xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 8f80a61914f9b26bcc5b218331fb2179418f7889)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallingConv.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CallSite.h"
50 #include "llvm/Support/ConvertUTF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0),
81       CFConstantStringClassRef(0),
82       ConstantStringClassRef(0), NSConstantStringType(0),
83       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
84       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
85       LifetimeStartFn(0), LifetimeEndFn(0),
86       SanitizerBlacklist(
87           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
88       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
89                                           : LangOpts.Sanitize) {
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   VoidTy = llvm::Type::getVoidTy(LLVMContext);
94   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
95   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
96   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
97   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
98   FloatTy = llvm::Type::getFloatTy(LLVMContext);
99   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
100   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
101   PointerAlignInBytes =
102   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
103   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
104   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
105   Int8PtrTy = Int8Ty->getPointerTo(0);
106   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
107 
108   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
109 
110   if (LangOpts.ObjC1)
111     createObjCRuntime();
112   if (LangOpts.OpenCL)
113     createOpenCLRuntime();
114   if (LangOpts.CUDA)
115     createCUDARuntime();
116 
117   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
118   if (SanOpts.Thread ||
119       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
120     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
121                            getCXXABI().getMangleContext());
122 
123   // If debug info or coverage generation is enabled, create the CGDebugInfo
124   // object.
125   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
126       CodeGenOpts.EmitGcovArcs ||
127       CodeGenOpts.EmitGcovNotes)
128     DebugInfo = new CGDebugInfo(*this);
129 
130   Block.GlobalUniqueCount = 0;
131 
132   if (C.getLangOpts().ObjCAutoRefCount)
133     ARCData = new ARCEntrypoints();
134   RRData = new RREntrypoints();
135 
136   if (!CodeGenOpts.InstrProfileInput.empty())
137     PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput);
138 }
139 
140 CodeGenModule::~CodeGenModule() {
141   delete ObjCRuntime;
142   delete OpenCLRuntime;
143   delete CUDARuntime;
144   delete TheTargetCodeGenInfo;
145   delete TBAA;
146   delete DebugInfo;
147   delete ARCData;
148   delete RRData;
149 }
150 
151 void CodeGenModule::createObjCRuntime() {
152   // This is just isGNUFamily(), but we want to force implementors of
153   // new ABIs to decide how best to do this.
154   switch (LangOpts.ObjCRuntime.getKind()) {
155   case ObjCRuntime::GNUstep:
156   case ObjCRuntime::GCC:
157   case ObjCRuntime::ObjFW:
158     ObjCRuntime = CreateGNUObjCRuntime(*this);
159     return;
160 
161   case ObjCRuntime::FragileMacOSX:
162   case ObjCRuntime::MacOSX:
163   case ObjCRuntime::iOS:
164     ObjCRuntime = CreateMacObjCRuntime(*this);
165     return;
166   }
167   llvm_unreachable("bad runtime kind");
168 }
169 
170 void CodeGenModule::createOpenCLRuntime() {
171   OpenCLRuntime = new CGOpenCLRuntime(*this);
172 }
173 
174 void CodeGenModule::createCUDARuntime() {
175   CUDARuntime = CreateNVCUDARuntime(*this);
176 }
177 
178 void CodeGenModule::applyReplacements() {
179   for (ReplacementsTy::iterator I = Replacements.begin(),
180                                 E = Replacements.end();
181        I != E; ++I) {
182     StringRef MangledName = I->first();
183     llvm::Constant *Replacement = I->second;
184     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
185     if (!Entry)
186       continue;
187     llvm::Function *OldF = cast<llvm::Function>(Entry);
188     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
189     if (!NewF) {
190       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
191         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
192       } else {
193         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
194         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
195                CE->getOpcode() == llvm::Instruction::GetElementPtr);
196         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
197       }
198     }
199 
200     // Replace old with new, but keep the old order.
201     OldF->replaceAllUsesWith(Replacement);
202     if (NewF) {
203       NewF->removeFromParent();
204       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
205     }
206     OldF->eraseFromParent();
207   }
208 }
209 
210 void CodeGenModule::checkAliases() {
211   bool Error = false;
212   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
213          E = Aliases.end(); I != E; ++I) {
214     const GlobalDecl &GD = *I;
215     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
216     const AliasAttr *AA = D->getAttr<AliasAttr>();
217     StringRef MangledName = getMangledName(GD);
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
220     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
221     if (GV->isDeclaration()) {
222       Error = true;
223       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
224     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
225       Error = true;
226       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
227     }
228   }
229   if (!Error)
230     return;
231 
232   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
233          E = Aliases.end(); I != E; ++I) {
234     const GlobalDecl &GD = *I;
235     StringRef MangledName = getMangledName(GD);
236     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
237     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
238     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
239     Alias->eraseFromParent();
240   }
241 }
242 
243 void CodeGenModule::clear() {
244   DeferredDeclsToEmit.clear();
245 }
246 
247 void CodeGenModule::Release() {
248   EmitDeferred();
249   applyReplacements();
250   checkAliases();
251   EmitCXXGlobalInitFunc();
252   EmitCXXGlobalDtorFunc();
253   EmitCXXThreadLocalInitFunc();
254   if (ObjCRuntime)
255     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
256       AddGlobalCtor(ObjCInitFunction);
257   EmitCtorList(GlobalCtors, "llvm.global_ctors");
258   EmitCtorList(GlobalDtors, "llvm.global_dtors");
259   EmitGlobalAnnotations();
260   EmitStaticExternCAliases();
261   EmitLLVMUsed();
262 
263   if (CodeGenOpts.Autolink &&
264       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
265     EmitModuleLinkOptions();
266   }
267   if (CodeGenOpts.DwarfVersion)
268     // We actually want the latest version when there are conflicts.
269     // We can change from Warning to Latest if such mode is supported.
270     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
271                               CodeGenOpts.DwarfVersion);
272   if (DebugInfo)
273     // We support a single version in the linked module: error out when
274     // modules do not have the same version. We are going to implement dropping
275     // debug info when the version number is not up-to-date. Once that is
276     // done, the bitcode linker is not going to see modules with different
277     // version numbers.
278     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
279                               llvm::DEBUG_METADATA_VERSION);
280 
281   SimplifyPersonality();
282 
283   if (getCodeGenOpts().EmitDeclMetadata)
284     EmitDeclMetadata();
285 
286   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
287     EmitCoverageFile();
288 
289   if (DebugInfo)
290     DebugInfo->finalize();
291 
292   EmitVersionIdentMetadata();
293 }
294 
295 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
296   // Make sure that this type is translated.
297   Types.UpdateCompletedType(TD);
298 }
299 
300 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
301   if (!TBAA)
302     return 0;
303   return TBAA->getTBAAInfo(QTy);
304 }
305 
306 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
307   if (!TBAA)
308     return 0;
309   return TBAA->getTBAAInfoForVTablePtr();
310 }
311 
312 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
313   if (!TBAA)
314     return 0;
315   return TBAA->getTBAAStructInfo(QTy);
316 }
317 
318 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
319   if (!TBAA)
320     return 0;
321   return TBAA->getTBAAStructTypeInfo(QTy);
322 }
323 
324 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
325                                                   llvm::MDNode *AccessN,
326                                                   uint64_t O) {
327   if (!TBAA)
328     return 0;
329   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
330 }
331 
332 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
333 /// and struct-path aware TBAA, the tag has the same format:
334 /// base type, access type and offset.
335 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
336 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
337                                         llvm::MDNode *TBAAInfo,
338                                         bool ConvertTypeToTag) {
339   if (ConvertTypeToTag && TBAA)
340     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
341                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
342   else
343     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
344 }
345 
346 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
347   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
348   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
349 }
350 
351 /// ErrorUnsupported - Print out an error that codegen doesn't support the
352 /// specified stmt yet.
353 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
354   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
355                                                "cannot compile this %0 yet");
356   std::string Msg = Type;
357   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
358     << Msg << S->getSourceRange();
359 }
360 
361 /// ErrorUnsupported - Print out an error that codegen doesn't support the
362 /// specified decl yet.
363 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
364   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
365                                                "cannot compile this %0 yet");
366   std::string Msg = Type;
367   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
368 }
369 
370 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
371   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
372 }
373 
374 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
375                                         const NamedDecl *D) const {
376   // Internal definitions always have default visibility.
377   if (GV->hasLocalLinkage()) {
378     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
379     return;
380   }
381 
382   // Set visibility for definitions.
383   LinkageInfo LV = D->getLinkageAndVisibility();
384   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
385     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
386 }
387 
388 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
389   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
390       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
391       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
392       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
393       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
394 }
395 
396 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
397     CodeGenOptions::TLSModel M) {
398   switch (M) {
399   case CodeGenOptions::GeneralDynamicTLSModel:
400     return llvm::GlobalVariable::GeneralDynamicTLSModel;
401   case CodeGenOptions::LocalDynamicTLSModel:
402     return llvm::GlobalVariable::LocalDynamicTLSModel;
403   case CodeGenOptions::InitialExecTLSModel:
404     return llvm::GlobalVariable::InitialExecTLSModel;
405   case CodeGenOptions::LocalExecTLSModel:
406     return llvm::GlobalVariable::LocalExecTLSModel;
407   }
408   llvm_unreachable("Invalid TLS model!");
409 }
410 
411 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
412                                const VarDecl &D) const {
413   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
414 
415   llvm::GlobalVariable::ThreadLocalMode TLM;
416   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
417 
418   // Override the TLS model if it is explicitly specified.
419   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
420     TLM = GetLLVMTLSModel(Attr->getModel());
421   }
422 
423   GV->setThreadLocalMode(TLM);
424 }
425 
426 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
427   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
428 
429   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
430   if (!Str.empty())
431     return Str;
432 
433   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
434     IdentifierInfo *II = ND->getIdentifier();
435     assert(II && "Attempt to mangle unnamed decl.");
436 
437     Str = II->getName();
438     return Str;
439   }
440 
441   SmallString<256> Buffer;
442   llvm::raw_svector_ostream Out(Buffer);
443   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
444     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
445   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
446     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
447   else
448     getCXXABI().getMangleContext().mangleName(ND, Out);
449 
450   // Allocate space for the mangled name.
451   Out.flush();
452   size_t Length = Buffer.size();
453   char *Name = MangledNamesAllocator.Allocate<char>(Length);
454   std::copy(Buffer.begin(), Buffer.end(), Name);
455 
456   Str = StringRef(Name, Length);
457 
458   return Str;
459 }
460 
461 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
462                                         const BlockDecl *BD) {
463   MangleContext &MangleCtx = getCXXABI().getMangleContext();
464   const Decl *D = GD.getDecl();
465   llvm::raw_svector_ostream Out(Buffer.getBuffer());
466   if (D == 0)
467     MangleCtx.mangleGlobalBlock(BD,
468       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
469   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
470     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
471   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
472     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
473   else
474     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
475 }
476 
477 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
478   return getModule().getNamedValue(Name);
479 }
480 
481 /// AddGlobalCtor - Add a function to the list that will be called before
482 /// main() runs.
483 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
484   // FIXME: Type coercion of void()* types.
485   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
486 }
487 
488 /// AddGlobalDtor - Add a function to the list that will be called
489 /// when the module is unloaded.
490 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
491   // FIXME: Type coercion of void()* types.
492   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
493 }
494 
495 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
496   // Ctor function type is void()*.
497   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
498   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
499 
500   // Get the type of a ctor entry, { i32, void ()* }.
501   llvm::StructType *CtorStructTy =
502     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
503 
504   // Construct the constructor and destructor arrays.
505   SmallVector<llvm::Constant*, 8> Ctors;
506   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
507     llvm::Constant *S[] = {
508       llvm::ConstantInt::get(Int32Ty, I->second, false),
509       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
510     };
511     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
512   }
513 
514   if (!Ctors.empty()) {
515     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
516     new llvm::GlobalVariable(TheModule, AT, false,
517                              llvm::GlobalValue::AppendingLinkage,
518                              llvm::ConstantArray::get(AT, Ctors),
519                              GlobalName);
520   }
521 }
522 
523 llvm::GlobalValue::LinkageTypes
524 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
525   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
526 
527   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
528 
529   if (Linkage == GVA_Internal)
530     return llvm::Function::InternalLinkage;
531 
532   if (D->hasAttr<DLLExportAttr>())
533     return llvm::Function::ExternalLinkage;
534 
535   if (D->hasAttr<WeakAttr>())
536     return llvm::Function::WeakAnyLinkage;
537 
538   // In C99 mode, 'inline' functions are guaranteed to have a strong
539   // definition somewhere else, so we can use available_externally linkage.
540   if (Linkage == GVA_C99Inline)
541     return llvm::Function::AvailableExternallyLinkage;
542 
543   // Note that Apple's kernel linker doesn't support symbol
544   // coalescing, so we need to avoid linkonce and weak linkages there.
545   // Normally, this means we just map to internal, but for explicit
546   // instantiations we'll map to external.
547 
548   // In C++, the compiler has to emit a definition in every translation unit
549   // that references the function.  We should use linkonce_odr because
550   // a) if all references in this translation unit are optimized away, we
551   // don't need to codegen it.  b) if the function persists, it needs to be
552   // merged with other definitions. c) C++ has the ODR, so we know the
553   // definition is dependable.
554   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
555     return !Context.getLangOpts().AppleKext
556              ? llvm::Function::LinkOnceODRLinkage
557              : llvm::Function::InternalLinkage;
558 
559   // An explicit instantiation of a template has weak linkage, since
560   // explicit instantiations can occur in multiple translation units
561   // and must all be equivalent. However, we are not allowed to
562   // throw away these explicit instantiations.
563   if (Linkage == GVA_ExplicitTemplateInstantiation)
564     return !Context.getLangOpts().AppleKext
565              ? llvm::Function::WeakODRLinkage
566              : llvm::Function::ExternalLinkage;
567 
568   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
569   // emitted on an as-needed basis.
570   if (isa<CXXDestructorDecl>(D) &&
571       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
572                                          GD.getDtorType()))
573     return llvm::Function::LinkOnceODRLinkage;
574 
575   // Otherwise, we have strong external linkage.
576   assert(Linkage == GVA_StrongExternal);
577   return llvm::Function::ExternalLinkage;
578 }
579 
580 
581 /// SetFunctionDefinitionAttributes - Set attributes for a global.
582 ///
583 /// FIXME: This is currently only done for aliases and functions, but not for
584 /// variables (these details are set in EmitGlobalVarDefinition for variables).
585 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
586                                                     llvm::GlobalValue *GV) {
587   SetCommonAttributes(D, GV);
588 }
589 
590 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
591                                               const CGFunctionInfo &Info,
592                                               llvm::Function *F) {
593   unsigned CallingConv;
594   AttributeListType AttributeList;
595   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
596   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
597   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
598 }
599 
600 /// Determines whether the language options require us to model
601 /// unwind exceptions.  We treat -fexceptions as mandating this
602 /// except under the fragile ObjC ABI with only ObjC exceptions
603 /// enabled.  This means, for example, that C with -fexceptions
604 /// enables this.
605 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
606   // If exceptions are completely disabled, obviously this is false.
607   if (!LangOpts.Exceptions) return false;
608 
609   // If C++ exceptions are enabled, this is true.
610   if (LangOpts.CXXExceptions) return true;
611 
612   // If ObjC exceptions are enabled, this depends on the ABI.
613   if (LangOpts.ObjCExceptions) {
614     return LangOpts.ObjCRuntime.hasUnwindExceptions();
615   }
616 
617   return true;
618 }
619 
620 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
621                                                            llvm::Function *F) {
622   llvm::AttrBuilder B;
623 
624   if (CodeGenOpts.UnwindTables)
625     B.addAttribute(llvm::Attribute::UWTable);
626 
627   if (!hasUnwindExceptions(LangOpts))
628     B.addAttribute(llvm::Attribute::NoUnwind);
629 
630   if (D->hasAttr<NakedAttr>()) {
631     // Naked implies noinline: we should not be inlining such functions.
632     B.addAttribute(llvm::Attribute::Naked);
633     B.addAttribute(llvm::Attribute::NoInline);
634   } else if (D->hasAttr<NoInlineAttr>()) {
635     B.addAttribute(llvm::Attribute::NoInline);
636   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
637               D->hasAttr<ForceInlineAttr>()) &&
638              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
639                                               llvm::Attribute::NoInline)) {
640     // (noinline wins over always_inline, and we can't specify both in IR)
641     B.addAttribute(llvm::Attribute::AlwaysInline);
642   }
643 
644   if (D->hasAttr<ColdAttr>()) {
645     B.addAttribute(llvm::Attribute::OptimizeForSize);
646     B.addAttribute(llvm::Attribute::Cold);
647   }
648 
649   if (D->hasAttr<MinSizeAttr>())
650     B.addAttribute(llvm::Attribute::MinSize);
651 
652   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
653     B.addAttribute(llvm::Attribute::StackProtect);
654   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
655     B.addAttribute(llvm::Attribute::StackProtectReq);
656 
657   // Add sanitizer attributes if function is not blacklisted.
658   if (!SanitizerBlacklist->isIn(*F)) {
659     // When AddressSanitizer is enabled, set SanitizeAddress attribute
660     // unless __attribute__((no_sanitize_address)) is used.
661     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
662       B.addAttribute(llvm::Attribute::SanitizeAddress);
663     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
664     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
665       B.addAttribute(llvm::Attribute::SanitizeThread);
666     }
667     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
668     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
669       B.addAttribute(llvm::Attribute::SanitizeMemory);
670   }
671 
672   F->addAttributes(llvm::AttributeSet::FunctionIndex,
673                    llvm::AttributeSet::get(
674                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
675 
676   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
677     F->setUnnamedAddr(true);
678   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
679     if (MD->isVirtual())
680       F->setUnnamedAddr(true);
681 
682   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
683   if (alignment)
684     F->setAlignment(alignment);
685 
686   // C++ ABI requires 2-byte alignment for member functions.
687   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
688     F->setAlignment(2);
689 }
690 
691 void CodeGenModule::SetCommonAttributes(const Decl *D,
692                                         llvm::GlobalValue *GV) {
693   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
694     setGlobalVisibility(GV, ND);
695   else
696     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
697 
698   if (D->hasAttr<UsedAttr>())
699     AddUsedGlobal(GV);
700 
701   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
702     GV->setSection(SA->getName());
703 
704   // Alias cannot have attributes. Filter them here.
705   if (!isa<llvm::GlobalAlias>(GV))
706     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
707 }
708 
709 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
710                                                   llvm::Function *F,
711                                                   const CGFunctionInfo &FI) {
712   SetLLVMFunctionAttributes(D, FI, F);
713   SetLLVMFunctionAttributesForDefinition(D, F);
714 
715   F->setLinkage(llvm::Function::InternalLinkage);
716 
717   SetCommonAttributes(D, F);
718 }
719 
720 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
721                                           llvm::Function *F,
722                                           bool IsIncompleteFunction) {
723   if (unsigned IID = F->getIntrinsicID()) {
724     // If this is an intrinsic function, set the function's attributes
725     // to the intrinsic's attributes.
726     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
727                                                     (llvm::Intrinsic::ID)IID));
728     return;
729   }
730 
731   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
732 
733   if (!IsIncompleteFunction)
734     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
735 
736   if (getCXXABI().HasThisReturn(GD)) {
737     assert(!F->arg_empty() &&
738            F->arg_begin()->getType()
739              ->canLosslesslyBitCastTo(F->getReturnType()) &&
740            "unexpected this return");
741     F->addAttribute(1, llvm::Attribute::Returned);
742   }
743 
744   // Only a few attributes are set on declarations; these may later be
745   // overridden by a definition.
746 
747   if (FD->hasAttr<DLLImportAttr>()) {
748     F->setLinkage(llvm::Function::ExternalLinkage);
749     F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
750   } else if (FD->hasAttr<WeakAttr>() ||
751              FD->isWeakImported()) {
752     // "extern_weak" is overloaded in LLVM; we probably should have
753     // separate linkage types for this.
754     F->setLinkage(llvm::Function::ExternalWeakLinkage);
755   } else {
756     F->setLinkage(llvm::Function::ExternalLinkage);
757     if (FD->hasAttr<DLLExportAttr>())
758       F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
759 
760     LinkageInfo LV = FD->getLinkageAndVisibility();
761     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
762       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
763     }
764   }
765 
766   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
767     F->setSection(SA->getName());
768 
769   // A replaceable global allocation function does not act like a builtin by
770   // default, only if it is invoked by a new-expression or delete-expression.
771   if (FD->isReplaceableGlobalAllocationFunction())
772     F->addAttribute(llvm::AttributeSet::FunctionIndex,
773                     llvm::Attribute::NoBuiltin);
774 }
775 
776 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
777   assert(!GV->isDeclaration() &&
778          "Only globals with definition can force usage.");
779   LLVMUsed.push_back(GV);
780 }
781 
782 void CodeGenModule::EmitLLVMUsed() {
783   // Don't create llvm.used if there is no need.
784   if (LLVMUsed.empty())
785     return;
786 
787   // Convert LLVMUsed to what ConstantArray needs.
788   SmallVector<llvm::Constant*, 8> UsedArray;
789   UsedArray.resize(LLVMUsed.size());
790   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
791     UsedArray[i] =
792      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
793                                     Int8PtrTy);
794   }
795 
796   if (UsedArray.empty())
797     return;
798   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
799 
800   llvm::GlobalVariable *GV =
801     new llvm::GlobalVariable(getModule(), ATy, false,
802                              llvm::GlobalValue::AppendingLinkage,
803                              llvm::ConstantArray::get(ATy, UsedArray),
804                              "llvm.used");
805 
806   GV->setSection("llvm.metadata");
807 }
808 
809 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
810   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
811   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
812 }
813 
814 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
815   llvm::SmallString<32> Opt;
816   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
817   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
818   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
819 }
820 
821 void CodeGenModule::AddDependentLib(StringRef Lib) {
822   llvm::SmallString<24> Opt;
823   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
824   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
825   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
826 }
827 
828 /// \brief Add link options implied by the given module, including modules
829 /// it depends on, using a postorder walk.
830 static void addLinkOptionsPostorder(CodeGenModule &CGM,
831                                     Module *Mod,
832                                     SmallVectorImpl<llvm::Value *> &Metadata,
833                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
834   // Import this module's parent.
835   if (Mod->Parent && Visited.insert(Mod->Parent)) {
836     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
837   }
838 
839   // Import this module's dependencies.
840   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
841     if (Visited.insert(Mod->Imports[I-1]))
842       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
843   }
844 
845   // Add linker options to link against the libraries/frameworks
846   // described by this module.
847   llvm::LLVMContext &Context = CGM.getLLVMContext();
848   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
849     // Link against a framework.  Frameworks are currently Darwin only, so we
850     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
851     if (Mod->LinkLibraries[I-1].IsFramework) {
852       llvm::Value *Args[2] = {
853         llvm::MDString::get(Context, "-framework"),
854         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
855       };
856 
857       Metadata.push_back(llvm::MDNode::get(Context, Args));
858       continue;
859     }
860 
861     // Link against a library.
862     llvm::SmallString<24> Opt;
863     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
864       Mod->LinkLibraries[I-1].Library, Opt);
865     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
866     Metadata.push_back(llvm::MDNode::get(Context, OptString));
867   }
868 }
869 
870 void CodeGenModule::EmitModuleLinkOptions() {
871   // Collect the set of all of the modules we want to visit to emit link
872   // options, which is essentially the imported modules and all of their
873   // non-explicit child modules.
874   llvm::SetVector<clang::Module *> LinkModules;
875   llvm::SmallPtrSet<clang::Module *, 16> Visited;
876   SmallVector<clang::Module *, 16> Stack;
877 
878   // Seed the stack with imported modules.
879   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
880                                                MEnd = ImportedModules.end();
881        M != MEnd; ++M) {
882     if (Visited.insert(*M))
883       Stack.push_back(*M);
884   }
885 
886   // Find all of the modules to import, making a little effort to prune
887   // non-leaf modules.
888   while (!Stack.empty()) {
889     clang::Module *Mod = Stack.pop_back_val();
890 
891     bool AnyChildren = false;
892 
893     // Visit the submodules of this module.
894     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
895                                         SubEnd = Mod->submodule_end();
896          Sub != SubEnd; ++Sub) {
897       // Skip explicit children; they need to be explicitly imported to be
898       // linked against.
899       if ((*Sub)->IsExplicit)
900         continue;
901 
902       if (Visited.insert(*Sub)) {
903         Stack.push_back(*Sub);
904         AnyChildren = true;
905       }
906     }
907 
908     // We didn't find any children, so add this module to the list of
909     // modules to link against.
910     if (!AnyChildren) {
911       LinkModules.insert(Mod);
912     }
913   }
914 
915   // Add link options for all of the imported modules in reverse topological
916   // order.  We don't do anything to try to order import link flags with respect
917   // to linker options inserted by things like #pragma comment().
918   SmallVector<llvm::Value *, 16> MetadataArgs;
919   Visited.clear();
920   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
921                                                MEnd = LinkModules.end();
922        M != MEnd; ++M) {
923     if (Visited.insert(*M))
924       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
925   }
926   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
927   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
928 
929   // Add the linker options metadata flag.
930   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
931                             llvm::MDNode::get(getLLVMContext(),
932                                               LinkerOptionsMetadata));
933 }
934 
935 void CodeGenModule::EmitDeferred() {
936   // Emit code for any potentially referenced deferred decls.  Since a
937   // previously unused static decl may become used during the generation of code
938   // for a static function, iterate until no changes are made.
939 
940   while (true) {
941     if (!DeferredVTables.empty()) {
942       EmitDeferredVTables();
943 
944       // Emitting a v-table doesn't directly cause more v-tables to
945       // become deferred, although it can cause functions to be
946       // emitted that then need those v-tables.
947       assert(DeferredVTables.empty());
948     }
949 
950     // Stop if we're out of both deferred v-tables and deferred declarations.
951     if (DeferredDeclsToEmit.empty()) break;
952 
953     DeferredGlobal &G = DeferredDeclsToEmit.back();
954     GlobalDecl D = G.GD;
955     llvm::GlobalValue *GV = G.GV;
956     DeferredDeclsToEmit.pop_back();
957 
958     assert(GV == GetGlobalValue(getMangledName(D)));
959     // Check to see if we've already emitted this.  This is necessary
960     // for a couple of reasons: first, decls can end up in the
961     // deferred-decls queue multiple times, and second, decls can end
962     // up with definitions in unusual ways (e.g. by an extern inline
963     // function acquiring a strong function redefinition).  Just
964     // ignore these cases.
965     if(!GV->isDeclaration())
966       continue;
967 
968     // Otherwise, emit the definition and move on to the next one.
969     EmitGlobalDefinition(D, GV);
970   }
971 }
972 
973 void CodeGenModule::EmitGlobalAnnotations() {
974   if (Annotations.empty())
975     return;
976 
977   // Create a new global variable for the ConstantStruct in the Module.
978   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
979     Annotations[0]->getType(), Annotations.size()), Annotations);
980   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
981     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
982     "llvm.global.annotations");
983   gv->setSection(AnnotationSection);
984 }
985 
986 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
987   llvm::Constant *&AStr = AnnotationStrings[Str];
988   if (AStr)
989     return AStr;
990 
991   // Not found yet, create a new global.
992   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
993   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
994     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
995   gv->setSection(AnnotationSection);
996   gv->setUnnamedAddr(true);
997   AStr = gv;
998   return gv;
999 }
1000 
1001 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1002   SourceManager &SM = getContext().getSourceManager();
1003   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1004   if (PLoc.isValid())
1005     return EmitAnnotationString(PLoc.getFilename());
1006   return EmitAnnotationString(SM.getBufferName(Loc));
1007 }
1008 
1009 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1010   SourceManager &SM = getContext().getSourceManager();
1011   PresumedLoc PLoc = SM.getPresumedLoc(L);
1012   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1013     SM.getExpansionLineNumber(L);
1014   return llvm::ConstantInt::get(Int32Ty, LineNo);
1015 }
1016 
1017 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1018                                                 const AnnotateAttr *AA,
1019                                                 SourceLocation L) {
1020   // Get the globals for file name, annotation, and the line number.
1021   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1022                  *UnitGV = EmitAnnotationUnit(L),
1023                  *LineNoCst = EmitAnnotationLineNo(L);
1024 
1025   // Create the ConstantStruct for the global annotation.
1026   llvm::Constant *Fields[4] = {
1027     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1028     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1029     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1030     LineNoCst
1031   };
1032   return llvm::ConstantStruct::getAnon(Fields);
1033 }
1034 
1035 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1036                                          llvm::GlobalValue *GV) {
1037   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1038   // Get the struct elements for these annotations.
1039   for (specific_attr_iterator<AnnotateAttr>
1040        ai = D->specific_attr_begin<AnnotateAttr>(),
1041        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1042     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1043 }
1044 
1045 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1046   // Never defer when EmitAllDecls is specified.
1047   if (LangOpts.EmitAllDecls)
1048     return false;
1049 
1050   return !getContext().DeclMustBeEmitted(Global);
1051 }
1052 
1053 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1054     const CXXUuidofExpr* E) {
1055   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1056   // well-formed.
1057   StringRef Uuid = E->getUuidAsStringRef(Context);
1058   std::string Name = "_GUID_" + Uuid.lower();
1059   std::replace(Name.begin(), Name.end(), '-', '_');
1060 
1061   // Look for an existing global.
1062   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1063     return GV;
1064 
1065   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1066   assert(Init && "failed to initialize as constant");
1067 
1068   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1069       getModule(), Init->getType(),
1070       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1071   return GV;
1072 }
1073 
1074 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1075   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1076   assert(AA && "No alias?");
1077 
1078   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1079 
1080   // See if there is already something with the target's name in the module.
1081   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1082   if (Entry) {
1083     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1084     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1085   }
1086 
1087   llvm::Constant *Aliasee;
1088   if (isa<llvm::FunctionType>(DeclTy))
1089     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1090                                       GlobalDecl(cast<FunctionDecl>(VD)),
1091                                       /*ForVTable=*/false);
1092   else
1093     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1094                                     llvm::PointerType::getUnqual(DeclTy), 0);
1095 
1096   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1097   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1098   WeakRefReferences.insert(F);
1099 
1100   return Aliasee;
1101 }
1102 
1103 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1104   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1105 
1106   // Weak references don't produce any output by themselves.
1107   if (Global->hasAttr<WeakRefAttr>())
1108     return;
1109 
1110   // If this is an alias definition (which otherwise looks like a declaration)
1111   // emit it now.
1112   if (Global->hasAttr<AliasAttr>())
1113     return EmitAliasDefinition(GD);
1114 
1115   // If this is CUDA, be selective about which declarations we emit.
1116   if (LangOpts.CUDA) {
1117     if (CodeGenOpts.CUDAIsDevice) {
1118       if (!Global->hasAttr<CUDADeviceAttr>() &&
1119           !Global->hasAttr<CUDAGlobalAttr>() &&
1120           !Global->hasAttr<CUDAConstantAttr>() &&
1121           !Global->hasAttr<CUDASharedAttr>())
1122         return;
1123     } else {
1124       if (!Global->hasAttr<CUDAHostAttr>() && (
1125             Global->hasAttr<CUDADeviceAttr>() ||
1126             Global->hasAttr<CUDAConstantAttr>() ||
1127             Global->hasAttr<CUDASharedAttr>()))
1128         return;
1129     }
1130   }
1131 
1132   // Ignore declarations, they will be emitted on their first use.
1133   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1134     // Forward declarations are emitted lazily on first use.
1135     if (!FD->doesThisDeclarationHaveABody()) {
1136       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1137         return;
1138 
1139       const FunctionDecl *InlineDefinition = 0;
1140       FD->getBody(InlineDefinition);
1141 
1142       StringRef MangledName = getMangledName(GD);
1143       DeferredDecls.erase(MangledName);
1144       EmitGlobalDefinition(InlineDefinition);
1145       return;
1146     }
1147   } else {
1148     const VarDecl *VD = cast<VarDecl>(Global);
1149     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1150 
1151     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1152       return;
1153   }
1154 
1155   // Defer code generation when possible if this is a static definition, inline
1156   // function etc.  These we only want to emit if they are used.
1157   if (!MayDeferGeneration(Global)) {
1158     // Emit the definition if it can't be deferred.
1159     EmitGlobalDefinition(GD);
1160     return;
1161   }
1162 
1163   // If we're deferring emission of a C++ variable with an
1164   // initializer, remember the order in which it appeared in the file.
1165   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1166       cast<VarDecl>(Global)->hasInit()) {
1167     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1168     CXXGlobalInits.push_back(0);
1169   }
1170 
1171   // If the value has already been used, add it directly to the
1172   // DeferredDeclsToEmit list.
1173   StringRef MangledName = getMangledName(GD);
1174   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1175     addDeferredDeclToEmit(GV, GD);
1176   else {
1177     // Otherwise, remember that we saw a deferred decl with this name.  The
1178     // first use of the mangled name will cause it to move into
1179     // DeferredDeclsToEmit.
1180     DeferredDecls[MangledName] = GD;
1181   }
1182 }
1183 
1184 namespace {
1185   struct FunctionIsDirectlyRecursive :
1186     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1187     const StringRef Name;
1188     const Builtin::Context &BI;
1189     bool Result;
1190     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1191       Name(N), BI(C), Result(false) {
1192     }
1193     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1194 
1195     bool TraverseCallExpr(CallExpr *E) {
1196       const FunctionDecl *FD = E->getDirectCallee();
1197       if (!FD)
1198         return true;
1199       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1200       if (Attr && Name == Attr->getLabel()) {
1201         Result = true;
1202         return false;
1203       }
1204       unsigned BuiltinID = FD->getBuiltinID();
1205       if (!BuiltinID)
1206         return true;
1207       StringRef BuiltinName = BI.GetName(BuiltinID);
1208       if (BuiltinName.startswith("__builtin_") &&
1209           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1210         Result = true;
1211         return false;
1212       }
1213       return true;
1214     }
1215   };
1216 }
1217 
1218 // isTriviallyRecursive - Check if this function calls another
1219 // decl that, because of the asm attribute or the other decl being a builtin,
1220 // ends up pointing to itself.
1221 bool
1222 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1223   StringRef Name;
1224   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1225     // asm labels are a special kind of mangling we have to support.
1226     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1227     if (!Attr)
1228       return false;
1229     Name = Attr->getLabel();
1230   } else {
1231     Name = FD->getName();
1232   }
1233 
1234   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1235   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1236   return Walker.Result;
1237 }
1238 
1239 bool
1240 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1241   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1242     return true;
1243   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1244   if (CodeGenOpts.OptimizationLevel == 0 &&
1245       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1246     return false;
1247   // PR9614. Avoid cases where the source code is lying to us. An available
1248   // externally function should have an equivalent function somewhere else,
1249   // but a function that calls itself is clearly not equivalent to the real
1250   // implementation.
1251   // This happens in glibc's btowc and in some configure checks.
1252   return !isTriviallyRecursive(F);
1253 }
1254 
1255 /// If the type for the method's class was generated by
1256 /// CGDebugInfo::createContextChain(), the cache contains only a
1257 /// limited DIType without any declarations. Since EmitFunctionStart()
1258 /// needs to find the canonical declaration for each method, we need
1259 /// to construct the complete type prior to emitting the method.
1260 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1261   if (!D->isInstance())
1262     return;
1263 
1264   if (CGDebugInfo *DI = getModuleDebugInfo())
1265     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1266       const PointerType *ThisPtr =
1267         cast<PointerType>(D->getThisType(getContext()));
1268       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1269     }
1270 }
1271 
1272 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1273   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1274 
1275   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1276                                  Context.getSourceManager(),
1277                                  "Generating code for declaration");
1278 
1279   if (isa<FunctionDecl>(D)) {
1280     // At -O0, don't generate IR for functions with available_externally
1281     // linkage.
1282     if (!shouldEmitFunction(GD))
1283       return;
1284 
1285     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1286       CompleteDIClassType(Method);
1287       // Make sure to emit the definition(s) before we emit the thunks.
1288       // This is necessary for the generation of certain thunks.
1289       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1290         EmitCXXConstructor(CD, GD.getCtorType());
1291       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1292         EmitCXXDestructor(DD, GD.getDtorType());
1293       else
1294         EmitGlobalFunctionDefinition(GD, GV);
1295 
1296       if (Method->isVirtual())
1297         getVTables().EmitThunks(GD);
1298 
1299       return;
1300     }
1301 
1302     return EmitGlobalFunctionDefinition(GD, GV);
1303   }
1304 
1305   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1306     return EmitGlobalVarDefinition(VD);
1307 
1308   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1309 }
1310 
1311 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1312 /// module, create and return an llvm Function with the specified type. If there
1313 /// is something in the module with the specified name, return it potentially
1314 /// bitcasted to the right type.
1315 ///
1316 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1317 /// to set the attributes on the function when it is first created.
1318 llvm::Constant *
1319 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1320                                        llvm::Type *Ty,
1321                                        GlobalDecl GD, bool ForVTable,
1322                                        bool DontDefer,
1323                                        llvm::AttributeSet ExtraAttrs) {
1324   const Decl *D = GD.getDecl();
1325 
1326   // Lookup the entry, lazily creating it if necessary.
1327   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1328   if (Entry) {
1329     if (WeakRefReferences.erase(Entry)) {
1330       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1331       if (FD && !FD->hasAttr<WeakAttr>())
1332         Entry->setLinkage(llvm::Function::ExternalLinkage);
1333     }
1334 
1335     if (Entry->getType()->getElementType() == Ty)
1336       return Entry;
1337 
1338     // Make sure the result is of the correct type.
1339     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1340   }
1341 
1342   // This function doesn't have a complete type (for example, the return
1343   // type is an incomplete struct). Use a fake type instead, and make
1344   // sure not to try to set attributes.
1345   bool IsIncompleteFunction = false;
1346 
1347   llvm::FunctionType *FTy;
1348   if (isa<llvm::FunctionType>(Ty)) {
1349     FTy = cast<llvm::FunctionType>(Ty);
1350   } else {
1351     FTy = llvm::FunctionType::get(VoidTy, false);
1352     IsIncompleteFunction = true;
1353   }
1354 
1355   llvm::Function *F = llvm::Function::Create(FTy,
1356                                              llvm::Function::ExternalLinkage,
1357                                              MangledName, &getModule());
1358   assert(F->getName() == MangledName && "name was uniqued!");
1359   if (D)
1360     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1361   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1362     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1363     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1364                      llvm::AttributeSet::get(VMContext,
1365                                              llvm::AttributeSet::FunctionIndex,
1366                                              B));
1367   }
1368 
1369   if (!DontDefer) {
1370     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1371     // each other bottoming out with the base dtor.  Therefore we emit non-base
1372     // dtors on usage, even if there is no dtor definition in the TU.
1373     if (D && isa<CXXDestructorDecl>(D) &&
1374         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1375                                            GD.getDtorType()))
1376       addDeferredDeclToEmit(F, GD);
1377 
1378     // This is the first use or definition of a mangled name.  If there is a
1379     // deferred decl with this name, remember that we need to emit it at the end
1380     // of the file.
1381     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1382     if (DDI != DeferredDecls.end()) {
1383       // Move the potentially referenced deferred decl to the
1384       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1385       // don't need it anymore).
1386       addDeferredDeclToEmit(F, DDI->second);
1387       DeferredDecls.erase(DDI);
1388 
1389       // Otherwise, if this is a sized deallocation function, emit a weak
1390       // definition
1391       // for it at the end of the translation unit.
1392     } else if (D && cast<FunctionDecl>(D)
1393                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1394       addDeferredDeclToEmit(F, GD);
1395 
1396       // Otherwise, there are cases we have to worry about where we're
1397       // using a declaration for which we must emit a definition but where
1398       // we might not find a top-level definition:
1399       //   - member functions defined inline in their classes
1400       //   - friend functions defined inline in some class
1401       //   - special member functions with implicit definitions
1402       // If we ever change our AST traversal to walk into class methods,
1403       // this will be unnecessary.
1404       //
1405       // We also don't emit a definition for a function if it's going to be an
1406       // entry
1407       // in a vtable, unless it's already marked as used.
1408     } else if (getLangOpts().CPlusPlus && D) {
1409       // Look for a declaration that's lexically in a record.
1410       const FunctionDecl *FD = cast<FunctionDecl>(D);
1411       FD = FD->getMostRecentDecl();
1412       do {
1413         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1414           if (FD->isImplicit() && !ForVTable) {
1415             assert(FD->isUsed() &&
1416                    "Sema didn't mark implicit function as used!");
1417             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1418             break;
1419           } else if (FD->doesThisDeclarationHaveABody()) {
1420             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1421             break;
1422           }
1423         }
1424         FD = FD->getPreviousDecl();
1425       } while (FD);
1426     }
1427   }
1428 
1429   // Make sure the result is of the requested type.
1430   if (!IsIncompleteFunction) {
1431     assert(F->getType()->getElementType() == Ty);
1432     return F;
1433   }
1434 
1435   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1436   return llvm::ConstantExpr::getBitCast(F, PTy);
1437 }
1438 
1439 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1440 /// non-null, then this function will use the specified type if it has to
1441 /// create it (this occurs when we see a definition of the function).
1442 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1443                                                  llvm::Type *Ty,
1444                                                  bool ForVTable,
1445                                                  bool DontDefer) {
1446   // If there was no specific requested type, just convert it now.
1447   if (!Ty)
1448     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1449 
1450   StringRef MangledName = getMangledName(GD);
1451   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1452 }
1453 
1454 /// CreateRuntimeFunction - Create a new runtime function with the specified
1455 /// type and name.
1456 llvm::Constant *
1457 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1458                                      StringRef Name,
1459                                      llvm::AttributeSet ExtraAttrs) {
1460   llvm::Constant *C =
1461       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1462                               /*DontDefer=*/false, ExtraAttrs);
1463   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1464     if (F->empty())
1465       F->setCallingConv(getRuntimeCC());
1466   return C;
1467 }
1468 
1469 /// isTypeConstant - Determine whether an object of this type can be emitted
1470 /// as a constant.
1471 ///
1472 /// If ExcludeCtor is true, the duration when the object's constructor runs
1473 /// will not be considered. The caller will need to verify that the object is
1474 /// not written to during its construction.
1475 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1476   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1477     return false;
1478 
1479   if (Context.getLangOpts().CPlusPlus) {
1480     if (const CXXRecordDecl *Record
1481           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1482       return ExcludeCtor && !Record->hasMutableFields() &&
1483              Record->hasTrivialDestructor();
1484   }
1485 
1486   return true;
1487 }
1488 
1489 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1490 /// create and return an llvm GlobalVariable with the specified type.  If there
1491 /// is something in the module with the specified name, return it potentially
1492 /// bitcasted to the right type.
1493 ///
1494 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1495 /// to set the attributes on the global when it is first created.
1496 llvm::Constant *
1497 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1498                                      llvm::PointerType *Ty,
1499                                      const VarDecl *D,
1500                                      bool UnnamedAddr) {
1501   // Lookup the entry, lazily creating it if necessary.
1502   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1503   if (Entry) {
1504     if (WeakRefReferences.erase(Entry)) {
1505       if (D && !D->hasAttr<WeakAttr>())
1506         Entry->setLinkage(llvm::Function::ExternalLinkage);
1507     }
1508 
1509     if (UnnamedAddr)
1510       Entry->setUnnamedAddr(true);
1511 
1512     if (Entry->getType() == Ty)
1513       return Entry;
1514 
1515     // Make sure the result is of the correct type.
1516     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1517       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1518 
1519     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1520   }
1521 
1522   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1523   llvm::GlobalVariable *GV =
1524     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1525                              llvm::GlobalValue::ExternalLinkage,
1526                              0, MangledName, 0,
1527                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1528 
1529   // This is the first use or definition of a mangled name.  If there is a
1530   // deferred decl with this name, remember that we need to emit it at the end
1531   // of the file.
1532   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1533   if (DDI != DeferredDecls.end()) {
1534     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1535     // list, and remove it from DeferredDecls (since we don't need it anymore).
1536     addDeferredDeclToEmit(GV, DDI->second);
1537     DeferredDecls.erase(DDI);
1538   }
1539 
1540   // Handle things which are present even on external declarations.
1541   if (D) {
1542     // FIXME: This code is overly simple and should be merged with other global
1543     // handling.
1544     GV->setConstant(isTypeConstant(D->getType(), false));
1545 
1546     // Set linkage and visibility in case we never see a definition.
1547     LinkageInfo LV = D->getLinkageAndVisibility();
1548     if (LV.getLinkage() != ExternalLinkage) {
1549       // Don't set internal linkage on declarations.
1550     } else {
1551       if (D->hasAttr<DLLImportAttr>()) {
1552         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1553         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1554       } else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1555         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1556 
1557       // Set visibility on a declaration only if it's explicit.
1558       if (LV.isVisibilityExplicit())
1559         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1560     }
1561 
1562     if (D->getTLSKind()) {
1563       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1564         CXXThreadLocals.push_back(std::make_pair(D, GV));
1565       setTLSMode(GV, *D);
1566     }
1567 
1568     // If required by the ABI, treat declarations of static data members with
1569     // inline initializers as definitions.
1570     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1571         D->isStaticDataMember() && D->hasInit() &&
1572         !D->isThisDeclarationADefinition())
1573       EmitGlobalVarDefinition(D);
1574   }
1575 
1576   if (AddrSpace != Ty->getAddressSpace())
1577     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1578 
1579   return GV;
1580 }
1581 
1582 
1583 llvm::GlobalVariable *
1584 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1585                                       llvm::Type *Ty,
1586                                       llvm::GlobalValue::LinkageTypes Linkage) {
1587   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1588   llvm::GlobalVariable *OldGV = 0;
1589 
1590 
1591   if (GV) {
1592     // Check if the variable has the right type.
1593     if (GV->getType()->getElementType() == Ty)
1594       return GV;
1595 
1596     // Because C++ name mangling, the only way we can end up with an already
1597     // existing global with the same name is if it has been declared extern "C".
1598     assert(GV->isDeclaration() && "Declaration has wrong type!");
1599     OldGV = GV;
1600   }
1601 
1602   // Create a new variable.
1603   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1604                                 Linkage, 0, Name);
1605 
1606   if (OldGV) {
1607     // Replace occurrences of the old variable if needed.
1608     GV->takeName(OldGV);
1609 
1610     if (!OldGV->use_empty()) {
1611       llvm::Constant *NewPtrForOldDecl =
1612       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1613       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1614     }
1615 
1616     OldGV->eraseFromParent();
1617   }
1618 
1619   return GV;
1620 }
1621 
1622 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1623 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1624 /// then it will be created with the specified type instead of whatever the
1625 /// normal requested type would be.
1626 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1627                                                   llvm::Type *Ty) {
1628   assert(D->hasGlobalStorage() && "Not a global variable");
1629   QualType ASTTy = D->getType();
1630   if (Ty == 0)
1631     Ty = getTypes().ConvertTypeForMem(ASTTy);
1632 
1633   llvm::PointerType *PTy =
1634     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1635 
1636   StringRef MangledName = getMangledName(D);
1637   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1638 }
1639 
1640 /// CreateRuntimeVariable - Create a new runtime global variable with the
1641 /// specified type and name.
1642 llvm::Constant *
1643 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1644                                      StringRef Name) {
1645   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1646                                true);
1647 }
1648 
1649 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1650   assert(!D->getInit() && "Cannot emit definite definitions here!");
1651 
1652   if (MayDeferGeneration(D)) {
1653     // If we have not seen a reference to this variable yet, place it
1654     // into the deferred declarations table to be emitted if needed
1655     // later.
1656     StringRef MangledName = getMangledName(D);
1657     if (!GetGlobalValue(MangledName)) {
1658       DeferredDecls[MangledName] = D;
1659       return;
1660     }
1661   }
1662 
1663   // The tentative definition is the only definition.
1664   EmitGlobalVarDefinition(D);
1665 }
1666 
1667 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1668     return Context.toCharUnitsFromBits(
1669       TheDataLayout.getTypeStoreSizeInBits(Ty));
1670 }
1671 
1672 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1673                                                  unsigned AddrSpace) {
1674   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1675     if (D->hasAttr<CUDAConstantAttr>())
1676       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1677     else if (D->hasAttr<CUDASharedAttr>())
1678       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1679     else
1680       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1681   }
1682 
1683   return AddrSpace;
1684 }
1685 
1686 template<typename SomeDecl>
1687 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1688                                                llvm::GlobalValue *GV) {
1689   if (!getLangOpts().CPlusPlus)
1690     return;
1691 
1692   // Must have 'used' attribute, or else inline assembly can't rely on
1693   // the name existing.
1694   if (!D->template hasAttr<UsedAttr>())
1695     return;
1696 
1697   // Must have internal linkage and an ordinary name.
1698   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1699     return;
1700 
1701   // Must be in an extern "C" context. Entities declared directly within
1702   // a record are not extern "C" even if the record is in such a context.
1703   const SomeDecl *First = D->getFirstDecl();
1704   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1705     return;
1706 
1707   // OK, this is an internal linkage entity inside an extern "C" linkage
1708   // specification. Make a note of that so we can give it the "expected"
1709   // mangled name if nothing else is using that name.
1710   std::pair<StaticExternCMap::iterator, bool> R =
1711       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1712 
1713   // If we have multiple internal linkage entities with the same name
1714   // in extern "C" regions, none of them gets that name.
1715   if (!R.second)
1716     R.first->second = 0;
1717 }
1718 
1719 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1720   llvm::Constant *Init = 0;
1721   QualType ASTTy = D->getType();
1722   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1723   bool NeedsGlobalCtor = false;
1724   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1725 
1726   const VarDecl *InitDecl;
1727   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1728 
1729   if (!InitExpr) {
1730     // This is a tentative definition; tentative definitions are
1731     // implicitly initialized with { 0 }.
1732     //
1733     // Note that tentative definitions are only emitted at the end of
1734     // a translation unit, so they should never have incomplete
1735     // type. In addition, EmitTentativeDefinition makes sure that we
1736     // never attempt to emit a tentative definition if a real one
1737     // exists. A use may still exists, however, so we still may need
1738     // to do a RAUW.
1739     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1740     Init = EmitNullConstant(D->getType());
1741   } else {
1742     initializedGlobalDecl = GlobalDecl(D);
1743     Init = EmitConstantInit(*InitDecl);
1744 
1745     if (!Init) {
1746       QualType T = InitExpr->getType();
1747       if (D->getType()->isReferenceType())
1748         T = D->getType();
1749 
1750       if (getLangOpts().CPlusPlus) {
1751         Init = EmitNullConstant(T);
1752         NeedsGlobalCtor = true;
1753       } else {
1754         ErrorUnsupported(D, "static initializer");
1755         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1756       }
1757     } else {
1758       // We don't need an initializer, so remove the entry for the delayed
1759       // initializer position (just in case this entry was delayed) if we
1760       // also don't need to register a destructor.
1761       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1762         DelayedCXXInitPosition.erase(D);
1763     }
1764   }
1765 
1766   llvm::Type* InitType = Init->getType();
1767   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1768 
1769   // Strip off a bitcast if we got one back.
1770   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1771     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1772            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1773            // All zero index gep.
1774            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1775     Entry = CE->getOperand(0);
1776   }
1777 
1778   // Entry is now either a Function or GlobalVariable.
1779   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1780 
1781   // We have a definition after a declaration with the wrong type.
1782   // We must make a new GlobalVariable* and update everything that used OldGV
1783   // (a declaration or tentative definition) with the new GlobalVariable*
1784   // (which will be a definition).
1785   //
1786   // This happens if there is a prototype for a global (e.g.
1787   // "extern int x[];") and then a definition of a different type (e.g.
1788   // "int x[10];"). This also happens when an initializer has a different type
1789   // from the type of the global (this happens with unions).
1790   if (GV == 0 ||
1791       GV->getType()->getElementType() != InitType ||
1792       GV->getType()->getAddressSpace() !=
1793        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1794 
1795     // Move the old entry aside so that we'll create a new one.
1796     Entry->setName(StringRef());
1797 
1798     // Make a new global with the correct type, this is now guaranteed to work.
1799     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1800 
1801     // Replace all uses of the old global with the new global
1802     llvm::Constant *NewPtrForOldDecl =
1803         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1804     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1805 
1806     // Erase the old global, since it is no longer used.
1807     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1808   }
1809 
1810   MaybeHandleStaticInExternC(D, GV);
1811 
1812   if (D->hasAttr<AnnotateAttr>())
1813     AddGlobalAnnotations(D, GV);
1814 
1815   GV->setInitializer(Init);
1816 
1817   // If it is safe to mark the global 'constant', do so now.
1818   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1819                   isTypeConstant(D->getType(), true));
1820 
1821   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1822 
1823   // Set the llvm linkage type as appropriate.
1824   llvm::GlobalValue::LinkageTypes Linkage =
1825     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1826   GV->setLinkage(Linkage);
1827   if (D->hasAttr<DLLImportAttr>())
1828     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1829   else if (D->hasAttr<DLLExportAttr>())
1830     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1831 
1832   // If required by the ABI, give definitions of static data members with inline
1833   // initializers linkonce_odr linkage.
1834   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1835       D->isStaticDataMember() && InitExpr &&
1836       !InitDecl->isThisDeclarationADefinition())
1837     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1838 
1839   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1840     // common vars aren't constant even if declared const.
1841     GV->setConstant(false);
1842 
1843   SetCommonAttributes(D, GV);
1844 
1845   // Emit the initializer function if necessary.
1846   if (NeedsGlobalCtor || NeedsGlobalDtor)
1847     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1848 
1849   // If we are compiling with ASan, add metadata indicating dynamically
1850   // initialized globals.
1851   if (SanOpts.Address && NeedsGlobalCtor) {
1852     llvm::Module &M = getModule();
1853 
1854     llvm::NamedMDNode *DynamicInitializers =
1855         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1856     llvm::Value *GlobalToAdd[] = { GV };
1857     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1858     DynamicInitializers->addOperand(ThisGlobal);
1859   }
1860 
1861   // Emit global variable debug information.
1862   if (CGDebugInfo *DI = getModuleDebugInfo())
1863     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1864       DI->EmitGlobalVariable(GV, D);
1865 }
1866 
1867 llvm::GlobalValue::LinkageTypes
1868 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1869   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1870   if (Linkage == GVA_Internal)
1871     return llvm::Function::InternalLinkage;
1872   else if (D->hasAttr<DLLImportAttr>())
1873     return llvm::Function::ExternalLinkage;
1874   else if (D->hasAttr<DLLExportAttr>())
1875     return llvm::Function::ExternalLinkage;
1876   else if (D->hasAttr<SelectAnyAttr>()) {
1877     // selectany symbols are externally visible, so use weak instead of
1878     // linkonce.  MSVC optimizes away references to const selectany globals, so
1879     // all definitions should be the same and ODR linkage should be used.
1880     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1881     return llvm::GlobalVariable::WeakODRLinkage;
1882   } else if (D->hasAttr<WeakAttr>()) {
1883     if (isConstant)
1884       return llvm::GlobalVariable::WeakODRLinkage;
1885     else
1886       return llvm::GlobalVariable::WeakAnyLinkage;
1887   } else if (Linkage == GVA_TemplateInstantiation ||
1888              Linkage == GVA_ExplicitTemplateInstantiation)
1889     return llvm::GlobalVariable::WeakODRLinkage;
1890   else if (!getLangOpts().CPlusPlus &&
1891            ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) ||
1892              D->hasAttr<CommonAttr>()) &&
1893            !D->hasExternalStorage() && !D->getInit() &&
1894            !D->hasAttr<SectionAttr>() && !D->getTLSKind() &&
1895            !D->hasAttr<WeakImportAttr>()) {
1896     // Thread local vars aren't considered common linkage.
1897     return llvm::GlobalVariable::CommonLinkage;
1898   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1899              getTarget().getTriple().isMacOSX())
1900     // On Darwin, the backing variable for a C++11 thread_local variable always
1901     // has internal linkage; all accesses should just be calls to the
1902     // Itanium-specified entry point, which has the normal linkage of the
1903     // variable.
1904     return llvm::GlobalValue::InternalLinkage;
1905   return llvm::GlobalVariable::ExternalLinkage;
1906 }
1907 
1908 /// Replace the uses of a function that was declared with a non-proto type.
1909 /// We want to silently drop extra arguments from call sites
1910 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1911                                           llvm::Function *newFn) {
1912   // Fast path.
1913   if (old->use_empty()) return;
1914 
1915   llvm::Type *newRetTy = newFn->getReturnType();
1916   SmallVector<llvm::Value*, 4> newArgs;
1917 
1918   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1919          ui != ue; ) {
1920     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1921     llvm::User *user = *use;
1922 
1923     // Recognize and replace uses of bitcasts.  Most calls to
1924     // unprototyped functions will use bitcasts.
1925     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1926       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1927         replaceUsesOfNonProtoConstant(bitcast, newFn);
1928       continue;
1929     }
1930 
1931     // Recognize calls to the function.
1932     llvm::CallSite callSite(user);
1933     if (!callSite) continue;
1934     if (!callSite.isCallee(use)) continue;
1935 
1936     // If the return types don't match exactly, then we can't
1937     // transform this call unless it's dead.
1938     if (callSite->getType() != newRetTy && !callSite->use_empty())
1939       continue;
1940 
1941     // Get the call site's attribute list.
1942     SmallVector<llvm::AttributeSet, 8> newAttrs;
1943     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1944 
1945     // Collect any return attributes from the call.
1946     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1947       newAttrs.push_back(
1948         llvm::AttributeSet::get(newFn->getContext(),
1949                                 oldAttrs.getRetAttributes()));
1950 
1951     // If the function was passed too few arguments, don't transform.
1952     unsigned newNumArgs = newFn->arg_size();
1953     if (callSite.arg_size() < newNumArgs) continue;
1954 
1955     // If extra arguments were passed, we silently drop them.
1956     // If any of the types mismatch, we don't transform.
1957     unsigned argNo = 0;
1958     bool dontTransform = false;
1959     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1960            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1961       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1962         dontTransform = true;
1963         break;
1964       }
1965 
1966       // Add any parameter attributes.
1967       if (oldAttrs.hasAttributes(argNo + 1))
1968         newAttrs.
1969           push_back(llvm::
1970                     AttributeSet::get(newFn->getContext(),
1971                                       oldAttrs.getParamAttributes(argNo + 1)));
1972     }
1973     if (dontTransform)
1974       continue;
1975 
1976     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1977       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1978                                                  oldAttrs.getFnAttributes()));
1979 
1980     // Okay, we can transform this.  Create the new call instruction and copy
1981     // over the required information.
1982     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1983 
1984     llvm::CallSite newCall;
1985     if (callSite.isCall()) {
1986       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1987                                        callSite.getInstruction());
1988     } else {
1989       llvm::InvokeInst *oldInvoke =
1990         cast<llvm::InvokeInst>(callSite.getInstruction());
1991       newCall = llvm::InvokeInst::Create(newFn,
1992                                          oldInvoke->getNormalDest(),
1993                                          oldInvoke->getUnwindDest(),
1994                                          newArgs, "",
1995                                          callSite.getInstruction());
1996     }
1997     newArgs.clear(); // for the next iteration
1998 
1999     if (!newCall->getType()->isVoidTy())
2000       newCall->takeName(callSite.getInstruction());
2001     newCall.setAttributes(
2002                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2003     newCall.setCallingConv(callSite.getCallingConv());
2004 
2005     // Finally, remove the old call, replacing any uses with the new one.
2006     if (!callSite->use_empty())
2007       callSite->replaceAllUsesWith(newCall.getInstruction());
2008 
2009     // Copy debug location attached to CI.
2010     if (!callSite->getDebugLoc().isUnknown())
2011       newCall->setDebugLoc(callSite->getDebugLoc());
2012     callSite->eraseFromParent();
2013   }
2014 }
2015 
2016 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2017 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2018 /// existing call uses of the old function in the module, this adjusts them to
2019 /// call the new function directly.
2020 ///
2021 /// This is not just a cleanup: the always_inline pass requires direct calls to
2022 /// functions to be able to inline them.  If there is a bitcast in the way, it
2023 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2024 /// run at -O0.
2025 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2026                                                       llvm::Function *NewFn) {
2027   // If we're redefining a global as a function, don't transform it.
2028   if (!isa<llvm::Function>(Old)) return;
2029 
2030   replaceUsesOfNonProtoConstant(Old, NewFn);
2031 }
2032 
2033 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2034   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2035   // If we have a definition, this might be a deferred decl. If the
2036   // instantiation is explicit, make sure we emit it at the end.
2037   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2038     GetAddrOfGlobalVar(VD);
2039 
2040   EmitTopLevelDecl(VD);
2041 }
2042 
2043 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2044                                                  llvm::GlobalValue *GV) {
2045   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2046 
2047   // Compute the function info and LLVM type.
2048   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2049   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2050 
2051   // Get or create the prototype for the function.
2052   llvm::Constant *Entry =
2053       GV ? GV
2054          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2055 
2056   // Strip off a bitcast if we got one back.
2057   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2058     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2059     Entry = CE->getOperand(0);
2060   }
2061 
2062   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2063     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2064     return;
2065   }
2066 
2067   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2068     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2069 
2070     // If the types mismatch then we have to rewrite the definition.
2071     assert(OldFn->isDeclaration() &&
2072            "Shouldn't replace non-declaration");
2073 
2074     // F is the Function* for the one with the wrong type, we must make a new
2075     // Function* and update everything that used F (a declaration) with the new
2076     // Function* (which will be a definition).
2077     //
2078     // This happens if there is a prototype for a function
2079     // (e.g. "int f()") and then a definition of a different type
2080     // (e.g. "int f(int x)").  Move the old function aside so that it
2081     // doesn't interfere with GetAddrOfFunction.
2082     OldFn->setName(StringRef());
2083     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2084 
2085     // This might be an implementation of a function without a
2086     // prototype, in which case, try to do special replacement of
2087     // calls which match the new prototype.  The really key thing here
2088     // is that we also potentially drop arguments from the call site
2089     // so as to make a direct call, which makes the inliner happier
2090     // and suppresses a number of optimizer warnings (!) about
2091     // dropping arguments.
2092     if (!OldFn->use_empty()) {
2093       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2094       OldFn->removeDeadConstantUsers();
2095     }
2096 
2097     // Replace uses of F with the Function we will endow with a body.
2098     if (!Entry->use_empty()) {
2099       llvm::Constant *NewPtrForOldDecl =
2100         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2101       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2102     }
2103 
2104     // Ok, delete the old function now, which is dead.
2105     OldFn->eraseFromParent();
2106 
2107     Entry = NewFn;
2108   }
2109 
2110   // We need to set linkage and visibility on the function before
2111   // generating code for it because various parts of IR generation
2112   // want to propagate this information down (e.g. to local static
2113   // declarations).
2114   llvm::Function *Fn = cast<llvm::Function>(Entry);
2115   setFunctionLinkage(GD, Fn);
2116 
2117   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2118   setGlobalVisibility(Fn, D);
2119 
2120   MaybeHandleStaticInExternC(D, Fn);
2121 
2122   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2123 
2124   SetFunctionDefinitionAttributes(D, Fn);
2125   SetLLVMFunctionAttributesForDefinition(D, Fn);
2126 
2127   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2128     AddGlobalCtor(Fn, CA->getPriority());
2129   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2130     AddGlobalDtor(Fn, DA->getPriority());
2131   if (D->hasAttr<AnnotateAttr>())
2132     AddGlobalAnnotations(D, Fn);
2133 
2134   llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this);
2135   if (PGOInit)
2136     AddGlobalCtor(PGOInit, 0);
2137 }
2138 
2139 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2140   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2141   const AliasAttr *AA = D->getAttr<AliasAttr>();
2142   assert(AA && "Not an alias?");
2143 
2144   StringRef MangledName = getMangledName(GD);
2145 
2146   // If there is a definition in the module, then it wins over the alias.
2147   // This is dubious, but allow it to be safe.  Just ignore the alias.
2148   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2149   if (Entry && !Entry->isDeclaration())
2150     return;
2151 
2152   Aliases.push_back(GD);
2153 
2154   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2155 
2156   // Create a reference to the named value.  This ensures that it is emitted
2157   // if a deferred decl.
2158   llvm::Constant *Aliasee;
2159   if (isa<llvm::FunctionType>(DeclTy))
2160     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2161                                       /*ForVTable=*/false);
2162   else
2163     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2164                                     llvm::PointerType::getUnqual(DeclTy), 0);
2165 
2166   // Create the new alias itself, but don't set a name yet.
2167   llvm::GlobalValue *GA =
2168     new llvm::GlobalAlias(Aliasee->getType(),
2169                           llvm::Function::ExternalLinkage,
2170                           "", Aliasee, &getModule());
2171 
2172   if (Entry) {
2173     assert(Entry->isDeclaration());
2174 
2175     // If there is a declaration in the module, then we had an extern followed
2176     // by the alias, as in:
2177     //   extern int test6();
2178     //   ...
2179     //   int test6() __attribute__((alias("test7")));
2180     //
2181     // Remove it and replace uses of it with the alias.
2182     GA->takeName(Entry);
2183 
2184     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2185                                                           Entry->getType()));
2186     Entry->eraseFromParent();
2187   } else {
2188     GA->setName(MangledName);
2189   }
2190 
2191   // Set attributes which are particular to an alias; this is a
2192   // specialization of the attributes which may be set on a global
2193   // variable/function.
2194   if (D->hasAttr<DLLExportAttr>()) {
2195     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2196       // The dllexport attribute is ignored for undefined symbols.
2197       if (FD->hasBody())
2198         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2199     } else {
2200       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2201     }
2202   } else if (D->hasAttr<WeakAttr>() ||
2203              D->hasAttr<WeakRefAttr>() ||
2204              D->isWeakImported()) {
2205     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2206   }
2207 
2208   SetCommonAttributes(D, GA);
2209 }
2210 
2211 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2212                                             ArrayRef<llvm::Type*> Tys) {
2213   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2214                                          Tys);
2215 }
2216 
2217 static llvm::StringMapEntry<llvm::Constant*> &
2218 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2219                          const StringLiteral *Literal,
2220                          bool TargetIsLSB,
2221                          bool &IsUTF16,
2222                          unsigned &StringLength) {
2223   StringRef String = Literal->getString();
2224   unsigned NumBytes = String.size();
2225 
2226   // Check for simple case.
2227   if (!Literal->containsNonAsciiOrNull()) {
2228     StringLength = NumBytes;
2229     return Map.GetOrCreateValue(String);
2230   }
2231 
2232   // Otherwise, convert the UTF8 literals into a string of shorts.
2233   IsUTF16 = true;
2234 
2235   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2236   const UTF8 *FromPtr = (const UTF8 *)String.data();
2237   UTF16 *ToPtr = &ToBuf[0];
2238 
2239   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2240                            &ToPtr, ToPtr + NumBytes,
2241                            strictConversion);
2242 
2243   // ConvertUTF8toUTF16 returns the length in ToPtr.
2244   StringLength = ToPtr - &ToBuf[0];
2245 
2246   // Add an explicit null.
2247   *ToPtr = 0;
2248   return Map.
2249     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2250                                (StringLength + 1) * 2));
2251 }
2252 
2253 static llvm::StringMapEntry<llvm::Constant*> &
2254 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2255                        const StringLiteral *Literal,
2256                        unsigned &StringLength) {
2257   StringRef String = Literal->getString();
2258   StringLength = String.size();
2259   return Map.GetOrCreateValue(String);
2260 }
2261 
2262 llvm::Constant *
2263 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2264   unsigned StringLength = 0;
2265   bool isUTF16 = false;
2266   llvm::StringMapEntry<llvm::Constant*> &Entry =
2267     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2268                              getDataLayout().isLittleEndian(),
2269                              isUTF16, StringLength);
2270 
2271   if (llvm::Constant *C = Entry.getValue())
2272     return C;
2273 
2274   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2275   llvm::Constant *Zeros[] = { Zero, Zero };
2276   llvm::Value *V;
2277 
2278   // If we don't already have it, get __CFConstantStringClassReference.
2279   if (!CFConstantStringClassRef) {
2280     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2281     Ty = llvm::ArrayType::get(Ty, 0);
2282     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2283                                            "__CFConstantStringClassReference");
2284     // Decay array -> ptr
2285     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2286     CFConstantStringClassRef = V;
2287   }
2288   else
2289     V = CFConstantStringClassRef;
2290 
2291   QualType CFTy = getContext().getCFConstantStringType();
2292 
2293   llvm::StructType *STy =
2294     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2295 
2296   llvm::Constant *Fields[4];
2297 
2298   // Class pointer.
2299   Fields[0] = cast<llvm::ConstantExpr>(V);
2300 
2301   // Flags.
2302   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2303   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2304     llvm::ConstantInt::get(Ty, 0x07C8);
2305 
2306   // String pointer.
2307   llvm::Constant *C = 0;
2308   if (isUTF16) {
2309     ArrayRef<uint16_t> Arr =
2310       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2311                                      const_cast<char *>(Entry.getKey().data())),
2312                                    Entry.getKey().size() / 2);
2313     C = llvm::ConstantDataArray::get(VMContext, Arr);
2314   } else {
2315     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2316   }
2317 
2318   // Note: -fwritable-strings doesn't make the backing store strings of
2319   // CFStrings writable. (See <rdar://problem/10657500>)
2320   llvm::GlobalVariable *GV =
2321       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2322                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2323   GV->setUnnamedAddr(true);
2324   // Don't enforce the target's minimum global alignment, since the only use
2325   // of the string is via this class initializer.
2326   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2327   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2328   // that changes the section it ends in, which surprises ld64.
2329   if (isUTF16) {
2330     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2331     GV->setAlignment(Align.getQuantity());
2332     GV->setSection("__TEXT,__ustring");
2333   } else {
2334     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2335     GV->setAlignment(Align.getQuantity());
2336     GV->setSection("__TEXT,__cstring,cstring_literals");
2337   }
2338 
2339   // String.
2340   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2341 
2342   if (isUTF16)
2343     // Cast the UTF16 string to the correct type.
2344     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2345 
2346   // String length.
2347   Ty = getTypes().ConvertType(getContext().LongTy);
2348   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2349 
2350   // The struct.
2351   C = llvm::ConstantStruct::get(STy, Fields);
2352   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2353                                 llvm::GlobalVariable::PrivateLinkage, C,
2354                                 "_unnamed_cfstring_");
2355   GV->setSection("__DATA,__cfstring");
2356   Entry.setValue(GV);
2357 
2358   return GV;
2359 }
2360 
2361 llvm::Constant *
2362 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2363   unsigned StringLength = 0;
2364   llvm::StringMapEntry<llvm::Constant*> &Entry =
2365     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2366 
2367   if (llvm::Constant *C = Entry.getValue())
2368     return C;
2369 
2370   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2371   llvm::Constant *Zeros[] = { Zero, Zero };
2372   llvm::Value *V;
2373   // If we don't already have it, get _NSConstantStringClassReference.
2374   if (!ConstantStringClassRef) {
2375     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2376     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2377     llvm::Constant *GV;
2378     if (LangOpts.ObjCRuntime.isNonFragile()) {
2379       std::string str =
2380         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2381                             : "OBJC_CLASS_$_" + StringClass;
2382       GV = getObjCRuntime().GetClassGlobal(str);
2383       // Make sure the result is of the correct type.
2384       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2385       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2386       ConstantStringClassRef = V;
2387     } else {
2388       std::string str =
2389         StringClass.empty() ? "_NSConstantStringClassReference"
2390                             : "_" + StringClass + "ClassReference";
2391       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2392       GV = CreateRuntimeVariable(PTy, str);
2393       // Decay array -> ptr
2394       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2395       ConstantStringClassRef = V;
2396     }
2397   }
2398   else
2399     V = ConstantStringClassRef;
2400 
2401   if (!NSConstantStringType) {
2402     // Construct the type for a constant NSString.
2403     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2404     D->startDefinition();
2405 
2406     QualType FieldTypes[3];
2407 
2408     // const int *isa;
2409     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2410     // const char *str;
2411     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2412     // unsigned int length;
2413     FieldTypes[2] = Context.UnsignedIntTy;
2414 
2415     // Create fields
2416     for (unsigned i = 0; i < 3; ++i) {
2417       FieldDecl *Field = FieldDecl::Create(Context, D,
2418                                            SourceLocation(),
2419                                            SourceLocation(), 0,
2420                                            FieldTypes[i], /*TInfo=*/0,
2421                                            /*BitWidth=*/0,
2422                                            /*Mutable=*/false,
2423                                            ICIS_NoInit);
2424       Field->setAccess(AS_public);
2425       D->addDecl(Field);
2426     }
2427 
2428     D->completeDefinition();
2429     QualType NSTy = Context.getTagDeclType(D);
2430     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2431   }
2432 
2433   llvm::Constant *Fields[3];
2434 
2435   // Class pointer.
2436   Fields[0] = cast<llvm::ConstantExpr>(V);
2437 
2438   // String pointer.
2439   llvm::Constant *C =
2440     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2441 
2442   llvm::GlobalValue::LinkageTypes Linkage;
2443   bool isConstant;
2444   Linkage = llvm::GlobalValue::PrivateLinkage;
2445   isConstant = !LangOpts.WritableStrings;
2446 
2447   llvm::GlobalVariable *GV =
2448   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2449                            ".str");
2450   GV->setUnnamedAddr(true);
2451   // Don't enforce the target's minimum global alignment, since the only use
2452   // of the string is via this class initializer.
2453   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2454   GV->setAlignment(Align.getQuantity());
2455   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2456 
2457   // String length.
2458   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2459   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2460 
2461   // The struct.
2462   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2463   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2464                                 llvm::GlobalVariable::PrivateLinkage, C,
2465                                 "_unnamed_nsstring_");
2466   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2467   const char *NSStringNonFragileABISection =
2468       "__DATA,__objc_stringobj,regular,no_dead_strip";
2469   // FIXME. Fix section.
2470   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2471                      ? NSStringNonFragileABISection
2472                      : NSStringSection);
2473   Entry.setValue(GV);
2474 
2475   return GV;
2476 }
2477 
2478 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2479   if (ObjCFastEnumerationStateType.isNull()) {
2480     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2481     D->startDefinition();
2482 
2483     QualType FieldTypes[] = {
2484       Context.UnsignedLongTy,
2485       Context.getPointerType(Context.getObjCIdType()),
2486       Context.getPointerType(Context.UnsignedLongTy),
2487       Context.getConstantArrayType(Context.UnsignedLongTy,
2488                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2489     };
2490 
2491     for (size_t i = 0; i < 4; ++i) {
2492       FieldDecl *Field = FieldDecl::Create(Context,
2493                                            D,
2494                                            SourceLocation(),
2495                                            SourceLocation(), 0,
2496                                            FieldTypes[i], /*TInfo=*/0,
2497                                            /*BitWidth=*/0,
2498                                            /*Mutable=*/false,
2499                                            ICIS_NoInit);
2500       Field->setAccess(AS_public);
2501       D->addDecl(Field);
2502     }
2503 
2504     D->completeDefinition();
2505     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2506   }
2507 
2508   return ObjCFastEnumerationStateType;
2509 }
2510 
2511 llvm::Constant *
2512 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2513   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2514 
2515   // Don't emit it as the address of the string, emit the string data itself
2516   // as an inline array.
2517   if (E->getCharByteWidth() == 1) {
2518     SmallString<64> Str(E->getString());
2519 
2520     // Resize the string to the right size, which is indicated by its type.
2521     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2522     Str.resize(CAT->getSize().getZExtValue());
2523     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2524   }
2525 
2526   llvm::ArrayType *AType =
2527     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2528   llvm::Type *ElemTy = AType->getElementType();
2529   unsigned NumElements = AType->getNumElements();
2530 
2531   // Wide strings have either 2-byte or 4-byte elements.
2532   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2533     SmallVector<uint16_t, 32> Elements;
2534     Elements.reserve(NumElements);
2535 
2536     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2537       Elements.push_back(E->getCodeUnit(i));
2538     Elements.resize(NumElements);
2539     return llvm::ConstantDataArray::get(VMContext, Elements);
2540   }
2541 
2542   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2543   SmallVector<uint32_t, 32> Elements;
2544   Elements.reserve(NumElements);
2545 
2546   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2547     Elements.push_back(E->getCodeUnit(i));
2548   Elements.resize(NumElements);
2549   return llvm::ConstantDataArray::get(VMContext, Elements);
2550 }
2551 
2552 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2553 /// constant array for the given string literal.
2554 llvm::Constant *
2555 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2556   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2557   if (S->isAscii() || S->isUTF8()) {
2558     SmallString<64> Str(S->getString());
2559 
2560     // Resize the string to the right size, which is indicated by its type.
2561     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2562     Str.resize(CAT->getSize().getZExtValue());
2563     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2564   }
2565 
2566   // FIXME: the following does not memoize wide strings.
2567   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2568   llvm::GlobalVariable *GV =
2569     new llvm::GlobalVariable(getModule(),C->getType(),
2570                              !LangOpts.WritableStrings,
2571                              llvm::GlobalValue::PrivateLinkage,
2572                              C,".str");
2573 
2574   GV->setAlignment(Align.getQuantity());
2575   GV->setUnnamedAddr(true);
2576   return GV;
2577 }
2578 
2579 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2580 /// array for the given ObjCEncodeExpr node.
2581 llvm::Constant *
2582 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2583   std::string Str;
2584   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2585 
2586   return GetAddrOfConstantCString(Str);
2587 }
2588 
2589 
2590 /// GenerateWritableString -- Creates storage for a string literal.
2591 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2592                                              bool constant,
2593                                              CodeGenModule &CGM,
2594                                              const char *GlobalName,
2595                                              unsigned Alignment) {
2596   // Create Constant for this string literal. Don't add a '\0'.
2597   llvm::Constant *C =
2598       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2599 
2600   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
2601   unsigned AddrSpace = 0;
2602   if (CGM.getLangOpts().OpenCL)
2603     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2604 
2605   // Create a global variable for this string
2606   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2607       CGM.getModule(), C->getType(), constant,
2608       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2609       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2610   GV->setAlignment(Alignment);
2611   GV->setUnnamedAddr(true);
2612   return GV;
2613 }
2614 
2615 /// GetAddrOfConstantString - Returns a pointer to a character array
2616 /// containing the literal. This contents are exactly that of the
2617 /// given string, i.e. it will not be null terminated automatically;
2618 /// see GetAddrOfConstantCString. Note that whether the result is
2619 /// actually a pointer to an LLVM constant depends on
2620 /// Feature.WriteableStrings.
2621 ///
2622 /// The result has pointer to array type.
2623 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2624                                                        const char *GlobalName,
2625                                                        unsigned Alignment) {
2626   // Get the default prefix if a name wasn't specified.
2627   if (!GlobalName)
2628     GlobalName = ".str";
2629 
2630   if (Alignment == 0)
2631     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2632       .getQuantity();
2633 
2634   // Don't share any string literals if strings aren't constant.
2635   if (LangOpts.WritableStrings)
2636     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2637 
2638   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2639     ConstantStringMap.GetOrCreateValue(Str);
2640 
2641   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2642     if (Alignment > GV->getAlignment()) {
2643       GV->setAlignment(Alignment);
2644     }
2645     return GV;
2646   }
2647 
2648   // Create a global variable for this.
2649   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2650                                                    Alignment);
2651   Entry.setValue(GV);
2652   return GV;
2653 }
2654 
2655 /// GetAddrOfConstantCString - Returns a pointer to a character
2656 /// array containing the literal and a terminating '\0'
2657 /// character. The result has pointer to array type.
2658 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2659                                                         const char *GlobalName,
2660                                                         unsigned Alignment) {
2661   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2662   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2663 }
2664 
2665 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2666     const MaterializeTemporaryExpr *E, const Expr *Init) {
2667   assert((E->getStorageDuration() == SD_Static ||
2668           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2669   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2670 
2671   // If we're not materializing a subobject of the temporary, keep the
2672   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2673   QualType MaterializedType = Init->getType();
2674   if (Init == E->GetTemporaryExpr())
2675     MaterializedType = E->getType();
2676 
2677   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2678   if (Slot)
2679     return Slot;
2680 
2681   // FIXME: If an externally-visible declaration extends multiple temporaries,
2682   // we need to give each temporary the same name in every translation unit (and
2683   // we also need to make the temporaries externally-visible).
2684   SmallString<256> Name;
2685   llvm::raw_svector_ostream Out(Name);
2686   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2687   Out.flush();
2688 
2689   APValue *Value = 0;
2690   if (E->getStorageDuration() == SD_Static) {
2691     // We might have a cached constant initializer for this temporary. Note
2692     // that this might have a different value from the value computed by
2693     // evaluating the initializer if the surrounding constant expression
2694     // modifies the temporary.
2695     Value = getContext().getMaterializedTemporaryValue(E, false);
2696     if (Value && Value->isUninit())
2697       Value = 0;
2698   }
2699 
2700   // Try evaluating it now, it might have a constant initializer.
2701   Expr::EvalResult EvalResult;
2702   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2703       !EvalResult.hasSideEffects())
2704     Value = &EvalResult.Val;
2705 
2706   llvm::Constant *InitialValue = 0;
2707   bool Constant = false;
2708   llvm::Type *Type;
2709   if (Value) {
2710     // The temporary has a constant initializer, use it.
2711     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2712     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2713     Type = InitialValue->getType();
2714   } else {
2715     // No initializer, the initialization will be provided when we
2716     // initialize the declaration which performed lifetime extension.
2717     Type = getTypes().ConvertTypeForMem(MaterializedType);
2718   }
2719 
2720   // Create a global variable for this lifetime-extended temporary.
2721   llvm::GlobalVariable *GV =
2722     new llvm::GlobalVariable(getModule(), Type, Constant,
2723                              llvm::GlobalValue::PrivateLinkage,
2724                              InitialValue, Name.c_str());
2725   GV->setAlignment(
2726       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2727   if (VD->getTLSKind())
2728     setTLSMode(GV, *VD);
2729   Slot = GV;
2730   return GV;
2731 }
2732 
2733 /// EmitObjCPropertyImplementations - Emit information for synthesized
2734 /// properties for an implementation.
2735 void CodeGenModule::EmitObjCPropertyImplementations(const
2736                                                     ObjCImplementationDecl *D) {
2737   for (ObjCImplementationDecl::propimpl_iterator
2738          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2739     ObjCPropertyImplDecl *PID = *i;
2740 
2741     // Dynamic is just for type-checking.
2742     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2743       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2744 
2745       // Determine which methods need to be implemented, some may have
2746       // been overridden. Note that ::isPropertyAccessor is not the method
2747       // we want, that just indicates if the decl came from a
2748       // property. What we want to know is if the method is defined in
2749       // this implementation.
2750       if (!D->getInstanceMethod(PD->getGetterName()))
2751         CodeGenFunction(*this).GenerateObjCGetter(
2752                                  const_cast<ObjCImplementationDecl *>(D), PID);
2753       if (!PD->isReadOnly() &&
2754           !D->getInstanceMethod(PD->getSetterName()))
2755         CodeGenFunction(*this).GenerateObjCSetter(
2756                                  const_cast<ObjCImplementationDecl *>(D), PID);
2757     }
2758   }
2759 }
2760 
2761 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2762   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2763   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2764        ivar; ivar = ivar->getNextIvar())
2765     if (ivar->getType().isDestructedType())
2766       return true;
2767 
2768   return false;
2769 }
2770 
2771 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2772 /// for an implementation.
2773 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2774   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2775   if (needsDestructMethod(D)) {
2776     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2777     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2778     ObjCMethodDecl *DTORMethod =
2779       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2780                              cxxSelector, getContext().VoidTy, 0, D,
2781                              /*isInstance=*/true, /*isVariadic=*/false,
2782                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2783                              /*isDefined=*/false, ObjCMethodDecl::Required);
2784     D->addInstanceMethod(DTORMethod);
2785     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2786     D->setHasDestructors(true);
2787   }
2788 
2789   // If the implementation doesn't have any ivar initializers, we don't need
2790   // a .cxx_construct.
2791   if (D->getNumIvarInitializers() == 0)
2792     return;
2793 
2794   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2795   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2796   // The constructor returns 'self'.
2797   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2798                                                 D->getLocation(),
2799                                                 D->getLocation(),
2800                                                 cxxSelector,
2801                                                 getContext().getObjCIdType(), 0,
2802                                                 D, /*isInstance=*/true,
2803                                                 /*isVariadic=*/false,
2804                                                 /*isPropertyAccessor=*/true,
2805                                                 /*isImplicitlyDeclared=*/true,
2806                                                 /*isDefined=*/false,
2807                                                 ObjCMethodDecl::Required);
2808   D->addInstanceMethod(CTORMethod);
2809   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2810   D->setHasNonZeroConstructors(true);
2811 }
2812 
2813 /// EmitNamespace - Emit all declarations in a namespace.
2814 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2815   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2816        I != E; ++I) {
2817     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2818       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2819           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2820         continue;
2821     EmitTopLevelDecl(*I);
2822   }
2823 }
2824 
2825 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2826 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2827   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2828       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2829     ErrorUnsupported(LSD, "linkage spec");
2830     return;
2831   }
2832 
2833   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2834        I != E; ++I) {
2835     // Meta-data for ObjC class includes references to implemented methods.
2836     // Generate class's method definitions first.
2837     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2838       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2839            MEnd = OID->meth_end();
2840            M != MEnd; ++M)
2841         EmitTopLevelDecl(*M);
2842     }
2843     EmitTopLevelDecl(*I);
2844   }
2845 }
2846 
2847 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2848 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2849   // Ignore dependent declarations.
2850   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2851     return;
2852 
2853   switch (D->getKind()) {
2854   case Decl::CXXConversion:
2855   case Decl::CXXMethod:
2856   case Decl::Function:
2857     // Skip function templates
2858     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2859         cast<FunctionDecl>(D)->isLateTemplateParsed())
2860       return;
2861 
2862     EmitGlobal(cast<FunctionDecl>(D));
2863     break;
2864 
2865   case Decl::Var:
2866     // Skip variable templates
2867     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2868       return;
2869   case Decl::VarTemplateSpecialization:
2870     EmitGlobal(cast<VarDecl>(D));
2871     break;
2872 
2873   // Indirect fields from global anonymous structs and unions can be
2874   // ignored; only the actual variable requires IR gen support.
2875   case Decl::IndirectField:
2876     break;
2877 
2878   // C++ Decls
2879   case Decl::Namespace:
2880     EmitNamespace(cast<NamespaceDecl>(D));
2881     break;
2882     // No code generation needed.
2883   case Decl::UsingShadow:
2884   case Decl::Using:
2885   case Decl::ClassTemplate:
2886   case Decl::VarTemplate:
2887   case Decl::VarTemplatePartialSpecialization:
2888   case Decl::FunctionTemplate:
2889   case Decl::TypeAliasTemplate:
2890   case Decl::Block:
2891   case Decl::Empty:
2892     break;
2893   case Decl::NamespaceAlias:
2894     if (CGDebugInfo *DI = getModuleDebugInfo())
2895         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2896     return;
2897   case Decl::UsingDirective: // using namespace X; [C++]
2898     if (CGDebugInfo *DI = getModuleDebugInfo())
2899       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2900     return;
2901   case Decl::CXXConstructor:
2902     // Skip function templates
2903     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2904         cast<FunctionDecl>(D)->isLateTemplateParsed())
2905       return;
2906 
2907     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2908     break;
2909   case Decl::CXXDestructor:
2910     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2911       return;
2912     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2913     break;
2914 
2915   case Decl::StaticAssert:
2916     // Nothing to do.
2917     break;
2918 
2919   // Objective-C Decls
2920 
2921   // Forward declarations, no (immediate) code generation.
2922   case Decl::ObjCInterface:
2923   case Decl::ObjCCategory:
2924     break;
2925 
2926   case Decl::ObjCProtocol: {
2927     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2928     if (Proto->isThisDeclarationADefinition())
2929       ObjCRuntime->GenerateProtocol(Proto);
2930     break;
2931   }
2932 
2933   case Decl::ObjCCategoryImpl:
2934     // Categories have properties but don't support synthesize so we
2935     // can ignore them here.
2936     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2937     break;
2938 
2939   case Decl::ObjCImplementation: {
2940     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2941     EmitObjCPropertyImplementations(OMD);
2942     EmitObjCIvarInitializations(OMD);
2943     ObjCRuntime->GenerateClass(OMD);
2944     // Emit global variable debug information.
2945     if (CGDebugInfo *DI = getModuleDebugInfo())
2946       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2947         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2948             OMD->getClassInterface()), OMD->getLocation());
2949     break;
2950   }
2951   case Decl::ObjCMethod: {
2952     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2953     // If this is not a prototype, emit the body.
2954     if (OMD->getBody())
2955       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2956     break;
2957   }
2958   case Decl::ObjCCompatibleAlias:
2959     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2960     break;
2961 
2962   case Decl::LinkageSpec:
2963     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2964     break;
2965 
2966   case Decl::FileScopeAsm: {
2967     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2968     StringRef AsmString = AD->getAsmString()->getString();
2969 
2970     const std::string &S = getModule().getModuleInlineAsm();
2971     if (S.empty())
2972       getModule().setModuleInlineAsm(AsmString);
2973     else if (S.end()[-1] == '\n')
2974       getModule().setModuleInlineAsm(S + AsmString.str());
2975     else
2976       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2977     break;
2978   }
2979 
2980   case Decl::Import: {
2981     ImportDecl *Import = cast<ImportDecl>(D);
2982 
2983     // Ignore import declarations that come from imported modules.
2984     if (clang::Module *Owner = Import->getOwningModule()) {
2985       if (getLangOpts().CurrentModule.empty() ||
2986           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2987         break;
2988     }
2989 
2990     ImportedModules.insert(Import->getImportedModule());
2991     break;
2992  }
2993 
2994   default:
2995     // Make sure we handled everything we should, every other kind is a
2996     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2997     // function. Need to recode Decl::Kind to do that easily.
2998     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2999   }
3000 }
3001 
3002 /// Turns the given pointer into a constant.
3003 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3004                                           const void *Ptr) {
3005   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3006   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3007   return llvm::ConstantInt::get(i64, PtrInt);
3008 }
3009 
3010 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3011                                    llvm::NamedMDNode *&GlobalMetadata,
3012                                    GlobalDecl D,
3013                                    llvm::GlobalValue *Addr) {
3014   if (!GlobalMetadata)
3015     GlobalMetadata =
3016       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3017 
3018   // TODO: should we report variant information for ctors/dtors?
3019   llvm::Value *Ops[] = {
3020     Addr,
3021     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3022   };
3023   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3024 }
3025 
3026 /// For each function which is declared within an extern "C" region and marked
3027 /// as 'used', but has internal linkage, create an alias from the unmangled
3028 /// name to the mangled name if possible. People expect to be able to refer
3029 /// to such functions with an unmangled name from inline assembly within the
3030 /// same translation unit.
3031 void CodeGenModule::EmitStaticExternCAliases() {
3032   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3033                                   E = StaticExternCValues.end();
3034        I != E; ++I) {
3035     IdentifierInfo *Name = I->first;
3036     llvm::GlobalValue *Val = I->second;
3037     if (Val && !getModule().getNamedValue(Name->getName()))
3038       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3039                                           Name->getName(), Val, &getModule()));
3040   }
3041 }
3042 
3043 /// Emits metadata nodes associating all the global values in the
3044 /// current module with the Decls they came from.  This is useful for
3045 /// projects using IR gen as a subroutine.
3046 ///
3047 /// Since there's currently no way to associate an MDNode directly
3048 /// with an llvm::GlobalValue, we create a global named metadata
3049 /// with the name 'clang.global.decl.ptrs'.
3050 void CodeGenModule::EmitDeclMetadata() {
3051   llvm::NamedMDNode *GlobalMetadata = 0;
3052 
3053   // StaticLocalDeclMap
3054   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3055          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3056        I != E; ++I) {
3057     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3058     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3059   }
3060 }
3061 
3062 /// Emits metadata nodes for all the local variables in the current
3063 /// function.
3064 void CodeGenFunction::EmitDeclMetadata() {
3065   if (LocalDeclMap.empty()) return;
3066 
3067   llvm::LLVMContext &Context = getLLVMContext();
3068 
3069   // Find the unique metadata ID for this name.
3070   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3071 
3072   llvm::NamedMDNode *GlobalMetadata = 0;
3073 
3074   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3075          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3076     const Decl *D = I->first;
3077     llvm::Value *Addr = I->second;
3078 
3079     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3080       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3081       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3082     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3083       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3084       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3085     }
3086   }
3087 }
3088 
3089 void CodeGenModule::EmitVersionIdentMetadata() {
3090   llvm::NamedMDNode *IdentMetadata =
3091     TheModule.getOrInsertNamedMetadata("llvm.ident");
3092   std::string Version = getClangFullVersion();
3093   llvm::LLVMContext &Ctx = TheModule.getContext();
3094 
3095   llvm::Value *IdentNode[] = {
3096     llvm::MDString::get(Ctx, Version)
3097   };
3098   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3099 }
3100 
3101 void CodeGenModule::EmitCoverageFile() {
3102   if (!getCodeGenOpts().CoverageFile.empty()) {
3103     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3104       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3105       llvm::LLVMContext &Ctx = TheModule.getContext();
3106       llvm::MDString *CoverageFile =
3107           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3108       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3109         llvm::MDNode *CU = CUNode->getOperand(i);
3110         llvm::Value *node[] = { CoverageFile, CU };
3111         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3112         GCov->addOperand(N);
3113       }
3114     }
3115   }
3116 }
3117 
3118 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3119                                                      QualType GuidType) {
3120   // Sema has checked that all uuid strings are of the form
3121   // "12345678-1234-1234-1234-1234567890ab".
3122   assert(Uuid.size() == 36);
3123   for (unsigned i = 0; i < 36; ++i) {
3124     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3125     else                                         assert(isHexDigit(Uuid[i]));
3126   }
3127 
3128   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3129 
3130   llvm::Constant *Field3[8];
3131   for (unsigned Idx = 0; Idx < 8; ++Idx)
3132     Field3[Idx] = llvm::ConstantInt::get(
3133         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3134 
3135   llvm::Constant *Fields[4] = {
3136     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3137     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3138     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3139     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3140   };
3141 
3142   return llvm::ConstantStruct::getAnon(Fields);
3143 }
3144