1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 55 #include "llvm/IR/CallingConv.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/ProfileSummary.h" 61 #include "llvm/ProfileData/InstrProfReader.h" 62 #include "llvm/ProfileData/SampleProf.h" 63 #include "llvm/Support/CRC.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/ConvertUTF.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/TimeProfiler.h" 69 #include "llvm/Support/xxhash.h" 70 #include "llvm/TargetParser/Triple.h" 71 #include "llvm/TargetParser/X86TargetParser.h" 72 #include <optional> 73 74 using namespace clang; 75 using namespace CodeGen; 76 77 static llvm::cl::opt<bool> LimitedCoverage( 78 "limited-coverage-experimental", llvm::cl::Hidden, 79 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 80 81 static const char AnnotationSection[] = "llvm.metadata"; 82 83 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 84 switch (CGM.getContext().getCXXABIKind()) { 85 case TargetCXXABI::AppleARM64: 86 case TargetCXXABI::Fuchsia: 87 case TargetCXXABI::GenericAArch64: 88 case TargetCXXABI::GenericARM: 89 case TargetCXXABI::iOS: 90 case TargetCXXABI::WatchOS: 91 case TargetCXXABI::GenericMIPS: 92 case TargetCXXABI::GenericItanium: 93 case TargetCXXABI::WebAssembly: 94 case TargetCXXABI::XL: 95 return CreateItaniumCXXABI(CGM); 96 case TargetCXXABI::Microsoft: 97 return CreateMicrosoftCXXABI(CGM); 98 } 99 100 llvm_unreachable("invalid C++ ABI kind"); 101 } 102 103 CodeGenModule::CodeGenModule(ASTContext &C, 104 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 105 const HeaderSearchOptions &HSO, 106 const PreprocessorOptions &PPO, 107 const CodeGenOptions &CGO, llvm::Module &M, 108 DiagnosticsEngine &diags, 109 CoverageSourceInfo *CoverageInfo) 110 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 111 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 112 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 113 VMContext(M.getContext()), Types(*this), VTables(*this), 114 SanitizerMD(new SanitizerMetadata(*this)) { 115 116 // Initialize the type cache. 117 llvm::LLVMContext &LLVMContext = M.getContext(); 118 VoidTy = llvm::Type::getVoidTy(LLVMContext); 119 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 120 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 121 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 122 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 123 HalfTy = llvm::Type::getHalfTy(LLVMContext); 124 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 125 FloatTy = llvm::Type::getFloatTy(LLVMContext); 126 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 127 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 128 PointerAlignInBytes = 129 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 130 .getQuantity(); 131 SizeSizeInBytes = 132 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 133 IntAlignInBytes = 134 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 135 CharTy = 136 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 137 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 138 IntPtrTy = llvm::IntegerType::get(LLVMContext, 139 C.getTargetInfo().getMaxPointerWidth()); 140 Int8PtrTy = Int8Ty->getPointerTo(0); 141 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 142 const llvm::DataLayout &DL = M.getDataLayout(); 143 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 144 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 145 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 146 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 147 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 148 149 // Build C++20 Module initializers. 150 // TODO: Add Microsoft here once we know the mangling required for the 151 // initializers. 152 CXX20ModuleInits = 153 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 154 ItaniumMangleContext::MK_Itanium; 155 156 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 157 158 if (LangOpts.ObjC) 159 createObjCRuntime(); 160 if (LangOpts.OpenCL) 161 createOpenCLRuntime(); 162 if (LangOpts.OpenMP) 163 createOpenMPRuntime(); 164 if (LangOpts.CUDA) 165 createCUDARuntime(); 166 if (LangOpts.HLSL) 167 createHLSLRuntime(); 168 169 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 170 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 171 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 172 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 173 getCXXABI().getMangleContext())); 174 175 // If debug info or coverage generation is enabled, create the CGDebugInfo 176 // object. 177 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 178 CodeGenOpts.CoverageNotesFile.size() || 179 CodeGenOpts.CoverageDataFile.size()) 180 DebugInfo.reset(new CGDebugInfo(*this)); 181 182 Block.GlobalUniqueCount = 0; 183 184 if (C.getLangOpts().ObjC) 185 ObjCData.reset(new ObjCEntrypoints()); 186 187 if (CodeGenOpts.hasProfileClangUse()) { 188 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 189 CodeGenOpts.ProfileInstrumentUsePath, *FS, 190 CodeGenOpts.ProfileRemappingFile); 191 // We're checking for profile read errors in CompilerInvocation, so if 192 // there was an error it should've already been caught. If it hasn't been 193 // somehow, trip an assertion. 194 assert(ReaderOrErr); 195 PGOReader = std::move(ReaderOrErr.get()); 196 } 197 198 // If coverage mapping generation is enabled, create the 199 // CoverageMappingModuleGen object. 200 if (CodeGenOpts.CoverageMapping) 201 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 202 203 // Generate the module name hash here if needed. 204 if (CodeGenOpts.UniqueInternalLinkageNames && 205 !getModule().getSourceFileName().empty()) { 206 std::string Path = getModule().getSourceFileName(); 207 // Check if a path substitution is needed from the MacroPrefixMap. 208 for (const auto &Entry : LangOpts.MacroPrefixMap) 209 if (Path.rfind(Entry.first, 0) != std::string::npos) { 210 Path = Entry.second + Path.substr(Entry.first.size()); 211 break; 212 } 213 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 214 } 215 } 216 217 CodeGenModule::~CodeGenModule() {} 218 219 void CodeGenModule::createObjCRuntime() { 220 // This is just isGNUFamily(), but we want to force implementors of 221 // new ABIs to decide how best to do this. 222 switch (LangOpts.ObjCRuntime.getKind()) { 223 case ObjCRuntime::GNUstep: 224 case ObjCRuntime::GCC: 225 case ObjCRuntime::ObjFW: 226 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 227 return; 228 229 case ObjCRuntime::FragileMacOSX: 230 case ObjCRuntime::MacOSX: 231 case ObjCRuntime::iOS: 232 case ObjCRuntime::WatchOS: 233 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 234 return; 235 } 236 llvm_unreachable("bad runtime kind"); 237 } 238 239 void CodeGenModule::createOpenCLRuntime() { 240 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 241 } 242 243 void CodeGenModule::createOpenMPRuntime() { 244 // Select a specialized code generation class based on the target, if any. 245 // If it does not exist use the default implementation. 246 switch (getTriple().getArch()) { 247 case llvm::Triple::nvptx: 248 case llvm::Triple::nvptx64: 249 case llvm::Triple::amdgcn: 250 assert(getLangOpts().OpenMPIsDevice && 251 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 252 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 253 break; 254 default: 255 if (LangOpts.OpenMPSimd) 256 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 257 else 258 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 259 break; 260 } 261 } 262 263 void CodeGenModule::createCUDARuntime() { 264 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 265 } 266 267 void CodeGenModule::createHLSLRuntime() { 268 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 269 } 270 271 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 272 Replacements[Name] = C; 273 } 274 275 void CodeGenModule::applyReplacements() { 276 for (auto &I : Replacements) { 277 StringRef MangledName = I.first(); 278 llvm::Constant *Replacement = I.second; 279 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 280 if (!Entry) 281 continue; 282 auto *OldF = cast<llvm::Function>(Entry); 283 auto *NewF = dyn_cast<llvm::Function>(Replacement); 284 if (!NewF) { 285 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 286 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 287 } else { 288 auto *CE = cast<llvm::ConstantExpr>(Replacement); 289 assert(CE->getOpcode() == llvm::Instruction::BitCast || 290 CE->getOpcode() == llvm::Instruction::GetElementPtr); 291 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 292 } 293 } 294 295 // Replace old with new, but keep the old order. 296 OldF->replaceAllUsesWith(Replacement); 297 if (NewF) { 298 NewF->removeFromParent(); 299 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 300 NewF); 301 } 302 OldF->eraseFromParent(); 303 } 304 } 305 306 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 307 GlobalValReplacements.push_back(std::make_pair(GV, C)); 308 } 309 310 void CodeGenModule::applyGlobalValReplacements() { 311 for (auto &I : GlobalValReplacements) { 312 llvm::GlobalValue *GV = I.first; 313 llvm::Constant *C = I.second; 314 315 GV->replaceAllUsesWith(C); 316 GV->eraseFromParent(); 317 } 318 } 319 320 // This is only used in aliases that we created and we know they have a 321 // linear structure. 322 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 323 const llvm::Constant *C; 324 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 325 C = GA->getAliasee(); 326 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 327 C = GI->getResolver(); 328 else 329 return GV; 330 331 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 332 if (!AliaseeGV) 333 return nullptr; 334 335 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 336 if (FinalGV == GV) 337 return nullptr; 338 339 return FinalGV; 340 } 341 342 static bool checkAliasedGlobal( 343 DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc, 344 const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 345 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 346 SourceRange AliasRange) { 347 GV = getAliasedGlobal(Alias); 348 if (!GV) { 349 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 350 return false; 351 } 352 353 if (GV->isDeclaration()) { 354 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 355 Diags.Report(Location, diag::note_alias_requires_mangled_name) 356 << IsIFunc << IsIFunc; 357 // Provide a note if the given function is not found and exists as a 358 // mangled name. 359 for (const auto &[Decl, Name] : MangledDeclNames) { 360 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 361 if (ND->getName() == GV->getName()) { 362 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 363 << Name 364 << FixItHint::CreateReplacement( 365 AliasRange, 366 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 367 .str()); 368 } 369 } 370 } 371 return false; 372 } 373 374 if (IsIFunc) { 375 // Check resolver function type. 376 const auto *F = dyn_cast<llvm::Function>(GV); 377 if (!F) { 378 Diags.Report(Location, diag::err_alias_to_undefined) 379 << IsIFunc << IsIFunc; 380 return false; 381 } 382 383 llvm::FunctionType *FTy = F->getFunctionType(); 384 if (!FTy->getReturnType()->isPointerTy()) { 385 Diags.Report(Location, diag::err_ifunc_resolver_return); 386 return false; 387 } 388 } 389 390 return true; 391 } 392 393 void CodeGenModule::checkAliases() { 394 // Check if the constructed aliases are well formed. It is really unfortunate 395 // that we have to do this in CodeGen, but we only construct mangled names 396 // and aliases during codegen. 397 bool Error = false; 398 DiagnosticsEngine &Diags = getDiags(); 399 for (const GlobalDecl &GD : Aliases) { 400 const auto *D = cast<ValueDecl>(GD.getDecl()); 401 SourceLocation Location; 402 SourceRange Range; 403 bool IsIFunc = D->hasAttr<IFuncAttr>(); 404 if (const Attr *A = D->getDefiningAttr()) { 405 Location = A->getLocation(); 406 Range = A->getRange(); 407 } else 408 llvm_unreachable("Not an alias or ifunc?"); 409 410 StringRef MangledName = getMangledName(GD); 411 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 412 const llvm::GlobalValue *GV = nullptr; 413 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV, 414 MangledDeclNames, Range)) { 415 Error = true; 416 continue; 417 } 418 419 llvm::Constant *Aliasee = 420 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 421 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 422 423 llvm::GlobalValue *AliaseeGV; 424 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 425 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 426 else 427 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 428 429 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 430 StringRef AliasSection = SA->getName(); 431 if (AliasSection != AliaseeGV->getSection()) 432 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 433 << AliasSection << IsIFunc << IsIFunc; 434 } 435 436 // We have to handle alias to weak aliases in here. LLVM itself disallows 437 // this since the object semantics would not match the IL one. For 438 // compatibility with gcc we implement it by just pointing the alias 439 // to its aliasee's aliasee. We also warn, since the user is probably 440 // expecting the link to be weak. 441 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 442 if (GA->isInterposable()) { 443 Diags.Report(Location, diag::warn_alias_to_weak_alias) 444 << GV->getName() << GA->getName() << IsIFunc; 445 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 446 GA->getAliasee(), Alias->getType()); 447 448 if (IsIFunc) 449 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 450 else 451 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 452 } 453 } 454 } 455 if (!Error) 456 return; 457 458 for (const GlobalDecl &GD : Aliases) { 459 StringRef MangledName = getMangledName(GD); 460 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 461 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 462 Alias->eraseFromParent(); 463 } 464 } 465 466 void CodeGenModule::clear() { 467 DeferredDeclsToEmit.clear(); 468 EmittedDeferredDecls.clear(); 469 if (OpenMPRuntime) 470 OpenMPRuntime->clear(); 471 } 472 473 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 474 StringRef MainFile) { 475 if (!hasDiagnostics()) 476 return; 477 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 478 if (MainFile.empty()) 479 MainFile = "<stdin>"; 480 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 481 } else { 482 if (Mismatched > 0) 483 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 484 485 if (Missing > 0) 486 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 487 } 488 } 489 490 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 491 llvm::Module &M) { 492 if (!LO.VisibilityFromDLLStorageClass) 493 return; 494 495 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 496 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 497 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 498 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 499 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 500 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 501 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 502 CodeGenModule::GetLLVMVisibility( 503 LO.getExternDeclNoDLLStorageClassVisibility()); 504 505 for (llvm::GlobalValue &GV : M.global_values()) { 506 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 507 continue; 508 509 // Reset DSO locality before setting the visibility. This removes 510 // any effects that visibility options and annotations may have 511 // had on the DSO locality. Setting the visibility will implicitly set 512 // appropriate globals to DSO Local; however, this will be pessimistic 513 // w.r.t. to the normal compiler IRGen. 514 GV.setDSOLocal(false); 515 516 if (GV.isDeclarationForLinker()) { 517 GV.setVisibility(GV.getDLLStorageClass() == 518 llvm::GlobalValue::DLLImportStorageClass 519 ? ExternDeclDLLImportVisibility 520 : ExternDeclNoDLLStorageClassVisibility); 521 } else { 522 GV.setVisibility(GV.getDLLStorageClass() == 523 llvm::GlobalValue::DLLExportStorageClass 524 ? DLLExportVisibility 525 : NoDLLStorageClassVisibility); 526 } 527 528 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 529 } 530 } 531 532 void CodeGenModule::Release() { 533 Module *Primary = getContext().getCurrentNamedModule(); 534 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 535 EmitModuleInitializers(Primary); 536 EmitDeferred(); 537 DeferredDecls.insert(EmittedDeferredDecls.begin(), 538 EmittedDeferredDecls.end()); 539 EmittedDeferredDecls.clear(); 540 EmitVTablesOpportunistically(); 541 applyGlobalValReplacements(); 542 applyReplacements(); 543 emitMultiVersionFunctions(); 544 545 if (Context.getLangOpts().IncrementalExtensions && 546 GlobalTopLevelStmtBlockInFlight.first) { 547 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 548 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 549 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 550 } 551 552 // Module implementations are initialized the same way as a regular TU that 553 // imports one or more modules. 554 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 555 EmitCXXModuleInitFunc(Primary); 556 else 557 EmitCXXGlobalInitFunc(); 558 EmitCXXGlobalCleanUpFunc(); 559 registerGlobalDtorsWithAtExit(); 560 EmitCXXThreadLocalInitFunc(); 561 if (ObjCRuntime) 562 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 563 AddGlobalCtor(ObjCInitFunction); 564 if (Context.getLangOpts().CUDA && CUDARuntime) { 565 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 566 AddGlobalCtor(CudaCtorFunction); 567 } 568 if (OpenMPRuntime) { 569 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 570 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 571 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 572 } 573 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 574 OpenMPRuntime->clear(); 575 } 576 if (PGOReader) { 577 getModule().setProfileSummary( 578 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 579 llvm::ProfileSummary::PSK_Instr); 580 if (PGOStats.hasDiagnostics()) 581 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 582 } 583 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 584 return L.LexOrder < R.LexOrder; 585 }); 586 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 587 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 588 EmitGlobalAnnotations(); 589 EmitStaticExternCAliases(); 590 checkAliases(); 591 EmitDeferredUnusedCoverageMappings(); 592 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 593 if (CoverageMapping) 594 CoverageMapping->emit(); 595 if (CodeGenOpts.SanitizeCfiCrossDso) { 596 CodeGenFunction(*this).EmitCfiCheckFail(); 597 CodeGenFunction(*this).EmitCfiCheckStub(); 598 } 599 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 600 finalizeKCFITypes(); 601 emitAtAvailableLinkGuard(); 602 if (Context.getTargetInfo().getTriple().isWasm()) 603 EmitMainVoidAlias(); 604 605 if (getTriple().isAMDGPU()) { 606 // Emit amdgpu_code_object_version module flag, which is code object version 607 // times 100. 608 if (getTarget().getTargetOpts().CodeObjectVersion != 609 TargetOptions::COV_None) { 610 getModule().addModuleFlag(llvm::Module::Error, 611 "amdgpu_code_object_version", 612 getTarget().getTargetOpts().CodeObjectVersion); 613 } 614 615 // Currently, "-mprintf-kind" option is only supported for HIP 616 if (LangOpts.HIP) { 617 auto *MDStr = llvm::MDString::get( 618 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 619 TargetOptions::AMDGPUPrintfKind::Hostcall) 620 ? "hostcall" 621 : "buffered"); 622 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 623 MDStr); 624 } 625 } 626 627 // Emit a global array containing all external kernels or device variables 628 // used by host functions and mark it as used for CUDA/HIP. This is necessary 629 // to get kernels or device variables in archives linked in even if these 630 // kernels or device variables are only used in host functions. 631 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 632 SmallVector<llvm::Constant *, 8> UsedArray; 633 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 634 GlobalDecl GD; 635 if (auto *FD = dyn_cast<FunctionDecl>(D)) 636 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 637 else 638 GD = GlobalDecl(D); 639 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 640 GetAddrOfGlobal(GD), Int8PtrTy)); 641 } 642 643 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 644 645 auto *GV = new llvm::GlobalVariable( 646 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 647 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 648 addCompilerUsedGlobal(GV); 649 } 650 651 emitLLVMUsed(); 652 if (SanStats) 653 SanStats->finish(); 654 655 if (CodeGenOpts.Autolink && 656 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 657 EmitModuleLinkOptions(); 658 } 659 660 // On ELF we pass the dependent library specifiers directly to the linker 661 // without manipulating them. This is in contrast to other platforms where 662 // they are mapped to a specific linker option by the compiler. This 663 // difference is a result of the greater variety of ELF linkers and the fact 664 // that ELF linkers tend to handle libraries in a more complicated fashion 665 // than on other platforms. This forces us to defer handling the dependent 666 // libs to the linker. 667 // 668 // CUDA/HIP device and host libraries are different. Currently there is no 669 // way to differentiate dependent libraries for host or device. Existing 670 // usage of #pragma comment(lib, *) is intended for host libraries on 671 // Windows. Therefore emit llvm.dependent-libraries only for host. 672 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 673 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 674 for (auto *MD : ELFDependentLibraries) 675 NMD->addOperand(MD); 676 } 677 678 // Record mregparm value now so it is visible through rest of codegen. 679 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 680 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 681 CodeGenOpts.NumRegisterParameters); 682 683 if (CodeGenOpts.DwarfVersion) { 684 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 685 CodeGenOpts.DwarfVersion); 686 } 687 688 if (CodeGenOpts.Dwarf64) 689 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 690 691 if (Context.getLangOpts().SemanticInterposition) 692 // Require various optimization to respect semantic interposition. 693 getModule().setSemanticInterposition(true); 694 695 if (CodeGenOpts.EmitCodeView) { 696 // Indicate that we want CodeView in the metadata. 697 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 698 } 699 if (CodeGenOpts.CodeViewGHash) { 700 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 701 } 702 if (CodeGenOpts.ControlFlowGuard) { 703 // Function ID tables and checks for Control Flow Guard (cfguard=2). 704 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 705 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 706 // Function ID tables for Control Flow Guard (cfguard=1). 707 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 708 } 709 if (CodeGenOpts.EHContGuard) { 710 // Function ID tables for EH Continuation Guard. 711 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 712 } 713 if (Context.getLangOpts().Kernel) { 714 // Note if we are compiling with /kernel. 715 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 716 } 717 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 718 // We don't support LTO with 2 with different StrictVTablePointers 719 // FIXME: we could support it by stripping all the information introduced 720 // by StrictVTablePointers. 721 722 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 723 724 llvm::Metadata *Ops[2] = { 725 llvm::MDString::get(VMContext, "StrictVTablePointers"), 726 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 727 llvm::Type::getInt32Ty(VMContext), 1))}; 728 729 getModule().addModuleFlag(llvm::Module::Require, 730 "StrictVTablePointersRequirement", 731 llvm::MDNode::get(VMContext, Ops)); 732 } 733 if (getModuleDebugInfo()) 734 // We support a single version in the linked module. The LLVM 735 // parser will drop debug info with a different version number 736 // (and warn about it, too). 737 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 738 llvm::DEBUG_METADATA_VERSION); 739 740 // We need to record the widths of enums and wchar_t, so that we can generate 741 // the correct build attributes in the ARM backend. wchar_size is also used by 742 // TargetLibraryInfo. 743 uint64_t WCharWidth = 744 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 745 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 746 747 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 748 if ( Arch == llvm::Triple::arm 749 || Arch == llvm::Triple::armeb 750 || Arch == llvm::Triple::thumb 751 || Arch == llvm::Triple::thumbeb) { 752 // The minimum width of an enum in bytes 753 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 754 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 755 } 756 757 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 758 StringRef ABIStr = Target.getABI(); 759 llvm::LLVMContext &Ctx = TheModule.getContext(); 760 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 761 llvm::MDString::get(Ctx, ABIStr)); 762 } 763 764 if (CodeGenOpts.SanitizeCfiCrossDso) { 765 // Indicate that we want cross-DSO control flow integrity checks. 766 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 767 } 768 769 if (CodeGenOpts.WholeProgramVTables) { 770 // Indicate whether VFE was enabled for this module, so that the 771 // vcall_visibility metadata added under whole program vtables is handled 772 // appropriately in the optimizer. 773 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 774 CodeGenOpts.VirtualFunctionElimination); 775 } 776 777 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 778 getModule().addModuleFlag(llvm::Module::Override, 779 "CFI Canonical Jump Tables", 780 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 781 } 782 783 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 784 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 785 // KCFI assumes patchable-function-prefix is the same for all indirectly 786 // called functions. Store the expected offset for code generation. 787 if (CodeGenOpts.PatchableFunctionEntryOffset) 788 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 789 CodeGenOpts.PatchableFunctionEntryOffset); 790 } 791 792 if (CodeGenOpts.CFProtectionReturn && 793 Target.checkCFProtectionReturnSupported(getDiags())) { 794 // Indicate that we want to instrument return control flow protection. 795 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 796 1); 797 } 798 799 if (CodeGenOpts.CFProtectionBranch && 800 Target.checkCFProtectionBranchSupported(getDiags())) { 801 // Indicate that we want to instrument branch control flow protection. 802 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 803 1); 804 } 805 806 if (CodeGenOpts.FunctionReturnThunks) 807 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 808 809 if (CodeGenOpts.IndirectBranchCSPrefix) 810 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 811 812 // Add module metadata for return address signing (ignoring 813 // non-leaf/all) and stack tagging. These are actually turned on by function 814 // attributes, but we use module metadata to emit build attributes. This is 815 // needed for LTO, where the function attributes are inside bitcode 816 // serialised into a global variable by the time build attributes are 817 // emitted, so we can't access them. LTO objects could be compiled with 818 // different flags therefore module flags are set to "Min" behavior to achieve 819 // the same end result of the normal build where e.g BTI is off if any object 820 // doesn't support it. 821 if (Context.getTargetInfo().hasFeature("ptrauth") && 822 LangOpts.getSignReturnAddressScope() != 823 LangOptions::SignReturnAddressScopeKind::None) 824 getModule().addModuleFlag(llvm::Module::Override, 825 "sign-return-address-buildattr", 1); 826 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 827 getModule().addModuleFlag(llvm::Module::Override, 828 "tag-stack-memory-buildattr", 1); 829 830 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 831 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 832 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 833 Arch == llvm::Triple::aarch64_be) { 834 if (LangOpts.BranchTargetEnforcement) 835 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 836 1); 837 if (LangOpts.hasSignReturnAddress()) 838 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 839 if (LangOpts.isSignReturnAddressScopeAll()) 840 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 841 1); 842 if (!LangOpts.isSignReturnAddressWithAKey()) 843 getModule().addModuleFlag(llvm::Module::Min, 844 "sign-return-address-with-bkey", 1); 845 } 846 847 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 848 llvm::LLVMContext &Ctx = TheModule.getContext(); 849 getModule().addModuleFlag( 850 llvm::Module::Error, "MemProfProfileFilename", 851 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 852 } 853 854 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 855 // Indicate whether __nvvm_reflect should be configured to flush denormal 856 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 857 // property.) 858 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 859 CodeGenOpts.FP32DenormalMode.Output != 860 llvm::DenormalMode::IEEE); 861 } 862 863 if (LangOpts.EHAsynch) 864 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 865 866 // Indicate whether this Module was compiled with -fopenmp 867 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 868 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 869 if (getLangOpts().OpenMPIsDevice) 870 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 871 LangOpts.OpenMP); 872 873 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 874 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 875 EmitOpenCLMetadata(); 876 // Emit SPIR version. 877 if (getTriple().isSPIR()) { 878 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 879 // opencl.spir.version named metadata. 880 // C++ for OpenCL has a distinct mapping for version compatibility with 881 // OpenCL. 882 auto Version = LangOpts.getOpenCLCompatibleVersion(); 883 llvm::Metadata *SPIRVerElts[] = { 884 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 885 Int32Ty, Version / 100)), 886 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 887 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 888 llvm::NamedMDNode *SPIRVerMD = 889 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 890 llvm::LLVMContext &Ctx = TheModule.getContext(); 891 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 892 } 893 } 894 895 // HLSL related end of code gen work items. 896 if (LangOpts.HLSL) 897 getHLSLRuntime().finishCodeGen(); 898 899 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 900 assert(PLevel < 3 && "Invalid PIC Level"); 901 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 902 if (Context.getLangOpts().PIE) 903 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 904 } 905 906 if (getCodeGenOpts().CodeModel.size() > 0) { 907 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 908 .Case("tiny", llvm::CodeModel::Tiny) 909 .Case("small", llvm::CodeModel::Small) 910 .Case("kernel", llvm::CodeModel::Kernel) 911 .Case("medium", llvm::CodeModel::Medium) 912 .Case("large", llvm::CodeModel::Large) 913 .Default(~0u); 914 if (CM != ~0u) { 915 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 916 getModule().setCodeModel(codeModel); 917 } 918 } 919 920 if (CodeGenOpts.NoPLT) 921 getModule().setRtLibUseGOT(); 922 if (getTriple().isOSBinFormatELF() && 923 CodeGenOpts.DirectAccessExternalData != 924 getModule().getDirectAccessExternalData()) { 925 getModule().setDirectAccessExternalData( 926 CodeGenOpts.DirectAccessExternalData); 927 } 928 if (CodeGenOpts.UnwindTables) 929 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 930 931 switch (CodeGenOpts.getFramePointer()) { 932 case CodeGenOptions::FramePointerKind::None: 933 // 0 ("none") is the default. 934 break; 935 case CodeGenOptions::FramePointerKind::NonLeaf: 936 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 937 break; 938 case CodeGenOptions::FramePointerKind::All: 939 getModule().setFramePointer(llvm::FramePointerKind::All); 940 break; 941 } 942 943 SimplifyPersonality(); 944 945 if (getCodeGenOpts().EmitDeclMetadata) 946 EmitDeclMetadata(); 947 948 if (getCodeGenOpts().CoverageNotesFile.size() || 949 getCodeGenOpts().CoverageDataFile.size()) 950 EmitCoverageFile(); 951 952 if (CGDebugInfo *DI = getModuleDebugInfo()) 953 DI->finalize(); 954 955 if (getCodeGenOpts().EmitVersionIdentMetadata) 956 EmitVersionIdentMetadata(); 957 958 if (!getCodeGenOpts().RecordCommandLine.empty()) 959 EmitCommandLineMetadata(); 960 961 if (!getCodeGenOpts().StackProtectorGuard.empty()) 962 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 963 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 964 getModule().setStackProtectorGuardReg( 965 getCodeGenOpts().StackProtectorGuardReg); 966 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 967 getModule().setStackProtectorGuardSymbol( 968 getCodeGenOpts().StackProtectorGuardSymbol); 969 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 970 getModule().setStackProtectorGuardOffset( 971 getCodeGenOpts().StackProtectorGuardOffset); 972 if (getCodeGenOpts().StackAlignment) 973 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 974 if (getCodeGenOpts().SkipRaxSetup) 975 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 976 977 if (getContext().getTargetInfo().getMaxTLSAlign()) 978 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 979 getContext().getTargetInfo().getMaxTLSAlign()); 980 981 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 982 983 EmitBackendOptionsMetadata(getCodeGenOpts()); 984 985 // If there is device offloading code embed it in the host now. 986 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 987 988 // Set visibility from DLL storage class 989 // We do this at the end of LLVM IR generation; after any operation 990 // that might affect the DLL storage class or the visibility, and 991 // before anything that might act on these. 992 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 993 } 994 995 void CodeGenModule::EmitOpenCLMetadata() { 996 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 997 // opencl.ocl.version named metadata node. 998 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 999 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1000 llvm::Metadata *OCLVerElts[] = { 1001 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1002 Int32Ty, Version / 100)), 1003 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1004 Int32Ty, (Version % 100) / 10))}; 1005 llvm::NamedMDNode *OCLVerMD = 1006 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1007 llvm::LLVMContext &Ctx = TheModule.getContext(); 1008 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1009 } 1010 1011 void CodeGenModule::EmitBackendOptionsMetadata( 1012 const CodeGenOptions &CodeGenOpts) { 1013 if (getTriple().isRISCV()) { 1014 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1015 CodeGenOpts.SmallDataLimit); 1016 } 1017 } 1018 1019 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1020 // Make sure that this type is translated. 1021 Types.UpdateCompletedType(TD); 1022 } 1023 1024 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1025 // Make sure that this type is translated. 1026 Types.RefreshTypeCacheForClass(RD); 1027 } 1028 1029 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1030 if (!TBAA) 1031 return nullptr; 1032 return TBAA->getTypeInfo(QTy); 1033 } 1034 1035 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1036 if (!TBAA) 1037 return TBAAAccessInfo(); 1038 if (getLangOpts().CUDAIsDevice) { 1039 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1040 // access info. 1041 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1042 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1043 nullptr) 1044 return TBAAAccessInfo(); 1045 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1046 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1047 nullptr) 1048 return TBAAAccessInfo(); 1049 } 1050 } 1051 return TBAA->getAccessInfo(AccessType); 1052 } 1053 1054 TBAAAccessInfo 1055 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1056 if (!TBAA) 1057 return TBAAAccessInfo(); 1058 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1059 } 1060 1061 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1062 if (!TBAA) 1063 return nullptr; 1064 return TBAA->getTBAAStructInfo(QTy); 1065 } 1066 1067 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1068 if (!TBAA) 1069 return nullptr; 1070 return TBAA->getBaseTypeInfo(QTy); 1071 } 1072 1073 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1074 if (!TBAA) 1075 return nullptr; 1076 return TBAA->getAccessTagInfo(Info); 1077 } 1078 1079 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1080 TBAAAccessInfo TargetInfo) { 1081 if (!TBAA) 1082 return TBAAAccessInfo(); 1083 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1084 } 1085 1086 TBAAAccessInfo 1087 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1088 TBAAAccessInfo InfoB) { 1089 if (!TBAA) 1090 return TBAAAccessInfo(); 1091 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1092 } 1093 1094 TBAAAccessInfo 1095 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1096 TBAAAccessInfo SrcInfo) { 1097 if (!TBAA) 1098 return TBAAAccessInfo(); 1099 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1100 } 1101 1102 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1103 TBAAAccessInfo TBAAInfo) { 1104 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1105 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1106 } 1107 1108 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1109 llvm::Instruction *I, const CXXRecordDecl *RD) { 1110 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1111 llvm::MDNode::get(getLLVMContext(), {})); 1112 } 1113 1114 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1115 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1116 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1117 } 1118 1119 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1120 /// specified stmt yet. 1121 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1122 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1123 "cannot compile this %0 yet"); 1124 std::string Msg = Type; 1125 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1126 << Msg << S->getSourceRange(); 1127 } 1128 1129 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1130 /// specified decl yet. 1131 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1132 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1133 "cannot compile this %0 yet"); 1134 std::string Msg = Type; 1135 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1136 } 1137 1138 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1139 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1140 } 1141 1142 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1143 const NamedDecl *D) const { 1144 // Internal definitions always have default visibility. 1145 if (GV->hasLocalLinkage()) { 1146 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1147 return; 1148 } 1149 if (!D) 1150 return; 1151 // Set visibility for definitions, and for declarations if requested globally 1152 // or set explicitly. 1153 LinkageInfo LV = D->getLinkageAndVisibility(); 1154 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1155 // Reject incompatible dlllstorage and visibility annotations. 1156 if (!LV.isVisibilityExplicit()) 1157 return; 1158 if (GV->hasDLLExportStorageClass()) { 1159 if (LV.getVisibility() == HiddenVisibility) 1160 getDiags().Report(D->getLocation(), 1161 diag::err_hidden_visibility_dllexport); 1162 } else if (LV.getVisibility() != DefaultVisibility) { 1163 getDiags().Report(D->getLocation(), 1164 diag::err_non_default_visibility_dllimport); 1165 } 1166 return; 1167 } 1168 1169 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1170 !GV->isDeclarationForLinker()) 1171 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1172 } 1173 1174 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1175 llvm::GlobalValue *GV) { 1176 if (GV->hasLocalLinkage()) 1177 return true; 1178 1179 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1180 return true; 1181 1182 // DLLImport explicitly marks the GV as external. 1183 if (GV->hasDLLImportStorageClass()) 1184 return false; 1185 1186 const llvm::Triple &TT = CGM.getTriple(); 1187 if (TT.isWindowsGNUEnvironment()) { 1188 // In MinGW, variables without DLLImport can still be automatically 1189 // imported from a DLL by the linker; don't mark variables that 1190 // potentially could come from another DLL as DSO local. 1191 1192 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1193 // (and this actually happens in the public interface of libstdc++), so 1194 // such variables can't be marked as DSO local. (Native TLS variables 1195 // can't be dllimported at all, though.) 1196 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1197 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1198 return false; 1199 } 1200 1201 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1202 // remain unresolved in the link, they can be resolved to zero, which is 1203 // outside the current DSO. 1204 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1205 return false; 1206 1207 // Every other GV is local on COFF. 1208 // Make an exception for windows OS in the triple: Some firmware builds use 1209 // *-win32-macho triples. This (accidentally?) produced windows relocations 1210 // without GOT tables in older clang versions; Keep this behaviour. 1211 // FIXME: even thread local variables? 1212 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1213 return true; 1214 1215 // Only handle COFF and ELF for now. 1216 if (!TT.isOSBinFormatELF()) 1217 return false; 1218 1219 // If this is not an executable, don't assume anything is local. 1220 const auto &CGOpts = CGM.getCodeGenOpts(); 1221 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1222 const auto &LOpts = CGM.getLangOpts(); 1223 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1224 // On ELF, if -fno-semantic-interposition is specified and the target 1225 // supports local aliases, there will be neither CC1 1226 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1227 // dso_local on the function if using a local alias is preferable (can avoid 1228 // PLT indirection). 1229 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1230 return false; 1231 return !(CGM.getLangOpts().SemanticInterposition || 1232 CGM.getLangOpts().HalfNoSemanticInterposition); 1233 } 1234 1235 // A definition cannot be preempted from an executable. 1236 if (!GV->isDeclarationForLinker()) 1237 return true; 1238 1239 // Most PIC code sequences that assume that a symbol is local cannot produce a 1240 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1241 // depended, it seems worth it to handle it here. 1242 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1243 return false; 1244 1245 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1246 if (TT.isPPC64()) 1247 return false; 1248 1249 if (CGOpts.DirectAccessExternalData) { 1250 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1251 // for non-thread-local variables. If the symbol is not defined in the 1252 // executable, a copy relocation will be needed at link time. dso_local is 1253 // excluded for thread-local variables because they generally don't support 1254 // copy relocations. 1255 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1256 if (!Var->isThreadLocal()) 1257 return true; 1258 1259 // -fno-pic sets dso_local on a function declaration to allow direct 1260 // accesses when taking its address (similar to a data symbol). If the 1261 // function is not defined in the executable, a canonical PLT entry will be 1262 // needed at link time. -fno-direct-access-external-data can avoid the 1263 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1264 // it could just cause trouble without providing perceptible benefits. 1265 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1266 return true; 1267 } 1268 1269 // If we can use copy relocations we can assume it is local. 1270 1271 // Otherwise don't assume it is local. 1272 return false; 1273 } 1274 1275 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1276 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1277 } 1278 1279 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1280 GlobalDecl GD) const { 1281 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1282 // C++ destructors have a few C++ ABI specific special cases. 1283 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1284 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1285 return; 1286 } 1287 setDLLImportDLLExport(GV, D); 1288 } 1289 1290 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1291 const NamedDecl *D) const { 1292 if (D && D->isExternallyVisible()) { 1293 if (D->hasAttr<DLLImportAttr>()) 1294 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1295 else if ((D->hasAttr<DLLExportAttr>() || 1296 shouldMapVisibilityToDLLExport(D)) && 1297 !GV->isDeclarationForLinker()) 1298 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1299 } 1300 } 1301 1302 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1303 GlobalDecl GD) const { 1304 setDLLImportDLLExport(GV, GD); 1305 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1306 } 1307 1308 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1309 const NamedDecl *D) const { 1310 setDLLImportDLLExport(GV, D); 1311 setGVPropertiesAux(GV, D); 1312 } 1313 1314 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1315 const NamedDecl *D) const { 1316 setGlobalVisibility(GV, D); 1317 setDSOLocal(GV); 1318 GV->setPartition(CodeGenOpts.SymbolPartition); 1319 } 1320 1321 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1322 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1323 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1324 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1325 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1326 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1327 } 1328 1329 llvm::GlobalVariable::ThreadLocalMode 1330 CodeGenModule::GetDefaultLLVMTLSModel() const { 1331 switch (CodeGenOpts.getDefaultTLSModel()) { 1332 case CodeGenOptions::GeneralDynamicTLSModel: 1333 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1334 case CodeGenOptions::LocalDynamicTLSModel: 1335 return llvm::GlobalVariable::LocalDynamicTLSModel; 1336 case CodeGenOptions::InitialExecTLSModel: 1337 return llvm::GlobalVariable::InitialExecTLSModel; 1338 case CodeGenOptions::LocalExecTLSModel: 1339 return llvm::GlobalVariable::LocalExecTLSModel; 1340 } 1341 llvm_unreachable("Invalid TLS model!"); 1342 } 1343 1344 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1345 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1346 1347 llvm::GlobalValue::ThreadLocalMode TLM; 1348 TLM = GetDefaultLLVMTLSModel(); 1349 1350 // Override the TLS model if it is explicitly specified. 1351 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1352 TLM = GetLLVMTLSModel(Attr->getModel()); 1353 } 1354 1355 GV->setThreadLocalMode(TLM); 1356 } 1357 1358 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1359 StringRef Name) { 1360 const TargetInfo &Target = CGM.getTarget(); 1361 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1362 } 1363 1364 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1365 const CPUSpecificAttr *Attr, 1366 unsigned CPUIndex, 1367 raw_ostream &Out) { 1368 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1369 // supported. 1370 if (Attr) 1371 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1372 else if (CGM.getTarget().supportsIFunc()) 1373 Out << ".resolver"; 1374 } 1375 1376 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1377 const TargetVersionAttr *Attr, 1378 raw_ostream &Out) { 1379 if (Attr->isDefaultVersion()) 1380 return; 1381 Out << "._"; 1382 const TargetInfo &TI = CGM.getTarget(); 1383 llvm::SmallVector<StringRef, 8> Feats; 1384 Attr->getFeatures(Feats); 1385 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1386 return TI.multiVersionSortPriority(FeatL) < 1387 TI.multiVersionSortPriority(FeatR); 1388 }); 1389 for (const auto &Feat : Feats) { 1390 Out << 'M'; 1391 Out << Feat; 1392 } 1393 } 1394 1395 static void AppendTargetMangling(const CodeGenModule &CGM, 1396 const TargetAttr *Attr, raw_ostream &Out) { 1397 if (Attr->isDefaultVersion()) 1398 return; 1399 1400 Out << '.'; 1401 const TargetInfo &Target = CGM.getTarget(); 1402 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1403 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1404 // Multiversioning doesn't allow "no-${feature}", so we can 1405 // only have "+" prefixes here. 1406 assert(LHS.startswith("+") && RHS.startswith("+") && 1407 "Features should always have a prefix."); 1408 return Target.multiVersionSortPriority(LHS.substr(1)) > 1409 Target.multiVersionSortPriority(RHS.substr(1)); 1410 }); 1411 1412 bool IsFirst = true; 1413 1414 if (!Info.CPU.empty()) { 1415 IsFirst = false; 1416 Out << "arch_" << Info.CPU; 1417 } 1418 1419 for (StringRef Feat : Info.Features) { 1420 if (!IsFirst) 1421 Out << '_'; 1422 IsFirst = false; 1423 Out << Feat.substr(1); 1424 } 1425 } 1426 1427 // Returns true if GD is a function decl with internal linkage and 1428 // needs a unique suffix after the mangled name. 1429 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1430 CodeGenModule &CGM) { 1431 const Decl *D = GD.getDecl(); 1432 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1433 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1434 } 1435 1436 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1437 const TargetClonesAttr *Attr, 1438 unsigned VersionIndex, 1439 raw_ostream &Out) { 1440 const TargetInfo &TI = CGM.getTarget(); 1441 if (TI.getTriple().isAArch64()) { 1442 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1443 if (FeatureStr == "default") 1444 return; 1445 Out << "._"; 1446 SmallVector<StringRef, 8> Features; 1447 FeatureStr.split(Features, "+"); 1448 llvm::stable_sort(Features, 1449 [&TI](const StringRef FeatL, const StringRef FeatR) { 1450 return TI.multiVersionSortPriority(FeatL) < 1451 TI.multiVersionSortPriority(FeatR); 1452 }); 1453 for (auto &Feat : Features) { 1454 Out << 'M'; 1455 Out << Feat; 1456 } 1457 } else { 1458 Out << '.'; 1459 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1460 if (FeatureStr.startswith("arch=")) 1461 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1462 else 1463 Out << FeatureStr; 1464 1465 Out << '.' << Attr->getMangledIndex(VersionIndex); 1466 } 1467 } 1468 1469 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1470 const NamedDecl *ND, 1471 bool OmitMultiVersionMangling = false) { 1472 SmallString<256> Buffer; 1473 llvm::raw_svector_ostream Out(Buffer); 1474 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1475 if (!CGM.getModuleNameHash().empty()) 1476 MC.needsUniqueInternalLinkageNames(); 1477 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1478 if (ShouldMangle) 1479 MC.mangleName(GD.getWithDecl(ND), Out); 1480 else { 1481 IdentifierInfo *II = ND->getIdentifier(); 1482 assert(II && "Attempt to mangle unnamed decl."); 1483 const auto *FD = dyn_cast<FunctionDecl>(ND); 1484 1485 if (FD && 1486 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1487 Out << "__regcall3__" << II->getName(); 1488 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1489 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1490 Out << "__device_stub__" << II->getName(); 1491 } else { 1492 Out << II->getName(); 1493 } 1494 } 1495 1496 // Check if the module name hash should be appended for internal linkage 1497 // symbols. This should come before multi-version target suffixes are 1498 // appended. This is to keep the name and module hash suffix of the 1499 // internal linkage function together. The unique suffix should only be 1500 // added when name mangling is done to make sure that the final name can 1501 // be properly demangled. For example, for C functions without prototypes, 1502 // name mangling is not done and the unique suffix should not be appeneded 1503 // then. 1504 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1505 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1506 "Hash computed when not explicitly requested"); 1507 Out << CGM.getModuleNameHash(); 1508 } 1509 1510 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1511 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1512 switch (FD->getMultiVersionKind()) { 1513 case MultiVersionKind::CPUDispatch: 1514 case MultiVersionKind::CPUSpecific: 1515 AppendCPUSpecificCPUDispatchMangling(CGM, 1516 FD->getAttr<CPUSpecificAttr>(), 1517 GD.getMultiVersionIndex(), Out); 1518 break; 1519 case MultiVersionKind::Target: 1520 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1521 break; 1522 case MultiVersionKind::TargetVersion: 1523 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1524 break; 1525 case MultiVersionKind::TargetClones: 1526 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1527 GD.getMultiVersionIndex(), Out); 1528 break; 1529 case MultiVersionKind::None: 1530 llvm_unreachable("None multiversion type isn't valid here"); 1531 } 1532 } 1533 1534 // Make unique name for device side static file-scope variable for HIP. 1535 if (CGM.getContext().shouldExternalize(ND) && 1536 CGM.getLangOpts().GPURelocatableDeviceCode && 1537 CGM.getLangOpts().CUDAIsDevice) 1538 CGM.printPostfixForExternalizedDecl(Out, ND); 1539 1540 return std::string(Out.str()); 1541 } 1542 1543 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1544 const FunctionDecl *FD, 1545 StringRef &CurName) { 1546 if (!FD->isMultiVersion()) 1547 return; 1548 1549 // Get the name of what this would be without the 'target' attribute. This 1550 // allows us to lookup the version that was emitted when this wasn't a 1551 // multiversion function. 1552 std::string NonTargetName = 1553 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1554 GlobalDecl OtherGD; 1555 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1556 assert(OtherGD.getCanonicalDecl() 1557 .getDecl() 1558 ->getAsFunction() 1559 ->isMultiVersion() && 1560 "Other GD should now be a multiversioned function"); 1561 // OtherFD is the version of this function that was mangled BEFORE 1562 // becoming a MultiVersion function. It potentially needs to be updated. 1563 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1564 .getDecl() 1565 ->getAsFunction() 1566 ->getMostRecentDecl(); 1567 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1568 // This is so that if the initial version was already the 'default' 1569 // version, we don't try to update it. 1570 if (OtherName != NonTargetName) { 1571 // Remove instead of erase, since others may have stored the StringRef 1572 // to this. 1573 const auto ExistingRecord = Manglings.find(NonTargetName); 1574 if (ExistingRecord != std::end(Manglings)) 1575 Manglings.remove(&(*ExistingRecord)); 1576 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1577 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1578 Result.first->first(); 1579 // If this is the current decl is being created, make sure we update the name. 1580 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1581 CurName = OtherNameRef; 1582 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1583 Entry->setName(OtherName); 1584 } 1585 } 1586 } 1587 1588 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1589 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1590 1591 // Some ABIs don't have constructor variants. Make sure that base and 1592 // complete constructors get mangled the same. 1593 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1594 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1595 CXXCtorType OrigCtorType = GD.getCtorType(); 1596 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1597 if (OrigCtorType == Ctor_Base) 1598 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1599 } 1600 } 1601 1602 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1603 // static device variable depends on whether the variable is referenced by 1604 // a host or device host function. Therefore the mangled name cannot be 1605 // cached. 1606 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1607 auto FoundName = MangledDeclNames.find(CanonicalGD); 1608 if (FoundName != MangledDeclNames.end()) 1609 return FoundName->second; 1610 } 1611 1612 // Keep the first result in the case of a mangling collision. 1613 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1614 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1615 1616 // Ensure either we have different ABIs between host and device compilations, 1617 // says host compilation following MSVC ABI but device compilation follows 1618 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1619 // mangling should be the same after name stubbing. The later checking is 1620 // very important as the device kernel name being mangled in host-compilation 1621 // is used to resolve the device binaries to be executed. Inconsistent naming 1622 // result in undefined behavior. Even though we cannot check that naming 1623 // directly between host- and device-compilations, the host- and 1624 // device-mangling in host compilation could help catching certain ones. 1625 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1626 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1627 (getContext().getAuxTargetInfo() && 1628 (getContext().getAuxTargetInfo()->getCXXABI() != 1629 getContext().getTargetInfo().getCXXABI())) || 1630 getCUDARuntime().getDeviceSideName(ND) == 1631 getMangledNameImpl( 1632 *this, 1633 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1634 ND)); 1635 1636 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1637 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1638 } 1639 1640 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1641 const BlockDecl *BD) { 1642 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1643 const Decl *D = GD.getDecl(); 1644 1645 SmallString<256> Buffer; 1646 llvm::raw_svector_ostream Out(Buffer); 1647 if (!D) 1648 MangleCtx.mangleGlobalBlock(BD, 1649 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1650 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1651 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1652 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1653 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1654 else 1655 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1656 1657 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1658 return Result.first->first(); 1659 } 1660 1661 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1662 auto it = MangledDeclNames.begin(); 1663 while (it != MangledDeclNames.end()) { 1664 if (it->second == Name) 1665 return it->first; 1666 it++; 1667 } 1668 return GlobalDecl(); 1669 } 1670 1671 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1672 return getModule().getNamedValue(Name); 1673 } 1674 1675 /// AddGlobalCtor - Add a function to the list that will be called before 1676 /// main() runs. 1677 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1678 unsigned LexOrder, 1679 llvm::Constant *AssociatedData) { 1680 // FIXME: Type coercion of void()* types. 1681 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1682 } 1683 1684 /// AddGlobalDtor - Add a function to the list that will be called 1685 /// when the module is unloaded. 1686 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1687 bool IsDtorAttrFunc) { 1688 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1689 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1690 DtorsUsingAtExit[Priority].push_back(Dtor); 1691 return; 1692 } 1693 1694 // FIXME: Type coercion of void()* types. 1695 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1696 } 1697 1698 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1699 if (Fns.empty()) return; 1700 1701 // Ctor function type is void()*. 1702 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1703 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1704 TheModule.getDataLayout().getProgramAddressSpace()); 1705 1706 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1707 llvm::StructType *CtorStructTy = llvm::StructType::get( 1708 Int32Ty, CtorPFTy, VoidPtrTy); 1709 1710 // Construct the constructor and destructor arrays. 1711 ConstantInitBuilder builder(*this); 1712 auto ctors = builder.beginArray(CtorStructTy); 1713 for (const auto &I : Fns) { 1714 auto ctor = ctors.beginStruct(CtorStructTy); 1715 ctor.addInt(Int32Ty, I.Priority); 1716 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1717 if (I.AssociatedData) 1718 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1719 else 1720 ctor.addNullPointer(VoidPtrTy); 1721 ctor.finishAndAddTo(ctors); 1722 } 1723 1724 auto list = 1725 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1726 /*constant*/ false, 1727 llvm::GlobalValue::AppendingLinkage); 1728 1729 // The LTO linker doesn't seem to like it when we set an alignment 1730 // on appending variables. Take it off as a workaround. 1731 list->setAlignment(std::nullopt); 1732 1733 Fns.clear(); 1734 } 1735 1736 llvm::GlobalValue::LinkageTypes 1737 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1738 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1739 1740 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1741 1742 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1743 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1744 1745 if (isa<CXXConstructorDecl>(D) && 1746 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1747 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1748 // Our approach to inheriting constructors is fundamentally different from 1749 // that used by the MS ABI, so keep our inheriting constructor thunks 1750 // internal rather than trying to pick an unambiguous mangling for them. 1751 return llvm::GlobalValue::InternalLinkage; 1752 } 1753 1754 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1755 } 1756 1757 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1758 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1759 if (!MDS) return nullptr; 1760 1761 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1762 } 1763 1764 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1765 if (auto *FnType = T->getAs<FunctionProtoType>()) 1766 T = getContext().getFunctionType( 1767 FnType->getReturnType(), FnType->getParamTypes(), 1768 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1769 1770 std::string OutName; 1771 llvm::raw_string_ostream Out(OutName); 1772 getCXXABI().getMangleContext().mangleTypeName( 1773 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 1774 1775 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 1776 Out << ".normalized"; 1777 1778 return llvm::ConstantInt::get(Int32Ty, 1779 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1780 } 1781 1782 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1783 const CGFunctionInfo &Info, 1784 llvm::Function *F, bool IsThunk) { 1785 unsigned CallingConv; 1786 llvm::AttributeList PAL; 1787 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1788 /*AttrOnCallSite=*/false, IsThunk); 1789 F->setAttributes(PAL); 1790 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1791 } 1792 1793 static void removeImageAccessQualifier(std::string& TyName) { 1794 std::string ReadOnlyQual("__read_only"); 1795 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1796 if (ReadOnlyPos != std::string::npos) 1797 // "+ 1" for the space after access qualifier. 1798 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1799 else { 1800 std::string WriteOnlyQual("__write_only"); 1801 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1802 if (WriteOnlyPos != std::string::npos) 1803 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1804 else { 1805 std::string ReadWriteQual("__read_write"); 1806 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1807 if (ReadWritePos != std::string::npos) 1808 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1809 } 1810 } 1811 } 1812 1813 // Returns the address space id that should be produced to the 1814 // kernel_arg_addr_space metadata. This is always fixed to the ids 1815 // as specified in the SPIR 2.0 specification in order to differentiate 1816 // for example in clGetKernelArgInfo() implementation between the address 1817 // spaces with targets without unique mapping to the OpenCL address spaces 1818 // (basically all single AS CPUs). 1819 static unsigned ArgInfoAddressSpace(LangAS AS) { 1820 switch (AS) { 1821 case LangAS::opencl_global: 1822 return 1; 1823 case LangAS::opencl_constant: 1824 return 2; 1825 case LangAS::opencl_local: 1826 return 3; 1827 case LangAS::opencl_generic: 1828 return 4; // Not in SPIR 2.0 specs. 1829 case LangAS::opencl_global_device: 1830 return 5; 1831 case LangAS::opencl_global_host: 1832 return 6; 1833 default: 1834 return 0; // Assume private. 1835 } 1836 } 1837 1838 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1839 const FunctionDecl *FD, 1840 CodeGenFunction *CGF) { 1841 assert(((FD && CGF) || (!FD && !CGF)) && 1842 "Incorrect use - FD and CGF should either be both null or not!"); 1843 // Create MDNodes that represent the kernel arg metadata. 1844 // Each MDNode is a list in the form of "key", N number of values which is 1845 // the same number of values as their are kernel arguments. 1846 1847 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1848 1849 // MDNode for the kernel argument address space qualifiers. 1850 SmallVector<llvm::Metadata *, 8> addressQuals; 1851 1852 // MDNode for the kernel argument access qualifiers (images only). 1853 SmallVector<llvm::Metadata *, 8> accessQuals; 1854 1855 // MDNode for the kernel argument type names. 1856 SmallVector<llvm::Metadata *, 8> argTypeNames; 1857 1858 // MDNode for the kernel argument base type names. 1859 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1860 1861 // MDNode for the kernel argument type qualifiers. 1862 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1863 1864 // MDNode for the kernel argument names. 1865 SmallVector<llvm::Metadata *, 8> argNames; 1866 1867 if (FD && CGF) 1868 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1869 const ParmVarDecl *parm = FD->getParamDecl(i); 1870 // Get argument name. 1871 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1872 1873 if (!getLangOpts().OpenCL) 1874 continue; 1875 QualType ty = parm->getType(); 1876 std::string typeQuals; 1877 1878 // Get image and pipe access qualifier: 1879 if (ty->isImageType() || ty->isPipeType()) { 1880 const Decl *PDecl = parm; 1881 if (const auto *TD = ty->getAs<TypedefType>()) 1882 PDecl = TD->getDecl(); 1883 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1884 if (A && A->isWriteOnly()) 1885 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1886 else if (A && A->isReadWrite()) 1887 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1888 else 1889 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1890 } else 1891 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1892 1893 auto getTypeSpelling = [&](QualType Ty) { 1894 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1895 1896 if (Ty.isCanonical()) { 1897 StringRef typeNameRef = typeName; 1898 // Turn "unsigned type" to "utype" 1899 if (typeNameRef.consume_front("unsigned ")) 1900 return std::string("u") + typeNameRef.str(); 1901 if (typeNameRef.consume_front("signed ")) 1902 return typeNameRef.str(); 1903 } 1904 1905 return typeName; 1906 }; 1907 1908 if (ty->isPointerType()) { 1909 QualType pointeeTy = ty->getPointeeType(); 1910 1911 // Get address qualifier. 1912 addressQuals.push_back( 1913 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1914 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1915 1916 // Get argument type name. 1917 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1918 std::string baseTypeName = 1919 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1920 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1921 argBaseTypeNames.push_back( 1922 llvm::MDString::get(VMContext, baseTypeName)); 1923 1924 // Get argument type qualifiers: 1925 if (ty.isRestrictQualified()) 1926 typeQuals = "restrict"; 1927 if (pointeeTy.isConstQualified() || 1928 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1929 typeQuals += typeQuals.empty() ? "const" : " const"; 1930 if (pointeeTy.isVolatileQualified()) 1931 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1932 } else { 1933 uint32_t AddrSpc = 0; 1934 bool isPipe = ty->isPipeType(); 1935 if (ty->isImageType() || isPipe) 1936 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1937 1938 addressQuals.push_back( 1939 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1940 1941 // Get argument type name. 1942 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1943 std::string typeName = getTypeSpelling(ty); 1944 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1945 1946 // Remove access qualifiers on images 1947 // (as they are inseparable from type in clang implementation, 1948 // but OpenCL spec provides a special query to get access qualifier 1949 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1950 if (ty->isImageType()) { 1951 removeImageAccessQualifier(typeName); 1952 removeImageAccessQualifier(baseTypeName); 1953 } 1954 1955 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1956 argBaseTypeNames.push_back( 1957 llvm::MDString::get(VMContext, baseTypeName)); 1958 1959 if (isPipe) 1960 typeQuals = "pipe"; 1961 } 1962 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1963 } 1964 1965 if (getLangOpts().OpenCL) { 1966 Fn->setMetadata("kernel_arg_addr_space", 1967 llvm::MDNode::get(VMContext, addressQuals)); 1968 Fn->setMetadata("kernel_arg_access_qual", 1969 llvm::MDNode::get(VMContext, accessQuals)); 1970 Fn->setMetadata("kernel_arg_type", 1971 llvm::MDNode::get(VMContext, argTypeNames)); 1972 Fn->setMetadata("kernel_arg_base_type", 1973 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1974 Fn->setMetadata("kernel_arg_type_qual", 1975 llvm::MDNode::get(VMContext, argTypeQuals)); 1976 } 1977 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1978 getCodeGenOpts().HIPSaveKernelArgName) 1979 Fn->setMetadata("kernel_arg_name", 1980 llvm::MDNode::get(VMContext, argNames)); 1981 } 1982 1983 /// Determines whether the language options require us to model 1984 /// unwind exceptions. We treat -fexceptions as mandating this 1985 /// except under the fragile ObjC ABI with only ObjC exceptions 1986 /// enabled. This means, for example, that C with -fexceptions 1987 /// enables this. 1988 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1989 // If exceptions are completely disabled, obviously this is false. 1990 if (!LangOpts.Exceptions) return false; 1991 1992 // If C++ exceptions are enabled, this is true. 1993 if (LangOpts.CXXExceptions) return true; 1994 1995 // If ObjC exceptions are enabled, this depends on the ABI. 1996 if (LangOpts.ObjCExceptions) { 1997 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1998 } 1999 2000 return true; 2001 } 2002 2003 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2004 const CXXMethodDecl *MD) { 2005 // Check that the type metadata can ever actually be used by a call. 2006 if (!CGM.getCodeGenOpts().LTOUnit || 2007 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2008 return false; 2009 2010 // Only functions whose address can be taken with a member function pointer 2011 // need this sort of type metadata. 2012 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 2013 !isa<CXXDestructorDecl>(MD); 2014 } 2015 2016 std::vector<const CXXRecordDecl *> 2017 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2018 llvm::SetVector<const CXXRecordDecl *> MostBases; 2019 2020 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2021 CollectMostBases = [&](const CXXRecordDecl *RD) { 2022 if (RD->getNumBases() == 0) 2023 MostBases.insert(RD); 2024 for (const CXXBaseSpecifier &B : RD->bases()) 2025 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2026 }; 2027 CollectMostBases(RD); 2028 return MostBases.takeVector(); 2029 } 2030 2031 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2032 llvm::Function *F) { 2033 llvm::AttrBuilder B(F->getContext()); 2034 2035 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2036 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2037 2038 if (CodeGenOpts.StackClashProtector) 2039 B.addAttribute("probe-stack", "inline-asm"); 2040 2041 if (!hasUnwindExceptions(LangOpts)) 2042 B.addAttribute(llvm::Attribute::NoUnwind); 2043 2044 if (D && D->hasAttr<NoStackProtectorAttr>()) 2045 ; // Do nothing. 2046 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2047 LangOpts.getStackProtector() == LangOptions::SSPOn) 2048 B.addAttribute(llvm::Attribute::StackProtectStrong); 2049 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2050 B.addAttribute(llvm::Attribute::StackProtect); 2051 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2052 B.addAttribute(llvm::Attribute::StackProtectStrong); 2053 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2054 B.addAttribute(llvm::Attribute::StackProtectReq); 2055 2056 if (!D) { 2057 // If we don't have a declaration to control inlining, the function isn't 2058 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2059 // disabled, mark the function as noinline. 2060 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2061 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2062 B.addAttribute(llvm::Attribute::NoInline); 2063 2064 F->addFnAttrs(B); 2065 return; 2066 } 2067 2068 // Track whether we need to add the optnone LLVM attribute, 2069 // starting with the default for this optimization level. 2070 bool ShouldAddOptNone = 2071 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2072 // We can't add optnone in the following cases, it won't pass the verifier. 2073 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2074 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2075 2076 // Add optnone, but do so only if the function isn't always_inline. 2077 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2078 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2079 B.addAttribute(llvm::Attribute::OptimizeNone); 2080 2081 // OptimizeNone implies noinline; we should not be inlining such functions. 2082 B.addAttribute(llvm::Attribute::NoInline); 2083 2084 // We still need to handle naked functions even though optnone subsumes 2085 // much of their semantics. 2086 if (D->hasAttr<NakedAttr>()) 2087 B.addAttribute(llvm::Attribute::Naked); 2088 2089 // OptimizeNone wins over OptimizeForSize and MinSize. 2090 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2091 F->removeFnAttr(llvm::Attribute::MinSize); 2092 } else if (D->hasAttr<NakedAttr>()) { 2093 // Naked implies noinline: we should not be inlining such functions. 2094 B.addAttribute(llvm::Attribute::Naked); 2095 B.addAttribute(llvm::Attribute::NoInline); 2096 } else if (D->hasAttr<NoDuplicateAttr>()) { 2097 B.addAttribute(llvm::Attribute::NoDuplicate); 2098 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2099 // Add noinline if the function isn't always_inline. 2100 B.addAttribute(llvm::Attribute::NoInline); 2101 } else if (D->hasAttr<AlwaysInlineAttr>() && 2102 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2103 // (noinline wins over always_inline, and we can't specify both in IR) 2104 B.addAttribute(llvm::Attribute::AlwaysInline); 2105 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2106 // If we're not inlining, then force everything that isn't always_inline to 2107 // carry an explicit noinline attribute. 2108 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2109 B.addAttribute(llvm::Attribute::NoInline); 2110 } else { 2111 // Otherwise, propagate the inline hint attribute and potentially use its 2112 // absence to mark things as noinline. 2113 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2114 // Search function and template pattern redeclarations for inline. 2115 auto CheckForInline = [](const FunctionDecl *FD) { 2116 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2117 return Redecl->isInlineSpecified(); 2118 }; 2119 if (any_of(FD->redecls(), CheckRedeclForInline)) 2120 return true; 2121 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2122 if (!Pattern) 2123 return false; 2124 return any_of(Pattern->redecls(), CheckRedeclForInline); 2125 }; 2126 if (CheckForInline(FD)) { 2127 B.addAttribute(llvm::Attribute::InlineHint); 2128 } else if (CodeGenOpts.getInlining() == 2129 CodeGenOptions::OnlyHintInlining && 2130 !FD->isInlined() && 2131 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2132 B.addAttribute(llvm::Attribute::NoInline); 2133 } 2134 } 2135 } 2136 2137 // Add other optimization related attributes if we are optimizing this 2138 // function. 2139 if (!D->hasAttr<OptimizeNoneAttr>()) { 2140 if (D->hasAttr<ColdAttr>()) { 2141 if (!ShouldAddOptNone) 2142 B.addAttribute(llvm::Attribute::OptimizeForSize); 2143 B.addAttribute(llvm::Attribute::Cold); 2144 } 2145 if (D->hasAttr<HotAttr>()) 2146 B.addAttribute(llvm::Attribute::Hot); 2147 if (D->hasAttr<MinSizeAttr>()) 2148 B.addAttribute(llvm::Attribute::MinSize); 2149 } 2150 2151 F->addFnAttrs(B); 2152 2153 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2154 if (alignment) 2155 F->setAlignment(llvm::Align(alignment)); 2156 2157 if (!D->hasAttr<AlignedAttr>()) 2158 if (LangOpts.FunctionAlignment) 2159 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2160 2161 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2162 // reserve a bit for differentiating between virtual and non-virtual member 2163 // functions. If the current target's C++ ABI requires this and this is a 2164 // member function, set its alignment accordingly. 2165 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2166 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2167 F->setAlignment(llvm::Align(2)); 2168 } 2169 2170 // In the cross-dso CFI mode with canonical jump tables, we want !type 2171 // attributes on definitions only. 2172 if (CodeGenOpts.SanitizeCfiCrossDso && 2173 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2174 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2175 // Skip available_externally functions. They won't be codegen'ed in the 2176 // current module anyway. 2177 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2178 CreateFunctionTypeMetadataForIcall(FD, F); 2179 } 2180 } 2181 2182 // Emit type metadata on member functions for member function pointer checks. 2183 // These are only ever necessary on definitions; we're guaranteed that the 2184 // definition will be present in the LTO unit as a result of LTO visibility. 2185 auto *MD = dyn_cast<CXXMethodDecl>(D); 2186 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2187 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2188 llvm::Metadata *Id = 2189 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2190 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2191 F->addTypeMetadata(0, Id); 2192 } 2193 } 2194 } 2195 2196 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2197 llvm::Function *F) { 2198 if (D->hasAttr<StrictFPAttr>()) { 2199 llvm::AttrBuilder FuncAttrs(F->getContext()); 2200 FuncAttrs.addAttribute("strictfp"); 2201 F->addFnAttrs(FuncAttrs); 2202 } 2203 } 2204 2205 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2206 const Decl *D = GD.getDecl(); 2207 if (isa_and_nonnull<NamedDecl>(D)) 2208 setGVProperties(GV, GD); 2209 else 2210 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2211 2212 if (D && D->hasAttr<UsedAttr>()) 2213 addUsedOrCompilerUsedGlobal(GV); 2214 2215 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2216 const auto *VD = cast<VarDecl>(D); 2217 if (VD->getType().isConstQualified() && 2218 VD->getStorageDuration() == SD_Static) 2219 addUsedOrCompilerUsedGlobal(GV); 2220 } 2221 } 2222 2223 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2224 llvm::AttrBuilder &Attrs, 2225 bool SetTargetFeatures) { 2226 // Add target-cpu and target-features attributes to functions. If 2227 // we have a decl for the function and it has a target attribute then 2228 // parse that and add it to the feature set. 2229 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2230 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2231 std::vector<std::string> Features; 2232 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2233 FD = FD ? FD->getMostRecentDecl() : FD; 2234 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2235 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2236 assert((!TD || !TV) && "both target_version and target specified"); 2237 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2238 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2239 bool AddedAttr = false; 2240 if (TD || TV || SD || TC) { 2241 llvm::StringMap<bool> FeatureMap; 2242 getContext().getFunctionFeatureMap(FeatureMap, GD); 2243 2244 // Produce the canonical string for this set of features. 2245 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2246 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2247 2248 // Now add the target-cpu and target-features to the function. 2249 // While we populated the feature map above, we still need to 2250 // get and parse the target attribute so we can get the cpu for 2251 // the function. 2252 if (TD) { 2253 ParsedTargetAttr ParsedAttr = 2254 Target.parseTargetAttr(TD->getFeaturesStr()); 2255 if (!ParsedAttr.CPU.empty() && 2256 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2257 TargetCPU = ParsedAttr.CPU; 2258 TuneCPU = ""; // Clear the tune CPU. 2259 } 2260 if (!ParsedAttr.Tune.empty() && 2261 getTarget().isValidCPUName(ParsedAttr.Tune)) 2262 TuneCPU = ParsedAttr.Tune; 2263 } 2264 2265 if (SD) { 2266 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2267 // favor this processor. 2268 TuneCPU = getTarget().getCPUSpecificTuneName( 2269 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2270 } 2271 } else { 2272 // Otherwise just add the existing target cpu and target features to the 2273 // function. 2274 Features = getTarget().getTargetOpts().Features; 2275 } 2276 2277 if (!TargetCPU.empty()) { 2278 Attrs.addAttribute("target-cpu", TargetCPU); 2279 AddedAttr = true; 2280 } 2281 if (!TuneCPU.empty()) { 2282 Attrs.addAttribute("tune-cpu", TuneCPU); 2283 AddedAttr = true; 2284 } 2285 if (!Features.empty() && SetTargetFeatures) { 2286 llvm::erase_if(Features, [&](const std::string& F) { 2287 return getTarget().isReadOnlyFeature(F.substr(1)); 2288 }); 2289 llvm::sort(Features); 2290 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2291 AddedAttr = true; 2292 } 2293 2294 return AddedAttr; 2295 } 2296 2297 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2298 llvm::GlobalObject *GO) { 2299 const Decl *D = GD.getDecl(); 2300 SetCommonAttributes(GD, GO); 2301 2302 if (D) { 2303 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2304 if (D->hasAttr<RetainAttr>()) 2305 addUsedGlobal(GV); 2306 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2307 GV->addAttribute("bss-section", SA->getName()); 2308 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2309 GV->addAttribute("data-section", SA->getName()); 2310 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2311 GV->addAttribute("rodata-section", SA->getName()); 2312 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2313 GV->addAttribute("relro-section", SA->getName()); 2314 } 2315 2316 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2317 if (D->hasAttr<RetainAttr>()) 2318 addUsedGlobal(F); 2319 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2320 if (!D->getAttr<SectionAttr>()) 2321 F->addFnAttr("implicit-section-name", SA->getName()); 2322 2323 llvm::AttrBuilder Attrs(F->getContext()); 2324 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2325 // We know that GetCPUAndFeaturesAttributes will always have the 2326 // newest set, since it has the newest possible FunctionDecl, so the 2327 // new ones should replace the old. 2328 llvm::AttributeMask RemoveAttrs; 2329 RemoveAttrs.addAttribute("target-cpu"); 2330 RemoveAttrs.addAttribute("target-features"); 2331 RemoveAttrs.addAttribute("tune-cpu"); 2332 F->removeFnAttrs(RemoveAttrs); 2333 F->addFnAttrs(Attrs); 2334 } 2335 } 2336 2337 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2338 GO->setSection(CSA->getName()); 2339 else if (const auto *SA = D->getAttr<SectionAttr>()) 2340 GO->setSection(SA->getName()); 2341 } 2342 2343 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2344 } 2345 2346 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2347 llvm::Function *F, 2348 const CGFunctionInfo &FI) { 2349 const Decl *D = GD.getDecl(); 2350 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2351 SetLLVMFunctionAttributesForDefinition(D, F); 2352 2353 F->setLinkage(llvm::Function::InternalLinkage); 2354 2355 setNonAliasAttributes(GD, F); 2356 } 2357 2358 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2359 // Set linkage and visibility in case we never see a definition. 2360 LinkageInfo LV = ND->getLinkageAndVisibility(); 2361 // Don't set internal linkage on declarations. 2362 // "extern_weak" is overloaded in LLVM; we probably should have 2363 // separate linkage types for this. 2364 if (isExternallyVisible(LV.getLinkage()) && 2365 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2366 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2367 } 2368 2369 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2370 llvm::Function *F) { 2371 // Only if we are checking indirect calls. 2372 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2373 return; 2374 2375 // Non-static class methods are handled via vtable or member function pointer 2376 // checks elsewhere. 2377 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2378 return; 2379 2380 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2381 F->addTypeMetadata(0, MD); 2382 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2383 2384 // Emit a hash-based bit set entry for cross-DSO calls. 2385 if (CodeGenOpts.SanitizeCfiCrossDso) 2386 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2387 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2388 } 2389 2390 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2391 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2392 return; 2393 2394 llvm::LLVMContext &Ctx = F->getContext(); 2395 llvm::MDBuilder MDB(Ctx); 2396 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2397 llvm::MDNode::get( 2398 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2399 } 2400 2401 static bool allowKCFIIdentifier(StringRef Name) { 2402 // KCFI type identifier constants are only necessary for external assembly 2403 // functions, which means it's safe to skip unusual names. Subset of 2404 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2405 return llvm::all_of(Name, [](const char &C) { 2406 return llvm::isAlnum(C) || C == '_' || C == '.'; 2407 }); 2408 } 2409 2410 void CodeGenModule::finalizeKCFITypes() { 2411 llvm::Module &M = getModule(); 2412 for (auto &F : M.functions()) { 2413 // Remove KCFI type metadata from non-address-taken local functions. 2414 bool AddressTaken = F.hasAddressTaken(); 2415 if (!AddressTaken && F.hasLocalLinkage()) 2416 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2417 2418 // Generate a constant with the expected KCFI type identifier for all 2419 // address-taken function declarations to support annotating indirectly 2420 // called assembly functions. 2421 if (!AddressTaken || !F.isDeclaration()) 2422 continue; 2423 2424 const llvm::ConstantInt *Type; 2425 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2426 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2427 else 2428 continue; 2429 2430 StringRef Name = F.getName(); 2431 if (!allowKCFIIdentifier(Name)) 2432 continue; 2433 2434 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2435 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2436 .str(); 2437 M.appendModuleInlineAsm(Asm); 2438 } 2439 } 2440 2441 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2442 bool IsIncompleteFunction, 2443 bool IsThunk) { 2444 2445 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2446 // If this is an intrinsic function, set the function's attributes 2447 // to the intrinsic's attributes. 2448 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2449 return; 2450 } 2451 2452 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2453 2454 if (!IsIncompleteFunction) 2455 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2456 IsThunk); 2457 2458 // Add the Returned attribute for "this", except for iOS 5 and earlier 2459 // where substantial code, including the libstdc++ dylib, was compiled with 2460 // GCC and does not actually return "this". 2461 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2462 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2463 assert(!F->arg_empty() && 2464 F->arg_begin()->getType() 2465 ->canLosslesslyBitCastTo(F->getReturnType()) && 2466 "unexpected this return"); 2467 F->addParamAttr(0, llvm::Attribute::Returned); 2468 } 2469 2470 // Only a few attributes are set on declarations; these may later be 2471 // overridden by a definition. 2472 2473 setLinkageForGV(F, FD); 2474 setGVProperties(F, FD); 2475 2476 // Setup target-specific attributes. 2477 if (!IsIncompleteFunction && F->isDeclaration()) 2478 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2479 2480 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2481 F->setSection(CSA->getName()); 2482 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2483 F->setSection(SA->getName()); 2484 2485 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2486 if (EA->isError()) 2487 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2488 else if (EA->isWarning()) 2489 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2490 } 2491 2492 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2493 if (FD->isInlineBuiltinDeclaration()) { 2494 const FunctionDecl *FDBody; 2495 bool HasBody = FD->hasBody(FDBody); 2496 (void)HasBody; 2497 assert(HasBody && "Inline builtin declarations should always have an " 2498 "available body!"); 2499 if (shouldEmitFunction(FDBody)) 2500 F->addFnAttr(llvm::Attribute::NoBuiltin); 2501 } 2502 2503 if (FD->isReplaceableGlobalAllocationFunction()) { 2504 // A replaceable global allocation function does not act like a builtin by 2505 // default, only if it is invoked by a new-expression or delete-expression. 2506 F->addFnAttr(llvm::Attribute::NoBuiltin); 2507 } 2508 2509 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2510 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2511 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2512 if (MD->isVirtual()) 2513 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2514 2515 // Don't emit entries for function declarations in the cross-DSO mode. This 2516 // is handled with better precision by the receiving DSO. But if jump tables 2517 // are non-canonical then we need type metadata in order to produce the local 2518 // jump table. 2519 if (!CodeGenOpts.SanitizeCfiCrossDso || 2520 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2521 CreateFunctionTypeMetadataForIcall(FD, F); 2522 2523 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2524 setKCFIType(FD, F); 2525 2526 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2527 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2528 2529 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2530 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2531 2532 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2533 // Annotate the callback behavior as metadata: 2534 // - The callback callee (as argument number). 2535 // - The callback payloads (as argument numbers). 2536 llvm::LLVMContext &Ctx = F->getContext(); 2537 llvm::MDBuilder MDB(Ctx); 2538 2539 // The payload indices are all but the first one in the encoding. The first 2540 // identifies the callback callee. 2541 int CalleeIdx = *CB->encoding_begin(); 2542 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2543 F->addMetadata(llvm::LLVMContext::MD_callback, 2544 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2545 CalleeIdx, PayloadIndices, 2546 /* VarArgsArePassed */ false)})); 2547 } 2548 } 2549 2550 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2551 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2552 "Only globals with definition can force usage."); 2553 LLVMUsed.emplace_back(GV); 2554 } 2555 2556 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2557 assert(!GV->isDeclaration() && 2558 "Only globals with definition can force usage."); 2559 LLVMCompilerUsed.emplace_back(GV); 2560 } 2561 2562 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2563 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2564 "Only globals with definition can force usage."); 2565 if (getTriple().isOSBinFormatELF()) 2566 LLVMCompilerUsed.emplace_back(GV); 2567 else 2568 LLVMUsed.emplace_back(GV); 2569 } 2570 2571 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2572 std::vector<llvm::WeakTrackingVH> &List) { 2573 // Don't create llvm.used if there is no need. 2574 if (List.empty()) 2575 return; 2576 2577 // Convert List to what ConstantArray needs. 2578 SmallVector<llvm::Constant*, 8> UsedArray; 2579 UsedArray.resize(List.size()); 2580 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2581 UsedArray[i] = 2582 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2583 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2584 } 2585 2586 if (UsedArray.empty()) 2587 return; 2588 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2589 2590 auto *GV = new llvm::GlobalVariable( 2591 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2592 llvm::ConstantArray::get(ATy, UsedArray), Name); 2593 2594 GV->setSection("llvm.metadata"); 2595 } 2596 2597 void CodeGenModule::emitLLVMUsed() { 2598 emitUsed(*this, "llvm.used", LLVMUsed); 2599 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2600 } 2601 2602 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2603 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2604 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2605 } 2606 2607 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2608 llvm::SmallString<32> Opt; 2609 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2610 if (Opt.empty()) 2611 return; 2612 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2613 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2614 } 2615 2616 void CodeGenModule::AddDependentLib(StringRef Lib) { 2617 auto &C = getLLVMContext(); 2618 if (getTarget().getTriple().isOSBinFormatELF()) { 2619 ELFDependentLibraries.push_back( 2620 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2621 return; 2622 } 2623 2624 llvm::SmallString<24> Opt; 2625 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2626 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2627 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2628 } 2629 2630 /// Add link options implied by the given module, including modules 2631 /// it depends on, using a postorder walk. 2632 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2633 SmallVectorImpl<llvm::MDNode *> &Metadata, 2634 llvm::SmallPtrSet<Module *, 16> &Visited) { 2635 // Import this module's parent. 2636 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2637 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2638 } 2639 2640 // Import this module's dependencies. 2641 for (Module *Import : llvm::reverse(Mod->Imports)) { 2642 if (Visited.insert(Import).second) 2643 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2644 } 2645 2646 // Add linker options to link against the libraries/frameworks 2647 // described by this module. 2648 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2649 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2650 2651 // For modules that use export_as for linking, use that module 2652 // name instead. 2653 if (Mod->UseExportAsModuleLinkName) 2654 return; 2655 2656 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2657 // Link against a framework. Frameworks are currently Darwin only, so we 2658 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2659 if (LL.IsFramework) { 2660 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2661 llvm::MDString::get(Context, LL.Library)}; 2662 2663 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2664 continue; 2665 } 2666 2667 // Link against a library. 2668 if (IsELF) { 2669 llvm::Metadata *Args[2] = { 2670 llvm::MDString::get(Context, "lib"), 2671 llvm::MDString::get(Context, LL.Library), 2672 }; 2673 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2674 } else { 2675 llvm::SmallString<24> Opt; 2676 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2677 auto *OptString = llvm::MDString::get(Context, Opt); 2678 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2679 } 2680 } 2681 } 2682 2683 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2684 // Emit the initializers in the order that sub-modules appear in the 2685 // source, first Global Module Fragments, if present. 2686 if (auto GMF = Primary->getGlobalModuleFragment()) { 2687 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2688 if (isa<ImportDecl>(D)) 2689 continue; 2690 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2691 EmitTopLevelDecl(D); 2692 } 2693 } 2694 // Second any associated with the module, itself. 2695 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2696 // Skip import decls, the inits for those are called explicitly. 2697 if (isa<ImportDecl>(D)) 2698 continue; 2699 EmitTopLevelDecl(D); 2700 } 2701 // Third any associated with the Privat eMOdule Fragment, if present. 2702 if (auto PMF = Primary->getPrivateModuleFragment()) { 2703 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2704 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2705 EmitTopLevelDecl(D); 2706 } 2707 } 2708 } 2709 2710 void CodeGenModule::EmitModuleLinkOptions() { 2711 // Collect the set of all of the modules we want to visit to emit link 2712 // options, which is essentially the imported modules and all of their 2713 // non-explicit child modules. 2714 llvm::SetVector<clang::Module *> LinkModules; 2715 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2716 SmallVector<clang::Module *, 16> Stack; 2717 2718 // Seed the stack with imported modules. 2719 for (Module *M : ImportedModules) { 2720 // Do not add any link flags when an implementation TU of a module imports 2721 // a header of that same module. 2722 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2723 !getLangOpts().isCompilingModule()) 2724 continue; 2725 if (Visited.insert(M).second) 2726 Stack.push_back(M); 2727 } 2728 2729 // Find all of the modules to import, making a little effort to prune 2730 // non-leaf modules. 2731 while (!Stack.empty()) { 2732 clang::Module *Mod = Stack.pop_back_val(); 2733 2734 bool AnyChildren = false; 2735 2736 // Visit the submodules of this module. 2737 for (const auto &SM : Mod->submodules()) { 2738 // Skip explicit children; they need to be explicitly imported to be 2739 // linked against. 2740 if (SM->IsExplicit) 2741 continue; 2742 2743 if (Visited.insert(SM).second) { 2744 Stack.push_back(SM); 2745 AnyChildren = true; 2746 } 2747 } 2748 2749 // We didn't find any children, so add this module to the list of 2750 // modules to link against. 2751 if (!AnyChildren) { 2752 LinkModules.insert(Mod); 2753 } 2754 } 2755 2756 // Add link options for all of the imported modules in reverse topological 2757 // order. We don't do anything to try to order import link flags with respect 2758 // to linker options inserted by things like #pragma comment(). 2759 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2760 Visited.clear(); 2761 for (Module *M : LinkModules) 2762 if (Visited.insert(M).second) 2763 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2764 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2765 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2766 2767 // Add the linker options metadata flag. 2768 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2769 for (auto *MD : LinkerOptionsMetadata) 2770 NMD->addOperand(MD); 2771 } 2772 2773 void CodeGenModule::EmitDeferred() { 2774 // Emit deferred declare target declarations. 2775 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2776 getOpenMPRuntime().emitDeferredTargetDecls(); 2777 2778 // Emit code for any potentially referenced deferred decls. Since a 2779 // previously unused static decl may become used during the generation of code 2780 // for a static function, iterate until no changes are made. 2781 2782 if (!DeferredVTables.empty()) { 2783 EmitDeferredVTables(); 2784 2785 // Emitting a vtable doesn't directly cause more vtables to 2786 // become deferred, although it can cause functions to be 2787 // emitted that then need those vtables. 2788 assert(DeferredVTables.empty()); 2789 } 2790 2791 // Emit CUDA/HIP static device variables referenced by host code only. 2792 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2793 // needed for further handling. 2794 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2795 llvm::append_range(DeferredDeclsToEmit, 2796 getContext().CUDADeviceVarODRUsedByHost); 2797 2798 // Stop if we're out of both deferred vtables and deferred declarations. 2799 if (DeferredDeclsToEmit.empty()) 2800 return; 2801 2802 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2803 // work, it will not interfere with this. 2804 std::vector<GlobalDecl> CurDeclsToEmit; 2805 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2806 2807 for (GlobalDecl &D : CurDeclsToEmit) { 2808 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2809 // to get GlobalValue with exactly the type we need, not something that 2810 // might had been created for another decl with the same mangled name but 2811 // different type. 2812 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2813 GetAddrOfGlobal(D, ForDefinition)); 2814 2815 // In case of different address spaces, we may still get a cast, even with 2816 // IsForDefinition equal to true. Query mangled names table to get 2817 // GlobalValue. 2818 if (!GV) 2819 GV = GetGlobalValue(getMangledName(D)); 2820 2821 // Make sure GetGlobalValue returned non-null. 2822 assert(GV); 2823 2824 // Check to see if we've already emitted this. This is necessary 2825 // for a couple of reasons: first, decls can end up in the 2826 // deferred-decls queue multiple times, and second, decls can end 2827 // up with definitions in unusual ways (e.g. by an extern inline 2828 // function acquiring a strong function redefinition). Just 2829 // ignore these cases. 2830 if (!GV->isDeclaration()) 2831 continue; 2832 2833 // If this is OpenMP, check if it is legal to emit this global normally. 2834 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2835 continue; 2836 2837 // Otherwise, emit the definition and move on to the next one. 2838 EmitGlobalDefinition(D, GV); 2839 2840 // If we found out that we need to emit more decls, do that recursively. 2841 // This has the advantage that the decls are emitted in a DFS and related 2842 // ones are close together, which is convenient for testing. 2843 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2844 EmitDeferred(); 2845 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2846 } 2847 } 2848 } 2849 2850 void CodeGenModule::EmitVTablesOpportunistically() { 2851 // Try to emit external vtables as available_externally if they have emitted 2852 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2853 // is not allowed to create new references to things that need to be emitted 2854 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2855 2856 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2857 && "Only emit opportunistic vtables with optimizations"); 2858 2859 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2860 assert(getVTables().isVTableExternal(RD) && 2861 "This queue should only contain external vtables"); 2862 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2863 VTables.GenerateClassData(RD); 2864 } 2865 OpportunisticVTables.clear(); 2866 } 2867 2868 void CodeGenModule::EmitGlobalAnnotations() { 2869 if (Annotations.empty()) 2870 return; 2871 2872 // Create a new global variable for the ConstantStruct in the Module. 2873 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2874 Annotations[0]->getType(), Annotations.size()), Annotations); 2875 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2876 llvm::GlobalValue::AppendingLinkage, 2877 Array, "llvm.global.annotations"); 2878 gv->setSection(AnnotationSection); 2879 } 2880 2881 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2882 llvm::Constant *&AStr = AnnotationStrings[Str]; 2883 if (AStr) 2884 return AStr; 2885 2886 // Not found yet, create a new global. 2887 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2888 auto *gv = new llvm::GlobalVariable( 2889 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 2890 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 2891 ConstGlobalsPtrTy->getAddressSpace()); 2892 gv->setSection(AnnotationSection); 2893 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2894 AStr = gv; 2895 return gv; 2896 } 2897 2898 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2899 SourceManager &SM = getContext().getSourceManager(); 2900 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2901 if (PLoc.isValid()) 2902 return EmitAnnotationString(PLoc.getFilename()); 2903 return EmitAnnotationString(SM.getBufferName(Loc)); 2904 } 2905 2906 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2907 SourceManager &SM = getContext().getSourceManager(); 2908 PresumedLoc PLoc = SM.getPresumedLoc(L); 2909 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2910 SM.getExpansionLineNumber(L); 2911 return llvm::ConstantInt::get(Int32Ty, LineNo); 2912 } 2913 2914 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2915 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2916 if (Exprs.empty()) 2917 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 2918 2919 llvm::FoldingSetNodeID ID; 2920 for (Expr *E : Exprs) { 2921 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2922 } 2923 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2924 if (Lookup) 2925 return Lookup; 2926 2927 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2928 LLVMArgs.reserve(Exprs.size()); 2929 ConstantEmitter ConstEmiter(*this); 2930 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2931 const auto *CE = cast<clang::ConstantExpr>(E); 2932 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2933 CE->getType()); 2934 }); 2935 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2936 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2937 llvm::GlobalValue::PrivateLinkage, Struct, 2938 ".args"); 2939 GV->setSection(AnnotationSection); 2940 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2941 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2942 2943 Lookup = Bitcasted; 2944 return Bitcasted; 2945 } 2946 2947 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2948 const AnnotateAttr *AA, 2949 SourceLocation L) { 2950 // Get the globals for file name, annotation, and the line number. 2951 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2952 *UnitGV = EmitAnnotationUnit(L), 2953 *LineNoCst = EmitAnnotationLineNo(L), 2954 *Args = EmitAnnotationArgs(AA); 2955 2956 llvm::Constant *GVInGlobalsAS = GV; 2957 if (GV->getAddressSpace() != 2958 getDataLayout().getDefaultGlobalsAddressSpace()) { 2959 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2960 GV, GV->getValueType()->getPointerTo( 2961 getDataLayout().getDefaultGlobalsAddressSpace())); 2962 } 2963 2964 // Create the ConstantStruct for the global annotation. 2965 llvm::Constant *Fields[] = { 2966 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2967 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 2968 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 2969 LineNoCst, 2970 Args, 2971 }; 2972 return llvm::ConstantStruct::getAnon(Fields); 2973 } 2974 2975 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2976 llvm::GlobalValue *GV) { 2977 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2978 // Get the struct elements for these annotations. 2979 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2980 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2981 } 2982 2983 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2984 SourceLocation Loc) const { 2985 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2986 // NoSanitize by function name. 2987 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2988 return true; 2989 // NoSanitize by location. Check "mainfile" prefix. 2990 auto &SM = Context.getSourceManager(); 2991 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2992 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2993 return true; 2994 2995 // Check "src" prefix. 2996 if (Loc.isValid()) 2997 return NoSanitizeL.containsLocation(Kind, Loc); 2998 // If location is unknown, this may be a compiler-generated function. Assume 2999 // it's located in the main file. 3000 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3001 } 3002 3003 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3004 llvm::GlobalVariable *GV, 3005 SourceLocation Loc, QualType Ty, 3006 StringRef Category) const { 3007 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3008 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3009 return true; 3010 auto &SM = Context.getSourceManager(); 3011 if (NoSanitizeL.containsMainFile( 3012 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 3013 return true; 3014 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3015 return true; 3016 3017 // Check global type. 3018 if (!Ty.isNull()) { 3019 // Drill down the array types: if global variable of a fixed type is 3020 // not sanitized, we also don't instrument arrays of them. 3021 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3022 Ty = AT->getElementType(); 3023 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3024 // Only record types (classes, structs etc.) are ignored. 3025 if (Ty->isRecordType()) { 3026 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3027 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3028 return true; 3029 } 3030 } 3031 return false; 3032 } 3033 3034 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3035 StringRef Category) const { 3036 const auto &XRayFilter = getContext().getXRayFilter(); 3037 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3038 auto Attr = ImbueAttr::NONE; 3039 if (Loc.isValid()) 3040 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3041 if (Attr == ImbueAttr::NONE) 3042 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3043 switch (Attr) { 3044 case ImbueAttr::NONE: 3045 return false; 3046 case ImbueAttr::ALWAYS: 3047 Fn->addFnAttr("function-instrument", "xray-always"); 3048 break; 3049 case ImbueAttr::ALWAYS_ARG1: 3050 Fn->addFnAttr("function-instrument", "xray-always"); 3051 Fn->addFnAttr("xray-log-args", "1"); 3052 break; 3053 case ImbueAttr::NEVER: 3054 Fn->addFnAttr("function-instrument", "xray-never"); 3055 break; 3056 } 3057 return true; 3058 } 3059 3060 ProfileList::ExclusionType 3061 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3062 SourceLocation Loc) const { 3063 const auto &ProfileList = getContext().getProfileList(); 3064 // If the profile list is empty, then instrument everything. 3065 if (ProfileList.isEmpty()) 3066 return ProfileList::Allow; 3067 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3068 // First, check the function name. 3069 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3070 return *V; 3071 // Next, check the source location. 3072 if (Loc.isValid()) 3073 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3074 return *V; 3075 // If location is unknown, this may be a compiler-generated function. Assume 3076 // it's located in the main file. 3077 auto &SM = Context.getSourceManager(); 3078 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3079 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3080 return *V; 3081 return ProfileList.getDefault(Kind); 3082 } 3083 3084 ProfileList::ExclusionType 3085 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3086 SourceLocation Loc) const { 3087 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3088 if (V != ProfileList::Allow) 3089 return V; 3090 3091 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3092 if (NumGroups > 1) { 3093 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3094 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3095 return ProfileList::Skip; 3096 } 3097 return ProfileList::Allow; 3098 } 3099 3100 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3101 // Never defer when EmitAllDecls is specified. 3102 if (LangOpts.EmitAllDecls) 3103 return true; 3104 3105 if (CodeGenOpts.KeepStaticConsts) { 3106 const auto *VD = dyn_cast<VarDecl>(Global); 3107 if (VD && VD->getType().isConstQualified() && 3108 VD->getStorageDuration() == SD_Static) 3109 return true; 3110 } 3111 3112 return getContext().DeclMustBeEmitted(Global); 3113 } 3114 3115 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3116 // In OpenMP 5.0 variables and function may be marked as 3117 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3118 // that they must be emitted on the host/device. To be sure we need to have 3119 // seen a declare target with an explicit mentioning of the function, we know 3120 // we have if the level of the declare target attribute is -1. Note that we 3121 // check somewhere else if we should emit this at all. 3122 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3123 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3124 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3125 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3126 return false; 3127 } 3128 3129 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3130 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3131 // Implicit template instantiations may change linkage if they are later 3132 // explicitly instantiated, so they should not be emitted eagerly. 3133 return false; 3134 } 3135 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3136 if (Context.getInlineVariableDefinitionKind(VD) == 3137 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3138 // A definition of an inline constexpr static data member may change 3139 // linkage later if it's redeclared outside the class. 3140 return false; 3141 if (CXX20ModuleInits && VD->getOwningModule() && 3142 !VD->getOwningModule()->isModuleMapModule()) { 3143 // For CXX20, module-owned initializers need to be deferred, since it is 3144 // not known at this point if they will be run for the current module or 3145 // as part of the initializer for an imported one. 3146 return false; 3147 } 3148 } 3149 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3150 // codegen for global variables, because they may be marked as threadprivate. 3151 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3152 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3153 !isTypeConstant(Global->getType(), false, false) && 3154 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3155 return false; 3156 3157 return true; 3158 } 3159 3160 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3161 StringRef Name = getMangledName(GD); 3162 3163 // The UUID descriptor should be pointer aligned. 3164 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3165 3166 // Look for an existing global. 3167 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3168 return ConstantAddress(GV, GV->getValueType(), Alignment); 3169 3170 ConstantEmitter Emitter(*this); 3171 llvm::Constant *Init; 3172 3173 APValue &V = GD->getAsAPValue(); 3174 if (!V.isAbsent()) { 3175 // If possible, emit the APValue version of the initializer. In particular, 3176 // this gets the type of the constant right. 3177 Init = Emitter.emitForInitializer( 3178 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3179 } else { 3180 // As a fallback, directly construct the constant. 3181 // FIXME: This may get padding wrong under esoteric struct layout rules. 3182 // MSVC appears to create a complete type 'struct __s_GUID' that it 3183 // presumably uses to represent these constants. 3184 MSGuidDecl::Parts Parts = GD->getParts(); 3185 llvm::Constant *Fields[4] = { 3186 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3187 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3188 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3189 llvm::ConstantDataArray::getRaw( 3190 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3191 Int8Ty)}; 3192 Init = llvm::ConstantStruct::getAnon(Fields); 3193 } 3194 3195 auto *GV = new llvm::GlobalVariable( 3196 getModule(), Init->getType(), 3197 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3198 if (supportsCOMDAT()) 3199 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3200 setDSOLocal(GV); 3201 3202 if (!V.isAbsent()) { 3203 Emitter.finalize(GV); 3204 return ConstantAddress(GV, GV->getValueType(), Alignment); 3205 } 3206 3207 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3208 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3209 GV, Ty->getPointerTo(GV->getAddressSpace())); 3210 return ConstantAddress(Addr, Ty, Alignment); 3211 } 3212 3213 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3214 const UnnamedGlobalConstantDecl *GCD) { 3215 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3216 3217 llvm::GlobalVariable **Entry = nullptr; 3218 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3219 if (*Entry) 3220 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3221 3222 ConstantEmitter Emitter(*this); 3223 llvm::Constant *Init; 3224 3225 const APValue &V = GCD->getValue(); 3226 3227 assert(!V.isAbsent()); 3228 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3229 GCD->getType()); 3230 3231 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3232 /*isConstant=*/true, 3233 llvm::GlobalValue::PrivateLinkage, Init, 3234 ".constant"); 3235 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3236 GV->setAlignment(Alignment.getAsAlign()); 3237 3238 Emitter.finalize(GV); 3239 3240 *Entry = GV; 3241 return ConstantAddress(GV, GV->getValueType(), Alignment); 3242 } 3243 3244 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3245 const TemplateParamObjectDecl *TPO) { 3246 StringRef Name = getMangledName(TPO); 3247 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3248 3249 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3250 return ConstantAddress(GV, GV->getValueType(), Alignment); 3251 3252 ConstantEmitter Emitter(*this); 3253 llvm::Constant *Init = Emitter.emitForInitializer( 3254 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3255 3256 if (!Init) { 3257 ErrorUnsupported(TPO, "template parameter object"); 3258 return ConstantAddress::invalid(); 3259 } 3260 3261 llvm::GlobalValue::LinkageTypes Linkage = 3262 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3263 ? llvm::GlobalValue::LinkOnceODRLinkage 3264 : llvm::GlobalValue::InternalLinkage; 3265 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3266 /*isConstant=*/true, Linkage, Init, Name); 3267 setGVProperties(GV, TPO); 3268 if (supportsCOMDAT()) 3269 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3270 Emitter.finalize(GV); 3271 3272 return ConstantAddress(GV, GV->getValueType(), Alignment); 3273 } 3274 3275 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3276 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3277 assert(AA && "No alias?"); 3278 3279 CharUnits Alignment = getContext().getDeclAlign(VD); 3280 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3281 3282 // See if there is already something with the target's name in the module. 3283 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3284 if (Entry) { 3285 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3286 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3287 return ConstantAddress(Ptr, DeclTy, Alignment); 3288 } 3289 3290 llvm::Constant *Aliasee; 3291 if (isa<llvm::FunctionType>(DeclTy)) 3292 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3293 GlobalDecl(cast<FunctionDecl>(VD)), 3294 /*ForVTable=*/false); 3295 else 3296 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3297 nullptr); 3298 3299 auto *F = cast<llvm::GlobalValue>(Aliasee); 3300 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3301 WeakRefReferences.insert(F); 3302 3303 return ConstantAddress(Aliasee, DeclTy, Alignment); 3304 } 3305 3306 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3307 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3308 3309 // Weak references don't produce any output by themselves. 3310 if (Global->hasAttr<WeakRefAttr>()) 3311 return; 3312 3313 // If this is an alias definition (which otherwise looks like a declaration) 3314 // emit it now. 3315 if (Global->hasAttr<AliasAttr>()) 3316 return EmitAliasDefinition(GD); 3317 3318 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3319 if (Global->hasAttr<IFuncAttr>()) 3320 return emitIFuncDefinition(GD); 3321 3322 // If this is a cpu_dispatch multiversion function, emit the resolver. 3323 if (Global->hasAttr<CPUDispatchAttr>()) 3324 return emitCPUDispatchDefinition(GD); 3325 3326 // If this is CUDA, be selective about which declarations we emit. 3327 if (LangOpts.CUDA) { 3328 if (LangOpts.CUDAIsDevice) { 3329 if (!Global->hasAttr<CUDADeviceAttr>() && 3330 !Global->hasAttr<CUDAGlobalAttr>() && 3331 !Global->hasAttr<CUDAConstantAttr>() && 3332 !Global->hasAttr<CUDASharedAttr>() && 3333 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3334 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3335 return; 3336 } else { 3337 // We need to emit host-side 'shadows' for all global 3338 // device-side variables because the CUDA runtime needs their 3339 // size and host-side address in order to provide access to 3340 // their device-side incarnations. 3341 3342 // So device-only functions are the only things we skip. 3343 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3344 Global->hasAttr<CUDADeviceAttr>()) 3345 return; 3346 3347 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3348 "Expected Variable or Function"); 3349 } 3350 } 3351 3352 if (LangOpts.OpenMP) { 3353 // If this is OpenMP, check if it is legal to emit this global normally. 3354 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3355 return; 3356 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3357 if (MustBeEmitted(Global)) 3358 EmitOMPDeclareReduction(DRD); 3359 return; 3360 } 3361 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3362 if (MustBeEmitted(Global)) 3363 EmitOMPDeclareMapper(DMD); 3364 return; 3365 } 3366 } 3367 3368 // Ignore declarations, they will be emitted on their first use. 3369 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3370 // Forward declarations are emitted lazily on first use. 3371 if (!FD->doesThisDeclarationHaveABody()) { 3372 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3373 return; 3374 3375 StringRef MangledName = getMangledName(GD); 3376 3377 // Compute the function info and LLVM type. 3378 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3379 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3380 3381 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3382 /*DontDefer=*/false); 3383 return; 3384 } 3385 } else { 3386 const auto *VD = cast<VarDecl>(Global); 3387 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3388 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3389 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3390 if (LangOpts.OpenMP) { 3391 // Emit declaration of the must-be-emitted declare target variable. 3392 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3393 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3394 bool UnifiedMemoryEnabled = 3395 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3396 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3397 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3398 !UnifiedMemoryEnabled) { 3399 (void)GetAddrOfGlobalVar(VD); 3400 } else { 3401 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3402 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3403 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3404 UnifiedMemoryEnabled)) && 3405 "Link clause or to clause with unified memory expected."); 3406 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3407 } 3408 3409 return; 3410 } 3411 } 3412 // If this declaration may have caused an inline variable definition to 3413 // change linkage, make sure that it's emitted. 3414 if (Context.getInlineVariableDefinitionKind(VD) == 3415 ASTContext::InlineVariableDefinitionKind::Strong) 3416 GetAddrOfGlobalVar(VD); 3417 return; 3418 } 3419 } 3420 3421 // Defer code generation to first use when possible, e.g. if this is an inline 3422 // function. If the global must always be emitted, do it eagerly if possible 3423 // to benefit from cache locality. 3424 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3425 // Emit the definition if it can't be deferred. 3426 EmitGlobalDefinition(GD); 3427 return; 3428 } 3429 3430 // If we're deferring emission of a C++ variable with an 3431 // initializer, remember the order in which it appeared in the file. 3432 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3433 cast<VarDecl>(Global)->hasInit()) { 3434 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3435 CXXGlobalInits.push_back(nullptr); 3436 } 3437 3438 StringRef MangledName = getMangledName(GD); 3439 if (GetGlobalValue(MangledName) != nullptr) { 3440 // The value has already been used and should therefore be emitted. 3441 addDeferredDeclToEmit(GD); 3442 } else if (MustBeEmitted(Global)) { 3443 // The value must be emitted, but cannot be emitted eagerly. 3444 assert(!MayBeEmittedEagerly(Global)); 3445 addDeferredDeclToEmit(GD); 3446 EmittedDeferredDecls[MangledName] = GD; 3447 } else { 3448 // Otherwise, remember that we saw a deferred decl with this name. The 3449 // first use of the mangled name will cause it to move into 3450 // DeferredDeclsToEmit. 3451 DeferredDecls[MangledName] = GD; 3452 } 3453 } 3454 3455 // Check if T is a class type with a destructor that's not dllimport. 3456 static bool HasNonDllImportDtor(QualType T) { 3457 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3458 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3459 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3460 return true; 3461 3462 return false; 3463 } 3464 3465 namespace { 3466 struct FunctionIsDirectlyRecursive 3467 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3468 const StringRef Name; 3469 const Builtin::Context &BI; 3470 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3471 : Name(N), BI(C) {} 3472 3473 bool VisitCallExpr(const CallExpr *E) { 3474 const FunctionDecl *FD = E->getDirectCallee(); 3475 if (!FD) 3476 return false; 3477 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3478 if (Attr && Name == Attr->getLabel()) 3479 return true; 3480 unsigned BuiltinID = FD->getBuiltinID(); 3481 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3482 return false; 3483 StringRef BuiltinName = BI.getName(BuiltinID); 3484 if (BuiltinName.startswith("__builtin_") && 3485 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3486 return true; 3487 } 3488 return false; 3489 } 3490 3491 bool VisitStmt(const Stmt *S) { 3492 for (const Stmt *Child : S->children()) 3493 if (Child && this->Visit(Child)) 3494 return true; 3495 return false; 3496 } 3497 }; 3498 3499 // Make sure we're not referencing non-imported vars or functions. 3500 struct DLLImportFunctionVisitor 3501 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3502 bool SafeToInline = true; 3503 3504 bool shouldVisitImplicitCode() const { return true; } 3505 3506 bool VisitVarDecl(VarDecl *VD) { 3507 if (VD->getTLSKind()) { 3508 // A thread-local variable cannot be imported. 3509 SafeToInline = false; 3510 return SafeToInline; 3511 } 3512 3513 // A variable definition might imply a destructor call. 3514 if (VD->isThisDeclarationADefinition()) 3515 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3516 3517 return SafeToInline; 3518 } 3519 3520 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3521 if (const auto *D = E->getTemporary()->getDestructor()) 3522 SafeToInline = D->hasAttr<DLLImportAttr>(); 3523 return SafeToInline; 3524 } 3525 3526 bool VisitDeclRefExpr(DeclRefExpr *E) { 3527 ValueDecl *VD = E->getDecl(); 3528 if (isa<FunctionDecl>(VD)) 3529 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3530 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3531 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3532 return SafeToInline; 3533 } 3534 3535 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3536 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3537 return SafeToInline; 3538 } 3539 3540 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3541 CXXMethodDecl *M = E->getMethodDecl(); 3542 if (!M) { 3543 // Call through a pointer to member function. This is safe to inline. 3544 SafeToInline = true; 3545 } else { 3546 SafeToInline = M->hasAttr<DLLImportAttr>(); 3547 } 3548 return SafeToInline; 3549 } 3550 3551 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3552 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3553 return SafeToInline; 3554 } 3555 3556 bool VisitCXXNewExpr(CXXNewExpr *E) { 3557 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3558 return SafeToInline; 3559 } 3560 }; 3561 } 3562 3563 // isTriviallyRecursive - Check if this function calls another 3564 // decl that, because of the asm attribute or the other decl being a builtin, 3565 // ends up pointing to itself. 3566 bool 3567 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3568 StringRef Name; 3569 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3570 // asm labels are a special kind of mangling we have to support. 3571 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3572 if (!Attr) 3573 return false; 3574 Name = Attr->getLabel(); 3575 } else { 3576 Name = FD->getName(); 3577 } 3578 3579 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3580 const Stmt *Body = FD->getBody(); 3581 return Body ? Walker.Visit(Body) : false; 3582 } 3583 3584 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3585 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3586 return true; 3587 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3588 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3589 return false; 3590 3591 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3592 // Check whether it would be safe to inline this dllimport function. 3593 DLLImportFunctionVisitor Visitor; 3594 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3595 if (!Visitor.SafeToInline) 3596 return false; 3597 3598 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3599 // Implicit destructor invocations aren't captured in the AST, so the 3600 // check above can't see them. Check for them manually here. 3601 for (const Decl *Member : Dtor->getParent()->decls()) 3602 if (isa<FieldDecl>(Member)) 3603 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3604 return false; 3605 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3606 if (HasNonDllImportDtor(B.getType())) 3607 return false; 3608 } 3609 } 3610 3611 // Inline builtins declaration must be emitted. They often are fortified 3612 // functions. 3613 if (F->isInlineBuiltinDeclaration()) 3614 return true; 3615 3616 // PR9614. Avoid cases where the source code is lying to us. An available 3617 // externally function should have an equivalent function somewhere else, 3618 // but a function that calls itself through asm label/`__builtin_` trickery is 3619 // clearly not equivalent to the real implementation. 3620 // This happens in glibc's btowc and in some configure checks. 3621 return !isTriviallyRecursive(F); 3622 } 3623 3624 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3625 return CodeGenOpts.OptimizationLevel > 0; 3626 } 3627 3628 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3629 llvm::GlobalValue *GV) { 3630 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3631 3632 if (FD->isCPUSpecificMultiVersion()) { 3633 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3634 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3635 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3636 } else if (FD->isTargetClonesMultiVersion()) { 3637 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3638 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3639 if (Clone->isFirstOfVersion(I)) 3640 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3641 // Ensure that the resolver function is also emitted. 3642 GetOrCreateMultiVersionResolver(GD); 3643 } else 3644 EmitGlobalFunctionDefinition(GD, GV); 3645 } 3646 3647 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3648 const auto *D = cast<ValueDecl>(GD.getDecl()); 3649 3650 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3651 Context.getSourceManager(), 3652 "Generating code for declaration"); 3653 3654 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3655 // At -O0, don't generate IR for functions with available_externally 3656 // linkage. 3657 if (!shouldEmitFunction(GD)) 3658 return; 3659 3660 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3661 std::string Name; 3662 llvm::raw_string_ostream OS(Name); 3663 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3664 /*Qualified=*/true); 3665 return Name; 3666 }); 3667 3668 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3669 // Make sure to emit the definition(s) before we emit the thunks. 3670 // This is necessary for the generation of certain thunks. 3671 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3672 ABI->emitCXXStructor(GD); 3673 else if (FD->isMultiVersion()) 3674 EmitMultiVersionFunctionDefinition(GD, GV); 3675 else 3676 EmitGlobalFunctionDefinition(GD, GV); 3677 3678 if (Method->isVirtual()) 3679 getVTables().EmitThunks(GD); 3680 3681 return; 3682 } 3683 3684 if (FD->isMultiVersion()) 3685 return EmitMultiVersionFunctionDefinition(GD, GV); 3686 return EmitGlobalFunctionDefinition(GD, GV); 3687 } 3688 3689 if (const auto *VD = dyn_cast<VarDecl>(D)) 3690 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3691 3692 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3693 } 3694 3695 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3696 llvm::Function *NewFn); 3697 3698 static unsigned 3699 TargetMVPriority(const TargetInfo &TI, 3700 const CodeGenFunction::MultiVersionResolverOption &RO) { 3701 unsigned Priority = 0; 3702 unsigned NumFeatures = 0; 3703 for (StringRef Feat : RO.Conditions.Features) { 3704 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3705 NumFeatures++; 3706 } 3707 3708 if (!RO.Conditions.Architecture.empty()) 3709 Priority = std::max( 3710 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3711 3712 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3713 3714 return Priority; 3715 } 3716 3717 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3718 // TU can forward declare the function without causing problems. Particularly 3719 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3720 // work with internal linkage functions, so that the same function name can be 3721 // used with internal linkage in multiple TUs. 3722 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3723 GlobalDecl GD) { 3724 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3725 if (FD->getFormalLinkage() == InternalLinkage) 3726 return llvm::GlobalValue::InternalLinkage; 3727 return llvm::GlobalValue::WeakODRLinkage; 3728 } 3729 3730 void CodeGenModule::emitMultiVersionFunctions() { 3731 std::vector<GlobalDecl> MVFuncsToEmit; 3732 MultiVersionFuncs.swap(MVFuncsToEmit); 3733 for (GlobalDecl GD : MVFuncsToEmit) { 3734 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3735 assert(FD && "Expected a FunctionDecl"); 3736 3737 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3738 if (FD->isTargetMultiVersion()) { 3739 getContext().forEachMultiversionedFunctionVersion( 3740 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3741 GlobalDecl CurGD{ 3742 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3743 StringRef MangledName = getMangledName(CurGD); 3744 llvm::Constant *Func = GetGlobalValue(MangledName); 3745 if (!Func) { 3746 if (CurFD->isDefined()) { 3747 EmitGlobalFunctionDefinition(CurGD, nullptr); 3748 Func = GetGlobalValue(MangledName); 3749 } else { 3750 const CGFunctionInfo &FI = 3751 getTypes().arrangeGlobalDeclaration(GD); 3752 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3753 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3754 /*DontDefer=*/false, ForDefinition); 3755 } 3756 assert(Func && "This should have just been created"); 3757 } 3758 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 3759 const auto *TA = CurFD->getAttr<TargetAttr>(); 3760 llvm::SmallVector<StringRef, 8> Feats; 3761 TA->getAddedFeatures(Feats); 3762 Options.emplace_back(cast<llvm::Function>(Func), 3763 TA->getArchitecture(), Feats); 3764 } else { 3765 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 3766 llvm::SmallVector<StringRef, 8> Feats; 3767 TVA->getFeatures(Feats); 3768 Options.emplace_back(cast<llvm::Function>(Func), 3769 /*Architecture*/ "", Feats); 3770 } 3771 }); 3772 } else if (FD->isTargetClonesMultiVersion()) { 3773 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3774 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3775 ++VersionIndex) { 3776 if (!TC->isFirstOfVersion(VersionIndex)) 3777 continue; 3778 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3779 VersionIndex}; 3780 StringRef Version = TC->getFeatureStr(VersionIndex); 3781 StringRef MangledName = getMangledName(CurGD); 3782 llvm::Constant *Func = GetGlobalValue(MangledName); 3783 if (!Func) { 3784 if (FD->isDefined()) { 3785 EmitGlobalFunctionDefinition(CurGD, nullptr); 3786 Func = GetGlobalValue(MangledName); 3787 } else { 3788 const CGFunctionInfo &FI = 3789 getTypes().arrangeGlobalDeclaration(CurGD); 3790 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3791 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3792 /*DontDefer=*/false, ForDefinition); 3793 } 3794 assert(Func && "This should have just been created"); 3795 } 3796 3797 StringRef Architecture; 3798 llvm::SmallVector<StringRef, 1> Feature; 3799 3800 if (getTarget().getTriple().isAArch64()) { 3801 if (Version != "default") { 3802 llvm::SmallVector<StringRef, 8> VerFeats; 3803 Version.split(VerFeats, "+"); 3804 for (auto &CurFeat : VerFeats) 3805 Feature.push_back(CurFeat.trim()); 3806 } 3807 } else { 3808 if (Version.startswith("arch=")) 3809 Architecture = Version.drop_front(sizeof("arch=") - 1); 3810 else if (Version != "default") 3811 Feature.push_back(Version); 3812 } 3813 3814 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3815 } 3816 } else { 3817 assert(0 && "Expected a target or target_clones multiversion function"); 3818 continue; 3819 } 3820 3821 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3822 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3823 ResolverConstant = IFunc->getResolver(); 3824 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3825 3826 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3827 3828 if (supportsCOMDAT()) 3829 ResolverFunc->setComdat( 3830 getModule().getOrInsertComdat(ResolverFunc->getName())); 3831 3832 const TargetInfo &TI = getTarget(); 3833 llvm::stable_sort( 3834 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3835 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3836 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3837 }); 3838 CodeGenFunction CGF(*this); 3839 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3840 } 3841 3842 // Ensure that any additions to the deferred decls list caused by emitting a 3843 // variant are emitted. This can happen when the variant itself is inline and 3844 // calls a function without linkage. 3845 if (!MVFuncsToEmit.empty()) 3846 EmitDeferred(); 3847 3848 // Ensure that any additions to the multiversion funcs list from either the 3849 // deferred decls or the multiversion functions themselves are emitted. 3850 if (!MultiVersionFuncs.empty()) 3851 emitMultiVersionFunctions(); 3852 } 3853 3854 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3855 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3856 assert(FD && "Not a FunctionDecl?"); 3857 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3858 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3859 assert(DD && "Not a cpu_dispatch Function?"); 3860 3861 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3862 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3863 3864 StringRef ResolverName = getMangledName(GD); 3865 UpdateMultiVersionNames(GD, FD, ResolverName); 3866 3867 llvm::Type *ResolverType; 3868 GlobalDecl ResolverGD; 3869 if (getTarget().supportsIFunc()) { 3870 ResolverType = llvm::FunctionType::get( 3871 llvm::PointerType::get(DeclTy, 3872 getTypes().getTargetAddressSpace(FD->getType())), 3873 false); 3874 } 3875 else { 3876 ResolverType = DeclTy; 3877 ResolverGD = GD; 3878 } 3879 3880 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3881 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3882 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3883 if (supportsCOMDAT()) 3884 ResolverFunc->setComdat( 3885 getModule().getOrInsertComdat(ResolverFunc->getName())); 3886 3887 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3888 const TargetInfo &Target = getTarget(); 3889 unsigned Index = 0; 3890 for (const IdentifierInfo *II : DD->cpus()) { 3891 // Get the name of the target function so we can look it up/create it. 3892 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3893 getCPUSpecificMangling(*this, II->getName()); 3894 3895 llvm::Constant *Func = GetGlobalValue(MangledName); 3896 3897 if (!Func) { 3898 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3899 if (ExistingDecl.getDecl() && 3900 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3901 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3902 Func = GetGlobalValue(MangledName); 3903 } else { 3904 if (!ExistingDecl.getDecl()) 3905 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3906 3907 Func = GetOrCreateLLVMFunction( 3908 MangledName, DeclTy, ExistingDecl, 3909 /*ForVTable=*/false, /*DontDefer=*/true, 3910 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3911 } 3912 } 3913 3914 llvm::SmallVector<StringRef, 32> Features; 3915 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3916 llvm::transform(Features, Features.begin(), 3917 [](StringRef Str) { return Str.substr(1); }); 3918 llvm::erase_if(Features, [&Target](StringRef Feat) { 3919 return !Target.validateCpuSupports(Feat); 3920 }); 3921 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3922 ++Index; 3923 } 3924 3925 llvm::stable_sort( 3926 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3927 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3928 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3929 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3930 }); 3931 3932 // If the list contains multiple 'default' versions, such as when it contains 3933 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3934 // always run on at least a 'pentium'). We do this by deleting the 'least 3935 // advanced' (read, lowest mangling letter). 3936 while (Options.size() > 1 && 3937 llvm::X86::getCpuSupportsMask( 3938 (Options.end() - 2)->Conditions.Features) == 0) { 3939 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3940 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3941 if (LHSName.compare(RHSName) < 0) 3942 Options.erase(Options.end() - 2); 3943 else 3944 Options.erase(Options.end() - 1); 3945 } 3946 3947 CodeGenFunction CGF(*this); 3948 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3949 3950 if (getTarget().supportsIFunc()) { 3951 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3952 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3953 3954 // Fix up function declarations that were created for cpu_specific before 3955 // cpu_dispatch was known 3956 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3957 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3958 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3959 &getModule()); 3960 GI->takeName(IFunc); 3961 IFunc->replaceAllUsesWith(GI); 3962 IFunc->eraseFromParent(); 3963 IFunc = GI; 3964 } 3965 3966 std::string AliasName = getMangledNameImpl( 3967 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3968 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3969 if (!AliasFunc) { 3970 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3971 &getModule()); 3972 SetCommonAttributes(GD, GA); 3973 } 3974 } 3975 } 3976 3977 /// If a dispatcher for the specified mangled name is not in the module, create 3978 /// and return an llvm Function with the specified type. 3979 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3980 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3981 assert(FD && "Not a FunctionDecl?"); 3982 3983 std::string MangledName = 3984 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3985 3986 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3987 // a separate resolver). 3988 std::string ResolverName = MangledName; 3989 if (getTarget().supportsIFunc()) 3990 ResolverName += ".ifunc"; 3991 else if (FD->isTargetMultiVersion()) 3992 ResolverName += ".resolver"; 3993 3994 // If the resolver has already been created, just return it. 3995 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3996 return ResolverGV; 3997 3998 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3999 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4000 4001 // The resolver needs to be created. For target and target_clones, defer 4002 // creation until the end of the TU. 4003 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4004 MultiVersionFuncs.push_back(GD); 4005 4006 // For cpu_specific, don't create an ifunc yet because we don't know if the 4007 // cpu_dispatch will be emitted in this translation unit. 4008 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4009 llvm::Type *ResolverType = llvm::FunctionType::get( 4010 llvm::PointerType::get(DeclTy, 4011 getTypes().getTargetAddressSpace(FD->getType())), 4012 false); 4013 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4014 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4015 /*ForVTable=*/false); 4016 llvm::GlobalIFunc *GIF = 4017 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4018 "", Resolver, &getModule()); 4019 GIF->setName(ResolverName); 4020 SetCommonAttributes(FD, GIF); 4021 4022 return GIF; 4023 } 4024 4025 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4026 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4027 assert(isa<llvm::GlobalValue>(Resolver) && 4028 "Resolver should be created for the first time"); 4029 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4030 return Resolver; 4031 } 4032 4033 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4034 /// module, create and return an llvm Function with the specified type. If there 4035 /// is something in the module with the specified name, return it potentially 4036 /// bitcasted to the right type. 4037 /// 4038 /// If D is non-null, it specifies a decl that correspond to this. This is used 4039 /// to set the attributes on the function when it is first created. 4040 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4041 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4042 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4043 ForDefinition_t IsForDefinition) { 4044 const Decl *D = GD.getDecl(); 4045 4046 // Any attempts to use a MultiVersion function should result in retrieving 4047 // the iFunc instead. Name Mangling will handle the rest of the changes. 4048 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4049 // For the device mark the function as one that should be emitted. 4050 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 4051 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4052 !DontDefer && !IsForDefinition) { 4053 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4054 GlobalDecl GDDef; 4055 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4056 GDDef = GlobalDecl(CD, GD.getCtorType()); 4057 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4058 GDDef = GlobalDecl(DD, GD.getDtorType()); 4059 else 4060 GDDef = GlobalDecl(FDDef); 4061 EmitGlobal(GDDef); 4062 } 4063 } 4064 4065 if (FD->isMultiVersion()) { 4066 UpdateMultiVersionNames(GD, FD, MangledName); 4067 if (!IsForDefinition) 4068 return GetOrCreateMultiVersionResolver(GD); 4069 } 4070 } 4071 4072 // Lookup the entry, lazily creating it if necessary. 4073 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4074 if (Entry) { 4075 if (WeakRefReferences.erase(Entry)) { 4076 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4077 if (FD && !FD->hasAttr<WeakAttr>()) 4078 Entry->setLinkage(llvm::Function::ExternalLinkage); 4079 } 4080 4081 // Handle dropped DLL attributes. 4082 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4083 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4084 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4085 setDSOLocal(Entry); 4086 } 4087 4088 // If there are two attempts to define the same mangled name, issue an 4089 // error. 4090 if (IsForDefinition && !Entry->isDeclaration()) { 4091 GlobalDecl OtherGD; 4092 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4093 // to make sure that we issue an error only once. 4094 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4095 (GD.getCanonicalDecl().getDecl() != 4096 OtherGD.getCanonicalDecl().getDecl()) && 4097 DiagnosedConflictingDefinitions.insert(GD).second) { 4098 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4099 << MangledName; 4100 getDiags().Report(OtherGD.getDecl()->getLocation(), 4101 diag::note_previous_definition); 4102 } 4103 } 4104 4105 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4106 (Entry->getValueType() == Ty)) { 4107 return Entry; 4108 } 4109 4110 // Make sure the result is of the correct type. 4111 // (If function is requested for a definition, we always need to create a new 4112 // function, not just return a bitcast.) 4113 if (!IsForDefinition) 4114 return llvm::ConstantExpr::getBitCast( 4115 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4116 } 4117 4118 // This function doesn't have a complete type (for example, the return 4119 // type is an incomplete struct). Use a fake type instead, and make 4120 // sure not to try to set attributes. 4121 bool IsIncompleteFunction = false; 4122 4123 llvm::FunctionType *FTy; 4124 if (isa<llvm::FunctionType>(Ty)) { 4125 FTy = cast<llvm::FunctionType>(Ty); 4126 } else { 4127 FTy = llvm::FunctionType::get(VoidTy, false); 4128 IsIncompleteFunction = true; 4129 } 4130 4131 llvm::Function *F = 4132 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4133 Entry ? StringRef() : MangledName, &getModule()); 4134 4135 // If we already created a function with the same mangled name (but different 4136 // type) before, take its name and add it to the list of functions to be 4137 // replaced with F at the end of CodeGen. 4138 // 4139 // This happens if there is a prototype for a function (e.g. "int f()") and 4140 // then a definition of a different type (e.g. "int f(int x)"). 4141 if (Entry) { 4142 F->takeName(Entry); 4143 4144 // This might be an implementation of a function without a prototype, in 4145 // which case, try to do special replacement of calls which match the new 4146 // prototype. The really key thing here is that we also potentially drop 4147 // arguments from the call site so as to make a direct call, which makes the 4148 // inliner happier and suppresses a number of optimizer warnings (!) about 4149 // dropping arguments. 4150 if (!Entry->use_empty()) { 4151 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4152 Entry->removeDeadConstantUsers(); 4153 } 4154 4155 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4156 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4157 addGlobalValReplacement(Entry, BC); 4158 } 4159 4160 assert(F->getName() == MangledName && "name was uniqued!"); 4161 if (D) 4162 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4163 if (ExtraAttrs.hasFnAttrs()) { 4164 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4165 F->addFnAttrs(B); 4166 } 4167 4168 if (!DontDefer) { 4169 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4170 // each other bottoming out with the base dtor. Therefore we emit non-base 4171 // dtors on usage, even if there is no dtor definition in the TU. 4172 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4173 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4174 GD.getDtorType())) 4175 addDeferredDeclToEmit(GD); 4176 4177 // This is the first use or definition of a mangled name. If there is a 4178 // deferred decl with this name, remember that we need to emit it at the end 4179 // of the file. 4180 auto DDI = DeferredDecls.find(MangledName); 4181 if (DDI != DeferredDecls.end()) { 4182 // Move the potentially referenced deferred decl to the 4183 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4184 // don't need it anymore). 4185 addDeferredDeclToEmit(DDI->second); 4186 EmittedDeferredDecls[DDI->first] = DDI->second; 4187 DeferredDecls.erase(DDI); 4188 4189 // Otherwise, there are cases we have to worry about where we're 4190 // using a declaration for which we must emit a definition but where 4191 // we might not find a top-level definition: 4192 // - member functions defined inline in their classes 4193 // - friend functions defined inline in some class 4194 // - special member functions with implicit definitions 4195 // If we ever change our AST traversal to walk into class methods, 4196 // this will be unnecessary. 4197 // 4198 // We also don't emit a definition for a function if it's going to be an 4199 // entry in a vtable, unless it's already marked as used. 4200 } else if (getLangOpts().CPlusPlus && D) { 4201 // Look for a declaration that's lexically in a record. 4202 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4203 FD = FD->getPreviousDecl()) { 4204 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4205 if (FD->doesThisDeclarationHaveABody()) { 4206 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4207 break; 4208 } 4209 } 4210 } 4211 } 4212 } 4213 4214 // Make sure the result is of the requested type. 4215 if (!IsIncompleteFunction) { 4216 assert(F->getFunctionType() == Ty); 4217 return F; 4218 } 4219 4220 return llvm::ConstantExpr::getBitCast(F, 4221 Ty->getPointerTo(F->getAddressSpace())); 4222 } 4223 4224 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4225 /// non-null, then this function will use the specified type if it has to 4226 /// create it (this occurs when we see a definition of the function). 4227 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4228 llvm::Type *Ty, 4229 bool ForVTable, 4230 bool DontDefer, 4231 ForDefinition_t IsForDefinition) { 4232 assert(!cast<FunctionDecl>(GD.getDecl())->isImmediateFunction() && 4233 "an immediate function should never be emitted"); 4234 // If there was no specific requested type, just convert it now. 4235 if (!Ty) { 4236 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4237 Ty = getTypes().ConvertType(FD->getType()); 4238 } 4239 4240 // Devirtualized destructor calls may come through here instead of via 4241 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4242 // of the complete destructor when necessary. 4243 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4244 if (getTarget().getCXXABI().isMicrosoft() && 4245 GD.getDtorType() == Dtor_Complete && 4246 DD->getParent()->getNumVBases() == 0) 4247 GD = GlobalDecl(DD, Dtor_Base); 4248 } 4249 4250 StringRef MangledName = getMangledName(GD); 4251 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4252 /*IsThunk=*/false, llvm::AttributeList(), 4253 IsForDefinition); 4254 // Returns kernel handle for HIP kernel stub function. 4255 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4256 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4257 auto *Handle = getCUDARuntime().getKernelHandle( 4258 cast<llvm::Function>(F->stripPointerCasts()), GD); 4259 if (IsForDefinition) 4260 return F; 4261 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4262 } 4263 return F; 4264 } 4265 4266 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4267 llvm::GlobalValue *F = 4268 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4269 4270 return llvm::ConstantExpr::getBitCast( 4271 llvm::NoCFIValue::get(F), 4272 llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace())); 4273 } 4274 4275 static const FunctionDecl * 4276 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4277 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4278 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4279 4280 IdentifierInfo &CII = C.Idents.get(Name); 4281 for (const auto *Result : DC->lookup(&CII)) 4282 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4283 return FD; 4284 4285 if (!C.getLangOpts().CPlusPlus) 4286 return nullptr; 4287 4288 // Demangle the premangled name from getTerminateFn() 4289 IdentifierInfo &CXXII = 4290 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4291 ? C.Idents.get("terminate") 4292 : C.Idents.get(Name); 4293 4294 for (const auto &N : {"__cxxabiv1", "std"}) { 4295 IdentifierInfo &NS = C.Idents.get(N); 4296 for (const auto *Result : DC->lookup(&NS)) { 4297 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4298 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4299 for (const auto *Result : LSD->lookup(&NS)) 4300 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4301 break; 4302 4303 if (ND) 4304 for (const auto *Result : ND->lookup(&CXXII)) 4305 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4306 return FD; 4307 } 4308 } 4309 4310 return nullptr; 4311 } 4312 4313 /// CreateRuntimeFunction - Create a new runtime function with the specified 4314 /// type and name. 4315 llvm::FunctionCallee 4316 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4317 llvm::AttributeList ExtraAttrs, bool Local, 4318 bool AssumeConvergent) { 4319 if (AssumeConvergent) { 4320 ExtraAttrs = 4321 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4322 } 4323 4324 llvm::Constant *C = 4325 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4326 /*DontDefer=*/false, /*IsThunk=*/false, 4327 ExtraAttrs); 4328 4329 if (auto *F = dyn_cast<llvm::Function>(C)) { 4330 if (F->empty()) { 4331 F->setCallingConv(getRuntimeCC()); 4332 4333 // In Windows Itanium environments, try to mark runtime functions 4334 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4335 // will link their standard library statically or dynamically. Marking 4336 // functions imported when they are not imported can cause linker errors 4337 // and warnings. 4338 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4339 !getCodeGenOpts().LTOVisibilityPublicStd) { 4340 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4341 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4342 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4343 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4344 } 4345 } 4346 setDSOLocal(F); 4347 } 4348 } 4349 4350 return {FTy, C}; 4351 } 4352 4353 /// isTypeConstant - Determine whether an object of this type can be emitted 4354 /// as a constant. 4355 /// 4356 /// If ExcludeCtor is true, the duration when the object's constructor runs 4357 /// will not be considered. The caller will need to verify that the object is 4358 /// not written to during its construction. ExcludeDtor works similarly. 4359 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor, 4360 bool ExcludeDtor) { 4361 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4362 return false; 4363 4364 if (Context.getLangOpts().CPlusPlus) { 4365 if (const CXXRecordDecl *Record 4366 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4367 return ExcludeCtor && !Record->hasMutableFields() && 4368 (Record->hasTrivialDestructor() || ExcludeDtor); 4369 } 4370 4371 return true; 4372 } 4373 4374 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4375 /// create and return an llvm GlobalVariable with the specified type and address 4376 /// space. If there is something in the module with the specified name, return 4377 /// it potentially bitcasted to the right type. 4378 /// 4379 /// If D is non-null, it specifies a decl that correspond to this. This is used 4380 /// to set the attributes on the global when it is first created. 4381 /// 4382 /// If IsForDefinition is true, it is guaranteed that an actual global with 4383 /// type Ty will be returned, not conversion of a variable with the same 4384 /// mangled name but some other type. 4385 llvm::Constant * 4386 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4387 LangAS AddrSpace, const VarDecl *D, 4388 ForDefinition_t IsForDefinition) { 4389 // Lookup the entry, lazily creating it if necessary. 4390 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4391 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4392 if (Entry) { 4393 if (WeakRefReferences.erase(Entry)) { 4394 if (D && !D->hasAttr<WeakAttr>()) 4395 Entry->setLinkage(llvm::Function::ExternalLinkage); 4396 } 4397 4398 // Handle dropped DLL attributes. 4399 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4400 !shouldMapVisibilityToDLLExport(D)) 4401 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4402 4403 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4404 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4405 4406 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4407 return Entry; 4408 4409 // If there are two attempts to define the same mangled name, issue an 4410 // error. 4411 if (IsForDefinition && !Entry->isDeclaration()) { 4412 GlobalDecl OtherGD; 4413 const VarDecl *OtherD; 4414 4415 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4416 // to make sure that we issue an error only once. 4417 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4418 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4419 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4420 OtherD->hasInit() && 4421 DiagnosedConflictingDefinitions.insert(D).second) { 4422 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4423 << MangledName; 4424 getDiags().Report(OtherGD.getDecl()->getLocation(), 4425 diag::note_previous_definition); 4426 } 4427 } 4428 4429 // Make sure the result is of the correct type. 4430 if (Entry->getType()->getAddressSpace() != TargetAS) { 4431 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4432 Ty->getPointerTo(TargetAS)); 4433 } 4434 4435 // (If global is requested for a definition, we always need to create a new 4436 // global, not just return a bitcast.) 4437 if (!IsForDefinition) 4438 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4439 } 4440 4441 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4442 4443 auto *GV = new llvm::GlobalVariable( 4444 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4445 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4446 getContext().getTargetAddressSpace(DAddrSpace)); 4447 4448 // If we already created a global with the same mangled name (but different 4449 // type) before, take its name and remove it from its parent. 4450 if (Entry) { 4451 GV->takeName(Entry); 4452 4453 if (!Entry->use_empty()) { 4454 llvm::Constant *NewPtrForOldDecl = 4455 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4456 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4457 } 4458 4459 Entry->eraseFromParent(); 4460 } 4461 4462 // This is the first use or definition of a mangled name. If there is a 4463 // deferred decl with this name, remember that we need to emit it at the end 4464 // of the file. 4465 auto DDI = DeferredDecls.find(MangledName); 4466 if (DDI != DeferredDecls.end()) { 4467 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4468 // list, and remove it from DeferredDecls (since we don't need it anymore). 4469 addDeferredDeclToEmit(DDI->second); 4470 EmittedDeferredDecls[DDI->first] = DDI->second; 4471 DeferredDecls.erase(DDI); 4472 } 4473 4474 // Handle things which are present even on external declarations. 4475 if (D) { 4476 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4477 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4478 4479 // FIXME: This code is overly simple and should be merged with other global 4480 // handling. 4481 GV->setConstant(isTypeConstant(D->getType(), false, false)); 4482 4483 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4484 4485 setLinkageForGV(GV, D); 4486 4487 if (D->getTLSKind()) { 4488 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4489 CXXThreadLocals.push_back(D); 4490 setTLSMode(GV, *D); 4491 } 4492 4493 setGVProperties(GV, D); 4494 4495 // If required by the ABI, treat declarations of static data members with 4496 // inline initializers as definitions. 4497 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4498 EmitGlobalVarDefinition(D); 4499 } 4500 4501 // Emit section information for extern variables. 4502 if (D->hasExternalStorage()) { 4503 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4504 GV->setSection(SA->getName()); 4505 } 4506 4507 // Handle XCore specific ABI requirements. 4508 if (getTriple().getArch() == llvm::Triple::xcore && 4509 D->getLanguageLinkage() == CLanguageLinkage && 4510 D->getType().isConstant(Context) && 4511 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4512 GV->setSection(".cp.rodata"); 4513 4514 // Check if we a have a const declaration with an initializer, we may be 4515 // able to emit it as available_externally to expose it's value to the 4516 // optimizer. 4517 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4518 D->getType().isConstQualified() && !GV->hasInitializer() && 4519 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4520 const auto *Record = 4521 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4522 bool HasMutableFields = Record && Record->hasMutableFields(); 4523 if (!HasMutableFields) { 4524 const VarDecl *InitDecl; 4525 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4526 if (InitExpr) { 4527 ConstantEmitter emitter(*this); 4528 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4529 if (Init) { 4530 auto *InitType = Init->getType(); 4531 if (GV->getValueType() != InitType) { 4532 // The type of the initializer does not match the definition. 4533 // This happens when an initializer has a different type from 4534 // the type of the global (because of padding at the end of a 4535 // structure for instance). 4536 GV->setName(StringRef()); 4537 // Make a new global with the correct type, this is now guaranteed 4538 // to work. 4539 auto *NewGV = cast<llvm::GlobalVariable>( 4540 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4541 ->stripPointerCasts()); 4542 4543 // Erase the old global, since it is no longer used. 4544 GV->eraseFromParent(); 4545 GV = NewGV; 4546 } else { 4547 GV->setInitializer(Init); 4548 GV->setConstant(true); 4549 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4550 } 4551 emitter.finalize(GV); 4552 } 4553 } 4554 } 4555 } 4556 } 4557 4558 if (GV->isDeclaration()) { 4559 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4560 // External HIP managed variables needed to be recorded for transformation 4561 // in both device and host compilations. 4562 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4563 D->hasExternalStorage()) 4564 getCUDARuntime().handleVarRegistration(D, *GV); 4565 } 4566 4567 if (D) 4568 SanitizerMD->reportGlobal(GV, *D); 4569 4570 LangAS ExpectedAS = 4571 D ? D->getType().getAddressSpace() 4572 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4573 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4574 if (DAddrSpace != ExpectedAS) { 4575 return getTargetCodeGenInfo().performAddrSpaceCast( 4576 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4577 } 4578 4579 return GV; 4580 } 4581 4582 llvm::Constant * 4583 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4584 const Decl *D = GD.getDecl(); 4585 4586 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4587 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4588 /*DontDefer=*/false, IsForDefinition); 4589 4590 if (isa<CXXMethodDecl>(D)) { 4591 auto FInfo = 4592 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4593 auto Ty = getTypes().GetFunctionType(*FInfo); 4594 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4595 IsForDefinition); 4596 } 4597 4598 if (isa<FunctionDecl>(D)) { 4599 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4600 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4601 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4602 IsForDefinition); 4603 } 4604 4605 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4606 } 4607 4608 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4609 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4610 llvm::Align Alignment) { 4611 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4612 llvm::GlobalVariable *OldGV = nullptr; 4613 4614 if (GV) { 4615 // Check if the variable has the right type. 4616 if (GV->getValueType() == Ty) 4617 return GV; 4618 4619 // Because C++ name mangling, the only way we can end up with an already 4620 // existing global with the same name is if it has been declared extern "C". 4621 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4622 OldGV = GV; 4623 } 4624 4625 // Create a new variable. 4626 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4627 Linkage, nullptr, Name); 4628 4629 if (OldGV) { 4630 // Replace occurrences of the old variable if needed. 4631 GV->takeName(OldGV); 4632 4633 if (!OldGV->use_empty()) { 4634 llvm::Constant *NewPtrForOldDecl = 4635 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4636 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4637 } 4638 4639 OldGV->eraseFromParent(); 4640 } 4641 4642 if (supportsCOMDAT() && GV->isWeakForLinker() && 4643 !GV->hasAvailableExternallyLinkage()) 4644 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4645 4646 GV->setAlignment(Alignment); 4647 4648 return GV; 4649 } 4650 4651 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4652 /// given global variable. If Ty is non-null and if the global doesn't exist, 4653 /// then it will be created with the specified type instead of whatever the 4654 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4655 /// that an actual global with type Ty will be returned, not conversion of a 4656 /// variable with the same mangled name but some other type. 4657 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4658 llvm::Type *Ty, 4659 ForDefinition_t IsForDefinition) { 4660 assert(D->hasGlobalStorage() && "Not a global variable"); 4661 QualType ASTTy = D->getType(); 4662 if (!Ty) 4663 Ty = getTypes().ConvertTypeForMem(ASTTy); 4664 4665 StringRef MangledName = getMangledName(D); 4666 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4667 IsForDefinition); 4668 } 4669 4670 /// CreateRuntimeVariable - Create a new runtime global variable with the 4671 /// specified type and name. 4672 llvm::Constant * 4673 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4674 StringRef Name) { 4675 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4676 : LangAS::Default; 4677 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4678 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4679 return Ret; 4680 } 4681 4682 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4683 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4684 4685 StringRef MangledName = getMangledName(D); 4686 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4687 4688 // We already have a definition, not declaration, with the same mangled name. 4689 // Emitting of declaration is not required (and actually overwrites emitted 4690 // definition). 4691 if (GV && !GV->isDeclaration()) 4692 return; 4693 4694 // If we have not seen a reference to this variable yet, place it into the 4695 // deferred declarations table to be emitted if needed later. 4696 if (!MustBeEmitted(D) && !GV) { 4697 DeferredDecls[MangledName] = D; 4698 return; 4699 } 4700 4701 // The tentative definition is the only definition. 4702 EmitGlobalVarDefinition(D); 4703 } 4704 4705 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4706 EmitExternalVarDeclaration(D); 4707 } 4708 4709 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4710 return Context.toCharUnitsFromBits( 4711 getDataLayout().getTypeStoreSizeInBits(Ty)); 4712 } 4713 4714 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4715 if (LangOpts.OpenCL) { 4716 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4717 assert(AS == LangAS::opencl_global || 4718 AS == LangAS::opencl_global_device || 4719 AS == LangAS::opencl_global_host || 4720 AS == LangAS::opencl_constant || 4721 AS == LangAS::opencl_local || 4722 AS >= LangAS::FirstTargetAddressSpace); 4723 return AS; 4724 } 4725 4726 if (LangOpts.SYCLIsDevice && 4727 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4728 return LangAS::sycl_global; 4729 4730 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4731 if (D) { 4732 if (D->hasAttr<CUDAConstantAttr>()) 4733 return LangAS::cuda_constant; 4734 if (D->hasAttr<CUDASharedAttr>()) 4735 return LangAS::cuda_shared; 4736 if (D->hasAttr<CUDADeviceAttr>()) 4737 return LangAS::cuda_device; 4738 if (D->getType().isConstQualified()) 4739 return LangAS::cuda_constant; 4740 } 4741 return LangAS::cuda_device; 4742 } 4743 4744 if (LangOpts.OpenMP) { 4745 LangAS AS; 4746 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4747 return AS; 4748 } 4749 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4750 } 4751 4752 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4753 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4754 if (LangOpts.OpenCL) 4755 return LangAS::opencl_constant; 4756 if (LangOpts.SYCLIsDevice) 4757 return LangAS::sycl_global; 4758 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4759 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4760 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4761 // with OpVariable instructions with Generic storage class which is not 4762 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4763 // UniformConstant storage class is not viable as pointers to it may not be 4764 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4765 return LangAS::cuda_device; 4766 if (auto AS = getTarget().getConstantAddressSpace()) 4767 return *AS; 4768 return LangAS::Default; 4769 } 4770 4771 // In address space agnostic languages, string literals are in default address 4772 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4773 // emitted in constant address space in LLVM IR. To be consistent with other 4774 // parts of AST, string literal global variables in constant address space 4775 // need to be casted to default address space before being put into address 4776 // map and referenced by other part of CodeGen. 4777 // In OpenCL, string literals are in constant address space in AST, therefore 4778 // they should not be casted to default address space. 4779 static llvm::Constant * 4780 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4781 llvm::GlobalVariable *GV) { 4782 llvm::Constant *Cast = GV; 4783 if (!CGM.getLangOpts().OpenCL) { 4784 auto AS = CGM.GetGlobalConstantAddressSpace(); 4785 if (AS != LangAS::Default) 4786 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4787 CGM, GV, AS, LangAS::Default, 4788 GV->getValueType()->getPointerTo( 4789 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4790 } 4791 return Cast; 4792 } 4793 4794 template<typename SomeDecl> 4795 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4796 llvm::GlobalValue *GV) { 4797 if (!getLangOpts().CPlusPlus) 4798 return; 4799 4800 // Must have 'used' attribute, or else inline assembly can't rely on 4801 // the name existing. 4802 if (!D->template hasAttr<UsedAttr>()) 4803 return; 4804 4805 // Must have internal linkage and an ordinary name. 4806 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4807 return; 4808 4809 // Must be in an extern "C" context. Entities declared directly within 4810 // a record are not extern "C" even if the record is in such a context. 4811 const SomeDecl *First = D->getFirstDecl(); 4812 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4813 return; 4814 4815 // OK, this is an internal linkage entity inside an extern "C" linkage 4816 // specification. Make a note of that so we can give it the "expected" 4817 // mangled name if nothing else is using that name. 4818 std::pair<StaticExternCMap::iterator, bool> R = 4819 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4820 4821 // If we have multiple internal linkage entities with the same name 4822 // in extern "C" regions, none of them gets that name. 4823 if (!R.second) 4824 R.first->second = nullptr; 4825 } 4826 4827 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4828 if (!CGM.supportsCOMDAT()) 4829 return false; 4830 4831 if (D.hasAttr<SelectAnyAttr>()) 4832 return true; 4833 4834 GVALinkage Linkage; 4835 if (auto *VD = dyn_cast<VarDecl>(&D)) 4836 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4837 else 4838 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4839 4840 switch (Linkage) { 4841 case GVA_Internal: 4842 case GVA_AvailableExternally: 4843 case GVA_StrongExternal: 4844 return false; 4845 case GVA_DiscardableODR: 4846 case GVA_StrongODR: 4847 return true; 4848 } 4849 llvm_unreachable("No such linkage"); 4850 } 4851 4852 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4853 llvm::GlobalObject &GO) { 4854 if (!shouldBeInCOMDAT(*this, D)) 4855 return; 4856 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4857 } 4858 4859 /// Pass IsTentative as true if you want to create a tentative definition. 4860 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4861 bool IsTentative) { 4862 // OpenCL global variables of sampler type are translated to function calls, 4863 // therefore no need to be translated. 4864 QualType ASTTy = D->getType(); 4865 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4866 return; 4867 4868 // If this is OpenMP device, check if it is legal to emit this global 4869 // normally. 4870 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4871 OpenMPRuntime->emitTargetGlobalVariable(D)) 4872 return; 4873 4874 llvm::TrackingVH<llvm::Constant> Init; 4875 bool NeedsGlobalCtor = false; 4876 // Whether the definition of the variable is available externally. 4877 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 4878 // since this is the job for its original source. 4879 bool IsDefinitionAvailableExternally = 4880 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 4881 bool NeedsGlobalDtor = 4882 !IsDefinitionAvailableExternally && 4883 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4884 4885 const VarDecl *InitDecl; 4886 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4887 4888 std::optional<ConstantEmitter> emitter; 4889 4890 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4891 // as part of their declaration." Sema has already checked for 4892 // error cases, so we just need to set Init to UndefValue. 4893 bool IsCUDASharedVar = 4894 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4895 // Shadows of initialized device-side global variables are also left 4896 // undefined. 4897 // Managed Variables should be initialized on both host side and device side. 4898 bool IsCUDAShadowVar = 4899 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4900 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4901 D->hasAttr<CUDASharedAttr>()); 4902 bool IsCUDADeviceShadowVar = 4903 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4904 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4905 D->getType()->isCUDADeviceBuiltinTextureType()); 4906 if (getLangOpts().CUDA && 4907 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4908 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4909 else if (D->hasAttr<LoaderUninitializedAttr>()) 4910 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4911 else if (!InitExpr) { 4912 // This is a tentative definition; tentative definitions are 4913 // implicitly initialized with { 0 }. 4914 // 4915 // Note that tentative definitions are only emitted at the end of 4916 // a translation unit, so they should never have incomplete 4917 // type. In addition, EmitTentativeDefinition makes sure that we 4918 // never attempt to emit a tentative definition if a real one 4919 // exists. A use may still exists, however, so we still may need 4920 // to do a RAUW. 4921 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4922 Init = EmitNullConstant(D->getType()); 4923 } else { 4924 initializedGlobalDecl = GlobalDecl(D); 4925 emitter.emplace(*this); 4926 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4927 if (!Initializer) { 4928 QualType T = InitExpr->getType(); 4929 if (D->getType()->isReferenceType()) 4930 T = D->getType(); 4931 4932 if (getLangOpts().CPlusPlus) { 4933 if (InitDecl->hasFlexibleArrayInit(getContext())) 4934 ErrorUnsupported(D, "flexible array initializer"); 4935 Init = EmitNullConstant(T); 4936 4937 if (!IsDefinitionAvailableExternally) 4938 NeedsGlobalCtor = true; 4939 } else { 4940 ErrorUnsupported(D, "static initializer"); 4941 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4942 } 4943 } else { 4944 Init = Initializer; 4945 // We don't need an initializer, so remove the entry for the delayed 4946 // initializer position (just in case this entry was delayed) if we 4947 // also don't need to register a destructor. 4948 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4949 DelayedCXXInitPosition.erase(D); 4950 4951 #ifndef NDEBUG 4952 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4953 InitDecl->getFlexibleArrayInitChars(getContext()); 4954 CharUnits CstSize = CharUnits::fromQuantity( 4955 getDataLayout().getTypeAllocSize(Init->getType())); 4956 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4957 #endif 4958 } 4959 } 4960 4961 llvm::Type* InitType = Init->getType(); 4962 llvm::Constant *Entry = 4963 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4964 4965 // Strip off pointer casts if we got them. 4966 Entry = Entry->stripPointerCasts(); 4967 4968 // Entry is now either a Function or GlobalVariable. 4969 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4970 4971 // We have a definition after a declaration with the wrong type. 4972 // We must make a new GlobalVariable* and update everything that used OldGV 4973 // (a declaration or tentative definition) with the new GlobalVariable* 4974 // (which will be a definition). 4975 // 4976 // This happens if there is a prototype for a global (e.g. 4977 // "extern int x[];") and then a definition of a different type (e.g. 4978 // "int x[10];"). This also happens when an initializer has a different type 4979 // from the type of the global (this happens with unions). 4980 if (!GV || GV->getValueType() != InitType || 4981 GV->getType()->getAddressSpace() != 4982 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4983 4984 // Move the old entry aside so that we'll create a new one. 4985 Entry->setName(StringRef()); 4986 4987 // Make a new global with the correct type, this is now guaranteed to work. 4988 GV = cast<llvm::GlobalVariable>( 4989 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4990 ->stripPointerCasts()); 4991 4992 // Replace all uses of the old global with the new global 4993 llvm::Constant *NewPtrForOldDecl = 4994 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4995 Entry->getType()); 4996 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4997 4998 // Erase the old global, since it is no longer used. 4999 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5000 } 5001 5002 MaybeHandleStaticInExternC(D, GV); 5003 5004 if (D->hasAttr<AnnotateAttr>()) 5005 AddGlobalAnnotations(D, GV); 5006 5007 // Set the llvm linkage type as appropriate. 5008 llvm::GlobalValue::LinkageTypes Linkage = 5009 getLLVMLinkageVarDefinition(D, GV->isConstant()); 5010 5011 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5012 // the device. [...]" 5013 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5014 // __device__, declares a variable that: [...] 5015 // Is accessible from all the threads within the grid and from the host 5016 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5017 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5018 if (GV && LangOpts.CUDA) { 5019 if (LangOpts.CUDAIsDevice) { 5020 if (Linkage != llvm::GlobalValue::InternalLinkage && 5021 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5022 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5023 D->getType()->isCUDADeviceBuiltinTextureType())) 5024 GV->setExternallyInitialized(true); 5025 } else { 5026 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5027 } 5028 getCUDARuntime().handleVarRegistration(D, *GV); 5029 } 5030 5031 GV->setInitializer(Init); 5032 if (emitter) 5033 emitter->finalize(GV); 5034 5035 // If it is safe to mark the global 'constant', do so now. 5036 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5037 isTypeConstant(D->getType(), true, true)); 5038 5039 // If it is in a read-only section, mark it 'constant'. 5040 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5041 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5042 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5043 GV->setConstant(true); 5044 } 5045 5046 CharUnits AlignVal = getContext().getDeclAlign(D); 5047 // Check for alignment specifed in an 'omp allocate' directive. 5048 if (std::optional<CharUnits> AlignValFromAllocate = 5049 getOMPAllocateAlignment(D)) 5050 AlignVal = *AlignValFromAllocate; 5051 GV->setAlignment(AlignVal.getAsAlign()); 5052 5053 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5054 // function is only defined alongside the variable, not also alongside 5055 // callers. Normally, all accesses to a thread_local go through the 5056 // thread-wrapper in order to ensure initialization has occurred, underlying 5057 // variable will never be used other than the thread-wrapper, so it can be 5058 // converted to internal linkage. 5059 // 5060 // However, if the variable has the 'constinit' attribute, it _can_ be 5061 // referenced directly, without calling the thread-wrapper, so the linkage 5062 // must not be changed. 5063 // 5064 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5065 // weak or linkonce, the de-duplication semantics are important to preserve, 5066 // so we don't change the linkage. 5067 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5068 Linkage == llvm::GlobalValue::ExternalLinkage && 5069 Context.getTargetInfo().getTriple().isOSDarwin() && 5070 !D->hasAttr<ConstInitAttr>()) 5071 Linkage = llvm::GlobalValue::InternalLinkage; 5072 5073 GV->setLinkage(Linkage); 5074 if (D->hasAttr<DLLImportAttr>()) 5075 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5076 else if (D->hasAttr<DLLExportAttr>()) 5077 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5078 else 5079 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5080 5081 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5082 // common vars aren't constant even if declared const. 5083 GV->setConstant(false); 5084 // Tentative definition of global variables may be initialized with 5085 // non-zero null pointers. In this case they should have weak linkage 5086 // since common linkage must have zero initializer and must not have 5087 // explicit section therefore cannot have non-zero initial value. 5088 if (!GV->getInitializer()->isNullValue()) 5089 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5090 } 5091 5092 setNonAliasAttributes(D, GV); 5093 5094 if (D->getTLSKind() && !GV->isThreadLocal()) { 5095 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5096 CXXThreadLocals.push_back(D); 5097 setTLSMode(GV, *D); 5098 } 5099 5100 maybeSetTrivialComdat(*D, *GV); 5101 5102 // Emit the initializer function if necessary. 5103 if (NeedsGlobalCtor || NeedsGlobalDtor) 5104 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5105 5106 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5107 5108 // Emit global variable debug information. 5109 if (CGDebugInfo *DI = getModuleDebugInfo()) 5110 if (getCodeGenOpts().hasReducedDebugInfo()) 5111 DI->EmitGlobalVariable(GV, D); 5112 } 5113 5114 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5115 if (CGDebugInfo *DI = getModuleDebugInfo()) 5116 if (getCodeGenOpts().hasReducedDebugInfo()) { 5117 QualType ASTTy = D->getType(); 5118 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5119 llvm::Constant *GV = 5120 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5121 DI->EmitExternalVariable( 5122 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5123 } 5124 } 5125 5126 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5127 CodeGenModule &CGM, const VarDecl *D, 5128 bool NoCommon) { 5129 // Don't give variables common linkage if -fno-common was specified unless it 5130 // was overridden by a NoCommon attribute. 5131 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5132 return true; 5133 5134 // C11 6.9.2/2: 5135 // A declaration of an identifier for an object that has file scope without 5136 // an initializer, and without a storage-class specifier or with the 5137 // storage-class specifier static, constitutes a tentative definition. 5138 if (D->getInit() || D->hasExternalStorage()) 5139 return true; 5140 5141 // A variable cannot be both common and exist in a section. 5142 if (D->hasAttr<SectionAttr>()) 5143 return true; 5144 5145 // A variable cannot be both common and exist in a section. 5146 // We don't try to determine which is the right section in the front-end. 5147 // If no specialized section name is applicable, it will resort to default. 5148 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5149 D->hasAttr<PragmaClangDataSectionAttr>() || 5150 D->hasAttr<PragmaClangRelroSectionAttr>() || 5151 D->hasAttr<PragmaClangRodataSectionAttr>()) 5152 return true; 5153 5154 // Thread local vars aren't considered common linkage. 5155 if (D->getTLSKind()) 5156 return true; 5157 5158 // Tentative definitions marked with WeakImportAttr are true definitions. 5159 if (D->hasAttr<WeakImportAttr>()) 5160 return true; 5161 5162 // A variable cannot be both common and exist in a comdat. 5163 if (shouldBeInCOMDAT(CGM, *D)) 5164 return true; 5165 5166 // Declarations with a required alignment do not have common linkage in MSVC 5167 // mode. 5168 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5169 if (D->hasAttr<AlignedAttr>()) 5170 return true; 5171 QualType VarType = D->getType(); 5172 if (Context.isAlignmentRequired(VarType)) 5173 return true; 5174 5175 if (const auto *RT = VarType->getAs<RecordType>()) { 5176 const RecordDecl *RD = RT->getDecl(); 5177 for (const FieldDecl *FD : RD->fields()) { 5178 if (FD->isBitField()) 5179 continue; 5180 if (FD->hasAttr<AlignedAttr>()) 5181 return true; 5182 if (Context.isAlignmentRequired(FD->getType())) 5183 return true; 5184 } 5185 } 5186 } 5187 5188 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5189 // common symbols, so symbols with greater alignment requirements cannot be 5190 // common. 5191 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5192 // alignments for common symbols via the aligncomm directive, so this 5193 // restriction only applies to MSVC environments. 5194 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5195 Context.getTypeAlignIfKnown(D->getType()) > 5196 Context.toBits(CharUnits::fromQuantity(32))) 5197 return true; 5198 5199 return false; 5200 } 5201 5202 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5203 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5204 if (Linkage == GVA_Internal) 5205 return llvm::Function::InternalLinkage; 5206 5207 if (D->hasAttr<WeakAttr>()) 5208 return llvm::GlobalVariable::WeakAnyLinkage; 5209 5210 if (const auto *FD = D->getAsFunction()) 5211 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5212 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5213 5214 // We are guaranteed to have a strong definition somewhere else, 5215 // so we can use available_externally linkage. 5216 if (Linkage == GVA_AvailableExternally) 5217 return llvm::GlobalValue::AvailableExternallyLinkage; 5218 5219 // Note that Apple's kernel linker doesn't support symbol 5220 // coalescing, so we need to avoid linkonce and weak linkages there. 5221 // Normally, this means we just map to internal, but for explicit 5222 // instantiations we'll map to external. 5223 5224 // In C++, the compiler has to emit a definition in every translation unit 5225 // that references the function. We should use linkonce_odr because 5226 // a) if all references in this translation unit are optimized away, we 5227 // don't need to codegen it. b) if the function persists, it needs to be 5228 // merged with other definitions. c) C++ has the ODR, so we know the 5229 // definition is dependable. 5230 if (Linkage == GVA_DiscardableODR) 5231 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5232 : llvm::Function::InternalLinkage; 5233 5234 // An explicit instantiation of a template has weak linkage, since 5235 // explicit instantiations can occur in multiple translation units 5236 // and must all be equivalent. However, we are not allowed to 5237 // throw away these explicit instantiations. 5238 // 5239 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5240 // so say that CUDA templates are either external (for kernels) or internal. 5241 // This lets llvm perform aggressive inter-procedural optimizations. For 5242 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5243 // therefore we need to follow the normal linkage paradigm. 5244 if (Linkage == GVA_StrongODR) { 5245 if (getLangOpts().AppleKext) 5246 return llvm::Function::ExternalLinkage; 5247 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5248 !getLangOpts().GPURelocatableDeviceCode) 5249 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5250 : llvm::Function::InternalLinkage; 5251 return llvm::Function::WeakODRLinkage; 5252 } 5253 5254 // C++ doesn't have tentative definitions and thus cannot have common 5255 // linkage. 5256 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5257 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5258 CodeGenOpts.NoCommon)) 5259 return llvm::GlobalVariable::CommonLinkage; 5260 5261 // selectany symbols are externally visible, so use weak instead of 5262 // linkonce. MSVC optimizes away references to const selectany globals, so 5263 // all definitions should be the same and ODR linkage should be used. 5264 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5265 if (D->hasAttr<SelectAnyAttr>()) 5266 return llvm::GlobalVariable::WeakODRLinkage; 5267 5268 // Otherwise, we have strong external linkage. 5269 assert(Linkage == GVA_StrongExternal); 5270 return llvm::GlobalVariable::ExternalLinkage; 5271 } 5272 5273 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5274 const VarDecl *VD, bool IsConstant) { 5275 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5276 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5277 } 5278 5279 /// Replace the uses of a function that was declared with a non-proto type. 5280 /// We want to silently drop extra arguments from call sites 5281 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5282 llvm::Function *newFn) { 5283 // Fast path. 5284 if (old->use_empty()) return; 5285 5286 llvm::Type *newRetTy = newFn->getReturnType(); 5287 SmallVector<llvm::Value*, 4> newArgs; 5288 5289 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5290 ui != ue; ) { 5291 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5292 llvm::User *user = use->getUser(); 5293 5294 // Recognize and replace uses of bitcasts. Most calls to 5295 // unprototyped functions will use bitcasts. 5296 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5297 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5298 replaceUsesOfNonProtoConstant(bitcast, newFn); 5299 continue; 5300 } 5301 5302 // Recognize calls to the function. 5303 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5304 if (!callSite) continue; 5305 if (!callSite->isCallee(&*use)) 5306 continue; 5307 5308 // If the return types don't match exactly, then we can't 5309 // transform this call unless it's dead. 5310 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5311 continue; 5312 5313 // Get the call site's attribute list. 5314 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5315 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5316 5317 // If the function was passed too few arguments, don't transform. 5318 unsigned newNumArgs = newFn->arg_size(); 5319 if (callSite->arg_size() < newNumArgs) 5320 continue; 5321 5322 // If extra arguments were passed, we silently drop them. 5323 // If any of the types mismatch, we don't transform. 5324 unsigned argNo = 0; 5325 bool dontTransform = false; 5326 for (llvm::Argument &A : newFn->args()) { 5327 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5328 dontTransform = true; 5329 break; 5330 } 5331 5332 // Add any parameter attributes. 5333 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5334 argNo++; 5335 } 5336 if (dontTransform) 5337 continue; 5338 5339 // Okay, we can transform this. Create the new call instruction and copy 5340 // over the required information. 5341 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5342 5343 // Copy over any operand bundles. 5344 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5345 callSite->getOperandBundlesAsDefs(newBundles); 5346 5347 llvm::CallBase *newCall; 5348 if (isa<llvm::CallInst>(callSite)) { 5349 newCall = 5350 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5351 } else { 5352 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5353 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5354 oldInvoke->getUnwindDest(), newArgs, 5355 newBundles, "", callSite); 5356 } 5357 newArgs.clear(); // for the next iteration 5358 5359 if (!newCall->getType()->isVoidTy()) 5360 newCall->takeName(callSite); 5361 newCall->setAttributes( 5362 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5363 oldAttrs.getRetAttrs(), newArgAttrs)); 5364 newCall->setCallingConv(callSite->getCallingConv()); 5365 5366 // Finally, remove the old call, replacing any uses with the new one. 5367 if (!callSite->use_empty()) 5368 callSite->replaceAllUsesWith(newCall); 5369 5370 // Copy debug location attached to CI. 5371 if (callSite->getDebugLoc()) 5372 newCall->setDebugLoc(callSite->getDebugLoc()); 5373 5374 callSite->eraseFromParent(); 5375 } 5376 } 5377 5378 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5379 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5380 /// existing call uses of the old function in the module, this adjusts them to 5381 /// call the new function directly. 5382 /// 5383 /// This is not just a cleanup: the always_inline pass requires direct calls to 5384 /// functions to be able to inline them. If there is a bitcast in the way, it 5385 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5386 /// run at -O0. 5387 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5388 llvm::Function *NewFn) { 5389 // If we're redefining a global as a function, don't transform it. 5390 if (!isa<llvm::Function>(Old)) return; 5391 5392 replaceUsesOfNonProtoConstant(Old, NewFn); 5393 } 5394 5395 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5396 auto DK = VD->isThisDeclarationADefinition(); 5397 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5398 return; 5399 5400 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5401 // If we have a definition, this might be a deferred decl. If the 5402 // instantiation is explicit, make sure we emit it at the end. 5403 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5404 GetAddrOfGlobalVar(VD); 5405 5406 EmitTopLevelDecl(VD); 5407 } 5408 5409 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5410 llvm::GlobalValue *GV) { 5411 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5412 5413 // Compute the function info and LLVM type. 5414 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5415 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5416 5417 // Get or create the prototype for the function. 5418 if (!GV || (GV->getValueType() != Ty)) 5419 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5420 /*DontDefer=*/true, 5421 ForDefinition)); 5422 5423 // Already emitted. 5424 if (!GV->isDeclaration()) 5425 return; 5426 5427 // We need to set linkage and visibility on the function before 5428 // generating code for it because various parts of IR generation 5429 // want to propagate this information down (e.g. to local static 5430 // declarations). 5431 auto *Fn = cast<llvm::Function>(GV); 5432 setFunctionLinkage(GD, Fn); 5433 5434 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5435 setGVProperties(Fn, GD); 5436 5437 MaybeHandleStaticInExternC(D, Fn); 5438 5439 maybeSetTrivialComdat(*D, *Fn); 5440 5441 // Set CodeGen attributes that represent floating point environment. 5442 setLLVMFunctionFEnvAttributes(D, Fn); 5443 5444 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5445 5446 setNonAliasAttributes(GD, Fn); 5447 SetLLVMFunctionAttributesForDefinition(D, Fn); 5448 5449 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5450 AddGlobalCtor(Fn, CA->getPriority()); 5451 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5452 AddGlobalDtor(Fn, DA->getPriority(), true); 5453 if (D->hasAttr<AnnotateAttr>()) 5454 AddGlobalAnnotations(D, Fn); 5455 } 5456 5457 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5458 const auto *D = cast<ValueDecl>(GD.getDecl()); 5459 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5460 assert(AA && "Not an alias?"); 5461 5462 StringRef MangledName = getMangledName(GD); 5463 5464 if (AA->getAliasee() == MangledName) { 5465 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5466 return; 5467 } 5468 5469 // If there is a definition in the module, then it wins over the alias. 5470 // This is dubious, but allow it to be safe. Just ignore the alias. 5471 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5472 if (Entry && !Entry->isDeclaration()) 5473 return; 5474 5475 Aliases.push_back(GD); 5476 5477 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5478 5479 // Create a reference to the named value. This ensures that it is emitted 5480 // if a deferred decl. 5481 llvm::Constant *Aliasee; 5482 llvm::GlobalValue::LinkageTypes LT; 5483 if (isa<llvm::FunctionType>(DeclTy)) { 5484 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5485 /*ForVTable=*/false); 5486 LT = getFunctionLinkage(GD); 5487 } else { 5488 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5489 /*D=*/nullptr); 5490 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5491 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5492 else 5493 LT = getFunctionLinkage(GD); 5494 } 5495 5496 // Create the new alias itself, but don't set a name yet. 5497 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5498 auto *GA = 5499 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5500 5501 if (Entry) { 5502 if (GA->getAliasee() == Entry) { 5503 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5504 return; 5505 } 5506 5507 assert(Entry->isDeclaration()); 5508 5509 // If there is a declaration in the module, then we had an extern followed 5510 // by the alias, as in: 5511 // extern int test6(); 5512 // ... 5513 // int test6() __attribute__((alias("test7"))); 5514 // 5515 // Remove it and replace uses of it with the alias. 5516 GA->takeName(Entry); 5517 5518 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5519 Entry->getType())); 5520 Entry->eraseFromParent(); 5521 } else { 5522 GA->setName(MangledName); 5523 } 5524 5525 // Set attributes which are particular to an alias; this is a 5526 // specialization of the attributes which may be set on a global 5527 // variable/function. 5528 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5529 D->isWeakImported()) { 5530 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5531 } 5532 5533 if (const auto *VD = dyn_cast<VarDecl>(D)) 5534 if (VD->getTLSKind()) 5535 setTLSMode(GA, *VD); 5536 5537 SetCommonAttributes(GD, GA); 5538 5539 // Emit global alias debug information. 5540 if (isa<VarDecl>(D)) 5541 if (CGDebugInfo *DI = getModuleDebugInfo()) 5542 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5543 } 5544 5545 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5546 const auto *D = cast<ValueDecl>(GD.getDecl()); 5547 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5548 assert(IFA && "Not an ifunc?"); 5549 5550 StringRef MangledName = getMangledName(GD); 5551 5552 if (IFA->getResolver() == MangledName) { 5553 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5554 return; 5555 } 5556 5557 // Report an error if some definition overrides ifunc. 5558 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5559 if (Entry && !Entry->isDeclaration()) { 5560 GlobalDecl OtherGD; 5561 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5562 DiagnosedConflictingDefinitions.insert(GD).second) { 5563 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5564 << MangledName; 5565 Diags.Report(OtherGD.getDecl()->getLocation(), 5566 diag::note_previous_definition); 5567 } 5568 return; 5569 } 5570 5571 Aliases.push_back(GD); 5572 5573 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5574 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5575 llvm::Constant *Resolver = 5576 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5577 /*ForVTable=*/false); 5578 llvm::GlobalIFunc *GIF = 5579 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5580 "", Resolver, &getModule()); 5581 if (Entry) { 5582 if (GIF->getResolver() == Entry) { 5583 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5584 return; 5585 } 5586 assert(Entry->isDeclaration()); 5587 5588 // If there is a declaration in the module, then we had an extern followed 5589 // by the ifunc, as in: 5590 // extern int test(); 5591 // ... 5592 // int test() __attribute__((ifunc("resolver"))); 5593 // 5594 // Remove it and replace uses of it with the ifunc. 5595 GIF->takeName(Entry); 5596 5597 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5598 Entry->getType())); 5599 Entry->eraseFromParent(); 5600 } else 5601 GIF->setName(MangledName); 5602 5603 SetCommonAttributes(GD, GIF); 5604 } 5605 5606 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5607 ArrayRef<llvm::Type*> Tys) { 5608 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5609 Tys); 5610 } 5611 5612 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5613 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5614 const StringLiteral *Literal, bool TargetIsLSB, 5615 bool &IsUTF16, unsigned &StringLength) { 5616 StringRef String = Literal->getString(); 5617 unsigned NumBytes = String.size(); 5618 5619 // Check for simple case. 5620 if (!Literal->containsNonAsciiOrNull()) { 5621 StringLength = NumBytes; 5622 return *Map.insert(std::make_pair(String, nullptr)).first; 5623 } 5624 5625 // Otherwise, convert the UTF8 literals into a string of shorts. 5626 IsUTF16 = true; 5627 5628 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5629 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5630 llvm::UTF16 *ToPtr = &ToBuf[0]; 5631 5632 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5633 ToPtr + NumBytes, llvm::strictConversion); 5634 5635 // ConvertUTF8toUTF16 returns the length in ToPtr. 5636 StringLength = ToPtr - &ToBuf[0]; 5637 5638 // Add an explicit null. 5639 *ToPtr = 0; 5640 return *Map.insert(std::make_pair( 5641 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5642 (StringLength + 1) * 2), 5643 nullptr)).first; 5644 } 5645 5646 ConstantAddress 5647 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5648 unsigned StringLength = 0; 5649 bool isUTF16 = false; 5650 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5651 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5652 getDataLayout().isLittleEndian(), isUTF16, 5653 StringLength); 5654 5655 if (auto *C = Entry.second) 5656 return ConstantAddress( 5657 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5658 5659 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5660 llvm::Constant *Zeros[] = { Zero, Zero }; 5661 5662 const ASTContext &Context = getContext(); 5663 const llvm::Triple &Triple = getTriple(); 5664 5665 const auto CFRuntime = getLangOpts().CFRuntime; 5666 const bool IsSwiftABI = 5667 static_cast<unsigned>(CFRuntime) >= 5668 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5669 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5670 5671 // If we don't already have it, get __CFConstantStringClassReference. 5672 if (!CFConstantStringClassRef) { 5673 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5674 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5675 Ty = llvm::ArrayType::get(Ty, 0); 5676 5677 switch (CFRuntime) { 5678 default: break; 5679 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5680 case LangOptions::CoreFoundationABI::Swift5_0: 5681 CFConstantStringClassName = 5682 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5683 : "$s10Foundation19_NSCFConstantStringCN"; 5684 Ty = IntPtrTy; 5685 break; 5686 case LangOptions::CoreFoundationABI::Swift4_2: 5687 CFConstantStringClassName = 5688 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5689 : "$S10Foundation19_NSCFConstantStringCN"; 5690 Ty = IntPtrTy; 5691 break; 5692 case LangOptions::CoreFoundationABI::Swift4_1: 5693 CFConstantStringClassName = 5694 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5695 : "__T010Foundation19_NSCFConstantStringCN"; 5696 Ty = IntPtrTy; 5697 break; 5698 } 5699 5700 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5701 5702 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5703 llvm::GlobalValue *GV = nullptr; 5704 5705 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5706 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5707 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5708 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5709 5710 const VarDecl *VD = nullptr; 5711 for (const auto *Result : DC->lookup(&II)) 5712 if ((VD = dyn_cast<VarDecl>(Result))) 5713 break; 5714 5715 if (Triple.isOSBinFormatELF()) { 5716 if (!VD) 5717 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5718 } else { 5719 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5720 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5721 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5722 else 5723 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5724 } 5725 5726 setDSOLocal(GV); 5727 } 5728 } 5729 5730 // Decay array -> ptr 5731 CFConstantStringClassRef = 5732 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5733 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5734 } 5735 5736 QualType CFTy = Context.getCFConstantStringType(); 5737 5738 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5739 5740 ConstantInitBuilder Builder(*this); 5741 auto Fields = Builder.beginStruct(STy); 5742 5743 // Class pointer. 5744 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5745 5746 // Flags. 5747 if (IsSwiftABI) { 5748 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5749 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5750 } else { 5751 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5752 } 5753 5754 // String pointer. 5755 llvm::Constant *C = nullptr; 5756 if (isUTF16) { 5757 auto Arr = llvm::ArrayRef( 5758 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5759 Entry.first().size() / 2); 5760 C = llvm::ConstantDataArray::get(VMContext, Arr); 5761 } else { 5762 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5763 } 5764 5765 // Note: -fwritable-strings doesn't make the backing store strings of 5766 // CFStrings writable. (See <rdar://problem/10657500>) 5767 auto *GV = 5768 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5769 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5770 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5771 // Don't enforce the target's minimum global alignment, since the only use 5772 // of the string is via this class initializer. 5773 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5774 : Context.getTypeAlignInChars(Context.CharTy); 5775 GV->setAlignment(Align.getAsAlign()); 5776 5777 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5778 // Without it LLVM can merge the string with a non unnamed_addr one during 5779 // LTO. Doing that changes the section it ends in, which surprises ld64. 5780 if (Triple.isOSBinFormatMachO()) 5781 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5782 : "__TEXT,__cstring,cstring_literals"); 5783 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5784 // the static linker to adjust permissions to read-only later on. 5785 else if (Triple.isOSBinFormatELF()) 5786 GV->setSection(".rodata"); 5787 5788 // String. 5789 llvm::Constant *Str = 5790 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5791 5792 if (isUTF16) 5793 // Cast the UTF16 string to the correct type. 5794 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5795 Fields.add(Str); 5796 5797 // String length. 5798 llvm::IntegerType *LengthTy = 5799 llvm::IntegerType::get(getModule().getContext(), 5800 Context.getTargetInfo().getLongWidth()); 5801 if (IsSwiftABI) { 5802 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5803 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5804 LengthTy = Int32Ty; 5805 else 5806 LengthTy = IntPtrTy; 5807 } 5808 Fields.addInt(LengthTy, StringLength); 5809 5810 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5811 // properly aligned on 32-bit platforms. 5812 CharUnits Alignment = 5813 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5814 5815 // The struct. 5816 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5817 /*isConstant=*/false, 5818 llvm::GlobalVariable::PrivateLinkage); 5819 GV->addAttribute("objc_arc_inert"); 5820 switch (Triple.getObjectFormat()) { 5821 case llvm::Triple::UnknownObjectFormat: 5822 llvm_unreachable("unknown file format"); 5823 case llvm::Triple::DXContainer: 5824 case llvm::Triple::GOFF: 5825 case llvm::Triple::SPIRV: 5826 case llvm::Triple::XCOFF: 5827 llvm_unreachable("unimplemented"); 5828 case llvm::Triple::COFF: 5829 case llvm::Triple::ELF: 5830 case llvm::Triple::Wasm: 5831 GV->setSection("cfstring"); 5832 break; 5833 case llvm::Triple::MachO: 5834 GV->setSection("__DATA,__cfstring"); 5835 break; 5836 } 5837 Entry.second = GV; 5838 5839 return ConstantAddress(GV, GV->getValueType(), Alignment); 5840 } 5841 5842 bool CodeGenModule::getExpressionLocationsEnabled() const { 5843 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5844 } 5845 5846 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5847 if (ObjCFastEnumerationStateType.isNull()) { 5848 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5849 D->startDefinition(); 5850 5851 QualType FieldTypes[] = { 5852 Context.UnsignedLongTy, 5853 Context.getPointerType(Context.getObjCIdType()), 5854 Context.getPointerType(Context.UnsignedLongTy), 5855 Context.getConstantArrayType(Context.UnsignedLongTy, 5856 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5857 }; 5858 5859 for (size_t i = 0; i < 4; ++i) { 5860 FieldDecl *Field = FieldDecl::Create(Context, 5861 D, 5862 SourceLocation(), 5863 SourceLocation(), nullptr, 5864 FieldTypes[i], /*TInfo=*/nullptr, 5865 /*BitWidth=*/nullptr, 5866 /*Mutable=*/false, 5867 ICIS_NoInit); 5868 Field->setAccess(AS_public); 5869 D->addDecl(Field); 5870 } 5871 5872 D->completeDefinition(); 5873 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5874 } 5875 5876 return ObjCFastEnumerationStateType; 5877 } 5878 5879 llvm::Constant * 5880 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5881 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5882 5883 // Don't emit it as the address of the string, emit the string data itself 5884 // as an inline array. 5885 if (E->getCharByteWidth() == 1) { 5886 SmallString<64> Str(E->getString()); 5887 5888 // Resize the string to the right size, which is indicated by its type. 5889 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5890 assert(CAT && "String literal not of constant array type!"); 5891 Str.resize(CAT->getSize().getZExtValue()); 5892 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5893 } 5894 5895 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5896 llvm::Type *ElemTy = AType->getElementType(); 5897 unsigned NumElements = AType->getNumElements(); 5898 5899 // Wide strings have either 2-byte or 4-byte elements. 5900 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5901 SmallVector<uint16_t, 32> Elements; 5902 Elements.reserve(NumElements); 5903 5904 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5905 Elements.push_back(E->getCodeUnit(i)); 5906 Elements.resize(NumElements); 5907 return llvm::ConstantDataArray::get(VMContext, Elements); 5908 } 5909 5910 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5911 SmallVector<uint32_t, 32> Elements; 5912 Elements.reserve(NumElements); 5913 5914 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5915 Elements.push_back(E->getCodeUnit(i)); 5916 Elements.resize(NumElements); 5917 return llvm::ConstantDataArray::get(VMContext, Elements); 5918 } 5919 5920 static llvm::GlobalVariable * 5921 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5922 CodeGenModule &CGM, StringRef GlobalName, 5923 CharUnits Alignment) { 5924 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5925 CGM.GetGlobalConstantAddressSpace()); 5926 5927 llvm::Module &M = CGM.getModule(); 5928 // Create a global variable for this string 5929 auto *GV = new llvm::GlobalVariable( 5930 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5931 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5932 GV->setAlignment(Alignment.getAsAlign()); 5933 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5934 if (GV->isWeakForLinker()) { 5935 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5936 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5937 } 5938 CGM.setDSOLocal(GV); 5939 5940 return GV; 5941 } 5942 5943 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5944 /// constant array for the given string literal. 5945 ConstantAddress 5946 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5947 StringRef Name) { 5948 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5949 5950 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5951 llvm::GlobalVariable **Entry = nullptr; 5952 if (!LangOpts.WritableStrings) { 5953 Entry = &ConstantStringMap[C]; 5954 if (auto GV = *Entry) { 5955 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5956 GV->setAlignment(Alignment.getAsAlign()); 5957 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5958 GV->getValueType(), Alignment); 5959 } 5960 } 5961 5962 SmallString<256> MangledNameBuffer; 5963 StringRef GlobalVariableName; 5964 llvm::GlobalValue::LinkageTypes LT; 5965 5966 // Mangle the string literal if that's how the ABI merges duplicate strings. 5967 // Don't do it if they are writable, since we don't want writes in one TU to 5968 // affect strings in another. 5969 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5970 !LangOpts.WritableStrings) { 5971 llvm::raw_svector_ostream Out(MangledNameBuffer); 5972 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5973 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5974 GlobalVariableName = MangledNameBuffer; 5975 } else { 5976 LT = llvm::GlobalValue::PrivateLinkage; 5977 GlobalVariableName = Name; 5978 } 5979 5980 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5981 5982 CGDebugInfo *DI = getModuleDebugInfo(); 5983 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5984 DI->AddStringLiteralDebugInfo(GV, S); 5985 5986 if (Entry) 5987 *Entry = GV; 5988 5989 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5990 5991 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5992 GV->getValueType(), Alignment); 5993 } 5994 5995 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5996 /// array for the given ObjCEncodeExpr node. 5997 ConstantAddress 5998 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5999 std::string Str; 6000 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6001 6002 return GetAddrOfConstantCString(Str); 6003 } 6004 6005 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6006 /// the literal and a terminating '\0' character. 6007 /// The result has pointer to array type. 6008 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6009 const std::string &Str, const char *GlobalName) { 6010 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6011 CharUnits Alignment = 6012 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6013 6014 llvm::Constant *C = 6015 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6016 6017 // Don't share any string literals if strings aren't constant. 6018 llvm::GlobalVariable **Entry = nullptr; 6019 if (!LangOpts.WritableStrings) { 6020 Entry = &ConstantStringMap[C]; 6021 if (auto GV = *Entry) { 6022 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6023 GV->setAlignment(Alignment.getAsAlign()); 6024 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6025 GV->getValueType(), Alignment); 6026 } 6027 } 6028 6029 // Get the default prefix if a name wasn't specified. 6030 if (!GlobalName) 6031 GlobalName = ".str"; 6032 // Create a global variable for this. 6033 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6034 GlobalName, Alignment); 6035 if (Entry) 6036 *Entry = GV; 6037 6038 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6039 GV->getValueType(), Alignment); 6040 } 6041 6042 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6043 const MaterializeTemporaryExpr *E, const Expr *Init) { 6044 assert((E->getStorageDuration() == SD_Static || 6045 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6046 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6047 6048 // If we're not materializing a subobject of the temporary, keep the 6049 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6050 QualType MaterializedType = Init->getType(); 6051 if (Init == E->getSubExpr()) 6052 MaterializedType = E->getType(); 6053 6054 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6055 6056 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6057 if (!InsertResult.second) { 6058 // We've seen this before: either we already created it or we're in the 6059 // process of doing so. 6060 if (!InsertResult.first->second) { 6061 // We recursively re-entered this function, probably during emission of 6062 // the initializer. Create a placeholder. We'll clean this up in the 6063 // outer call, at the end of this function. 6064 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6065 InsertResult.first->second = new llvm::GlobalVariable( 6066 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6067 nullptr); 6068 } 6069 return ConstantAddress(InsertResult.first->second, 6070 llvm::cast<llvm::GlobalVariable>( 6071 InsertResult.first->second->stripPointerCasts()) 6072 ->getValueType(), 6073 Align); 6074 } 6075 6076 // FIXME: If an externally-visible declaration extends multiple temporaries, 6077 // we need to give each temporary the same name in every translation unit (and 6078 // we also need to make the temporaries externally-visible). 6079 SmallString<256> Name; 6080 llvm::raw_svector_ostream Out(Name); 6081 getCXXABI().getMangleContext().mangleReferenceTemporary( 6082 VD, E->getManglingNumber(), Out); 6083 6084 APValue *Value = nullptr; 6085 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6086 // If the initializer of the extending declaration is a constant 6087 // initializer, we should have a cached constant initializer for this 6088 // temporary. Note that this might have a different value from the value 6089 // computed by evaluating the initializer if the surrounding constant 6090 // expression modifies the temporary. 6091 Value = E->getOrCreateValue(false); 6092 } 6093 6094 // Try evaluating it now, it might have a constant initializer. 6095 Expr::EvalResult EvalResult; 6096 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6097 !EvalResult.hasSideEffects()) 6098 Value = &EvalResult.Val; 6099 6100 LangAS AddrSpace = 6101 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6102 6103 std::optional<ConstantEmitter> emitter; 6104 llvm::Constant *InitialValue = nullptr; 6105 bool Constant = false; 6106 llvm::Type *Type; 6107 if (Value) { 6108 // The temporary has a constant initializer, use it. 6109 emitter.emplace(*this); 6110 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6111 MaterializedType); 6112 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/ Value, 6113 /*ExcludeDtor*/ false); 6114 Type = InitialValue->getType(); 6115 } else { 6116 // No initializer, the initialization will be provided when we 6117 // initialize the declaration which performed lifetime extension. 6118 Type = getTypes().ConvertTypeForMem(MaterializedType); 6119 } 6120 6121 // Create a global variable for this lifetime-extended temporary. 6122 llvm::GlobalValue::LinkageTypes Linkage = 6123 getLLVMLinkageVarDefinition(VD, Constant); 6124 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6125 const VarDecl *InitVD; 6126 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6127 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6128 // Temporaries defined inside a class get linkonce_odr linkage because the 6129 // class can be defined in multiple translation units. 6130 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6131 } else { 6132 // There is no need for this temporary to have external linkage if the 6133 // VarDecl has external linkage. 6134 Linkage = llvm::GlobalVariable::InternalLinkage; 6135 } 6136 } 6137 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6138 auto *GV = new llvm::GlobalVariable( 6139 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6140 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6141 if (emitter) emitter->finalize(GV); 6142 // Don't assign dllimport or dllexport to local linkage globals. 6143 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6144 setGVProperties(GV, VD); 6145 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6146 // The reference temporary should never be dllexport. 6147 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6148 } 6149 GV->setAlignment(Align.getAsAlign()); 6150 if (supportsCOMDAT() && GV->isWeakForLinker()) 6151 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6152 if (VD->getTLSKind()) 6153 setTLSMode(GV, *VD); 6154 llvm::Constant *CV = GV; 6155 if (AddrSpace != LangAS::Default) 6156 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6157 *this, GV, AddrSpace, LangAS::Default, 6158 Type->getPointerTo( 6159 getContext().getTargetAddressSpace(LangAS::Default))); 6160 6161 // Update the map with the new temporary. If we created a placeholder above, 6162 // replace it with the new global now. 6163 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6164 if (Entry) { 6165 Entry->replaceAllUsesWith( 6166 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6167 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6168 } 6169 Entry = CV; 6170 6171 return ConstantAddress(CV, Type, Align); 6172 } 6173 6174 /// EmitObjCPropertyImplementations - Emit information for synthesized 6175 /// properties for an implementation. 6176 void CodeGenModule::EmitObjCPropertyImplementations(const 6177 ObjCImplementationDecl *D) { 6178 for (const auto *PID : D->property_impls()) { 6179 // Dynamic is just for type-checking. 6180 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6181 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6182 6183 // Determine which methods need to be implemented, some may have 6184 // been overridden. Note that ::isPropertyAccessor is not the method 6185 // we want, that just indicates if the decl came from a 6186 // property. What we want to know is if the method is defined in 6187 // this implementation. 6188 auto *Getter = PID->getGetterMethodDecl(); 6189 if (!Getter || Getter->isSynthesizedAccessorStub()) 6190 CodeGenFunction(*this).GenerateObjCGetter( 6191 const_cast<ObjCImplementationDecl *>(D), PID); 6192 auto *Setter = PID->getSetterMethodDecl(); 6193 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6194 CodeGenFunction(*this).GenerateObjCSetter( 6195 const_cast<ObjCImplementationDecl *>(D), PID); 6196 } 6197 } 6198 } 6199 6200 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6201 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6202 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6203 ivar; ivar = ivar->getNextIvar()) 6204 if (ivar->getType().isDestructedType()) 6205 return true; 6206 6207 return false; 6208 } 6209 6210 static bool AllTrivialInitializers(CodeGenModule &CGM, 6211 ObjCImplementationDecl *D) { 6212 CodeGenFunction CGF(CGM); 6213 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6214 E = D->init_end(); B != E; ++B) { 6215 CXXCtorInitializer *CtorInitExp = *B; 6216 Expr *Init = CtorInitExp->getInit(); 6217 if (!CGF.isTrivialInitializer(Init)) 6218 return false; 6219 } 6220 return true; 6221 } 6222 6223 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6224 /// for an implementation. 6225 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6226 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6227 if (needsDestructMethod(D)) { 6228 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6229 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6230 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6231 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6232 getContext().VoidTy, nullptr, D, 6233 /*isInstance=*/true, /*isVariadic=*/false, 6234 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6235 /*isImplicitlyDeclared=*/true, 6236 /*isDefined=*/false, ObjCMethodDecl::Required); 6237 D->addInstanceMethod(DTORMethod); 6238 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6239 D->setHasDestructors(true); 6240 } 6241 6242 // If the implementation doesn't have any ivar initializers, we don't need 6243 // a .cxx_construct. 6244 if (D->getNumIvarInitializers() == 0 || 6245 AllTrivialInitializers(*this, D)) 6246 return; 6247 6248 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6249 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6250 // The constructor returns 'self'. 6251 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6252 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6253 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6254 /*isVariadic=*/false, 6255 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6256 /*isImplicitlyDeclared=*/true, 6257 /*isDefined=*/false, ObjCMethodDecl::Required); 6258 D->addInstanceMethod(CTORMethod); 6259 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6260 D->setHasNonZeroConstructors(true); 6261 } 6262 6263 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6264 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6265 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6266 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6267 ErrorUnsupported(LSD, "linkage spec"); 6268 return; 6269 } 6270 6271 EmitDeclContext(LSD); 6272 } 6273 6274 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6275 // Device code should not be at top level. 6276 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6277 return; 6278 6279 std::unique_ptr<CodeGenFunction> &CurCGF = 6280 GlobalTopLevelStmtBlockInFlight.first; 6281 6282 // We emitted a top-level stmt but after it there is initialization. 6283 // Stop squashing the top-level stmts into a single function. 6284 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6285 CurCGF->FinishFunction(D->getEndLoc()); 6286 CurCGF = nullptr; 6287 } 6288 6289 if (!CurCGF) { 6290 // void __stmts__N(void) 6291 // FIXME: Ask the ABI name mangler to pick a name. 6292 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6293 FunctionArgList Args; 6294 QualType RetTy = getContext().VoidTy; 6295 const CGFunctionInfo &FnInfo = 6296 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6297 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6298 llvm::Function *Fn = llvm::Function::Create( 6299 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6300 6301 CurCGF.reset(new CodeGenFunction(*this)); 6302 GlobalTopLevelStmtBlockInFlight.second = D; 6303 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6304 D->getBeginLoc(), D->getBeginLoc()); 6305 CXXGlobalInits.push_back(Fn); 6306 } 6307 6308 CurCGF->EmitStmt(D->getStmt()); 6309 } 6310 6311 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6312 for (auto *I : DC->decls()) { 6313 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6314 // are themselves considered "top-level", so EmitTopLevelDecl on an 6315 // ObjCImplDecl does not recursively visit them. We need to do that in 6316 // case they're nested inside another construct (LinkageSpecDecl / 6317 // ExportDecl) that does stop them from being considered "top-level". 6318 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6319 for (auto *M : OID->methods()) 6320 EmitTopLevelDecl(M); 6321 } 6322 6323 EmitTopLevelDecl(I); 6324 } 6325 } 6326 6327 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6328 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6329 // Ignore dependent declarations. 6330 if (D->isTemplated()) 6331 return; 6332 6333 // Consteval function shouldn't be emitted. 6334 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6335 return; 6336 6337 switch (D->getKind()) { 6338 case Decl::CXXConversion: 6339 case Decl::CXXMethod: 6340 case Decl::Function: 6341 EmitGlobal(cast<FunctionDecl>(D)); 6342 // Always provide some coverage mapping 6343 // even for the functions that aren't emitted. 6344 AddDeferredUnusedCoverageMapping(D); 6345 break; 6346 6347 case Decl::CXXDeductionGuide: 6348 // Function-like, but does not result in code emission. 6349 break; 6350 6351 case Decl::Var: 6352 case Decl::Decomposition: 6353 case Decl::VarTemplateSpecialization: 6354 EmitGlobal(cast<VarDecl>(D)); 6355 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6356 for (auto *B : DD->bindings()) 6357 if (auto *HD = B->getHoldingVar()) 6358 EmitGlobal(HD); 6359 break; 6360 6361 // Indirect fields from global anonymous structs and unions can be 6362 // ignored; only the actual variable requires IR gen support. 6363 case Decl::IndirectField: 6364 break; 6365 6366 // C++ Decls 6367 case Decl::Namespace: 6368 EmitDeclContext(cast<NamespaceDecl>(D)); 6369 break; 6370 case Decl::ClassTemplateSpecialization: { 6371 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6372 if (CGDebugInfo *DI = getModuleDebugInfo()) 6373 if (Spec->getSpecializationKind() == 6374 TSK_ExplicitInstantiationDefinition && 6375 Spec->hasDefinition()) 6376 DI->completeTemplateDefinition(*Spec); 6377 } [[fallthrough]]; 6378 case Decl::CXXRecord: { 6379 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6380 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6381 if (CRD->hasDefinition()) 6382 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6383 if (auto *ES = D->getASTContext().getExternalSource()) 6384 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6385 DI->completeUnusedClass(*CRD); 6386 } 6387 // Emit any static data members, they may be definitions. 6388 for (auto *I : CRD->decls()) 6389 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6390 EmitTopLevelDecl(I); 6391 break; 6392 } 6393 // No code generation needed. 6394 case Decl::UsingShadow: 6395 case Decl::ClassTemplate: 6396 case Decl::VarTemplate: 6397 case Decl::Concept: 6398 case Decl::VarTemplatePartialSpecialization: 6399 case Decl::FunctionTemplate: 6400 case Decl::TypeAliasTemplate: 6401 case Decl::Block: 6402 case Decl::Empty: 6403 case Decl::Binding: 6404 break; 6405 case Decl::Using: // using X; [C++] 6406 if (CGDebugInfo *DI = getModuleDebugInfo()) 6407 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6408 break; 6409 case Decl::UsingEnum: // using enum X; [C++] 6410 if (CGDebugInfo *DI = getModuleDebugInfo()) 6411 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6412 break; 6413 case Decl::NamespaceAlias: 6414 if (CGDebugInfo *DI = getModuleDebugInfo()) 6415 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6416 break; 6417 case Decl::UsingDirective: // using namespace X; [C++] 6418 if (CGDebugInfo *DI = getModuleDebugInfo()) 6419 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6420 break; 6421 case Decl::CXXConstructor: 6422 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6423 break; 6424 case Decl::CXXDestructor: 6425 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6426 break; 6427 6428 case Decl::StaticAssert: 6429 // Nothing to do. 6430 break; 6431 6432 // Objective-C Decls 6433 6434 // Forward declarations, no (immediate) code generation. 6435 case Decl::ObjCInterface: 6436 case Decl::ObjCCategory: 6437 break; 6438 6439 case Decl::ObjCProtocol: { 6440 auto *Proto = cast<ObjCProtocolDecl>(D); 6441 if (Proto->isThisDeclarationADefinition()) 6442 ObjCRuntime->GenerateProtocol(Proto); 6443 break; 6444 } 6445 6446 case Decl::ObjCCategoryImpl: 6447 // Categories have properties but don't support synthesize so we 6448 // can ignore them here. 6449 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6450 break; 6451 6452 case Decl::ObjCImplementation: { 6453 auto *OMD = cast<ObjCImplementationDecl>(D); 6454 EmitObjCPropertyImplementations(OMD); 6455 EmitObjCIvarInitializations(OMD); 6456 ObjCRuntime->GenerateClass(OMD); 6457 // Emit global variable debug information. 6458 if (CGDebugInfo *DI = getModuleDebugInfo()) 6459 if (getCodeGenOpts().hasReducedDebugInfo()) 6460 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6461 OMD->getClassInterface()), OMD->getLocation()); 6462 break; 6463 } 6464 case Decl::ObjCMethod: { 6465 auto *OMD = cast<ObjCMethodDecl>(D); 6466 // If this is not a prototype, emit the body. 6467 if (OMD->getBody()) 6468 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6469 break; 6470 } 6471 case Decl::ObjCCompatibleAlias: 6472 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6473 break; 6474 6475 case Decl::PragmaComment: { 6476 const auto *PCD = cast<PragmaCommentDecl>(D); 6477 switch (PCD->getCommentKind()) { 6478 case PCK_Unknown: 6479 llvm_unreachable("unexpected pragma comment kind"); 6480 case PCK_Linker: 6481 AppendLinkerOptions(PCD->getArg()); 6482 break; 6483 case PCK_Lib: 6484 AddDependentLib(PCD->getArg()); 6485 break; 6486 case PCK_Compiler: 6487 case PCK_ExeStr: 6488 case PCK_User: 6489 break; // We ignore all of these. 6490 } 6491 break; 6492 } 6493 6494 case Decl::PragmaDetectMismatch: { 6495 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6496 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6497 break; 6498 } 6499 6500 case Decl::LinkageSpec: 6501 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6502 break; 6503 6504 case Decl::FileScopeAsm: { 6505 // File-scope asm is ignored during device-side CUDA compilation. 6506 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6507 break; 6508 // File-scope asm is ignored during device-side OpenMP compilation. 6509 if (LangOpts.OpenMPIsDevice) 6510 break; 6511 // File-scope asm is ignored during device-side SYCL compilation. 6512 if (LangOpts.SYCLIsDevice) 6513 break; 6514 auto *AD = cast<FileScopeAsmDecl>(D); 6515 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6516 break; 6517 } 6518 6519 case Decl::TopLevelStmt: 6520 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6521 break; 6522 6523 case Decl::Import: { 6524 auto *Import = cast<ImportDecl>(D); 6525 6526 // If we've already imported this module, we're done. 6527 if (!ImportedModules.insert(Import->getImportedModule())) 6528 break; 6529 6530 // Emit debug information for direct imports. 6531 if (!Import->getImportedOwningModule()) { 6532 if (CGDebugInfo *DI = getModuleDebugInfo()) 6533 DI->EmitImportDecl(*Import); 6534 } 6535 6536 // For C++ standard modules we are done - we will call the module 6537 // initializer for imported modules, and that will likewise call those for 6538 // any imports it has. 6539 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6540 !Import->getImportedOwningModule()->isModuleMapModule()) 6541 break; 6542 6543 // For clang C++ module map modules the initializers for sub-modules are 6544 // emitted here. 6545 6546 // Find all of the submodules and emit the module initializers. 6547 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6548 SmallVector<clang::Module *, 16> Stack; 6549 Visited.insert(Import->getImportedModule()); 6550 Stack.push_back(Import->getImportedModule()); 6551 6552 while (!Stack.empty()) { 6553 clang::Module *Mod = Stack.pop_back_val(); 6554 if (!EmittedModuleInitializers.insert(Mod).second) 6555 continue; 6556 6557 for (auto *D : Context.getModuleInitializers(Mod)) 6558 EmitTopLevelDecl(D); 6559 6560 // Visit the submodules of this module. 6561 for (auto *Submodule : Mod->submodules()) { 6562 // Skip explicit children; they need to be explicitly imported to emit 6563 // the initializers. 6564 if (Submodule->IsExplicit) 6565 continue; 6566 6567 if (Visited.insert(Submodule).second) 6568 Stack.push_back(Submodule); 6569 } 6570 } 6571 break; 6572 } 6573 6574 case Decl::Export: 6575 EmitDeclContext(cast<ExportDecl>(D)); 6576 break; 6577 6578 case Decl::OMPThreadPrivate: 6579 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6580 break; 6581 6582 case Decl::OMPAllocate: 6583 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6584 break; 6585 6586 case Decl::OMPDeclareReduction: 6587 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6588 break; 6589 6590 case Decl::OMPDeclareMapper: 6591 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6592 break; 6593 6594 case Decl::OMPRequires: 6595 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6596 break; 6597 6598 case Decl::Typedef: 6599 case Decl::TypeAlias: // using foo = bar; [C++11] 6600 if (CGDebugInfo *DI = getModuleDebugInfo()) 6601 DI->EmitAndRetainType( 6602 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6603 break; 6604 6605 case Decl::Record: 6606 if (CGDebugInfo *DI = getModuleDebugInfo()) 6607 if (cast<RecordDecl>(D)->getDefinition()) 6608 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6609 break; 6610 6611 case Decl::Enum: 6612 if (CGDebugInfo *DI = getModuleDebugInfo()) 6613 if (cast<EnumDecl>(D)->getDefinition()) 6614 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6615 break; 6616 6617 case Decl::HLSLBuffer: 6618 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6619 break; 6620 6621 default: 6622 // Make sure we handled everything we should, every other kind is a 6623 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6624 // function. Need to recode Decl::Kind to do that easily. 6625 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6626 break; 6627 } 6628 } 6629 6630 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6631 // Do we need to generate coverage mapping? 6632 if (!CodeGenOpts.CoverageMapping) 6633 return; 6634 switch (D->getKind()) { 6635 case Decl::CXXConversion: 6636 case Decl::CXXMethod: 6637 case Decl::Function: 6638 case Decl::ObjCMethod: 6639 case Decl::CXXConstructor: 6640 case Decl::CXXDestructor: { 6641 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6642 break; 6643 SourceManager &SM = getContext().getSourceManager(); 6644 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6645 break; 6646 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6647 if (I == DeferredEmptyCoverageMappingDecls.end()) 6648 DeferredEmptyCoverageMappingDecls[D] = true; 6649 break; 6650 } 6651 default: 6652 break; 6653 }; 6654 } 6655 6656 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6657 // Do we need to generate coverage mapping? 6658 if (!CodeGenOpts.CoverageMapping) 6659 return; 6660 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6661 if (Fn->isTemplateInstantiation()) 6662 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6663 } 6664 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6665 if (I == DeferredEmptyCoverageMappingDecls.end()) 6666 DeferredEmptyCoverageMappingDecls[D] = false; 6667 else 6668 I->second = false; 6669 } 6670 6671 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6672 // We call takeVector() here to avoid use-after-free. 6673 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6674 // we deserialize function bodies to emit coverage info for them, and that 6675 // deserializes more declarations. How should we handle that case? 6676 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6677 if (!Entry.second) 6678 continue; 6679 const Decl *D = Entry.first; 6680 switch (D->getKind()) { 6681 case Decl::CXXConversion: 6682 case Decl::CXXMethod: 6683 case Decl::Function: 6684 case Decl::ObjCMethod: { 6685 CodeGenPGO PGO(*this); 6686 GlobalDecl GD(cast<FunctionDecl>(D)); 6687 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6688 getFunctionLinkage(GD)); 6689 break; 6690 } 6691 case Decl::CXXConstructor: { 6692 CodeGenPGO PGO(*this); 6693 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6694 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6695 getFunctionLinkage(GD)); 6696 break; 6697 } 6698 case Decl::CXXDestructor: { 6699 CodeGenPGO PGO(*this); 6700 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6701 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6702 getFunctionLinkage(GD)); 6703 break; 6704 } 6705 default: 6706 break; 6707 }; 6708 } 6709 } 6710 6711 void CodeGenModule::EmitMainVoidAlias() { 6712 // In order to transition away from "__original_main" gracefully, emit an 6713 // alias for "main" in the no-argument case so that libc can detect when 6714 // new-style no-argument main is in used. 6715 if (llvm::Function *F = getModule().getFunction("main")) { 6716 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6717 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6718 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6719 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6720 } 6721 } 6722 } 6723 6724 /// Turns the given pointer into a constant. 6725 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6726 const void *Ptr) { 6727 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6728 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6729 return llvm::ConstantInt::get(i64, PtrInt); 6730 } 6731 6732 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6733 llvm::NamedMDNode *&GlobalMetadata, 6734 GlobalDecl D, 6735 llvm::GlobalValue *Addr) { 6736 if (!GlobalMetadata) 6737 GlobalMetadata = 6738 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6739 6740 // TODO: should we report variant information for ctors/dtors? 6741 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6742 llvm::ConstantAsMetadata::get(GetPointerConstant( 6743 CGM.getLLVMContext(), D.getDecl()))}; 6744 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6745 } 6746 6747 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6748 llvm::GlobalValue *CppFunc) { 6749 // Store the list of ifuncs we need to replace uses in. 6750 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6751 // List of ConstantExprs that we should be able to delete when we're done 6752 // here. 6753 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6754 6755 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6756 if (Elem == CppFunc) 6757 return false; 6758 6759 // First make sure that all users of this are ifuncs (or ifuncs via a 6760 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6761 // later. 6762 for (llvm::User *User : Elem->users()) { 6763 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6764 // ifunc directly. In any other case, just give up, as we don't know what we 6765 // could break by changing those. 6766 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6767 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6768 return false; 6769 6770 for (llvm::User *CEUser : ConstExpr->users()) { 6771 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6772 IFuncs.push_back(IFunc); 6773 } else { 6774 return false; 6775 } 6776 } 6777 CEs.push_back(ConstExpr); 6778 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6779 IFuncs.push_back(IFunc); 6780 } else { 6781 // This user is one we don't know how to handle, so fail redirection. This 6782 // will result in an ifunc retaining a resolver name that will ultimately 6783 // fail to be resolved to a defined function. 6784 return false; 6785 } 6786 } 6787 6788 // Now we know this is a valid case where we can do this alias replacement, we 6789 // need to remove all of the references to Elem (and the bitcasts!) so we can 6790 // delete it. 6791 for (llvm::GlobalIFunc *IFunc : IFuncs) 6792 IFunc->setResolver(nullptr); 6793 for (llvm::ConstantExpr *ConstExpr : CEs) 6794 ConstExpr->destroyConstant(); 6795 6796 // We should now be out of uses for the 'old' version of this function, so we 6797 // can erase it as well. 6798 Elem->eraseFromParent(); 6799 6800 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6801 // The type of the resolver is always just a function-type that returns the 6802 // type of the IFunc, so create that here. If the type of the actual 6803 // resolver doesn't match, it just gets bitcast to the right thing. 6804 auto *ResolverTy = 6805 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6806 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6807 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6808 IFunc->setResolver(Resolver); 6809 } 6810 return true; 6811 } 6812 6813 /// For each function which is declared within an extern "C" region and marked 6814 /// as 'used', but has internal linkage, create an alias from the unmangled 6815 /// name to the mangled name if possible. People expect to be able to refer 6816 /// to such functions with an unmangled name from inline assembly within the 6817 /// same translation unit. 6818 void CodeGenModule::EmitStaticExternCAliases() { 6819 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6820 return; 6821 for (auto &I : StaticExternCValues) { 6822 IdentifierInfo *Name = I.first; 6823 llvm::GlobalValue *Val = I.second; 6824 6825 // If Val is null, that implies there were multiple declarations that each 6826 // had a claim to the unmangled name. In this case, generation of the alias 6827 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6828 if (!Val) 6829 break; 6830 6831 llvm::GlobalValue *ExistingElem = 6832 getModule().getNamedValue(Name->getName()); 6833 6834 // If there is either not something already by this name, or we were able to 6835 // replace all uses from IFuncs, create the alias. 6836 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6837 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6838 } 6839 } 6840 6841 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6842 GlobalDecl &Result) const { 6843 auto Res = Manglings.find(MangledName); 6844 if (Res == Manglings.end()) 6845 return false; 6846 Result = Res->getValue(); 6847 return true; 6848 } 6849 6850 /// Emits metadata nodes associating all the global values in the 6851 /// current module with the Decls they came from. This is useful for 6852 /// projects using IR gen as a subroutine. 6853 /// 6854 /// Since there's currently no way to associate an MDNode directly 6855 /// with an llvm::GlobalValue, we create a global named metadata 6856 /// with the name 'clang.global.decl.ptrs'. 6857 void CodeGenModule::EmitDeclMetadata() { 6858 llvm::NamedMDNode *GlobalMetadata = nullptr; 6859 6860 for (auto &I : MangledDeclNames) { 6861 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6862 // Some mangled names don't necessarily have an associated GlobalValue 6863 // in this module, e.g. if we mangled it for DebugInfo. 6864 if (Addr) 6865 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6866 } 6867 } 6868 6869 /// Emits metadata nodes for all the local variables in the current 6870 /// function. 6871 void CodeGenFunction::EmitDeclMetadata() { 6872 if (LocalDeclMap.empty()) return; 6873 6874 llvm::LLVMContext &Context = getLLVMContext(); 6875 6876 // Find the unique metadata ID for this name. 6877 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6878 6879 llvm::NamedMDNode *GlobalMetadata = nullptr; 6880 6881 for (auto &I : LocalDeclMap) { 6882 const Decl *D = I.first; 6883 llvm::Value *Addr = I.second.getPointer(); 6884 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6885 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6886 Alloca->setMetadata( 6887 DeclPtrKind, llvm::MDNode::get( 6888 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6889 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6890 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6891 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6892 } 6893 } 6894 } 6895 6896 void CodeGenModule::EmitVersionIdentMetadata() { 6897 llvm::NamedMDNode *IdentMetadata = 6898 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6899 std::string Version = getClangFullVersion(); 6900 llvm::LLVMContext &Ctx = TheModule.getContext(); 6901 6902 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6903 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6904 } 6905 6906 void CodeGenModule::EmitCommandLineMetadata() { 6907 llvm::NamedMDNode *CommandLineMetadata = 6908 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6909 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6910 llvm::LLVMContext &Ctx = TheModule.getContext(); 6911 6912 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6913 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6914 } 6915 6916 void CodeGenModule::EmitCoverageFile() { 6917 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6918 if (!CUNode) 6919 return; 6920 6921 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6922 llvm::LLVMContext &Ctx = TheModule.getContext(); 6923 auto *CoverageDataFile = 6924 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6925 auto *CoverageNotesFile = 6926 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6927 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6928 llvm::MDNode *CU = CUNode->getOperand(i); 6929 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6930 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6931 } 6932 } 6933 6934 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6935 bool ForEH) { 6936 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6937 // FIXME: should we even be calling this method if RTTI is disabled 6938 // and it's not for EH? 6939 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6940 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6941 getTriple().isNVPTX())) 6942 return llvm::Constant::getNullValue(Int8PtrTy); 6943 6944 if (ForEH && Ty->isObjCObjectPointerType() && 6945 LangOpts.ObjCRuntime.isGNUFamily()) 6946 return ObjCRuntime->GetEHType(Ty); 6947 6948 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6949 } 6950 6951 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6952 // Do not emit threadprivates in simd-only mode. 6953 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6954 return; 6955 for (auto RefExpr : D->varlists()) { 6956 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6957 bool PerformInit = 6958 VD->getAnyInitializer() && 6959 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6960 /*ForRef=*/false); 6961 6962 Address Addr(GetAddrOfGlobalVar(VD), 6963 getTypes().ConvertTypeForMem(VD->getType()), 6964 getContext().getDeclAlign(VD)); 6965 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6966 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6967 CXXGlobalInits.push_back(InitFunction); 6968 } 6969 } 6970 6971 llvm::Metadata * 6972 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6973 StringRef Suffix) { 6974 if (auto *FnType = T->getAs<FunctionProtoType>()) 6975 T = getContext().getFunctionType( 6976 FnType->getReturnType(), FnType->getParamTypes(), 6977 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6978 6979 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6980 if (InternalId) 6981 return InternalId; 6982 6983 if (isExternallyVisible(T->getLinkage())) { 6984 std::string OutName; 6985 llvm::raw_string_ostream Out(OutName); 6986 getCXXABI().getMangleContext().mangleTypeName( 6987 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 6988 6989 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 6990 Out << ".normalized"; 6991 6992 Out << Suffix; 6993 6994 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6995 } else { 6996 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6997 llvm::ArrayRef<llvm::Metadata *>()); 6998 } 6999 7000 return InternalId; 7001 } 7002 7003 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7004 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7005 } 7006 7007 llvm::Metadata * 7008 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7009 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7010 } 7011 7012 // Generalize pointer types to a void pointer with the qualifiers of the 7013 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7014 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7015 // 'void *'. 7016 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7017 if (!Ty->isPointerType()) 7018 return Ty; 7019 7020 return Ctx.getPointerType( 7021 QualType(Ctx.VoidTy).withCVRQualifiers( 7022 Ty->getPointeeType().getCVRQualifiers())); 7023 } 7024 7025 // Apply type generalization to a FunctionType's return and argument types 7026 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7027 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7028 SmallVector<QualType, 8> GeneralizedParams; 7029 for (auto &Param : FnType->param_types()) 7030 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7031 7032 return Ctx.getFunctionType( 7033 GeneralizeType(Ctx, FnType->getReturnType()), 7034 GeneralizedParams, FnType->getExtProtoInfo()); 7035 } 7036 7037 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7038 return Ctx.getFunctionNoProtoType( 7039 GeneralizeType(Ctx, FnType->getReturnType())); 7040 7041 llvm_unreachable("Encountered unknown FunctionType"); 7042 } 7043 7044 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7045 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7046 GeneralizedMetadataIdMap, ".generalized"); 7047 } 7048 7049 /// Returns whether this module needs the "all-vtables" type identifier. 7050 bool CodeGenModule::NeedAllVtablesTypeId() const { 7051 // Returns true if at least one of vtable-based CFI checkers is enabled and 7052 // is not in the trapping mode. 7053 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7054 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7055 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7056 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7057 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7058 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7059 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7060 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7061 } 7062 7063 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7064 CharUnits Offset, 7065 const CXXRecordDecl *RD) { 7066 llvm::Metadata *MD = 7067 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7068 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7069 7070 if (CodeGenOpts.SanitizeCfiCrossDso) 7071 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7072 VTable->addTypeMetadata(Offset.getQuantity(), 7073 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7074 7075 if (NeedAllVtablesTypeId()) { 7076 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7077 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7078 } 7079 } 7080 7081 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7082 if (!SanStats) 7083 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7084 7085 return *SanStats; 7086 } 7087 7088 llvm::Value * 7089 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7090 CodeGenFunction &CGF) { 7091 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7092 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7093 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7094 auto *Call = CGF.EmitRuntimeCall( 7095 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7096 return Call; 7097 } 7098 7099 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7100 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7101 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7102 /* forPointeeType= */ true); 7103 } 7104 7105 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7106 LValueBaseInfo *BaseInfo, 7107 TBAAAccessInfo *TBAAInfo, 7108 bool forPointeeType) { 7109 if (TBAAInfo) 7110 *TBAAInfo = getTBAAAccessInfo(T); 7111 7112 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7113 // that doesn't return the information we need to compute BaseInfo. 7114 7115 // Honor alignment typedef attributes even on incomplete types. 7116 // We also honor them straight for C++ class types, even as pointees; 7117 // there's an expressivity gap here. 7118 if (auto TT = T->getAs<TypedefType>()) { 7119 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7120 if (BaseInfo) 7121 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7122 return getContext().toCharUnitsFromBits(Align); 7123 } 7124 } 7125 7126 bool AlignForArray = T->isArrayType(); 7127 7128 // Analyze the base element type, so we don't get confused by incomplete 7129 // array types. 7130 T = getContext().getBaseElementType(T); 7131 7132 if (T->isIncompleteType()) { 7133 // We could try to replicate the logic from 7134 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7135 // type is incomplete, so it's impossible to test. We could try to reuse 7136 // getTypeAlignIfKnown, but that doesn't return the information we need 7137 // to set BaseInfo. So just ignore the possibility that the alignment is 7138 // greater than one. 7139 if (BaseInfo) 7140 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7141 return CharUnits::One(); 7142 } 7143 7144 if (BaseInfo) 7145 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7146 7147 CharUnits Alignment; 7148 const CXXRecordDecl *RD; 7149 if (T.getQualifiers().hasUnaligned()) { 7150 Alignment = CharUnits::One(); 7151 } else if (forPointeeType && !AlignForArray && 7152 (RD = T->getAsCXXRecordDecl())) { 7153 // For C++ class pointees, we don't know whether we're pointing at a 7154 // base or a complete object, so we generally need to use the 7155 // non-virtual alignment. 7156 Alignment = getClassPointerAlignment(RD); 7157 } else { 7158 Alignment = getContext().getTypeAlignInChars(T); 7159 } 7160 7161 // Cap to the global maximum type alignment unless the alignment 7162 // was somehow explicit on the type. 7163 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7164 if (Alignment.getQuantity() > MaxAlign && 7165 !getContext().isAlignmentRequired(T)) 7166 Alignment = CharUnits::fromQuantity(MaxAlign); 7167 } 7168 return Alignment; 7169 } 7170 7171 bool CodeGenModule::stopAutoInit() { 7172 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7173 if (StopAfter) { 7174 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7175 // used 7176 if (NumAutoVarInit >= StopAfter) { 7177 return true; 7178 } 7179 if (!NumAutoVarInit) { 7180 unsigned DiagID = getDiags().getCustomDiagID( 7181 DiagnosticsEngine::Warning, 7182 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7183 "number of times ftrivial-auto-var-init=%1 gets applied."); 7184 getDiags().Report(DiagID) 7185 << StopAfter 7186 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7187 LangOptions::TrivialAutoVarInitKind::Zero 7188 ? "zero" 7189 : "pattern"); 7190 } 7191 ++NumAutoVarInit; 7192 } 7193 return false; 7194 } 7195 7196 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7197 const Decl *D) const { 7198 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7199 // postfix beginning with '.' since the symbol name can be demangled. 7200 if (LangOpts.HIP) 7201 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7202 else 7203 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7204 7205 // If the CUID is not specified we try to generate a unique postfix. 7206 if (getLangOpts().CUID.empty()) { 7207 SourceManager &SM = getContext().getSourceManager(); 7208 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7209 assert(PLoc.isValid() && "Source location is expected to be valid."); 7210 7211 // Get the hash of the user defined macros. 7212 llvm::MD5 Hash; 7213 llvm::MD5::MD5Result Result; 7214 for (const auto &Arg : PreprocessorOpts.Macros) 7215 Hash.update(Arg.first); 7216 Hash.final(Result); 7217 7218 // Get the UniqueID for the file containing the decl. 7219 llvm::sys::fs::UniqueID ID; 7220 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7221 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7222 assert(PLoc.isValid() && "Source location is expected to be valid."); 7223 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7224 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7225 << PLoc.getFilename() << EC.message(); 7226 } 7227 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7228 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7229 } else { 7230 OS << getContext().getCUIDHash(); 7231 } 7232 } 7233 7234 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7235 assert(DeferredDeclsToEmit.empty() && 7236 "Should have emitted all decls deferred to emit."); 7237 assert(NewBuilder->DeferredDecls.empty() && 7238 "Newly created module should not have deferred decls"); 7239 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7240 7241 assert(NewBuilder->DeferredVTables.empty() && 7242 "Newly created module should not have deferred vtables"); 7243 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7244 7245 assert(NewBuilder->MangledDeclNames.empty() && 7246 "Newly created module should not have mangled decl names"); 7247 assert(NewBuilder->Manglings.empty() && 7248 "Newly created module should not have manglings"); 7249 NewBuilder->Manglings = std::move(Manglings); 7250 7251 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7252 7253 NewBuilder->TBAA = std::move(TBAA); 7254 7255 assert(NewBuilder->EmittedDeferredDecls.empty() && 7256 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7257 7258 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7259 7260 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7261 } 7262