1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CharInfo.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/Module.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Frontend/CodeGenOptions.h" 39 #include "llvm/ADT/APSInt.h" 40 #include "llvm/ADT/Triple.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ConvertUTF.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Target/Mangler.h" 50 51 using namespace clang; 52 using namespace CodeGen; 53 54 static const char AnnotationSection[] = "llvm.metadata"; 55 56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 57 switch (CGM.getTarget().getCXXABI().getKind()) { 58 case TargetCXXABI::GenericAArch64: 59 case TargetCXXABI::GenericARM: 60 case TargetCXXABI::iOS: 61 case TargetCXXABI::GenericItanium: 62 return *CreateItaniumCXXABI(CGM); 63 case TargetCXXABI::Microsoft: 64 return *CreateMicrosoftCXXABI(CGM); 65 } 66 67 llvm_unreachable("invalid C++ ABI kind"); 68 } 69 70 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 71 llvm::Module &M, const llvm::DataLayout &TD, 72 DiagnosticsEngine &diags) 73 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 74 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 75 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 76 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 77 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 78 NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0), 79 ConstantStringClassRef(0), NSConstantStringType(0), 80 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 81 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 82 LifetimeStartFn(0), LifetimeEndFn(0), 83 SanitizerBlacklist( 84 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 85 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 86 : LangOpts.Sanitize) { 87 88 // Initialize the type cache. 89 llvm::LLVMContext &LLVMContext = M.getContext(); 90 VoidTy = llvm::Type::getVoidTy(LLVMContext); 91 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 92 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 93 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 94 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 95 FloatTy = llvm::Type::getFloatTy(LLVMContext); 96 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 97 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 98 PointerAlignInBytes = 99 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 100 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 101 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 102 Int8PtrTy = Int8Ty->getPointerTo(0); 103 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 104 105 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 106 107 if (LangOpts.ObjC1) 108 createObjCRuntime(); 109 if (LangOpts.OpenCL) 110 createOpenCLRuntime(); 111 if (LangOpts.CUDA) 112 createCUDARuntime(); 113 114 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 115 if (SanOpts.Thread || 116 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 117 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 118 ABI.getMangleContext()); 119 120 // If debug info or coverage generation is enabled, create the CGDebugInfo 121 // object. 122 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 123 CodeGenOpts.EmitGcovArcs || 124 CodeGenOpts.EmitGcovNotes) 125 DebugInfo = new CGDebugInfo(*this); 126 127 Block.GlobalUniqueCount = 0; 128 129 if (C.getLangOpts().ObjCAutoRefCount) 130 ARCData = new ARCEntrypoints(); 131 RRData = new RREntrypoints(); 132 } 133 134 CodeGenModule::~CodeGenModule() { 135 delete ObjCRuntime; 136 delete OpenCLRuntime; 137 delete CUDARuntime; 138 delete TheTargetCodeGenInfo; 139 delete &ABI; 140 delete TBAA; 141 delete DebugInfo; 142 delete ARCData; 143 delete RRData; 144 } 145 146 void CodeGenModule::createObjCRuntime() { 147 // This is just isGNUFamily(), but we want to force implementors of 148 // new ABIs to decide how best to do this. 149 switch (LangOpts.ObjCRuntime.getKind()) { 150 case ObjCRuntime::GNUstep: 151 case ObjCRuntime::GCC: 152 case ObjCRuntime::ObjFW: 153 ObjCRuntime = CreateGNUObjCRuntime(*this); 154 return; 155 156 case ObjCRuntime::FragileMacOSX: 157 case ObjCRuntime::MacOSX: 158 case ObjCRuntime::iOS: 159 ObjCRuntime = CreateMacObjCRuntime(*this); 160 return; 161 } 162 llvm_unreachable("bad runtime kind"); 163 } 164 165 void CodeGenModule::createOpenCLRuntime() { 166 OpenCLRuntime = new CGOpenCLRuntime(*this); 167 } 168 169 void CodeGenModule::createCUDARuntime() { 170 CUDARuntime = CreateNVCUDARuntime(*this); 171 } 172 173 void CodeGenModule::Release() { 174 EmitDeferred(); 175 EmitCXXGlobalInitFunc(); 176 EmitCXXGlobalDtorFunc(); 177 EmitCXXThreadLocalInitFunc(); 178 if (ObjCRuntime) 179 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 180 AddGlobalCtor(ObjCInitFunction); 181 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 182 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 183 EmitGlobalAnnotations(); 184 EmitStaticExternCAliases(); 185 EmitLLVMUsed(); 186 187 if (CodeGenOpts.Autolink && 188 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 189 EmitModuleLinkOptions(); 190 } 191 if (CodeGenOpts.DwarfVersion) 192 // We actually want the latest version when there are conflicts. 193 // We can change from Warning to Latest if such mode is supported. 194 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 195 CodeGenOpts.DwarfVersion); 196 197 SimplifyPersonality(); 198 199 if (getCodeGenOpts().EmitDeclMetadata) 200 EmitDeclMetadata(); 201 202 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 203 EmitCoverageFile(); 204 205 if (DebugInfo) 206 DebugInfo->finalize(); 207 } 208 209 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 210 // Make sure that this type is translated. 211 Types.UpdateCompletedType(TD); 212 } 213 214 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 215 if (!TBAA) 216 return 0; 217 return TBAA->getTBAAInfo(QTy); 218 } 219 220 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 221 if (!TBAA) 222 return 0; 223 return TBAA->getTBAAInfoForVTablePtr(); 224 } 225 226 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 227 if (!TBAA) 228 return 0; 229 return TBAA->getTBAAStructInfo(QTy); 230 } 231 232 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 233 if (!TBAA) 234 return 0; 235 return TBAA->getTBAAStructTypeInfo(QTy); 236 } 237 238 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 239 llvm::MDNode *AccessN, 240 uint64_t O) { 241 if (!TBAA) 242 return 0; 243 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 244 } 245 246 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag 247 /// is the same as the type. For struct-path aware TBAA, the tag 248 /// is different from the type: base type, access type and offset. 249 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 250 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 251 llvm::MDNode *TBAAInfo, 252 bool ConvertTypeToTag) { 253 if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA) 254 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 255 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 256 else 257 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 258 } 259 260 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 261 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 262 getDiags().Report(Context.getFullLoc(loc), diagID); 263 } 264 265 /// ErrorUnsupported - Print out an error that codegen doesn't support the 266 /// specified stmt yet. 267 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 268 bool OmitOnError) { 269 if (OmitOnError && getDiags().hasErrorOccurred()) 270 return; 271 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 272 "cannot compile this %0 yet"); 273 std::string Msg = Type; 274 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 275 << Msg << S->getSourceRange(); 276 } 277 278 /// ErrorUnsupported - Print out an error that codegen doesn't support the 279 /// specified decl yet. 280 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 281 bool OmitOnError) { 282 if (OmitOnError && getDiags().hasErrorOccurred()) 283 return; 284 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 285 "cannot compile this %0 yet"); 286 std::string Msg = Type; 287 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 288 } 289 290 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 291 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 292 } 293 294 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 295 const NamedDecl *D) const { 296 // Internal definitions always have default visibility. 297 if (GV->hasLocalLinkage()) { 298 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 299 return; 300 } 301 302 // Set visibility for definitions. 303 LinkageInfo LV = D->getLinkageAndVisibility(); 304 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 305 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 306 } 307 308 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 309 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 310 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 311 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 312 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 313 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 314 } 315 316 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 317 CodeGenOptions::TLSModel M) { 318 switch (M) { 319 case CodeGenOptions::GeneralDynamicTLSModel: 320 return llvm::GlobalVariable::GeneralDynamicTLSModel; 321 case CodeGenOptions::LocalDynamicTLSModel: 322 return llvm::GlobalVariable::LocalDynamicTLSModel; 323 case CodeGenOptions::InitialExecTLSModel: 324 return llvm::GlobalVariable::InitialExecTLSModel; 325 case CodeGenOptions::LocalExecTLSModel: 326 return llvm::GlobalVariable::LocalExecTLSModel; 327 } 328 llvm_unreachable("Invalid TLS model!"); 329 } 330 331 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 332 const VarDecl &D) const { 333 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 334 335 llvm::GlobalVariable::ThreadLocalMode TLM; 336 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 337 338 // Override the TLS model if it is explicitly specified. 339 if (D.hasAttr<TLSModelAttr>()) { 340 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 341 TLM = GetLLVMTLSModel(Attr->getModel()); 342 } 343 344 GV->setThreadLocalMode(TLM); 345 } 346 347 /// Set the symbol visibility of type information (vtable and RTTI) 348 /// associated with the given type. 349 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 350 const CXXRecordDecl *RD, 351 TypeVisibilityKind TVK) const { 352 setGlobalVisibility(GV, RD); 353 354 if (!CodeGenOpts.HiddenWeakVTables) 355 return; 356 357 // We never want to drop the visibility for RTTI names. 358 if (TVK == TVK_ForRTTIName) 359 return; 360 361 // We want to drop the visibility to hidden for weak type symbols. 362 // This isn't possible if there might be unresolved references 363 // elsewhere that rely on this symbol being visible. 364 365 // This should be kept roughly in sync with setThunkVisibility 366 // in CGVTables.cpp. 367 368 // Preconditions. 369 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 370 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 371 return; 372 373 // Don't override an explicit visibility attribute. 374 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType)) 375 return; 376 377 switch (RD->getTemplateSpecializationKind()) { 378 // We have to disable the optimization if this is an EI definition 379 // because there might be EI declarations in other shared objects. 380 case TSK_ExplicitInstantiationDefinition: 381 case TSK_ExplicitInstantiationDeclaration: 382 return; 383 384 // Every use of a non-template class's type information has to emit it. 385 case TSK_Undeclared: 386 break; 387 388 // In theory, implicit instantiations can ignore the possibility of 389 // an explicit instantiation declaration because there necessarily 390 // must be an EI definition somewhere with default visibility. In 391 // practice, it's possible to have an explicit instantiation for 392 // an arbitrary template class, and linkers aren't necessarily able 393 // to deal with mixed-visibility symbols. 394 case TSK_ExplicitSpecialization: 395 case TSK_ImplicitInstantiation: 396 return; 397 } 398 399 // If there's a key function, there may be translation units 400 // that don't have the key function's definition. But ignore 401 // this if we're emitting RTTI under -fno-rtti. 402 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 403 // FIXME: what should we do if we "lose" the key function during 404 // the emission of the file? 405 if (Context.getCurrentKeyFunction(RD)) 406 return; 407 } 408 409 // Otherwise, drop the visibility to hidden. 410 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 411 GV->setUnnamedAddr(true); 412 } 413 414 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 415 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 416 417 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 418 if (!Str.empty()) 419 return Str; 420 421 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 422 IdentifierInfo *II = ND->getIdentifier(); 423 assert(II && "Attempt to mangle unnamed decl."); 424 425 Str = II->getName(); 426 return Str; 427 } 428 429 SmallString<256> Buffer; 430 llvm::raw_svector_ostream Out(Buffer); 431 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 432 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 433 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 434 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 435 else 436 getCXXABI().getMangleContext().mangleName(ND, Out); 437 438 // Allocate space for the mangled name. 439 Out.flush(); 440 size_t Length = Buffer.size(); 441 char *Name = MangledNamesAllocator.Allocate<char>(Length); 442 std::copy(Buffer.begin(), Buffer.end(), Name); 443 444 Str = StringRef(Name, Length); 445 446 return Str; 447 } 448 449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 450 const BlockDecl *BD) { 451 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 452 const Decl *D = GD.getDecl(); 453 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 454 if (D == 0) 455 MangleCtx.mangleGlobalBlock(BD, 456 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 457 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 458 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 459 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 460 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 461 else 462 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 463 } 464 465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 466 return getModule().getNamedValue(Name); 467 } 468 469 /// AddGlobalCtor - Add a function to the list that will be called before 470 /// main() runs. 471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 472 // FIXME: Type coercion of void()* types. 473 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 474 } 475 476 /// AddGlobalDtor - Add a function to the list that will be called 477 /// when the module is unloaded. 478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 479 // FIXME: Type coercion of void()* types. 480 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 481 } 482 483 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 484 // Ctor function type is void()*. 485 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 486 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 487 488 // Get the type of a ctor entry, { i32, void ()* }. 489 llvm::StructType *CtorStructTy = 490 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 491 492 // Construct the constructor and destructor arrays. 493 SmallVector<llvm::Constant*, 8> Ctors; 494 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 495 llvm::Constant *S[] = { 496 llvm::ConstantInt::get(Int32Ty, I->second, false), 497 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 498 }; 499 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 500 } 501 502 if (!Ctors.empty()) { 503 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 504 new llvm::GlobalVariable(TheModule, AT, false, 505 llvm::GlobalValue::AppendingLinkage, 506 llvm::ConstantArray::get(AT, Ctors), 507 GlobalName); 508 } 509 } 510 511 llvm::GlobalValue::LinkageTypes 512 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 513 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 514 515 if (isa<CXXDestructorDecl>(D) && 516 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 517 GD.getDtorType())) 518 return llvm::Function::LinkOnceODRLinkage; 519 520 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 521 522 if (Linkage == GVA_Internal) 523 return llvm::Function::InternalLinkage; 524 525 if (D->hasAttr<DLLExportAttr>()) 526 return llvm::Function::DLLExportLinkage; 527 528 if (D->hasAttr<WeakAttr>()) 529 return llvm::Function::WeakAnyLinkage; 530 531 // In C99 mode, 'inline' functions are guaranteed to have a strong 532 // definition somewhere else, so we can use available_externally linkage. 533 if (Linkage == GVA_C99Inline) 534 return llvm::Function::AvailableExternallyLinkage; 535 536 // Note that Apple's kernel linker doesn't support symbol 537 // coalescing, so we need to avoid linkonce and weak linkages there. 538 // Normally, this means we just map to internal, but for explicit 539 // instantiations we'll map to external. 540 541 // In C++, the compiler has to emit a definition in every translation unit 542 // that references the function. We should use linkonce_odr because 543 // a) if all references in this translation unit are optimized away, we 544 // don't need to codegen it. b) if the function persists, it needs to be 545 // merged with other definitions. c) C++ has the ODR, so we know the 546 // definition is dependable. 547 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 548 return !Context.getLangOpts().AppleKext 549 ? llvm::Function::LinkOnceODRLinkage 550 : llvm::Function::InternalLinkage; 551 552 // An explicit instantiation of a template has weak linkage, since 553 // explicit instantiations can occur in multiple translation units 554 // and must all be equivalent. However, we are not allowed to 555 // throw away these explicit instantiations. 556 if (Linkage == GVA_ExplicitTemplateInstantiation) 557 return !Context.getLangOpts().AppleKext 558 ? llvm::Function::WeakODRLinkage 559 : llvm::Function::ExternalLinkage; 560 561 // Otherwise, we have strong external linkage. 562 assert(Linkage == GVA_StrongExternal); 563 return llvm::Function::ExternalLinkage; 564 } 565 566 567 /// SetFunctionDefinitionAttributes - Set attributes for a global. 568 /// 569 /// FIXME: This is currently only done for aliases and functions, but not for 570 /// variables (these details are set in EmitGlobalVarDefinition for variables). 571 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 572 llvm::GlobalValue *GV) { 573 SetCommonAttributes(D, GV); 574 } 575 576 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 577 const CGFunctionInfo &Info, 578 llvm::Function *F) { 579 unsigned CallingConv; 580 AttributeListType AttributeList; 581 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 582 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 583 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 584 } 585 586 /// Determines whether the language options require us to model 587 /// unwind exceptions. We treat -fexceptions as mandating this 588 /// except under the fragile ObjC ABI with only ObjC exceptions 589 /// enabled. This means, for example, that C with -fexceptions 590 /// enables this. 591 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 592 // If exceptions are completely disabled, obviously this is false. 593 if (!LangOpts.Exceptions) return false; 594 595 // If C++ exceptions are enabled, this is true. 596 if (LangOpts.CXXExceptions) return true; 597 598 // If ObjC exceptions are enabled, this depends on the ABI. 599 if (LangOpts.ObjCExceptions) { 600 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 601 } 602 603 return true; 604 } 605 606 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 607 llvm::Function *F) { 608 llvm::AttrBuilder B; 609 610 if (CodeGenOpts.UnwindTables) 611 B.addAttribute(llvm::Attribute::UWTable); 612 613 if (!hasUnwindExceptions(LangOpts)) 614 B.addAttribute(llvm::Attribute::NoUnwind); 615 616 if (D->hasAttr<NakedAttr>()) { 617 // Naked implies noinline: we should not be inlining such functions. 618 B.addAttribute(llvm::Attribute::Naked); 619 B.addAttribute(llvm::Attribute::NoInline); 620 } else if (D->hasAttr<NoInlineAttr>()) { 621 B.addAttribute(llvm::Attribute::NoInline); 622 } else if ((D->hasAttr<AlwaysInlineAttr>() || 623 D->hasAttr<ForceInlineAttr>()) && 624 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 625 llvm::Attribute::NoInline)) { 626 // (noinline wins over always_inline, and we can't specify both in IR) 627 B.addAttribute(llvm::Attribute::AlwaysInline); 628 } 629 630 if (D->hasAttr<ColdAttr>()) { 631 B.addAttribute(llvm::Attribute::OptimizeForSize); 632 B.addAttribute(llvm::Attribute::Cold); 633 } 634 635 if (D->hasAttr<MinSizeAttr>()) 636 B.addAttribute(llvm::Attribute::MinSize); 637 638 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 639 B.addAttribute(llvm::Attribute::StackProtect); 640 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 641 B.addAttribute(llvm::Attribute::StackProtectReq); 642 643 // Add sanitizer attributes if function is not blacklisted. 644 if (!SanitizerBlacklist->isIn(*F)) { 645 // When AddressSanitizer is enabled, set SanitizeAddress attribute 646 // unless __attribute__((no_sanitize_address)) is used. 647 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 648 B.addAttribute(llvm::Attribute::SanitizeAddress); 649 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 650 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 651 B.addAttribute(llvm::Attribute::SanitizeThread); 652 } 653 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 654 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 655 B.addAttribute(llvm::Attribute::SanitizeMemory); 656 } 657 658 F->addAttributes(llvm::AttributeSet::FunctionIndex, 659 llvm::AttributeSet::get( 660 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 661 662 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 663 F->setUnnamedAddr(true); 664 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 665 if (MD->isVirtual()) 666 F->setUnnamedAddr(true); 667 668 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 669 if (alignment) 670 F->setAlignment(alignment); 671 672 // C++ ABI requires 2-byte alignment for member functions. 673 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 674 F->setAlignment(2); 675 } 676 677 void CodeGenModule::SetCommonAttributes(const Decl *D, 678 llvm::GlobalValue *GV) { 679 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 680 setGlobalVisibility(GV, ND); 681 else 682 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 683 684 if (D->hasAttr<UsedAttr>()) 685 AddUsedGlobal(GV); 686 687 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 688 GV->setSection(SA->getName()); 689 690 // Alias cannot have attributes. Filter them here. 691 if (!isa<llvm::GlobalAlias>(GV)) 692 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 693 } 694 695 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 696 llvm::Function *F, 697 const CGFunctionInfo &FI) { 698 SetLLVMFunctionAttributes(D, FI, F); 699 SetLLVMFunctionAttributesForDefinition(D, F); 700 701 F->setLinkage(llvm::Function::InternalLinkage); 702 703 SetCommonAttributes(D, F); 704 } 705 706 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 707 llvm::Function *F, 708 bool IsIncompleteFunction) { 709 if (unsigned IID = F->getIntrinsicID()) { 710 // If this is an intrinsic function, set the function's attributes 711 // to the intrinsic's attributes. 712 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 713 (llvm::Intrinsic::ID)IID)); 714 return; 715 } 716 717 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 718 719 if (!IsIncompleteFunction) 720 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 721 722 if (getCXXABI().HasThisReturn(GD)) { 723 assert(!F->arg_empty() && 724 F->arg_begin()->getType() 725 ->canLosslesslyBitCastTo(F->getReturnType()) && 726 "unexpected this return"); 727 F->addAttribute(1, llvm::Attribute::Returned); 728 } 729 730 // Only a few attributes are set on declarations; these may later be 731 // overridden by a definition. 732 733 if (FD->hasAttr<DLLImportAttr>()) { 734 F->setLinkage(llvm::Function::DLLImportLinkage); 735 } else if (FD->hasAttr<WeakAttr>() || 736 FD->isWeakImported()) { 737 // "extern_weak" is overloaded in LLVM; we probably should have 738 // separate linkage types for this. 739 F->setLinkage(llvm::Function::ExternalWeakLinkage); 740 } else { 741 F->setLinkage(llvm::Function::ExternalLinkage); 742 743 LinkageInfo LV = FD->getLinkageAndVisibility(); 744 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 745 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 746 } 747 } 748 749 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 750 F->setSection(SA->getName()); 751 752 // A replaceable global allocation function does not act like a builtin by 753 // default, only if it is invoked by a new-expression or delete-expression. 754 if (FD->isReplaceableGlobalAllocationFunction()) 755 F->addAttribute(llvm::AttributeSet::FunctionIndex, 756 llvm::Attribute::NoBuiltin); 757 } 758 759 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 760 assert(!GV->isDeclaration() && 761 "Only globals with definition can force usage."); 762 LLVMUsed.push_back(GV); 763 } 764 765 void CodeGenModule::EmitLLVMUsed() { 766 // Don't create llvm.used if there is no need. 767 if (LLVMUsed.empty()) 768 return; 769 770 // Convert LLVMUsed to what ConstantArray needs. 771 SmallVector<llvm::Constant*, 8> UsedArray; 772 UsedArray.resize(LLVMUsed.size()); 773 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 774 UsedArray[i] = 775 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 776 Int8PtrTy); 777 } 778 779 if (UsedArray.empty()) 780 return; 781 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 782 783 llvm::GlobalVariable *GV = 784 new llvm::GlobalVariable(getModule(), ATy, false, 785 llvm::GlobalValue::AppendingLinkage, 786 llvm::ConstantArray::get(ATy, UsedArray), 787 "llvm.used"); 788 789 GV->setSection("llvm.metadata"); 790 } 791 792 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 793 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 794 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 795 } 796 797 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 798 llvm::SmallString<32> Opt; 799 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 800 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 801 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 802 } 803 804 void CodeGenModule::AddDependentLib(StringRef Lib) { 805 llvm::SmallString<24> Opt; 806 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 807 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 808 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 809 } 810 811 /// \brief Add link options implied by the given module, including modules 812 /// it depends on, using a postorder walk. 813 static void addLinkOptionsPostorder(CodeGenModule &CGM, 814 Module *Mod, 815 SmallVectorImpl<llvm::Value *> &Metadata, 816 llvm::SmallPtrSet<Module *, 16> &Visited) { 817 // Import this module's parent. 818 if (Mod->Parent && Visited.insert(Mod->Parent)) { 819 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 820 } 821 822 // Import this module's dependencies. 823 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 824 if (Visited.insert(Mod->Imports[I-1])) 825 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 826 } 827 828 // Add linker options to link against the libraries/frameworks 829 // described by this module. 830 llvm::LLVMContext &Context = CGM.getLLVMContext(); 831 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 832 // Link against a framework. Frameworks are currently Darwin only, so we 833 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 834 if (Mod->LinkLibraries[I-1].IsFramework) { 835 llvm::Value *Args[2] = { 836 llvm::MDString::get(Context, "-framework"), 837 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 838 }; 839 840 Metadata.push_back(llvm::MDNode::get(Context, Args)); 841 continue; 842 } 843 844 // Link against a library. 845 llvm::SmallString<24> Opt; 846 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 847 Mod->LinkLibraries[I-1].Library, Opt); 848 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 849 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 850 } 851 } 852 853 void CodeGenModule::EmitModuleLinkOptions() { 854 // Collect the set of all of the modules we want to visit to emit link 855 // options, which is essentially the imported modules and all of their 856 // non-explicit child modules. 857 llvm::SetVector<clang::Module *> LinkModules; 858 llvm::SmallPtrSet<clang::Module *, 16> Visited; 859 SmallVector<clang::Module *, 16> Stack; 860 861 // Seed the stack with imported modules. 862 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 863 MEnd = ImportedModules.end(); 864 M != MEnd; ++M) { 865 if (Visited.insert(*M)) 866 Stack.push_back(*M); 867 } 868 869 // Find all of the modules to import, making a little effort to prune 870 // non-leaf modules. 871 while (!Stack.empty()) { 872 clang::Module *Mod = Stack.back(); 873 Stack.pop_back(); 874 875 bool AnyChildren = false; 876 877 // Visit the submodules of this module. 878 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 879 SubEnd = Mod->submodule_end(); 880 Sub != SubEnd; ++Sub) { 881 // Skip explicit children; they need to be explicitly imported to be 882 // linked against. 883 if ((*Sub)->IsExplicit) 884 continue; 885 886 if (Visited.insert(*Sub)) { 887 Stack.push_back(*Sub); 888 AnyChildren = true; 889 } 890 } 891 892 // We didn't find any children, so add this module to the list of 893 // modules to link against. 894 if (!AnyChildren) { 895 LinkModules.insert(Mod); 896 } 897 } 898 899 // Add link options for all of the imported modules in reverse topological 900 // order. We don't do anything to try to order import link flags with respect 901 // to linker options inserted by things like #pragma comment(). 902 SmallVector<llvm::Value *, 16> MetadataArgs; 903 Visited.clear(); 904 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 905 MEnd = LinkModules.end(); 906 M != MEnd; ++M) { 907 if (Visited.insert(*M)) 908 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 909 } 910 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 911 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 912 913 // Add the linker options metadata flag. 914 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 915 llvm::MDNode::get(getLLVMContext(), 916 LinkerOptionsMetadata)); 917 } 918 919 void CodeGenModule::EmitDeferred() { 920 // Emit code for any potentially referenced deferred decls. Since a 921 // previously unused static decl may become used during the generation of code 922 // for a static function, iterate until no changes are made. 923 924 while (true) { 925 if (!DeferredVTables.empty()) { 926 EmitDeferredVTables(); 927 928 // Emitting a v-table doesn't directly cause more v-tables to 929 // become deferred, although it can cause functions to be 930 // emitted that then need those v-tables. 931 assert(DeferredVTables.empty()); 932 } 933 934 // Stop if we're out of both deferred v-tables and deferred declarations. 935 if (DeferredDeclsToEmit.empty()) break; 936 937 GlobalDecl D = DeferredDeclsToEmit.back(); 938 DeferredDeclsToEmit.pop_back(); 939 940 // Check to see if we've already emitted this. This is necessary 941 // for a couple of reasons: first, decls can end up in the 942 // deferred-decls queue multiple times, and second, decls can end 943 // up with definitions in unusual ways (e.g. by an extern inline 944 // function acquiring a strong function redefinition). Just 945 // ignore these cases. 946 // 947 // TODO: That said, looking this up multiple times is very wasteful. 948 StringRef Name = getMangledName(D); 949 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 950 assert(CGRef && "Deferred decl wasn't referenced?"); 951 952 if (!CGRef->isDeclaration()) 953 continue; 954 955 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 956 // purposes an alias counts as a definition. 957 if (isa<llvm::GlobalAlias>(CGRef)) 958 continue; 959 960 // Otherwise, emit the definition and move on to the next one. 961 EmitGlobalDefinition(D); 962 } 963 } 964 965 void CodeGenModule::EmitGlobalAnnotations() { 966 if (Annotations.empty()) 967 return; 968 969 // Create a new global variable for the ConstantStruct in the Module. 970 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 971 Annotations[0]->getType(), Annotations.size()), Annotations); 972 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 973 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 974 "llvm.global.annotations"); 975 gv->setSection(AnnotationSection); 976 } 977 978 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 979 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 980 if (i != AnnotationStrings.end()) 981 return i->second; 982 983 // Not found yet, create a new global. 984 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 985 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 986 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 987 gv->setSection(AnnotationSection); 988 gv->setUnnamedAddr(true); 989 AnnotationStrings[Str] = gv; 990 return gv; 991 } 992 993 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 994 SourceManager &SM = getContext().getSourceManager(); 995 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 996 if (PLoc.isValid()) 997 return EmitAnnotationString(PLoc.getFilename()); 998 return EmitAnnotationString(SM.getBufferName(Loc)); 999 } 1000 1001 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1002 SourceManager &SM = getContext().getSourceManager(); 1003 PresumedLoc PLoc = SM.getPresumedLoc(L); 1004 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1005 SM.getExpansionLineNumber(L); 1006 return llvm::ConstantInt::get(Int32Ty, LineNo); 1007 } 1008 1009 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1010 const AnnotateAttr *AA, 1011 SourceLocation L) { 1012 // Get the globals for file name, annotation, and the line number. 1013 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1014 *UnitGV = EmitAnnotationUnit(L), 1015 *LineNoCst = EmitAnnotationLineNo(L); 1016 1017 // Create the ConstantStruct for the global annotation. 1018 llvm::Constant *Fields[4] = { 1019 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1020 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1021 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1022 LineNoCst 1023 }; 1024 return llvm::ConstantStruct::getAnon(Fields); 1025 } 1026 1027 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1028 llvm::GlobalValue *GV) { 1029 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1030 // Get the struct elements for these annotations. 1031 for (specific_attr_iterator<AnnotateAttr> 1032 ai = D->specific_attr_begin<AnnotateAttr>(), 1033 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1034 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1035 } 1036 1037 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1038 // Never defer when EmitAllDecls is specified. 1039 if (LangOpts.EmitAllDecls) 1040 return false; 1041 1042 return !getContext().DeclMustBeEmitted(Global); 1043 } 1044 1045 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1046 const CXXUuidofExpr* E) { 1047 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1048 // well-formed. 1049 StringRef Uuid = E->getUuidAsStringRef(Context); 1050 std::string Name = "_GUID_" + Uuid.lower(); 1051 std::replace(Name.begin(), Name.end(), '-', '_'); 1052 1053 // Look for an existing global. 1054 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1055 return GV; 1056 1057 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1058 assert(Init && "failed to initialize as constant"); 1059 1060 // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the 1061 // first field is declared as "long", which for many targets is 8 bytes. 1062 // Those architectures are not supported. (With the MS abi, long is always 4 1063 // bytes.) 1064 llvm::Type *GuidType = getTypes().ConvertType(E->getType()); 1065 if (Init->getType() != GuidType) { 1066 DiagnosticsEngine &Diags = getDiags(); 1067 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1068 "__uuidof codegen is not supported on this architecture"); 1069 Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange(); 1070 Init = llvm::UndefValue::get(GuidType); 1071 } 1072 1073 llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType, 1074 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, Init, Name); 1075 GV->setUnnamedAddr(true); 1076 return GV; 1077 } 1078 1079 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1080 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1081 assert(AA && "No alias?"); 1082 1083 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1084 1085 // See if there is already something with the target's name in the module. 1086 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1087 if (Entry) { 1088 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1089 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1090 } 1091 1092 llvm::Constant *Aliasee; 1093 if (isa<llvm::FunctionType>(DeclTy)) 1094 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1095 GlobalDecl(cast<FunctionDecl>(VD)), 1096 /*ForVTable=*/false); 1097 else 1098 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1099 llvm::PointerType::getUnqual(DeclTy), 0); 1100 1101 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1102 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1103 WeakRefReferences.insert(F); 1104 1105 return Aliasee; 1106 } 1107 1108 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1109 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1110 1111 // Weak references don't produce any output by themselves. 1112 if (Global->hasAttr<WeakRefAttr>()) 1113 return; 1114 1115 // If this is an alias definition (which otherwise looks like a declaration) 1116 // emit it now. 1117 if (Global->hasAttr<AliasAttr>()) 1118 return EmitAliasDefinition(GD); 1119 1120 // If this is CUDA, be selective about which declarations we emit. 1121 if (LangOpts.CUDA) { 1122 if (CodeGenOpts.CUDAIsDevice) { 1123 if (!Global->hasAttr<CUDADeviceAttr>() && 1124 !Global->hasAttr<CUDAGlobalAttr>() && 1125 !Global->hasAttr<CUDAConstantAttr>() && 1126 !Global->hasAttr<CUDASharedAttr>()) 1127 return; 1128 } else { 1129 if (!Global->hasAttr<CUDAHostAttr>() && ( 1130 Global->hasAttr<CUDADeviceAttr>() || 1131 Global->hasAttr<CUDAConstantAttr>() || 1132 Global->hasAttr<CUDASharedAttr>())) 1133 return; 1134 } 1135 } 1136 1137 // Ignore declarations, they will be emitted on their first use. 1138 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1139 // Forward declarations are emitted lazily on first use. 1140 if (!FD->doesThisDeclarationHaveABody()) { 1141 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1142 return; 1143 1144 const FunctionDecl *InlineDefinition = 0; 1145 FD->getBody(InlineDefinition); 1146 1147 StringRef MangledName = getMangledName(GD); 1148 DeferredDecls.erase(MangledName); 1149 EmitGlobalDefinition(InlineDefinition); 1150 return; 1151 } 1152 } else { 1153 const VarDecl *VD = cast<VarDecl>(Global); 1154 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1155 1156 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1157 return; 1158 } 1159 1160 // Defer code generation when possible if this is a static definition, inline 1161 // function etc. These we only want to emit if they are used. 1162 if (!MayDeferGeneration(Global)) { 1163 // Emit the definition if it can't be deferred. 1164 EmitGlobalDefinition(GD); 1165 return; 1166 } 1167 1168 // If we're deferring emission of a C++ variable with an 1169 // initializer, remember the order in which it appeared in the file. 1170 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1171 cast<VarDecl>(Global)->hasInit()) { 1172 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1173 CXXGlobalInits.push_back(0); 1174 } 1175 1176 // If the value has already been used, add it directly to the 1177 // DeferredDeclsToEmit list. 1178 StringRef MangledName = getMangledName(GD); 1179 if (GetGlobalValue(MangledName)) 1180 DeferredDeclsToEmit.push_back(GD); 1181 else { 1182 // Otherwise, remember that we saw a deferred decl with this name. The 1183 // first use of the mangled name will cause it to move into 1184 // DeferredDeclsToEmit. 1185 DeferredDecls[MangledName] = GD; 1186 } 1187 } 1188 1189 namespace { 1190 struct FunctionIsDirectlyRecursive : 1191 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1192 const StringRef Name; 1193 const Builtin::Context &BI; 1194 bool Result; 1195 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1196 Name(N), BI(C), Result(false) { 1197 } 1198 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1199 1200 bool TraverseCallExpr(CallExpr *E) { 1201 const FunctionDecl *FD = E->getDirectCallee(); 1202 if (!FD) 1203 return true; 1204 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1205 if (Attr && Name == Attr->getLabel()) { 1206 Result = true; 1207 return false; 1208 } 1209 unsigned BuiltinID = FD->getBuiltinID(); 1210 if (!BuiltinID) 1211 return true; 1212 StringRef BuiltinName = BI.GetName(BuiltinID); 1213 if (BuiltinName.startswith("__builtin_") && 1214 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1215 Result = true; 1216 return false; 1217 } 1218 return true; 1219 } 1220 }; 1221 } 1222 1223 // isTriviallyRecursive - Check if this function calls another 1224 // decl that, because of the asm attribute or the other decl being a builtin, 1225 // ends up pointing to itself. 1226 bool 1227 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1228 StringRef Name; 1229 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1230 // asm labels are a special kind of mangling we have to support. 1231 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1232 if (!Attr) 1233 return false; 1234 Name = Attr->getLabel(); 1235 } else { 1236 Name = FD->getName(); 1237 } 1238 1239 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1240 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1241 return Walker.Result; 1242 } 1243 1244 bool 1245 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1246 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1247 return true; 1248 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1249 if (CodeGenOpts.OptimizationLevel == 0 && 1250 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1251 return false; 1252 // PR9614. Avoid cases where the source code is lying to us. An available 1253 // externally function should have an equivalent function somewhere else, 1254 // but a function that calls itself is clearly not equivalent to the real 1255 // implementation. 1256 // This happens in glibc's btowc and in some configure checks. 1257 return !isTriviallyRecursive(F); 1258 } 1259 1260 /// If the type for the method's class was generated by 1261 /// CGDebugInfo::createContextChain(), the cache contains only a 1262 /// limited DIType without any declarations. Since EmitFunctionStart() 1263 /// needs to find the canonical declaration for each method, we need 1264 /// to construct the complete type prior to emitting the method. 1265 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1266 if (!D->isInstance()) 1267 return; 1268 1269 if (CGDebugInfo *DI = getModuleDebugInfo()) 1270 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1271 const PointerType *ThisPtr = 1272 cast<PointerType>(D->getThisType(getContext())); 1273 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1274 } 1275 } 1276 1277 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1278 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1279 1280 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1281 Context.getSourceManager(), 1282 "Generating code for declaration"); 1283 1284 if (isa<FunctionDecl>(D)) { 1285 // At -O0, don't generate IR for functions with available_externally 1286 // linkage. 1287 if (!shouldEmitFunction(GD)) 1288 return; 1289 1290 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1291 CompleteDIClassType(Method); 1292 // Make sure to emit the definition(s) before we emit the thunks. 1293 // This is necessary for the generation of certain thunks. 1294 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1295 EmitCXXConstructor(CD, GD.getCtorType()); 1296 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1297 EmitCXXDestructor(DD, GD.getDtorType()); 1298 else 1299 EmitGlobalFunctionDefinition(GD); 1300 1301 if (Method->isVirtual()) 1302 getVTables().EmitThunks(GD); 1303 1304 return; 1305 } 1306 1307 return EmitGlobalFunctionDefinition(GD); 1308 } 1309 1310 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1311 return EmitGlobalVarDefinition(VD); 1312 1313 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1314 } 1315 1316 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1317 /// module, create and return an llvm Function with the specified type. If there 1318 /// is something in the module with the specified name, return it potentially 1319 /// bitcasted to the right type. 1320 /// 1321 /// If D is non-null, it specifies a decl that correspond to this. This is used 1322 /// to set the attributes on the function when it is first created. 1323 llvm::Constant * 1324 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1325 llvm::Type *Ty, 1326 GlobalDecl GD, bool ForVTable, 1327 llvm::AttributeSet ExtraAttrs) { 1328 const Decl *D = GD.getDecl(); 1329 1330 // Lookup the entry, lazily creating it if necessary. 1331 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1332 if (Entry) { 1333 if (WeakRefReferences.erase(Entry)) { 1334 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1335 if (FD && !FD->hasAttr<WeakAttr>()) 1336 Entry->setLinkage(llvm::Function::ExternalLinkage); 1337 } 1338 1339 if (Entry->getType()->getElementType() == Ty) 1340 return Entry; 1341 1342 // Make sure the result is of the correct type. 1343 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1344 } 1345 1346 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1347 // each other bottoming out with the base dtor. Therefore we emit non-base 1348 // dtors on usage, even if there is no dtor definition in the TU. 1349 if (D && isa<CXXDestructorDecl>(D) && 1350 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1351 GD.getDtorType())) 1352 DeferredDeclsToEmit.push_back(GD); 1353 1354 // This function doesn't have a complete type (for example, the return 1355 // type is an incomplete struct). Use a fake type instead, and make 1356 // sure not to try to set attributes. 1357 bool IsIncompleteFunction = false; 1358 1359 llvm::FunctionType *FTy; 1360 if (isa<llvm::FunctionType>(Ty)) { 1361 FTy = cast<llvm::FunctionType>(Ty); 1362 } else { 1363 FTy = llvm::FunctionType::get(VoidTy, false); 1364 IsIncompleteFunction = true; 1365 } 1366 1367 llvm::Function *F = llvm::Function::Create(FTy, 1368 llvm::Function::ExternalLinkage, 1369 MangledName, &getModule()); 1370 assert(F->getName() == MangledName && "name was uniqued!"); 1371 if (D) 1372 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1373 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1374 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1375 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1376 llvm::AttributeSet::get(VMContext, 1377 llvm::AttributeSet::FunctionIndex, 1378 B)); 1379 } 1380 1381 // This is the first use or definition of a mangled name. If there is a 1382 // deferred decl with this name, remember that we need to emit it at the end 1383 // of the file. 1384 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1385 if (DDI != DeferredDecls.end()) { 1386 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1387 // list, and remove it from DeferredDecls (since we don't need it anymore). 1388 DeferredDeclsToEmit.push_back(DDI->second); 1389 DeferredDecls.erase(DDI); 1390 1391 // Otherwise, there are cases we have to worry about where we're 1392 // using a declaration for which we must emit a definition but where 1393 // we might not find a top-level definition: 1394 // - member functions defined inline in their classes 1395 // - friend functions defined inline in some class 1396 // - special member functions with implicit definitions 1397 // If we ever change our AST traversal to walk into class methods, 1398 // this will be unnecessary. 1399 // 1400 // We also don't emit a definition for a function if it's going to be an entry 1401 // in a vtable, unless it's already marked as used. 1402 } else if (getLangOpts().CPlusPlus && D) { 1403 // Look for a declaration that's lexically in a record. 1404 const FunctionDecl *FD = cast<FunctionDecl>(D); 1405 FD = FD->getMostRecentDecl(); 1406 do { 1407 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1408 if (FD->isImplicit() && !ForVTable) { 1409 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1410 DeferredDeclsToEmit.push_back(GD.getWithDecl(FD)); 1411 break; 1412 } else if (FD->doesThisDeclarationHaveABody()) { 1413 DeferredDeclsToEmit.push_back(GD.getWithDecl(FD)); 1414 break; 1415 } 1416 } 1417 FD = FD->getPreviousDecl(); 1418 } while (FD); 1419 } 1420 1421 // Make sure the result is of the requested type. 1422 if (!IsIncompleteFunction) { 1423 assert(F->getType()->getElementType() == Ty); 1424 return F; 1425 } 1426 1427 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1428 return llvm::ConstantExpr::getBitCast(F, PTy); 1429 } 1430 1431 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1432 /// non-null, then this function will use the specified type if it has to 1433 /// create it (this occurs when we see a definition of the function). 1434 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1435 llvm::Type *Ty, 1436 bool ForVTable) { 1437 // If there was no specific requested type, just convert it now. 1438 if (!Ty) 1439 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1440 1441 StringRef MangledName = getMangledName(GD); 1442 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1443 } 1444 1445 /// CreateRuntimeFunction - Create a new runtime function with the specified 1446 /// type and name. 1447 llvm::Constant * 1448 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1449 StringRef Name, 1450 llvm::AttributeSet ExtraAttrs) { 1451 llvm::Constant *C 1452 = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1453 ExtraAttrs); 1454 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1455 if (F->empty()) 1456 F->setCallingConv(getRuntimeCC()); 1457 return C; 1458 } 1459 1460 /// isTypeConstant - Determine whether an object of this type can be emitted 1461 /// as a constant. 1462 /// 1463 /// If ExcludeCtor is true, the duration when the object's constructor runs 1464 /// will not be considered. The caller will need to verify that the object is 1465 /// not written to during its construction. 1466 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1467 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1468 return false; 1469 1470 if (Context.getLangOpts().CPlusPlus) { 1471 if (const CXXRecordDecl *Record 1472 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1473 return ExcludeCtor && !Record->hasMutableFields() && 1474 Record->hasTrivialDestructor(); 1475 } 1476 1477 return true; 1478 } 1479 1480 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1481 /// create and return an llvm GlobalVariable with the specified type. If there 1482 /// is something in the module with the specified name, return it potentially 1483 /// bitcasted to the right type. 1484 /// 1485 /// If D is non-null, it specifies a decl that correspond to this. This is used 1486 /// to set the attributes on the global when it is first created. 1487 llvm::Constant * 1488 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1489 llvm::PointerType *Ty, 1490 const VarDecl *D, 1491 bool UnnamedAddr) { 1492 // Lookup the entry, lazily creating it if necessary. 1493 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1494 if (Entry) { 1495 if (WeakRefReferences.erase(Entry)) { 1496 if (D && !D->hasAttr<WeakAttr>()) 1497 Entry->setLinkage(llvm::Function::ExternalLinkage); 1498 } 1499 1500 if (UnnamedAddr) 1501 Entry->setUnnamedAddr(true); 1502 1503 if (Entry->getType() == Ty) 1504 return Entry; 1505 1506 // Make sure the result is of the correct type. 1507 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1508 } 1509 1510 // This is the first use or definition of a mangled name. If there is a 1511 // deferred decl with this name, remember that we need to emit it at the end 1512 // of the file. 1513 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1514 if (DDI != DeferredDecls.end()) { 1515 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1516 // list, and remove it from DeferredDecls (since we don't need it anymore). 1517 DeferredDeclsToEmit.push_back(DDI->second); 1518 DeferredDecls.erase(DDI); 1519 } 1520 1521 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1522 llvm::GlobalVariable *GV = 1523 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1524 llvm::GlobalValue::ExternalLinkage, 1525 0, MangledName, 0, 1526 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1527 1528 // Handle things which are present even on external declarations. 1529 if (D) { 1530 // FIXME: This code is overly simple and should be merged with other global 1531 // handling. 1532 GV->setConstant(isTypeConstant(D->getType(), false)); 1533 1534 // Set linkage and visibility in case we never see a definition. 1535 LinkageInfo LV = D->getLinkageAndVisibility(); 1536 if (LV.getLinkage() != ExternalLinkage) { 1537 // Don't set internal linkage on declarations. 1538 } else { 1539 if (D->hasAttr<DLLImportAttr>()) 1540 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1541 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1542 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1543 1544 // Set visibility on a declaration only if it's explicit. 1545 if (LV.isVisibilityExplicit()) 1546 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1547 } 1548 1549 if (D->getTLSKind()) { 1550 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1551 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1552 setTLSMode(GV, *D); 1553 } 1554 } 1555 1556 if (AddrSpace != Ty->getAddressSpace()) 1557 return llvm::ConstantExpr::getBitCast(GV, Ty); 1558 else 1559 return GV; 1560 } 1561 1562 1563 llvm::GlobalVariable * 1564 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1565 llvm::Type *Ty, 1566 llvm::GlobalValue::LinkageTypes Linkage) { 1567 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1568 llvm::GlobalVariable *OldGV = 0; 1569 1570 1571 if (GV) { 1572 // Check if the variable has the right type. 1573 if (GV->getType()->getElementType() == Ty) 1574 return GV; 1575 1576 // Because C++ name mangling, the only way we can end up with an already 1577 // existing global with the same name is if it has been declared extern "C". 1578 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1579 OldGV = GV; 1580 } 1581 1582 // Create a new variable. 1583 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1584 Linkage, 0, Name); 1585 1586 if (OldGV) { 1587 // Replace occurrences of the old variable if needed. 1588 GV->takeName(OldGV); 1589 1590 if (!OldGV->use_empty()) { 1591 llvm::Constant *NewPtrForOldDecl = 1592 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1593 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1594 } 1595 1596 OldGV->eraseFromParent(); 1597 } 1598 1599 return GV; 1600 } 1601 1602 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1603 /// given global variable. If Ty is non-null and if the global doesn't exist, 1604 /// then it will be created with the specified type instead of whatever the 1605 /// normal requested type would be. 1606 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1607 llvm::Type *Ty) { 1608 assert(D->hasGlobalStorage() && "Not a global variable"); 1609 QualType ASTTy = D->getType(); 1610 if (Ty == 0) 1611 Ty = getTypes().ConvertTypeForMem(ASTTy); 1612 1613 llvm::PointerType *PTy = 1614 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1615 1616 StringRef MangledName = getMangledName(D); 1617 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1618 } 1619 1620 /// CreateRuntimeVariable - Create a new runtime global variable with the 1621 /// specified type and name. 1622 llvm::Constant * 1623 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1624 StringRef Name) { 1625 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1626 true); 1627 } 1628 1629 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1630 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1631 1632 if (MayDeferGeneration(D)) { 1633 // If we have not seen a reference to this variable yet, place it 1634 // into the deferred declarations table to be emitted if needed 1635 // later. 1636 StringRef MangledName = getMangledName(D); 1637 if (!GetGlobalValue(MangledName)) { 1638 DeferredDecls[MangledName] = D; 1639 return; 1640 } 1641 } 1642 1643 // The tentative definition is the only definition. 1644 EmitGlobalVarDefinition(D); 1645 } 1646 1647 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1648 return Context.toCharUnitsFromBits( 1649 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1650 } 1651 1652 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1653 unsigned AddrSpace) { 1654 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1655 if (D->hasAttr<CUDAConstantAttr>()) 1656 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1657 else if (D->hasAttr<CUDASharedAttr>()) 1658 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1659 else 1660 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1661 } 1662 1663 return AddrSpace; 1664 } 1665 1666 template<typename SomeDecl> 1667 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1668 llvm::GlobalValue *GV) { 1669 if (!getLangOpts().CPlusPlus) 1670 return; 1671 1672 // Must have 'used' attribute, or else inline assembly can't rely on 1673 // the name existing. 1674 if (!D->template hasAttr<UsedAttr>()) 1675 return; 1676 1677 // Must have internal linkage and an ordinary name. 1678 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1679 return; 1680 1681 // Must be in an extern "C" context. Entities declared directly within 1682 // a record are not extern "C" even if the record is in such a context. 1683 const SomeDecl *First = D->getFirstDeclaration(); 1684 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1685 return; 1686 1687 // OK, this is an internal linkage entity inside an extern "C" linkage 1688 // specification. Make a note of that so we can give it the "expected" 1689 // mangled name if nothing else is using that name. 1690 std::pair<StaticExternCMap::iterator, bool> R = 1691 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1692 1693 // If we have multiple internal linkage entities with the same name 1694 // in extern "C" regions, none of them gets that name. 1695 if (!R.second) 1696 R.first->second = 0; 1697 } 1698 1699 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1700 llvm::Constant *Init = 0; 1701 QualType ASTTy = D->getType(); 1702 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1703 bool NeedsGlobalCtor = false; 1704 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1705 1706 const VarDecl *InitDecl; 1707 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1708 1709 if (!InitExpr) { 1710 // This is a tentative definition; tentative definitions are 1711 // implicitly initialized with { 0 }. 1712 // 1713 // Note that tentative definitions are only emitted at the end of 1714 // a translation unit, so they should never have incomplete 1715 // type. In addition, EmitTentativeDefinition makes sure that we 1716 // never attempt to emit a tentative definition if a real one 1717 // exists. A use may still exists, however, so we still may need 1718 // to do a RAUW. 1719 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1720 Init = EmitNullConstant(D->getType()); 1721 } else { 1722 initializedGlobalDecl = GlobalDecl(D); 1723 Init = EmitConstantInit(*InitDecl); 1724 1725 if (!Init) { 1726 QualType T = InitExpr->getType(); 1727 if (D->getType()->isReferenceType()) 1728 T = D->getType(); 1729 1730 if (getLangOpts().CPlusPlus) { 1731 Init = EmitNullConstant(T); 1732 NeedsGlobalCtor = true; 1733 } else { 1734 ErrorUnsupported(D, "static initializer"); 1735 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1736 } 1737 } else { 1738 // We don't need an initializer, so remove the entry for the delayed 1739 // initializer position (just in case this entry was delayed) if we 1740 // also don't need to register a destructor. 1741 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1742 DelayedCXXInitPosition.erase(D); 1743 } 1744 } 1745 1746 llvm::Type* InitType = Init->getType(); 1747 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1748 1749 // Strip off a bitcast if we got one back. 1750 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1751 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1752 // all zero index gep. 1753 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1754 Entry = CE->getOperand(0); 1755 } 1756 1757 // Entry is now either a Function or GlobalVariable. 1758 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1759 1760 // We have a definition after a declaration with the wrong type. 1761 // We must make a new GlobalVariable* and update everything that used OldGV 1762 // (a declaration or tentative definition) with the new GlobalVariable* 1763 // (which will be a definition). 1764 // 1765 // This happens if there is a prototype for a global (e.g. 1766 // "extern int x[];") and then a definition of a different type (e.g. 1767 // "int x[10];"). This also happens when an initializer has a different type 1768 // from the type of the global (this happens with unions). 1769 if (GV == 0 || 1770 GV->getType()->getElementType() != InitType || 1771 GV->getType()->getAddressSpace() != 1772 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1773 1774 // Move the old entry aside so that we'll create a new one. 1775 Entry->setName(StringRef()); 1776 1777 // Make a new global with the correct type, this is now guaranteed to work. 1778 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1779 1780 // Replace all uses of the old global with the new global 1781 llvm::Constant *NewPtrForOldDecl = 1782 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1783 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1784 1785 // Erase the old global, since it is no longer used. 1786 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1787 } 1788 1789 MaybeHandleStaticInExternC(D, GV); 1790 1791 if (D->hasAttr<AnnotateAttr>()) 1792 AddGlobalAnnotations(D, GV); 1793 1794 GV->setInitializer(Init); 1795 1796 // If it is safe to mark the global 'constant', do so now. 1797 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1798 isTypeConstant(D->getType(), true)); 1799 1800 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1801 1802 // Set the llvm linkage type as appropriate. 1803 llvm::GlobalValue::LinkageTypes Linkage = 1804 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1805 GV->setLinkage(Linkage); 1806 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1807 // common vars aren't constant even if declared const. 1808 GV->setConstant(false); 1809 1810 SetCommonAttributes(D, GV); 1811 1812 // Emit the initializer function if necessary. 1813 if (NeedsGlobalCtor || NeedsGlobalDtor) 1814 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1815 1816 // If we are compiling with ASan, add metadata indicating dynamically 1817 // initialized globals. 1818 if (SanOpts.Address && NeedsGlobalCtor) { 1819 llvm::Module &M = getModule(); 1820 1821 llvm::NamedMDNode *DynamicInitializers = 1822 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1823 llvm::Value *GlobalToAdd[] = { GV }; 1824 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1825 DynamicInitializers->addOperand(ThisGlobal); 1826 } 1827 1828 // Emit global variable debug information. 1829 if (CGDebugInfo *DI = getModuleDebugInfo()) 1830 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1831 DI->EmitGlobalVariable(GV, D); 1832 } 1833 1834 llvm::GlobalValue::LinkageTypes 1835 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1836 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1837 if (Linkage == GVA_Internal) 1838 return llvm::Function::InternalLinkage; 1839 else if (D->hasAttr<DLLImportAttr>()) 1840 return llvm::Function::DLLImportLinkage; 1841 else if (D->hasAttr<DLLExportAttr>()) 1842 return llvm::Function::DLLExportLinkage; 1843 else if (D->hasAttr<SelectAnyAttr>()) { 1844 // selectany symbols are externally visible, so use weak instead of 1845 // linkonce. MSVC optimizes away references to const selectany globals, so 1846 // all definitions should be the same and ODR linkage should be used. 1847 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1848 return llvm::GlobalVariable::WeakODRLinkage; 1849 } else if (D->hasAttr<WeakAttr>()) { 1850 if (isConstant) 1851 return llvm::GlobalVariable::WeakODRLinkage; 1852 else 1853 return llvm::GlobalVariable::WeakAnyLinkage; 1854 } else if (Linkage == GVA_TemplateInstantiation || 1855 Linkage == GVA_ExplicitTemplateInstantiation) 1856 return llvm::GlobalVariable::WeakODRLinkage; 1857 else if (!getLangOpts().CPlusPlus && 1858 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1859 D->getAttr<CommonAttr>()) && 1860 !D->hasExternalStorage() && !D->getInit() && 1861 !D->getAttr<SectionAttr>() && !D->getTLSKind() && 1862 !D->getAttr<WeakImportAttr>()) { 1863 // Thread local vars aren't considered common linkage. 1864 return llvm::GlobalVariable::CommonLinkage; 1865 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1866 getTarget().getTriple().isMacOSX()) 1867 // On Darwin, the backing variable for a C++11 thread_local variable always 1868 // has internal linkage; all accesses should just be calls to the 1869 // Itanium-specified entry point, which has the normal linkage of the 1870 // variable. 1871 return llvm::GlobalValue::InternalLinkage; 1872 return llvm::GlobalVariable::ExternalLinkage; 1873 } 1874 1875 /// Replace the uses of a function that was declared with a non-proto type. 1876 /// We want to silently drop extra arguments from call sites 1877 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1878 llvm::Function *newFn) { 1879 // Fast path. 1880 if (old->use_empty()) return; 1881 1882 llvm::Type *newRetTy = newFn->getReturnType(); 1883 SmallVector<llvm::Value*, 4> newArgs; 1884 1885 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1886 ui != ue; ) { 1887 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1888 llvm::User *user = *use; 1889 1890 // Recognize and replace uses of bitcasts. Most calls to 1891 // unprototyped functions will use bitcasts. 1892 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1893 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1894 replaceUsesOfNonProtoConstant(bitcast, newFn); 1895 continue; 1896 } 1897 1898 // Recognize calls to the function. 1899 llvm::CallSite callSite(user); 1900 if (!callSite) continue; 1901 if (!callSite.isCallee(use)) continue; 1902 1903 // If the return types don't match exactly, then we can't 1904 // transform this call unless it's dead. 1905 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1906 continue; 1907 1908 // Get the call site's attribute list. 1909 SmallVector<llvm::AttributeSet, 8> newAttrs; 1910 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1911 1912 // Collect any return attributes from the call. 1913 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1914 newAttrs.push_back( 1915 llvm::AttributeSet::get(newFn->getContext(), 1916 oldAttrs.getRetAttributes())); 1917 1918 // If the function was passed too few arguments, don't transform. 1919 unsigned newNumArgs = newFn->arg_size(); 1920 if (callSite.arg_size() < newNumArgs) continue; 1921 1922 // If extra arguments were passed, we silently drop them. 1923 // If any of the types mismatch, we don't transform. 1924 unsigned argNo = 0; 1925 bool dontTransform = false; 1926 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1927 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1928 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1929 dontTransform = true; 1930 break; 1931 } 1932 1933 // Add any parameter attributes. 1934 if (oldAttrs.hasAttributes(argNo + 1)) 1935 newAttrs. 1936 push_back(llvm:: 1937 AttributeSet::get(newFn->getContext(), 1938 oldAttrs.getParamAttributes(argNo + 1))); 1939 } 1940 if (dontTransform) 1941 continue; 1942 1943 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 1944 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 1945 oldAttrs.getFnAttributes())); 1946 1947 // Okay, we can transform this. Create the new call instruction and copy 1948 // over the required information. 1949 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1950 1951 llvm::CallSite newCall; 1952 if (callSite.isCall()) { 1953 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1954 callSite.getInstruction()); 1955 } else { 1956 llvm::InvokeInst *oldInvoke = 1957 cast<llvm::InvokeInst>(callSite.getInstruction()); 1958 newCall = llvm::InvokeInst::Create(newFn, 1959 oldInvoke->getNormalDest(), 1960 oldInvoke->getUnwindDest(), 1961 newArgs, "", 1962 callSite.getInstruction()); 1963 } 1964 newArgs.clear(); // for the next iteration 1965 1966 if (!newCall->getType()->isVoidTy()) 1967 newCall->takeName(callSite.getInstruction()); 1968 newCall.setAttributes( 1969 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 1970 newCall.setCallingConv(callSite.getCallingConv()); 1971 1972 // Finally, remove the old call, replacing any uses with the new one. 1973 if (!callSite->use_empty()) 1974 callSite->replaceAllUsesWith(newCall.getInstruction()); 1975 1976 // Copy debug location attached to CI. 1977 if (!callSite->getDebugLoc().isUnknown()) 1978 newCall->setDebugLoc(callSite->getDebugLoc()); 1979 callSite->eraseFromParent(); 1980 } 1981 } 1982 1983 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1984 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1985 /// existing call uses of the old function in the module, this adjusts them to 1986 /// call the new function directly. 1987 /// 1988 /// This is not just a cleanup: the always_inline pass requires direct calls to 1989 /// functions to be able to inline them. If there is a bitcast in the way, it 1990 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1991 /// run at -O0. 1992 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1993 llvm::Function *NewFn) { 1994 // If we're redefining a global as a function, don't transform it. 1995 if (!isa<llvm::Function>(Old)) return; 1996 1997 replaceUsesOfNonProtoConstant(Old, NewFn); 1998 } 1999 2000 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2001 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2002 // If we have a definition, this might be a deferred decl. If the 2003 // instantiation is explicit, make sure we emit it at the end. 2004 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2005 GetAddrOfGlobalVar(VD); 2006 2007 EmitTopLevelDecl(VD); 2008 } 2009 2010 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 2011 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2012 2013 // Compute the function info and LLVM type. 2014 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2015 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2016 2017 // Get or create the prototype for the function. 2018 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 2019 2020 // Strip off a bitcast if we got one back. 2021 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2022 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2023 Entry = CE->getOperand(0); 2024 } 2025 2026 2027 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2028 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2029 2030 // If the types mismatch then we have to rewrite the definition. 2031 assert(OldFn->isDeclaration() && 2032 "Shouldn't replace non-declaration"); 2033 2034 // F is the Function* for the one with the wrong type, we must make a new 2035 // Function* and update everything that used F (a declaration) with the new 2036 // Function* (which will be a definition). 2037 // 2038 // This happens if there is a prototype for a function 2039 // (e.g. "int f()") and then a definition of a different type 2040 // (e.g. "int f(int x)"). Move the old function aside so that it 2041 // doesn't interfere with GetAddrOfFunction. 2042 OldFn->setName(StringRef()); 2043 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2044 2045 // This might be an implementation of a function without a 2046 // prototype, in which case, try to do special replacement of 2047 // calls which match the new prototype. The really key thing here 2048 // is that we also potentially drop arguments from the call site 2049 // so as to make a direct call, which makes the inliner happier 2050 // and suppresses a number of optimizer warnings (!) about 2051 // dropping arguments. 2052 if (!OldFn->use_empty()) { 2053 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2054 OldFn->removeDeadConstantUsers(); 2055 } 2056 2057 // Replace uses of F with the Function we will endow with a body. 2058 if (!Entry->use_empty()) { 2059 llvm::Constant *NewPtrForOldDecl = 2060 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2061 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2062 } 2063 2064 // Ok, delete the old function now, which is dead. 2065 OldFn->eraseFromParent(); 2066 2067 Entry = NewFn; 2068 } 2069 2070 // We need to set linkage and visibility on the function before 2071 // generating code for it because various parts of IR generation 2072 // want to propagate this information down (e.g. to local static 2073 // declarations). 2074 llvm::Function *Fn = cast<llvm::Function>(Entry); 2075 setFunctionLinkage(GD, Fn); 2076 2077 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2078 setGlobalVisibility(Fn, D); 2079 2080 MaybeHandleStaticInExternC(D, Fn); 2081 2082 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2083 2084 SetFunctionDefinitionAttributes(D, Fn); 2085 SetLLVMFunctionAttributesForDefinition(D, Fn); 2086 2087 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2088 AddGlobalCtor(Fn, CA->getPriority()); 2089 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2090 AddGlobalDtor(Fn, DA->getPriority()); 2091 if (D->hasAttr<AnnotateAttr>()) 2092 AddGlobalAnnotations(D, Fn); 2093 } 2094 2095 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2096 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2097 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2098 assert(AA && "Not an alias?"); 2099 2100 StringRef MangledName = getMangledName(GD); 2101 2102 // If there is a definition in the module, then it wins over the alias. 2103 // This is dubious, but allow it to be safe. Just ignore the alias. 2104 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2105 if (Entry && !Entry->isDeclaration()) 2106 return; 2107 2108 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2109 2110 // Create a reference to the named value. This ensures that it is emitted 2111 // if a deferred decl. 2112 llvm::Constant *Aliasee; 2113 if (isa<llvm::FunctionType>(DeclTy)) 2114 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2115 /*ForVTable=*/false); 2116 else 2117 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2118 llvm::PointerType::getUnqual(DeclTy), 0); 2119 2120 // Create the new alias itself, but don't set a name yet. 2121 llvm::GlobalValue *GA = 2122 new llvm::GlobalAlias(Aliasee->getType(), 2123 llvm::Function::ExternalLinkage, 2124 "", Aliasee, &getModule()); 2125 2126 if (Entry) { 2127 assert(Entry->isDeclaration()); 2128 2129 // If there is a declaration in the module, then we had an extern followed 2130 // by the alias, as in: 2131 // extern int test6(); 2132 // ... 2133 // int test6() __attribute__((alias("test7"))); 2134 // 2135 // Remove it and replace uses of it with the alias. 2136 GA->takeName(Entry); 2137 2138 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2139 Entry->getType())); 2140 Entry->eraseFromParent(); 2141 } else { 2142 GA->setName(MangledName); 2143 } 2144 2145 // Set attributes which are particular to an alias; this is a 2146 // specialization of the attributes which may be set on a global 2147 // variable/function. 2148 if (D->hasAttr<DLLExportAttr>()) { 2149 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2150 // The dllexport attribute is ignored for undefined symbols. 2151 if (FD->hasBody()) 2152 GA->setLinkage(llvm::Function::DLLExportLinkage); 2153 } else { 2154 GA->setLinkage(llvm::Function::DLLExportLinkage); 2155 } 2156 } else if (D->hasAttr<WeakAttr>() || 2157 D->hasAttr<WeakRefAttr>() || 2158 D->isWeakImported()) { 2159 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2160 } 2161 2162 SetCommonAttributes(D, GA); 2163 } 2164 2165 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2166 ArrayRef<llvm::Type*> Tys) { 2167 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2168 Tys); 2169 } 2170 2171 static llvm::StringMapEntry<llvm::Constant*> & 2172 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2173 const StringLiteral *Literal, 2174 bool TargetIsLSB, 2175 bool &IsUTF16, 2176 unsigned &StringLength) { 2177 StringRef String = Literal->getString(); 2178 unsigned NumBytes = String.size(); 2179 2180 // Check for simple case. 2181 if (!Literal->containsNonAsciiOrNull()) { 2182 StringLength = NumBytes; 2183 return Map.GetOrCreateValue(String); 2184 } 2185 2186 // Otherwise, convert the UTF8 literals into a string of shorts. 2187 IsUTF16 = true; 2188 2189 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2190 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2191 UTF16 *ToPtr = &ToBuf[0]; 2192 2193 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2194 &ToPtr, ToPtr + NumBytes, 2195 strictConversion); 2196 2197 // ConvertUTF8toUTF16 returns the length in ToPtr. 2198 StringLength = ToPtr - &ToBuf[0]; 2199 2200 // Add an explicit null. 2201 *ToPtr = 0; 2202 return Map. 2203 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2204 (StringLength + 1) * 2)); 2205 } 2206 2207 static llvm::StringMapEntry<llvm::Constant*> & 2208 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2209 const StringLiteral *Literal, 2210 unsigned &StringLength) { 2211 StringRef String = Literal->getString(); 2212 StringLength = String.size(); 2213 return Map.GetOrCreateValue(String); 2214 } 2215 2216 llvm::Constant * 2217 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2218 unsigned StringLength = 0; 2219 bool isUTF16 = false; 2220 llvm::StringMapEntry<llvm::Constant*> &Entry = 2221 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2222 getDataLayout().isLittleEndian(), 2223 isUTF16, StringLength); 2224 2225 if (llvm::Constant *C = Entry.getValue()) 2226 return C; 2227 2228 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2229 llvm::Constant *Zeros[] = { Zero, Zero }; 2230 llvm::Value *V; 2231 2232 // If we don't already have it, get __CFConstantStringClassReference. 2233 if (!CFConstantStringClassRef) { 2234 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2235 Ty = llvm::ArrayType::get(Ty, 0); 2236 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2237 "__CFConstantStringClassReference"); 2238 // Decay array -> ptr 2239 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2240 CFConstantStringClassRef = V; 2241 } 2242 else 2243 V = CFConstantStringClassRef; 2244 2245 QualType CFTy = getContext().getCFConstantStringType(); 2246 2247 llvm::StructType *STy = 2248 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2249 2250 llvm::Constant *Fields[4]; 2251 2252 // Class pointer. 2253 Fields[0] = cast<llvm::ConstantExpr>(V); 2254 2255 // Flags. 2256 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2257 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2258 llvm::ConstantInt::get(Ty, 0x07C8); 2259 2260 // String pointer. 2261 llvm::Constant *C = 0; 2262 if (isUTF16) { 2263 ArrayRef<uint16_t> Arr = 2264 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2265 const_cast<char *>(Entry.getKey().data())), 2266 Entry.getKey().size() / 2); 2267 C = llvm::ConstantDataArray::get(VMContext, Arr); 2268 } else { 2269 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2270 } 2271 2272 llvm::GlobalValue::LinkageTypes Linkage; 2273 if (isUTF16) 2274 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2275 Linkage = llvm::GlobalValue::InternalLinkage; 2276 else 2277 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2278 // when using private linkage. It is not clear if this is a bug in ld 2279 // or a reasonable new restriction. 2280 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2281 2282 // Note: -fwritable-strings doesn't make the backing store strings of 2283 // CFStrings writable. (See <rdar://problem/10657500>) 2284 llvm::GlobalVariable *GV = 2285 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2286 Linkage, C, ".str"); 2287 GV->setUnnamedAddr(true); 2288 // Don't enforce the target's minimum global alignment, since the only use 2289 // of the string is via this class initializer. 2290 if (isUTF16) { 2291 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2292 GV->setAlignment(Align.getQuantity()); 2293 } else { 2294 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2295 GV->setAlignment(Align.getQuantity()); 2296 } 2297 2298 // String. 2299 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2300 2301 if (isUTF16) 2302 // Cast the UTF16 string to the correct type. 2303 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2304 2305 // String length. 2306 Ty = getTypes().ConvertType(getContext().LongTy); 2307 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2308 2309 // The struct. 2310 C = llvm::ConstantStruct::get(STy, Fields); 2311 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2312 llvm::GlobalVariable::PrivateLinkage, C, 2313 "_unnamed_cfstring_"); 2314 if (const char *Sect = getTarget().getCFStringSection()) 2315 GV->setSection(Sect); 2316 Entry.setValue(GV); 2317 2318 return GV; 2319 } 2320 2321 static RecordDecl * 2322 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2323 DeclContext *DC, IdentifierInfo *Id) { 2324 SourceLocation Loc; 2325 if (Ctx.getLangOpts().CPlusPlus) 2326 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2327 else 2328 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2329 } 2330 2331 llvm::Constant * 2332 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2333 unsigned StringLength = 0; 2334 llvm::StringMapEntry<llvm::Constant*> &Entry = 2335 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2336 2337 if (llvm::Constant *C = Entry.getValue()) 2338 return C; 2339 2340 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2341 llvm::Constant *Zeros[] = { Zero, Zero }; 2342 llvm::Value *V; 2343 // If we don't already have it, get _NSConstantStringClassReference. 2344 if (!ConstantStringClassRef) { 2345 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2346 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2347 llvm::Constant *GV; 2348 if (LangOpts.ObjCRuntime.isNonFragile()) { 2349 std::string str = 2350 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2351 : "OBJC_CLASS_$_" + StringClass; 2352 GV = getObjCRuntime().GetClassGlobal(str); 2353 // Make sure the result is of the correct type. 2354 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2355 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2356 ConstantStringClassRef = V; 2357 } else { 2358 std::string str = 2359 StringClass.empty() ? "_NSConstantStringClassReference" 2360 : "_" + StringClass + "ClassReference"; 2361 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2362 GV = CreateRuntimeVariable(PTy, str); 2363 // Decay array -> ptr 2364 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2365 ConstantStringClassRef = V; 2366 } 2367 } 2368 else 2369 V = ConstantStringClassRef; 2370 2371 if (!NSConstantStringType) { 2372 // Construct the type for a constant NSString. 2373 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2374 Context.getTranslationUnitDecl(), 2375 &Context.Idents.get("__builtin_NSString")); 2376 D->startDefinition(); 2377 2378 QualType FieldTypes[3]; 2379 2380 // const int *isa; 2381 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2382 // const char *str; 2383 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2384 // unsigned int length; 2385 FieldTypes[2] = Context.UnsignedIntTy; 2386 2387 // Create fields 2388 for (unsigned i = 0; i < 3; ++i) { 2389 FieldDecl *Field = FieldDecl::Create(Context, D, 2390 SourceLocation(), 2391 SourceLocation(), 0, 2392 FieldTypes[i], /*TInfo=*/0, 2393 /*BitWidth=*/0, 2394 /*Mutable=*/false, 2395 ICIS_NoInit); 2396 Field->setAccess(AS_public); 2397 D->addDecl(Field); 2398 } 2399 2400 D->completeDefinition(); 2401 QualType NSTy = Context.getTagDeclType(D); 2402 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2403 } 2404 2405 llvm::Constant *Fields[3]; 2406 2407 // Class pointer. 2408 Fields[0] = cast<llvm::ConstantExpr>(V); 2409 2410 // String pointer. 2411 llvm::Constant *C = 2412 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2413 2414 llvm::GlobalValue::LinkageTypes Linkage; 2415 bool isConstant; 2416 Linkage = llvm::GlobalValue::PrivateLinkage; 2417 isConstant = !LangOpts.WritableStrings; 2418 2419 llvm::GlobalVariable *GV = 2420 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2421 ".str"); 2422 GV->setUnnamedAddr(true); 2423 // Don't enforce the target's minimum global alignment, since the only use 2424 // of the string is via this class initializer. 2425 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2426 GV->setAlignment(Align.getQuantity()); 2427 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2428 2429 // String length. 2430 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2431 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2432 2433 // The struct. 2434 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2435 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2436 llvm::GlobalVariable::PrivateLinkage, C, 2437 "_unnamed_nsstring_"); 2438 // FIXME. Fix section. 2439 if (const char *Sect = 2440 LangOpts.ObjCRuntime.isNonFragile() 2441 ? getTarget().getNSStringNonFragileABISection() 2442 : getTarget().getNSStringSection()) 2443 GV->setSection(Sect); 2444 Entry.setValue(GV); 2445 2446 return GV; 2447 } 2448 2449 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2450 if (ObjCFastEnumerationStateType.isNull()) { 2451 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2452 Context.getTranslationUnitDecl(), 2453 &Context.Idents.get("__objcFastEnumerationState")); 2454 D->startDefinition(); 2455 2456 QualType FieldTypes[] = { 2457 Context.UnsignedLongTy, 2458 Context.getPointerType(Context.getObjCIdType()), 2459 Context.getPointerType(Context.UnsignedLongTy), 2460 Context.getConstantArrayType(Context.UnsignedLongTy, 2461 llvm::APInt(32, 5), ArrayType::Normal, 0) 2462 }; 2463 2464 for (size_t i = 0; i < 4; ++i) { 2465 FieldDecl *Field = FieldDecl::Create(Context, 2466 D, 2467 SourceLocation(), 2468 SourceLocation(), 0, 2469 FieldTypes[i], /*TInfo=*/0, 2470 /*BitWidth=*/0, 2471 /*Mutable=*/false, 2472 ICIS_NoInit); 2473 Field->setAccess(AS_public); 2474 D->addDecl(Field); 2475 } 2476 2477 D->completeDefinition(); 2478 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2479 } 2480 2481 return ObjCFastEnumerationStateType; 2482 } 2483 2484 llvm::Constant * 2485 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2486 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2487 2488 // Don't emit it as the address of the string, emit the string data itself 2489 // as an inline array. 2490 if (E->getCharByteWidth() == 1) { 2491 SmallString<64> Str(E->getString()); 2492 2493 // Resize the string to the right size, which is indicated by its type. 2494 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2495 Str.resize(CAT->getSize().getZExtValue()); 2496 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2497 } 2498 2499 llvm::ArrayType *AType = 2500 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2501 llvm::Type *ElemTy = AType->getElementType(); 2502 unsigned NumElements = AType->getNumElements(); 2503 2504 // Wide strings have either 2-byte or 4-byte elements. 2505 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2506 SmallVector<uint16_t, 32> Elements; 2507 Elements.reserve(NumElements); 2508 2509 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2510 Elements.push_back(E->getCodeUnit(i)); 2511 Elements.resize(NumElements); 2512 return llvm::ConstantDataArray::get(VMContext, Elements); 2513 } 2514 2515 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2516 SmallVector<uint32_t, 32> Elements; 2517 Elements.reserve(NumElements); 2518 2519 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2520 Elements.push_back(E->getCodeUnit(i)); 2521 Elements.resize(NumElements); 2522 return llvm::ConstantDataArray::get(VMContext, Elements); 2523 } 2524 2525 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2526 /// constant array for the given string literal. 2527 llvm::Constant * 2528 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2529 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2530 if (S->isAscii() || S->isUTF8()) { 2531 SmallString<64> Str(S->getString()); 2532 2533 // Resize the string to the right size, which is indicated by its type. 2534 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2535 Str.resize(CAT->getSize().getZExtValue()); 2536 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2537 } 2538 2539 // FIXME: the following does not memoize wide strings. 2540 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2541 llvm::GlobalVariable *GV = 2542 new llvm::GlobalVariable(getModule(),C->getType(), 2543 !LangOpts.WritableStrings, 2544 llvm::GlobalValue::PrivateLinkage, 2545 C,".str"); 2546 2547 GV->setAlignment(Align.getQuantity()); 2548 GV->setUnnamedAddr(true); 2549 return GV; 2550 } 2551 2552 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2553 /// array for the given ObjCEncodeExpr node. 2554 llvm::Constant * 2555 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2556 std::string Str; 2557 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2558 2559 return GetAddrOfConstantCString(Str); 2560 } 2561 2562 2563 /// GenerateWritableString -- Creates storage for a string literal. 2564 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2565 bool constant, 2566 CodeGenModule &CGM, 2567 const char *GlobalName, 2568 unsigned Alignment) { 2569 // Create Constant for this string literal. Don't add a '\0'. 2570 llvm::Constant *C = 2571 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2572 2573 // Create a global variable for this string 2574 llvm::GlobalVariable *GV = 2575 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2576 llvm::GlobalValue::PrivateLinkage, 2577 C, GlobalName); 2578 GV->setAlignment(Alignment); 2579 GV->setUnnamedAddr(true); 2580 return GV; 2581 } 2582 2583 /// GetAddrOfConstantString - Returns a pointer to a character array 2584 /// containing the literal. This contents are exactly that of the 2585 /// given string, i.e. it will not be null terminated automatically; 2586 /// see GetAddrOfConstantCString. Note that whether the result is 2587 /// actually a pointer to an LLVM constant depends on 2588 /// Feature.WriteableStrings. 2589 /// 2590 /// The result has pointer to array type. 2591 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2592 const char *GlobalName, 2593 unsigned Alignment) { 2594 // Get the default prefix if a name wasn't specified. 2595 if (!GlobalName) 2596 GlobalName = ".str"; 2597 2598 if (Alignment == 0) 2599 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2600 .getQuantity(); 2601 2602 // Don't share any string literals if strings aren't constant. 2603 if (LangOpts.WritableStrings) 2604 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2605 2606 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2607 ConstantStringMap.GetOrCreateValue(Str); 2608 2609 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2610 if (Alignment > GV->getAlignment()) { 2611 GV->setAlignment(Alignment); 2612 } 2613 return GV; 2614 } 2615 2616 // Create a global variable for this. 2617 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2618 Alignment); 2619 Entry.setValue(GV); 2620 return GV; 2621 } 2622 2623 /// GetAddrOfConstantCString - Returns a pointer to a character 2624 /// array containing the literal and a terminating '\0' 2625 /// character. The result has pointer to array type. 2626 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2627 const char *GlobalName, 2628 unsigned Alignment) { 2629 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2630 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2631 } 2632 2633 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2634 const MaterializeTemporaryExpr *E, const Expr *Init) { 2635 assert((E->getStorageDuration() == SD_Static || 2636 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2637 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2638 2639 // If we're not materializing a subobject of the temporary, keep the 2640 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2641 QualType MaterializedType = Init->getType(); 2642 if (Init == E->GetTemporaryExpr()) 2643 MaterializedType = E->getType(); 2644 2645 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2646 if (Slot) 2647 return Slot; 2648 2649 // FIXME: If an externally-visible declaration extends multiple temporaries, 2650 // we need to give each temporary the same name in every translation unit (and 2651 // we also need to make the temporaries externally-visible). 2652 SmallString<256> Name; 2653 llvm::raw_svector_ostream Out(Name); 2654 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2655 Out.flush(); 2656 2657 APValue *Value = 0; 2658 if (E->getStorageDuration() == SD_Static) { 2659 // We might have a cached constant initializer for this temporary. Note 2660 // that this might have a different value from the value computed by 2661 // evaluating the initializer if the surrounding constant expression 2662 // modifies the temporary. 2663 Value = getContext().getMaterializedTemporaryValue(E, false); 2664 if (Value && Value->isUninit()) 2665 Value = 0; 2666 } 2667 2668 // Try evaluating it now, it might have a constant initializer. 2669 Expr::EvalResult EvalResult; 2670 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2671 !EvalResult.hasSideEffects()) 2672 Value = &EvalResult.Val; 2673 2674 llvm::Constant *InitialValue = 0; 2675 bool Constant = false; 2676 llvm::Type *Type; 2677 if (Value) { 2678 // The temporary has a constant initializer, use it. 2679 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2680 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2681 Type = InitialValue->getType(); 2682 } else { 2683 // No initializer, the initialization will be provided when we 2684 // initialize the declaration which performed lifetime extension. 2685 Type = getTypes().ConvertTypeForMem(MaterializedType); 2686 } 2687 2688 // Create a global variable for this lifetime-extended temporary. 2689 llvm::GlobalVariable *GV = 2690 new llvm::GlobalVariable(getModule(), Type, Constant, 2691 llvm::GlobalValue::PrivateLinkage, 2692 InitialValue, Name.c_str()); 2693 GV->setAlignment( 2694 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2695 if (VD->getTLSKind()) 2696 setTLSMode(GV, *VD); 2697 Slot = GV; 2698 return GV; 2699 } 2700 2701 /// EmitObjCPropertyImplementations - Emit information for synthesized 2702 /// properties for an implementation. 2703 void CodeGenModule::EmitObjCPropertyImplementations(const 2704 ObjCImplementationDecl *D) { 2705 for (ObjCImplementationDecl::propimpl_iterator 2706 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2707 ObjCPropertyImplDecl *PID = *i; 2708 2709 // Dynamic is just for type-checking. 2710 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2711 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2712 2713 // Determine which methods need to be implemented, some may have 2714 // been overridden. Note that ::isPropertyAccessor is not the method 2715 // we want, that just indicates if the decl came from a 2716 // property. What we want to know is if the method is defined in 2717 // this implementation. 2718 if (!D->getInstanceMethod(PD->getGetterName())) 2719 CodeGenFunction(*this).GenerateObjCGetter( 2720 const_cast<ObjCImplementationDecl *>(D), PID); 2721 if (!PD->isReadOnly() && 2722 !D->getInstanceMethod(PD->getSetterName())) 2723 CodeGenFunction(*this).GenerateObjCSetter( 2724 const_cast<ObjCImplementationDecl *>(D), PID); 2725 } 2726 } 2727 } 2728 2729 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2730 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2731 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2732 ivar; ivar = ivar->getNextIvar()) 2733 if (ivar->getType().isDestructedType()) 2734 return true; 2735 2736 return false; 2737 } 2738 2739 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2740 /// for an implementation. 2741 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2742 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2743 if (needsDestructMethod(D)) { 2744 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2745 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2746 ObjCMethodDecl *DTORMethod = 2747 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2748 cxxSelector, getContext().VoidTy, 0, D, 2749 /*isInstance=*/true, /*isVariadic=*/false, 2750 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2751 /*isDefined=*/false, ObjCMethodDecl::Required); 2752 D->addInstanceMethod(DTORMethod); 2753 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2754 D->setHasDestructors(true); 2755 } 2756 2757 // If the implementation doesn't have any ivar initializers, we don't need 2758 // a .cxx_construct. 2759 if (D->getNumIvarInitializers() == 0) 2760 return; 2761 2762 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2763 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2764 // The constructor returns 'self'. 2765 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2766 D->getLocation(), 2767 D->getLocation(), 2768 cxxSelector, 2769 getContext().getObjCIdType(), 0, 2770 D, /*isInstance=*/true, 2771 /*isVariadic=*/false, 2772 /*isPropertyAccessor=*/true, 2773 /*isImplicitlyDeclared=*/true, 2774 /*isDefined=*/false, 2775 ObjCMethodDecl::Required); 2776 D->addInstanceMethod(CTORMethod); 2777 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2778 D->setHasNonZeroConstructors(true); 2779 } 2780 2781 /// EmitNamespace - Emit all declarations in a namespace. 2782 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2783 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2784 I != E; ++I) 2785 EmitTopLevelDecl(*I); 2786 } 2787 2788 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2789 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2790 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2791 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2792 ErrorUnsupported(LSD, "linkage spec"); 2793 return; 2794 } 2795 2796 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2797 I != E; ++I) { 2798 // Meta-data for ObjC class includes references to implemented methods. 2799 // Generate class's method definitions first. 2800 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2801 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2802 MEnd = OID->meth_end(); 2803 M != MEnd; ++M) 2804 EmitTopLevelDecl(*M); 2805 } 2806 EmitTopLevelDecl(*I); 2807 } 2808 } 2809 2810 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2811 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2812 // If an error has occurred, stop code generation, but continue 2813 // parsing and semantic analysis (to ensure all warnings and errors 2814 // are emitted). 2815 if (Diags.hasErrorOccurred()) 2816 return; 2817 2818 // Ignore dependent declarations. 2819 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2820 return; 2821 2822 switch (D->getKind()) { 2823 case Decl::CXXConversion: 2824 case Decl::CXXMethod: 2825 case Decl::Function: 2826 // Skip function templates 2827 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2828 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2829 return; 2830 2831 EmitGlobal(cast<FunctionDecl>(D)); 2832 break; 2833 2834 case Decl::Var: 2835 // Skip variable templates 2836 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2837 return; 2838 case Decl::VarTemplateSpecialization: 2839 EmitGlobal(cast<VarDecl>(D)); 2840 break; 2841 2842 // Indirect fields from global anonymous structs and unions can be 2843 // ignored; only the actual variable requires IR gen support. 2844 case Decl::IndirectField: 2845 break; 2846 2847 // C++ Decls 2848 case Decl::Namespace: 2849 EmitNamespace(cast<NamespaceDecl>(D)); 2850 break; 2851 // No code generation needed. 2852 case Decl::UsingShadow: 2853 case Decl::Using: 2854 case Decl::ClassTemplate: 2855 case Decl::VarTemplate: 2856 case Decl::VarTemplatePartialSpecialization: 2857 case Decl::FunctionTemplate: 2858 case Decl::TypeAliasTemplate: 2859 case Decl::Block: 2860 case Decl::Empty: 2861 break; 2862 case Decl::NamespaceAlias: 2863 if (CGDebugInfo *DI = getModuleDebugInfo()) 2864 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2865 return; 2866 case Decl::UsingDirective: // using namespace X; [C++] 2867 if (CGDebugInfo *DI = getModuleDebugInfo()) 2868 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2869 return; 2870 case Decl::CXXConstructor: 2871 // Skip function templates 2872 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2873 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2874 return; 2875 2876 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2877 break; 2878 case Decl::CXXDestructor: 2879 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2880 return; 2881 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2882 break; 2883 2884 case Decl::StaticAssert: 2885 // Nothing to do. 2886 break; 2887 2888 // Objective-C Decls 2889 2890 // Forward declarations, no (immediate) code generation. 2891 case Decl::ObjCInterface: 2892 case Decl::ObjCCategory: 2893 break; 2894 2895 case Decl::ObjCProtocol: { 2896 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2897 if (Proto->isThisDeclarationADefinition()) 2898 ObjCRuntime->GenerateProtocol(Proto); 2899 break; 2900 } 2901 2902 case Decl::ObjCCategoryImpl: 2903 // Categories have properties but don't support synthesize so we 2904 // can ignore them here. 2905 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2906 break; 2907 2908 case Decl::ObjCImplementation: { 2909 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2910 EmitObjCPropertyImplementations(OMD); 2911 EmitObjCIvarInitializations(OMD); 2912 ObjCRuntime->GenerateClass(OMD); 2913 // Emit global variable debug information. 2914 if (CGDebugInfo *DI = getModuleDebugInfo()) 2915 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2916 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2917 OMD->getClassInterface()), OMD->getLocation()); 2918 break; 2919 } 2920 case Decl::ObjCMethod: { 2921 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2922 // If this is not a prototype, emit the body. 2923 if (OMD->getBody()) 2924 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2925 break; 2926 } 2927 case Decl::ObjCCompatibleAlias: 2928 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2929 break; 2930 2931 case Decl::LinkageSpec: 2932 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2933 break; 2934 2935 case Decl::FileScopeAsm: { 2936 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2937 StringRef AsmString = AD->getAsmString()->getString(); 2938 2939 const std::string &S = getModule().getModuleInlineAsm(); 2940 if (S.empty()) 2941 getModule().setModuleInlineAsm(AsmString); 2942 else if (S.end()[-1] == '\n') 2943 getModule().setModuleInlineAsm(S + AsmString.str()); 2944 else 2945 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2946 break; 2947 } 2948 2949 case Decl::Import: { 2950 ImportDecl *Import = cast<ImportDecl>(D); 2951 2952 // Ignore import declarations that come from imported modules. 2953 if (clang::Module *Owner = Import->getOwningModule()) { 2954 if (getLangOpts().CurrentModule.empty() || 2955 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 2956 break; 2957 } 2958 2959 ImportedModules.insert(Import->getImportedModule()); 2960 break; 2961 } 2962 2963 default: 2964 // Make sure we handled everything we should, every other kind is a 2965 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2966 // function. Need to recode Decl::Kind to do that easily. 2967 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2968 } 2969 } 2970 2971 /// Turns the given pointer into a constant. 2972 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2973 const void *Ptr) { 2974 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2975 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2976 return llvm::ConstantInt::get(i64, PtrInt); 2977 } 2978 2979 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2980 llvm::NamedMDNode *&GlobalMetadata, 2981 GlobalDecl D, 2982 llvm::GlobalValue *Addr) { 2983 if (!GlobalMetadata) 2984 GlobalMetadata = 2985 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2986 2987 // TODO: should we report variant information for ctors/dtors? 2988 llvm::Value *Ops[] = { 2989 Addr, 2990 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2991 }; 2992 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2993 } 2994 2995 /// For each function which is declared within an extern "C" region and marked 2996 /// as 'used', but has internal linkage, create an alias from the unmangled 2997 /// name to the mangled name if possible. People expect to be able to refer 2998 /// to such functions with an unmangled name from inline assembly within the 2999 /// same translation unit. 3000 void CodeGenModule::EmitStaticExternCAliases() { 3001 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3002 E = StaticExternCValues.end(); 3003 I != E; ++I) { 3004 IdentifierInfo *Name = I->first; 3005 llvm::GlobalValue *Val = I->second; 3006 if (Val && !getModule().getNamedValue(Name->getName())) 3007 AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3008 Name->getName(), Val, &getModule())); 3009 } 3010 } 3011 3012 /// Emits metadata nodes associating all the global values in the 3013 /// current module with the Decls they came from. This is useful for 3014 /// projects using IR gen as a subroutine. 3015 /// 3016 /// Since there's currently no way to associate an MDNode directly 3017 /// with an llvm::GlobalValue, we create a global named metadata 3018 /// with the name 'clang.global.decl.ptrs'. 3019 void CodeGenModule::EmitDeclMetadata() { 3020 llvm::NamedMDNode *GlobalMetadata = 0; 3021 3022 // StaticLocalDeclMap 3023 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3024 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3025 I != E; ++I) { 3026 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3027 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3028 } 3029 } 3030 3031 /// Emits metadata nodes for all the local variables in the current 3032 /// function. 3033 void CodeGenFunction::EmitDeclMetadata() { 3034 if (LocalDeclMap.empty()) return; 3035 3036 llvm::LLVMContext &Context = getLLVMContext(); 3037 3038 // Find the unique metadata ID for this name. 3039 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3040 3041 llvm::NamedMDNode *GlobalMetadata = 0; 3042 3043 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3044 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3045 const Decl *D = I->first; 3046 llvm::Value *Addr = I->second; 3047 3048 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3049 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3050 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3051 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3052 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3053 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3054 } 3055 } 3056 } 3057 3058 void CodeGenModule::EmitCoverageFile() { 3059 if (!getCodeGenOpts().CoverageFile.empty()) { 3060 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3061 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3062 llvm::LLVMContext &Ctx = TheModule.getContext(); 3063 llvm::MDString *CoverageFile = 3064 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3065 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3066 llvm::MDNode *CU = CUNode->getOperand(i); 3067 llvm::Value *node[] = { CoverageFile, CU }; 3068 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3069 GCov->addOperand(N); 3070 } 3071 } 3072 } 3073 } 3074 3075 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3076 QualType GuidType) { 3077 // Sema has checked that all uuid strings are of the form 3078 // "12345678-1234-1234-1234-1234567890ab". 3079 assert(Uuid.size() == 36); 3080 const char *Uuidstr = Uuid.data(); 3081 for (int i = 0; i < 36; ++i) { 3082 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-'); 3083 else assert(isHexDigit(Uuidstr[i])); 3084 } 3085 3086 llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16); 3087 llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16); 3088 llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16); 3089 static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3090 3091 APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4); 3092 InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0)); 3093 InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1)); 3094 InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2)); 3095 APValue& Arr = InitStruct.getStructField(3); 3096 Arr = APValue(APValue::UninitArray(), 8, 8); 3097 for (int t = 0; t < 8; ++t) 3098 Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt( 3099 llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16))); 3100 3101 return EmitConstantValue(InitStruct, GuidType); 3102 } 3103