isn't valid here");
1908       }
1909     }
1910 
1911   // Make unique name for device side static file-scope variable for HIP.
1912   if (CGM.getContext().shouldExternalize(ND) &&
1913       CGM.getLangOpts().GPURelocatableDeviceCode &&
1914       CGM.getLangOpts().CUDAIsDevice)
1915     CGM.printPostfixForExternalizedDecl(Out, ND);
1916 
1917   return std::string(Out.str());
1918 }
1919 
1920 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1921                                             const FunctionDecl *FD,
1922                                             StringRef &CurName) {
1923   if (!FD->isMultiVersion())
1924     return;
1925 
1926   // Get the name of what this would be without the 'target' attribute.  This
1927   // allows us to lookup the version that was emitted when this wasn't a
1928   // multiversion function.
1929   std::string NonTargetName =
1930       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1931   GlobalDecl OtherGD;
1932   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1933     assert(OtherGD.getCanonicalDecl()
1934                .getDecl()
1935                ->getAsFunction()
1936                ->isMultiVersion() &&
1937            "Other GD should now be a multiversioned function");
1938     // OtherFD is the version of this function that was mangled BEFORE
1939     // becoming a MultiVersion function.  It potentially needs to be updated.
1940     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1941                                       .getDecl()
1942                                       ->getAsFunction()
1943                                       ->getMostRecentDecl();
1944     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1945     // This is so that if the initial version was already the 'default'
1946     // version, we don't try to update it.
1947     if (OtherName != NonTargetName) {
1948       // Remove instead of erase, since others may have stored the StringRef
1949       // to this.
1950       const auto ExistingRecord = Manglings.find(NonTargetName);
1951       if (ExistingRecord != std::end(Manglings))
1952         Manglings.remove(&(*ExistingRecord));
1953       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1954       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1955           Result.first->first();
1956       // If this is the current decl is being created, make sure we update the name.
1957       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1958         CurName = OtherNameRef;
1959       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1960         Entry->setName(OtherName);
1961     }
1962   }
1963 }
1964 
1965 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1966   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1967 
1968   // Some ABIs don't have constructor variants.  Make sure that base and
1969   // complete constructors get mangled the same.
1970   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1971     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1972       CXXCtorType OrigCtorType = GD.getCtorType();
1973       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1974       if (OrigCtorType == Ctor_Base)
1975         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1976     }
1977   }
1978 
1979   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1980   // static device variable depends on whether the variable is referenced by
1981   // a host or device host function. Therefore the mangled name cannot be
1982   // cached.
1983   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1984     auto FoundName = MangledDeclNames.find(CanonicalGD);
1985     if (FoundName != MangledDeclNames.end())
1986       return FoundName->second;
1987   }
1988 
1989   // Keep the first result in the case of a mangling collision.
1990   const auto *ND = cast<NamedDecl>(GD.getDecl());
1991   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1992 
1993   // Ensure either we have different ABIs between host and device compilations,
1994   // says host compilation following MSVC ABI but device compilation follows
1995   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1996   // mangling should be the same after name stubbing. The later checking is
1997   // very important as the device kernel name being mangled in host-compilation
1998   // is used to resolve the device binaries to be executed. Inconsistent naming
1999   // result in undefined behavior. Even though we cannot check that naming
2000   // directly between host- and device-compilations, the host- and
2001   // device-mangling in host compilation could help catching certain ones.
2002   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2003          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2004          (getContext().getAuxTargetInfo() &&
2005           (getContext().getAuxTargetInfo()->getCXXABI() !=
2006            getContext().getTargetInfo().getCXXABI())) ||
2007          getCUDARuntime().getDeviceSideName(ND) ==
2008              getMangledNameImpl(
2009                  *this,
2010                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2011                  ND));
2012 
2013   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2014   return MangledDeclNames[CanonicalGD] = Result.first->first();
2015 }
2016 
2017 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2018                                              const BlockDecl *BD) {
2019   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2020   const Decl *D = GD.getDecl();
2021 
2022   SmallString<256> Buffer;
2023   llvm::raw_svector_ostream Out(Buffer);
2024   if (!D)
2025     MangleCtx.mangleGlobalBlock(BD,
2026       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2027   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2028     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2029   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2030     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2031   else
2032     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2033 
2034   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2035   return Result.first->first();
2036 }
2037 
2038 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2039   auto it = MangledDeclNames.begin();
2040   while (it != MangledDeclNames.end()) {
2041     if (it->second == Name)
2042       return it->first;
2043     it++;
2044   }
2045   return GlobalDecl();
2046 }
2047 
2048 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2049   return getModule().getNamedValue(Name);
2050 }
2051 
2052 /// AddGlobalCtor - Add a function to the list that will be called before
2053 /// main() runs.
2054 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2055                                   unsigned LexOrder,
2056                                   llvm::Constant *AssociatedData) {
2057   // FIXME: Type coercion of void()* types.
2058   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2059 }
2060 
2061 /// AddGlobalDtor - Add a function to the list that will be called
2062 /// when the module is unloaded.
2063 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2064                                   bool IsDtorAttrFunc) {
2065   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2066       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2067     DtorsUsingAtExit[Priority].push_back(Dtor);
2068     return;
2069   }
2070 
2071   // FIXME: Type coercion of void()* types.
2072   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2073 }
2074 
2075 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2076   if (Fns.empty()) return;
2077 
2078   // Ctor function type is void()*.
2079   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2080   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2081       TheModule.getDataLayout().getProgramAddressSpace());
2082 
2083   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2084   llvm::StructType *CtorStructTy = llvm::StructType::get(
2085       Int32Ty, CtorPFTy, VoidPtrTy);
2086 
2087   // Construct the constructor and destructor arrays.
2088   ConstantInitBuilder builder(*this);
2089   auto ctors = builder.beginArray(CtorStructTy);
2090   for (const auto &I : Fns) {
2091     auto ctor = ctors.beginStruct(CtorStructTy);
2092     ctor.addInt(Int32Ty, I.Priority);
2093     ctor.add(I.Initializer);
2094     if (I.AssociatedData)
2095       ctor.add(I.AssociatedData);
2096     else
2097       ctor.addNullPointer(VoidPtrTy);
2098     ctor.finishAndAddTo(ctors);
2099   }
2100 
2101   auto list =
2102     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2103                                 /*constant*/ false,
2104                                 llvm::GlobalValue::AppendingLinkage);
2105 
2106   // The LTO linker doesn't seem to like it when we set an alignment
2107   // on appending variables.  Take it off as a workaround.
2108   list->setAlignment(std::nullopt);
2109 
2110   Fns.clear();
2111 }
2112 
2113 llvm::GlobalValue::LinkageTypes
2114 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2115   const auto *D = cast<FunctionDecl>(GD.getDecl());
2116 
2117   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2118 
2119   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2120     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2121 
2122   return getLLVMLinkageForDeclarator(D, Linkage);
2123 }
2124 
2125 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2126   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2127   if (!MDS) return nullptr;
2128 
2129   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2130 }
2131 
2132 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2133   if (auto *FnType = T->getAs<FunctionProtoType>())
2134     T = getContext().getFunctionType(
2135         FnType->getReturnType(), FnType->getParamTypes(),
2136         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2137 
2138   std::string OutName;
2139   llvm::raw_string_ostream Out(OutName);
2140   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2141       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2142 
2143   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2144     Out << ".normalized";
2145 
2146   return llvm::ConstantInt::get(Int32Ty,
2147                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2148 }
2149 
2150 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2151                                               const CGFunctionInfo &Info,
2152                                               llvm::Function *F, bool IsThunk) {
2153   unsigned CallingConv;
2154   llvm::AttributeList PAL;
2155   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2156                          /*AttrOnCallSite=*/false, IsThunk);
2157   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2158       getTarget().getTriple().isWindowsArm64EC()) {
2159     SourceLocation Loc;
2160     if (const Decl *D = GD.getDecl())
2161       Loc = D->getLocation();
2162 
2163     Error(Loc, "__vectorcall calling convention is not currently supported");
2164   }
2165   F->setAttributes(PAL);
2166   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2167 }
2168 
2169 static void removeImageAccessQualifier(std::string& TyName) {
2170   std::string ReadOnlyQual("__read_only");
2171   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2172   if (ReadOnlyPos != std::string::npos)
2173     // "+ 1" for the space after access qualifier.
2174     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2175   else {
2176     std::string WriteOnlyQual("__write_only");
2177     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2178     if (WriteOnlyPos != std::string::npos)
2179       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2180     else {
2181       std::string ReadWriteQual("__read_write");
2182       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2183       if (ReadWritePos != std::string::npos)
2184         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2185     }
2186   }
2187 }
2188 
2189 // Returns the address space id that should be produced to the
2190 // kernel_arg_addr_space metadata. This is always fixed to the ids
2191 // as specified in the SPIR 2.0 specification in order to differentiate
2192 // for example in clGetKernelArgInfo() implementation between the address
2193 // spaces with targets without unique mapping to the OpenCL address spaces
2194 // (basically all single AS CPUs).
2195 static unsigned ArgInfoAddressSpace(LangAS AS) {
2196   switch (AS) {
2197   case LangAS::opencl_global:
2198     return 1;
2199   case LangAS::opencl_constant:
2200     return 2;
2201   case LangAS::opencl_local:
2202     return 3;
2203   case LangAS::opencl_generic:
2204     return 4; // Not in SPIR 2.0 specs.
2205   case LangAS::opencl_global_device:
2206     return 5;
2207   case LangAS::opencl_global_host:
2208     return 6;
2209   default:
2210     return 0; // Assume private.
2211   }
2212 }
2213 
2214 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2215                                          const FunctionDecl *FD,
2216                                          CodeGenFunction *CGF) {
2217   assert(((FD && CGF) || (!FD && !CGF)) &&
2218          "Incorrect use - FD and CGF should either be both null or not!");
2219   // Create MDNodes that represent the kernel arg metadata.
2220   // Each MDNode is a list in the form of "key", N number of values which is
2221   // the same number of values as their are kernel arguments.
2222 
2223   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2224 
2225   // MDNode for the kernel argument address space qualifiers.
2226   SmallVector<llvm::Metadata *, 8> addressQuals;
2227 
2228   // MDNode for the kernel argument access qualifiers (images only).
2229   SmallVector<llvm::Metadata *, 8> accessQuals;
2230 
2231   // MDNode for the kernel argument type names.
2232   SmallVector<llvm::Metadata *, 8> argTypeNames;
2233 
2234   // MDNode for the kernel argument base type names.
2235   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2236 
2237   // MDNode for the kernel argument type qualifiers.
2238   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2239 
2240   // MDNode for the kernel argument names.
2241   SmallVector<llvm::Metadata *, 8> argNames;
2242 
2243   if (FD && CGF)
2244     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2245       const ParmVarDecl *parm = FD->getParamDecl(i);
2246       // Get argument name.
2247       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2248 
2249       if (!getLangOpts().OpenCL)
2250         continue;
2251       QualType ty = parm->getType();
2252       std::string typeQuals;
2253 
2254       // Get image and pipe access qualifier:
2255       if (ty->isImageType() || ty->isPipeType()) {
2256         const Decl *PDecl = parm;
2257         if (const auto *TD = ty->getAs<TypedefType>())
2258           PDecl = TD->getDecl();
2259         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2260         if (A && A->isWriteOnly())
2261           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2262         else if (A && A->isReadWrite())
2263           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2264         else
2265           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2266       } else
2267         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2268 
2269       auto getTypeSpelling = [&](QualType Ty) {
2270         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2271 
2272         if (Ty.isCanonical()) {
2273           StringRef typeNameRef = typeName;
2274           // Turn "unsigned type" to "utype"
2275           if (typeNameRef.consume_front("unsigned "))
2276             return std::string("u") + typeNameRef.str();
2277           if (typeNameRef.consume_front("signed "))
2278             return typeNameRef.str();
2279         }
2280 
2281         return typeName;
2282       };
2283 
2284       if (ty->isPointerType()) {
2285         QualType pointeeTy = ty->getPointeeType();
2286 
2287         // Get address qualifier.
2288         addressQuals.push_back(
2289             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2290                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2291 
2292         // Get argument type name.
2293         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2294         std::string baseTypeName =
2295             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2296         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2297         argBaseTypeNames.push_back(
2298             llvm::MDString::get(VMContext, baseTypeName));
2299 
2300         // Get argument type qualifiers:
2301         if (ty.isRestrictQualified())
2302           typeQuals = "restrict";
2303         if (pointeeTy.isConstQualified() ||
2304             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2305           typeQuals += typeQuals.empty() ? "const" : " const";
2306         if (pointeeTy.isVolatileQualified())
2307           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2308       } else {
2309         uint32_t AddrSpc = 0;
2310         bool isPipe = ty->isPipeType();
2311         if (ty->isImageType() || isPipe)
2312           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2313 
2314         addressQuals.push_back(
2315             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2316 
2317         // Get argument type name.
2318         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2319         std::string typeName = getTypeSpelling(ty);
2320         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2321 
2322         // Remove access qualifiers on images
2323         // (as they are inseparable from type in clang implementation,
2324         // but OpenCL spec provides a special query to get access qualifier
2325         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2326         if (ty->isImageType()) {
2327           removeImageAccessQualifier(typeName);
2328           removeImageAccessQualifier(baseTypeName);
2329         }
2330 
2331         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2332         argBaseTypeNames.push_back(
2333             llvm::MDString::get(VMContext, baseTypeName));
2334 
2335         if (isPipe)
2336           typeQuals = "pipe";
2337       }
2338       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2339     }
2340 
2341   if (getLangOpts().OpenCL) {
2342     Fn->setMetadata("kernel_arg_addr_space",
2343                     llvm::MDNode::get(VMContext, addressQuals));
2344     Fn->setMetadata("kernel_arg_access_qual",
2345                     llvm::MDNode::get(VMContext, accessQuals));
2346     Fn->setMetadata("kernel_arg_type",
2347                     llvm::MDNode::get(VMContext, argTypeNames));
2348     Fn->setMetadata("kernel_arg_base_type",
2349                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2350     Fn->setMetadata("kernel_arg_type_qual",
2351                     llvm::MDNode::get(VMContext, argTypeQuals));
2352   }
2353   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2354       getCodeGenOpts().HIPSaveKernelArgName)
2355     Fn->setMetadata("kernel_arg_name",
2356                     llvm::MDNode::get(VMContext, argNames));
2357 }
2358 
2359 /// Determines whether the language options require us to model
2360 /// unwind exceptions.  We treat -fexceptions as mandating this
2361 /// except under the fragile ObjC ABI with only ObjC exceptions
2362 /// enabled.  This means, for example, that C with -fexceptions
2363 /// enables this.
2364 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2365   // If exceptions are completely disabled, obviously this is false.
2366   if (!LangOpts.Exceptions) return false;
2367 
2368   // If C++ exceptions are enabled, this is true.
2369   if (LangOpts.CXXExceptions) return true;
2370 
2371   // If ObjC exceptions are enabled, this depends on the ABI.
2372   if (LangOpts.ObjCExceptions) {
2373     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2374   }
2375 
2376   return true;
2377 }
2378 
2379 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2380                                                       const CXXMethodDecl *MD) {
2381   // Check that the type metadata can ever actually be used by a call.
2382   if (!CGM.getCodeGenOpts().LTOUnit ||
2383       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2384     return false;
2385 
2386   // Only functions whose address can be taken with a member function pointer
2387   // need this sort of type metadata.
2388   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2389          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2390 }
2391 
2392 SmallVector<const CXXRecordDecl *, 0>
2393 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2394   llvm::SetVector<const CXXRecordDecl *> MostBases;
2395 
2396   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2397   CollectMostBases = [&](const CXXRecordDecl *RD) {
2398     if (RD->getNumBases() == 0)
2399       MostBases.insert(RD);
2400     for (const CXXBaseSpecifier &B : RD->bases())
2401       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2402   };
2403   CollectMostBases(RD);
2404   return MostBases.takeVector();
2405 }
2406 
2407 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2408                                                            llvm::Function *F) {
2409   llvm::AttrBuilder B(F->getContext());
2410 
2411   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2412     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2413 
2414   if (CodeGenOpts.StackClashProtector)
2415     B.addAttribute("probe-stack", "inline-asm");
2416 
2417   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2418     B.addAttribute("stack-probe-size",
2419                    std::to_string(CodeGenOpts.StackProbeSize));
2420 
2421   if (!hasUnwindExceptions(LangOpts))
2422     B.addAttribute(llvm::Attribute::NoUnwind);
2423 
2424   if (D && D->hasAttr<NoStackProtectorAttr>())
2425     ; // Do nothing.
2426   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2427            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2428     B.addAttribute(llvm::Attribute::StackProtectStrong);
2429   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2430     B.addAttribute(llvm::Attribute::StackProtect);
2431   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2432     B.addAttribute(llvm::Attribute::StackProtectStrong);
2433   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2434     B.addAttribute(llvm::Attribute::StackProtectReq);
2435 
2436   if (!D) {
2437     // If we don't have a declaration to control inlining, the function isn't
2438     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2439     // disabled, mark the function as noinline.
2440     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2441         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2442       B.addAttribute(llvm::Attribute::NoInline);
2443 
2444     F->addFnAttrs(B);
2445     return;
2446   }
2447 
2448   // Handle SME attributes that apply to function definitions,
2449   // rather than to function prototypes.
2450   if (D->hasAttr<ArmLocallyStreamingAttr>())
2451     B.addAttribute("aarch64_pstate_sm_body");
2452 
2453   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2454     if (Attr->isNewZA())
2455       B.addAttribute("aarch64_new_za");
2456     if (Attr->isNewZT0())
2457       B.addAttribute("aarch64_new_zt0");
2458   }
2459 
2460   // Track whether we need to add the optnone LLVM attribute,
2461   // starting with the default for this optimization level.
2462   bool ShouldAddOptNone =
2463       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2464   // We can't add optnone in the following cases, it won't pass the verifier.
2465   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2466   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2467 
2468   // Add optnone, but do so only if the function isn't always_inline.
2469   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2470       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2471     B.addAttribute(llvm::Attribute::OptimizeNone);
2472 
2473     // OptimizeNone implies noinline; we should not be inlining such functions.
2474     B.addAttribute(llvm::Attribute::NoInline);
2475 
2476     // We still need to handle naked functions even though optnone subsumes
2477     // much of their semantics.
2478     if (D->hasAttr<NakedAttr>())
2479       B.addAttribute(llvm::Attribute::Naked);
2480 
2481     // OptimizeNone wins over OptimizeForSize and MinSize.
2482     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2483     F->removeFnAttr(llvm::Attribute::MinSize);
2484   } else if (D->hasAttr<NakedAttr>()) {
2485     // Naked implies noinline: we should not be inlining such functions.
2486     B.addAttribute(llvm::Attribute::Naked);
2487     B.addAttribute(llvm::Attribute::NoInline);
2488   } else if (D->hasAttr<NoDuplicateAttr>()) {
2489     B.addAttribute(llvm::Attribute::NoDuplicate);
2490   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2491     // Add noinline if the function isn't always_inline.
2492     B.addAttribute(llvm::Attribute::NoInline);
2493   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2494              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2495     // (noinline wins over always_inline, and we can't specify both in IR)
2496     B.addAttribute(llvm::Attribute::AlwaysInline);
2497   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2498     // If we're not inlining, then force everything that isn't always_inline to
2499     // carry an explicit noinline attribute.
2500     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2501       B.addAttribute(llvm::Attribute::NoInline);
2502   } else {
2503     // Otherwise, propagate the inline hint attribute and potentially use its
2504     // absence to mark things as noinline.
2505     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2506       // Search function and template pattern redeclarations for inline.
2507       auto CheckForInline = [](const FunctionDecl *FD) {
2508         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2509           return Redecl->isInlineSpecified();
2510         };
2511         if (any_of(FD->redecls(), CheckRedeclForInline))
2512           return true;
2513         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2514         if (!Pattern)
2515           return false;
2516         return any_of(Pattern->redecls(), CheckRedeclForInline);
2517       };
2518       if (CheckForInline(FD)) {
2519         B.addAttribute(llvm::Attribute::InlineHint);
2520       } else if (CodeGenOpts.getInlining() ==
2521                      CodeGenOptions::OnlyHintInlining &&
2522                  !FD->isInlined() &&
2523                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2524         B.addAttribute(llvm::Attribute::NoInline);
2525       }
2526     }
2527   }
2528 
2529   // Add other optimization related attributes if we are optimizing this
2530   // function.
2531   if (!D->hasAttr<OptimizeNoneAttr>()) {
2532     if (D->hasAttr<ColdAttr>()) {
2533       if (!ShouldAddOptNone)
2534         B.addAttribute(llvm::Attribute::OptimizeForSize);
2535       B.addAttribute(llvm::Attribute::Cold);
2536     }
2537     if (D->hasAttr<HotAttr>())
2538       B.addAttribute(llvm::Attribute::Hot);
2539     if (D->hasAttr<MinSizeAttr>())
2540       B.addAttribute(llvm::Attribute::MinSize);
2541   }
2542 
2543   F->addFnAttrs(B);
2544 
2545   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2546   if (alignment)
2547     F->setAlignment(llvm::Align(alignment));
2548 
2549   if (!D->hasAttr<AlignedAttr>())
2550     if (LangOpts.FunctionAlignment)
2551       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2552 
2553   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2554   // reserve a bit for differentiating between virtual and non-virtual member
2555   // functions. If the current target's C++ ABI requires this and this is a
2556   // member function, set its alignment accordingly.
2557   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2558     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2559       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2560   }
2561 
2562   // In the cross-dso CFI mode with canonical jump tables, we want !type
2563   // attributes on definitions only.
2564   if (CodeGenOpts.SanitizeCfiCrossDso &&
2565       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2566     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2567       // Skip available_externally functions. They won't be codegen'ed in the
2568       // current module anyway.
2569       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2570         CreateFunctionTypeMetadataForIcall(FD, F);
2571     }
2572   }
2573 
2574   // Emit type metadata on member functions for member function pointer checks.
2575   // These are only ever necessary on definitions; we're guaranteed that the
2576   // definition will be present in the LTO unit as a result of LTO visibility.
2577   auto *MD = dyn_cast<CXXMethodDecl>(D);
2578   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2579     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2580       llvm::Metadata *Id =
2581           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2582               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2583       F->addTypeMetadata(0, Id);
2584     }
2585   }
2586 }
2587 
2588 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2589   const Decl *D = GD.getDecl();
2590   if (isa_and_nonnull<NamedDecl>(D))
2591     setGVProperties(GV, GD);
2592   else
2593     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2594 
2595   if (D && D->hasAttr<UsedAttr>())
2596     addUsedOrCompilerUsedGlobal(GV);
2597 
2598   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2599       VD &&
2600       ((CodeGenOpts.KeepPersistentStorageVariables &&
2601         (VD->getStorageDuration() == SD_Static ||
2602          VD->getStorageDuration() == SD_Thread)) ||
2603        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2604         VD->getType().isConstQualified())))
2605     addUsedOrCompilerUsedGlobal(GV);
2606 }
2607 
2608 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2609                                                 llvm::AttrBuilder &Attrs,
2610                                                 bool SetTargetFeatures) {
2611   // Add target-cpu and target-features attributes to functions. If
2612   // we have a decl for the function and it has a target attribute then
2613   // parse that and add it to the feature set.
2614   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2615   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2616   std::vector<std::string> Features;
2617   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2618   FD = FD ? FD->getMostRecentDecl() : FD;
2619   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2620   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2621   assert((!TD || !TV) && "both target_version and target specified");
2622   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2623   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2624   bool AddedAttr = false;
2625   if (TD || TV || SD || TC) {
2626     llvm::StringMap<bool> FeatureMap;
2627     getContext().getFunctionFeatureMap(FeatureMap, GD);
2628 
2629     // Produce the canonical string for this set of features.
2630     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2631       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2632 
2633     // Now add the target-cpu and target-features to the function.
2634     // While we populated the feature map above, we still need to
2635     // get and parse the target attribute so we can get the cpu for
2636     // the function.
2637     if (TD) {
2638       ParsedTargetAttr ParsedAttr =
2639           Target.parseTargetAttr(TD->getFeaturesStr());
2640       if (!ParsedAttr.CPU.empty() &&
2641           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2642         TargetCPU = ParsedAttr.CPU;
2643         TuneCPU = ""; // Clear the tune CPU.
2644       }
2645       if (!ParsedAttr.Tune.empty() &&
2646           getTarget().isValidCPUName(ParsedAttr.Tune))
2647         TuneCPU = ParsedAttr.Tune;
2648     }
2649 
2650     if (SD) {
2651       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2652       // favor this processor.
2653       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2654     }
2655   } else {
2656     // Otherwise just add the existing target cpu and target features to the
2657     // function.
2658     Features = getTarget().getTargetOpts().Features;
2659   }
2660 
2661   if (!TargetCPU.empty()) {
2662     Attrs.addAttribute("target-cpu", TargetCPU);
2663     AddedAttr = true;
2664   }
2665   if (!TuneCPU.empty()) {
2666     Attrs.addAttribute("tune-cpu", TuneCPU);
2667     AddedAttr = true;
2668   }
2669   if (!Features.empty() && SetTargetFeatures) {
2670     llvm::erase_if(Features, [&](const std::string& F) {
2671        return getTarget().isReadOnlyFeature(F.substr(1));
2672     });
2673     llvm::sort(Features);
2674     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2675     AddedAttr = true;
2676   }
2677 
2678   return AddedAttr;
2679 }
2680 
2681 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2682                                           llvm::GlobalObject *GO) {
2683   const Decl *D = GD.getDecl();
2684   SetCommonAttributes(GD, GO);
2685 
2686   if (D) {
2687     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2688       if (D->hasAttr<RetainAttr>())
2689         addUsedGlobal(GV);
2690       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2691         GV->addAttribute("bss-section", SA->getName());
2692       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2693         GV->addAttribute("data-section", SA->getName());
2694       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2695         GV->addAttribute("rodata-section", SA->getName());
2696       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2697         GV->addAttribute("relro-section", SA->getName());
2698     }
2699 
2700     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2701       if (D->hasAttr<RetainAttr>())
2702         addUsedGlobal(F);
2703       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2704         if (!D->getAttr<SectionAttr>())
2705           F->setSection(SA->getName());
2706 
2707       llvm::AttrBuilder Attrs(F->getContext());
2708       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2709         // We know that GetCPUAndFeaturesAttributes will always have the
2710         // newest set, since it has the newest possible FunctionDecl, so the
2711         // new ones should replace the old.
2712         llvm::AttributeMask RemoveAttrs;
2713         RemoveAttrs.addAttribute("target-cpu");
2714         RemoveAttrs.addAttribute("target-features");
2715         RemoveAttrs.addAttribute("tune-cpu");
2716         F->removeFnAttrs(RemoveAttrs);
2717         F->addFnAttrs(Attrs);
2718       }
2719     }
2720 
2721     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2722       GO->setSection(CSA->getName());
2723     else if (const auto *SA = D->getAttr<SectionAttr>())
2724       GO->setSection(SA->getName());
2725   }
2726 
2727   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2728 }
2729 
2730 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2731                                                   llvm::Function *F,
2732                                                   const CGFunctionInfo &FI) {
2733   const Decl *D = GD.getDecl();
2734   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2735   SetLLVMFunctionAttributesForDefinition(D, F);
2736 
2737   F->setLinkage(llvm::Function::InternalLinkage);
2738 
2739   setNonAliasAttributes(GD, F);
2740 }
2741 
2742 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2743   // Set linkage and visibility in case we never see a definition.
2744   LinkageInfo LV = ND->getLinkageAndVisibility();
2745   // Don't set internal linkage on declarations.
2746   // "extern_weak" is overloaded in LLVM; we probably should have
2747   // separate linkage types for this.
2748   if (isExternallyVisible(LV.getLinkage()) &&
2749       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2750     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2751 }
2752 
2753 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2754                                                        llvm::Function *F) {
2755   // Only if we are checking indirect calls.
2756   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2757     return;
2758 
2759   // Non-static class methods are handled via vtable or member function pointer
2760   // checks elsewhere.
2761   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2762     return;
2763 
2764   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2765   F->addTypeMetadata(0, MD);
2766   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2767 
2768   // Emit a hash-based bit set entry for cross-DSO calls.
2769   if (CodeGenOpts.SanitizeCfiCrossDso)
2770     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2771       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2772 }
2773 
2774 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2775   llvm::LLVMContext &Ctx = F->getContext();
2776   llvm::MDBuilder MDB(Ctx);
2777   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2778                  llvm::MDNode::get(
2779                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2780 }
2781 
2782 static bool allowKCFIIdentifier(StringRef Name) {
2783   // KCFI type identifier constants are only necessary for external assembly
2784   // functions, which means it's safe to skip unusual names. Subset of
2785   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2786   return llvm::all_of(Name, [](const char &C) {
2787     return llvm::isAlnum(C) || C == '_' || C == '.';
2788   });
2789 }
2790 
2791 void CodeGenModule::finalizeKCFITypes() {
2792   llvm::Module &M = getModule();
2793   for (auto &F : M.functions()) {
2794     // Remove KCFI type metadata from non-address-taken local functions.
2795     bool AddressTaken = F.hasAddressTaken();
2796     if (!AddressTaken && F.hasLocalLinkage())
2797       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2798 
2799     // Generate a constant with the expected KCFI type identifier for all
2800     // address-taken function declarations to support annotating indirectly
2801     // called assembly functions.
2802     if (!AddressTaken || !F.isDeclaration())
2803       continue;
2804 
2805     const llvm::ConstantInt *Type;
2806     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2807       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2808     else
2809       continue;
2810 
2811     StringRef Name = F.getName();
2812     if (!allowKCFIIdentifier(Name))
2813       continue;
2814 
2815     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2816                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2817                           .str();
2818     M.appendModuleInlineAsm(Asm);
2819   }
2820 }
2821 
2822 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2823                                           bool IsIncompleteFunction,
2824                                           bool IsThunk) {
2825 
2826   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2827     // If this is an intrinsic function, set the function's attributes
2828     // to the intrinsic's attributes.
2829     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2830     return;
2831   }
2832 
2833   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2834 
2835   if (!IsIncompleteFunction)
2836     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2837                               IsThunk);
2838 
2839   // Add the Returned attribute for "this", except for iOS 5 and earlier
2840   // where substantial code, including the libstdc++ dylib, was compiled with
2841   // GCC and does not actually return "this".
2842   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2843       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2844     assert(!F->arg_empty() &&
2845            F->arg_begin()->getType()
2846              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2847            "unexpected this return");
2848     F->addParamAttr(0, llvm::Attribute::Returned);
2849   }
2850 
2851   // Only a few attributes are set on declarations; these may later be
2852   // overridden by a definition.
2853 
2854   setLinkageForGV(F, FD);
2855   setGVProperties(F, FD);
2856 
2857   // Setup target-specific attributes.
2858   if (!IsIncompleteFunction && F->isDeclaration())
2859     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2860 
2861   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2862     F->setSection(CSA->getName());
2863   else if (const auto *SA = FD->getAttr<SectionAttr>())
2864      F->setSection(SA->getName());
2865 
2866   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2867     if (EA->isError())
2868       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2869     else if (EA->isWarning())
2870       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2871   }
2872 
2873   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2874   if (FD->isInlineBuiltinDeclaration()) {
2875     const FunctionDecl *FDBody;
2876     bool HasBody = FD->hasBody(FDBody);
2877     (void)HasBody;
2878     assert(HasBody && "Inline builtin declarations should always have an "
2879                       "available body!");
2880     if (shouldEmitFunction(FDBody))
2881       F->addFnAttr(llvm::Attribute::NoBuiltin);
2882   }
2883 
2884   if (FD->isReplaceableGlobalAllocationFunction()) {
2885     // A replaceable global allocation function does not act like a builtin by
2886     // default, only if it is invoked by a new-expression or delete-expression.
2887     F->addFnAttr(llvm::Attribute::NoBuiltin);
2888   }
2889 
2890   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2891     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2892   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2893     if (MD->isVirtual())
2894       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2895 
2896   // Don't emit entries for function declarations in the cross-DSO mode. This
2897   // is handled with better precision by the receiving DSO. But if jump tables
2898   // are non-canonical then we need type metadata in order to produce the local
2899   // jump table.
2900   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2901       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2902     CreateFunctionTypeMetadataForIcall(FD, F);
2903 
2904   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2905     setKCFIType(FD, F);
2906 
2907   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2908     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2909 
2910   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2911     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2912 
2913   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2914     // Annotate the callback behavior as metadata:
2915     //  - The callback callee (as argument number).
2916     //  - The callback payloads (as argument numbers).
2917     llvm::LLVMContext &Ctx = F->getContext();
2918     llvm::MDBuilder MDB(Ctx);
2919 
2920     // The payload indices are all but the first one in the encoding. The first
2921     // identifies the callback callee.
2922     int CalleeIdx = *CB->encoding_begin();
2923     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2924     F->addMetadata(llvm::LLVMContext::MD_callback,
2925                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2926                                                CalleeIdx, PayloadIndices,
2927                                                /* VarArgsArePassed */ false)}));
2928   }
2929 }
2930 
2931 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2932   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2933          "Only globals with definition can force usage.");
2934   LLVMUsed.emplace_back(GV);
2935 }
2936 
2937 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2938   assert(!GV->isDeclaration() &&
2939          "Only globals with definition can force usage.");
2940   LLVMCompilerUsed.emplace_back(GV);
2941 }
2942 
2943 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2944   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2945          "Only globals with definition can force usage.");
2946   if (getTriple().isOSBinFormatELF())
2947     LLVMCompilerUsed.emplace_back(GV);
2948   else
2949     LLVMUsed.emplace_back(GV);
2950 }
2951 
2952 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2953                      std::vector<llvm::WeakTrackingVH> &List) {
2954   // Don't create llvm.used if there is no need.
2955   if (List.empty())
2956     return;
2957 
2958   // Convert List to what ConstantArray needs.
2959   SmallVector<llvm::Constant*, 8> UsedArray;
2960   UsedArray.resize(List.size());
2961   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2962     UsedArray[i] =
2963         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2964             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2965   }
2966 
2967   if (UsedArray.empty())
2968     return;
2969   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2970 
2971   auto *GV = new llvm::GlobalVariable(
2972       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2973       llvm::ConstantArray::get(ATy, UsedArray), Name);
2974 
2975   GV->setSection("llvm.metadata");
2976 }
2977 
2978 void CodeGenModule::emitLLVMUsed() {
2979   emitUsed(*this, "llvm.used", LLVMUsed);
2980   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2981 }
2982 
2983 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2984   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2985   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2986 }
2987 
2988 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2989   llvm::SmallString<32> Opt;
2990   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2991   if (Opt.empty())
2992     return;
2993   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2994   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2995 }
2996 
2997 void CodeGenModule::AddDependentLib(StringRef Lib) {
2998   auto &C = getLLVMContext();
2999   if (getTarget().getTriple().isOSBinFormatELF()) {
3000       ELFDependentLibraries.push_back(
3001         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3002     return;
3003   }
3004 
3005   llvm::SmallString<24> Opt;
3006   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3007   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3008   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3009 }
3010 
3011 /// Add link options implied by the given module, including modules
3012 /// it depends on, using a postorder walk.
3013 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3014                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3015                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3016   // Import this module's parent.
3017   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3018     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3019   }
3020 
3021   // Import this module's dependencies.
3022   for (Module *Import : llvm::reverse(Mod->Imports)) {
3023     if (Visited.insert(Import).second)
3024       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3025   }
3026 
3027   // Add linker options to link against the libraries/frameworks
3028   // described by this module.
3029   llvm::LLVMContext &Context = CGM.getLLVMContext();
3030   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3031 
3032   // For modules that use export_as for linking, use that module
3033   // name instead.
3034   if (Mod->UseExportAsModuleLinkName)
3035     return;
3036 
3037   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3038     // Link against a framework.  Frameworks are currently Darwin only, so we
3039     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3040     if (LL.IsFramework) {
3041       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3042                                  llvm::MDString::get(Context, LL.Library)};
3043 
3044       Metadata.push_back(llvm::MDNode::get(Context, Args));
3045       continue;
3046     }
3047 
3048     // Link against a library.
3049     if (IsELF) {
3050       llvm::Metadata *Args[2] = {
3051           llvm::MDString::get(Context, "lib"),
3052           llvm::MDString::get(Context, LL.Library),
3053       };
3054       Metadata.push_back(llvm::MDNode::get(Context, Args));
3055     } else {
3056       llvm::SmallString<24> Opt;
3057       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3058       auto *OptString = llvm::MDString::get(Context, Opt);
3059       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3060     }
3061   }
3062 }
3063 
3064 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3065   assert(Primary->isNamedModuleUnit() &&
3066          "We should only emit module initializers for named modules.");
3067 
3068   // Emit the initializers in the order that sub-modules appear in the
3069   // source, first Global Module Fragments, if present.
3070   if (auto GMF = Primary->getGlobalModuleFragment()) {
3071     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3072       if (isa<ImportDecl>(D))
3073         continue;
3074       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3075       EmitTopLevelDecl(D);
3076     }
3077   }
3078   // Second any associated with the module, itself.
3079   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3080     // Skip import decls, the inits for those are called explicitly.
3081     if (isa<ImportDecl>(D))
3082       continue;
3083     EmitTopLevelDecl(D);
3084   }
3085   // Third any associated with the Privat eMOdule Fragment, if present.
3086   if (auto PMF = Primary->getPrivateModuleFragment()) {
3087     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3088       // Skip import decls, the inits for those are called explicitly.
3089       if (isa<ImportDecl>(D))
3090         continue;
3091       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3092       EmitTopLevelDecl(D);
3093     }
3094   }
3095 }
3096 
3097 void CodeGenModule::EmitModuleLinkOptions() {
3098   // Collect the set of all of the modules we want to visit to emit link
3099   // options, which is essentially the imported modules and all of their
3100   // non-explicit child modules.
3101   llvm::SetVector<clang::Module *> LinkModules;
3102   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3103   SmallVector<clang::Module *, 16> Stack;
3104 
3105   // Seed the stack with imported modules.
3106   for (Module *M : ImportedModules) {
3107     // Do not add any link flags when an implementation TU of a module imports
3108     // a header of that same module.
3109     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3110         !getLangOpts().isCompilingModule())
3111       continue;
3112     if (Visited.insert(M).second)
3113       Stack.push_back(M);
3114   }
3115 
3116   // Find all of the modules to import, making a little effort to prune
3117   // non-leaf modules.
3118   while (!Stack.empty()) {
3119     clang::Module *Mod = Stack.pop_back_val();
3120 
3121     bool AnyChildren = false;
3122 
3123     // Visit the submodules of this module.
3124     for (const auto &SM : Mod->submodules()) {
3125       // Skip explicit children; they need to be explicitly imported to be
3126       // linked against.
3127       if (SM->IsExplicit)
3128         continue;
3129 
3130       if (Visited.insert(SM).second) {
3131         Stack.push_back(SM);
3132         AnyChildren = true;
3133       }
3134     }
3135 
3136     // We didn't find any children, so add this module to the list of
3137     // modules to link against.
3138     if (!AnyChildren) {
3139       LinkModules.insert(Mod);
3140     }
3141   }
3142 
3143   // Add link options for all of the imported modules in reverse topological
3144   // order.  We don't do anything to try to order import link flags with respect
3145   // to linker options inserted by things like #pragma comment().
3146   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3147   Visited.clear();
3148   for (Module *M : LinkModules)
3149     if (Visited.insert(M).second)
3150       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3151   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3152   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3153 
3154   // Add the linker options metadata flag.
3155   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3156   for (auto *MD : LinkerOptionsMetadata)
3157     NMD->addOperand(MD);
3158 }
3159 
3160 void CodeGenModule::EmitDeferred() {
3161   // Emit deferred declare target declarations.
3162   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3163     getOpenMPRuntime().emitDeferredTargetDecls();
3164 
3165   // Emit code for any potentially referenced deferred decls.  Since a
3166   // previously unused static decl may become used during the generation of code
3167   // for a static function, iterate until no changes are made.
3168 
3169   if (!DeferredVTables.empty()) {
3170     EmitDeferredVTables();
3171 
3172     // Emitting a vtable doesn't directly cause more vtables to
3173     // become deferred, although it can cause functions to be
3174     // emitted that then need those vtables.
3175     assert(DeferredVTables.empty());
3176   }
3177 
3178   // Emit CUDA/HIP static device variables referenced by host code only.
3179   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3180   // needed for further handling.
3181   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3182     llvm::append_range(DeferredDeclsToEmit,
3183                        getContext().CUDADeviceVarODRUsedByHost);
3184 
3185   // Stop if we're out of both deferred vtables and deferred declarations.
3186   if (DeferredDeclsToEmit.empty())
3187     return;
3188 
3189   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3190   // work, it will not interfere with this.
3191   std::vector<GlobalDecl> CurDeclsToEmit;
3192   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3193 
3194   for (GlobalDecl &D : CurDeclsToEmit) {
3195     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3196     // to get GlobalValue with exactly the type we need, not something that
3197     // might had been created for another decl with the same mangled name but
3198     // different type.
3199     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3200         GetAddrOfGlobal(D, ForDefinition));
3201 
3202     // In case of different address spaces, we may still get a cast, even with
3203     // IsForDefinition equal to true. Query mangled names table to get
3204     // GlobalValue.
3205     if (!GV)
3206       GV = GetGlobalValue(getMangledName(D));
3207 
3208     // Make sure GetGlobalValue returned non-null.
3209     assert(GV);
3210 
3211     // Check to see if we've already emitted this.  This is necessary
3212     // for a couple of reasons: first, decls can end up in the
3213     // deferred-decls queue multiple times, and second, decls can end
3214     // up with definitions in unusual ways (e.g. by an extern inline
3215     // function acquiring a strong function redefinition).  Just
3216     // ignore these cases.
3217     if (!GV->isDeclaration())
3218       continue;
3219 
3220     // If this is OpenMP, check if it is legal to emit this global normally.
3221     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3222       continue;
3223 
3224     // Otherwise, emit the definition and move on to the next one.
3225     EmitGlobalDefinition(D, GV);
3226 
3227     // If we found out that we need to emit more decls, do that recursively.
3228     // This has the advantage that the decls are emitted in a DFS and related
3229     // ones are close together, which is convenient for testing.
3230     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3231       EmitDeferred();
3232       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3233     }
3234   }
3235 }
3236 
3237 void CodeGenModule::EmitVTablesOpportunistically() {
3238   // Try to emit external vtables as available_externally if they have emitted
3239   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3240   // is not allowed to create new references to things that need to be emitted
3241   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3242 
3243   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3244          && "Only emit opportunistic vtables with optimizations");
3245 
3246   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3247     assert(getVTables().isVTableExternal(RD) &&
3248            "This queue should only contain external vtables");
3249     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3250       VTables.GenerateClassData(RD);
3251   }
3252   OpportunisticVTables.clear();
3253 }
3254 
3255 void CodeGenModule::EmitGlobalAnnotations() {
3256   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3257     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3258     if (GV)
3259       AddGlobalAnnotations(VD, GV);
3260   }
3261   DeferredAnnotations.clear();
3262 
3263   if (Annotations.empty())
3264     return;
3265 
3266   // Create a new global variable for the ConstantStruct in the Module.
3267   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3268     Annotations[0]->getType(), Annotations.size()), Annotations);
3269   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3270                                       llvm::GlobalValue::AppendingLinkage,
3271                                       Array, "llvm.global.annotations");
3272   gv->setSection(AnnotationSection);
3273 }
3274 
3275 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3276   llvm::Constant *&AStr = AnnotationStrings[Str];
3277   if (AStr)
3278     return AStr;
3279 
3280   // Not found yet, create a new global.
3281   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3282   auto *gv = new llvm::GlobalVariable(
3283       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3284       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3285       ConstGlobalsPtrTy->getAddressSpace());
3286   gv->setSection(AnnotationSection);
3287   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3288   AStr = gv;
3289   return gv;
3290 }
3291 
3292 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3293   SourceManager &SM = getContext().getSourceManager();
3294   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3295   if (PLoc.isValid())
3296     return EmitAnnotationString(PLoc.getFilename());
3297   return EmitAnnotationString(SM.getBufferName(Loc));
3298 }
3299 
3300 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3301   SourceManager &SM = getContext().getSourceManager();
3302   PresumedLoc PLoc = SM.getPresumedLoc(L);
3303   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3304     SM.getExpansionLineNumber(L);
3305   return llvm::ConstantInt::get(Int32Ty, LineNo);
3306 }
3307 
3308 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3309   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3310   if (Exprs.empty())
3311     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3312 
3313   llvm::FoldingSetNodeID ID;
3314   for (Expr *E : Exprs) {
3315     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3316   }
3317   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3318   if (Lookup)
3319     return Lookup;
3320 
3321   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3322   LLVMArgs.reserve(Exprs.size());
3323   ConstantEmitter ConstEmiter(*this);
3324   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3325     const auto *CE = cast<clang::ConstantExpr>(E);
3326     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3327                                     CE->getType());
3328   });
3329   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3330   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3331                                       llvm::GlobalValue::PrivateLinkage, Struct,
3332                                       ".args");
3333   GV->setSection(AnnotationSection);
3334   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3335 
3336   Lookup = GV;
3337   return GV;
3338 }
3339 
3340 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3341                                                 const AnnotateAttr *AA,
3342                                                 SourceLocation L) {
3343   // Get the globals for file name, annotation, and the line number.
3344   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3345                  *UnitGV = EmitAnnotationUnit(L),
3346                  *LineNoCst = EmitAnnotationLineNo(L),
3347                  *Args = EmitAnnotationArgs(AA);
3348 
3349   llvm::Constant *GVInGlobalsAS = GV;
3350   if (GV->getAddressSpace() !=
3351       getDataLayout().getDefaultGlobalsAddressSpace()) {
3352     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3353         GV,
3354         llvm::PointerType::get(
3355             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3356   }
3357 
3358   // Create the ConstantStruct for the global annotation.
3359   llvm::Constant *Fields[] = {
3360       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3361   };
3362   return llvm::ConstantStruct::getAnon(Fields);
3363 }
3364 
3365 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3366                                          llvm::GlobalValue *GV) {
3367   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3368   // Get the struct elements for these annotations.
3369   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3370     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3371 }
3372 
3373 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3374                                        SourceLocation Loc) const {
3375   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3376   // NoSanitize by function name.
3377   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3378     return true;
3379   // NoSanitize by location. Check "mainfile" prefix.
3380   auto &SM = Context.getSourceManager();
3381   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3382   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3383     return true;
3384 
3385   // Check "src" prefix.
3386   if (Loc.isValid())
3387     return NoSanitizeL.containsLocation(Kind, Loc);
3388   // If location is unknown, this may be a compiler-generated function. Assume
3389   // it's located in the main file.
3390   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3391 }
3392 
3393 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3394                                        llvm::GlobalVariable *GV,
3395                                        SourceLocation Loc, QualType Ty,
3396                                        StringRef Category) const {
3397   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3398   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3399     return true;
3400   auto &SM = Context.getSourceManager();
3401   if (NoSanitizeL.containsMainFile(
3402           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3403           Category))
3404     return true;
3405   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3406     return true;
3407 
3408   // Check global type.
3409   if (!Ty.isNull()) {
3410     // Drill down the array types: if global variable of a fixed type is
3411     // not sanitized, we also don't instrument arrays of them.
3412     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3413       Ty = AT->getElementType();
3414     Ty = Ty.getCanonicalType().getUnqualifiedType();
3415     // Only record types (classes, structs etc.) are ignored.
3416     if (Ty->isRecordType()) {
3417       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3418       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3419         return true;
3420     }
3421   }
3422   return false;
3423 }
3424 
3425 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3426                                    StringRef Category) const {
3427   const auto &XRayFilter = getContext().getXRayFilter();
3428   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3429   auto Attr = ImbueAttr::NONE;
3430   if (Loc.isValid())
3431     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3432   if (Attr == ImbueAttr::NONE)
3433     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3434   switch (Attr) {
3435   case ImbueAttr::NONE:
3436     return false;
3437   case ImbueAttr::ALWAYS:
3438     Fn->addFnAttr("function-instrument", "xray-always");
3439     break;
3440   case ImbueAttr::ALWAYS_ARG1:
3441     Fn->addFnAttr("function-instrument", "xray-always");
3442     Fn->addFnAttr("xray-log-args", "1");
3443     break;
3444   case ImbueAttr::NEVER:
3445     Fn->addFnAttr("function-instrument", "xray-never");
3446     break;
3447   }
3448   return true;
3449 }
3450 
3451 ProfileList::ExclusionType
3452 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3453                                               SourceLocation Loc) const {
3454   const auto &ProfileList = getContext().getProfileList();
3455   // If the profile list is empty, then instrument everything.
3456   if (ProfileList.isEmpty())
3457     return ProfileList::Allow;
3458   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3459   // First, check the function name.
3460   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3461     return *V;
3462   // Next, check the source location.
3463   if (Loc.isValid())
3464     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3465       return *V;
3466   // If location is unknown, this may be a compiler-generated function. Assume
3467   // it's located in the main file.
3468   auto &SM = Context.getSourceManager();
3469   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3470     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3471       return *V;
3472   return ProfileList.getDefault(Kind);
3473 }
3474 
3475 ProfileList::ExclusionType
3476 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3477                                                  SourceLocation Loc) const {
3478   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3479   if (V != ProfileList::Allow)
3480     return V;
3481 
3482   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3483   if (NumGroups > 1) {
3484     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3485     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3486       return ProfileList::Skip;
3487   }
3488   return ProfileList::Allow;
3489 }
3490 
3491 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3492   // Never defer when EmitAllDecls is specified.
3493   if (LangOpts.EmitAllDecls)
3494     return true;
3495 
3496   const auto *VD = dyn_cast<VarDecl>(Global);
3497   if (VD &&
3498       ((CodeGenOpts.KeepPersistentStorageVariables &&
3499         (VD->getStorageDuration() == SD_Static ||
3500          VD->getStorageDuration() == SD_Thread)) ||
3501        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3502         VD->getType().isConstQualified())))
3503     return true;
3504 
3505   return getContext().DeclMustBeEmitted(Global);
3506 }
3507 
3508 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3509   // In OpenMP 5.0 variables and function may be marked as
3510   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3511   // that they must be emitted on the host/device. To be sure we need to have
3512   // seen a declare target with an explicit mentioning of the function, we know
3513   // we have if the level of the declare target attribute is -1. Note that we
3514   // check somewhere else if we should emit this at all.
3515   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3516     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3517         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3518     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3519       return false;
3520   }
3521 
3522   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3523     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3524       // Implicit template instantiations may change linkage if they are later
3525       // explicitly instantiated, so they should not be emitted eagerly.
3526       return false;
3527     // Defer until all versions have been semantically checked.
3528     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3529       return false;
3530   }
3531   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3532     if (Context.getInlineVariableDefinitionKind(VD) ==
3533         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3534       // A definition of an inline constexpr static data member may change
3535       // linkage later if it's redeclared outside the class.
3536       return false;
3537     if (CXX20ModuleInits && VD->getOwningModule() &&
3538         !VD->getOwningModule()->isModuleMapModule()) {
3539       // For CXX20, module-owned initializers need to be deferred, since it is
3540       // not known at this point if they will be run for the current module or
3541       // as part of the initializer for an imported one.
3542       return false;
3543     }
3544   }
3545   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3546   // codegen for global variables, because they may be marked as threadprivate.
3547   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3548       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3549       !Global->getType().isConstantStorage(getContext(), false, false) &&
3550       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3551     return false;
3552 
3553   return true;
3554 }
3555 
3556 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3557   StringRef Name = getMangledName(GD);
3558 
3559   // The UUID descriptor should be pointer aligned.
3560   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3561 
3562   // Look for an existing global.
3563   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3564     return ConstantAddress(GV, GV->getValueType(), Alignment);
3565 
3566   ConstantEmitter Emitter(*this);
3567   llvm::Constant *Init;
3568 
3569   APValue &V = GD->getAsAPValue();
3570   if (!V.isAbsent()) {
3571     // If possible, emit the APValue version of the initializer. In particular,
3572     // this gets the type of the constant right.
3573     Init = Emitter.emitForInitializer(
3574         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3575   } else {
3576     // As a fallback, directly construct the constant.
3577     // FIXME: This may get padding wrong under esoteric struct layout rules.
3578     // MSVC appears to create a complete type 'struct __s_GUID' that it
3579     // presumably uses to represent these constants.
3580     MSGuidDecl::Parts Parts = GD->getParts();
3581     llvm::Constant *Fields[4] = {
3582         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3583         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3584         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3585         llvm::ConstantDataArray::getRaw(
3586             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3587             Int8Ty)};
3588     Init = llvm::ConstantStruct::getAnon(Fields);
3589   }
3590 
3591   auto *GV = new llvm::GlobalVariable(
3592       getModule(), Init->getType(),
3593       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3594   if (supportsCOMDAT())
3595     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3596   setDSOLocal(GV);
3597 
3598   if (!V.isAbsent()) {
3599     Emitter.finalize(GV);
3600     return ConstantAddress(GV, GV->getValueType(), Alignment);
3601   }
3602 
3603   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3604   return ConstantAddress(GV, Ty, Alignment);
3605 }
3606 
3607 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3608     const UnnamedGlobalConstantDecl *GCD) {
3609   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3610 
3611   llvm::GlobalVariable **Entry = nullptr;
3612   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3613   if (*Entry)
3614     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3615 
3616   ConstantEmitter Emitter(*this);
3617   llvm::Constant *Init;
3618 
3619   const APValue &V = GCD->getValue();
3620 
3621   assert(!V.isAbsent());
3622   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3623                                     GCD->getType());
3624 
3625   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3626                                       /*isConstant=*/true,
3627                                       llvm::GlobalValue::PrivateLinkage, Init,
3628                                       ".constant");
3629   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3630   GV->setAlignment(Alignment.getAsAlign());
3631 
3632   Emitter.finalize(GV);
3633 
3634   *Entry = GV;
3635   return ConstantAddress(GV, GV->getValueType(), Alignment);
3636 }
3637 
3638 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3639     const TemplateParamObjectDecl *TPO) {
3640   StringRef Name = getMangledName(TPO);
3641   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3642 
3643   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3644     return ConstantAddress(GV, GV->getValueType(), Alignment);
3645 
3646   ConstantEmitter Emitter(*this);
3647   llvm::Constant *Init = Emitter.emitForInitializer(
3648         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3649 
3650   if (!Init) {
3651     ErrorUnsupported(TPO, "template parameter object");
3652     return ConstantAddress::invalid();
3653   }
3654 
3655   llvm::GlobalValue::LinkageTypes Linkage =
3656       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3657           ? llvm::GlobalValue::LinkOnceODRLinkage
3658           : llvm::GlobalValue::InternalLinkage;
3659   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3660                                       /*isConstant=*/true, Linkage, Init, Name);
3661   setGVProperties(GV, TPO);
3662   if (supportsCOMDAT())
3663     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3664   Emitter.finalize(GV);
3665 
3666     return ConstantAddress(GV, GV->getValueType(), Alignment);
3667 }
3668 
3669 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3670   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3671   assert(AA && "No alias?");
3672 
3673   CharUnits Alignment = getContext().getDeclAlign(VD);
3674   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3675 
3676   // See if there is already something with the target's name in the module.
3677   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3678   if (Entry)
3679     return ConstantAddress(Entry, DeclTy, Alignment);
3680 
3681   llvm::Constant *Aliasee;
3682   if (isa<llvm::FunctionType>(DeclTy))
3683     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3684                                       GlobalDecl(cast<FunctionDecl>(VD)),
3685                                       /*ForVTable=*/false);
3686   else
3687     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3688                                     nullptr);
3689 
3690   auto *F = cast<llvm::GlobalValue>(Aliasee);
3691   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3692   WeakRefReferences.insert(F);
3693 
3694   return ConstantAddress(Aliasee, DeclTy, Alignment);
3695 }
3696 
3697 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3698   if (!D)
3699     return false;
3700   if (auto *A = D->getAttr<AttrT>())
3701     return A->isImplicit();
3702   return D->isImplicit();
3703 }
3704 
3705 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3706   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3707   // We need to emit host-side 'shadows' for all global
3708   // device-side variables because the CUDA runtime needs their
3709   // size and host-side address in order to provide access to
3710   // their device-side incarnations.
3711   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3712          Global->hasAttr<CUDAConstantAttr>() ||
3713          Global->hasAttr<CUDASharedAttr>() ||
3714          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3715          Global->getType()->isCUDADeviceBuiltinTextureType();
3716 }
3717 
3718 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3719   const auto *Global = cast<ValueDecl>(GD.getDecl());
3720 
3721   // Weak references don't produce any output by themselves.
3722   if (Global->hasAttr<WeakRefAttr>())
3723     return;
3724 
3725   // If this is an alias definition (which otherwise looks like a declaration)
3726   // emit it now.
3727   if (Global->hasAttr<AliasAttr>())
3728     return EmitAliasDefinition(GD);
3729 
3730   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3731   if (Global->hasAttr<IFuncAttr>())
3732     return emitIFuncDefinition(GD);
3733 
3734   // If this is a cpu_dispatch multiversion function, emit the resolver.
3735   if (Global->hasAttr<CPUDispatchAttr>())
3736     return emitCPUDispatchDefinition(GD);
3737 
3738   // If this is CUDA, be selective about which declarations we emit.
3739   // Non-constexpr non-lambda implicit host device functions are not emitted
3740   // unless they are used on device side.
3741   if (LangOpts.CUDA) {
3742     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3743            "Expected Variable or Function");
3744     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3745       if (!shouldEmitCUDAGlobalVar(VD))
3746         return;
3747     } else if (LangOpts.CUDAIsDevice) {
3748       const auto *FD = dyn_cast<FunctionDecl>(Global);
3749       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3750            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3751             hasImplicitAttr<CUDAHostAttr>(FD) &&
3752             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3753             !isLambdaCallOperator(FD) &&
3754             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3755           !Global->hasAttr<CUDAGlobalAttr>() &&
3756           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3757             !Global->hasAttr<CUDAHostAttr>()))
3758         return;
3759       // Device-only functions are the only things we skip.
3760     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3761                Global->hasAttr<CUDADeviceAttr>())
3762       return;
3763   }
3764 
3765   if (LangOpts.OpenMP) {
3766     // If this is OpenMP, check if it is legal to emit this global normally.
3767     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3768       return;
3769     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3770       if (MustBeEmitted(Global))
3771         EmitOMPDeclareReduction(DRD);
3772       return;
3773     }
3774     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3775       if (MustBeEmitted(Global))
3776         EmitOMPDeclareMapper(DMD);
3777       return;
3778     }
3779   }
3780 
3781   // Ignore declarations, they will be emitted on their first use.
3782   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3783     // Update deferred annotations with the latest declaration if the function
3784     // function was already used or defined.
3785     if (FD->hasAttr<AnnotateAttr>()) {
3786       StringRef MangledName = getMangledName(GD);
3787       if (GetGlobalValue(MangledName))
3788         DeferredAnnotations[MangledName] = FD;
3789     }
3790 
3791     // Forward declarations are emitted lazily on first use.
3792     if (!FD->doesThisDeclarationHaveABody()) {
3793       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3794           (!FD->isMultiVersion() ||
3795            !FD->getASTContext().getTargetInfo().getTriple().isAArch64()))
3796         return;
3797 
3798       StringRef MangledName = getMangledName(GD);
3799 
3800       // Compute the function info and LLVM type.
3801       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3802       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3803 
3804       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3805                               /*DontDefer=*/false);
3806       return;
3807     }
3808   } else {
3809     const auto *VD = cast<VarDecl>(Global);
3810     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3811     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3812         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3813       if (LangOpts.OpenMP) {
3814         // Emit declaration of the must-be-emitted declare target variable.
3815         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3816                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3817 
3818           // If this variable has external storage and doesn't require special
3819           // link handling we defer to its canonical definition.
3820           if (VD->hasExternalStorage() &&
3821               Res != OMPDeclareTargetDeclAttr::MT_Link)
3822             return;
3823 
3824           bool UnifiedMemoryEnabled =
3825               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3826           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3827                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3828               !UnifiedMemoryEnabled) {
3829             (void)GetAddrOfGlobalVar(VD);
3830           } else {
3831             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3832                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3833                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3834                      UnifiedMemoryEnabled)) &&
3835                    "Link clause or to clause with unified memory expected.");
3836             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3837           }
3838 
3839           return;
3840         }
3841       }
3842       // If this declaration may have caused an inline variable definition to
3843       // change linkage, make sure that it's emitted.
3844       if (Context.getInlineVariableDefinitionKind(VD) ==
3845           ASTContext::InlineVariableDefinitionKind::Strong)
3846         GetAddrOfGlobalVar(VD);
3847       return;
3848     }
3849   }
3850 
3851   // Defer code generation to first use when possible, e.g. if this is an inline
3852   // function. If the global must always be emitted, do it eagerly if possible
3853   // to benefit from cache locality.
3854   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3855     // Emit the definition if it can't be deferred.
3856     EmitGlobalDefinition(GD);
3857     addEmittedDeferredDecl(GD);
3858     return;
3859   }
3860 
3861   // If we're deferring emission of a C++ variable with an
3862   // initializer, remember the order in which it appeared in the file.
3863   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3864       cast<VarDecl>(Global)->hasInit()) {
3865     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3866     CXXGlobalInits.push_back(nullptr);
3867   }
3868 
3869   StringRef MangledName = getMangledName(GD);
3870   if (GetGlobalValue(MangledName) != nullptr) {
3871     // The value has already been used and should therefore be emitted.
3872     addDeferredDeclToEmit(GD);
3873   } else if (MustBeEmitted(Global)) {
3874     // The value must be emitted, but cannot be emitted eagerly.
3875     assert(!MayBeEmittedEagerly(Global));
3876     addDeferredDeclToEmit(GD);
3877   } else {
3878     // Otherwise, remember that we saw a deferred decl with this name.  The
3879     // first use of the mangled name will cause it to move into
3880     // DeferredDeclsToEmit.
3881     DeferredDecls[MangledName] = GD;
3882   }
3883 }
3884 
3885 // Check if T is a class type with a destructor that's not dllimport.
3886 static bool HasNonDllImportDtor(QualType T) {
3887   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3888     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3889       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3890         return true;
3891 
3892   return false;
3893 }
3894 
3895 namespace {
3896   struct FunctionIsDirectlyRecursive
3897       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3898     const StringRef Name;
3899     const Builtin::Context &BI;
3900     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3901         : Name(N), BI(C) {}
3902 
3903     bool VisitCallExpr(const CallExpr *E) {
3904       const FunctionDecl *FD = E->getDirectCallee();
3905       if (!FD)
3906         return false;
3907       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3908       if (Attr && Name == Attr->getLabel())
3909         return true;
3910       unsigned BuiltinID = FD->getBuiltinID();
3911       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3912         return false;
3913       StringRef BuiltinName = BI.getName(BuiltinID);
3914       if (BuiltinName.starts_with("__builtin_") &&
3915           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3916         return true;
3917       }
3918       return false;
3919     }
3920 
3921     bool VisitStmt(const Stmt *S) {
3922       for (const Stmt *Child : S->children())
3923         if (Child && this->Visit(Child))
3924           return true;
3925       return false;
3926     }
3927   };
3928 
3929   // Make sure we're not referencing non-imported vars or functions.
3930   struct DLLImportFunctionVisitor
3931       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3932     bool SafeToInline = true;
3933 
3934     bool shouldVisitImplicitCode() const { return true; }
3935 
3936     bool VisitVarDecl(VarDecl *VD) {
3937       if (VD->getTLSKind()) {
3938         // A thread-local variable cannot be imported.
3939         SafeToInline = false;
3940         return SafeToInline;
3941       }
3942 
3943       // A variable definition might imply a destructor call.
3944       if (VD->isThisDeclarationADefinition())
3945         SafeToInline = !HasNonDllImportDtor(VD->getType());
3946 
3947       return SafeToInline;
3948     }
3949 
3950     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3951       if (const auto *D = E->getTemporary()->getDestructor())
3952         SafeToInline = D->hasAttr<DLLImportAttr>();
3953       return SafeToInline;
3954     }
3955 
3956     bool VisitDeclRefExpr(DeclRefExpr *E) {
3957       ValueDecl *VD = E->getDecl();
3958       if (isa<FunctionDecl>(VD))
3959         SafeToInline = VD->hasAttr<DLLImportAttr>();
3960       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3961         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3962       return SafeToInline;
3963     }
3964 
3965     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3966       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3967       return SafeToInline;
3968     }
3969 
3970     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3971       CXXMethodDecl *M = E->getMethodDecl();
3972       if (!M) {
3973         // Call through a pointer to member function. This is safe to inline.
3974         SafeToInline = true;
3975       } else {
3976         SafeToInline = M->hasAttr<DLLImportAttr>();
3977       }
3978       return SafeToInline;
3979     }
3980 
3981     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3982       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3983       return SafeToInline;
3984     }
3985 
3986     bool VisitCXXNewExpr(CXXNewExpr *E) {
3987       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3988       return SafeToInline;
3989     }
3990   };
3991 }
3992 
3993 // isTriviallyRecursive - Check if this function calls another
3994 // decl that, because of the asm attribute or the other decl being a builtin,
3995 // ends up pointing to itself.
3996 bool
3997 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3998   StringRef Name;
3999   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4000     // asm labels are a special kind of mangling we have to support.
4001     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4002     if (!Attr)
4003       return false;
4004     Name = Attr->getLabel();
4005   } else {
4006     Name = FD->getName();
4007   }
4008 
4009   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4010   const Stmt *Body = FD->getBody();
4011   return Body ? Walker.Visit(Body) : false;
4012 }
4013 
4014 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4015   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4016     return true;
4017 
4018   const auto *F = cast<FunctionDecl>(GD.getDecl());
4019   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4020     return false;
4021 
4022   // We don't import function bodies from other named module units since that
4023   // behavior may break ABI compatibility of the current unit.
4024   if (const Module *M = F->getOwningModule();
4025       M && M->getTopLevelModule()->isNamedModule() &&
4026       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4027     // There are practices to mark template member function as always-inline
4028     // and mark the template as extern explicit instantiation but not give
4029     // the definition for member function. So we have to emit the function
4030     // from explicitly instantiation with always-inline.
4031     //
4032     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4033     //
4034     // TODO: Maybe it is better to give it a warning if we call a non-inline
4035     // function from other module units which is marked as always-inline.
4036     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4037       return false;
4038     }
4039   }
4040 
4041   if (F->hasAttr<NoInlineAttr>())
4042     return false;
4043 
4044   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4045     // Check whether it would be safe to inline this dllimport function.
4046     DLLImportFunctionVisitor Visitor;
4047     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4048     if (!Visitor.SafeToInline)
4049       return false;
4050 
4051     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4052       // Implicit destructor invocations aren't captured in the AST, so the
4053       // check above can't see them. Check for them manually here.
4054       for (const Decl *Member : Dtor->getParent()->decls())
4055         if (isa<FieldDecl>(Member))
4056           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4057             return false;
4058       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4059         if (HasNonDllImportDtor(B.getType()))
4060           return false;
4061     }
4062   }
4063 
4064   // Inline builtins declaration must be emitted. They often are fortified
4065   // functions.
4066   if (F->isInlineBuiltinDeclaration())
4067     return true;
4068 
4069   // PR9614. Avoid cases where the source code is lying to us. An available
4070   // externally function should have an equivalent function somewhere else,
4071   // but a function that calls itself through asm label/`__builtin_` trickery is
4072   // clearly not equivalent to the real implementation.
4073   // This happens in glibc's btowc and in some configure checks.
4074   return !isTriviallyRecursive(F);
4075 }
4076 
4077 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4078   return CodeGenOpts.OptimizationLevel > 0;
4079 }
4080 
4081 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4082                                                        llvm::GlobalValue *GV) {
4083   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4084 
4085   if (FD->isCPUSpecificMultiVersion()) {
4086     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4087     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4088       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4089   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4090     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4091       // AArch64 favors the default target version over the clone if any.
4092       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4093           TC->isFirstOfVersion(I))
4094         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4095     // Ensure that the resolver function is also emitted.
4096     GetOrCreateMultiVersionResolver(GD);
4097   } else
4098     EmitGlobalFunctionDefinition(GD, GV);
4099 
4100   // Defer the resolver emission until we can reason whether the TU
4101   // contains a default target version implementation.
4102   if (FD->isTargetVersionMultiVersion())
4103     AddDeferredMultiVersionResolverToEmit(GD);
4104 }
4105 
4106 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4107   const auto *D = cast<ValueDecl>(GD.getDecl());
4108 
4109   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4110                                  Context.getSourceManager(),
4111                                  "Generating code for declaration");
4112 
4113   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4114     // At -O0, don't generate IR for functions with available_externally
4115     // linkage.
4116     if (!shouldEmitFunction(GD))
4117       return;
4118 
4119     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4120       std::string Name;
4121       llvm::raw_string_ostream OS(Name);
4122       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4123                                /*Qualified=*/true);
4124       return Name;
4125     });
4126 
4127     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4128       // Make sure to emit the definition(s) before we emit the thunks.
4129       // This is necessary for the generation of certain thunks.
4130       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4131         ABI->emitCXXStructor(GD);
4132       else if (FD->isMultiVersion())
4133         EmitMultiVersionFunctionDefinition(GD, GV);
4134       else
4135         EmitGlobalFunctionDefinition(GD, GV);
4136 
4137       if (Method->isVirtual())
4138         getVTables().EmitThunks(GD);
4139 
4140       return;
4141     }
4142 
4143     if (FD->isMultiVersion())
4144       return EmitMultiVersionFunctionDefinition(GD, GV);
4145     return EmitGlobalFunctionDefinition(GD, GV);
4146   }
4147 
4148   if (const auto *VD = dyn_cast<VarDecl>(D))
4149     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4150 
4151   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4152 }
4153 
4154 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4155                                                       llvm::Function *NewFn);
4156 
4157 static unsigned
4158 TargetMVPriority(const TargetInfo &TI,
4159                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4160   unsigned Priority = 0;
4161   unsigned NumFeatures = 0;
4162   for (StringRef Feat : RO.Conditions.Features) {
4163     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4164     NumFeatures++;
4165   }
4166 
4167   if (!RO.Conditions.Architecture.empty())
4168     Priority = std::max(
4169         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4170 
4171   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4172 
4173   return Priority;
4174 }
4175 
4176 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4177 // TU can forward declare the function without causing problems.  Particularly
4178 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4179 // work with internal linkage functions, so that the same function name can be
4180 // used with internal linkage in multiple TUs.
4181 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4182                                                        GlobalDecl GD) {
4183   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4184   if (FD->getFormalLinkage() == Linkage::Internal)
4185     return llvm::GlobalValue::InternalLinkage;
4186   return llvm::GlobalValue::WeakODRLinkage;
4187 }
4188 
4189 static FunctionDecl *createDefaultTargetVersionFrom(const FunctionDecl *FD) {
4190   auto *DeclCtx = const_cast<DeclContext *>(FD->getDeclContext());
4191   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4192   StorageClass SC = FD->getStorageClass();
4193   DeclarationName Name = FD->getNameInfo().getName();
4194 
4195   FunctionDecl *NewDecl =
4196       FunctionDecl::Create(FD->getASTContext(), DeclCtx, FD->getBeginLoc(),
4197                            FD->getEndLoc(), Name, TInfo->getType(), TInfo, SC);
4198 
4199   NewDecl->setIsMultiVersion();
4200   NewDecl->addAttr(TargetVersionAttr::CreateImplicit(
4201       NewDecl->getASTContext(), "default", NewDecl->getSourceRange()));
4202 
4203   return NewDecl;
4204 }
4205 
4206 void CodeGenModule::emitMultiVersionFunctions() {
4207   std::vector<GlobalDecl> MVFuncsToEmit;
4208   MultiVersionFuncs.swap(MVFuncsToEmit);
4209   for (GlobalDecl GD : MVFuncsToEmit) {
4210     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4211     assert(FD && "Expected a FunctionDecl");
4212 
4213     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4214       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4215       StringRef MangledName = getMangledName(CurGD);
4216       llvm::Constant *Func = GetGlobalValue(MangledName);
4217       if (!Func) {
4218         if (Decl->isDefined()) {
4219           EmitGlobalFunctionDefinition(CurGD, nullptr);
4220           Func = GetGlobalValue(MangledName);
4221         } else {
4222           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4223           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4224           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4225                                    /*DontDefer=*/false, ForDefinition);
4226         }
4227         assert(Func && "This should have just been created");
4228       }
4229       return cast<llvm::Function>(Func);
4230     };
4231 
4232     bool HasDefaultDecl = !FD->isTargetVersionMultiVersion();
4233     bool ShouldEmitResolver =
4234         !getContext().getTargetInfo().getTriple().isAArch64();
4235     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4236 
4237     getContext().forEachMultiversionedFunctionVersion(
4238         FD, [&](const FunctionDecl *CurFD) {
4239           llvm::SmallVector<StringRef, 8> Feats;
4240 
4241           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4242             TA->getAddedFeatures(Feats);
4243             llvm::Function *Func = createFunction(CurFD);
4244             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4245           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4246             bool HasDefaultDef = TVA->isDefaultVersion() &&
4247                                  CurFD->doesThisDeclarationHaveABody();
4248             HasDefaultDecl |= TVA->isDefaultVersion();
4249             ShouldEmitResolver |= (CurFD->isUsed() || HasDefaultDef);
4250             TVA->getFeatures(Feats);
4251             llvm::Function *Func = createFunction(CurFD);
4252             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4253           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4254             ShouldEmitResolver |= CurFD->doesThisDeclarationHaveABody();
4255             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4256               if (!TC->isFirstOfVersion(I))
4257                 continue;
4258 
4259               llvm::Function *Func = createFunction(CurFD, I);
4260               StringRef Architecture;
4261               Feats.clear();
4262               if (getTarget().getTriple().isAArch64())
4263                 TC->getFeatures(Feats, I);
4264               else {
4265                 StringRef Version = TC->getFeatureStr(I);
4266                 if (Version.starts_with("arch="))
4267                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4268                 else if (Version != "default")
4269                   Feats.push_back(Version);
4270               }
4271               Options.emplace_back(Func, Architecture, Feats);
4272             }
4273           } else
4274             llvm_unreachable("unexpected MultiVersionKind");
4275         });
4276 
4277     if (!ShouldEmitResolver)
4278       continue;
4279 
4280     if (!HasDefaultDecl) {
4281       FunctionDecl *NewFD = createDefaultTargetVersionFrom(FD);
4282       llvm::Function *Func = createFunction(NewFD);
4283       llvm::SmallVector<StringRef, 1> Feats;
4284       Options.emplace_back(Func, /*Architecture*/ "", Feats);
4285     }
4286 
4287     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4288     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4289       ResolverConstant = IFunc->getResolver();
4290       if (FD->isTargetClonesMultiVersion() &&
4291           !getTarget().getTriple().isAArch64()) {
4292         std::string MangledName = getMangledNameImpl(
4293             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4294         if (!GetGlobalValue(MangledName + ".ifunc")) {
4295           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4296           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4297           // In prior versions of Clang, the mangling for ifuncs incorrectly
4298           // included an .ifunc suffix. This alias is generated for backward
4299           // compatibility. It is deprecated, and may be removed in the future.
4300           auto *Alias = llvm::GlobalAlias::create(
4301               DeclTy, 0, getMultiversionLinkage(*this, GD),
4302               MangledName + ".ifunc", IFunc, &getModule());
4303           SetCommonAttributes(FD, Alias);
4304         }
4305       }
4306     }
4307     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4308 
4309     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4310 
4311     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4312       ResolverFunc->setComdat(
4313           getModule().getOrInsertComdat(ResolverFunc->getName()));
4314 
4315     const TargetInfo &TI = getTarget();
4316     llvm::stable_sort(
4317         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4318                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4319           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4320         });
4321     CodeGenFunction CGF(*this);
4322     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4323   }
4324 
4325   // Ensure that any additions to the deferred decls list caused by emitting a
4326   // variant are emitted.  This can happen when the variant itself is inline and
4327   // calls a function without linkage.
4328   if (!MVFuncsToEmit.empty())
4329     EmitDeferred();
4330 
4331   // Ensure that any additions to the multiversion funcs list from either the
4332   // deferred decls or the multiversion functions themselves are emitted.
4333   if (!MultiVersionFuncs.empty())
4334     emitMultiVersionFunctions();
4335 }
4336 
4337 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4338   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4339   assert(FD && "Not a FunctionDecl?");
4340   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4341   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4342   assert(DD && "Not a cpu_dispatch Function?");
4343 
4344   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4345   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4346 
4347   StringRef ResolverName = getMangledName(GD);
4348   UpdateMultiVersionNames(GD, FD, ResolverName);
4349 
4350   llvm::Type *ResolverType;
4351   GlobalDecl ResolverGD;
4352   if (getTarget().supportsIFunc()) {
4353     ResolverType = llvm::FunctionType::get(
4354         llvm::PointerType::get(DeclTy,
4355                                getTypes().getTargetAddressSpace(FD->getType())),
4356         false);
4357   }
4358   else {
4359     ResolverType = DeclTy;
4360     ResolverGD = GD;
4361   }
4362 
4363   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4364       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4365   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4366   if (supportsCOMDAT())
4367     ResolverFunc->setComdat(
4368         getModule().getOrInsertComdat(ResolverFunc->getName()));
4369 
4370   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4371   const TargetInfo &Target = getTarget();
4372   unsigned Index = 0;
4373   for (const IdentifierInfo *II : DD->cpus()) {
4374     // Get the name of the target function so we can look it up/create it.
4375     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4376                               getCPUSpecificMangling(*this, II->getName());
4377 
4378     llvm::Constant *Func = GetGlobalValue(MangledName);
4379 
4380     if (!Func) {
4381       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4382       if (ExistingDecl.getDecl() &&
4383           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4384         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4385         Func = GetGlobalValue(MangledName);
4386       } else {
4387         if (!ExistingDecl.getDecl())
4388           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4389 
4390       Func = GetOrCreateLLVMFunction(
4391           MangledName, DeclTy, ExistingDecl,
4392           /*ForVTable=*/false, /*DontDefer=*/true,
4393           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4394       }
4395     }
4396 
4397     llvm::SmallVector<StringRef, 32> Features;
4398     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4399     llvm::transform(Features, Features.begin(),
4400                     [](StringRef Str) { return Str.substr(1); });
4401     llvm::erase_if(Features, [&Target](StringRef Feat) {
4402       return !Target.validateCpuSupports(Feat);
4403     });
4404     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4405     ++Index;
4406   }
4407 
4408   llvm::stable_sort(
4409       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4410                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4411         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4412                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4413       });
4414 
4415   // If the list contains multiple 'default' versions, such as when it contains
4416   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4417   // always run on at least a 'pentium'). We do this by deleting the 'least
4418   // advanced' (read, lowest mangling letter).
4419   while (Options.size() > 1 &&
4420          llvm::all_of(llvm::X86::getCpuSupportsMask(
4421                           (Options.end() - 2)->Conditions.Features),
4422                       [](auto X) { return X == 0; })) {
4423     StringRef LHSName = (Options.end() - 2)->Function->getName();
4424     StringRef RHSName = (Options.end() - 1)->Function->getName();
4425     if (LHSName.compare(RHSName) < 0)
4426       Options.erase(Options.end() - 2);
4427     else
4428       Options.erase(Options.end() - 1);
4429   }
4430 
4431   CodeGenFunction CGF(*this);
4432   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4433 
4434   if (getTarget().supportsIFunc()) {
4435     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4436     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4437 
4438     // Fix up function declarations that were created for cpu_specific before
4439     // cpu_dispatch was known
4440     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4441       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4442       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4443                                            &getModule());
4444       GI->takeName(IFunc);
4445       IFunc->replaceAllUsesWith(GI);
4446       IFunc->eraseFromParent();
4447       IFunc = GI;
4448     }
4449 
4450     std::string AliasName = getMangledNameImpl(
4451         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4452     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4453     if (!AliasFunc) {
4454       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4455                                            &getModule());
4456       SetCommonAttributes(GD, GA);
4457     }
4458   }
4459 }
4460 
4461 /// Adds a declaration to the list of multi version functions if not present.
4462 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4463   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4464   assert(FD && "Not a FunctionDecl?");
4465 
4466   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4467     std::string MangledName =
4468         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4469     if (!DeferredResolversToEmit.insert(MangledName).second)
4470       return;
4471   }
4472   MultiVersionFuncs.push_back(GD);
4473 }
4474 
4475 /// If a dispatcher for the specified mangled name is not in the module, create
4476 /// and return an llvm Function with the specified type.
4477 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4478   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4479   assert(FD && "Not a FunctionDecl?");
4480 
4481   std::string MangledName =
4482       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4483 
4484   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4485   // a separate resolver).
4486   std::string ResolverName = MangledName;
4487   if (getTarget().supportsIFunc()) {
4488     switch (FD->getMultiVersionKind()) {
4489     case MultiVersionKind::None:
4490       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4491     case MultiVersionKind::Target:
4492     case MultiVersionKind::CPUSpecific:
4493     case MultiVersionKind::CPUDispatch:
4494       ResolverName += ".ifunc";
4495       break;
4496     case MultiVersionKind::TargetClones:
4497     case MultiVersionKind::TargetVersion:
4498       break;
4499     }
4500   } else if (FD->isTargetMultiVersion()) {
4501     ResolverName += ".resolver";
4502   }
4503 
4504   // If the resolver has already been created, just return it.
4505   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4506     return ResolverGV;
4507 
4508   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4509   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4510 
4511   // The resolver needs to be created. For target and target_clones, defer
4512   // creation until the end of the TU.
4513   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4514     AddDeferredMultiVersionResolverToEmit(GD);
4515 
4516   // For cpu_specific, don't create an ifunc yet because we don't know if the
4517   // cpu_dispatch will be emitted in this translation unit.
4518   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4519     llvm::Type *ResolverType = llvm::FunctionType::get(
4520         llvm::PointerType::get(DeclTy,
4521                                getTypes().getTargetAddressSpace(FD->getType())),
4522         false);
4523     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4524         MangledName + ".resolver", ResolverType, GlobalDecl{},
4525         /*ForVTable=*/false);
4526     llvm::GlobalIFunc *GIF =
4527         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4528                                   "", Resolver, &getModule());
4529     GIF->setName(ResolverName);
4530     SetCommonAttributes(FD, GIF);
4531 
4532     return GIF;
4533   }
4534 
4535   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4536       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4537   assert(isa<llvm::GlobalValue>(Resolver) &&
4538          "Resolver should be created for the first time");
4539   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4540   return Resolver;
4541 }
4542 
4543 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4544                                            const llvm::GlobalValue *GV) const {
4545   auto SC = GV->getDLLStorageClass();
4546   if (SC == llvm::GlobalValue::DefaultStorageClass)
4547     return false;
4548   const Decl *MRD = D->getMostRecentDecl();
4549   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4550             !MRD->hasAttr<DLLImportAttr>()) ||
4551            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4552             !MRD->hasAttr<DLLExportAttr>())) &&
4553           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4554 }
4555 
4556 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4557 /// module, create and return an llvm Function with the specified type. If there
4558 /// is something in the module with the specified name, return it potentially
4559 /// bitcasted to the right type.
4560 ///
4561 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4562 /// to set the attributes on the function when it is first created.
4563 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4564     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4565     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4566     ForDefinition_t IsForDefinition) {
4567   const Decl *D = GD.getDecl();
4568 
4569   // Any attempts to use a MultiVersion function should result in retrieving
4570   // the iFunc instead. Name Mangling will handle the rest of the changes.
4571   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4572     // For the device mark the function as one that should be emitted.
4573     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4574         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4575         !DontDefer && !IsForDefinition) {
4576       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4577         GlobalDecl GDDef;
4578         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4579           GDDef = GlobalDecl(CD, GD.getCtorType());
4580         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4581           GDDef = GlobalDecl(DD, GD.getDtorType());
4582         else
4583           GDDef = GlobalDecl(FDDef);
4584         EmitGlobal(GDDef);
4585       }
4586     }
4587 
4588     if (FD->isMultiVersion()) {
4589       UpdateMultiVersionNames(GD, FD, MangledName);
4590       if (FD->getASTContext().getTargetInfo().getTriple().isAArch64() &&
4591           !FD->isUsed())
4592         AddDeferredMultiVersionResolverToEmit(GD);
4593       else if (!IsForDefinition)
4594         return GetOrCreateMultiVersionResolver(GD);
4595     }
4596   }
4597 
4598   // Lookup the entry, lazily creating it if necessary.
4599   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4600   if (Entry) {
4601     if (WeakRefReferences.erase(Entry)) {
4602       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4603       if (FD && !FD->hasAttr<WeakAttr>())
4604         Entry->setLinkage(llvm::Function::ExternalLinkage);
4605     }
4606 
4607     // Handle dropped DLL attributes.
4608     if (D && shouldDropDLLAttribute(D, Entry)) {
4609       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4610       setDSOLocal(Entry);
4611     }
4612 
4613     // If there are two attempts to define the same mangled name, issue an
4614     // error.
4615     if (IsForDefinition && !Entry->isDeclaration()) {
4616       GlobalDecl OtherGD;
4617       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4618       // to make sure that we issue an error only once.
4619       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4620           (GD.getCanonicalDecl().getDecl() !=
4621            OtherGD.getCanonicalDecl().getDecl()) &&
4622           DiagnosedConflictingDefinitions.insert(GD).second) {
4623         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4624             << MangledName;
4625         getDiags().Report(OtherGD.getDecl()->getLocation(),
4626                           diag::note_previous_definition);
4627       }
4628     }
4629 
4630     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4631         (Entry->getValueType() == Ty)) {
4632       return Entry;
4633     }
4634 
4635     // Make sure the result is of the correct type.
4636     // (If function is requested for a definition, we always need to create a new
4637     // function, not just return a bitcast.)
4638     if (!IsForDefinition)
4639       return Entry;
4640   }
4641 
4642   // This function doesn't have a complete type (for example, the return
4643   // type is an incomplete struct). Use a fake type instead, and make
4644   // sure not to try to set attributes.
4645   bool IsIncompleteFunction = false;
4646 
4647   llvm::FunctionType *FTy;
4648   if (isa<llvm::FunctionType>(Ty)) {
4649     FTy = cast<llvm::FunctionType>(Ty);
4650   } else {
4651     FTy = llvm::FunctionType::get(VoidTy, false);
4652     IsIncompleteFunction = true;
4653   }
4654 
4655   llvm::Function *F =
4656       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4657                              Entry ? StringRef() : MangledName, &getModule());
4658 
4659   // Store the declaration associated with this function so it is potentially
4660   // updated by further declarations or definitions and emitted at the end.
4661   if (D && D->hasAttr<AnnotateAttr>())
4662     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4663 
4664   // If we already created a function with the same mangled name (but different
4665   // type) before, take its name and add it to the list of functions to be
4666   // replaced with F at the end of CodeGen.
4667   //
4668   // This happens if there is a prototype for a function (e.g. "int f()") and
4669   // then a definition of a different type (e.g. "int f(int x)").
4670   if (Entry) {
4671     F->takeName(Entry);
4672 
4673     // This might be an implementation of a function without a prototype, in
4674     // which case, try to do special replacement of calls which match the new
4675     // prototype.  The really key thing here is that we also potentially drop
4676     // arguments from the call site so as to make a direct call, which makes the
4677     // inliner happier and suppresses a number of optimizer warnings (!) about
4678     // dropping arguments.
4679     if (!Entry->use_empty()) {
4680       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4681       Entry->removeDeadConstantUsers();
4682     }
4683 
4684     addGlobalValReplacement(Entry, F);
4685   }
4686 
4687   assert(F->getName() == MangledName && "name was uniqued!");
4688   if (D)
4689     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4690   if (ExtraAttrs.hasFnAttrs()) {
4691     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4692     F->addFnAttrs(B);
4693   }
4694 
4695   if (!DontDefer) {
4696     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4697     // each other bottoming out with the base dtor.  Therefore we emit non-base
4698     // dtors on usage, even if there is no dtor definition in the TU.
4699     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4700         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4701                                            GD.getDtorType()))
4702       addDeferredDeclToEmit(GD);
4703 
4704     // This is the first use or definition of a mangled name.  If there is a
4705     // deferred decl with this name, remember that we need to emit it at the end
4706     // of the file.
4707     auto DDI = DeferredDecls.find(MangledName);
4708     if (DDI != DeferredDecls.end()) {
4709       // Move the potentially referenced deferred decl to the
4710       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4711       // don't need it anymore).
4712       addDeferredDeclToEmit(DDI->second);
4713       DeferredDecls.erase(DDI);
4714 
4715       // Otherwise, there are cases we have to worry about where we're
4716       // using a declaration for which we must emit a definition but where
4717       // we might not find a top-level definition:
4718       //   - member functions defined inline in their classes
4719       //   - friend functions defined inline in some class
4720       //   - special member functions with implicit definitions
4721       // If we ever change our AST traversal to walk into class methods,
4722       // this will be unnecessary.
4723       //
4724       // We also don't emit a definition for a function if it's going to be an
4725       // entry in a vtable, unless it's already marked as used.
4726     } else if (getLangOpts().CPlusPlus && D) {
4727       // Look for a declaration that's lexically in a record.
4728       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4729            FD = FD->getPreviousDecl()) {
4730         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4731           if (FD->doesThisDeclarationHaveABody()) {
4732             addDeferredDeclToEmit(GD.getWithDecl(FD));
4733             break;
4734           }
4735         }
4736       }
4737     }
4738   }
4739 
4740   // Make sure the result is of the requested type.
4741   if (!IsIncompleteFunction) {
4742     assert(F->getFunctionType() == Ty);
4743     return F;
4744   }
4745 
4746   return F;
4747 }
4748 
4749 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4750 /// non-null, then this function will use the specified type if it has to
4751 /// create it (this occurs when we see a definition of the function).
4752 llvm::Constant *
4753 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4754                                  bool DontDefer,
4755                                  ForDefinition_t IsForDefinition) {
4756   // If there was no specific requested type, just convert it now.
4757   if (!Ty) {
4758     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4759     Ty = getTypes().ConvertType(FD->getType());
4760   }
4761 
4762   // Devirtualized destructor calls may come through here instead of via
4763   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4764   // of the complete destructor when necessary.
4765   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4766     if (getTarget().getCXXABI().isMicrosoft() &&
4767         GD.getDtorType() == Dtor_Complete &&
4768         DD->getParent()->getNumVBases() == 0)
4769       GD = GlobalDecl(DD, Dtor_Base);
4770   }
4771 
4772   StringRef MangledName = getMangledName(GD);
4773   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4774                                     /*IsThunk=*/false, llvm::AttributeList(),
4775                                     IsForDefinition);
4776   // Returns kernel handle for HIP kernel stub function.
4777   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4778       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4779     auto *Handle = getCUDARuntime().getKernelHandle(
4780         cast<llvm::Function>(F->stripPointerCasts()), GD);
4781     if (IsForDefinition)
4782       return F;
4783     return Handle;
4784   }
4785   return F;
4786 }
4787 
4788 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4789   llvm::GlobalValue *F =
4790       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4791 
4792   return llvm::NoCFIValue::get(F);
4793 }
4794 
4795 static const FunctionDecl *
4796 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4797   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4798   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4799 
4800   IdentifierInfo &CII = C.Idents.get(Name);
4801   for (const auto *Result : DC->lookup(&CII))
4802     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4803       return FD;
4804 
4805   if (!C.getLangOpts().CPlusPlus)
4806     return nullptr;
4807 
4808   // Demangle the premangled name from getTerminateFn()
4809   IdentifierInfo &CXXII =
4810       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4811           ? C.Idents.get("terminate")
4812           : C.Idents.get(Name);
4813 
4814   for (const auto &N : {"__cxxabiv1", "std"}) {
4815     IdentifierInfo &NS = C.Idents.get(N);
4816     for (const auto *Result : DC->lookup(&NS)) {
4817       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4818       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4819         for (const auto *Result : LSD->lookup(&NS))
4820           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4821             break;
4822 
4823       if (ND)
4824         for (const auto *Result : ND->lookup(&CXXII))
4825           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4826             return FD;
4827     }
4828   }
4829 
4830   return nullptr;
4831 }
4832 
4833 /// CreateRuntimeFunction - Create a new runtime function with the specified
4834 /// type and name.
4835 llvm::FunctionCallee
4836 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4837                                      llvm::AttributeList ExtraAttrs, bool Local,
4838                                      bool AssumeConvergent) {
4839   if (AssumeConvergent) {
4840     ExtraAttrs =
4841         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4842   }
4843 
4844   llvm::Constant *C =
4845       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4846                               /*DontDefer=*/false, /*IsThunk=*/false,
4847                               ExtraAttrs);
4848 
4849   if (auto *F = dyn_cast<llvm::Function>(C)) {
4850     if (F->empty()) {
4851       F->setCallingConv(getRuntimeCC());
4852 
4853       // In Windows Itanium environments, try to mark runtime functions
4854       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4855       // will link their standard library statically or dynamically. Marking
4856       // functions imported when they are not imported can cause linker errors
4857       // and warnings.
4858       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4859           !getCodeGenOpts().LTOVisibilityPublicStd) {
4860         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4861         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4862           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4863           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4864         }
4865       }
4866       setDSOLocal(F);
4867       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4868       // of trying to approximate the attributes using the LLVM function
4869       // signature. This requires revising the API of CreateRuntimeFunction().
4870       markRegisterParameterAttributes(F);
4871     }
4872   }
4873 
4874   return {FTy, C};
4875 }
4876 
4877 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4878 /// create and return an llvm GlobalVariable with the specified type and address
4879 /// space. If there is something in the module with the specified name, return
4880 /// it potentially bitcasted to the right type.
4881 ///
4882 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4883 /// to set the attributes on the global when it is first created.
4884 ///
4885 /// If IsForDefinition is true, it is guaranteed that an actual global with
4886 /// type Ty will be returned, not conversion of a variable with the same
4887 /// mangled name but some other type.
4888 llvm::Constant *
4889 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4890                                      LangAS AddrSpace, const VarDecl *D,
4891                                      ForDefinition_t IsForDefinition) {
4892   // Lookup the entry, lazily creating it if necessary.
4893   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4894   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4895   if (Entry) {
4896     if (WeakRefReferences.erase(Entry)) {
4897       if (D && !D->hasAttr<WeakAttr>())
4898         Entry->setLinkage(llvm::Function::ExternalLinkage);
4899     }
4900 
4901     // Handle dropped DLL attributes.
4902     if (D && shouldDropDLLAttribute(D, Entry))
4903       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4904 
4905     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4906       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4907 
4908     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4909       return Entry;
4910 
4911     // If there are two attempts to define the same mangled name, issue an
4912     // error.
4913     if (IsForDefinition && !Entry->isDeclaration()) {
4914       GlobalDecl OtherGD;
4915       const VarDecl *OtherD;
4916 
4917       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4918       // to make sure that we issue an error only once.
4919       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4920           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4921           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4922           OtherD->hasInit() &&
4923           DiagnosedConflictingDefinitions.insert(D).second) {
4924         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4925             << MangledName;
4926         getDiags().Report(OtherGD.getDecl()->getLocation(),
4927                           diag::note_previous_definition);
4928       }
4929     }
4930 
4931     // Make sure the result is of the correct type.
4932     if (Entry->getType()->getAddressSpace() != TargetAS)
4933       return llvm::ConstantExpr::getAddrSpaceCast(
4934           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4935 
4936     // (If global is requested for a definition, we always need to create a new
4937     // global, not just return a bitcast.)
4938     if (!IsForDefinition)
4939       return Entry;
4940   }
4941 
4942   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4943 
4944   auto *GV = new llvm::GlobalVariable(
4945       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4946       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4947       getContext().getTargetAddressSpace(DAddrSpace));
4948 
4949   // If we already created a global with the same mangled name (but different
4950   // type) before, take its name and remove it from its parent.
4951   if (Entry) {
4952     GV->takeName(Entry);
4953 
4954     if (!Entry->use_empty()) {
4955       Entry->replaceAllUsesWith(GV);
4956     }
4957 
4958     Entry->eraseFromParent();
4959   }
4960 
4961   // This is the first use or definition of a mangled name.  If there is a
4962   // deferred decl with this name, remember that we need to emit it at the end
4963   // of the file.
4964   auto DDI = DeferredDecls.find(MangledName);
4965   if (DDI != DeferredDecls.end()) {
4966     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4967     // list, and remove it from DeferredDecls (since we don't need it anymore).
4968     addDeferredDeclToEmit(DDI->second);
4969     DeferredDecls.erase(DDI);
4970   }
4971 
4972   // Handle things which are present even on external declarations.
4973   if (D) {
4974     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4975       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4976 
4977     // FIXME: This code is overly simple and should be merged with other global
4978     // handling.
4979     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4980 
4981     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4982 
4983     setLinkageForGV(GV, D);
4984 
4985     if (D->getTLSKind()) {
4986       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4987         CXXThreadLocals.push_back(D);
4988       setTLSMode(GV, *D);
4989     }
4990 
4991     setGVProperties(GV, D);
4992 
4993     // If required by the ABI, treat declarations of static data members with
4994     // inline initializers as definitions.
4995     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4996       EmitGlobalVarDefinition(D);
4997     }
4998 
4999     // Emit section information for extern variables.
5000     if (D->hasExternalStorage()) {
5001       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5002         GV->setSection(SA->getName());
5003     }
5004 
5005     // Handle XCore specific ABI requirements.
5006     if (getTriple().getArch() == llvm::Triple::xcore &&
5007         D->getLanguageLinkage() == CLanguageLinkage &&
5008         D->getType().isConstant(Context) &&
5009         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5010       GV->setSection(".cp.rodata");
5011 
5012     // Handle code model attribute
5013     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5014       GV->setCodeModel(CMA->getModel());
5015 
5016     // Check if we a have a const declaration with an initializer, we may be
5017     // able to emit it as available_externally to expose it's value to the
5018     // optimizer.
5019     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5020         D->getType().isConstQualified() && !GV->hasInitializer() &&
5021         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5022       const auto *Record =
5023           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5024       bool HasMutableFields = Record && Record->hasMutableFields();
5025       if (!HasMutableFields) {
5026         const VarDecl *InitDecl;
5027         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5028         if (InitExpr) {
5029           ConstantEmitter emitter(*this);
5030           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5031           if (Init) {
5032             auto *InitType = Init->getType();
5033             if (GV->getValueType() != InitType) {
5034               // The type of the initializer does not match the definition.
5035               // This happens when an initializer has a different type from
5036               // the type of the global (because of padding at the end of a
5037               // structure for instance).
5038               GV->setName(StringRef());
5039               // Make a new global with the correct type, this is now guaranteed
5040               // to work.
5041               auto *NewGV = cast<llvm::GlobalVariable>(
5042                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5043                       ->stripPointerCasts());
5044 
5045               // Erase the old global, since it is no longer used.
5046               GV->eraseFromParent();
5047               GV = NewGV;
5048             } else {
5049               GV->setInitializer(Init);
5050               GV->setConstant(true);
5051               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5052             }
5053             emitter.finalize(GV);
5054           }
5055         }
5056       }
5057     }
5058   }
5059 
5060   if (D &&
5061       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5062     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5063     // External HIP managed variables needed to be recorded for transformation
5064     // in both device and host compilations.
5065     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5066         D->hasExternalStorage())
5067       getCUDARuntime().handleVarRegistration(D, *GV);
5068   }
5069 
5070   if (D)
5071     SanitizerMD->reportGlobal(GV, *D);
5072 
5073   LangAS ExpectedAS =
5074       D ? D->getType().getAddressSpace()
5075         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5076   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5077   if (DAddrSpace != ExpectedAS) {
5078     return getTargetCodeGenInfo().performAddrSpaceCast(
5079         *this, GV, DAddrSpace, ExpectedAS,
5080         llvm::PointerType::get(getLLVMContext(), TargetAS));
5081   }
5082 
5083   return GV;
5084 }
5085 
5086 llvm::Constant *
5087 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5088   const Decl *D = GD.getDecl();
5089 
5090   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5091     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5092                                 /*DontDefer=*/false, IsForDefinition);
5093 
5094   if (isa<CXXMethodDecl>(D)) {
5095     auto FInfo =
5096         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5097     auto Ty = getTypes().GetFunctionType(*FInfo);
5098     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5099                              IsForDefinition);
5100   }
5101 
5102   if (isa<FunctionDecl>(D)) {
5103     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5104     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5105     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5106                              IsForDefinition);
5107   }
5108 
5109   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5110 }
5111 
5112 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5113     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5114     llvm::Align Alignment) {
5115   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5116   llvm::GlobalVariable *OldGV = nullptr;
5117 
5118   if (GV) {
5119     // Check if the variable has the right type.
5120     if (GV->getValueType() == Ty)
5121       return GV;
5122 
5123     // Because C++ name mangling, the only way we can end up with an already
5124     // existing global with the same name is if it has been declared extern "C".
5125     assert(GV->isDeclaration() && "Declaration has wrong type!");
5126     OldGV = GV;
5127   }
5128 
5129   // Create a new variable.
5130   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5131                                 Linkage, nullptr, Name);
5132 
5133   if (OldGV) {
5134     // Replace occurrences of the old variable if needed.
5135     GV->takeName(OldGV);
5136 
5137     if (!OldGV->use_empty()) {
5138       OldGV->replaceAllUsesWith(GV);
5139     }
5140 
5141     OldGV->eraseFromParent();
5142   }
5143 
5144   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5145       !GV->hasAvailableExternallyLinkage())
5146     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5147 
5148   GV->setAlignment(Alignment);
5149 
5150   return GV;
5151 }
5152 
5153 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5154 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5155 /// then it will be created with the specified type instead of whatever the
5156 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5157 /// that an actual global with type Ty will be returned, not conversion of a
5158 /// variable with the same mangled name but some other type.
5159 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5160                                                   llvm::Type *Ty,
5161                                            ForDefinition_t IsForDefinition) {
5162   assert(D->hasGlobalStorage() && "Not a global variable");
5163   QualType ASTTy = D->getType();
5164   if (!Ty)
5165     Ty = getTypes().ConvertTypeForMem(ASTTy);
5166 
5167   StringRef MangledName = getMangledName(D);
5168   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5169                                IsForDefinition);
5170 }
5171 
5172 /// CreateRuntimeVariable - Create a new runtime global variable with the
5173 /// specified type and name.
5174 llvm::Constant *
5175 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5176                                      StringRef Name) {
5177   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5178                                                        : LangAS::Default;
5179   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5180   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5181   return Ret;
5182 }
5183 
5184 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5185   assert(!D->getInit() && "Cannot emit definite definitions here!");
5186 
5187   StringRef MangledName = getMangledName(D);
5188   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5189 
5190   // We already have a definition, not declaration, with the same mangled name.
5191   // Emitting of declaration is not required (and actually overwrites emitted
5192   // definition).
5193   if (GV && !GV->isDeclaration())
5194     return;
5195 
5196   // If we have not seen a reference to this variable yet, place it into the
5197   // deferred declarations table to be emitted if needed later.
5198   if (!MustBeEmitted(D) && !GV) {
5199       DeferredDecls[MangledName] = D;
5200       return;
5201   }
5202 
5203   // The tentative definition is the only definition.
5204   EmitGlobalVarDefinition(D);
5205 }
5206 
5207 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5208   if (auto const *V = dyn_cast<const VarDecl>(D))
5209     EmitExternalVarDeclaration(V);
5210   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5211     EmitExternalFunctionDeclaration(FD);
5212 }
5213 
5214 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5215   return Context.toCharUnitsFromBits(
5216       getDataLayout().getTypeStoreSizeInBits(Ty));
5217 }
5218 
5219 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5220   if (LangOpts.OpenCL) {
5221     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5222     assert(AS == LangAS::opencl_global ||
5223            AS == LangAS::opencl_global_device ||
5224            AS == LangAS::opencl_global_host ||
5225            AS == LangAS::opencl_constant ||
5226            AS == LangAS::opencl_local ||
5227            AS >= LangAS::FirstTargetAddressSpace);
5228     return AS;
5229   }
5230 
5231   if (LangOpts.SYCLIsDevice &&
5232       (!D || D->getType().getAddressSpace() == LangAS::Default))
5233     return LangAS::sycl_global;
5234 
5235   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5236     if (D) {
5237       if (D->hasAttr<CUDAConstantAttr>())
5238         return LangAS::cuda_constant;
5239       if (D->hasAttr<CUDASharedAttr>())
5240         return LangAS::cuda_shared;
5241       if (D->hasAttr<CUDADeviceAttr>())
5242         return LangAS::cuda_device;
5243       if (D->getType().isConstQualified())
5244         return LangAS::cuda_constant;
5245     }
5246     return LangAS::cuda_device;
5247   }
5248 
5249   if (LangOpts.OpenMP) {
5250     LangAS AS;
5251     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5252       return AS;
5253   }
5254   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5255 }
5256 
5257 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5258   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5259   if (LangOpts.OpenCL)
5260     return LangAS::opencl_constant;
5261   if (LangOpts.SYCLIsDevice)
5262     return LangAS::sycl_global;
5263   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5264     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5265     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5266     // with OpVariable instructions with Generic storage class which is not
5267     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5268     // UniformConstant storage class is not viable as pointers to it may not be
5269     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5270     return LangAS::cuda_device;
5271   if (auto AS = getTarget().getConstantAddressSpace())
5272     return *AS;
5273   return LangAS::Default;
5274 }
5275 
5276 // In address space agnostic languages, string literals are in default address
5277 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5278 // emitted in constant address space in LLVM IR. To be consistent with other
5279 // parts of AST, string literal global variables in constant address space
5280 // need to be casted to default address space before being put into address
5281 // map and referenced by other part of CodeGen.
5282 // In OpenCL, string literals are in constant address space in AST, therefore
5283 // they should not be casted to default address space.
5284 static llvm::Constant *
5285 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5286                                        llvm::GlobalVariable *GV) {
5287   llvm::Constant *Cast = GV;
5288   if (!CGM.getLangOpts().OpenCL) {
5289     auto AS = CGM.GetGlobalConstantAddressSpace();
5290     if (AS != LangAS::Default)
5291       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5292           CGM, GV, AS, LangAS::Default,
5293           llvm::PointerType::get(
5294               CGM.getLLVMContext(),
5295               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5296   }
5297   return Cast;
5298 }
5299 
5300 template<typename SomeDecl>
5301 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5302                                                llvm::GlobalValue *GV) {
5303   if (!getLangOpts().CPlusPlus)
5304     return;
5305 
5306   // Must have 'used' attribute, or else inline assembly can't rely on
5307   // the name existing.
5308   if (!D->template hasAttr<UsedAttr>())
5309     return;
5310 
5311   // Must have internal linkage and an ordinary name.
5312   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5313     return;
5314 
5315   // Must be in an extern "C" context. Entities declared directly within
5316   // a record are not extern "C" even if the record is in such a context.
5317   const SomeDecl *First = D->getFirstDecl();
5318   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5319     return;
5320 
5321   // OK, this is an internal linkage entity inside an extern "C" linkage
5322   // specification. Make a note of that so we can give it the "expected"
5323   // mangled name if nothing else is using that name.
5324   std::pair<StaticExternCMap::iterator, bool> R =
5325       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5326 
5327   // If we have multiple internal linkage entities with the same name
5328   // in extern "C" regions, none of them gets that name.
5329   if (!R.second)
5330     R.first->second = nullptr;
5331 }
5332 
5333 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5334   if (!CGM.supportsCOMDAT())
5335     return false;
5336 
5337   if (D.hasAttr<SelectAnyAttr>())
5338     return true;
5339 
5340   GVALinkage Linkage;
5341   if (auto *VD = dyn_cast<VarDecl>(&D))
5342     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5343   else
5344     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5345 
5346   switch (Linkage) {
5347   case GVA_Internal:
5348   case GVA_AvailableExternally:
5349   case GVA_StrongExternal:
5350     return false;
5351   case GVA_DiscardableODR:
5352   case GVA_StrongODR:
5353     return true;
5354   }
5355   llvm_unreachable("No such linkage");
5356 }
5357 
5358 bool CodeGenModule::supportsCOMDAT() const {
5359   return getTriple().supportsCOMDAT();
5360 }
5361 
5362 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5363                                           llvm::GlobalObject &GO) {
5364   if (!shouldBeInCOMDAT(*this, D))
5365     return;
5366   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5367 }
5368 
5369 /// Pass IsTentative as true if you want to create a tentative definition.
5370 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5371                                             bool IsTentative) {
5372   // OpenCL global variables of sampler type are translated to function calls,
5373   // therefore no need to be translated.
5374   QualType ASTTy = D->getType();
5375   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5376     return;
5377 
5378   // If this is OpenMP device, check if it is legal to emit this global
5379   // normally.
5380   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5381       OpenMPRuntime->emitTargetGlobalVariable(D))
5382     return;
5383 
5384   llvm::TrackingVH<llvm::Constant> Init;
5385   bool NeedsGlobalCtor = false;
5386   // Whether the definition of the variable is available externally.
5387   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5388   // since this is the job for its original source.
5389   bool IsDefinitionAvailableExternally =
5390       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5391   bool NeedsGlobalDtor =
5392       !IsDefinitionAvailableExternally &&
5393       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5394 
5395   // It is helpless to emit the definition for an available_externally variable
5396   // which can't be marked as const.
5397   // We don't need to check if it needs global ctor or dtor. See the above
5398   // comment for ideas.
5399   if (IsDefinitionAvailableExternally &&
5400       (!D->hasConstantInitialization() ||
5401        // TODO: Update this when we have interface to check constexpr
5402        // destructor.
5403        D->needsDestruction(getContext()) ||
5404        !D->getType().isConstantStorage(getContext(), true, true)))
5405     return;
5406 
5407   const VarDecl *InitDecl;
5408   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5409 
5410   std::optional<ConstantEmitter> emitter;
5411 
5412   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5413   // as part of their declaration."  Sema has already checked for
5414   // error cases, so we just need to set Init to UndefValue.
5415   bool IsCUDASharedVar =
5416       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5417   // Shadows of initialized device-side global variables are also left
5418   // undefined.
5419   // Managed Variables should be initialized on both host side and device side.
5420   bool IsCUDAShadowVar =
5421       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5422       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5423        D->hasAttr<CUDASharedAttr>());
5424   bool IsCUDADeviceShadowVar =
5425       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5426       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5427        D->getType()->isCUDADeviceBuiltinTextureType());
5428   if (getLangOpts().CUDA &&
5429       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5430     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5431   else if (D->hasAttr<LoaderUninitializedAttr>())
5432     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5433   else if (!InitExpr) {
5434     // This is a tentative definition; tentative definitions are
5435     // implicitly initialized with { 0 }.
5436     //
5437     // Note that tentative definitions are only emitted at the end of
5438     // a translation unit, so they should never have incomplete
5439     // type. In addition, EmitTentativeDefinition makes sure that we
5440     // never attempt to emit a tentative definition if a real one
5441     // exists. A use may still exists, however, so we still may need
5442     // to do a RAUW.
5443     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5444     Init = EmitNullConstant(D->getType());
5445   } else {
5446     initializedGlobalDecl = GlobalDecl(D);
5447     emitter.emplace(*this);
5448     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5449     if (!Initializer) {
5450       QualType T = InitExpr->getType();
5451       if (D->getType()->isReferenceType())
5452         T = D->getType();
5453 
5454       if (getLangOpts().CPlusPlus) {
5455         if (InitDecl->hasFlexibleArrayInit(getContext()))
5456           ErrorUnsupported(D, "flexible array initializer");
5457         Init = EmitNullConstant(T);
5458 
5459         if (!IsDefinitionAvailableExternally)
5460           NeedsGlobalCtor = true;
5461       } else {
5462         ErrorUnsupported(D, "static initializer");
5463         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5464       }
5465     } else {
5466       Init = Initializer;
5467       // We don't need an initializer, so remove the entry for the delayed
5468       // initializer position (just in case this entry was delayed) if we
5469       // also don't need to register a destructor.
5470       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5471         DelayedCXXInitPosition.erase(D);
5472 
5473 #ifndef NDEBUG
5474       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5475                           InitDecl->getFlexibleArrayInitChars(getContext());
5476       CharUnits CstSize = CharUnits::fromQuantity(
5477           getDataLayout().getTypeAllocSize(Init->getType()));
5478       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5479 #endif
5480     }
5481   }
5482 
5483   llvm::Type* InitType = Init->getType();
5484   llvm::Constant *Entry =
5485       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5486 
5487   // Strip off pointer casts if we got them.
5488   Entry = Entry->stripPointerCasts();
5489 
5490   // Entry is now either a Function or GlobalVariable.
5491   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5492 
5493   // We have a definition after a declaration with the wrong type.
5494   // We must make a new GlobalVariable* and update everything that used OldGV
5495   // (a declaration or tentative definition) with the new GlobalVariable*
5496   // (which will be a definition).
5497   //
5498   // This happens if there is a prototype for a global (e.g.
5499   // "extern int x[];") and then a definition of a different type (e.g.
5500   // "int x[10];"). This also happens when an initializer has a different type
5501   // from the type of the global (this happens with unions).
5502   if (!GV || GV->getValueType() != InitType ||
5503       GV->getType()->getAddressSpace() !=
5504           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5505 
5506     // Move the old entry aside so that we'll create a new one.
5507     Entry->setName(StringRef());
5508 
5509     // Make a new global with the correct type, this is now guaranteed to work.
5510     GV = cast<llvm::GlobalVariable>(
5511         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5512             ->stripPointerCasts());
5513 
5514     // Replace all uses of the old global with the new global
5515     llvm::Constant *NewPtrForOldDecl =
5516         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5517                                                              Entry->getType());
5518     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5519 
5520     // Erase the old global, since it is no longer used.
5521     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5522   }
5523 
5524   MaybeHandleStaticInExternC(D, GV);
5525 
5526   if (D->hasAttr<AnnotateAttr>())
5527     AddGlobalAnnotations(D, GV);
5528 
5529   // Set the llvm linkage type as appropriate.
5530   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5531 
5532   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5533   // the device. [...]"
5534   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5535   // __device__, declares a variable that: [...]
5536   // Is accessible from all the threads within the grid and from the host
5537   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5538   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5539   if (LangOpts.CUDA) {
5540     if (LangOpts.CUDAIsDevice) {
5541       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5542           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5543            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5544            D->getType()->isCUDADeviceBuiltinTextureType()))
5545         GV->setExternallyInitialized(true);
5546     } else {
5547       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5548     }
5549     getCUDARuntime().handleVarRegistration(D, *GV);
5550   }
5551 
5552   GV->setInitializer(Init);
5553   if (emitter)
5554     emitter->finalize(GV);
5555 
5556   // If it is safe to mark the global 'constant', do so now.
5557   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5558                   D->getType().isConstantStorage(getContext(), true, true));
5559 
5560   // If it is in a read-only section, mark it 'constant'.
5561   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5562     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5563     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5564       GV->setConstant(true);
5565   }
5566 
5567   CharUnits AlignVal = getContext().getDeclAlign(D);
5568   // Check for alignment specifed in an 'omp allocate' directive.
5569   if (std::optional<CharUnits> AlignValFromAllocate =
5570           getOMPAllocateAlignment(D))
5571     AlignVal = *AlignValFromAllocate;
5572   GV->setAlignment(AlignVal.getAsAlign());
5573 
5574   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5575   // function is only defined alongside the variable, not also alongside
5576   // callers. Normally, all accesses to a thread_local go through the
5577   // thread-wrapper in order to ensure initialization has occurred, underlying
5578   // variable will never be used other than the thread-wrapper, so it can be
5579   // converted to internal linkage.
5580   //
5581   // However, if the variable has the 'constinit' attribute, it _can_ be
5582   // referenced directly, without calling the thread-wrapper, so the linkage
5583   // must not be changed.
5584   //
5585   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5586   // weak or linkonce, the de-duplication semantics are important to preserve,
5587   // so we don't change the linkage.
5588   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5589       Linkage == llvm::GlobalValue::ExternalLinkage &&
5590       Context.getTargetInfo().getTriple().isOSDarwin() &&
5591       !D->hasAttr<ConstInitAttr>())
5592     Linkage = llvm::GlobalValue::InternalLinkage;
5593 
5594   GV->setLinkage(Linkage);
5595   if (D->hasAttr<DLLImportAttr>())
5596     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5597   else if (D->hasAttr<DLLExportAttr>())
5598     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5599   else
5600     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5601 
5602   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5603     // common vars aren't constant even if declared const.
5604     GV->setConstant(false);
5605     // Tentative definition of global variables may be initialized with
5606     // non-zero null pointers. In this case they should have weak linkage
5607     // since common linkage must have zero initializer and must not have
5608     // explicit section therefore cannot have non-zero initial value.
5609     if (!GV->getInitializer()->isNullValue())
5610       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5611   }
5612 
5613   setNonAliasAttributes(D, GV);
5614 
5615   if (D->getTLSKind() && !GV->isThreadLocal()) {
5616     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5617       CXXThreadLocals.push_back(D);
5618     setTLSMode(GV, *D);
5619   }
5620 
5621   maybeSetTrivialComdat(*D, *GV);
5622 
5623   // Emit the initializer function if necessary.
5624   if (NeedsGlobalCtor || NeedsGlobalDtor)
5625     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5626 
5627   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5628 
5629   // Emit global variable debug information.
5630   if (CGDebugInfo *DI = getModuleDebugInfo())
5631     if (getCodeGenOpts().hasReducedDebugInfo())
5632       DI->EmitGlobalVariable(GV, D);
5633 }
5634 
5635 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5636   if (CGDebugInfo *DI = getModuleDebugInfo())
5637     if (getCodeGenOpts().hasReducedDebugInfo()) {
5638       QualType ASTTy = D->getType();
5639       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5640       llvm::Constant *GV =
5641           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5642       DI->EmitExternalVariable(
5643           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5644     }
5645 }
5646 
5647 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5648   if (CGDebugInfo *DI = getModuleDebugInfo())
5649     if (getCodeGenOpts().hasReducedDebugInfo()) {
5650       auto *Ty = getTypes().ConvertType(FD->getType());
5651       StringRef MangledName = getMangledName(FD);
5652       auto *Fn = dyn_cast<llvm::Function>(
5653           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5654       if (!Fn->getSubprogram())
5655         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5656     }
5657 }
5658 
5659 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5660                                       CodeGenModule &CGM, const VarDecl *D,
5661                                       bool NoCommon) {
5662   // Don't give variables common linkage if -fno-common was specified unless it
5663   // was overridden by a NoCommon attribute.
5664   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5665     return true;
5666 
5667   // C11 6.9.2/2:
5668   //   A declaration of an identifier for an object that has file scope without
5669   //   an initializer, and without a storage-class specifier or with the
5670   //   storage-class specifier static, constitutes a tentative definition.
5671   if (D->getInit() || D->hasExternalStorage())
5672     return true;
5673 
5674   // A variable cannot be both common and exist in a section.
5675   if (D->hasAttr<SectionAttr>())
5676     return true;
5677 
5678   // A variable cannot be both common and exist in a section.
5679   // We don't try to determine which is the right section in the front-end.
5680   // If no specialized section name is applicable, it will resort to default.
5681   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5682       D->hasAttr<PragmaClangDataSectionAttr>() ||
5683       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5684       D->hasAttr<PragmaClangRodataSectionAttr>())
5685     return true;
5686 
5687   // Thread local vars aren't considered common linkage.
5688   if (D->getTLSKind())
5689     return true;
5690 
5691   // Tentative definitions marked with WeakImportAttr are true definitions.
5692   if (D->hasAttr<WeakImportAttr>())
5693     return true;
5694 
5695   // A variable cannot be both common and exist in a comdat.
5696   if (shouldBeInCOMDAT(CGM, *D))
5697     return true;
5698 
5699   // Declarations with a required alignment do not have common linkage in MSVC
5700   // mode.
5701   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5702     if (D->hasAttr<AlignedAttr>())
5703       return true;
5704     QualType VarType = D->getType();
5705     if (Context.isAlignmentRequired(VarType))
5706       return true;
5707 
5708     if (const auto *RT = VarType->getAs<RecordType>()) {
5709       const RecordDecl *RD = RT->getDecl();
5710       for (const FieldDecl *FD : RD->fields()) {
5711         if (FD->isBitField())
5712           continue;
5713         if (FD->hasAttr<AlignedAttr>())
5714           return true;
5715         if (Context.isAlignmentRequired(FD->getType()))
5716           return true;
5717       }
5718     }
5719   }
5720 
5721   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5722   // common symbols, so symbols with greater alignment requirements cannot be
5723   // common.
5724   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5725   // alignments for common symbols via the aligncomm directive, so this
5726   // restriction only applies to MSVC environments.
5727   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5728       Context.getTypeAlignIfKnown(D->getType()) >
5729           Context.toBits(CharUnits::fromQuantity(32)))
5730     return true;
5731 
5732   return false;
5733 }
5734 
5735 llvm::GlobalValue::LinkageTypes
5736 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5737                                            GVALinkage Linkage) {
5738   if (Linkage == GVA_Internal)
5739     return llvm::Function::InternalLinkage;
5740 
5741   if (D->hasAttr<WeakAttr>())
5742     return llvm::GlobalVariable::WeakAnyLinkage;
5743 
5744   if (const auto *FD = D->getAsFunction())
5745     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5746       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5747 
5748   // We are guaranteed to have a strong definition somewhere else,
5749   // so we can use available_externally linkage.
5750   if (Linkage == GVA_AvailableExternally)
5751     return llvm::GlobalValue::AvailableExternallyLinkage;
5752 
5753   // Note that Apple's kernel linker doesn't support symbol
5754   // coalescing, so we need to avoid linkonce and weak linkages there.
5755   // Normally, this means we just map to internal, but for explicit
5756   // instantiations we'll map to external.
5757 
5758   // In C++, the compiler has to emit a definition in every translation unit
5759   // that references the function.  We should use linkonce_odr because
5760   // a) if all references in this translation unit are optimized away, we
5761   // don't need to codegen it.  b) if the function persists, it needs to be
5762   // merged with other definitions. c) C++ has the ODR, so we know the
5763   // definition is dependable.
5764   if (Linkage == GVA_DiscardableODR)
5765     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5766                                             : llvm::Function::InternalLinkage;
5767 
5768   // An explicit instantiation of a template has weak linkage, since
5769   // explicit instantiations can occur in multiple translation units
5770   // and must all be equivalent. However, we are not allowed to
5771   // throw away these explicit instantiations.
5772   //
5773   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5774   // so say that CUDA templates are either external (for kernels) or internal.
5775   // This lets llvm perform aggressive inter-procedural optimizations. For
5776   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5777   // therefore we need to follow the normal linkage paradigm.
5778   if (Linkage == GVA_StrongODR) {
5779     if (getLangOpts().AppleKext)
5780       return llvm::Function::ExternalLinkage;
5781     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5782         !getLangOpts().GPURelocatableDeviceCode)
5783       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5784                                           : llvm::Function::InternalLinkage;
5785     return llvm::Function::WeakODRLinkage;
5786   }
5787 
5788   // C++ doesn't have tentative definitions and thus cannot have common
5789   // linkage.
5790   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5791       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5792                                  CodeGenOpts.NoCommon))
5793     return llvm::GlobalVariable::CommonLinkage;
5794 
5795   // selectany symbols are externally visible, so use weak instead of
5796   // linkonce.  MSVC optimizes away references to const selectany globals, so
5797   // all definitions should be the same and ODR linkage should be used.
5798   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5799   if (D->hasAttr<SelectAnyAttr>())
5800     return llvm::GlobalVariable::WeakODRLinkage;
5801 
5802   // Otherwise, we have strong external linkage.
5803   assert(Linkage == GVA_StrongExternal);
5804   return llvm::GlobalVariable::ExternalLinkage;
5805 }
5806 
5807 llvm::GlobalValue::LinkageTypes
5808 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5809   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5810   return getLLVMLinkageForDeclarator(VD, Linkage);
5811 }
5812 
5813 /// Replace the uses of a function that was declared with a non-proto type.
5814 /// We want to silently drop extra arguments from call sites
5815 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5816                                           llvm::Function *newFn) {
5817   // Fast path.
5818   if (old->use_empty())
5819     return;
5820 
5821   llvm::Type *newRetTy = newFn->getReturnType();
5822   SmallVector<llvm::Value *, 4> newArgs;
5823 
5824   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5825 
5826   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5827        ui != ue; ui++) {
5828     llvm::User *user = ui->getUser();
5829 
5830     // Recognize and replace uses of bitcasts.  Most calls to
5831     // unprototyped functions will use bitcasts.
5832     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5833       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5834         replaceUsesOfNonProtoConstant(bitcast, newFn);
5835       continue;
5836     }
5837 
5838     // Recognize calls to the function.
5839     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5840     if (!callSite)
5841       continue;
5842     if (!callSite->isCallee(&*ui))
5843       continue;
5844 
5845     // If the return types don't match exactly, then we can't
5846     // transform this call unless it's dead.
5847     if (callSite->getType() != newRetTy && !callSite->use_empty())
5848       continue;
5849 
5850     // Get the call site's attribute list.
5851     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5852     llvm::AttributeList oldAttrs = callSite->getAttributes();
5853 
5854     // If the function was passed too few arguments, don't transform.
5855     unsigned newNumArgs = newFn->arg_size();
5856     if (callSite->arg_size() < newNumArgs)
5857       continue;
5858 
5859     // If extra arguments were passed, we silently drop them.
5860     // If any of the types mismatch, we don't transform.
5861     unsigned argNo = 0;
5862     bool dontTransform = false;
5863     for (llvm::Argument &A : newFn->args()) {
5864       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5865         dontTransform = true;
5866         break;
5867       }
5868 
5869       // Add any parameter attributes.
5870       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5871       argNo++;
5872     }
5873     if (dontTransform)
5874       continue;
5875 
5876     // Okay, we can transform this.  Create the new call instruction and copy
5877     // over the required information.
5878     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5879 
5880     // Copy over any operand bundles.
5881     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5882     callSite->getOperandBundlesAsDefs(newBundles);
5883 
5884     llvm::CallBase *newCall;
5885     if (isa<llvm::CallInst>(callSite)) {
5886       newCall =
5887           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5888     } else {
5889       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5890       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5891                                          oldInvoke->getUnwindDest(), newArgs,
5892                                          newBundles, "", callSite);
5893     }
5894     newArgs.clear(); // for the next iteration
5895 
5896     if (!newCall->getType()->isVoidTy())
5897       newCall->takeName(callSite);
5898     newCall->setAttributes(
5899         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5900                                  oldAttrs.getRetAttrs(), newArgAttrs));
5901     newCall->setCallingConv(callSite->getCallingConv());
5902 
5903     // Finally, remove the old call, replacing any uses with the new one.
5904     if (!callSite->use_empty())
5905       callSite->replaceAllUsesWith(newCall);
5906 
5907     // Copy debug location attached to CI.
5908     if (callSite->getDebugLoc())
5909       newCall->setDebugLoc(callSite->getDebugLoc());
5910 
5911     callSitesToBeRemovedFromParent.push_back(callSite);
5912   }
5913 
5914   for (auto *callSite : callSitesToBeRemovedFromParent) {
5915     callSite->eraseFromParent();
5916   }
5917 }
5918 
5919 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5920 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5921 /// existing call uses of the old function in the module, this adjusts them to
5922 /// call the new function directly.
5923 ///
5924 /// This is not just a cleanup: the always_inline pass requires direct calls to
5925 /// functions to be able to inline them.  If there is a bitcast in the way, it
5926 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5927 /// run at -O0.
5928 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5929                                                       llvm::Function *NewFn) {
5930   // If we're redefining a global as a function, don't transform it.
5931   if (!isa<llvm::Function>(Old)) return;
5932 
5933   replaceUsesOfNonProtoConstant(Old, NewFn);
5934 }
5935 
5936 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5937   auto DK = VD->isThisDeclarationADefinition();
5938   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5939     return;
5940 
5941   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5942   // If we have a definition, this might be a deferred decl. If the
5943   // instantiation is explicit, make sure we emit it at the end.
5944   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5945     GetAddrOfGlobalVar(VD);
5946 
5947   EmitTopLevelDecl(VD);
5948 }
5949 
5950 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5951                                                  llvm::GlobalValue *GV) {
5952   const auto *D = cast<FunctionDecl>(GD.getDecl());
5953 
5954   // Compute the function info and LLVM type.
5955   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5956   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5957 
5958   // Get or create the prototype for the function.
5959   if (!GV || (GV->getValueType() != Ty))
5960     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5961                                                    /*DontDefer=*/true,
5962                                                    ForDefinition));
5963 
5964   // Already emitted.
5965   if (!GV->isDeclaration())
5966     return;
5967 
5968   // We need to set linkage and visibility on the function before
5969   // generating code for it because various parts of IR generation
5970   // want to propagate this information down (e.g. to local static
5971   // declarations).
5972   auto *Fn = cast<llvm::Function>(GV);
5973   setFunctionLinkage(GD, Fn);
5974 
5975   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5976   setGVProperties(Fn, GD);
5977 
5978   MaybeHandleStaticInExternC(D, Fn);
5979 
5980   maybeSetTrivialComdat(*D, *Fn);
5981 
5982   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5983 
5984   setNonAliasAttributes(GD, Fn);
5985   SetLLVMFunctionAttributesForDefinition(D, Fn);
5986 
5987   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5988     AddGlobalCtor(Fn, CA->getPriority());
5989   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5990     AddGlobalDtor(Fn, DA->getPriority(), true);
5991   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5992     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5993 }
5994 
5995 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5996   const auto *D = cast<ValueDecl>(GD.getDecl());
5997   const AliasAttr *AA = D->getAttr<AliasAttr>();
5998   assert(AA && "Not an alias?");
5999 
6000   StringRef MangledName = getMangledName(GD);
6001 
6002   if (AA->getAliasee() == MangledName) {
6003     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6004     return;
6005   }
6006 
6007   // If there is a definition in the module, then it wins over the alias.
6008   // This is dubious, but allow it to be safe.  Just ignore the alias.
6009   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6010   if (Entry && !Entry->isDeclaration())
6011     return;
6012 
6013   Aliases.push_back(GD);
6014 
6015   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6016 
6017   // Create a reference to the named value.  This ensures that it is emitted
6018   // if a deferred decl.
6019   llvm::Constant *Aliasee;
6020   llvm::GlobalValue::LinkageTypes LT;
6021   if (isa<llvm::FunctionType>(DeclTy)) {
6022     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6023                                       /*ForVTable=*/false);
6024     LT = getFunctionLinkage(GD);
6025   } else {
6026     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6027                                     /*D=*/nullptr);
6028     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6029       LT = getLLVMLinkageVarDefinition(VD);
6030     else
6031       LT = getFunctionLinkage(GD);
6032   }
6033 
6034   // Create the new alias itself, but don't set a name yet.
6035   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6036   auto *GA =
6037       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6038 
6039   if (Entry) {
6040     if (GA->getAliasee() == Entry) {
6041       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6042       return;
6043     }
6044 
6045     assert(Entry->isDeclaration());
6046 
6047     // If there is a declaration in the module, then we had an extern followed
6048     // by the alias, as in:
6049     //   extern int test6();
6050     //   ...
6051     //   int test6() __attribute__((alias("test7")));
6052     //
6053     // Remove it and replace uses of it with the alias.
6054     GA->takeName(Entry);
6055 
6056     Entry->replaceAllUsesWith(GA);
6057     Entry->eraseFromParent();
6058   } else {
6059     GA->setName(MangledName);
6060   }
6061 
6062   // Set attributes which are particular to an alias; this is a
6063   // specialization of the attributes which may be set on a global
6064   // variable/function.
6065   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6066       D->isWeakImported()) {
6067     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6068   }
6069 
6070   if (const auto *VD = dyn_cast<VarDecl>(D))
6071     if (VD->getTLSKind())
6072       setTLSMode(GA, *VD);
6073 
6074   SetCommonAttributes(GD, GA);
6075 
6076   // Emit global alias debug information.
6077   if (isa<VarDecl>(D))
6078     if (CGDebugInfo *DI = getModuleDebugInfo())
6079       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6080 }
6081 
6082 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6083   const auto *D = cast<ValueDecl>(GD.getDecl());
6084   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6085   assert(IFA && "Not an ifunc?");
6086 
6087   StringRef MangledName = getMangledName(GD);
6088 
6089   if (IFA->getResolver() == MangledName) {
6090     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6091     return;
6092   }
6093 
6094   // Report an error if some definition overrides ifunc.
6095   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6096   if (Entry && !Entry->isDeclaration()) {
6097     GlobalDecl OtherGD;
6098     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6099         DiagnosedConflictingDefinitions.insert(GD).second) {
6100       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6101           << MangledName;
6102       Diags.Report(OtherGD.getDecl()->getLocation(),
6103                    diag::note_previous_definition);
6104     }
6105     return;
6106   }
6107 
6108   Aliases.push_back(GD);
6109 
6110   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6111   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
6112   llvm::Constant *Resolver =
6113       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
6114                               /*ForVTable=*/false);
6115   llvm::GlobalIFunc *GIF =
6116       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6117                                 "", Resolver, &getModule());
6118   if (Entry) {
6119     if (GIF->getResolver() == Entry) {
6120       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6121       return;
6122     }
6123     assert(Entry->isDeclaration());
6124 
6125     // If there is a declaration in the module, then we had an extern followed
6126     // by the ifunc, as in:
6127     //   extern int test();
6128     //   ...
6129     //   int test() __attribute__((ifunc("resolver")));
6130     //
6131     // Remove it and replace uses of it with the ifunc.
6132     GIF->takeName(Entry);
6133 
6134     Entry->replaceAllUsesWith(GIF);
6135     Entry->eraseFromParent();
6136   } else
6137     GIF->setName(MangledName);
6138   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
6139     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
6140   }
6141   SetCommonAttributes(GD, GIF);
6142 }
6143 
6144 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6145                                             ArrayRef<llvm::Type*> Tys) {
6146   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6147                                          Tys);
6148 }
6149 
6150 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6151 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6152                          const StringLiteral *Literal, bool TargetIsLSB,
6153                          bool &IsUTF16, unsigned &StringLength) {
6154   StringRef String = Literal->getString();
6155   unsigned NumBytes = String.size();
6156 
6157   // Check for simple case.
6158   if (!Literal->containsNonAsciiOrNull()) {
6159     StringLength = NumBytes;
6160     return *Map.insert(std::make_pair(String, nullptr)).first;
6161   }
6162 
6163   // Otherwise, convert the UTF8 literals into a string of shorts.
6164   IsUTF16 = true;
6165 
6166   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6167   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6168   llvm::UTF16 *ToPtr = &ToBuf[0];
6169 
6170   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6171                                  ToPtr + NumBytes, llvm::strictConversion);
6172 
6173   // ConvertUTF8toUTF16 returns the length in ToPtr.
6174   StringLength = ToPtr - &ToBuf[0];
6175 
6176   // Add an explicit null.
6177   *ToPtr = 0;
6178   return *Map.insert(std::make_pair(
6179                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6180                                    (StringLength + 1) * 2),
6181                          nullptr)).first;
6182 }
6183 
6184 ConstantAddress
6185 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6186   unsigned StringLength = 0;
6187   bool isUTF16 = false;
6188   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6189       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6190                                getDataLayout().isLittleEndian(), isUTF16,
6191                                StringLength);
6192 
6193   if (auto *C = Entry.second)
6194     return ConstantAddress(
6195         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6196 
6197   const ASTContext &Context = getContext();
6198   const llvm::Triple &Triple = getTriple();
6199 
6200   const auto CFRuntime = getLangOpts().CFRuntime;
6201   const bool IsSwiftABI =
6202       static_cast<unsigned>(CFRuntime) >=
6203       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6204   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6205 
6206   // If we don't already have it, get __CFConstantStringClassReference.
6207   if (!CFConstantStringClassRef) {
6208     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6209     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6210     Ty = llvm::ArrayType::get(Ty, 0);
6211 
6212     switch (CFRuntime) {
6213     default: break;
6214     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6215     case LangOptions::CoreFoundationABI::Swift5_0:
6216       CFConstantStringClassName =
6217           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6218                               : "$s10Foundation19_NSCFConstantStringCN";
6219       Ty = IntPtrTy;
6220       break;
6221     case LangOptions::CoreFoundationABI::Swift4_2:
6222       CFConstantStringClassName =
6223           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6224                               : "$S10Foundation19_NSCFConstantStringCN";
6225       Ty = IntPtrTy;
6226       break;
6227     case LangOptions::CoreFoundationABI::Swift4_1:
6228       CFConstantStringClassName =
6229           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6230                               : "__T010Foundation19_NSCFConstantStringCN";
6231       Ty = IntPtrTy;
6232       break;
6233     }
6234 
6235     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6236 
6237     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6238       llvm::GlobalValue *GV = nullptr;
6239 
6240       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6241         IdentifierInfo &II = Context.Idents.get(GV->getName());
6242         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6243         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6244 
6245         const VarDecl *VD = nullptr;
6246         for (const auto *Result : DC->lookup(&II))
6247           if ((VD = dyn_cast<VarDecl>(Result)))
6248             break;
6249 
6250         if (Triple.isOSBinFormatELF()) {
6251           if (!VD)
6252             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6253         } else {
6254           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6255           if (!VD || !VD->hasAttr<DLLExportAttr>())
6256             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6257           else
6258             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6259         }
6260 
6261         setDSOLocal(GV);
6262       }
6263     }
6264 
6265     // Decay array -> ptr
6266     CFConstantStringClassRef =
6267         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6268   }
6269 
6270   QualType CFTy = Context.getCFConstantStringType();
6271 
6272   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6273 
6274   ConstantInitBuilder Builder(*this);
6275   auto Fields = Builder.beginStruct(STy);
6276 
6277   // Class pointer.
6278   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6279 
6280   // Flags.
6281   if (IsSwiftABI) {
6282     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6283     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6284   } else {
6285     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6286   }
6287 
6288   // String pointer.
6289   llvm::Constant *C = nullptr;
6290   if (isUTF16) {
6291     auto Arr = llvm::ArrayRef(
6292         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6293         Entry.first().size() / 2);
6294     C = llvm::ConstantDataArray::get(VMContext, Arr);
6295   } else {
6296     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6297   }
6298 
6299   // Note: -fwritable-strings doesn't make the backing store strings of
6300   // CFStrings writable.
6301   auto *GV =
6302       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6303                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6304   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6305   // Don't enforce the target's minimum global alignment, since the only use
6306   // of the string is via this class initializer.
6307   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6308                             : Context.getTypeAlignInChars(Context.CharTy);
6309   GV->setAlignment(Align.getAsAlign());
6310 
6311   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6312   // Without it LLVM can merge the string with a non unnamed_addr one during
6313   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6314   if (Triple.isOSBinFormatMachO())
6315     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6316                            : "__TEXT,__cstring,cstring_literals");
6317   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6318   // the static linker to adjust permissions to read-only later on.
6319   else if (Triple.isOSBinFormatELF())
6320     GV->setSection(".rodata");
6321 
6322   // String.
6323   Fields.add(GV);
6324 
6325   // String length.
6326   llvm::IntegerType *LengthTy =
6327       llvm::IntegerType::get(getModule().getContext(),
6328                              Context.getTargetInfo().getLongWidth());
6329   if (IsSwiftABI) {
6330     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6331         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6332       LengthTy = Int32Ty;
6333     else
6334       LengthTy = IntPtrTy;
6335   }
6336   Fields.addInt(LengthTy, StringLength);
6337 
6338   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6339   // properly aligned on 32-bit platforms.
6340   CharUnits Alignment =
6341       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6342 
6343   // The struct.
6344   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6345                                     /*isConstant=*/false,
6346                                     llvm::GlobalVariable::PrivateLinkage);
6347   GV->addAttribute("objc_arc_inert");
6348   switch (Triple.getObjectFormat()) {
6349   case llvm::Triple::UnknownObjectFormat:
6350     llvm_unreachable("unknown file format");
6351   case llvm::Triple::DXContainer:
6352   case llvm::Triple::GOFF:
6353   case llvm::Triple::SPIRV:
6354   case llvm::Triple::XCOFF:
6355     llvm_unreachable("unimplemented");
6356   case llvm::Triple::COFF:
6357   case llvm::Triple::ELF:
6358   case llvm::Triple::Wasm:
6359     GV->setSection("cfstring");
6360     break;
6361   case llvm::Triple::MachO:
6362     GV->setSection("__DATA,__cfstring");
6363     break;
6364   }
6365   Entry.second = GV;
6366 
6367   return ConstantAddress(GV, GV->getValueType(), Alignment);
6368 }
6369 
6370 bool CodeGenModule::getExpressionLocationsEnabled() const {
6371   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6372 }
6373 
6374 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6375   if (ObjCFastEnumerationStateType.isNull()) {
6376     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6377     D->startDefinition();
6378 
6379     QualType FieldTypes[] = {
6380         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6381         Context.getPointerType(Context.UnsignedLongTy),
6382         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6383                                      nullptr, ArraySizeModifier::Normal, 0)};
6384 
6385     for (size_t i = 0; i < 4; ++i) {
6386       FieldDecl *Field = FieldDecl::Create(Context,
6387                                            D,
6388                                            SourceLocation(),
6389                                            SourceLocation(), nullptr,
6390                                            FieldTypes[i], /*TInfo=*/nullptr,
6391                                            /*BitWidth=*/nullptr,
6392                                            /*Mutable=*/false,
6393                                            ICIS_NoInit);
6394       Field->setAccess(AS_public);
6395       D->addDecl(Field);
6396     }
6397 
6398     D->completeDefinition();
6399     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6400   }
6401 
6402   return ObjCFastEnumerationStateType;
6403 }
6404 
6405 llvm::Constant *
6406 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6407   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6408 
6409   // Don't emit it as the address of the string, emit the string data itself
6410   // as an inline array.
6411   if (E->getCharByteWidth() == 1) {
6412     SmallString<64> Str(E->getString());
6413 
6414     // Resize the string to the right size, which is indicated by its type.
6415     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6416     assert(CAT && "String literal not of constant array type!");
6417     Str.resize(CAT->getZExtSize());
6418     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6419   }
6420 
6421   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6422   llvm::Type *ElemTy = AType->getElementType();
6423   unsigned NumElements = AType->getNumElements();
6424 
6425   // Wide strings have either 2-byte or 4-byte elements.
6426   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6427     SmallVector<uint16_t, 32> Elements;
6428     Elements.reserve(NumElements);
6429 
6430     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6431       Elements.push_back(E->getCodeUnit(i));
6432     Elements.resize(NumElements);
6433     return llvm::ConstantDataArray::get(VMContext, Elements);
6434   }
6435 
6436   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6437   SmallVector<uint32_t, 32> Elements;
6438   Elements.reserve(NumElements);
6439 
6440   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6441     Elements.push_back(E->getCodeUnit(i));
6442   Elements.resize(NumElements);
6443   return llvm::ConstantDataArray::get(VMContext, Elements);
6444 }
6445 
6446 static llvm::GlobalVariable *
6447 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6448                       CodeGenModule &CGM, StringRef GlobalName,
6449                       CharUnits Alignment) {
6450   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6451       CGM.GetGlobalConstantAddressSpace());
6452 
6453   llvm::Module &M = CGM.getModule();
6454   // Create a global variable for this string
6455   auto *GV = new llvm::GlobalVariable(
6456       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6457       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6458   GV->setAlignment(Alignment.getAsAlign());
6459   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6460   if (GV->isWeakForLinker()) {
6461     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6462     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6463   }
6464   CGM.setDSOLocal(GV);
6465 
6466   return GV;
6467 }
6468 
6469 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6470 /// constant array for the given string literal.
6471 ConstantAddress
6472 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6473                                                   StringRef Name) {
6474   CharUnits Alignment =
6475       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6476 
6477   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6478   llvm::GlobalVariable **Entry = nullptr;
6479   if (!LangOpts.WritableStrings) {
6480     Entry = &ConstantStringMap[C];
6481     if (auto GV = *Entry) {
6482       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6483         GV->setAlignment(Alignment.getAsAlign());
6484       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6485                              GV->getValueType(), Alignment);
6486     }
6487   }
6488 
6489   SmallString<256> MangledNameBuffer;
6490   StringRef GlobalVariableName;
6491   llvm::GlobalValue::LinkageTypes LT;
6492 
6493   // Mangle the string literal if that's how the ABI merges duplicate strings.
6494   // Don't do it if they are writable, since we don't want writes in one TU to
6495   // affect strings in another.
6496   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6497       !LangOpts.WritableStrings) {
6498     llvm::raw_svector_ostream Out(MangledNameBuffer);
6499     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6500     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6501     GlobalVariableName = MangledNameBuffer;
6502   } else {
6503     LT = llvm::GlobalValue::PrivateLinkage;
6504     GlobalVariableName = Name;
6505   }
6506 
6507   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6508 
6509   CGDebugInfo *DI = getModuleDebugInfo();
6510   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6511     DI->AddStringLiteralDebugInfo(GV, S);
6512 
6513   if (Entry)
6514     *Entry = GV;
6515 
6516   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6517 
6518   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6519                          GV->getValueType(), Alignment);
6520 }
6521 
6522 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6523 /// array for the given ObjCEncodeExpr node.
6524 ConstantAddress
6525 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6526   std::string Str;
6527   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6528 
6529   return GetAddrOfConstantCString(Str);
6530 }
6531 
6532 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6533 /// the literal and a terminating '\0' character.
6534 /// The result has pointer to array type.
6535 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6536     const std::string &Str, const char *GlobalName) {
6537   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6538   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6539       getContext().CharTy, /*VD=*/nullptr);
6540 
6541   llvm::Constant *C =
6542       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6543 
6544   // Don't share any string literals if strings aren't constant.
6545   llvm::GlobalVariable **Entry = nullptr;
6546   if (!LangOpts.WritableStrings) {
6547     Entry = &ConstantStringMap[C];
6548     if (auto GV = *Entry) {
6549       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6550         GV->setAlignment(Alignment.getAsAlign());
6551       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6552                              GV->getValueType(), Alignment);
6553     }
6554   }
6555 
6556   // Get the default prefix if a name wasn't specified.
6557   if (!GlobalName)
6558     GlobalName = ".str";
6559   // Create a global variable for this.
6560   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6561                                   GlobalName, Alignment);
6562   if (Entry)
6563     *Entry = GV;
6564 
6565   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6566                          GV->getValueType(), Alignment);
6567 }
6568 
6569 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6570     const MaterializeTemporaryExpr *E, const Expr *Init) {
6571   assert((E->getStorageDuration() == SD_Static ||
6572           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6573   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6574 
6575   // If we're not materializing a subobject of the temporary, keep the
6576   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6577   QualType MaterializedType = Init->getType();
6578   if (Init == E->getSubExpr())
6579     MaterializedType = E->getType();
6580 
6581   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6582 
6583   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6584   if (!InsertResult.second) {
6585     // We've seen this before: either we already created it or we're in the
6586     // process of doing so.
6587     if (!InsertResult.first->second) {
6588       // We recursively re-entered this function, probably during emission of
6589       // the initializer. Create a placeholder. We'll clean this up in the
6590       // outer call, at the end of this function.
6591       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6592       InsertResult.first->second = new llvm::GlobalVariable(
6593           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6594           nullptr);
6595     }
6596     return ConstantAddress(InsertResult.first->second,
6597                            llvm::cast<llvm::GlobalVariable>(
6598                                InsertResult.first->second->stripPointerCasts())
6599                                ->getValueType(),
6600                            Align);
6601   }
6602 
6603   // FIXME: If an externally-visible declaration extends multiple temporaries,
6604   // we need to give each temporary the same name in every translation unit (and
6605   // we also need to make the temporaries externally-visible).
6606   SmallString<256> Name;
6607   llvm::raw_svector_ostream Out(Name);
6608   getCXXABI().getMangleContext().mangleReferenceTemporary(
6609       VD, E->getManglingNumber(), Out);
6610 
6611   APValue *Value = nullptr;
6612   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6613     // If the initializer of the extending declaration is a constant
6614     // initializer, we should have a cached constant initializer for this
6615     // temporary. Note that this might have a different value from the value
6616     // computed by evaluating the initializer if the surrounding constant
6617     // expression modifies the temporary.
6618     Value = E->getOrCreateValue(false);
6619   }
6620 
6621   // Try evaluating it now, it might have a constant initializer.
6622   Expr::EvalResult EvalResult;
6623   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6624       !EvalResult.hasSideEffects())
6625     Value = &EvalResult.Val;
6626 
6627   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6628 
6629   std::optional<ConstantEmitter> emitter;
6630   llvm::Constant *InitialValue = nullptr;
6631   bool Constant = false;
6632   llvm::Type *Type;
6633   if (Value) {
6634     // The temporary has a constant initializer, use it.
6635     emitter.emplace(*this);
6636     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6637                                                MaterializedType);
6638     Constant =
6639         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6640                                            /*ExcludeDtor*/ false);
6641     Type = InitialValue->getType();
6642   } else {
6643     // No initializer, the initialization will be provided when we
6644     // initialize the declaration which performed lifetime extension.
6645     Type = getTypes().ConvertTypeForMem(MaterializedType);
6646   }
6647 
6648   // Create a global variable for this lifetime-extended temporary.
6649   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6650   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6651     const VarDecl *InitVD;
6652     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6653         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6654       // Temporaries defined inside a class get linkonce_odr linkage because the
6655       // class can be defined in multiple translation units.
6656       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6657     } else {
6658       // There is no need for this temporary to have external linkage if the
6659       // VarDecl has external linkage.
6660       Linkage = llvm::GlobalVariable::InternalLinkage;
6661     }
6662   }
6663   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6664   auto *GV = new llvm::GlobalVariable(
6665       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6666       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6667   if (emitter) emitter->finalize(GV);
6668   // Don't assign dllimport or dllexport to local linkage globals.
6669   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6670     setGVProperties(GV, VD);
6671     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6672       // The reference temporary should never be dllexport.
6673       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6674   }
6675   GV->setAlignment(Align.getAsAlign());
6676   if (supportsCOMDAT() && GV->isWeakForLinker())
6677     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6678   if (VD->getTLSKind())
6679     setTLSMode(GV, *VD);
6680   llvm::Constant *CV = GV;
6681   if (AddrSpace != LangAS::Default)
6682     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6683         *this, GV, AddrSpace, LangAS::Default,
6684         llvm::PointerType::get(
6685             getLLVMContext(),
6686             getContext().getTargetAddressSpace(LangAS::Default)));
6687 
6688   // Update the map with the new temporary. If we created a placeholder above,
6689   // replace it with the new global now.
6690   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6691   if (Entry) {
6692     Entry->replaceAllUsesWith(CV);
6693     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6694   }
6695   Entry = CV;
6696 
6697   return ConstantAddress(CV, Type, Align);
6698 }
6699 
6700 /// EmitObjCPropertyImplementations - Emit information for synthesized
6701 /// properties for an implementation.
6702 void CodeGenModule::EmitObjCPropertyImplementations(const
6703                                                     ObjCImplementationDecl *D) {
6704   for (const auto *PID : D->property_impls()) {
6705     // Dynamic is just for type-checking.
6706     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6707       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6708 
6709       // Determine which methods need to be implemented, some may have
6710       // been overridden. Note that ::isPropertyAccessor is not the method
6711       // we want, that just indicates if the decl came from a
6712       // property. What we want to know is if the method is defined in
6713       // this implementation.
6714       auto *Getter = PID->getGetterMethodDecl();
6715       if (!Getter || Getter->isSynthesizedAccessorStub())
6716         CodeGenFunction(*this).GenerateObjCGetter(
6717             const_cast<ObjCImplementationDecl *>(D), PID);
6718       auto *Setter = PID->getSetterMethodDecl();
6719       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6720         CodeGenFunction(*this).GenerateObjCSetter(
6721                                  const_cast<ObjCImplementationDecl *>(D), PID);
6722     }
6723   }
6724 }
6725 
6726 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6727   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6728   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6729        ivar; ivar = ivar->getNextIvar())
6730     if (ivar->getType().isDestructedType())
6731       return true;
6732 
6733   return false;
6734 }
6735 
6736 static bool AllTrivialInitializers(CodeGenModule &CGM,
6737                                    ObjCImplementationDecl *D) {
6738   CodeGenFunction CGF(CGM);
6739   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6740        E = D->init_end(); B != E; ++B) {
6741     CXXCtorInitializer *CtorInitExp = *B;
6742     Expr *Init = CtorInitExp->getInit();
6743     if (!CGF.isTrivialInitializer(Init))
6744       return false;
6745   }
6746   return true;
6747 }
6748 
6749 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6750 /// for an implementation.
6751 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6752   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6753   if (needsDestructMethod(D)) {
6754     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6755     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6756     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6757         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6758         getContext().VoidTy, nullptr, D,
6759         /*isInstance=*/true, /*isVariadic=*/false,
6760         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6761         /*isImplicitlyDeclared=*/true,
6762         /*isDefined=*/false, ObjCImplementationControl::Required);
6763     D->addInstanceMethod(DTORMethod);
6764     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6765     D->setHasDestructors(true);
6766   }
6767 
6768   // If the implementation doesn't have any ivar initializers, we don't need
6769   // a .cxx_construct.
6770   if (D->getNumIvarInitializers() == 0 ||
6771       AllTrivialInitializers(*this, D))
6772     return;
6773 
6774   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6775   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6776   // The constructor returns 'self'.
6777   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6778       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6779       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6780       /*isVariadic=*/false,
6781       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6782       /*isImplicitlyDeclared=*/true,
6783       /*isDefined=*/false, ObjCImplementationControl::Required);
6784   D->addInstanceMethod(CTORMethod);
6785   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6786   D->setHasNonZeroConstructors(true);
6787 }
6788 
6789 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6790 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6791   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6792       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6793     ErrorUnsupported(LSD, "linkage spec");
6794     return;
6795   }
6796 
6797   EmitDeclContext(LSD);
6798 }
6799 
6800 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6801   // Device code should not be at top level.
6802   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6803     return;
6804 
6805   std::unique_ptr<CodeGenFunction> &CurCGF =
6806       GlobalTopLevelStmtBlockInFlight.first;
6807 
6808   // We emitted a top-level stmt but after it there is initialization.
6809   // Stop squashing the top-level stmts into a single function.
6810   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6811     CurCGF->FinishFunction(D->getEndLoc());
6812     CurCGF = nullptr;
6813   }
6814 
6815   if (!CurCGF) {
6816     // void __stmts__N(void)
6817     // FIXME: Ask the ABI name mangler to pick a name.
6818     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6819     FunctionArgList Args;
6820     QualType RetTy = getContext().VoidTy;
6821     const CGFunctionInfo &FnInfo =
6822         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6823     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6824     llvm::Function *Fn = llvm::Function::Create(
6825         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6826 
6827     CurCGF.reset(new CodeGenFunction(*this));
6828     GlobalTopLevelStmtBlockInFlight.second = D;
6829     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6830                           D->getBeginLoc(), D->getBeginLoc());
6831     CXXGlobalInits.push_back(Fn);
6832   }
6833 
6834   CurCGF->EmitStmt(D->getStmt());
6835 }
6836 
6837 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6838   for (auto *I : DC->decls()) {
6839     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6840     // are themselves considered "top-level", so EmitTopLevelDecl on an
6841     // ObjCImplDecl does not recursively visit them. We need to do that in
6842     // case they're nested inside another construct (LinkageSpecDecl /
6843     // ExportDecl) that does stop them from being considered "top-level".
6844     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6845       for (auto *M : OID->methods())
6846         EmitTopLevelDecl(M);
6847     }
6848 
6849     EmitTopLevelDecl(I);
6850   }
6851 }
6852 
6853 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6854 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6855   // Ignore dependent declarations.
6856   if (D->isTemplated())
6857     return;
6858 
6859   // Consteval function shouldn't be emitted.
6860   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6861     return;
6862 
6863   switch (D->getKind()) {
6864   case Decl::CXXConversion:
6865   case Decl::CXXMethod:
6866   case Decl::Function:
6867     EmitGlobal(cast<FunctionDecl>(D));
6868     // Always provide some coverage mapping
6869     // even for the functions that aren't emitted.
6870     AddDeferredUnusedCoverageMapping(D);
6871     break;
6872 
6873   case Decl::CXXDeductionGuide:
6874     // Function-like, but does not result in code emission.
6875     break;
6876 
6877   case Decl::Var:
6878   case Decl::Decomposition:
6879   case Decl::VarTemplateSpecialization:
6880     EmitGlobal(cast<VarDecl>(D));
6881     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6882       for (auto *B : DD->bindings())
6883         if (auto *HD = B->getHoldingVar())
6884           EmitGlobal(HD);
6885     break;
6886 
6887   // Indirect fields from global anonymous structs and unions can be
6888   // ignored; only the actual variable requires IR gen support.
6889   case Decl::IndirectField:
6890     break;
6891 
6892   // C++ Decls
6893   case Decl::Namespace:
6894     EmitDeclContext(cast<NamespaceDecl>(D));
6895     break;
6896   case Decl::ClassTemplateSpecialization: {
6897     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6898     if (CGDebugInfo *DI = getModuleDebugInfo())
6899       if (Spec->getSpecializationKind() ==
6900               TSK_ExplicitInstantiationDefinition &&
6901           Spec->hasDefinition())
6902         DI->completeTemplateDefinition(*Spec);
6903   } [[fallthrough]];
6904   case Decl::CXXRecord: {
6905     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6906     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6907       if (CRD->hasDefinition())
6908         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6909       if (auto *ES = D->getASTContext().getExternalSource())
6910         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6911           DI->completeUnusedClass(*CRD);
6912     }
6913     // Emit any static data members, they may be definitions.
6914     for (auto *I : CRD->decls())
6915       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6916         EmitTopLevelDecl(I);
6917     break;
6918   }
6919     // No code generation needed.
6920   case Decl::UsingShadow:
6921   case Decl::ClassTemplate:
6922   case Decl::VarTemplate:
6923   case Decl::Concept:
6924   case Decl::VarTemplatePartialSpecialization:
6925   case Decl::FunctionTemplate:
6926   case Decl::TypeAliasTemplate:
6927   case Decl::Block:
6928   case Decl::Empty:
6929   case Decl::Binding:
6930     break;
6931   case Decl::Using:          // using X; [C++]
6932     if (CGDebugInfo *DI = getModuleDebugInfo())
6933         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6934     break;
6935   case Decl::UsingEnum: // using enum X; [C++]
6936     if (CGDebugInfo *DI = getModuleDebugInfo())
6937       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6938     break;
6939   case Decl::NamespaceAlias:
6940     if (CGDebugInfo *DI = getModuleDebugInfo())
6941         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6942     break;
6943   case Decl::UsingDirective: // using namespace X; [C++]
6944     if (CGDebugInfo *DI = getModuleDebugInfo())
6945       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6946     break;
6947   case Decl::CXXConstructor:
6948     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6949     break;
6950   case Decl::CXXDestructor:
6951     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6952     break;
6953 
6954   case Decl::StaticAssert:
6955     // Nothing to do.
6956     break;
6957 
6958   // Objective-C Decls
6959 
6960   // Forward declarations, no (immediate) code generation.
6961   case Decl::ObjCInterface:
6962   case Decl::ObjCCategory:
6963     break;
6964 
6965   case Decl::ObjCProtocol: {
6966     auto *Proto = cast<ObjCProtocolDecl>(D);
6967     if (Proto->isThisDeclarationADefinition())
6968       ObjCRuntime->GenerateProtocol(Proto);
6969     break;
6970   }
6971 
6972   case Decl::ObjCCategoryImpl:
6973     // Categories have properties but don't support synthesize so we
6974     // can ignore them here.
6975     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6976     break;
6977 
6978   case Decl::ObjCImplementation: {
6979     auto *OMD = cast<ObjCImplementationDecl>(D);
6980     EmitObjCPropertyImplementations(OMD);
6981     EmitObjCIvarInitializations(OMD);
6982     ObjCRuntime->GenerateClass(OMD);
6983     // Emit global variable debug information.
6984     if (CGDebugInfo *DI = getModuleDebugInfo())
6985       if (getCodeGenOpts().hasReducedDebugInfo())
6986         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6987             OMD->getClassInterface()), OMD->getLocation());
6988     break;
6989   }
6990   case Decl::ObjCMethod: {
6991     auto *OMD = cast<ObjCMethodDecl>(D);
6992     // If this is not a prototype, emit the body.
6993     if (OMD->getBody())
6994       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6995     break;
6996   }
6997   case Decl::ObjCCompatibleAlias:
6998     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6999     break;
7000 
7001   case Decl::PragmaComment: {
7002     const auto *PCD = cast<PragmaCommentDecl>(D);
7003     switch (PCD->getCommentKind()) {
7004     case PCK_Unknown:
7005       llvm_unreachable("unexpected pragma comment kind");
7006     case PCK_Linker:
7007       AppendLinkerOptions(PCD->getArg());
7008       break;
7009     case PCK_Lib:
7010         AddDependentLib(PCD->getArg());
7011       break;
7012     case PCK_Compiler:
7013     case PCK_ExeStr:
7014     case PCK_User:
7015       break; // We ignore all of these.
7016     }
7017     break;
7018   }
7019 
7020   case Decl::PragmaDetectMismatch: {
7021     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7022     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7023     break;
7024   }
7025 
7026   case Decl::LinkageSpec:
7027     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7028     break;
7029 
7030   case Decl::FileScopeAsm: {
7031     // File-scope asm is ignored during device-side CUDA compilation.
7032     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7033       break;
7034     // File-scope asm is ignored during device-side OpenMP compilation.
7035     if (LangOpts.OpenMPIsTargetDevice)
7036       break;
7037     // File-scope asm is ignored during device-side SYCL compilation.
7038     if (LangOpts.SYCLIsDevice)
7039       break;
7040     auto *AD = cast<FileScopeAsmDecl>(D);
7041     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7042     break;
7043   }
7044 
7045   case Decl::TopLevelStmt:
7046     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7047     break;
7048 
7049   case Decl::Import: {
7050     auto *Import = cast<ImportDecl>(D);
7051 
7052     // If we've already imported this module, we're done.
7053     if (!ImportedModules.insert(Import->getImportedModule()))
7054       break;
7055 
7056     // Emit debug information for direct imports.
7057     if (!Import->getImportedOwningModule()) {
7058       if (CGDebugInfo *DI = getModuleDebugInfo())
7059         DI->EmitImportDecl(*Import);
7060     }
7061 
7062     // For C++ standard modules we are done - we will call the module
7063     // initializer for imported modules, and that will likewise call those for
7064     // any imports it has.
7065     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7066         !Import->getImportedOwningModule()->isModuleMapModule())
7067       break;
7068 
7069     // For clang C++ module map modules the initializers for sub-modules are
7070     // emitted here.
7071 
7072     // Find all of the submodules and emit the module initializers.
7073     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7074     SmallVector<clang::Module *, 16> Stack;
7075     Visited.insert(Import->getImportedModule());
7076     Stack.push_back(Import->getImportedModule());
7077 
7078     while (!Stack.empty()) {
7079       clang::Module *Mod = Stack.pop_back_val();
7080       if (!EmittedModuleInitializers.insert(Mod).second)
7081         continue;
7082 
7083       for (auto *D : Context.getModuleInitializers(Mod))
7084         EmitTopLevelDecl(D);
7085 
7086       // Visit the submodules of this module.
7087       for (auto *Submodule : Mod->submodules()) {
7088         // Skip explicit children; they need to be explicitly imported to emit
7089         // the initializers.
7090         if (Submodule->IsExplicit)
7091           continue;
7092 
7093         if (Visited.insert(Submodule).second)
7094           Stack.push_back(Submodule);
7095       }
7096     }
7097     break;
7098   }
7099 
7100   case Decl::Export:
7101     EmitDeclContext(cast<ExportDecl>(D));
7102     break;
7103 
7104   case Decl::OMPThreadPrivate:
7105     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7106     break;
7107 
7108   case Decl::OMPAllocate:
7109     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7110     break;
7111 
7112   case Decl::OMPDeclareReduction:
7113     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7114     break;
7115 
7116   case Decl::OMPDeclareMapper:
7117     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7118     break;
7119 
7120   case Decl::OMPRequires:
7121     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7122     break;
7123 
7124   case Decl::Typedef:
7125   case Decl::TypeAlias: // using foo = bar; [C++11]
7126     if (CGDebugInfo *DI = getModuleDebugInfo())
7127       DI->EmitAndRetainType(
7128           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7129     break;
7130 
7131   case Decl::Record:
7132     if (CGDebugInfo *DI = getModuleDebugInfo())
7133       if (cast<RecordDecl>(D)->getDefinition())
7134         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7135     break;
7136 
7137   case Decl::Enum:
7138     if (CGDebugInfo *DI = getModuleDebugInfo())
7139       if (cast<EnumDecl>(D)->getDefinition())
7140         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7141     break;
7142 
7143   case Decl::HLSLBuffer:
7144     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7145     break;
7146 
7147   default:
7148     // Make sure we handled everything we should, every other kind is a
7149     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7150     // function. Need to recode Decl::Kind to do that easily.
7151     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7152     break;
7153   }
7154 }
7155 
7156 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7157   // Do we need to generate coverage mapping?
7158   if (!CodeGenOpts.CoverageMapping)
7159     return;
7160   switch (D->getKind()) {
7161   case Decl::CXXConversion:
7162   case Decl::CXXMethod:
7163   case Decl::Function:
7164   case Decl::ObjCMethod:
7165   case Decl::CXXConstructor:
7166   case Decl::CXXDestructor: {
7167     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7168       break;
7169     SourceManager &SM = getContext().getSourceManager();
7170     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7171       break;
7172     if (!llvm::coverage::SystemHeadersCoverage &&
7173         SM.isInSystemHeader(D->getBeginLoc()))
7174       break;
7175     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7176     break;
7177   }
7178   default:
7179     break;
7180   };
7181 }
7182 
7183 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7184   // Do we need to generate coverage mapping?
7185   if (!CodeGenOpts.CoverageMapping)
7186     return;
7187   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7188     if (Fn->isTemplateInstantiation())
7189       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7190   }
7191   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7192 }
7193 
7194 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7195   // We call takeVector() here to avoid use-after-free.
7196   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7197   // we deserialize function bodies to emit coverage info for them, and that
7198   // deserializes more declarations. How should we handle that case?
7199   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7200     if (!Entry.second)
7201       continue;
7202     const Decl *D = Entry.first;
7203     switch (D->getKind()) {
7204     case Decl::CXXConversion:
7205     case Decl::CXXMethod:
7206     case Decl::Function:
7207     case Decl::ObjCMethod: {
7208       CodeGenPGO PGO(*this);
7209       GlobalDecl GD(cast<FunctionDecl>(D));
7210       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7211                                   getFunctionLinkage(GD));
7212       break;
7213     }
7214     case Decl::CXXConstructor: {
7215       CodeGenPGO PGO(*this);
7216       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7217       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7218                                   getFunctionLinkage(GD));
7219       break;
7220     }
7221     case Decl::CXXDestructor: {
7222       CodeGenPGO PGO(*this);
7223       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7224       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7225                                   getFunctionLinkage(GD));
7226       break;
7227     }
7228     default:
7229       break;
7230     };
7231   }
7232 }
7233 
7234 void CodeGenModule::EmitMainVoidAlias() {
7235   // In order to transition away from "__original_main" gracefully, emit an
7236   // alias for "main" in the no-argument case so that libc can detect when
7237   // new-style no-argument main is in used.
7238   if (llvm::Function *F = getModule().getFunction("main")) {
7239     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7240         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7241       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7242       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7243     }
7244   }
7245 }
7246 
7247 /// Turns the given pointer into a constant.
7248 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7249                                           const void *Ptr) {
7250   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7251   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7252   return llvm::ConstantInt::get(i64, PtrInt);
7253 }
7254 
7255 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7256                                    llvm::NamedMDNode *&GlobalMetadata,
7257                                    GlobalDecl D,
7258                                    llvm::GlobalValue *Addr) {
7259   if (!GlobalMetadata)
7260     GlobalMetadata =
7261       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7262 
7263   // TODO: should we report variant information for ctors/dtors?
7264   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7265                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7266                                CGM.getLLVMContext(), D.getDecl()))};
7267   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7268 }
7269 
7270 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7271                                                  llvm::GlobalValue *CppFunc) {
7272   // Store the list of ifuncs we need to replace uses in.
7273   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7274   // List of ConstantExprs that we should be able to delete when we're done
7275   // here.
7276   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7277 
7278   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7279   if (Elem == CppFunc)
7280     return false;
7281 
7282   // First make sure that all users of this are ifuncs (or ifuncs via a
7283   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7284   // later.
7285   for (llvm::User *User : Elem->users()) {
7286     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7287     // ifunc directly. In any other case, just give up, as we don't know what we
7288     // could break by changing those.
7289     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7290       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7291         return false;
7292 
7293       for (llvm::User *CEUser : ConstExpr->users()) {
7294         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7295           IFuncs.push_back(IFunc);
7296         } else {
7297           return false;
7298         }
7299       }
7300       CEs.push_back(ConstExpr);
7301     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7302       IFuncs.push_back(IFunc);
7303     } else {
7304       // This user is one we don't know how to handle, so fail redirection. This
7305       // will result in an ifunc retaining a resolver name that will ultimately
7306       // fail to be resolved to a defined function.
7307       return false;
7308     }
7309   }
7310 
7311   // Now we know this is a valid case where we can do this alias replacement, we
7312   // need to remove all of the references to Elem (and the bitcasts!) so we can
7313   // delete it.
7314   for (llvm::GlobalIFunc *IFunc : IFuncs)
7315     IFunc->setResolver(nullptr);
7316   for (llvm::ConstantExpr *ConstExpr : CEs)
7317     ConstExpr->destroyConstant();
7318 
7319   // We should now be out of uses for the 'old' version of this function, so we
7320   // can erase it as well.
7321   Elem->eraseFromParent();
7322 
7323   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7324     // The type of the resolver is always just a function-type that returns the
7325     // type of the IFunc, so create that here. If the type of the actual
7326     // resolver doesn't match, it just gets bitcast to the right thing.
7327     auto *ResolverTy =
7328         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7329     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7330         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7331     IFunc->setResolver(Resolver);
7332   }
7333   return true;
7334 }
7335 
7336 /// For each function which is declared within an extern "C" region and marked
7337 /// as 'used', but has internal linkage, create an alias from the unmangled
7338 /// name to the mangled name if possible. People expect to be able to refer
7339 /// to such functions with an unmangled name from inline assembly within the
7340 /// same translation unit.
7341 void CodeGenModule::EmitStaticExternCAliases() {
7342   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7343     return;
7344   for (auto &I : StaticExternCValues) {
7345     const IdentifierInfo *Name = I.first;
7346     llvm::GlobalValue *Val = I.second;
7347 
7348     // If Val is null, that implies there were multiple declarations that each
7349     // had a claim to the unmangled name. In this case, generation of the alias
7350     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7351     if (!Val)
7352       break;
7353 
7354     llvm::GlobalValue *ExistingElem =
7355         getModule().getNamedValue(Name->getName());
7356 
7357     // If there is either not something already by this name, or we were able to
7358     // replace all uses from IFuncs, create the alias.
7359     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7360       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7361   }
7362 }
7363 
7364 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7365                                              GlobalDecl &Result) const {
7366   auto Res = Manglings.find(MangledName);
7367   if (Res == Manglings.end())
7368     return false;
7369   Result = Res->getValue();
7370   return true;
7371 }
7372 
7373 /// Emits metadata nodes associating all the global values in the
7374 /// current module with the Decls they came from.  This is useful for
7375 /// projects using IR gen as a subroutine.
7376 ///
7377 /// Since there's currently no way to associate an MDNode directly
7378 /// with an llvm::GlobalValue, we create a global named metadata
7379 /// with the name 'clang.global.decl.ptrs'.
7380 void CodeGenModule::EmitDeclMetadata() {
7381   llvm::NamedMDNode *GlobalMetadata = nullptr;
7382 
7383   for (auto &I : MangledDeclNames) {
7384     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7385     // Some mangled names don't necessarily have an associated GlobalValue
7386     // in this module, e.g. if we mangled it for DebugInfo.
7387     if (Addr)
7388       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7389   }
7390 }
7391 
7392 /// Emits metadata nodes for all the local variables in the current
7393 /// function.
7394 void CodeGenFunction::EmitDeclMetadata() {
7395   if (LocalDeclMap.empty()) return;
7396 
7397   llvm::LLVMContext &Context = getLLVMContext();
7398 
7399   // Find the unique metadata ID for this name.
7400   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7401 
7402   llvm::NamedMDNode *GlobalMetadata = nullptr;
7403 
7404   for (auto &I : LocalDeclMap) {
7405     const Decl *D = I.first;
7406     llvm::Value *Addr = I.second.emitRawPointer(*this);
7407     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7408       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7409       Alloca->setMetadata(
7410           DeclPtrKind, llvm::MDNode::get(
7411                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7412     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7413       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7414       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7415     }
7416   }
7417 }
7418 
7419 void CodeGenModule::EmitVersionIdentMetadata() {
7420   llvm::NamedMDNode *IdentMetadata =
7421     TheModule.getOrInsertNamedMetadata("llvm.ident");
7422   std::string Version = getClangFullVersion();
7423   llvm::LLVMContext &Ctx = TheModule.getContext();
7424 
7425   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7426   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7427 }
7428 
7429 void CodeGenModule::EmitCommandLineMetadata() {
7430   llvm::NamedMDNode *CommandLineMetadata =
7431     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7432   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7433   llvm::LLVMContext &Ctx = TheModule.getContext();
7434 
7435   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7436   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7437 }
7438 
7439 void CodeGenModule::EmitCoverageFile() {
7440   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7441   if (!CUNode)
7442     return;
7443 
7444   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7445   llvm::LLVMContext &Ctx = TheModule.getContext();
7446   auto *CoverageDataFile =
7447       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7448   auto *CoverageNotesFile =
7449       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7450   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7451     llvm::MDNode *CU = CUNode->getOperand(i);
7452     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7453     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7454   }
7455 }
7456 
7457 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7458                                                        bool ForEH) {
7459   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7460   // FIXME: should we even be calling this method if RTTI is disabled
7461   // and it's not for EH?
7462   if (!shouldEmitRTTI(ForEH))
7463     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7464 
7465   if (ForEH && Ty->isObjCObjectPointerType() &&
7466       LangOpts.ObjCRuntime.isGNUFamily())
7467     return ObjCRuntime->GetEHType(Ty);
7468 
7469   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7470 }
7471 
7472 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7473   // Do not emit threadprivates in simd-only mode.
7474   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7475     return;
7476   for (auto RefExpr : D->varlists()) {
7477     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7478     bool PerformInit =
7479         VD->getAnyInitializer() &&
7480         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7481                                                         /*ForRef=*/false);
7482 
7483     Address Addr(GetAddrOfGlobalVar(VD),
7484                  getTypes().ConvertTypeForMem(VD->getType()),
7485                  getContext().getDeclAlign(VD));
7486     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7487             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7488       CXXGlobalInits.push_back(InitFunction);
7489   }
7490 }
7491 
7492 llvm::Metadata *
7493 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7494                                             StringRef Suffix) {
7495   if (auto *FnType = T->getAs<FunctionProtoType>())
7496     T = getContext().getFunctionType(
7497         FnType->getReturnType(), FnType->getParamTypes(),
7498         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7499 
7500   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7501   if (InternalId)
7502     return InternalId;
7503 
7504   if (isExternallyVisible(T->getLinkage())) {
7505     std::string OutName;
7506     llvm::raw_string_ostream Out(OutName);
7507     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7508         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7509 
7510     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7511       Out << ".normalized";
7512 
7513     Out << Suffix;
7514 
7515     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7516   } else {
7517     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7518                                            llvm::ArrayRef<llvm::Metadata *>());
7519   }
7520 
7521   return InternalId;
7522 }
7523 
7524 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7525   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7526 }
7527 
7528 llvm::Metadata *
7529 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7530   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7531 }
7532 
7533 // Generalize pointer types to a void pointer with the qualifiers of the
7534 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7535 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7536 // 'void *'.
7537 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7538   if (!Ty->isPointerType())
7539     return Ty;
7540 
7541   return Ctx.getPointerType(
7542       QualType(Ctx.VoidTy).withCVRQualifiers(
7543           Ty->getPointeeType().getCVRQualifiers()));
7544 }
7545 
7546 // Apply type generalization to a FunctionType's return and argument types
7547 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7548   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7549     SmallVector<QualType, 8> GeneralizedParams;
7550     for (auto &Param : FnType->param_types())
7551       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7552 
7553     return Ctx.getFunctionType(
7554         GeneralizeType(Ctx, FnType->getReturnType()),
7555         GeneralizedParams, FnType->getExtProtoInfo());
7556   }
7557 
7558   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7559     return Ctx.getFunctionNoProtoType(
7560         GeneralizeType(Ctx, FnType->getReturnType()));
7561 
7562   llvm_unreachable("Encountered unknown FunctionType");
7563 }
7564 
7565 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7566   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7567                                       GeneralizedMetadataIdMap, ".generalized");
7568 }
7569 
7570 /// Returns whether this module needs the "all-vtables" type identifier.
7571 bool CodeGenModule::NeedAllVtablesTypeId() const {
7572   // Returns true if at least one of vtable-based CFI checkers is enabled and
7573   // is not in the trapping mode.
7574   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7575            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7576           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7577            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7578           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7579            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7580           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7581            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7582 }
7583 
7584 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7585                                           CharUnits Offset,
7586                                           const CXXRecordDecl *RD) {
7587   llvm::Metadata *MD =
7588       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7589   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7590 
7591   if (CodeGenOpts.SanitizeCfiCrossDso)
7592     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7593       VTable->addTypeMetadata(Offset.getQuantity(),
7594                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7595 
7596   if (NeedAllVtablesTypeId()) {
7597     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7598     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7599   }
7600 }
7601 
7602 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7603   if (!SanStats)
7604     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7605 
7606   return *SanStats;
7607 }
7608 
7609 llvm::Value *
7610 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7611                                                   CodeGenFunction &CGF) {
7612   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7613   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7614   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7615   auto *Call = CGF.EmitRuntimeCall(
7616       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7617   return Call;
7618 }
7619 
7620 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7621     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7622   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7623                                  /* forPointeeType= */ true);
7624 }
7625 
7626 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7627                                                  LValueBaseInfo *BaseInfo,
7628                                                  TBAAAccessInfo *TBAAInfo,
7629                                                  bool forPointeeType) {
7630   if (TBAAInfo)
7631     *TBAAInfo = getTBAAAccessInfo(T);
7632 
7633   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7634   // that doesn't return the information we need to compute BaseInfo.
7635 
7636   // Honor alignment typedef attributes even on incomplete types.
7637   // We also honor them straight for C++ class types, even as pointees;
7638   // there's an expressivity gap here.
7639   if (auto TT = T->getAs<TypedefType>()) {
7640     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7641       if (BaseInfo)
7642         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7643       return getContext().toCharUnitsFromBits(Align);
7644     }
7645   }
7646 
7647   bool AlignForArray = T->isArrayType();
7648 
7649   // Analyze the base element type, so we don't get confused by incomplete
7650   // array types.
7651   T = getContext().getBaseElementType(T);
7652 
7653   if (T->isIncompleteType()) {
7654     // We could try to replicate the logic from
7655     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7656     // type is incomplete, so it's impossible to test. We could try to reuse
7657     // getTypeAlignIfKnown, but that doesn't return the information we need
7658     // to set BaseInfo.  So just ignore the possibility that the alignment is
7659     // greater than one.
7660     if (BaseInfo)
7661       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7662     return CharUnits::One();
7663   }
7664 
7665   if (BaseInfo)
7666     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7667 
7668   CharUnits Alignment;
7669   const CXXRecordDecl *RD;
7670   if (T.getQualifiers().hasUnaligned()) {
7671     Alignment = CharUnits::One();
7672   } else if (forPointeeType && !AlignForArray &&
7673              (RD = T->getAsCXXRecordDecl())) {
7674     // For C++ class pointees, we don't know whether we're pointing at a
7675     // base or a complete object, so we generally need to use the
7676     // non-virtual alignment.
7677     Alignment = getClassPointerAlignment(RD);
7678   } else {
7679     Alignment = getContext().getTypeAlignInChars(T);
7680   }
7681 
7682   // Cap to the global maximum type alignment unless the alignment
7683   // was somehow explicit on the type.
7684   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7685     if (Alignment.getQuantity() > MaxAlign &&
7686         !getContext().isAlignmentRequired(T))
7687       Alignment = CharUnits::fromQuantity(MaxAlign);
7688   }
7689   return Alignment;
7690 }
7691 
7692 bool CodeGenModule::stopAutoInit() {
7693   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7694   if (StopAfter) {
7695     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7696     // used
7697     if (NumAutoVarInit >= StopAfter) {
7698       return true;
7699     }
7700     if (!NumAutoVarInit) {
7701       unsigned DiagID = getDiags().getCustomDiagID(
7702           DiagnosticsEngine::Warning,
7703           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7704           "number of times ftrivial-auto-var-init=%1 gets applied.");
7705       getDiags().Report(DiagID)
7706           << StopAfter
7707           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7708                       LangOptions::TrivialAutoVarInitKind::Zero
7709                   ? "zero"
7710                   : "pattern");
7711     }
7712     ++NumAutoVarInit;
7713   }
7714   return false;
7715 }
7716 
7717 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7718                                                     const Decl *D) const {
7719   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7720   // postfix beginning with '.' since the symbol name can be demangled.
7721   if (LangOpts.HIP)
7722     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7723   else
7724     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7725 
7726   // If the CUID is not specified we try to generate a unique postfix.
7727   if (getLangOpts().CUID.empty()) {
7728     SourceManager &SM = getContext().getSourceManager();
7729     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7730     assert(PLoc.isValid() && "Source location is expected to be valid.");
7731 
7732     // Get the hash of the user defined macros.
7733     llvm::MD5 Hash;
7734     llvm::MD5::MD5Result Result;
7735     for (const auto &Arg : PreprocessorOpts.Macros)
7736       Hash.update(Arg.first);
7737     Hash.final(Result);
7738 
7739     // Get the UniqueID for the file containing the decl.
7740     llvm::sys::fs::UniqueID ID;
7741     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7742       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7743       assert(PLoc.isValid() && "Source location is expected to be valid.");
7744       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7745         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7746             << PLoc.getFilename() << EC.message();
7747     }
7748     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7749        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7750   } else {
7751     OS << getContext().getCUIDHash();
7752   }
7753 }
7754 
7755 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7756   assert(DeferredDeclsToEmit.empty() &&
7757          "Should have emitted all decls deferred to emit.");
7758   assert(NewBuilder->DeferredDecls.empty() &&
7759          "Newly created module should not have deferred decls");
7760   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7761   assert(EmittedDeferredDecls.empty() &&
7762          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7763 
7764   assert(NewBuilder->DeferredVTables.empty() &&
7765          "Newly created module should not have deferred vtables");
7766   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7767 
7768   assert(NewBuilder->MangledDeclNames.empty() &&
7769          "Newly created module should not have mangled decl names");
7770   assert(NewBuilder->Manglings.empty() &&
7771          "Newly created module should not have manglings");
7772   NewBuilder->Manglings = std::move(Manglings);
7773 
7774   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7775 
7776   NewBuilder->TBAA = std::move(TBAA);
7777 
7778   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7779 }
7780