xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 8eaab6ff8e80a95e1da7b49cda81cf0ef5094be8)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
71                              llvm::Module &M, const llvm::DataLayout &TD,
72                              DiagnosticsEngine &diags)
73     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
74       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
75       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
76       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
77       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
78       NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0),
79       ConstantStringClassRef(0), NSConstantStringType(0),
80       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
81       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
82       LifetimeStartFn(0), LifetimeEndFn(0),
83       SanitizerBlacklist(
84           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
85       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
86                                           : LangOpts.Sanitize) {
87 
88   // Initialize the type cache.
89   llvm::LLVMContext &LLVMContext = M.getContext();
90   VoidTy = llvm::Type::getVoidTy(LLVMContext);
91   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
92   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
93   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
94   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
95   FloatTy = llvm::Type::getFloatTy(LLVMContext);
96   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
97   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
98   PointerAlignInBytes =
99   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
100   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
101   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
102   Int8PtrTy = Int8Ty->getPointerTo(0);
103   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
104 
105   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
106 
107   if (LangOpts.ObjC1)
108     createObjCRuntime();
109   if (LangOpts.OpenCL)
110     createOpenCLRuntime();
111   if (LangOpts.CUDA)
112     createCUDARuntime();
113 
114   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
115   if (SanOpts.Thread ||
116       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
117     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
118                            ABI.getMangleContext());
119 
120   // If debug info or coverage generation is enabled, create the CGDebugInfo
121   // object.
122   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
123       CodeGenOpts.EmitGcovArcs ||
124       CodeGenOpts.EmitGcovNotes)
125     DebugInfo = new CGDebugInfo(*this);
126 
127   Block.GlobalUniqueCount = 0;
128 
129   if (C.getLangOpts().ObjCAutoRefCount)
130     ARCData = new ARCEntrypoints();
131   RRData = new RREntrypoints();
132 }
133 
134 CodeGenModule::~CodeGenModule() {
135   delete ObjCRuntime;
136   delete OpenCLRuntime;
137   delete CUDARuntime;
138   delete TheTargetCodeGenInfo;
139   delete &ABI;
140   delete TBAA;
141   delete DebugInfo;
142   delete ARCData;
143   delete RRData;
144 }
145 
146 void CodeGenModule::createObjCRuntime() {
147   // This is just isGNUFamily(), but we want to force implementors of
148   // new ABIs to decide how best to do this.
149   switch (LangOpts.ObjCRuntime.getKind()) {
150   case ObjCRuntime::GNUstep:
151   case ObjCRuntime::GCC:
152   case ObjCRuntime::ObjFW:
153     ObjCRuntime = CreateGNUObjCRuntime(*this);
154     return;
155 
156   case ObjCRuntime::FragileMacOSX:
157   case ObjCRuntime::MacOSX:
158   case ObjCRuntime::iOS:
159     ObjCRuntime = CreateMacObjCRuntime(*this);
160     return;
161   }
162   llvm_unreachable("bad runtime kind");
163 }
164 
165 void CodeGenModule::createOpenCLRuntime() {
166   OpenCLRuntime = new CGOpenCLRuntime(*this);
167 }
168 
169 void CodeGenModule::createCUDARuntime() {
170   CUDARuntime = CreateNVCUDARuntime(*this);
171 }
172 
173 void CodeGenModule::Release() {
174   EmitDeferred();
175   EmitCXXGlobalInitFunc();
176   EmitCXXGlobalDtorFunc();
177   EmitCXXThreadLocalInitFunc();
178   if (ObjCRuntime)
179     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
180       AddGlobalCtor(ObjCInitFunction);
181   EmitCtorList(GlobalCtors, "llvm.global_ctors");
182   EmitCtorList(GlobalDtors, "llvm.global_dtors");
183   EmitGlobalAnnotations();
184   EmitStaticExternCAliases();
185   EmitLLVMUsed();
186 
187   if (CodeGenOpts.Autolink &&
188       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
189     EmitModuleLinkOptions();
190   }
191   if (CodeGenOpts.DwarfVersion)
192     // We actually want the latest version when there are conflicts.
193     // We can change from Warning to Latest if such mode is supported.
194     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
195                               CodeGenOpts.DwarfVersion);
196 
197   SimplifyPersonality();
198 
199   if (getCodeGenOpts().EmitDeclMetadata)
200     EmitDeclMetadata();
201 
202   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
203     EmitCoverageFile();
204 
205   if (DebugInfo)
206     DebugInfo->finalize();
207 }
208 
209 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
210   // Make sure that this type is translated.
211   Types.UpdateCompletedType(TD);
212 }
213 
214 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
215   if (!TBAA)
216     return 0;
217   return TBAA->getTBAAInfo(QTy);
218 }
219 
220 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
221   if (!TBAA)
222     return 0;
223   return TBAA->getTBAAInfoForVTablePtr();
224 }
225 
226 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
227   if (!TBAA)
228     return 0;
229   return TBAA->getTBAAStructInfo(QTy);
230 }
231 
232 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
233   if (!TBAA)
234     return 0;
235   return TBAA->getTBAAStructTypeInfo(QTy);
236 }
237 
238 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
239                                                   llvm::MDNode *AccessN,
240                                                   uint64_t O) {
241   if (!TBAA)
242     return 0;
243   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
244 }
245 
246 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
247 /// is the same as the type. For struct-path aware TBAA, the tag
248 /// is different from the type: base type, access type and offset.
249 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
250 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
251                                         llvm::MDNode *TBAAInfo,
252                                         bool ConvertTypeToTag) {
253   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
254     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
255                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
256   else
257     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
258 }
259 
260 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
261   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
262   getDiags().Report(Context.getFullLoc(loc), diagID);
263 }
264 
265 /// ErrorUnsupported - Print out an error that codegen doesn't support the
266 /// specified stmt yet.
267 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
268                                      bool OmitOnError) {
269   if (OmitOnError && getDiags().hasErrorOccurred())
270     return;
271   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
272                                                "cannot compile this %0 yet");
273   std::string Msg = Type;
274   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
275     << Msg << S->getSourceRange();
276 }
277 
278 /// ErrorUnsupported - Print out an error that codegen doesn't support the
279 /// specified decl yet.
280 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
281                                      bool OmitOnError) {
282   if (OmitOnError && getDiags().hasErrorOccurred())
283     return;
284   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
285                                                "cannot compile this %0 yet");
286   std::string Msg = Type;
287   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
288 }
289 
290 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
291   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
292 }
293 
294 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
295                                         const NamedDecl *D) const {
296   // Internal definitions always have default visibility.
297   if (GV->hasLocalLinkage()) {
298     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
299     return;
300   }
301 
302   // Set visibility for definitions.
303   LinkageInfo LV = D->getLinkageAndVisibility();
304   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
305     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
306 }
307 
308 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
309   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
310       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
311       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
312       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
313       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
314 }
315 
316 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
317     CodeGenOptions::TLSModel M) {
318   switch (M) {
319   case CodeGenOptions::GeneralDynamicTLSModel:
320     return llvm::GlobalVariable::GeneralDynamicTLSModel;
321   case CodeGenOptions::LocalDynamicTLSModel:
322     return llvm::GlobalVariable::LocalDynamicTLSModel;
323   case CodeGenOptions::InitialExecTLSModel:
324     return llvm::GlobalVariable::InitialExecTLSModel;
325   case CodeGenOptions::LocalExecTLSModel:
326     return llvm::GlobalVariable::LocalExecTLSModel;
327   }
328   llvm_unreachable("Invalid TLS model!");
329 }
330 
331 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
332                                const VarDecl &D) const {
333   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
334 
335   llvm::GlobalVariable::ThreadLocalMode TLM;
336   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
337 
338   // Override the TLS model if it is explicitly specified.
339   if (D.hasAttr<TLSModelAttr>()) {
340     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
341     TLM = GetLLVMTLSModel(Attr->getModel());
342   }
343 
344   GV->setThreadLocalMode(TLM);
345 }
346 
347 /// Set the symbol visibility of type information (vtable and RTTI)
348 /// associated with the given type.
349 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
350                                       const CXXRecordDecl *RD,
351                                       TypeVisibilityKind TVK) const {
352   setGlobalVisibility(GV, RD);
353 
354   if (!CodeGenOpts.HiddenWeakVTables)
355     return;
356 
357   // We never want to drop the visibility for RTTI names.
358   if (TVK == TVK_ForRTTIName)
359     return;
360 
361   // We want to drop the visibility to hidden for weak type symbols.
362   // This isn't possible if there might be unresolved references
363   // elsewhere that rely on this symbol being visible.
364 
365   // This should be kept roughly in sync with setThunkVisibility
366   // in CGVTables.cpp.
367 
368   // Preconditions.
369   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
370       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
371     return;
372 
373   // Don't override an explicit visibility attribute.
374   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
375     return;
376 
377   switch (RD->getTemplateSpecializationKind()) {
378   // We have to disable the optimization if this is an EI definition
379   // because there might be EI declarations in other shared objects.
380   case TSK_ExplicitInstantiationDefinition:
381   case TSK_ExplicitInstantiationDeclaration:
382     return;
383 
384   // Every use of a non-template class's type information has to emit it.
385   case TSK_Undeclared:
386     break;
387 
388   // In theory, implicit instantiations can ignore the possibility of
389   // an explicit instantiation declaration because there necessarily
390   // must be an EI definition somewhere with default visibility.  In
391   // practice, it's possible to have an explicit instantiation for
392   // an arbitrary template class, and linkers aren't necessarily able
393   // to deal with mixed-visibility symbols.
394   case TSK_ExplicitSpecialization:
395   case TSK_ImplicitInstantiation:
396     return;
397   }
398 
399   // If there's a key function, there may be translation units
400   // that don't have the key function's definition.  But ignore
401   // this if we're emitting RTTI under -fno-rtti.
402   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
403     // FIXME: what should we do if we "lose" the key function during
404     // the emission of the file?
405     if (Context.getCurrentKeyFunction(RD))
406       return;
407   }
408 
409   // Otherwise, drop the visibility to hidden.
410   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
411   GV->setUnnamedAddr(true);
412 }
413 
414 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
415   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
416 
417   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
418   if (!Str.empty())
419     return Str;
420 
421   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
422     IdentifierInfo *II = ND->getIdentifier();
423     assert(II && "Attempt to mangle unnamed decl.");
424 
425     Str = II->getName();
426     return Str;
427   }
428 
429   SmallString<256> Buffer;
430   llvm::raw_svector_ostream Out(Buffer);
431   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
432     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
433   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
434     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
435   else
436     getCXXABI().getMangleContext().mangleName(ND, Out);
437 
438   // Allocate space for the mangled name.
439   Out.flush();
440   size_t Length = Buffer.size();
441   char *Name = MangledNamesAllocator.Allocate<char>(Length);
442   std::copy(Buffer.begin(), Buffer.end(), Name);
443 
444   Str = StringRef(Name, Length);
445 
446   return Str;
447 }
448 
449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
450                                         const BlockDecl *BD) {
451   MangleContext &MangleCtx = getCXXABI().getMangleContext();
452   const Decl *D = GD.getDecl();
453   llvm::raw_svector_ostream Out(Buffer.getBuffer());
454   if (D == 0)
455     MangleCtx.mangleGlobalBlock(BD,
456       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
457   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
458     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
459   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
460     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
461   else
462     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
463 }
464 
465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
466   return getModule().getNamedValue(Name);
467 }
468 
469 /// AddGlobalCtor - Add a function to the list that will be called before
470 /// main() runs.
471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
472   // FIXME: Type coercion of void()* types.
473   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
474 }
475 
476 /// AddGlobalDtor - Add a function to the list that will be called
477 /// when the module is unloaded.
478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
479   // FIXME: Type coercion of void()* types.
480   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
481 }
482 
483 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
484   // Ctor function type is void()*.
485   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
486   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
487 
488   // Get the type of a ctor entry, { i32, void ()* }.
489   llvm::StructType *CtorStructTy =
490     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
491 
492   // Construct the constructor and destructor arrays.
493   SmallVector<llvm::Constant*, 8> Ctors;
494   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
495     llvm::Constant *S[] = {
496       llvm::ConstantInt::get(Int32Ty, I->second, false),
497       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
498     };
499     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
500   }
501 
502   if (!Ctors.empty()) {
503     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
504     new llvm::GlobalVariable(TheModule, AT, false,
505                              llvm::GlobalValue::AppendingLinkage,
506                              llvm::ConstantArray::get(AT, Ctors),
507                              GlobalName);
508   }
509 }
510 
511 llvm::GlobalValue::LinkageTypes
512 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
513   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
514 
515   if (isa<CXXDestructorDecl>(D) &&
516       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
517                                          GD.getDtorType()))
518     return llvm::Function::LinkOnceODRLinkage;
519 
520   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
521 
522   if (Linkage == GVA_Internal)
523     return llvm::Function::InternalLinkage;
524 
525   if (D->hasAttr<DLLExportAttr>())
526     return llvm::Function::DLLExportLinkage;
527 
528   if (D->hasAttr<WeakAttr>())
529     return llvm::Function::WeakAnyLinkage;
530 
531   // In C99 mode, 'inline' functions are guaranteed to have a strong
532   // definition somewhere else, so we can use available_externally linkage.
533   if (Linkage == GVA_C99Inline)
534     return llvm::Function::AvailableExternallyLinkage;
535 
536   // Note that Apple's kernel linker doesn't support symbol
537   // coalescing, so we need to avoid linkonce and weak linkages there.
538   // Normally, this means we just map to internal, but for explicit
539   // instantiations we'll map to external.
540 
541   // In C++, the compiler has to emit a definition in every translation unit
542   // that references the function.  We should use linkonce_odr because
543   // a) if all references in this translation unit are optimized away, we
544   // don't need to codegen it.  b) if the function persists, it needs to be
545   // merged with other definitions. c) C++ has the ODR, so we know the
546   // definition is dependable.
547   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
548     return !Context.getLangOpts().AppleKext
549              ? llvm::Function::LinkOnceODRLinkage
550              : llvm::Function::InternalLinkage;
551 
552   // An explicit instantiation of a template has weak linkage, since
553   // explicit instantiations can occur in multiple translation units
554   // and must all be equivalent. However, we are not allowed to
555   // throw away these explicit instantiations.
556   if (Linkage == GVA_ExplicitTemplateInstantiation)
557     return !Context.getLangOpts().AppleKext
558              ? llvm::Function::WeakODRLinkage
559              : llvm::Function::ExternalLinkage;
560 
561   // Otherwise, we have strong external linkage.
562   assert(Linkage == GVA_StrongExternal);
563   return llvm::Function::ExternalLinkage;
564 }
565 
566 
567 /// SetFunctionDefinitionAttributes - Set attributes for a global.
568 ///
569 /// FIXME: This is currently only done for aliases and functions, but not for
570 /// variables (these details are set in EmitGlobalVarDefinition for variables).
571 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
572                                                     llvm::GlobalValue *GV) {
573   SetCommonAttributes(D, GV);
574 }
575 
576 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
577                                               const CGFunctionInfo &Info,
578                                               llvm::Function *F) {
579   unsigned CallingConv;
580   AttributeListType AttributeList;
581   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
582   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
583   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
584 }
585 
586 /// Determines whether the language options require us to model
587 /// unwind exceptions.  We treat -fexceptions as mandating this
588 /// except under the fragile ObjC ABI with only ObjC exceptions
589 /// enabled.  This means, for example, that C with -fexceptions
590 /// enables this.
591 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
592   // If exceptions are completely disabled, obviously this is false.
593   if (!LangOpts.Exceptions) return false;
594 
595   // If C++ exceptions are enabled, this is true.
596   if (LangOpts.CXXExceptions) return true;
597 
598   // If ObjC exceptions are enabled, this depends on the ABI.
599   if (LangOpts.ObjCExceptions) {
600     return LangOpts.ObjCRuntime.hasUnwindExceptions();
601   }
602 
603   return true;
604 }
605 
606 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
607                                                            llvm::Function *F) {
608   llvm::AttrBuilder B;
609 
610   if (CodeGenOpts.UnwindTables)
611     B.addAttribute(llvm::Attribute::UWTable);
612 
613   if (!hasUnwindExceptions(LangOpts))
614     B.addAttribute(llvm::Attribute::NoUnwind);
615 
616   if (D->hasAttr<NakedAttr>()) {
617     // Naked implies noinline: we should not be inlining such functions.
618     B.addAttribute(llvm::Attribute::Naked);
619     B.addAttribute(llvm::Attribute::NoInline);
620   } else if (D->hasAttr<NoInlineAttr>()) {
621     B.addAttribute(llvm::Attribute::NoInline);
622   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
623               D->hasAttr<ForceInlineAttr>()) &&
624              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
625                                               llvm::Attribute::NoInline)) {
626     // (noinline wins over always_inline, and we can't specify both in IR)
627     B.addAttribute(llvm::Attribute::AlwaysInline);
628   }
629 
630   if (D->hasAttr<ColdAttr>()) {
631     B.addAttribute(llvm::Attribute::OptimizeForSize);
632     B.addAttribute(llvm::Attribute::Cold);
633   }
634 
635   if (D->hasAttr<MinSizeAttr>())
636     B.addAttribute(llvm::Attribute::MinSize);
637 
638   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
639     B.addAttribute(llvm::Attribute::StackProtect);
640   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
641     B.addAttribute(llvm::Attribute::StackProtectReq);
642 
643   // Add sanitizer attributes if function is not blacklisted.
644   if (!SanitizerBlacklist->isIn(*F)) {
645     // When AddressSanitizer is enabled, set SanitizeAddress attribute
646     // unless __attribute__((no_sanitize_address)) is used.
647     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
648       B.addAttribute(llvm::Attribute::SanitizeAddress);
649     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
650     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
651       B.addAttribute(llvm::Attribute::SanitizeThread);
652     }
653     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
654     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
655       B.addAttribute(llvm::Attribute::SanitizeMemory);
656   }
657 
658   F->addAttributes(llvm::AttributeSet::FunctionIndex,
659                    llvm::AttributeSet::get(
660                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
661 
662   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
663     F->setUnnamedAddr(true);
664   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
665     if (MD->isVirtual())
666       F->setUnnamedAddr(true);
667 
668   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
669   if (alignment)
670     F->setAlignment(alignment);
671 
672   // C++ ABI requires 2-byte alignment for member functions.
673   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
674     F->setAlignment(2);
675 }
676 
677 void CodeGenModule::SetCommonAttributes(const Decl *D,
678                                         llvm::GlobalValue *GV) {
679   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
680     setGlobalVisibility(GV, ND);
681   else
682     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
683 
684   if (D->hasAttr<UsedAttr>())
685     AddUsedGlobal(GV);
686 
687   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
688     GV->setSection(SA->getName());
689 
690   // Alias cannot have attributes. Filter them here.
691   if (!isa<llvm::GlobalAlias>(GV))
692     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
693 }
694 
695 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
696                                                   llvm::Function *F,
697                                                   const CGFunctionInfo &FI) {
698   SetLLVMFunctionAttributes(D, FI, F);
699   SetLLVMFunctionAttributesForDefinition(D, F);
700 
701   F->setLinkage(llvm::Function::InternalLinkage);
702 
703   SetCommonAttributes(D, F);
704 }
705 
706 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
707                                           llvm::Function *F,
708                                           bool IsIncompleteFunction) {
709   if (unsigned IID = F->getIntrinsicID()) {
710     // If this is an intrinsic function, set the function's attributes
711     // to the intrinsic's attributes.
712     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
713                                                     (llvm::Intrinsic::ID)IID));
714     return;
715   }
716 
717   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
718 
719   if (!IsIncompleteFunction)
720     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
721 
722   if (getCXXABI().HasThisReturn(GD)) {
723     assert(!F->arg_empty() &&
724            F->arg_begin()->getType()
725              ->canLosslesslyBitCastTo(F->getReturnType()) &&
726            "unexpected this return");
727     F->addAttribute(1, llvm::Attribute::Returned);
728   }
729 
730   // Only a few attributes are set on declarations; these may later be
731   // overridden by a definition.
732 
733   if (FD->hasAttr<DLLImportAttr>()) {
734     F->setLinkage(llvm::Function::DLLImportLinkage);
735   } else if (FD->hasAttr<WeakAttr>() ||
736              FD->isWeakImported()) {
737     // "extern_weak" is overloaded in LLVM; we probably should have
738     // separate linkage types for this.
739     F->setLinkage(llvm::Function::ExternalWeakLinkage);
740   } else {
741     F->setLinkage(llvm::Function::ExternalLinkage);
742 
743     LinkageInfo LV = FD->getLinkageAndVisibility();
744     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
745       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
746     }
747   }
748 
749   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
750     F->setSection(SA->getName());
751 
752   // A replaceable global allocation function does not act like a builtin by
753   // default, only if it is invoked by a new-expression or delete-expression.
754   if (FD->isReplaceableGlobalAllocationFunction())
755     F->addAttribute(llvm::AttributeSet::FunctionIndex,
756                     llvm::Attribute::NoBuiltin);
757 }
758 
759 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
760   assert(!GV->isDeclaration() &&
761          "Only globals with definition can force usage.");
762   LLVMUsed.push_back(GV);
763 }
764 
765 void CodeGenModule::EmitLLVMUsed() {
766   // Don't create llvm.used if there is no need.
767   if (LLVMUsed.empty())
768     return;
769 
770   // Convert LLVMUsed to what ConstantArray needs.
771   SmallVector<llvm::Constant*, 8> UsedArray;
772   UsedArray.resize(LLVMUsed.size());
773   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
774     UsedArray[i] =
775      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
776                                     Int8PtrTy);
777   }
778 
779   if (UsedArray.empty())
780     return;
781   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
782 
783   llvm::GlobalVariable *GV =
784     new llvm::GlobalVariable(getModule(), ATy, false,
785                              llvm::GlobalValue::AppendingLinkage,
786                              llvm::ConstantArray::get(ATy, UsedArray),
787                              "llvm.used");
788 
789   GV->setSection("llvm.metadata");
790 }
791 
792 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
793   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
794   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
795 }
796 
797 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
798   llvm::SmallString<32> Opt;
799   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
800   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
801   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
802 }
803 
804 void CodeGenModule::AddDependentLib(StringRef Lib) {
805   llvm::SmallString<24> Opt;
806   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
807   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
808   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
809 }
810 
811 /// \brief Add link options implied by the given module, including modules
812 /// it depends on, using a postorder walk.
813 static void addLinkOptionsPostorder(CodeGenModule &CGM,
814                                     Module *Mod,
815                                     SmallVectorImpl<llvm::Value *> &Metadata,
816                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
817   // Import this module's parent.
818   if (Mod->Parent && Visited.insert(Mod->Parent)) {
819     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
820   }
821 
822   // Import this module's dependencies.
823   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
824     if (Visited.insert(Mod->Imports[I-1]))
825       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
826   }
827 
828   // Add linker options to link against the libraries/frameworks
829   // described by this module.
830   llvm::LLVMContext &Context = CGM.getLLVMContext();
831   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
832     // Link against a framework.  Frameworks are currently Darwin only, so we
833     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
834     if (Mod->LinkLibraries[I-1].IsFramework) {
835       llvm::Value *Args[2] = {
836         llvm::MDString::get(Context, "-framework"),
837         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
838       };
839 
840       Metadata.push_back(llvm::MDNode::get(Context, Args));
841       continue;
842     }
843 
844     // Link against a library.
845     llvm::SmallString<24> Opt;
846     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
847       Mod->LinkLibraries[I-1].Library, Opt);
848     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
849     Metadata.push_back(llvm::MDNode::get(Context, OptString));
850   }
851 }
852 
853 void CodeGenModule::EmitModuleLinkOptions() {
854   // Collect the set of all of the modules we want to visit to emit link
855   // options, which is essentially the imported modules and all of their
856   // non-explicit child modules.
857   llvm::SetVector<clang::Module *> LinkModules;
858   llvm::SmallPtrSet<clang::Module *, 16> Visited;
859   SmallVector<clang::Module *, 16> Stack;
860 
861   // Seed the stack with imported modules.
862   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
863                                                MEnd = ImportedModules.end();
864        M != MEnd; ++M) {
865     if (Visited.insert(*M))
866       Stack.push_back(*M);
867   }
868 
869   // Find all of the modules to import, making a little effort to prune
870   // non-leaf modules.
871   while (!Stack.empty()) {
872     clang::Module *Mod = Stack.back();
873     Stack.pop_back();
874 
875     bool AnyChildren = false;
876 
877     // Visit the submodules of this module.
878     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
879                                         SubEnd = Mod->submodule_end();
880          Sub != SubEnd; ++Sub) {
881       // Skip explicit children; they need to be explicitly imported to be
882       // linked against.
883       if ((*Sub)->IsExplicit)
884         continue;
885 
886       if (Visited.insert(*Sub)) {
887         Stack.push_back(*Sub);
888         AnyChildren = true;
889       }
890     }
891 
892     // We didn't find any children, so add this module to the list of
893     // modules to link against.
894     if (!AnyChildren) {
895       LinkModules.insert(Mod);
896     }
897   }
898 
899   // Add link options for all of the imported modules in reverse topological
900   // order.  We don't do anything to try to order import link flags with respect
901   // to linker options inserted by things like #pragma comment().
902   SmallVector<llvm::Value *, 16> MetadataArgs;
903   Visited.clear();
904   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
905                                                MEnd = LinkModules.end();
906        M != MEnd; ++M) {
907     if (Visited.insert(*M))
908       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
909   }
910   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
911   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
912 
913   // Add the linker options metadata flag.
914   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
915                             llvm::MDNode::get(getLLVMContext(),
916                                               LinkerOptionsMetadata));
917 }
918 
919 void CodeGenModule::EmitDeferred() {
920   // Emit code for any potentially referenced deferred decls.  Since a
921   // previously unused static decl may become used during the generation of code
922   // for a static function, iterate until no changes are made.
923 
924   while (true) {
925     if (!DeferredVTables.empty()) {
926       EmitDeferredVTables();
927 
928       // Emitting a v-table doesn't directly cause more v-tables to
929       // become deferred, although it can cause functions to be
930       // emitted that then need those v-tables.
931       assert(DeferredVTables.empty());
932     }
933 
934     // Stop if we're out of both deferred v-tables and deferred declarations.
935     if (DeferredDeclsToEmit.empty()) break;
936 
937     GlobalDecl D = DeferredDeclsToEmit.back();
938     DeferredDeclsToEmit.pop_back();
939 
940     // Check to see if we've already emitted this.  This is necessary
941     // for a couple of reasons: first, decls can end up in the
942     // deferred-decls queue multiple times, and second, decls can end
943     // up with definitions in unusual ways (e.g. by an extern inline
944     // function acquiring a strong function redefinition).  Just
945     // ignore these cases.
946     //
947     // TODO: That said, looking this up multiple times is very wasteful.
948     StringRef Name = getMangledName(D);
949     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
950     assert(CGRef && "Deferred decl wasn't referenced?");
951 
952     if (!CGRef->isDeclaration())
953       continue;
954 
955     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
956     // purposes an alias counts as a definition.
957     if (isa<llvm::GlobalAlias>(CGRef))
958       continue;
959 
960     // Otherwise, emit the definition and move on to the next one.
961     EmitGlobalDefinition(D);
962   }
963 }
964 
965 void CodeGenModule::EmitGlobalAnnotations() {
966   if (Annotations.empty())
967     return;
968 
969   // Create a new global variable for the ConstantStruct in the Module.
970   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
971     Annotations[0]->getType(), Annotations.size()), Annotations);
972   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
973     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
974     "llvm.global.annotations");
975   gv->setSection(AnnotationSection);
976 }
977 
978 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
979   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
980   if (i != AnnotationStrings.end())
981     return i->second;
982 
983   // Not found yet, create a new global.
984   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
985   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
986     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
987   gv->setSection(AnnotationSection);
988   gv->setUnnamedAddr(true);
989   AnnotationStrings[Str] = gv;
990   return gv;
991 }
992 
993 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
994   SourceManager &SM = getContext().getSourceManager();
995   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
996   if (PLoc.isValid())
997     return EmitAnnotationString(PLoc.getFilename());
998   return EmitAnnotationString(SM.getBufferName(Loc));
999 }
1000 
1001 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1002   SourceManager &SM = getContext().getSourceManager();
1003   PresumedLoc PLoc = SM.getPresumedLoc(L);
1004   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1005     SM.getExpansionLineNumber(L);
1006   return llvm::ConstantInt::get(Int32Ty, LineNo);
1007 }
1008 
1009 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1010                                                 const AnnotateAttr *AA,
1011                                                 SourceLocation L) {
1012   // Get the globals for file name, annotation, and the line number.
1013   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1014                  *UnitGV = EmitAnnotationUnit(L),
1015                  *LineNoCst = EmitAnnotationLineNo(L);
1016 
1017   // Create the ConstantStruct for the global annotation.
1018   llvm::Constant *Fields[4] = {
1019     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1020     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1021     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1022     LineNoCst
1023   };
1024   return llvm::ConstantStruct::getAnon(Fields);
1025 }
1026 
1027 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1028                                          llvm::GlobalValue *GV) {
1029   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1030   // Get the struct elements for these annotations.
1031   for (specific_attr_iterator<AnnotateAttr>
1032        ai = D->specific_attr_begin<AnnotateAttr>(),
1033        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1034     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1035 }
1036 
1037 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1038   // Never defer when EmitAllDecls is specified.
1039   if (LangOpts.EmitAllDecls)
1040     return false;
1041 
1042   return !getContext().DeclMustBeEmitted(Global);
1043 }
1044 
1045 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1046     const CXXUuidofExpr* E) {
1047   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1048   // well-formed.
1049   StringRef Uuid = E->getUuidAsStringRef(Context);
1050   std::string Name = "_GUID_" + Uuid.lower();
1051   std::replace(Name.begin(), Name.end(), '-', '_');
1052 
1053   // Look for an existing global.
1054   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1055     return GV;
1056 
1057   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1058   assert(Init && "failed to initialize as constant");
1059 
1060   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1061   // first field is declared as "long", which for many targets is 8 bytes.
1062   // Those architectures are not supported. (With the MS abi, long is always 4
1063   // bytes.)
1064   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1065   if (Init->getType() != GuidType) {
1066     DiagnosticsEngine &Diags = getDiags();
1067     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1068         "__uuidof codegen is not supported on this architecture");
1069     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1070     Init = llvm::UndefValue::get(GuidType);
1071   }
1072 
1073   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1074       /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, Init, Name);
1075   GV->setUnnamedAddr(true);
1076   return GV;
1077 }
1078 
1079 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1080   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1081   assert(AA && "No alias?");
1082 
1083   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1084 
1085   // See if there is already something with the target's name in the module.
1086   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1087   if (Entry) {
1088     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1089     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1090   }
1091 
1092   llvm::Constant *Aliasee;
1093   if (isa<llvm::FunctionType>(DeclTy))
1094     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1095                                       GlobalDecl(cast<FunctionDecl>(VD)),
1096                                       /*ForVTable=*/false);
1097   else
1098     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1099                                     llvm::PointerType::getUnqual(DeclTy), 0);
1100 
1101   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1102   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1103   WeakRefReferences.insert(F);
1104 
1105   return Aliasee;
1106 }
1107 
1108 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1109   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1110 
1111   // Weak references don't produce any output by themselves.
1112   if (Global->hasAttr<WeakRefAttr>())
1113     return;
1114 
1115   // If this is an alias definition (which otherwise looks like a declaration)
1116   // emit it now.
1117   if (Global->hasAttr<AliasAttr>())
1118     return EmitAliasDefinition(GD);
1119 
1120   // If this is CUDA, be selective about which declarations we emit.
1121   if (LangOpts.CUDA) {
1122     if (CodeGenOpts.CUDAIsDevice) {
1123       if (!Global->hasAttr<CUDADeviceAttr>() &&
1124           !Global->hasAttr<CUDAGlobalAttr>() &&
1125           !Global->hasAttr<CUDAConstantAttr>() &&
1126           !Global->hasAttr<CUDASharedAttr>())
1127         return;
1128     } else {
1129       if (!Global->hasAttr<CUDAHostAttr>() && (
1130             Global->hasAttr<CUDADeviceAttr>() ||
1131             Global->hasAttr<CUDAConstantAttr>() ||
1132             Global->hasAttr<CUDASharedAttr>()))
1133         return;
1134     }
1135   }
1136 
1137   // Ignore declarations, they will be emitted on their first use.
1138   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1139     // Forward declarations are emitted lazily on first use.
1140     if (!FD->doesThisDeclarationHaveABody()) {
1141       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1142         return;
1143 
1144       const FunctionDecl *InlineDefinition = 0;
1145       FD->getBody(InlineDefinition);
1146 
1147       StringRef MangledName = getMangledName(GD);
1148       DeferredDecls.erase(MangledName);
1149       EmitGlobalDefinition(InlineDefinition);
1150       return;
1151     }
1152   } else {
1153     const VarDecl *VD = cast<VarDecl>(Global);
1154     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1155 
1156     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1157       return;
1158   }
1159 
1160   // Defer code generation when possible if this is a static definition, inline
1161   // function etc.  These we only want to emit if they are used.
1162   if (!MayDeferGeneration(Global)) {
1163     // Emit the definition if it can't be deferred.
1164     EmitGlobalDefinition(GD);
1165     return;
1166   }
1167 
1168   // If we're deferring emission of a C++ variable with an
1169   // initializer, remember the order in which it appeared in the file.
1170   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1171       cast<VarDecl>(Global)->hasInit()) {
1172     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1173     CXXGlobalInits.push_back(0);
1174   }
1175 
1176   // If the value has already been used, add it directly to the
1177   // DeferredDeclsToEmit list.
1178   StringRef MangledName = getMangledName(GD);
1179   if (GetGlobalValue(MangledName))
1180     DeferredDeclsToEmit.push_back(GD);
1181   else {
1182     // Otherwise, remember that we saw a deferred decl with this name.  The
1183     // first use of the mangled name will cause it to move into
1184     // DeferredDeclsToEmit.
1185     DeferredDecls[MangledName] = GD;
1186   }
1187 }
1188 
1189 namespace {
1190   struct FunctionIsDirectlyRecursive :
1191     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1192     const StringRef Name;
1193     const Builtin::Context &BI;
1194     bool Result;
1195     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1196       Name(N), BI(C), Result(false) {
1197     }
1198     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1199 
1200     bool TraverseCallExpr(CallExpr *E) {
1201       const FunctionDecl *FD = E->getDirectCallee();
1202       if (!FD)
1203         return true;
1204       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1205       if (Attr && Name == Attr->getLabel()) {
1206         Result = true;
1207         return false;
1208       }
1209       unsigned BuiltinID = FD->getBuiltinID();
1210       if (!BuiltinID)
1211         return true;
1212       StringRef BuiltinName = BI.GetName(BuiltinID);
1213       if (BuiltinName.startswith("__builtin_") &&
1214           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1215         Result = true;
1216         return false;
1217       }
1218       return true;
1219     }
1220   };
1221 }
1222 
1223 // isTriviallyRecursive - Check if this function calls another
1224 // decl that, because of the asm attribute or the other decl being a builtin,
1225 // ends up pointing to itself.
1226 bool
1227 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1228   StringRef Name;
1229   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1230     // asm labels are a special kind of mangling we have to support.
1231     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1232     if (!Attr)
1233       return false;
1234     Name = Attr->getLabel();
1235   } else {
1236     Name = FD->getName();
1237   }
1238 
1239   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1240   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1241   return Walker.Result;
1242 }
1243 
1244 bool
1245 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1246   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1247     return true;
1248   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1249   if (CodeGenOpts.OptimizationLevel == 0 &&
1250       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1251     return false;
1252   // PR9614. Avoid cases where the source code is lying to us. An available
1253   // externally function should have an equivalent function somewhere else,
1254   // but a function that calls itself is clearly not equivalent to the real
1255   // implementation.
1256   // This happens in glibc's btowc and in some configure checks.
1257   return !isTriviallyRecursive(F);
1258 }
1259 
1260 /// If the type for the method's class was generated by
1261 /// CGDebugInfo::createContextChain(), the cache contains only a
1262 /// limited DIType without any declarations. Since EmitFunctionStart()
1263 /// needs to find the canonical declaration for each method, we need
1264 /// to construct the complete type prior to emitting the method.
1265 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1266   if (!D->isInstance())
1267     return;
1268 
1269   if (CGDebugInfo *DI = getModuleDebugInfo())
1270     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1271       const PointerType *ThisPtr =
1272         cast<PointerType>(D->getThisType(getContext()));
1273       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1274     }
1275 }
1276 
1277 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1278   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1279 
1280   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1281                                  Context.getSourceManager(),
1282                                  "Generating code for declaration");
1283 
1284   if (isa<FunctionDecl>(D)) {
1285     // At -O0, don't generate IR for functions with available_externally
1286     // linkage.
1287     if (!shouldEmitFunction(GD))
1288       return;
1289 
1290     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1291       CompleteDIClassType(Method);
1292       // Make sure to emit the definition(s) before we emit the thunks.
1293       // This is necessary for the generation of certain thunks.
1294       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1295         EmitCXXConstructor(CD, GD.getCtorType());
1296       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1297         EmitCXXDestructor(DD, GD.getDtorType());
1298       else
1299         EmitGlobalFunctionDefinition(GD);
1300 
1301       if (Method->isVirtual())
1302         getVTables().EmitThunks(GD);
1303 
1304       return;
1305     }
1306 
1307     return EmitGlobalFunctionDefinition(GD);
1308   }
1309 
1310   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1311     return EmitGlobalVarDefinition(VD);
1312 
1313   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1314 }
1315 
1316 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1317 /// module, create and return an llvm Function with the specified type. If there
1318 /// is something in the module with the specified name, return it potentially
1319 /// bitcasted to the right type.
1320 ///
1321 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1322 /// to set the attributes on the function when it is first created.
1323 llvm::Constant *
1324 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1325                                        llvm::Type *Ty,
1326                                        GlobalDecl GD, bool ForVTable,
1327                                        llvm::AttributeSet ExtraAttrs) {
1328   const Decl *D = GD.getDecl();
1329 
1330   // Lookup the entry, lazily creating it if necessary.
1331   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1332   if (Entry) {
1333     if (WeakRefReferences.erase(Entry)) {
1334       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1335       if (FD && !FD->hasAttr<WeakAttr>())
1336         Entry->setLinkage(llvm::Function::ExternalLinkage);
1337     }
1338 
1339     if (Entry->getType()->getElementType() == Ty)
1340       return Entry;
1341 
1342     // Make sure the result is of the correct type.
1343     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1344   }
1345 
1346   // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1347   // each other bottoming out with the base dtor.  Therefore we emit non-base
1348   // dtors on usage, even if there is no dtor definition in the TU.
1349   if (D && isa<CXXDestructorDecl>(D) &&
1350       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1351                                          GD.getDtorType()))
1352     DeferredDeclsToEmit.push_back(GD);
1353 
1354   // This function doesn't have a complete type (for example, the return
1355   // type is an incomplete struct). Use a fake type instead, and make
1356   // sure not to try to set attributes.
1357   bool IsIncompleteFunction = false;
1358 
1359   llvm::FunctionType *FTy;
1360   if (isa<llvm::FunctionType>(Ty)) {
1361     FTy = cast<llvm::FunctionType>(Ty);
1362   } else {
1363     FTy = llvm::FunctionType::get(VoidTy, false);
1364     IsIncompleteFunction = true;
1365   }
1366 
1367   llvm::Function *F = llvm::Function::Create(FTy,
1368                                              llvm::Function::ExternalLinkage,
1369                                              MangledName, &getModule());
1370   assert(F->getName() == MangledName && "name was uniqued!");
1371   if (D)
1372     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1373   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1374     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1375     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1376                      llvm::AttributeSet::get(VMContext,
1377                                              llvm::AttributeSet::FunctionIndex,
1378                                              B));
1379   }
1380 
1381   // This is the first use or definition of a mangled name.  If there is a
1382   // deferred decl with this name, remember that we need to emit it at the end
1383   // of the file.
1384   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1385   if (DDI != DeferredDecls.end()) {
1386     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1387     // list, and remove it from DeferredDecls (since we don't need it anymore).
1388     DeferredDeclsToEmit.push_back(DDI->second);
1389     DeferredDecls.erase(DDI);
1390 
1391   // Otherwise, there are cases we have to worry about where we're
1392   // using a declaration for which we must emit a definition but where
1393   // we might not find a top-level definition:
1394   //   - member functions defined inline in their classes
1395   //   - friend functions defined inline in some class
1396   //   - special member functions with implicit definitions
1397   // If we ever change our AST traversal to walk into class methods,
1398   // this will be unnecessary.
1399   //
1400   // We also don't emit a definition for a function if it's going to be an entry
1401   // in a vtable, unless it's already marked as used.
1402   } else if (getLangOpts().CPlusPlus && D) {
1403     // Look for a declaration that's lexically in a record.
1404     const FunctionDecl *FD = cast<FunctionDecl>(D);
1405     FD = FD->getMostRecentDecl();
1406     do {
1407       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1408         if (FD->isImplicit() && !ForVTable) {
1409           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1410           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1411           break;
1412         } else if (FD->doesThisDeclarationHaveABody()) {
1413           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1414           break;
1415         }
1416       }
1417       FD = FD->getPreviousDecl();
1418     } while (FD);
1419   }
1420 
1421   // Make sure the result is of the requested type.
1422   if (!IsIncompleteFunction) {
1423     assert(F->getType()->getElementType() == Ty);
1424     return F;
1425   }
1426 
1427   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1428   return llvm::ConstantExpr::getBitCast(F, PTy);
1429 }
1430 
1431 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1432 /// non-null, then this function will use the specified type if it has to
1433 /// create it (this occurs when we see a definition of the function).
1434 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1435                                                  llvm::Type *Ty,
1436                                                  bool ForVTable) {
1437   // If there was no specific requested type, just convert it now.
1438   if (!Ty)
1439     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1440 
1441   StringRef MangledName = getMangledName(GD);
1442   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1443 }
1444 
1445 /// CreateRuntimeFunction - Create a new runtime function with the specified
1446 /// type and name.
1447 llvm::Constant *
1448 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1449                                      StringRef Name,
1450                                      llvm::AttributeSet ExtraAttrs) {
1451   llvm::Constant *C
1452     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1453                               ExtraAttrs);
1454   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1455     if (F->empty())
1456       F->setCallingConv(getRuntimeCC());
1457   return C;
1458 }
1459 
1460 /// isTypeConstant - Determine whether an object of this type can be emitted
1461 /// as a constant.
1462 ///
1463 /// If ExcludeCtor is true, the duration when the object's constructor runs
1464 /// will not be considered. The caller will need to verify that the object is
1465 /// not written to during its construction.
1466 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1467   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1468     return false;
1469 
1470   if (Context.getLangOpts().CPlusPlus) {
1471     if (const CXXRecordDecl *Record
1472           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1473       return ExcludeCtor && !Record->hasMutableFields() &&
1474              Record->hasTrivialDestructor();
1475   }
1476 
1477   return true;
1478 }
1479 
1480 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1481 /// create and return an llvm GlobalVariable with the specified type.  If there
1482 /// is something in the module with the specified name, return it potentially
1483 /// bitcasted to the right type.
1484 ///
1485 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1486 /// to set the attributes on the global when it is first created.
1487 llvm::Constant *
1488 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1489                                      llvm::PointerType *Ty,
1490                                      const VarDecl *D,
1491                                      bool UnnamedAddr) {
1492   // Lookup the entry, lazily creating it if necessary.
1493   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1494   if (Entry) {
1495     if (WeakRefReferences.erase(Entry)) {
1496       if (D && !D->hasAttr<WeakAttr>())
1497         Entry->setLinkage(llvm::Function::ExternalLinkage);
1498     }
1499 
1500     if (UnnamedAddr)
1501       Entry->setUnnamedAddr(true);
1502 
1503     if (Entry->getType() == Ty)
1504       return Entry;
1505 
1506     // Make sure the result is of the correct type.
1507     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1508   }
1509 
1510   // This is the first use or definition of a mangled name.  If there is a
1511   // deferred decl with this name, remember that we need to emit it at the end
1512   // of the file.
1513   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1514   if (DDI != DeferredDecls.end()) {
1515     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1516     // list, and remove it from DeferredDecls (since we don't need it anymore).
1517     DeferredDeclsToEmit.push_back(DDI->second);
1518     DeferredDecls.erase(DDI);
1519   }
1520 
1521   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1522   llvm::GlobalVariable *GV =
1523     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1524                              llvm::GlobalValue::ExternalLinkage,
1525                              0, MangledName, 0,
1526                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1527 
1528   // Handle things which are present even on external declarations.
1529   if (D) {
1530     // FIXME: This code is overly simple and should be merged with other global
1531     // handling.
1532     GV->setConstant(isTypeConstant(D->getType(), false));
1533 
1534     // Set linkage and visibility in case we never see a definition.
1535     LinkageInfo LV = D->getLinkageAndVisibility();
1536     if (LV.getLinkage() != ExternalLinkage) {
1537       // Don't set internal linkage on declarations.
1538     } else {
1539       if (D->hasAttr<DLLImportAttr>())
1540         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1541       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1542         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1543 
1544       // Set visibility on a declaration only if it's explicit.
1545       if (LV.isVisibilityExplicit())
1546         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1547     }
1548 
1549     if (D->getTLSKind()) {
1550       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1551         CXXThreadLocals.push_back(std::make_pair(D, GV));
1552       setTLSMode(GV, *D);
1553     }
1554   }
1555 
1556   if (AddrSpace != Ty->getAddressSpace())
1557     return llvm::ConstantExpr::getBitCast(GV, Ty);
1558   else
1559     return GV;
1560 }
1561 
1562 
1563 llvm::GlobalVariable *
1564 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1565                                       llvm::Type *Ty,
1566                                       llvm::GlobalValue::LinkageTypes Linkage) {
1567   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1568   llvm::GlobalVariable *OldGV = 0;
1569 
1570 
1571   if (GV) {
1572     // Check if the variable has the right type.
1573     if (GV->getType()->getElementType() == Ty)
1574       return GV;
1575 
1576     // Because C++ name mangling, the only way we can end up with an already
1577     // existing global with the same name is if it has been declared extern "C".
1578     assert(GV->isDeclaration() && "Declaration has wrong type!");
1579     OldGV = GV;
1580   }
1581 
1582   // Create a new variable.
1583   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1584                                 Linkage, 0, Name);
1585 
1586   if (OldGV) {
1587     // Replace occurrences of the old variable if needed.
1588     GV->takeName(OldGV);
1589 
1590     if (!OldGV->use_empty()) {
1591       llvm::Constant *NewPtrForOldDecl =
1592       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1593       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1594     }
1595 
1596     OldGV->eraseFromParent();
1597   }
1598 
1599   return GV;
1600 }
1601 
1602 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1603 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1604 /// then it will be created with the specified type instead of whatever the
1605 /// normal requested type would be.
1606 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1607                                                   llvm::Type *Ty) {
1608   assert(D->hasGlobalStorage() && "Not a global variable");
1609   QualType ASTTy = D->getType();
1610   if (Ty == 0)
1611     Ty = getTypes().ConvertTypeForMem(ASTTy);
1612 
1613   llvm::PointerType *PTy =
1614     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1615 
1616   StringRef MangledName = getMangledName(D);
1617   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1618 }
1619 
1620 /// CreateRuntimeVariable - Create a new runtime global variable with the
1621 /// specified type and name.
1622 llvm::Constant *
1623 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1624                                      StringRef Name) {
1625   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1626                                true);
1627 }
1628 
1629 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1630   assert(!D->getInit() && "Cannot emit definite definitions here!");
1631 
1632   if (MayDeferGeneration(D)) {
1633     // If we have not seen a reference to this variable yet, place it
1634     // into the deferred declarations table to be emitted if needed
1635     // later.
1636     StringRef MangledName = getMangledName(D);
1637     if (!GetGlobalValue(MangledName)) {
1638       DeferredDecls[MangledName] = D;
1639       return;
1640     }
1641   }
1642 
1643   // The tentative definition is the only definition.
1644   EmitGlobalVarDefinition(D);
1645 }
1646 
1647 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1648     return Context.toCharUnitsFromBits(
1649       TheDataLayout.getTypeStoreSizeInBits(Ty));
1650 }
1651 
1652 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1653                                                  unsigned AddrSpace) {
1654   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1655     if (D->hasAttr<CUDAConstantAttr>())
1656       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1657     else if (D->hasAttr<CUDASharedAttr>())
1658       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1659     else
1660       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1661   }
1662 
1663   return AddrSpace;
1664 }
1665 
1666 template<typename SomeDecl>
1667 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1668                                                llvm::GlobalValue *GV) {
1669   if (!getLangOpts().CPlusPlus)
1670     return;
1671 
1672   // Must have 'used' attribute, or else inline assembly can't rely on
1673   // the name existing.
1674   if (!D->template hasAttr<UsedAttr>())
1675     return;
1676 
1677   // Must have internal linkage and an ordinary name.
1678   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1679     return;
1680 
1681   // Must be in an extern "C" context. Entities declared directly within
1682   // a record are not extern "C" even if the record is in such a context.
1683   const SomeDecl *First = D->getFirstDeclaration();
1684   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1685     return;
1686 
1687   // OK, this is an internal linkage entity inside an extern "C" linkage
1688   // specification. Make a note of that so we can give it the "expected"
1689   // mangled name if nothing else is using that name.
1690   std::pair<StaticExternCMap::iterator, bool> R =
1691       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1692 
1693   // If we have multiple internal linkage entities with the same name
1694   // in extern "C" regions, none of them gets that name.
1695   if (!R.second)
1696     R.first->second = 0;
1697 }
1698 
1699 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1700   llvm::Constant *Init = 0;
1701   QualType ASTTy = D->getType();
1702   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1703   bool NeedsGlobalCtor = false;
1704   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1705 
1706   const VarDecl *InitDecl;
1707   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1708 
1709   if (!InitExpr) {
1710     // This is a tentative definition; tentative definitions are
1711     // implicitly initialized with { 0 }.
1712     //
1713     // Note that tentative definitions are only emitted at the end of
1714     // a translation unit, so they should never have incomplete
1715     // type. In addition, EmitTentativeDefinition makes sure that we
1716     // never attempt to emit a tentative definition if a real one
1717     // exists. A use may still exists, however, so we still may need
1718     // to do a RAUW.
1719     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1720     Init = EmitNullConstant(D->getType());
1721   } else {
1722     initializedGlobalDecl = GlobalDecl(D);
1723     Init = EmitConstantInit(*InitDecl);
1724 
1725     if (!Init) {
1726       QualType T = InitExpr->getType();
1727       if (D->getType()->isReferenceType())
1728         T = D->getType();
1729 
1730       if (getLangOpts().CPlusPlus) {
1731         Init = EmitNullConstant(T);
1732         NeedsGlobalCtor = true;
1733       } else {
1734         ErrorUnsupported(D, "static initializer");
1735         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1736       }
1737     } else {
1738       // We don't need an initializer, so remove the entry for the delayed
1739       // initializer position (just in case this entry was delayed) if we
1740       // also don't need to register a destructor.
1741       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1742         DelayedCXXInitPosition.erase(D);
1743     }
1744   }
1745 
1746   llvm::Type* InitType = Init->getType();
1747   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1748 
1749   // Strip off a bitcast if we got one back.
1750   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1751     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1752            // all zero index gep.
1753            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1754     Entry = CE->getOperand(0);
1755   }
1756 
1757   // Entry is now either a Function or GlobalVariable.
1758   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1759 
1760   // We have a definition after a declaration with the wrong type.
1761   // We must make a new GlobalVariable* and update everything that used OldGV
1762   // (a declaration or tentative definition) with the new GlobalVariable*
1763   // (which will be a definition).
1764   //
1765   // This happens if there is a prototype for a global (e.g.
1766   // "extern int x[];") and then a definition of a different type (e.g.
1767   // "int x[10];"). This also happens when an initializer has a different type
1768   // from the type of the global (this happens with unions).
1769   if (GV == 0 ||
1770       GV->getType()->getElementType() != InitType ||
1771       GV->getType()->getAddressSpace() !=
1772        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1773 
1774     // Move the old entry aside so that we'll create a new one.
1775     Entry->setName(StringRef());
1776 
1777     // Make a new global with the correct type, this is now guaranteed to work.
1778     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1779 
1780     // Replace all uses of the old global with the new global
1781     llvm::Constant *NewPtrForOldDecl =
1782         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1783     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1784 
1785     // Erase the old global, since it is no longer used.
1786     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1787   }
1788 
1789   MaybeHandleStaticInExternC(D, GV);
1790 
1791   if (D->hasAttr<AnnotateAttr>())
1792     AddGlobalAnnotations(D, GV);
1793 
1794   GV->setInitializer(Init);
1795 
1796   // If it is safe to mark the global 'constant', do so now.
1797   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1798                   isTypeConstant(D->getType(), true));
1799 
1800   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1801 
1802   // Set the llvm linkage type as appropriate.
1803   llvm::GlobalValue::LinkageTypes Linkage =
1804     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1805   GV->setLinkage(Linkage);
1806   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1807     // common vars aren't constant even if declared const.
1808     GV->setConstant(false);
1809 
1810   SetCommonAttributes(D, GV);
1811 
1812   // Emit the initializer function if necessary.
1813   if (NeedsGlobalCtor || NeedsGlobalDtor)
1814     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1815 
1816   // If we are compiling with ASan, add metadata indicating dynamically
1817   // initialized globals.
1818   if (SanOpts.Address && NeedsGlobalCtor) {
1819     llvm::Module &M = getModule();
1820 
1821     llvm::NamedMDNode *DynamicInitializers =
1822         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1823     llvm::Value *GlobalToAdd[] = { GV };
1824     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1825     DynamicInitializers->addOperand(ThisGlobal);
1826   }
1827 
1828   // Emit global variable debug information.
1829   if (CGDebugInfo *DI = getModuleDebugInfo())
1830     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1831       DI->EmitGlobalVariable(GV, D);
1832 }
1833 
1834 llvm::GlobalValue::LinkageTypes
1835 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1836   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1837   if (Linkage == GVA_Internal)
1838     return llvm::Function::InternalLinkage;
1839   else if (D->hasAttr<DLLImportAttr>())
1840     return llvm::Function::DLLImportLinkage;
1841   else if (D->hasAttr<DLLExportAttr>())
1842     return llvm::Function::DLLExportLinkage;
1843   else if (D->hasAttr<SelectAnyAttr>()) {
1844     // selectany symbols are externally visible, so use weak instead of
1845     // linkonce.  MSVC optimizes away references to const selectany globals, so
1846     // all definitions should be the same and ODR linkage should be used.
1847     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1848     return llvm::GlobalVariable::WeakODRLinkage;
1849   } else if (D->hasAttr<WeakAttr>()) {
1850     if (isConstant)
1851       return llvm::GlobalVariable::WeakODRLinkage;
1852     else
1853       return llvm::GlobalVariable::WeakAnyLinkage;
1854   } else if (Linkage == GVA_TemplateInstantiation ||
1855              Linkage == GVA_ExplicitTemplateInstantiation)
1856     return llvm::GlobalVariable::WeakODRLinkage;
1857   else if (!getLangOpts().CPlusPlus &&
1858            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1859              D->getAttr<CommonAttr>()) &&
1860            !D->hasExternalStorage() && !D->getInit() &&
1861            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1862            !D->getAttr<WeakImportAttr>()) {
1863     // Thread local vars aren't considered common linkage.
1864     return llvm::GlobalVariable::CommonLinkage;
1865   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1866              getTarget().getTriple().isMacOSX())
1867     // On Darwin, the backing variable for a C++11 thread_local variable always
1868     // has internal linkage; all accesses should just be calls to the
1869     // Itanium-specified entry point, which has the normal linkage of the
1870     // variable.
1871     return llvm::GlobalValue::InternalLinkage;
1872   return llvm::GlobalVariable::ExternalLinkage;
1873 }
1874 
1875 /// Replace the uses of a function that was declared with a non-proto type.
1876 /// We want to silently drop extra arguments from call sites
1877 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1878                                           llvm::Function *newFn) {
1879   // Fast path.
1880   if (old->use_empty()) return;
1881 
1882   llvm::Type *newRetTy = newFn->getReturnType();
1883   SmallVector<llvm::Value*, 4> newArgs;
1884 
1885   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1886          ui != ue; ) {
1887     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1888     llvm::User *user = *use;
1889 
1890     // Recognize and replace uses of bitcasts.  Most calls to
1891     // unprototyped functions will use bitcasts.
1892     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1893       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1894         replaceUsesOfNonProtoConstant(bitcast, newFn);
1895       continue;
1896     }
1897 
1898     // Recognize calls to the function.
1899     llvm::CallSite callSite(user);
1900     if (!callSite) continue;
1901     if (!callSite.isCallee(use)) continue;
1902 
1903     // If the return types don't match exactly, then we can't
1904     // transform this call unless it's dead.
1905     if (callSite->getType() != newRetTy && !callSite->use_empty())
1906       continue;
1907 
1908     // Get the call site's attribute list.
1909     SmallVector<llvm::AttributeSet, 8> newAttrs;
1910     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1911 
1912     // Collect any return attributes from the call.
1913     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1914       newAttrs.push_back(
1915         llvm::AttributeSet::get(newFn->getContext(),
1916                                 oldAttrs.getRetAttributes()));
1917 
1918     // If the function was passed too few arguments, don't transform.
1919     unsigned newNumArgs = newFn->arg_size();
1920     if (callSite.arg_size() < newNumArgs) continue;
1921 
1922     // If extra arguments were passed, we silently drop them.
1923     // If any of the types mismatch, we don't transform.
1924     unsigned argNo = 0;
1925     bool dontTransform = false;
1926     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1927            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1928       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1929         dontTransform = true;
1930         break;
1931       }
1932 
1933       // Add any parameter attributes.
1934       if (oldAttrs.hasAttributes(argNo + 1))
1935         newAttrs.
1936           push_back(llvm::
1937                     AttributeSet::get(newFn->getContext(),
1938                                       oldAttrs.getParamAttributes(argNo + 1)));
1939     }
1940     if (dontTransform)
1941       continue;
1942 
1943     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1944       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1945                                                  oldAttrs.getFnAttributes()));
1946 
1947     // Okay, we can transform this.  Create the new call instruction and copy
1948     // over the required information.
1949     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1950 
1951     llvm::CallSite newCall;
1952     if (callSite.isCall()) {
1953       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1954                                        callSite.getInstruction());
1955     } else {
1956       llvm::InvokeInst *oldInvoke =
1957         cast<llvm::InvokeInst>(callSite.getInstruction());
1958       newCall = llvm::InvokeInst::Create(newFn,
1959                                          oldInvoke->getNormalDest(),
1960                                          oldInvoke->getUnwindDest(),
1961                                          newArgs, "",
1962                                          callSite.getInstruction());
1963     }
1964     newArgs.clear(); // for the next iteration
1965 
1966     if (!newCall->getType()->isVoidTy())
1967       newCall->takeName(callSite.getInstruction());
1968     newCall.setAttributes(
1969                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1970     newCall.setCallingConv(callSite.getCallingConv());
1971 
1972     // Finally, remove the old call, replacing any uses with the new one.
1973     if (!callSite->use_empty())
1974       callSite->replaceAllUsesWith(newCall.getInstruction());
1975 
1976     // Copy debug location attached to CI.
1977     if (!callSite->getDebugLoc().isUnknown())
1978       newCall->setDebugLoc(callSite->getDebugLoc());
1979     callSite->eraseFromParent();
1980   }
1981 }
1982 
1983 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1984 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1985 /// existing call uses of the old function in the module, this adjusts them to
1986 /// call the new function directly.
1987 ///
1988 /// This is not just a cleanup: the always_inline pass requires direct calls to
1989 /// functions to be able to inline them.  If there is a bitcast in the way, it
1990 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1991 /// run at -O0.
1992 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1993                                                       llvm::Function *NewFn) {
1994   // If we're redefining a global as a function, don't transform it.
1995   if (!isa<llvm::Function>(Old)) return;
1996 
1997   replaceUsesOfNonProtoConstant(Old, NewFn);
1998 }
1999 
2000 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2001   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2002   // If we have a definition, this might be a deferred decl. If the
2003   // instantiation is explicit, make sure we emit it at the end.
2004   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2005     GetAddrOfGlobalVar(VD);
2006 
2007   EmitTopLevelDecl(VD);
2008 }
2009 
2010 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2011   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2012 
2013   // Compute the function info and LLVM type.
2014   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2015   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2016 
2017   // Get or create the prototype for the function.
2018   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2019 
2020   // Strip off a bitcast if we got one back.
2021   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2022     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2023     Entry = CE->getOperand(0);
2024   }
2025 
2026 
2027   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2028     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2029 
2030     // If the types mismatch then we have to rewrite the definition.
2031     assert(OldFn->isDeclaration() &&
2032            "Shouldn't replace non-declaration");
2033 
2034     // F is the Function* for the one with the wrong type, we must make a new
2035     // Function* and update everything that used F (a declaration) with the new
2036     // Function* (which will be a definition).
2037     //
2038     // This happens if there is a prototype for a function
2039     // (e.g. "int f()") and then a definition of a different type
2040     // (e.g. "int f(int x)").  Move the old function aside so that it
2041     // doesn't interfere with GetAddrOfFunction.
2042     OldFn->setName(StringRef());
2043     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2044 
2045     // This might be an implementation of a function without a
2046     // prototype, in which case, try to do special replacement of
2047     // calls which match the new prototype.  The really key thing here
2048     // is that we also potentially drop arguments from the call site
2049     // so as to make a direct call, which makes the inliner happier
2050     // and suppresses a number of optimizer warnings (!) about
2051     // dropping arguments.
2052     if (!OldFn->use_empty()) {
2053       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2054       OldFn->removeDeadConstantUsers();
2055     }
2056 
2057     // Replace uses of F with the Function we will endow with a body.
2058     if (!Entry->use_empty()) {
2059       llvm::Constant *NewPtrForOldDecl =
2060         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2061       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2062     }
2063 
2064     // Ok, delete the old function now, which is dead.
2065     OldFn->eraseFromParent();
2066 
2067     Entry = NewFn;
2068   }
2069 
2070   // We need to set linkage and visibility on the function before
2071   // generating code for it because various parts of IR generation
2072   // want to propagate this information down (e.g. to local static
2073   // declarations).
2074   llvm::Function *Fn = cast<llvm::Function>(Entry);
2075   setFunctionLinkage(GD, Fn);
2076 
2077   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2078   setGlobalVisibility(Fn, D);
2079 
2080   MaybeHandleStaticInExternC(D, Fn);
2081 
2082   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2083 
2084   SetFunctionDefinitionAttributes(D, Fn);
2085   SetLLVMFunctionAttributesForDefinition(D, Fn);
2086 
2087   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2088     AddGlobalCtor(Fn, CA->getPriority());
2089   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2090     AddGlobalDtor(Fn, DA->getPriority());
2091   if (D->hasAttr<AnnotateAttr>())
2092     AddGlobalAnnotations(D, Fn);
2093 }
2094 
2095 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2096   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2097   const AliasAttr *AA = D->getAttr<AliasAttr>();
2098   assert(AA && "Not an alias?");
2099 
2100   StringRef MangledName = getMangledName(GD);
2101 
2102   // If there is a definition in the module, then it wins over the alias.
2103   // This is dubious, but allow it to be safe.  Just ignore the alias.
2104   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2105   if (Entry && !Entry->isDeclaration())
2106     return;
2107 
2108   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2109 
2110   // Create a reference to the named value.  This ensures that it is emitted
2111   // if a deferred decl.
2112   llvm::Constant *Aliasee;
2113   if (isa<llvm::FunctionType>(DeclTy))
2114     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2115                                       /*ForVTable=*/false);
2116   else
2117     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2118                                     llvm::PointerType::getUnqual(DeclTy), 0);
2119 
2120   // Create the new alias itself, but don't set a name yet.
2121   llvm::GlobalValue *GA =
2122     new llvm::GlobalAlias(Aliasee->getType(),
2123                           llvm::Function::ExternalLinkage,
2124                           "", Aliasee, &getModule());
2125 
2126   if (Entry) {
2127     assert(Entry->isDeclaration());
2128 
2129     // If there is a declaration in the module, then we had an extern followed
2130     // by the alias, as in:
2131     //   extern int test6();
2132     //   ...
2133     //   int test6() __attribute__((alias("test7")));
2134     //
2135     // Remove it and replace uses of it with the alias.
2136     GA->takeName(Entry);
2137 
2138     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2139                                                           Entry->getType()));
2140     Entry->eraseFromParent();
2141   } else {
2142     GA->setName(MangledName);
2143   }
2144 
2145   // Set attributes which are particular to an alias; this is a
2146   // specialization of the attributes which may be set on a global
2147   // variable/function.
2148   if (D->hasAttr<DLLExportAttr>()) {
2149     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2150       // The dllexport attribute is ignored for undefined symbols.
2151       if (FD->hasBody())
2152         GA->setLinkage(llvm::Function::DLLExportLinkage);
2153     } else {
2154       GA->setLinkage(llvm::Function::DLLExportLinkage);
2155     }
2156   } else if (D->hasAttr<WeakAttr>() ||
2157              D->hasAttr<WeakRefAttr>() ||
2158              D->isWeakImported()) {
2159     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2160   }
2161 
2162   SetCommonAttributes(D, GA);
2163 }
2164 
2165 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2166                                             ArrayRef<llvm::Type*> Tys) {
2167   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2168                                          Tys);
2169 }
2170 
2171 static llvm::StringMapEntry<llvm::Constant*> &
2172 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2173                          const StringLiteral *Literal,
2174                          bool TargetIsLSB,
2175                          bool &IsUTF16,
2176                          unsigned &StringLength) {
2177   StringRef String = Literal->getString();
2178   unsigned NumBytes = String.size();
2179 
2180   // Check for simple case.
2181   if (!Literal->containsNonAsciiOrNull()) {
2182     StringLength = NumBytes;
2183     return Map.GetOrCreateValue(String);
2184   }
2185 
2186   // Otherwise, convert the UTF8 literals into a string of shorts.
2187   IsUTF16 = true;
2188 
2189   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2190   const UTF8 *FromPtr = (const UTF8 *)String.data();
2191   UTF16 *ToPtr = &ToBuf[0];
2192 
2193   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2194                            &ToPtr, ToPtr + NumBytes,
2195                            strictConversion);
2196 
2197   // ConvertUTF8toUTF16 returns the length in ToPtr.
2198   StringLength = ToPtr - &ToBuf[0];
2199 
2200   // Add an explicit null.
2201   *ToPtr = 0;
2202   return Map.
2203     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2204                                (StringLength + 1) * 2));
2205 }
2206 
2207 static llvm::StringMapEntry<llvm::Constant*> &
2208 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2209                        const StringLiteral *Literal,
2210                        unsigned &StringLength) {
2211   StringRef String = Literal->getString();
2212   StringLength = String.size();
2213   return Map.GetOrCreateValue(String);
2214 }
2215 
2216 llvm::Constant *
2217 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2218   unsigned StringLength = 0;
2219   bool isUTF16 = false;
2220   llvm::StringMapEntry<llvm::Constant*> &Entry =
2221     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2222                              getDataLayout().isLittleEndian(),
2223                              isUTF16, StringLength);
2224 
2225   if (llvm::Constant *C = Entry.getValue())
2226     return C;
2227 
2228   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2229   llvm::Constant *Zeros[] = { Zero, Zero };
2230   llvm::Value *V;
2231 
2232   // If we don't already have it, get __CFConstantStringClassReference.
2233   if (!CFConstantStringClassRef) {
2234     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2235     Ty = llvm::ArrayType::get(Ty, 0);
2236     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2237                                            "__CFConstantStringClassReference");
2238     // Decay array -> ptr
2239     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2240     CFConstantStringClassRef = V;
2241   }
2242   else
2243     V = CFConstantStringClassRef;
2244 
2245   QualType CFTy = getContext().getCFConstantStringType();
2246 
2247   llvm::StructType *STy =
2248     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2249 
2250   llvm::Constant *Fields[4];
2251 
2252   // Class pointer.
2253   Fields[0] = cast<llvm::ConstantExpr>(V);
2254 
2255   // Flags.
2256   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2257   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2258     llvm::ConstantInt::get(Ty, 0x07C8);
2259 
2260   // String pointer.
2261   llvm::Constant *C = 0;
2262   if (isUTF16) {
2263     ArrayRef<uint16_t> Arr =
2264       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2265                                      const_cast<char *>(Entry.getKey().data())),
2266                                    Entry.getKey().size() / 2);
2267     C = llvm::ConstantDataArray::get(VMContext, Arr);
2268   } else {
2269     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2270   }
2271 
2272   llvm::GlobalValue::LinkageTypes Linkage;
2273   if (isUTF16)
2274     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2275     Linkage = llvm::GlobalValue::InternalLinkage;
2276   else
2277     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2278     // when using private linkage. It is not clear if this is a bug in ld
2279     // or a reasonable new restriction.
2280     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2281 
2282   // Note: -fwritable-strings doesn't make the backing store strings of
2283   // CFStrings writable. (See <rdar://problem/10657500>)
2284   llvm::GlobalVariable *GV =
2285     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2286                              Linkage, C, ".str");
2287   GV->setUnnamedAddr(true);
2288   // Don't enforce the target's minimum global alignment, since the only use
2289   // of the string is via this class initializer.
2290   if (isUTF16) {
2291     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2292     GV->setAlignment(Align.getQuantity());
2293   } else {
2294     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2295     GV->setAlignment(Align.getQuantity());
2296   }
2297 
2298   // String.
2299   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2300 
2301   if (isUTF16)
2302     // Cast the UTF16 string to the correct type.
2303     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2304 
2305   // String length.
2306   Ty = getTypes().ConvertType(getContext().LongTy);
2307   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2308 
2309   // The struct.
2310   C = llvm::ConstantStruct::get(STy, Fields);
2311   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2312                                 llvm::GlobalVariable::PrivateLinkage, C,
2313                                 "_unnamed_cfstring_");
2314   if (const char *Sect = getTarget().getCFStringSection())
2315     GV->setSection(Sect);
2316   Entry.setValue(GV);
2317 
2318   return GV;
2319 }
2320 
2321 static RecordDecl *
2322 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2323                  DeclContext *DC, IdentifierInfo *Id) {
2324   SourceLocation Loc;
2325   if (Ctx.getLangOpts().CPlusPlus)
2326     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2327   else
2328     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2329 }
2330 
2331 llvm::Constant *
2332 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2333   unsigned StringLength = 0;
2334   llvm::StringMapEntry<llvm::Constant*> &Entry =
2335     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2336 
2337   if (llvm::Constant *C = Entry.getValue())
2338     return C;
2339 
2340   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2341   llvm::Constant *Zeros[] = { Zero, Zero };
2342   llvm::Value *V;
2343   // If we don't already have it, get _NSConstantStringClassReference.
2344   if (!ConstantStringClassRef) {
2345     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2346     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2347     llvm::Constant *GV;
2348     if (LangOpts.ObjCRuntime.isNonFragile()) {
2349       std::string str =
2350         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2351                             : "OBJC_CLASS_$_" + StringClass;
2352       GV = getObjCRuntime().GetClassGlobal(str);
2353       // Make sure the result is of the correct type.
2354       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2355       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2356       ConstantStringClassRef = V;
2357     } else {
2358       std::string str =
2359         StringClass.empty() ? "_NSConstantStringClassReference"
2360                             : "_" + StringClass + "ClassReference";
2361       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2362       GV = CreateRuntimeVariable(PTy, str);
2363       // Decay array -> ptr
2364       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2365       ConstantStringClassRef = V;
2366     }
2367   }
2368   else
2369     V = ConstantStringClassRef;
2370 
2371   if (!NSConstantStringType) {
2372     // Construct the type for a constant NSString.
2373     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2374                                      Context.getTranslationUnitDecl(),
2375                                    &Context.Idents.get("__builtin_NSString"));
2376     D->startDefinition();
2377 
2378     QualType FieldTypes[3];
2379 
2380     // const int *isa;
2381     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2382     // const char *str;
2383     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2384     // unsigned int length;
2385     FieldTypes[2] = Context.UnsignedIntTy;
2386 
2387     // Create fields
2388     for (unsigned i = 0; i < 3; ++i) {
2389       FieldDecl *Field = FieldDecl::Create(Context, D,
2390                                            SourceLocation(),
2391                                            SourceLocation(), 0,
2392                                            FieldTypes[i], /*TInfo=*/0,
2393                                            /*BitWidth=*/0,
2394                                            /*Mutable=*/false,
2395                                            ICIS_NoInit);
2396       Field->setAccess(AS_public);
2397       D->addDecl(Field);
2398     }
2399 
2400     D->completeDefinition();
2401     QualType NSTy = Context.getTagDeclType(D);
2402     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2403   }
2404 
2405   llvm::Constant *Fields[3];
2406 
2407   // Class pointer.
2408   Fields[0] = cast<llvm::ConstantExpr>(V);
2409 
2410   // String pointer.
2411   llvm::Constant *C =
2412     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2413 
2414   llvm::GlobalValue::LinkageTypes Linkage;
2415   bool isConstant;
2416   Linkage = llvm::GlobalValue::PrivateLinkage;
2417   isConstant = !LangOpts.WritableStrings;
2418 
2419   llvm::GlobalVariable *GV =
2420   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2421                            ".str");
2422   GV->setUnnamedAddr(true);
2423   // Don't enforce the target's minimum global alignment, since the only use
2424   // of the string is via this class initializer.
2425   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2426   GV->setAlignment(Align.getQuantity());
2427   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2428 
2429   // String length.
2430   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2431   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2432 
2433   // The struct.
2434   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2435   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2436                                 llvm::GlobalVariable::PrivateLinkage, C,
2437                                 "_unnamed_nsstring_");
2438   // FIXME. Fix section.
2439   if (const char *Sect =
2440         LangOpts.ObjCRuntime.isNonFragile()
2441           ? getTarget().getNSStringNonFragileABISection()
2442           : getTarget().getNSStringSection())
2443     GV->setSection(Sect);
2444   Entry.setValue(GV);
2445 
2446   return GV;
2447 }
2448 
2449 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2450   if (ObjCFastEnumerationStateType.isNull()) {
2451     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2452                                      Context.getTranslationUnitDecl(),
2453                       &Context.Idents.get("__objcFastEnumerationState"));
2454     D->startDefinition();
2455 
2456     QualType FieldTypes[] = {
2457       Context.UnsignedLongTy,
2458       Context.getPointerType(Context.getObjCIdType()),
2459       Context.getPointerType(Context.UnsignedLongTy),
2460       Context.getConstantArrayType(Context.UnsignedLongTy,
2461                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2462     };
2463 
2464     for (size_t i = 0; i < 4; ++i) {
2465       FieldDecl *Field = FieldDecl::Create(Context,
2466                                            D,
2467                                            SourceLocation(),
2468                                            SourceLocation(), 0,
2469                                            FieldTypes[i], /*TInfo=*/0,
2470                                            /*BitWidth=*/0,
2471                                            /*Mutable=*/false,
2472                                            ICIS_NoInit);
2473       Field->setAccess(AS_public);
2474       D->addDecl(Field);
2475     }
2476 
2477     D->completeDefinition();
2478     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2479   }
2480 
2481   return ObjCFastEnumerationStateType;
2482 }
2483 
2484 llvm::Constant *
2485 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2486   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2487 
2488   // Don't emit it as the address of the string, emit the string data itself
2489   // as an inline array.
2490   if (E->getCharByteWidth() == 1) {
2491     SmallString<64> Str(E->getString());
2492 
2493     // Resize the string to the right size, which is indicated by its type.
2494     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2495     Str.resize(CAT->getSize().getZExtValue());
2496     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2497   }
2498 
2499   llvm::ArrayType *AType =
2500     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2501   llvm::Type *ElemTy = AType->getElementType();
2502   unsigned NumElements = AType->getNumElements();
2503 
2504   // Wide strings have either 2-byte or 4-byte elements.
2505   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2506     SmallVector<uint16_t, 32> Elements;
2507     Elements.reserve(NumElements);
2508 
2509     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2510       Elements.push_back(E->getCodeUnit(i));
2511     Elements.resize(NumElements);
2512     return llvm::ConstantDataArray::get(VMContext, Elements);
2513   }
2514 
2515   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2516   SmallVector<uint32_t, 32> Elements;
2517   Elements.reserve(NumElements);
2518 
2519   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2520     Elements.push_back(E->getCodeUnit(i));
2521   Elements.resize(NumElements);
2522   return llvm::ConstantDataArray::get(VMContext, Elements);
2523 }
2524 
2525 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2526 /// constant array for the given string literal.
2527 llvm::Constant *
2528 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2529   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2530   if (S->isAscii() || S->isUTF8()) {
2531     SmallString<64> Str(S->getString());
2532 
2533     // Resize the string to the right size, which is indicated by its type.
2534     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2535     Str.resize(CAT->getSize().getZExtValue());
2536     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2537   }
2538 
2539   // FIXME: the following does not memoize wide strings.
2540   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2541   llvm::GlobalVariable *GV =
2542     new llvm::GlobalVariable(getModule(),C->getType(),
2543                              !LangOpts.WritableStrings,
2544                              llvm::GlobalValue::PrivateLinkage,
2545                              C,".str");
2546 
2547   GV->setAlignment(Align.getQuantity());
2548   GV->setUnnamedAddr(true);
2549   return GV;
2550 }
2551 
2552 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2553 /// array for the given ObjCEncodeExpr node.
2554 llvm::Constant *
2555 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2556   std::string Str;
2557   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2558 
2559   return GetAddrOfConstantCString(Str);
2560 }
2561 
2562 
2563 /// GenerateWritableString -- Creates storage for a string literal.
2564 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2565                                              bool constant,
2566                                              CodeGenModule &CGM,
2567                                              const char *GlobalName,
2568                                              unsigned Alignment) {
2569   // Create Constant for this string literal. Don't add a '\0'.
2570   llvm::Constant *C =
2571       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2572 
2573   // Create a global variable for this string
2574   llvm::GlobalVariable *GV =
2575     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2576                              llvm::GlobalValue::PrivateLinkage,
2577                              C, GlobalName);
2578   GV->setAlignment(Alignment);
2579   GV->setUnnamedAddr(true);
2580   return GV;
2581 }
2582 
2583 /// GetAddrOfConstantString - Returns a pointer to a character array
2584 /// containing the literal. This contents are exactly that of the
2585 /// given string, i.e. it will not be null terminated automatically;
2586 /// see GetAddrOfConstantCString. Note that whether the result is
2587 /// actually a pointer to an LLVM constant depends on
2588 /// Feature.WriteableStrings.
2589 ///
2590 /// The result has pointer to array type.
2591 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2592                                                        const char *GlobalName,
2593                                                        unsigned Alignment) {
2594   // Get the default prefix if a name wasn't specified.
2595   if (!GlobalName)
2596     GlobalName = ".str";
2597 
2598   if (Alignment == 0)
2599     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2600       .getQuantity();
2601 
2602   // Don't share any string literals if strings aren't constant.
2603   if (LangOpts.WritableStrings)
2604     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2605 
2606   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2607     ConstantStringMap.GetOrCreateValue(Str);
2608 
2609   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2610     if (Alignment > GV->getAlignment()) {
2611       GV->setAlignment(Alignment);
2612     }
2613     return GV;
2614   }
2615 
2616   // Create a global variable for this.
2617   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2618                                                    Alignment);
2619   Entry.setValue(GV);
2620   return GV;
2621 }
2622 
2623 /// GetAddrOfConstantCString - Returns a pointer to a character
2624 /// array containing the literal and a terminating '\0'
2625 /// character. The result has pointer to array type.
2626 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2627                                                         const char *GlobalName,
2628                                                         unsigned Alignment) {
2629   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2630   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2631 }
2632 
2633 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2634     const MaterializeTemporaryExpr *E, const Expr *Init) {
2635   assert((E->getStorageDuration() == SD_Static ||
2636           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2637   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2638 
2639   // If we're not materializing a subobject of the temporary, keep the
2640   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2641   QualType MaterializedType = Init->getType();
2642   if (Init == E->GetTemporaryExpr())
2643     MaterializedType = E->getType();
2644 
2645   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2646   if (Slot)
2647     return Slot;
2648 
2649   // FIXME: If an externally-visible declaration extends multiple temporaries,
2650   // we need to give each temporary the same name in every translation unit (and
2651   // we also need to make the temporaries externally-visible).
2652   SmallString<256> Name;
2653   llvm::raw_svector_ostream Out(Name);
2654   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2655   Out.flush();
2656 
2657   APValue *Value = 0;
2658   if (E->getStorageDuration() == SD_Static) {
2659     // We might have a cached constant initializer for this temporary. Note
2660     // that this might have a different value from the value computed by
2661     // evaluating the initializer if the surrounding constant expression
2662     // modifies the temporary.
2663     Value = getContext().getMaterializedTemporaryValue(E, false);
2664     if (Value && Value->isUninit())
2665       Value = 0;
2666   }
2667 
2668   // Try evaluating it now, it might have a constant initializer.
2669   Expr::EvalResult EvalResult;
2670   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2671       !EvalResult.hasSideEffects())
2672     Value = &EvalResult.Val;
2673 
2674   llvm::Constant *InitialValue = 0;
2675   bool Constant = false;
2676   llvm::Type *Type;
2677   if (Value) {
2678     // The temporary has a constant initializer, use it.
2679     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2680     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2681     Type = InitialValue->getType();
2682   } else {
2683     // No initializer, the initialization will be provided when we
2684     // initialize the declaration which performed lifetime extension.
2685     Type = getTypes().ConvertTypeForMem(MaterializedType);
2686   }
2687 
2688   // Create a global variable for this lifetime-extended temporary.
2689   llvm::GlobalVariable *GV =
2690     new llvm::GlobalVariable(getModule(), Type, Constant,
2691                              llvm::GlobalValue::PrivateLinkage,
2692                              InitialValue, Name.c_str());
2693   GV->setAlignment(
2694       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2695   if (VD->getTLSKind())
2696     setTLSMode(GV, *VD);
2697   Slot = GV;
2698   return GV;
2699 }
2700 
2701 /// EmitObjCPropertyImplementations - Emit information for synthesized
2702 /// properties for an implementation.
2703 void CodeGenModule::EmitObjCPropertyImplementations(const
2704                                                     ObjCImplementationDecl *D) {
2705   for (ObjCImplementationDecl::propimpl_iterator
2706          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2707     ObjCPropertyImplDecl *PID = *i;
2708 
2709     // Dynamic is just for type-checking.
2710     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2711       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2712 
2713       // Determine which methods need to be implemented, some may have
2714       // been overridden. Note that ::isPropertyAccessor is not the method
2715       // we want, that just indicates if the decl came from a
2716       // property. What we want to know is if the method is defined in
2717       // this implementation.
2718       if (!D->getInstanceMethod(PD->getGetterName()))
2719         CodeGenFunction(*this).GenerateObjCGetter(
2720                                  const_cast<ObjCImplementationDecl *>(D), PID);
2721       if (!PD->isReadOnly() &&
2722           !D->getInstanceMethod(PD->getSetterName()))
2723         CodeGenFunction(*this).GenerateObjCSetter(
2724                                  const_cast<ObjCImplementationDecl *>(D), PID);
2725     }
2726   }
2727 }
2728 
2729 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2730   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2731   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2732        ivar; ivar = ivar->getNextIvar())
2733     if (ivar->getType().isDestructedType())
2734       return true;
2735 
2736   return false;
2737 }
2738 
2739 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2740 /// for an implementation.
2741 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2742   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2743   if (needsDestructMethod(D)) {
2744     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2745     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2746     ObjCMethodDecl *DTORMethod =
2747       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2748                              cxxSelector, getContext().VoidTy, 0, D,
2749                              /*isInstance=*/true, /*isVariadic=*/false,
2750                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2751                              /*isDefined=*/false, ObjCMethodDecl::Required);
2752     D->addInstanceMethod(DTORMethod);
2753     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2754     D->setHasDestructors(true);
2755   }
2756 
2757   // If the implementation doesn't have any ivar initializers, we don't need
2758   // a .cxx_construct.
2759   if (D->getNumIvarInitializers() == 0)
2760     return;
2761 
2762   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2763   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2764   // The constructor returns 'self'.
2765   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2766                                                 D->getLocation(),
2767                                                 D->getLocation(),
2768                                                 cxxSelector,
2769                                                 getContext().getObjCIdType(), 0,
2770                                                 D, /*isInstance=*/true,
2771                                                 /*isVariadic=*/false,
2772                                                 /*isPropertyAccessor=*/true,
2773                                                 /*isImplicitlyDeclared=*/true,
2774                                                 /*isDefined=*/false,
2775                                                 ObjCMethodDecl::Required);
2776   D->addInstanceMethod(CTORMethod);
2777   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2778   D->setHasNonZeroConstructors(true);
2779 }
2780 
2781 /// EmitNamespace - Emit all declarations in a namespace.
2782 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2783   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2784        I != E; ++I)
2785     EmitTopLevelDecl(*I);
2786 }
2787 
2788 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2789 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2790   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2791       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2792     ErrorUnsupported(LSD, "linkage spec");
2793     return;
2794   }
2795 
2796   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2797        I != E; ++I) {
2798     // Meta-data for ObjC class includes references to implemented methods.
2799     // Generate class's method definitions first.
2800     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2801       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2802            MEnd = OID->meth_end();
2803            M != MEnd; ++M)
2804         EmitTopLevelDecl(*M);
2805     }
2806     EmitTopLevelDecl(*I);
2807   }
2808 }
2809 
2810 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2811 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2812   // If an error has occurred, stop code generation, but continue
2813   // parsing and semantic analysis (to ensure all warnings and errors
2814   // are emitted).
2815   if (Diags.hasErrorOccurred())
2816     return;
2817 
2818   // Ignore dependent declarations.
2819   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2820     return;
2821 
2822   switch (D->getKind()) {
2823   case Decl::CXXConversion:
2824   case Decl::CXXMethod:
2825   case Decl::Function:
2826     // Skip function templates
2827     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2828         cast<FunctionDecl>(D)->isLateTemplateParsed())
2829       return;
2830 
2831     EmitGlobal(cast<FunctionDecl>(D));
2832     break;
2833 
2834   case Decl::Var:
2835     // Skip variable templates
2836     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2837       return;
2838   case Decl::VarTemplateSpecialization:
2839     EmitGlobal(cast<VarDecl>(D));
2840     break;
2841 
2842   // Indirect fields from global anonymous structs and unions can be
2843   // ignored; only the actual variable requires IR gen support.
2844   case Decl::IndirectField:
2845     break;
2846 
2847   // C++ Decls
2848   case Decl::Namespace:
2849     EmitNamespace(cast<NamespaceDecl>(D));
2850     break;
2851     // No code generation needed.
2852   case Decl::UsingShadow:
2853   case Decl::Using:
2854   case Decl::ClassTemplate:
2855   case Decl::VarTemplate:
2856   case Decl::VarTemplatePartialSpecialization:
2857   case Decl::FunctionTemplate:
2858   case Decl::TypeAliasTemplate:
2859   case Decl::Block:
2860   case Decl::Empty:
2861     break;
2862   case Decl::NamespaceAlias:
2863     if (CGDebugInfo *DI = getModuleDebugInfo())
2864         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2865     return;
2866   case Decl::UsingDirective: // using namespace X; [C++]
2867     if (CGDebugInfo *DI = getModuleDebugInfo())
2868       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2869     return;
2870   case Decl::CXXConstructor:
2871     // Skip function templates
2872     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2873         cast<FunctionDecl>(D)->isLateTemplateParsed())
2874       return;
2875 
2876     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2877     break;
2878   case Decl::CXXDestructor:
2879     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2880       return;
2881     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2882     break;
2883 
2884   case Decl::StaticAssert:
2885     // Nothing to do.
2886     break;
2887 
2888   // Objective-C Decls
2889 
2890   // Forward declarations, no (immediate) code generation.
2891   case Decl::ObjCInterface:
2892   case Decl::ObjCCategory:
2893     break;
2894 
2895   case Decl::ObjCProtocol: {
2896     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2897     if (Proto->isThisDeclarationADefinition())
2898       ObjCRuntime->GenerateProtocol(Proto);
2899     break;
2900   }
2901 
2902   case Decl::ObjCCategoryImpl:
2903     // Categories have properties but don't support synthesize so we
2904     // can ignore them here.
2905     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2906     break;
2907 
2908   case Decl::ObjCImplementation: {
2909     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2910     EmitObjCPropertyImplementations(OMD);
2911     EmitObjCIvarInitializations(OMD);
2912     ObjCRuntime->GenerateClass(OMD);
2913     // Emit global variable debug information.
2914     if (CGDebugInfo *DI = getModuleDebugInfo())
2915       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2916         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2917             OMD->getClassInterface()), OMD->getLocation());
2918     break;
2919   }
2920   case Decl::ObjCMethod: {
2921     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2922     // If this is not a prototype, emit the body.
2923     if (OMD->getBody())
2924       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2925     break;
2926   }
2927   case Decl::ObjCCompatibleAlias:
2928     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2929     break;
2930 
2931   case Decl::LinkageSpec:
2932     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2933     break;
2934 
2935   case Decl::FileScopeAsm: {
2936     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2937     StringRef AsmString = AD->getAsmString()->getString();
2938 
2939     const std::string &S = getModule().getModuleInlineAsm();
2940     if (S.empty())
2941       getModule().setModuleInlineAsm(AsmString);
2942     else if (S.end()[-1] == '\n')
2943       getModule().setModuleInlineAsm(S + AsmString.str());
2944     else
2945       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2946     break;
2947   }
2948 
2949   case Decl::Import: {
2950     ImportDecl *Import = cast<ImportDecl>(D);
2951 
2952     // Ignore import declarations that come from imported modules.
2953     if (clang::Module *Owner = Import->getOwningModule()) {
2954       if (getLangOpts().CurrentModule.empty() ||
2955           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2956         break;
2957     }
2958 
2959     ImportedModules.insert(Import->getImportedModule());
2960     break;
2961  }
2962 
2963   default:
2964     // Make sure we handled everything we should, every other kind is a
2965     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2966     // function. Need to recode Decl::Kind to do that easily.
2967     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2968   }
2969 }
2970 
2971 /// Turns the given pointer into a constant.
2972 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2973                                           const void *Ptr) {
2974   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2975   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2976   return llvm::ConstantInt::get(i64, PtrInt);
2977 }
2978 
2979 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2980                                    llvm::NamedMDNode *&GlobalMetadata,
2981                                    GlobalDecl D,
2982                                    llvm::GlobalValue *Addr) {
2983   if (!GlobalMetadata)
2984     GlobalMetadata =
2985       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2986 
2987   // TODO: should we report variant information for ctors/dtors?
2988   llvm::Value *Ops[] = {
2989     Addr,
2990     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2991   };
2992   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2993 }
2994 
2995 /// For each function which is declared within an extern "C" region and marked
2996 /// as 'used', but has internal linkage, create an alias from the unmangled
2997 /// name to the mangled name if possible. People expect to be able to refer
2998 /// to such functions with an unmangled name from inline assembly within the
2999 /// same translation unit.
3000 void CodeGenModule::EmitStaticExternCAliases() {
3001   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3002                                   E = StaticExternCValues.end();
3003        I != E; ++I) {
3004     IdentifierInfo *Name = I->first;
3005     llvm::GlobalValue *Val = I->second;
3006     if (Val && !getModule().getNamedValue(Name->getName()))
3007       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3008                                           Name->getName(), Val, &getModule()));
3009   }
3010 }
3011 
3012 /// Emits metadata nodes associating all the global values in the
3013 /// current module with the Decls they came from.  This is useful for
3014 /// projects using IR gen as a subroutine.
3015 ///
3016 /// Since there's currently no way to associate an MDNode directly
3017 /// with an llvm::GlobalValue, we create a global named metadata
3018 /// with the name 'clang.global.decl.ptrs'.
3019 void CodeGenModule::EmitDeclMetadata() {
3020   llvm::NamedMDNode *GlobalMetadata = 0;
3021 
3022   // StaticLocalDeclMap
3023   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3024          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3025        I != E; ++I) {
3026     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3027     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3028   }
3029 }
3030 
3031 /// Emits metadata nodes for all the local variables in the current
3032 /// function.
3033 void CodeGenFunction::EmitDeclMetadata() {
3034   if (LocalDeclMap.empty()) return;
3035 
3036   llvm::LLVMContext &Context = getLLVMContext();
3037 
3038   // Find the unique metadata ID for this name.
3039   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3040 
3041   llvm::NamedMDNode *GlobalMetadata = 0;
3042 
3043   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3044          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3045     const Decl *D = I->first;
3046     llvm::Value *Addr = I->second;
3047 
3048     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3049       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3050       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3051     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3052       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3053       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3054     }
3055   }
3056 }
3057 
3058 void CodeGenModule::EmitCoverageFile() {
3059   if (!getCodeGenOpts().CoverageFile.empty()) {
3060     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3061       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3062       llvm::LLVMContext &Ctx = TheModule.getContext();
3063       llvm::MDString *CoverageFile =
3064           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3065       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3066         llvm::MDNode *CU = CUNode->getOperand(i);
3067         llvm::Value *node[] = { CoverageFile, CU };
3068         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3069         GCov->addOperand(N);
3070       }
3071     }
3072   }
3073 }
3074 
3075 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3076                                                      QualType GuidType) {
3077   // Sema has checked that all uuid strings are of the form
3078   // "12345678-1234-1234-1234-1234567890ab".
3079   assert(Uuid.size() == 36);
3080   const char *Uuidstr = Uuid.data();
3081   for (int i = 0; i < 36; ++i) {
3082     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3083     else                                         assert(isHexDigit(Uuidstr[i]));
3084   }
3085 
3086   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3087   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3088   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3089   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3090 
3091   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3092   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3093   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3094   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3095   APValue& Arr = InitStruct.getStructField(3);
3096   Arr = APValue(APValue::UninitArray(), 8, 8);
3097   for (int t = 0; t < 8; ++t)
3098     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3099           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3100 
3101   return EmitConstantValue(InitStruct, GuidType);
3102 }
3103