1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), NSConstantStringClassRef(0), 54 VMContext(M.getContext()), 55 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 56 BlockObjectAssign(0), BlockObjectDispose(0){ 57 58 if (!Features.ObjC1) 59 Runtime = 0; 60 else if (!Features.NeXTRuntime) 61 Runtime = CreateGNUObjCRuntime(*this); 62 else if (Features.ObjCNonFragileABI) 63 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 64 else 65 Runtime = CreateMacObjCRuntime(*this); 66 67 if (!Features.CPlusPlus) 68 ABI = 0; 69 else createCXXABI(); 70 71 // If debug info generation is enabled, create the CGDebugInfo object. 72 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 73 } 74 75 CodeGenModule::~CodeGenModule() { 76 delete Runtime; 77 delete ABI; 78 delete DebugInfo; 79 } 80 81 void CodeGenModule::createObjCRuntime() { 82 if (!Features.NeXTRuntime) 83 Runtime = CreateGNUObjCRuntime(*this); 84 else if (Features.ObjCNonFragileABI) 85 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 86 else 87 Runtime = CreateMacObjCRuntime(*this); 88 } 89 90 void CodeGenModule::createCXXABI() { 91 if (Context.Target.getCXXABI() == "microsoft") 92 ABI = CreateMicrosoftCXXABI(*this); 93 else 94 ABI = CreateItaniumCXXABI(*this); 95 } 96 97 void CodeGenModule::Release() { 98 EmitDeferred(); 99 EmitCXXGlobalInitFunc(); 100 EmitCXXGlobalDtorFunc(); 101 if (Runtime) 102 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 103 AddGlobalCtor(ObjCInitFunction); 104 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 105 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 106 EmitAnnotations(); 107 EmitLLVMUsed(); 108 109 if (getCodeGenOpts().EmitDeclMetadata) 110 EmitDeclMetadata(); 111 } 112 113 bool CodeGenModule::isTargetDarwin() const { 114 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 115 } 116 117 /// ErrorUnsupported - Print out an error that codegen doesn't support the 118 /// specified stmt yet. 119 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 120 bool OmitOnError) { 121 if (OmitOnError && getDiags().hasErrorOccurred()) 122 return; 123 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 124 "cannot compile this %0 yet"); 125 std::string Msg = Type; 126 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 127 << Msg << S->getSourceRange(); 128 } 129 130 /// ErrorUnsupported - Print out an error that codegen doesn't support the 131 /// specified decl yet. 132 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 133 bool OmitOnError) { 134 if (OmitOnError && getDiags().hasErrorOccurred()) 135 return; 136 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 137 "cannot compile this %0 yet"); 138 std::string Msg = Type; 139 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 140 } 141 142 LangOptions::VisibilityMode 143 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 144 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 145 if (VD->getStorageClass() == VarDecl::PrivateExtern) 146 return LangOptions::Hidden; 147 148 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 149 switch (attr->getVisibility()) { 150 default: assert(0 && "Unknown visibility!"); 151 case VisibilityAttr::DefaultVisibility: 152 return LangOptions::Default; 153 case VisibilityAttr::HiddenVisibility: 154 return LangOptions::Hidden; 155 case VisibilityAttr::ProtectedVisibility: 156 return LangOptions::Protected; 157 } 158 } 159 160 if (getLangOptions().CPlusPlus) { 161 // Entities subject to an explicit instantiation declaration get default 162 // visibility. 163 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 164 if (Function->getTemplateSpecializationKind() 165 == TSK_ExplicitInstantiationDeclaration) 166 return LangOptions::Default; 167 } else if (const ClassTemplateSpecializationDecl *ClassSpec 168 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 169 if (ClassSpec->getSpecializationKind() 170 == TSK_ExplicitInstantiationDeclaration) 171 return LangOptions::Default; 172 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 173 if (Record->getTemplateSpecializationKind() 174 == TSK_ExplicitInstantiationDeclaration) 175 return LangOptions::Default; 176 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 177 if (Var->isStaticDataMember() && 178 (Var->getTemplateSpecializationKind() 179 == TSK_ExplicitInstantiationDeclaration)) 180 return LangOptions::Default; 181 } 182 183 // If -fvisibility-inlines-hidden was provided, then inline C++ member 184 // functions get "hidden" visibility by default. 185 if (getLangOptions().InlineVisibilityHidden) 186 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 187 if (Method->isInlined()) 188 return LangOptions::Hidden; 189 } 190 191 // This decl should have the same visibility as its parent. 192 if (const DeclContext *DC = D->getDeclContext()) 193 return getDeclVisibilityMode(cast<Decl>(DC)); 194 195 return getLangOptions().getVisibilityMode(); 196 } 197 198 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 199 const Decl *D) const { 200 // Internal definitions always have default visibility. 201 if (GV->hasLocalLinkage()) { 202 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 203 return; 204 } 205 206 switch (getDeclVisibilityMode(D)) { 207 default: assert(0 && "Unknown visibility!"); 208 case LangOptions::Default: 209 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 210 case LangOptions::Hidden: 211 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 212 case LangOptions::Protected: 213 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 214 } 215 } 216 217 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 218 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 219 220 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 221 if (!Str.empty()) 222 return Str; 223 224 if (!getMangleContext().shouldMangleDeclName(ND)) { 225 IdentifierInfo *II = ND->getIdentifier(); 226 assert(II && "Attempt to mangle unnamed decl."); 227 228 Str = II->getName(); 229 return Str; 230 } 231 232 llvm::SmallString<256> Buffer; 233 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 234 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 235 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 236 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 237 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 238 getMangleContext().mangleBlock(GD, BD, Buffer); 239 else 240 getMangleContext().mangleName(ND, Buffer); 241 242 // Allocate space for the mangled name. 243 size_t Length = Buffer.size(); 244 char *Name = MangledNamesAllocator.Allocate<char>(Length); 245 std::copy(Buffer.begin(), Buffer.end(), Name); 246 247 Str = llvm::StringRef(Name, Length); 248 249 return Str; 250 } 251 252 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 253 const BlockDecl *BD) { 254 getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 255 } 256 257 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 258 return getModule().getNamedValue(Name); 259 } 260 261 /// AddGlobalCtor - Add a function to the list that will be called before 262 /// main() runs. 263 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 264 // FIXME: Type coercion of void()* types. 265 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 266 } 267 268 /// AddGlobalDtor - Add a function to the list that will be called 269 /// when the module is unloaded. 270 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 271 // FIXME: Type coercion of void()* types. 272 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 273 } 274 275 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 276 // Ctor function type is void()*. 277 llvm::FunctionType* CtorFTy = 278 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 279 std::vector<const llvm::Type*>(), 280 false); 281 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 282 283 // Get the type of a ctor entry, { i32, void ()* }. 284 llvm::StructType* CtorStructTy = 285 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 286 llvm::PointerType::getUnqual(CtorFTy), NULL); 287 288 // Construct the constructor and destructor arrays. 289 std::vector<llvm::Constant*> Ctors; 290 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 291 std::vector<llvm::Constant*> S; 292 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 293 I->second, false)); 294 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 295 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 296 } 297 298 if (!Ctors.empty()) { 299 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 300 new llvm::GlobalVariable(TheModule, AT, false, 301 llvm::GlobalValue::AppendingLinkage, 302 llvm::ConstantArray::get(AT, Ctors), 303 GlobalName); 304 } 305 } 306 307 void CodeGenModule::EmitAnnotations() { 308 if (Annotations.empty()) 309 return; 310 311 // Create a new global variable for the ConstantStruct in the Module. 312 llvm::Constant *Array = 313 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 314 Annotations.size()), 315 Annotations); 316 llvm::GlobalValue *gv = 317 new llvm::GlobalVariable(TheModule, Array->getType(), false, 318 llvm::GlobalValue::AppendingLinkage, Array, 319 "llvm.global.annotations"); 320 gv->setSection("llvm.metadata"); 321 } 322 323 static CodeGenModule::GVALinkage 324 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 325 const LangOptions &Features) { 326 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 327 328 Linkage L = FD->getLinkage(); 329 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 330 FD->getType()->getLinkage() == UniqueExternalLinkage) 331 L = UniqueExternalLinkage; 332 333 switch (L) { 334 case NoLinkage: 335 case InternalLinkage: 336 case UniqueExternalLinkage: 337 return CodeGenModule::GVA_Internal; 338 339 case ExternalLinkage: 340 switch (FD->getTemplateSpecializationKind()) { 341 case TSK_Undeclared: 342 case TSK_ExplicitSpecialization: 343 External = CodeGenModule::GVA_StrongExternal; 344 break; 345 346 case TSK_ExplicitInstantiationDefinition: 347 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 348 349 case TSK_ExplicitInstantiationDeclaration: 350 case TSK_ImplicitInstantiation: 351 External = CodeGenModule::GVA_TemplateInstantiation; 352 break; 353 } 354 } 355 356 if (!FD->isInlined()) 357 return External; 358 359 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 360 // GNU or C99 inline semantics. Determine whether this symbol should be 361 // externally visible. 362 if (FD->isInlineDefinitionExternallyVisible()) 363 return External; 364 365 // C99 inline semantics, where the symbol is not externally visible. 366 return CodeGenModule::GVA_C99Inline; 367 } 368 369 // C++0x [temp.explicit]p9: 370 // [ Note: The intent is that an inline function that is the subject of 371 // an explicit instantiation declaration will still be implicitly 372 // instantiated when used so that the body can be considered for 373 // inlining, but that no out-of-line copy of the inline function would be 374 // generated in the translation unit. -- end note ] 375 if (FD->getTemplateSpecializationKind() 376 == TSK_ExplicitInstantiationDeclaration) 377 return CodeGenModule::GVA_C99Inline; 378 379 return CodeGenModule::GVA_CXXInline; 380 } 381 382 llvm::GlobalValue::LinkageTypes 383 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 384 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 385 386 if (Linkage == GVA_Internal) 387 return llvm::Function::InternalLinkage; 388 389 if (D->hasAttr<DLLExportAttr>()) 390 return llvm::Function::DLLExportLinkage; 391 392 if (D->hasAttr<WeakAttr>()) 393 return llvm::Function::WeakAnyLinkage; 394 395 // In C99 mode, 'inline' functions are guaranteed to have a strong 396 // definition somewhere else, so we can use available_externally linkage. 397 if (Linkage == GVA_C99Inline) 398 return llvm::Function::AvailableExternallyLinkage; 399 400 // In C++, the compiler has to emit a definition in every translation unit 401 // that references the function. We should use linkonce_odr because 402 // a) if all references in this translation unit are optimized away, we 403 // don't need to codegen it. b) if the function persists, it needs to be 404 // merged with other definitions. c) C++ has the ODR, so we know the 405 // definition is dependable. 406 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 407 return llvm::Function::LinkOnceODRLinkage; 408 409 // An explicit instantiation of a template has weak linkage, since 410 // explicit instantiations can occur in multiple translation units 411 // and must all be equivalent. However, we are not allowed to 412 // throw away these explicit instantiations. 413 if (Linkage == GVA_ExplicitTemplateInstantiation) 414 return llvm::Function::WeakODRLinkage; 415 416 // Otherwise, we have strong external linkage. 417 assert(Linkage == GVA_StrongExternal); 418 return llvm::Function::ExternalLinkage; 419 } 420 421 422 /// SetFunctionDefinitionAttributes - Set attributes for a global. 423 /// 424 /// FIXME: This is currently only done for aliases and functions, but not for 425 /// variables (these details are set in EmitGlobalVarDefinition for variables). 426 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 427 llvm::GlobalValue *GV) { 428 SetCommonAttributes(D, GV); 429 } 430 431 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 432 const CGFunctionInfo &Info, 433 llvm::Function *F) { 434 unsigned CallingConv; 435 AttributeListType AttributeList; 436 ConstructAttributeList(Info, D, AttributeList, CallingConv); 437 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 438 AttributeList.size())); 439 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 440 } 441 442 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 443 llvm::Function *F) { 444 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 445 F->addFnAttr(llvm::Attribute::NoUnwind); 446 447 if (D->hasAttr<AlwaysInlineAttr>()) 448 F->addFnAttr(llvm::Attribute::AlwaysInline); 449 450 if (D->hasAttr<NoInlineAttr>()) 451 F->addFnAttr(llvm::Attribute::NoInline); 452 453 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 454 F->addFnAttr(llvm::Attribute::StackProtect); 455 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 456 F->addFnAttr(llvm::Attribute::StackProtectReq); 457 458 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 459 unsigned width = Context.Target.getCharWidth(); 460 F->setAlignment(AA->getAlignment() / width); 461 while ((AA = AA->getNext<AlignedAttr>())) 462 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 463 } 464 // C++ ABI requires 2-byte alignment for member functions. 465 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 466 F->setAlignment(2); 467 } 468 469 void CodeGenModule::SetCommonAttributes(const Decl *D, 470 llvm::GlobalValue *GV) { 471 setGlobalVisibility(GV, D); 472 473 if (D->hasAttr<UsedAttr>()) 474 AddUsedGlobal(GV); 475 476 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 477 GV->setSection(SA->getName()); 478 479 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 480 } 481 482 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 483 llvm::Function *F, 484 const CGFunctionInfo &FI) { 485 SetLLVMFunctionAttributes(D, FI, F); 486 SetLLVMFunctionAttributesForDefinition(D, F); 487 488 F->setLinkage(llvm::Function::InternalLinkage); 489 490 SetCommonAttributes(D, F); 491 } 492 493 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 494 llvm::Function *F, 495 bool IsIncompleteFunction) { 496 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 497 498 if (!IsIncompleteFunction) 499 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 500 501 // Only a few attributes are set on declarations; these may later be 502 // overridden by a definition. 503 504 if (FD->hasAttr<DLLImportAttr>()) { 505 F->setLinkage(llvm::Function::DLLImportLinkage); 506 } else if (FD->hasAttr<WeakAttr>() || 507 FD->hasAttr<WeakImportAttr>()) { 508 // "extern_weak" is overloaded in LLVM; we probably should have 509 // separate linkage types for this. 510 F->setLinkage(llvm::Function::ExternalWeakLinkage); 511 } else { 512 F->setLinkage(llvm::Function::ExternalLinkage); 513 } 514 515 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 516 F->setSection(SA->getName()); 517 } 518 519 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 520 assert(!GV->isDeclaration() && 521 "Only globals with definition can force usage."); 522 LLVMUsed.push_back(GV); 523 } 524 525 void CodeGenModule::EmitLLVMUsed() { 526 // Don't create llvm.used if there is no need. 527 if (LLVMUsed.empty()) 528 return; 529 530 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 531 532 // Convert LLVMUsed to what ConstantArray needs. 533 std::vector<llvm::Constant*> UsedArray; 534 UsedArray.resize(LLVMUsed.size()); 535 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 536 UsedArray[i] = 537 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 538 i8PTy); 539 } 540 541 if (UsedArray.empty()) 542 return; 543 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 544 545 llvm::GlobalVariable *GV = 546 new llvm::GlobalVariable(getModule(), ATy, false, 547 llvm::GlobalValue::AppendingLinkage, 548 llvm::ConstantArray::get(ATy, UsedArray), 549 "llvm.used"); 550 551 GV->setSection("llvm.metadata"); 552 } 553 554 void CodeGenModule::EmitDeferred() { 555 // Emit code for any potentially referenced deferred decls. Since a 556 // previously unused static decl may become used during the generation of code 557 // for a static function, iterate until no changes are made. 558 559 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 560 if (!DeferredVTables.empty()) { 561 const CXXRecordDecl *RD = DeferredVTables.back(); 562 DeferredVTables.pop_back(); 563 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 564 continue; 565 } 566 567 GlobalDecl D = DeferredDeclsToEmit.back(); 568 DeferredDeclsToEmit.pop_back(); 569 570 // Check to see if we've already emitted this. This is necessary 571 // for a couple of reasons: first, decls can end up in the 572 // deferred-decls queue multiple times, and second, decls can end 573 // up with definitions in unusual ways (e.g. by an extern inline 574 // function acquiring a strong function redefinition). Just 575 // ignore these cases. 576 // 577 // TODO: That said, looking this up multiple times is very wasteful. 578 llvm::StringRef Name = getMangledName(D); 579 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 580 assert(CGRef && "Deferred decl wasn't referenced?"); 581 582 if (!CGRef->isDeclaration()) 583 continue; 584 585 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 586 // purposes an alias counts as a definition. 587 if (isa<llvm::GlobalAlias>(CGRef)) 588 continue; 589 590 // Otherwise, emit the definition and move on to the next one. 591 EmitGlobalDefinition(D); 592 } 593 } 594 595 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 596 /// annotation information for a given GlobalValue. The annotation struct is 597 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 598 /// GlobalValue being annotated. The second field is the constant string 599 /// created from the AnnotateAttr's annotation. The third field is a constant 600 /// string containing the name of the translation unit. The fourth field is 601 /// the line number in the file of the annotated value declaration. 602 /// 603 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 604 /// appears to. 605 /// 606 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 607 const AnnotateAttr *AA, 608 unsigned LineNo) { 609 llvm::Module *M = &getModule(); 610 611 // get [N x i8] constants for the annotation string, and the filename string 612 // which are the 2nd and 3rd elements of the global annotation structure. 613 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 614 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 615 AA->getAnnotation(), true); 616 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 617 M->getModuleIdentifier(), 618 true); 619 620 // Get the two global values corresponding to the ConstantArrays we just 621 // created to hold the bytes of the strings. 622 llvm::GlobalValue *annoGV = 623 new llvm::GlobalVariable(*M, anno->getType(), false, 624 llvm::GlobalValue::PrivateLinkage, anno, 625 GV->getName()); 626 // translation unit name string, emitted into the llvm.metadata section. 627 llvm::GlobalValue *unitGV = 628 new llvm::GlobalVariable(*M, unit->getType(), false, 629 llvm::GlobalValue::PrivateLinkage, unit, 630 ".str"); 631 632 // Create the ConstantStruct for the global annotation. 633 llvm::Constant *Fields[4] = { 634 llvm::ConstantExpr::getBitCast(GV, SBP), 635 llvm::ConstantExpr::getBitCast(annoGV, SBP), 636 llvm::ConstantExpr::getBitCast(unitGV, SBP), 637 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 638 }; 639 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 640 } 641 642 static CodeGenModule::GVALinkage 643 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 644 // If this is a static data member, compute the kind of template 645 // specialization. Otherwise, this variable is not part of a 646 // template. 647 TemplateSpecializationKind TSK = TSK_Undeclared; 648 if (VD->isStaticDataMember()) 649 TSK = VD->getTemplateSpecializationKind(); 650 651 Linkage L = VD->getLinkage(); 652 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 653 VD->getType()->getLinkage() == UniqueExternalLinkage) 654 L = UniqueExternalLinkage; 655 656 switch (L) { 657 case NoLinkage: 658 case InternalLinkage: 659 case UniqueExternalLinkage: 660 return CodeGenModule::GVA_Internal; 661 662 case ExternalLinkage: 663 switch (TSK) { 664 case TSK_Undeclared: 665 case TSK_ExplicitSpecialization: 666 return CodeGenModule::GVA_StrongExternal; 667 668 case TSK_ExplicitInstantiationDeclaration: 669 llvm_unreachable("Variable should not be instantiated"); 670 // Fall through to treat this like any other instantiation. 671 672 case TSK_ExplicitInstantiationDefinition: 673 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 674 675 case TSK_ImplicitInstantiation: 676 return CodeGenModule::GVA_TemplateInstantiation; 677 } 678 } 679 680 return CodeGenModule::GVA_StrongExternal; 681 } 682 683 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 684 // Never defer when EmitAllDecls is specified or the decl has 685 // attribute used. 686 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 687 return false; 688 689 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 690 // Constructors and destructors should never be deferred. 691 if (FD->hasAttr<ConstructorAttr>() || 692 FD->hasAttr<DestructorAttr>()) 693 return false; 694 695 // The key function for a class must never be deferred. 696 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 697 const CXXRecordDecl *RD = MD->getParent(); 698 if (MD->isOutOfLine() && RD->isDynamicClass()) { 699 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 700 if (KeyFunction && 701 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 702 return false; 703 } 704 } 705 706 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 707 708 // static, static inline, always_inline, and extern inline functions can 709 // always be deferred. Normal inline functions can be deferred in C99/C++. 710 // Implicit template instantiations can also be deferred in C++. 711 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 712 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 713 return true; 714 return false; 715 } 716 717 const VarDecl *VD = cast<VarDecl>(Global); 718 assert(VD->isFileVarDecl() && "Invalid decl"); 719 720 // We never want to defer structs that have non-trivial constructors or 721 // destructors. 722 723 // FIXME: Handle references. 724 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 725 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 726 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 727 return false; 728 } 729 } 730 731 GVALinkage L = GetLinkageForVariable(getContext(), VD); 732 if (L == GVA_Internal || L == GVA_TemplateInstantiation) { 733 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context))) 734 return true; 735 } 736 737 return false; 738 } 739 740 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 741 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 742 assert(AA && "No alias?"); 743 744 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 745 746 // See if there is already something with the target's name in the module. 747 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 748 749 llvm::Constant *Aliasee; 750 if (isa<llvm::FunctionType>(DeclTy)) 751 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 752 else 753 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 754 llvm::PointerType::getUnqual(DeclTy), 0); 755 if (!Entry) { 756 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 757 F->setLinkage(llvm::Function::ExternalWeakLinkage); 758 WeakRefReferences.insert(F); 759 } 760 761 return Aliasee; 762 } 763 764 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 765 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 766 767 // Weak references don't produce any output by themselves. 768 if (Global->hasAttr<WeakRefAttr>()) 769 return; 770 771 // If this is an alias definition (which otherwise looks like a declaration) 772 // emit it now. 773 if (Global->hasAttr<AliasAttr>()) 774 return EmitAliasDefinition(GD); 775 776 // Ignore declarations, they will be emitted on their first use. 777 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 778 // Forward declarations are emitted lazily on first use. 779 if (!FD->isThisDeclarationADefinition()) 780 return; 781 } else { 782 const VarDecl *VD = cast<VarDecl>(Global); 783 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 784 785 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 786 return; 787 } 788 789 // Defer code generation when possible if this is a static definition, inline 790 // function etc. These we only want to emit if they are used. 791 if (!MayDeferGeneration(Global)) { 792 // Emit the definition if it can't be deferred. 793 EmitGlobalDefinition(GD); 794 return; 795 } 796 797 // If we're deferring emission of a C++ variable with an 798 // initializer, remember the order in which it appeared in the file. 799 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 800 cast<VarDecl>(Global)->hasInit()) { 801 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 802 CXXGlobalInits.push_back(0); 803 } 804 805 // If the value has already been used, add it directly to the 806 // DeferredDeclsToEmit list. 807 llvm::StringRef MangledName = getMangledName(GD); 808 if (GetGlobalValue(MangledName)) 809 DeferredDeclsToEmit.push_back(GD); 810 else { 811 // Otherwise, remember that we saw a deferred decl with this name. The 812 // first use of the mangled name will cause it to move into 813 // DeferredDeclsToEmit. 814 DeferredDecls[MangledName] = GD; 815 } 816 } 817 818 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 819 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 820 821 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 822 Context.getSourceManager(), 823 "Generating code for declaration"); 824 825 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 826 // At -O0, don't generate IR for functions with available_externally 827 // linkage. 828 if (CodeGenOpts.OptimizationLevel == 0 && 829 !Function->hasAttr<AlwaysInlineAttr>() && 830 getFunctionLinkage(Function) 831 == llvm::Function::AvailableExternallyLinkage) 832 return; 833 834 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 835 if (Method->isVirtual()) 836 getVTables().EmitThunks(GD); 837 838 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 839 return EmitCXXConstructor(CD, GD.getCtorType()); 840 841 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 842 return EmitCXXDestructor(DD, GD.getDtorType()); 843 } 844 845 return EmitGlobalFunctionDefinition(GD); 846 } 847 848 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 849 return EmitGlobalVarDefinition(VD); 850 851 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 852 } 853 854 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 855 /// module, create and return an llvm Function with the specified type. If there 856 /// is something in the module with the specified name, return it potentially 857 /// bitcasted to the right type. 858 /// 859 /// If D is non-null, it specifies a decl that correspond to this. This is used 860 /// to set the attributes on the function when it is first created. 861 llvm::Constant * 862 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 863 const llvm::Type *Ty, 864 GlobalDecl D) { 865 // Lookup the entry, lazily creating it if necessary. 866 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 867 if (Entry) { 868 if (WeakRefReferences.count(Entry)) { 869 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 870 if (FD && !FD->hasAttr<WeakAttr>()) 871 Entry->setLinkage(llvm::Function::ExternalLinkage); 872 873 WeakRefReferences.erase(Entry); 874 } 875 876 if (Entry->getType()->getElementType() == Ty) 877 return Entry; 878 879 // Make sure the result is of the correct type. 880 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 881 return llvm::ConstantExpr::getBitCast(Entry, PTy); 882 } 883 884 // This function doesn't have a complete type (for example, the return 885 // type is an incomplete struct). Use a fake type instead, and make 886 // sure not to try to set attributes. 887 bool IsIncompleteFunction = false; 888 889 const llvm::FunctionType *FTy; 890 if (isa<llvm::FunctionType>(Ty)) { 891 FTy = cast<llvm::FunctionType>(Ty); 892 } else { 893 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 894 std::vector<const llvm::Type*>(), false); 895 IsIncompleteFunction = true; 896 } 897 898 llvm::Function *F = llvm::Function::Create(FTy, 899 llvm::Function::ExternalLinkage, 900 MangledName, &getModule()); 901 assert(F->getName() == MangledName && "name was uniqued!"); 902 if (D.getDecl()) 903 SetFunctionAttributes(D, F, IsIncompleteFunction); 904 905 // This is the first use or definition of a mangled name. If there is a 906 // deferred decl with this name, remember that we need to emit it at the end 907 // of the file. 908 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 909 if (DDI != DeferredDecls.end()) { 910 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 911 // list, and remove it from DeferredDecls (since we don't need it anymore). 912 DeferredDeclsToEmit.push_back(DDI->second); 913 DeferredDecls.erase(DDI); 914 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 915 // If this the first reference to a C++ inline function in a class, queue up 916 // the deferred function body for emission. These are not seen as 917 // top-level declarations. 918 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 919 DeferredDeclsToEmit.push_back(D); 920 // A called constructor which has no definition or declaration need be 921 // synthesized. 922 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 923 if (CD->isImplicit()) { 924 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 925 DeferredDeclsToEmit.push_back(D); 926 } 927 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 928 if (DD->isImplicit()) { 929 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 930 DeferredDeclsToEmit.push_back(D); 931 } 932 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 933 if (MD->isCopyAssignment() && MD->isImplicit()) { 934 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 935 DeferredDeclsToEmit.push_back(D); 936 } 937 } 938 } 939 940 // Make sure the result is of the requested type. 941 if (!IsIncompleteFunction) { 942 assert(F->getType()->getElementType() == Ty); 943 return F; 944 } 945 946 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 947 return llvm::ConstantExpr::getBitCast(F, PTy); 948 } 949 950 /// GetAddrOfFunction - Return the address of the given function. If Ty is 951 /// non-null, then this function will use the specified type if it has to 952 /// create it (this occurs when we see a definition of the function). 953 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 954 const llvm::Type *Ty) { 955 // If there was no specific requested type, just convert it now. 956 if (!Ty) 957 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 958 959 llvm::StringRef MangledName = getMangledName(GD); 960 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 961 } 962 963 /// CreateRuntimeFunction - Create a new runtime function with the specified 964 /// type and name. 965 llvm::Constant * 966 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 967 llvm::StringRef Name) { 968 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 969 } 970 971 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 972 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 973 return false; 974 if (Context.getLangOptions().CPlusPlus && 975 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 976 // FIXME: We should do something fancier here! 977 return false; 978 } 979 return true; 980 } 981 982 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 983 /// create and return an llvm GlobalVariable with the specified type. If there 984 /// is something in the module with the specified name, return it potentially 985 /// bitcasted to the right type. 986 /// 987 /// If D is non-null, it specifies a decl that correspond to this. This is used 988 /// to set the attributes on the global when it is first created. 989 llvm::Constant * 990 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 991 const llvm::PointerType *Ty, 992 const VarDecl *D) { 993 // Lookup the entry, lazily creating it if necessary. 994 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 995 if (Entry) { 996 if (WeakRefReferences.count(Entry)) { 997 if (D && !D->hasAttr<WeakAttr>()) 998 Entry->setLinkage(llvm::Function::ExternalLinkage); 999 1000 WeakRefReferences.erase(Entry); 1001 } 1002 1003 if (Entry->getType() == Ty) 1004 return Entry; 1005 1006 // Make sure the result is of the correct type. 1007 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1008 } 1009 1010 // This is the first use or definition of a mangled name. If there is a 1011 // deferred decl with this name, remember that we need to emit it at the end 1012 // of the file. 1013 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1014 if (DDI != DeferredDecls.end()) { 1015 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1016 // list, and remove it from DeferredDecls (since we don't need it anymore). 1017 DeferredDeclsToEmit.push_back(DDI->second); 1018 DeferredDecls.erase(DDI); 1019 } 1020 1021 llvm::GlobalVariable *GV = 1022 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1023 llvm::GlobalValue::ExternalLinkage, 1024 0, MangledName, 0, 1025 false, Ty->getAddressSpace()); 1026 1027 // Handle things which are present even on external declarations. 1028 if (D) { 1029 // FIXME: This code is overly simple and should be merged with other global 1030 // handling. 1031 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1032 1033 // FIXME: Merge with other attribute handling code. 1034 if (D->getStorageClass() == VarDecl::PrivateExtern) 1035 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1036 1037 if (D->hasAttr<WeakAttr>() || 1038 D->hasAttr<WeakImportAttr>()) 1039 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1040 1041 GV->setThreadLocal(D->isThreadSpecified()); 1042 } 1043 1044 return GV; 1045 } 1046 1047 1048 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1049 /// given global variable. If Ty is non-null and if the global doesn't exist, 1050 /// then it will be greated with the specified type instead of whatever the 1051 /// normal requested type would be. 1052 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1053 const llvm::Type *Ty) { 1054 assert(D->hasGlobalStorage() && "Not a global variable"); 1055 QualType ASTTy = D->getType(); 1056 if (Ty == 0) 1057 Ty = getTypes().ConvertTypeForMem(ASTTy); 1058 1059 const llvm::PointerType *PTy = 1060 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1061 1062 llvm::StringRef MangledName = getMangledName(D); 1063 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1064 } 1065 1066 /// CreateRuntimeVariable - Create a new runtime global variable with the 1067 /// specified type and name. 1068 llvm::Constant * 1069 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1070 llvm::StringRef Name) { 1071 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1072 } 1073 1074 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1075 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1076 1077 if (MayDeferGeneration(D)) { 1078 // If we have not seen a reference to this variable yet, place it 1079 // into the deferred declarations table to be emitted if needed 1080 // later. 1081 llvm::StringRef MangledName = getMangledName(D); 1082 if (!GetGlobalValue(MangledName)) { 1083 DeferredDecls[MangledName] = D; 1084 return; 1085 } 1086 } 1087 1088 // The tentative definition is the only definition. 1089 EmitGlobalVarDefinition(D); 1090 } 1091 1092 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1093 if (DefinitionRequired) 1094 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1095 } 1096 1097 llvm::GlobalVariable::LinkageTypes 1098 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1099 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1100 return llvm::GlobalVariable::InternalLinkage; 1101 1102 if (const CXXMethodDecl *KeyFunction 1103 = RD->getASTContext().getKeyFunction(RD)) { 1104 // If this class has a key function, use that to determine the linkage of 1105 // the vtable. 1106 const FunctionDecl *Def = 0; 1107 if (KeyFunction->hasBody(Def)) 1108 KeyFunction = cast<CXXMethodDecl>(Def); 1109 1110 switch (KeyFunction->getTemplateSpecializationKind()) { 1111 case TSK_Undeclared: 1112 case TSK_ExplicitSpecialization: 1113 if (KeyFunction->isInlined()) 1114 return llvm::GlobalVariable::WeakODRLinkage; 1115 1116 return llvm::GlobalVariable::ExternalLinkage; 1117 1118 case TSK_ImplicitInstantiation: 1119 case TSK_ExplicitInstantiationDefinition: 1120 return llvm::GlobalVariable::WeakODRLinkage; 1121 1122 case TSK_ExplicitInstantiationDeclaration: 1123 // FIXME: Use available_externally linkage. However, this currently 1124 // breaks LLVM's build due to undefined symbols. 1125 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1126 return llvm::GlobalVariable::WeakODRLinkage; 1127 } 1128 } 1129 1130 switch (RD->getTemplateSpecializationKind()) { 1131 case TSK_Undeclared: 1132 case TSK_ExplicitSpecialization: 1133 case TSK_ImplicitInstantiation: 1134 case TSK_ExplicitInstantiationDefinition: 1135 return llvm::GlobalVariable::WeakODRLinkage; 1136 1137 case TSK_ExplicitInstantiationDeclaration: 1138 // FIXME: Use available_externally linkage. However, this currently 1139 // breaks LLVM's build due to undefined symbols. 1140 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1141 return llvm::GlobalVariable::WeakODRLinkage; 1142 } 1143 1144 // Silence GCC warning. 1145 return llvm::GlobalVariable::WeakODRLinkage; 1146 } 1147 1148 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1149 return CharUnits::fromQuantity( 1150 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1151 } 1152 1153 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1154 llvm::Constant *Init = 0; 1155 QualType ASTTy = D->getType(); 1156 bool NonConstInit = false; 1157 1158 const Expr *InitExpr = D->getAnyInitializer(); 1159 1160 if (!InitExpr) { 1161 // This is a tentative definition; tentative definitions are 1162 // implicitly initialized with { 0 }. 1163 // 1164 // Note that tentative definitions are only emitted at the end of 1165 // a translation unit, so they should never have incomplete 1166 // type. In addition, EmitTentativeDefinition makes sure that we 1167 // never attempt to emit a tentative definition if a real one 1168 // exists. A use may still exists, however, so we still may need 1169 // to do a RAUW. 1170 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1171 Init = EmitNullConstant(D->getType()); 1172 } else { 1173 Init = EmitConstantExpr(InitExpr, D->getType()); 1174 if (!Init) { 1175 QualType T = InitExpr->getType(); 1176 if (D->getType()->isReferenceType()) 1177 T = D->getType(); 1178 1179 if (getLangOptions().CPlusPlus) { 1180 EmitCXXGlobalVarDeclInitFunc(D); 1181 Init = EmitNullConstant(T); 1182 NonConstInit = true; 1183 } else { 1184 ErrorUnsupported(D, "static initializer"); 1185 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1186 } 1187 } else { 1188 // We don't need an initializer, so remove the entry for the delayed 1189 // initializer position (just in case this entry was delayed). 1190 if (getLangOptions().CPlusPlus) 1191 DelayedCXXInitPosition.erase(D); 1192 } 1193 } 1194 1195 const llvm::Type* InitType = Init->getType(); 1196 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1197 1198 // Strip off a bitcast if we got one back. 1199 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1200 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1201 // all zero index gep. 1202 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1203 Entry = CE->getOperand(0); 1204 } 1205 1206 // Entry is now either a Function or GlobalVariable. 1207 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1208 1209 // We have a definition after a declaration with the wrong type. 1210 // We must make a new GlobalVariable* and update everything that used OldGV 1211 // (a declaration or tentative definition) with the new GlobalVariable* 1212 // (which will be a definition). 1213 // 1214 // This happens if there is a prototype for a global (e.g. 1215 // "extern int x[];") and then a definition of a different type (e.g. 1216 // "int x[10];"). This also happens when an initializer has a different type 1217 // from the type of the global (this happens with unions). 1218 if (GV == 0 || 1219 GV->getType()->getElementType() != InitType || 1220 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1221 1222 // Move the old entry aside so that we'll create a new one. 1223 Entry->setName(llvm::StringRef()); 1224 1225 // Make a new global with the correct type, this is now guaranteed to work. 1226 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1227 1228 // Replace all uses of the old global with the new global 1229 llvm::Constant *NewPtrForOldDecl = 1230 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1231 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1232 1233 // Erase the old global, since it is no longer used. 1234 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1235 } 1236 1237 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1238 SourceManager &SM = Context.getSourceManager(); 1239 AddAnnotation(EmitAnnotateAttr(GV, AA, 1240 SM.getInstantiationLineNumber(D->getLocation()))); 1241 } 1242 1243 GV->setInitializer(Init); 1244 1245 // If it is safe to mark the global 'constant', do so now. 1246 GV->setConstant(false); 1247 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1248 GV->setConstant(true); 1249 1250 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1251 1252 // Set the llvm linkage type as appropriate. 1253 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1254 if (Linkage == GVA_Internal) 1255 GV->setLinkage(llvm::Function::InternalLinkage); 1256 else if (D->hasAttr<DLLImportAttr>()) 1257 GV->setLinkage(llvm::Function::DLLImportLinkage); 1258 else if (D->hasAttr<DLLExportAttr>()) 1259 GV->setLinkage(llvm::Function::DLLExportLinkage); 1260 else if (D->hasAttr<WeakAttr>()) { 1261 if (GV->isConstant()) 1262 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1263 else 1264 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1265 } else if (Linkage == GVA_TemplateInstantiation || 1266 Linkage == GVA_ExplicitTemplateInstantiation) 1267 // FIXME: It seems like we can provide more specific linkage here 1268 // (LinkOnceODR, WeakODR). 1269 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1270 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1271 !D->hasExternalStorage() && !D->getInit() && 1272 !D->getAttr<SectionAttr>()) { 1273 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1274 // common vars aren't constant even if declared const. 1275 GV->setConstant(false); 1276 } else 1277 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1278 1279 SetCommonAttributes(D, GV); 1280 1281 // Emit global variable debug information. 1282 if (CGDebugInfo *DI = getDebugInfo()) { 1283 DI->setLocation(D->getLocation()); 1284 DI->EmitGlobalVariable(GV, D); 1285 } 1286 } 1287 1288 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1289 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1290 /// existing call uses of the old function in the module, this adjusts them to 1291 /// call the new function directly. 1292 /// 1293 /// This is not just a cleanup: the always_inline pass requires direct calls to 1294 /// functions to be able to inline them. If there is a bitcast in the way, it 1295 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1296 /// run at -O0. 1297 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1298 llvm::Function *NewFn) { 1299 // If we're redefining a global as a function, don't transform it. 1300 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1301 if (OldFn == 0) return; 1302 1303 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1304 llvm::SmallVector<llvm::Value*, 4> ArgList; 1305 1306 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1307 UI != E; ) { 1308 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1309 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1310 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1311 llvm::CallSite CS(CI); 1312 if (!CI || !CS.isCallee(I)) continue; 1313 1314 // If the return types don't match exactly, and if the call isn't dead, then 1315 // we can't transform this call. 1316 if (CI->getType() != NewRetTy && !CI->use_empty()) 1317 continue; 1318 1319 // If the function was passed too few arguments, don't transform. If extra 1320 // arguments were passed, we silently drop them. If any of the types 1321 // mismatch, we don't transform. 1322 unsigned ArgNo = 0; 1323 bool DontTransform = false; 1324 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1325 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1326 if (CS.arg_size() == ArgNo || 1327 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1328 DontTransform = true; 1329 break; 1330 } 1331 } 1332 if (DontTransform) 1333 continue; 1334 1335 // Okay, we can transform this. Create the new call instruction and copy 1336 // over the required information. 1337 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1338 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1339 ArgList.end(), "", CI); 1340 ArgList.clear(); 1341 if (!NewCall->getType()->isVoidTy()) 1342 NewCall->takeName(CI); 1343 NewCall->setAttributes(CI->getAttributes()); 1344 NewCall->setCallingConv(CI->getCallingConv()); 1345 1346 // Finally, remove the old call, replacing any uses with the new one. 1347 if (!CI->use_empty()) 1348 CI->replaceAllUsesWith(NewCall); 1349 1350 // Copy debug location attached to CI. 1351 if (!CI->getDebugLoc().isUnknown()) 1352 NewCall->setDebugLoc(CI->getDebugLoc()); 1353 CI->eraseFromParent(); 1354 } 1355 } 1356 1357 1358 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1359 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1360 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1361 getMangleContext().mangleInitDiscriminator(); 1362 // Get or create the prototype for the function. 1363 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1364 1365 // Strip off a bitcast if we got one back. 1366 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1367 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1368 Entry = CE->getOperand(0); 1369 } 1370 1371 1372 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1373 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1374 1375 // If the types mismatch then we have to rewrite the definition. 1376 assert(OldFn->isDeclaration() && 1377 "Shouldn't replace non-declaration"); 1378 1379 // F is the Function* for the one with the wrong type, we must make a new 1380 // Function* and update everything that used F (a declaration) with the new 1381 // Function* (which will be a definition). 1382 // 1383 // This happens if there is a prototype for a function 1384 // (e.g. "int f()") and then a definition of a different type 1385 // (e.g. "int f(int x)"). Move the old function aside so that it 1386 // doesn't interfere with GetAddrOfFunction. 1387 OldFn->setName(llvm::StringRef()); 1388 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1389 1390 // If this is an implementation of a function without a prototype, try to 1391 // replace any existing uses of the function (which may be calls) with uses 1392 // of the new function 1393 if (D->getType()->isFunctionNoProtoType()) { 1394 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1395 OldFn->removeDeadConstantUsers(); 1396 } 1397 1398 // Replace uses of F with the Function we will endow with a body. 1399 if (!Entry->use_empty()) { 1400 llvm::Constant *NewPtrForOldDecl = 1401 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1402 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1403 } 1404 1405 // Ok, delete the old function now, which is dead. 1406 OldFn->eraseFromParent(); 1407 1408 Entry = NewFn; 1409 } 1410 1411 llvm::Function *Fn = cast<llvm::Function>(Entry); 1412 setFunctionLinkage(D, Fn); 1413 1414 CodeGenFunction(*this).GenerateCode(D, Fn); 1415 1416 SetFunctionDefinitionAttributes(D, Fn); 1417 SetLLVMFunctionAttributesForDefinition(D, Fn); 1418 1419 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1420 AddGlobalCtor(Fn, CA->getPriority()); 1421 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1422 AddGlobalDtor(Fn, DA->getPriority()); 1423 } 1424 1425 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1426 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1427 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1428 assert(AA && "Not an alias?"); 1429 1430 llvm::StringRef MangledName = getMangledName(GD); 1431 1432 // If there is a definition in the module, then it wins over the alias. 1433 // This is dubious, but allow it to be safe. Just ignore the alias. 1434 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1435 if (Entry && !Entry->isDeclaration()) 1436 return; 1437 1438 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1439 1440 // Create a reference to the named value. This ensures that it is emitted 1441 // if a deferred decl. 1442 llvm::Constant *Aliasee; 1443 if (isa<llvm::FunctionType>(DeclTy)) 1444 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1445 else 1446 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1447 llvm::PointerType::getUnqual(DeclTy), 0); 1448 1449 // Create the new alias itself, but don't set a name yet. 1450 llvm::GlobalValue *GA = 1451 new llvm::GlobalAlias(Aliasee->getType(), 1452 llvm::Function::ExternalLinkage, 1453 "", Aliasee, &getModule()); 1454 1455 if (Entry) { 1456 assert(Entry->isDeclaration()); 1457 1458 // If there is a declaration in the module, then we had an extern followed 1459 // by the alias, as in: 1460 // extern int test6(); 1461 // ... 1462 // int test6() __attribute__((alias("test7"))); 1463 // 1464 // Remove it and replace uses of it with the alias. 1465 GA->takeName(Entry); 1466 1467 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1468 Entry->getType())); 1469 Entry->eraseFromParent(); 1470 } else { 1471 GA->setName(MangledName); 1472 } 1473 1474 // Set attributes which are particular to an alias; this is a 1475 // specialization of the attributes which may be set on a global 1476 // variable/function. 1477 if (D->hasAttr<DLLExportAttr>()) { 1478 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1479 // The dllexport attribute is ignored for undefined symbols. 1480 if (FD->hasBody()) 1481 GA->setLinkage(llvm::Function::DLLExportLinkage); 1482 } else { 1483 GA->setLinkage(llvm::Function::DLLExportLinkage); 1484 } 1485 } else if (D->hasAttr<WeakAttr>() || 1486 D->hasAttr<WeakRefAttr>() || 1487 D->hasAttr<WeakImportAttr>()) { 1488 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1489 } 1490 1491 SetCommonAttributes(D, GA); 1492 } 1493 1494 /// getBuiltinLibFunction - Given a builtin id for a function like 1495 /// "__builtin_fabsf", return a Function* for "fabsf". 1496 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1497 unsigned BuiltinID) { 1498 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1499 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1500 "isn't a lib fn"); 1501 1502 // Get the name, skip over the __builtin_ prefix (if necessary). 1503 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1504 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1505 Name += 10; 1506 1507 const llvm::FunctionType *Ty = 1508 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1509 1510 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1511 } 1512 1513 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1514 unsigned NumTys) { 1515 return llvm::Intrinsic::getDeclaration(&getModule(), 1516 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1517 } 1518 1519 1520 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1521 const llvm::Type *SrcType, 1522 const llvm::Type *SizeType) { 1523 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1524 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1525 } 1526 1527 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1528 const llvm::Type *SrcType, 1529 const llvm::Type *SizeType) { 1530 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1531 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1532 } 1533 1534 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1535 const llvm::Type *SizeType) { 1536 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1537 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1538 } 1539 1540 static llvm::StringMapEntry<llvm::Constant*> & 1541 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1542 const StringLiteral *Literal, 1543 bool TargetIsLSB, 1544 bool &IsUTF16, 1545 unsigned &StringLength) { 1546 unsigned NumBytes = Literal->getByteLength(); 1547 1548 // Check for simple case. 1549 if (!Literal->containsNonAsciiOrNull()) { 1550 StringLength = NumBytes; 1551 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1552 StringLength)); 1553 } 1554 1555 // Otherwise, convert the UTF8 literals into a byte string. 1556 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1557 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1558 UTF16 *ToPtr = &ToBuf[0]; 1559 1560 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1561 &ToPtr, ToPtr + NumBytes, 1562 strictConversion); 1563 1564 // Check for conversion failure. 1565 if (Result != conversionOK) { 1566 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1567 // this duplicate code. 1568 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1569 StringLength = NumBytes; 1570 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1571 StringLength)); 1572 } 1573 1574 // ConvertUTF8toUTF16 returns the length in ToPtr. 1575 StringLength = ToPtr - &ToBuf[0]; 1576 1577 // Render the UTF-16 string into a byte array and convert to the target byte 1578 // order. 1579 // 1580 // FIXME: This isn't something we should need to do here. 1581 llvm::SmallString<128> AsBytes; 1582 AsBytes.reserve(StringLength * 2); 1583 for (unsigned i = 0; i != StringLength; ++i) { 1584 unsigned short Val = ToBuf[i]; 1585 if (TargetIsLSB) { 1586 AsBytes.push_back(Val & 0xFF); 1587 AsBytes.push_back(Val >> 8); 1588 } else { 1589 AsBytes.push_back(Val >> 8); 1590 AsBytes.push_back(Val & 0xFF); 1591 } 1592 } 1593 // Append one extra null character, the second is automatically added by our 1594 // caller. 1595 AsBytes.push_back(0); 1596 1597 IsUTF16 = true; 1598 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1599 } 1600 1601 llvm::Constant * 1602 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1603 unsigned StringLength = 0; 1604 bool isUTF16 = false; 1605 llvm::StringMapEntry<llvm::Constant*> &Entry = 1606 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1607 getTargetData().isLittleEndian(), 1608 isUTF16, StringLength); 1609 1610 if (llvm::Constant *C = Entry.getValue()) 1611 return C; 1612 1613 llvm::Constant *Zero = 1614 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1615 llvm::Constant *Zeros[] = { Zero, Zero }; 1616 1617 // If we don't already have it, get __CFConstantStringClassReference. 1618 if (!CFConstantStringClassRef) { 1619 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1620 Ty = llvm::ArrayType::get(Ty, 0); 1621 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1622 "__CFConstantStringClassReference"); 1623 // Decay array -> ptr 1624 CFConstantStringClassRef = 1625 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1626 } 1627 1628 QualType CFTy = getContext().getCFConstantStringType(); 1629 1630 const llvm::StructType *STy = 1631 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1632 1633 std::vector<llvm::Constant*> Fields(4); 1634 1635 // Class pointer. 1636 Fields[0] = CFConstantStringClassRef; 1637 1638 // Flags. 1639 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1640 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1641 llvm::ConstantInt::get(Ty, 0x07C8); 1642 1643 // String pointer. 1644 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1645 1646 llvm::GlobalValue::LinkageTypes Linkage; 1647 bool isConstant; 1648 if (isUTF16) { 1649 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1650 Linkage = llvm::GlobalValue::InternalLinkage; 1651 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1652 // does make plain ascii ones writable. 1653 isConstant = true; 1654 } else { 1655 Linkage = llvm::GlobalValue::PrivateLinkage; 1656 isConstant = !Features.WritableStrings; 1657 } 1658 1659 llvm::GlobalVariable *GV = 1660 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1661 ".str"); 1662 if (isUTF16) { 1663 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1664 GV->setAlignment(Align.getQuantity()); 1665 } 1666 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1667 1668 // String length. 1669 Ty = getTypes().ConvertType(getContext().LongTy); 1670 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1671 1672 // The struct. 1673 C = llvm::ConstantStruct::get(STy, Fields); 1674 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1675 llvm::GlobalVariable::PrivateLinkage, C, 1676 "_unnamed_cfstring_"); 1677 if (const char *Sect = getContext().Target.getCFStringSection()) 1678 GV->setSection(Sect); 1679 Entry.setValue(GV); 1680 1681 return GV; 1682 } 1683 1684 llvm::Constant * 1685 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1686 unsigned StringLength = 0; 1687 bool isUTF16 = false; 1688 llvm::StringMapEntry<llvm::Constant*> &Entry = 1689 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1690 getTargetData().isLittleEndian(), 1691 isUTF16, StringLength); 1692 1693 if (llvm::Constant *C = Entry.getValue()) 1694 return C; 1695 1696 llvm::Constant *Zero = 1697 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1698 llvm::Constant *Zeros[] = { Zero, Zero }; 1699 1700 // If we don't already have it, get _NSConstantStringClassReference. 1701 if (!NSConstantStringClassRef) { 1702 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1703 Ty = llvm::ArrayType::get(Ty, 0); 1704 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1705 Features.ObjCNonFragileABI ? 1706 "OBJC_CLASS_$_NSConstantString" : 1707 "_NSConstantStringClassReference"); 1708 // Decay array -> ptr 1709 NSConstantStringClassRef = 1710 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1711 } 1712 1713 QualType NSTy = getContext().getNSConstantStringType(); 1714 1715 const llvm::StructType *STy = 1716 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1717 1718 std::vector<llvm::Constant*> Fields(3); 1719 1720 // Class pointer. 1721 Fields[0] = NSConstantStringClassRef; 1722 1723 // String pointer. 1724 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1725 1726 llvm::GlobalValue::LinkageTypes Linkage; 1727 bool isConstant; 1728 if (isUTF16) { 1729 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1730 Linkage = llvm::GlobalValue::InternalLinkage; 1731 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1732 // does make plain ascii ones writable. 1733 isConstant = true; 1734 } else { 1735 Linkage = llvm::GlobalValue::PrivateLinkage; 1736 isConstant = !Features.WritableStrings; 1737 } 1738 1739 llvm::GlobalVariable *GV = 1740 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1741 ".str"); 1742 if (isUTF16) { 1743 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1744 GV->setAlignment(Align.getQuantity()); 1745 } 1746 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1747 1748 // String length. 1749 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1750 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1751 1752 // The struct. 1753 C = llvm::ConstantStruct::get(STy, Fields); 1754 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1755 llvm::GlobalVariable::PrivateLinkage, C, 1756 "_unnamed_nsstring_"); 1757 // FIXME. Fix section. 1758 if (const char *Sect = 1759 Features.ObjCNonFragileABI 1760 ? getContext().Target.getNSStringNonFragileABISection() 1761 : getContext().Target.getNSStringSection()) 1762 GV->setSection(Sect); 1763 Entry.setValue(GV); 1764 1765 return GV; 1766 } 1767 1768 /// GetStringForStringLiteral - Return the appropriate bytes for a 1769 /// string literal, properly padded to match the literal type. 1770 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1771 const char *StrData = E->getStrData(); 1772 unsigned Len = E->getByteLength(); 1773 1774 const ConstantArrayType *CAT = 1775 getContext().getAsConstantArrayType(E->getType()); 1776 assert(CAT && "String isn't pointer or array!"); 1777 1778 // Resize the string to the right size. 1779 std::string Str(StrData, StrData+Len); 1780 uint64_t RealLen = CAT->getSize().getZExtValue(); 1781 1782 if (E->isWide()) 1783 RealLen *= getContext().Target.getWCharWidth()/8; 1784 1785 Str.resize(RealLen, '\0'); 1786 1787 return Str; 1788 } 1789 1790 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1791 /// constant array for the given string literal. 1792 llvm::Constant * 1793 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1794 // FIXME: This can be more efficient. 1795 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1796 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1797 if (S->isWide()) { 1798 llvm::Type *DestTy = 1799 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1800 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1801 } 1802 return C; 1803 } 1804 1805 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1806 /// array for the given ObjCEncodeExpr node. 1807 llvm::Constant * 1808 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1809 std::string Str; 1810 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1811 1812 return GetAddrOfConstantCString(Str); 1813 } 1814 1815 1816 /// GenerateWritableString -- Creates storage for a string literal. 1817 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1818 bool constant, 1819 CodeGenModule &CGM, 1820 const char *GlobalName) { 1821 // Create Constant for this string literal. Don't add a '\0'. 1822 llvm::Constant *C = 1823 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1824 1825 // Create a global variable for this string 1826 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1827 llvm::GlobalValue::PrivateLinkage, 1828 C, GlobalName); 1829 } 1830 1831 /// GetAddrOfConstantString - Returns a pointer to a character array 1832 /// containing the literal. This contents are exactly that of the 1833 /// given string, i.e. it will not be null terminated automatically; 1834 /// see GetAddrOfConstantCString. Note that whether the result is 1835 /// actually a pointer to an LLVM constant depends on 1836 /// Feature.WriteableStrings. 1837 /// 1838 /// The result has pointer to array type. 1839 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1840 const char *GlobalName) { 1841 bool IsConstant = !Features.WritableStrings; 1842 1843 // Get the default prefix if a name wasn't specified. 1844 if (!GlobalName) 1845 GlobalName = ".str"; 1846 1847 // Don't share any string literals if strings aren't constant. 1848 if (!IsConstant) 1849 return GenerateStringLiteral(str, false, *this, GlobalName); 1850 1851 llvm::StringMapEntry<llvm::Constant *> &Entry = 1852 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1853 1854 if (Entry.getValue()) 1855 return Entry.getValue(); 1856 1857 // Create a global variable for this. 1858 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1859 Entry.setValue(C); 1860 return C; 1861 } 1862 1863 /// GetAddrOfConstantCString - Returns a pointer to a character 1864 /// array containing the literal and a terminating '\-' 1865 /// character. The result has pointer to array type. 1866 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1867 const char *GlobalName){ 1868 return GetAddrOfConstantString(str + '\0', GlobalName); 1869 } 1870 1871 /// EmitObjCPropertyImplementations - Emit information for synthesized 1872 /// properties for an implementation. 1873 void CodeGenModule::EmitObjCPropertyImplementations(const 1874 ObjCImplementationDecl *D) { 1875 for (ObjCImplementationDecl::propimpl_iterator 1876 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1877 ObjCPropertyImplDecl *PID = *i; 1878 1879 // Dynamic is just for type-checking. 1880 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1881 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1882 1883 // Determine which methods need to be implemented, some may have 1884 // been overridden. Note that ::isSynthesized is not the method 1885 // we want, that just indicates if the decl came from a 1886 // property. What we want to know is if the method is defined in 1887 // this implementation. 1888 if (!D->getInstanceMethod(PD->getGetterName())) 1889 CodeGenFunction(*this).GenerateObjCGetter( 1890 const_cast<ObjCImplementationDecl *>(D), PID); 1891 if (!PD->isReadOnly() && 1892 !D->getInstanceMethod(PD->getSetterName())) 1893 CodeGenFunction(*this).GenerateObjCSetter( 1894 const_cast<ObjCImplementationDecl *>(D), PID); 1895 } 1896 } 1897 } 1898 1899 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1900 /// for an implementation. 1901 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1902 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1903 return; 1904 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1905 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1906 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1907 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1908 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1909 D->getLocation(), 1910 D->getLocation(), cxxSelector, 1911 getContext().VoidTy, 0, 1912 DC, true, false, true, 1913 ObjCMethodDecl::Required); 1914 D->addInstanceMethod(DTORMethod); 1915 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1916 1917 II = &getContext().Idents.get(".cxx_construct"); 1918 cxxSelector = getContext().Selectors.getSelector(0, &II); 1919 // The constructor returns 'self'. 1920 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1921 D->getLocation(), 1922 D->getLocation(), cxxSelector, 1923 getContext().getObjCIdType(), 0, 1924 DC, true, false, true, 1925 ObjCMethodDecl::Required); 1926 D->addInstanceMethod(CTORMethod); 1927 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1928 1929 1930 } 1931 1932 /// EmitNamespace - Emit all declarations in a namespace. 1933 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1934 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1935 I != E; ++I) 1936 EmitTopLevelDecl(*I); 1937 } 1938 1939 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1940 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1941 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1942 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1943 ErrorUnsupported(LSD, "linkage spec"); 1944 return; 1945 } 1946 1947 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1948 I != E; ++I) 1949 EmitTopLevelDecl(*I); 1950 } 1951 1952 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1953 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1954 // If an error has occurred, stop code generation, but continue 1955 // parsing and semantic analysis (to ensure all warnings and errors 1956 // are emitted). 1957 if (Diags.hasErrorOccurred()) 1958 return; 1959 1960 // Ignore dependent declarations. 1961 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1962 return; 1963 1964 switch (D->getKind()) { 1965 case Decl::CXXConversion: 1966 case Decl::CXXMethod: 1967 case Decl::Function: 1968 // Skip function templates 1969 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1970 return; 1971 1972 EmitGlobal(cast<FunctionDecl>(D)); 1973 break; 1974 1975 case Decl::Var: 1976 EmitGlobal(cast<VarDecl>(D)); 1977 break; 1978 1979 // C++ Decls 1980 case Decl::Namespace: 1981 EmitNamespace(cast<NamespaceDecl>(D)); 1982 break; 1983 // No code generation needed. 1984 case Decl::UsingShadow: 1985 case Decl::Using: 1986 case Decl::UsingDirective: 1987 case Decl::ClassTemplate: 1988 case Decl::FunctionTemplate: 1989 case Decl::NamespaceAlias: 1990 break; 1991 case Decl::CXXConstructor: 1992 // Skip function templates 1993 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1994 return; 1995 1996 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1997 break; 1998 case Decl::CXXDestructor: 1999 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2000 break; 2001 2002 case Decl::StaticAssert: 2003 // Nothing to do. 2004 break; 2005 2006 // Objective-C Decls 2007 2008 // Forward declarations, no (immediate) code generation. 2009 case Decl::ObjCClass: 2010 case Decl::ObjCForwardProtocol: 2011 case Decl::ObjCCategory: 2012 case Decl::ObjCInterface: 2013 break; 2014 2015 case Decl::ObjCProtocol: 2016 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2017 break; 2018 2019 case Decl::ObjCCategoryImpl: 2020 // Categories have properties but don't support synthesize so we 2021 // can ignore them here. 2022 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2023 break; 2024 2025 case Decl::ObjCImplementation: { 2026 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2027 EmitObjCPropertyImplementations(OMD); 2028 EmitObjCIvarInitializations(OMD); 2029 Runtime->GenerateClass(OMD); 2030 break; 2031 } 2032 case Decl::ObjCMethod: { 2033 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2034 // If this is not a prototype, emit the body. 2035 if (OMD->getBody()) 2036 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2037 break; 2038 } 2039 case Decl::ObjCCompatibleAlias: 2040 // compatibility-alias is a directive and has no code gen. 2041 break; 2042 2043 case Decl::LinkageSpec: 2044 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2045 break; 2046 2047 case Decl::FileScopeAsm: { 2048 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2049 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2050 2051 const std::string &S = getModule().getModuleInlineAsm(); 2052 if (S.empty()) 2053 getModule().setModuleInlineAsm(AsmString); 2054 else 2055 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2056 break; 2057 } 2058 2059 default: 2060 // Make sure we handled everything we should, every other kind is a 2061 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2062 // function. Need to recode Decl::Kind to do that easily. 2063 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2064 } 2065 } 2066 2067 /// Turns the given pointer into a constant. 2068 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2069 const void *Ptr) { 2070 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2071 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2072 return llvm::ConstantInt::get(i64, PtrInt); 2073 } 2074 2075 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2076 llvm::NamedMDNode *&GlobalMetadata, 2077 GlobalDecl D, 2078 llvm::GlobalValue *Addr) { 2079 if (!GlobalMetadata) 2080 GlobalMetadata = 2081 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2082 2083 // TODO: should we report variant information for ctors/dtors? 2084 llvm::Value *Ops[] = { 2085 Addr, 2086 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2087 }; 2088 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2089 } 2090 2091 /// Emits metadata nodes associating all the global values in the 2092 /// current module with the Decls they came from. This is useful for 2093 /// projects using IR gen as a subroutine. 2094 /// 2095 /// Since there's currently no way to associate an MDNode directly 2096 /// with an llvm::GlobalValue, we create a global named metadata 2097 /// with the name 'clang.global.decl.ptrs'. 2098 void CodeGenModule::EmitDeclMetadata() { 2099 llvm::NamedMDNode *GlobalMetadata = 0; 2100 2101 // StaticLocalDeclMap 2102 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2103 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2104 I != E; ++I) { 2105 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2106 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2107 } 2108 } 2109 2110 /// Emits metadata nodes for all the local variables in the current 2111 /// function. 2112 void CodeGenFunction::EmitDeclMetadata() { 2113 if (LocalDeclMap.empty()) return; 2114 2115 llvm::LLVMContext &Context = getLLVMContext(); 2116 2117 // Find the unique metadata ID for this name. 2118 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2119 2120 llvm::NamedMDNode *GlobalMetadata = 0; 2121 2122 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2123 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2124 const Decl *D = I->first; 2125 llvm::Value *Addr = I->second; 2126 2127 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2128 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2129 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2130 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2131 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2132 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2133 } 2134 } 2135 } 2136 2137 ///@name Custom Runtime Function Interfaces 2138 ///@{ 2139 // 2140 // FIXME: These can be eliminated once we can have clients just get the required 2141 // AST nodes from the builtin tables. 2142 2143 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2144 if (BlockObjectDispose) 2145 return BlockObjectDispose; 2146 2147 const llvm::FunctionType *FTy; 2148 std::vector<const llvm::Type*> ArgTys; 2149 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2150 ArgTys.push_back(PtrToInt8Ty); 2151 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2152 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2153 return BlockObjectDispose = 2154 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2155 } 2156 2157 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2158 if (BlockObjectAssign) 2159 return BlockObjectAssign; 2160 2161 const llvm::FunctionType *FTy; 2162 std::vector<const llvm::Type*> ArgTys; 2163 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2164 ArgTys.push_back(PtrToInt8Ty); 2165 ArgTys.push_back(PtrToInt8Ty); 2166 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2167 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2168 return BlockObjectAssign = 2169 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2170 } 2171 2172 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2173 if (NSConcreteGlobalBlock) 2174 return NSConcreteGlobalBlock; 2175 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2176 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2177 } 2178 2179 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2180 if (NSConcreteStackBlock) 2181 return NSConcreteStackBlock; 2182 return NSConcreteStackBlock = CreateRuntimeVariable( 2183 PtrToInt8Ty, "_NSConcreteStackBlock"); 2184 } 2185 2186 ///@} 2187