xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 8e7d656a4ad1a9a36953b47894fad841b83ee247)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
45   switch (CGM.getContext().Target.getCXXABI()) {
46   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
47   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
48   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
49   }
50 
51   llvm_unreachable("invalid C++ ABI kind");
52   return *CreateItaniumCXXABI(CGM);
53 }
54 
55 
56 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
57                              llvm::Module &M, const llvm::TargetData &TD,
58                              Diagnostic &diags)
59   : BlockModule(C, M, TD, Types, *this), Context(C),
60     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
61     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
62     ABI(createCXXABI(*this)),
63     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
64     VTables(*this), Runtime(0),
65     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
66     VMContext(M.getContext()),
67     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
68     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
69     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
70     BlockObjectAssign(0), BlockObjectDispose(0){
71 
72   if (!Features.ObjC1)
73     Runtime = 0;
74   else if (!Features.NeXTRuntime)
75     Runtime = CreateGNUObjCRuntime(*this);
76   else if (Features.ObjCNonFragileABI)
77     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
78   else
79     Runtime = CreateMacObjCRuntime(*this);
80 
81   // If debug info generation is enabled, create the CGDebugInfo object.
82   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
83 }
84 
85 CodeGenModule::~CodeGenModule() {
86   delete Runtime;
87   delete &ABI;
88   delete DebugInfo;
89 }
90 
91 void CodeGenModule::createObjCRuntime() {
92   if (!Features.NeXTRuntime)
93     Runtime = CreateGNUObjCRuntime(*this);
94   else if (Features.ObjCNonFragileABI)
95     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
96   else
97     Runtime = CreateMacObjCRuntime(*this);
98 }
99 
100 void CodeGenModule::Release() {
101   EmitDeferred();
102   EmitCXXGlobalInitFunc();
103   EmitCXXGlobalDtorFunc();
104   if (Runtime)
105     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
106       AddGlobalCtor(ObjCInitFunction);
107   EmitCtorList(GlobalCtors, "llvm.global_ctors");
108   EmitCtorList(GlobalDtors, "llvm.global_dtors");
109   EmitAnnotations();
110   EmitLLVMUsed();
111 
112   if (getCodeGenOpts().EmitDeclMetadata)
113     EmitDeclMetadata();
114 }
115 
116 bool CodeGenModule::isTargetDarwin() const {
117   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
118 }
119 
120 /// ErrorUnsupported - Print out an error that codegen doesn't support the
121 /// specified stmt yet.
122 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
123                                      bool OmitOnError) {
124   if (OmitOnError && getDiags().hasErrorOccurred())
125     return;
126   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
127                                                "cannot compile this %0 yet");
128   std::string Msg = Type;
129   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
130     << Msg << S->getSourceRange();
131 }
132 
133 /// ErrorUnsupported - Print out an error that codegen doesn't support the
134 /// specified decl yet.
135 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
136                                      bool OmitOnError) {
137   if (OmitOnError && getDiags().hasErrorOccurred())
138     return;
139   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
140                                                "cannot compile this %0 yet");
141   std::string Msg = Type;
142   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
143 }
144 
145 LangOptions::VisibilityMode
146 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
147   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
148     if (VD->getStorageClass() == SC_PrivateExtern)
149       return LangOptions::Hidden;
150 
151   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
152     switch (attr->getVisibility()) {
153     default: assert(0 && "Unknown visibility!");
154     case VisibilityAttr::Default:
155       return LangOptions::Default;
156     case VisibilityAttr::Hidden:
157       return LangOptions::Hidden;
158     case VisibilityAttr::Protected:
159       return LangOptions::Protected;
160     }
161   }
162 
163   if (getLangOptions().CPlusPlus) {
164     // Entities subject to an explicit instantiation declaration get default
165     // visibility.
166     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
167       if (Function->getTemplateSpecializationKind()
168                                         == TSK_ExplicitInstantiationDeclaration)
169         return LangOptions::Default;
170     } else if (const ClassTemplateSpecializationDecl *ClassSpec
171                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
172       if (ClassSpec->getSpecializationKind()
173                                         == TSK_ExplicitInstantiationDeclaration)
174         return LangOptions::Default;
175     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
176       if (Record->getTemplateSpecializationKind()
177                                         == TSK_ExplicitInstantiationDeclaration)
178         return LangOptions::Default;
179     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
180       if (Var->isStaticDataMember() &&
181           (Var->getTemplateSpecializationKind()
182                                       == TSK_ExplicitInstantiationDeclaration))
183         return LangOptions::Default;
184     }
185 
186     // If -fvisibility-inlines-hidden was provided, then inline C++ member
187     // functions get "hidden" visibility by default.
188     if (getLangOptions().InlineVisibilityHidden)
189       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
190         if (Method->isInlined())
191           return LangOptions::Hidden;
192   }
193 
194   // If this decl is contained in a class, it should have the same visibility
195   // as the parent class.
196   if (const DeclContext *DC = D->getDeclContext())
197     if (DC->isRecord())
198       return getDeclVisibilityMode(cast<Decl>(DC));
199 
200   return getLangOptions().getVisibilityMode();
201 }
202 
203 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
204                                         const Decl *D) const {
205   // Internal definitions always have default visibility.
206   if (GV->hasLocalLinkage()) {
207     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
208     return;
209   }
210 
211   switch (getDeclVisibilityMode(D)) {
212   default: assert(0 && "Unknown visibility!");
213   case LangOptions::Default:
214     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
215   case LangOptions::Hidden:
216     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
217   case LangOptions::Protected:
218     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
219   }
220 }
221 
222 /// Set the symbol visibility of type information (vtable and RTTI)
223 /// associated with the given type.
224 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
225                                       const CXXRecordDecl *RD,
226                                       bool IsForRTTI) const {
227   setGlobalVisibility(GV, RD);
228 
229   if (!CodeGenOpts.HiddenWeakVTables)
230     return;
231 
232   // We want to drop the visibility to hidden for weak type symbols.
233   // This isn't possible if there might be unresolved references
234   // elsewhere that rely on this symbol being visible.
235 
236   // This should be kept roughly in sync with setThunkVisibility
237   // in CGVTables.cpp.
238 
239   // Preconditions.
240   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
241       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
242     return;
243 
244   // Don't override an explicit visibility attribute.
245   if (RD->hasAttr<VisibilityAttr>())
246     return;
247 
248   switch (RD->getTemplateSpecializationKind()) {
249   // We have to disable the optimization if this is an EI definition
250   // because there might be EI declarations in other shared objects.
251   case TSK_ExplicitInstantiationDefinition:
252   case TSK_ExplicitInstantiationDeclaration:
253     return;
254 
255   // Every use of a non-template class's type information has to emit it.
256   case TSK_Undeclared:
257     break;
258 
259   // In theory, implicit instantiations can ignore the possibility of
260   // an explicit instantiation declaration because there necessarily
261   // must be an EI definition somewhere with default visibility.  In
262   // practice, it's possible to have an explicit instantiation for
263   // an arbitrary template class, and linkers aren't necessarily able
264   // to deal with mixed-visibility symbols.
265   case TSK_ExplicitSpecialization:
266   case TSK_ImplicitInstantiation:
267     if (!CodeGenOpts.HiddenWeakTemplateVTables)
268       return;
269     break;
270   }
271 
272   // If there's a key function, there may be translation units
273   // that don't have the key function's definition.  But ignore
274   // this if we're emitting RTTI under -fno-rtti.
275   if (!IsForRTTI || Features.RTTI)
276     if (Context.getKeyFunction(RD))
277       return;
278 
279   // Otherwise, drop the visibility to hidden.
280   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
281 }
282 
283 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
284   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
285 
286   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
287   if (!Str.empty())
288     return Str;
289 
290   if (!getMangleContext().shouldMangleDeclName(ND)) {
291     IdentifierInfo *II = ND->getIdentifier();
292     assert(II && "Attempt to mangle unnamed decl.");
293 
294     Str = II->getName();
295     return Str;
296   }
297 
298   llvm::SmallString<256> Buffer;
299   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
300     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
301   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
302     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
303   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
304     getMangleContext().mangleBlock(GD, BD, Buffer);
305   else
306     getMangleContext().mangleName(ND, Buffer);
307 
308   // Allocate space for the mangled name.
309   size_t Length = Buffer.size();
310   char *Name = MangledNamesAllocator.Allocate<char>(Length);
311   std::copy(Buffer.begin(), Buffer.end(), Name);
312 
313   Str = llvm::StringRef(Name, Length);
314 
315   return Str;
316 }
317 
318 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
319                                    const BlockDecl *BD) {
320   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
321 }
322 
323 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
324   return getModule().getNamedValue(Name);
325 }
326 
327 /// AddGlobalCtor - Add a function to the list that will be called before
328 /// main() runs.
329 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
330   // FIXME: Type coercion of void()* types.
331   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
332 }
333 
334 /// AddGlobalDtor - Add a function to the list that will be called
335 /// when the module is unloaded.
336 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
337   // FIXME: Type coercion of void()* types.
338   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
339 }
340 
341 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
342   // Ctor function type is void()*.
343   llvm::FunctionType* CtorFTy =
344     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
345                             std::vector<const llvm::Type*>(),
346                             false);
347   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
348 
349   // Get the type of a ctor entry, { i32, void ()* }.
350   llvm::StructType* CtorStructTy =
351     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
352                           llvm::PointerType::getUnqual(CtorFTy), NULL);
353 
354   // Construct the constructor and destructor arrays.
355   std::vector<llvm::Constant*> Ctors;
356   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
357     std::vector<llvm::Constant*> S;
358     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
359                 I->second, false));
360     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
361     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
362   }
363 
364   if (!Ctors.empty()) {
365     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
366     new llvm::GlobalVariable(TheModule, AT, false,
367                              llvm::GlobalValue::AppendingLinkage,
368                              llvm::ConstantArray::get(AT, Ctors),
369                              GlobalName);
370   }
371 }
372 
373 void CodeGenModule::EmitAnnotations() {
374   if (Annotations.empty())
375     return;
376 
377   // Create a new global variable for the ConstantStruct in the Module.
378   llvm::Constant *Array =
379   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
380                                                 Annotations.size()),
381                            Annotations);
382   llvm::GlobalValue *gv =
383   new llvm::GlobalVariable(TheModule, Array->getType(), false,
384                            llvm::GlobalValue::AppendingLinkage, Array,
385                            "llvm.global.annotations");
386   gv->setSection("llvm.metadata");
387 }
388 
389 llvm::GlobalValue::LinkageTypes
390 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
391   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
392 
393   if (Linkage == GVA_Internal)
394     return llvm::Function::InternalLinkage;
395 
396   if (D->hasAttr<DLLExportAttr>())
397     return llvm::Function::DLLExportLinkage;
398 
399   if (D->hasAttr<WeakAttr>())
400     return llvm::Function::WeakAnyLinkage;
401 
402   // In C99 mode, 'inline' functions are guaranteed to have a strong
403   // definition somewhere else, so we can use available_externally linkage.
404   if (Linkage == GVA_C99Inline)
405     return llvm::Function::AvailableExternallyLinkage;
406 
407   // In C++, the compiler has to emit a definition in every translation unit
408   // that references the function.  We should use linkonce_odr because
409   // a) if all references in this translation unit are optimized away, we
410   // don't need to codegen it.  b) if the function persists, it needs to be
411   // merged with other definitions. c) C++ has the ODR, so we know the
412   // definition is dependable.
413   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
414     return llvm::Function::LinkOnceODRLinkage;
415 
416   // An explicit instantiation of a template has weak linkage, since
417   // explicit instantiations can occur in multiple translation units
418   // and must all be equivalent. However, we are not allowed to
419   // throw away these explicit instantiations.
420   if (Linkage == GVA_ExplicitTemplateInstantiation)
421     return llvm::Function::WeakODRLinkage;
422 
423   // Otherwise, we have strong external linkage.
424   assert(Linkage == GVA_StrongExternal);
425   return llvm::Function::ExternalLinkage;
426 }
427 
428 
429 /// SetFunctionDefinitionAttributes - Set attributes for a global.
430 ///
431 /// FIXME: This is currently only done for aliases and functions, but not for
432 /// variables (these details are set in EmitGlobalVarDefinition for variables).
433 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
434                                                     llvm::GlobalValue *GV) {
435   SetCommonAttributes(D, GV);
436 }
437 
438 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
439                                               const CGFunctionInfo &Info,
440                                               llvm::Function *F) {
441   unsigned CallingConv;
442   AttributeListType AttributeList;
443   ConstructAttributeList(Info, D, AttributeList, CallingConv);
444   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
445                                           AttributeList.size()));
446   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
447 }
448 
449 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
450                                                            llvm::Function *F) {
451   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
452     F->addFnAttr(llvm::Attribute::NoUnwind);
453 
454   if (D->hasAttr<AlwaysInlineAttr>())
455     F->addFnAttr(llvm::Attribute::AlwaysInline);
456 
457   if (D->hasAttr<NoInlineAttr>())
458     F->addFnAttr(llvm::Attribute::NoInline);
459 
460   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
461     F->addFnAttr(llvm::Attribute::StackProtect);
462   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
463     F->addFnAttr(llvm::Attribute::StackProtectReq);
464 
465   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
466   if (alignment)
467     F->setAlignment(alignment);
468 
469   // C++ ABI requires 2-byte alignment for member functions.
470   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
471     F->setAlignment(2);
472 }
473 
474 void CodeGenModule::SetCommonAttributes(const Decl *D,
475                                         llvm::GlobalValue *GV) {
476   setGlobalVisibility(GV, D);
477 
478   if (D->hasAttr<UsedAttr>())
479     AddUsedGlobal(GV);
480 
481   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
482     GV->setSection(SA->getName());
483 
484   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
485 }
486 
487 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
488                                                   llvm::Function *F,
489                                                   const CGFunctionInfo &FI) {
490   SetLLVMFunctionAttributes(D, FI, F);
491   SetLLVMFunctionAttributesForDefinition(D, F);
492 
493   F->setLinkage(llvm::Function::InternalLinkage);
494 
495   SetCommonAttributes(D, F);
496 }
497 
498 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
499                                           llvm::Function *F,
500                                           bool IsIncompleteFunction) {
501   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
502 
503   if (!IsIncompleteFunction)
504     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
505 
506   // Only a few attributes are set on declarations; these may later be
507   // overridden by a definition.
508 
509   if (FD->hasAttr<DLLImportAttr>()) {
510     F->setLinkage(llvm::Function::DLLImportLinkage);
511   } else if (FD->hasAttr<WeakAttr>() ||
512              FD->hasAttr<WeakImportAttr>()) {
513     // "extern_weak" is overloaded in LLVM; we probably should have
514     // separate linkage types for this.
515     F->setLinkage(llvm::Function::ExternalWeakLinkage);
516   } else {
517     F->setLinkage(llvm::Function::ExternalLinkage);
518   }
519 
520   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
521     F->setSection(SA->getName());
522 }
523 
524 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
525   assert(!GV->isDeclaration() &&
526          "Only globals with definition can force usage.");
527   LLVMUsed.push_back(GV);
528 }
529 
530 void CodeGenModule::EmitLLVMUsed() {
531   // Don't create llvm.used if there is no need.
532   if (LLVMUsed.empty())
533     return;
534 
535   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
536 
537   // Convert LLVMUsed to what ConstantArray needs.
538   std::vector<llvm::Constant*> UsedArray;
539   UsedArray.resize(LLVMUsed.size());
540   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
541     UsedArray[i] =
542      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
543                                       i8PTy);
544   }
545 
546   if (UsedArray.empty())
547     return;
548   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
549 
550   llvm::GlobalVariable *GV =
551     new llvm::GlobalVariable(getModule(), ATy, false,
552                              llvm::GlobalValue::AppendingLinkage,
553                              llvm::ConstantArray::get(ATy, UsedArray),
554                              "llvm.used");
555 
556   GV->setSection("llvm.metadata");
557 }
558 
559 void CodeGenModule::EmitDeferred() {
560   // Emit code for any potentially referenced deferred decls.  Since a
561   // previously unused static decl may become used during the generation of code
562   // for a static function, iterate until no  changes are made.
563 
564   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
565     if (!DeferredVTables.empty()) {
566       const CXXRecordDecl *RD = DeferredVTables.back();
567       DeferredVTables.pop_back();
568       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
569       continue;
570     }
571 
572     GlobalDecl D = DeferredDeclsToEmit.back();
573     DeferredDeclsToEmit.pop_back();
574 
575     // Check to see if we've already emitted this.  This is necessary
576     // for a couple of reasons: first, decls can end up in the
577     // deferred-decls queue multiple times, and second, decls can end
578     // up with definitions in unusual ways (e.g. by an extern inline
579     // function acquiring a strong function redefinition).  Just
580     // ignore these cases.
581     //
582     // TODO: That said, looking this up multiple times is very wasteful.
583     llvm::StringRef Name = getMangledName(D);
584     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
585     assert(CGRef && "Deferred decl wasn't referenced?");
586 
587     if (!CGRef->isDeclaration())
588       continue;
589 
590     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
591     // purposes an alias counts as a definition.
592     if (isa<llvm::GlobalAlias>(CGRef))
593       continue;
594 
595     // Otherwise, emit the definition and move on to the next one.
596     EmitGlobalDefinition(D);
597   }
598 }
599 
600 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
601 /// annotation information for a given GlobalValue.  The annotation struct is
602 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
603 /// GlobalValue being annotated.  The second field is the constant string
604 /// created from the AnnotateAttr's annotation.  The third field is a constant
605 /// string containing the name of the translation unit.  The fourth field is
606 /// the line number in the file of the annotated value declaration.
607 ///
608 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
609 ///        appears to.
610 ///
611 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
612                                                 const AnnotateAttr *AA,
613                                                 unsigned LineNo) {
614   llvm::Module *M = &getModule();
615 
616   // get [N x i8] constants for the annotation string, and the filename string
617   // which are the 2nd and 3rd elements of the global annotation structure.
618   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
619   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
620                                                   AA->getAnnotation(), true);
621   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
622                                                   M->getModuleIdentifier(),
623                                                   true);
624 
625   // Get the two global values corresponding to the ConstantArrays we just
626   // created to hold the bytes of the strings.
627   llvm::GlobalValue *annoGV =
628     new llvm::GlobalVariable(*M, anno->getType(), false,
629                              llvm::GlobalValue::PrivateLinkage, anno,
630                              GV->getName());
631   // translation unit name string, emitted into the llvm.metadata section.
632   llvm::GlobalValue *unitGV =
633     new llvm::GlobalVariable(*M, unit->getType(), false,
634                              llvm::GlobalValue::PrivateLinkage, unit,
635                              ".str");
636 
637   // Create the ConstantStruct for the global annotation.
638   llvm::Constant *Fields[4] = {
639     llvm::ConstantExpr::getBitCast(GV, SBP),
640     llvm::ConstantExpr::getBitCast(annoGV, SBP),
641     llvm::ConstantExpr::getBitCast(unitGV, SBP),
642     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
643   };
644   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
645 }
646 
647 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
648   // Never defer when EmitAllDecls is specified.
649   if (Features.EmitAllDecls)
650     return false;
651 
652   return !getContext().DeclMustBeEmitted(Global);
653 }
654 
655 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
656   const AliasAttr *AA = VD->getAttr<AliasAttr>();
657   assert(AA && "No alias?");
658 
659   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
660 
661   // See if there is already something with the target's name in the module.
662   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
663 
664   llvm::Constant *Aliasee;
665   if (isa<llvm::FunctionType>(DeclTy))
666     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
667   else
668     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
669                                     llvm::PointerType::getUnqual(DeclTy), 0);
670   if (!Entry) {
671     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
672     F->setLinkage(llvm::Function::ExternalWeakLinkage);
673     WeakRefReferences.insert(F);
674   }
675 
676   return Aliasee;
677 }
678 
679 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
680   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
681 
682   // Weak references don't produce any output by themselves.
683   if (Global->hasAttr<WeakRefAttr>())
684     return;
685 
686   // If this is an alias definition (which otherwise looks like a declaration)
687   // emit it now.
688   if (Global->hasAttr<AliasAttr>())
689     return EmitAliasDefinition(GD);
690 
691   // Ignore declarations, they will be emitted on their first use.
692   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
693     if (FD->getIdentifier()) {
694       llvm::StringRef Name = FD->getName();
695       if (Name == "_Block_object_assign") {
696         BlockObjectAssignDecl = FD;
697       } else if (Name == "_Block_object_dispose") {
698         BlockObjectDisposeDecl = FD;
699       }
700     }
701 
702     // Forward declarations are emitted lazily on first use.
703     if (!FD->isThisDeclarationADefinition())
704       return;
705   } else {
706     const VarDecl *VD = cast<VarDecl>(Global);
707     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
708 
709     if (VD->getIdentifier()) {
710       llvm::StringRef Name = VD->getName();
711       if (Name == "_NSConcreteGlobalBlock") {
712         NSConcreteGlobalBlockDecl = VD;
713       } else if (Name == "_NSConcreteStackBlock") {
714         NSConcreteStackBlockDecl = VD;
715       }
716     }
717 
718 
719     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
720       return;
721   }
722 
723   // Defer code generation when possible if this is a static definition, inline
724   // function etc.  These we only want to emit if they are used.
725   if (!MayDeferGeneration(Global)) {
726     // Emit the definition if it can't be deferred.
727     EmitGlobalDefinition(GD);
728     return;
729   }
730 
731   // If we're deferring emission of a C++ variable with an
732   // initializer, remember the order in which it appeared in the file.
733   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
734       cast<VarDecl>(Global)->hasInit()) {
735     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
736     CXXGlobalInits.push_back(0);
737   }
738 
739   // If the value has already been used, add it directly to the
740   // DeferredDeclsToEmit list.
741   llvm::StringRef MangledName = getMangledName(GD);
742   if (GetGlobalValue(MangledName))
743     DeferredDeclsToEmit.push_back(GD);
744   else {
745     // Otherwise, remember that we saw a deferred decl with this name.  The
746     // first use of the mangled name will cause it to move into
747     // DeferredDeclsToEmit.
748     DeferredDecls[MangledName] = GD;
749   }
750 }
751 
752 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
753   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
754 
755   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
756                                  Context.getSourceManager(),
757                                  "Generating code for declaration");
758 
759   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
760     // At -O0, don't generate IR for functions with available_externally
761     // linkage.
762     if (CodeGenOpts.OptimizationLevel == 0 &&
763         !Function->hasAttr<AlwaysInlineAttr>() &&
764         getFunctionLinkage(Function)
765                                   == llvm::Function::AvailableExternallyLinkage)
766       return;
767 
768     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
769       if (Method->isVirtual())
770         getVTables().EmitThunks(GD);
771 
772       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
773         return EmitCXXConstructor(CD, GD.getCtorType());
774 
775       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
776         return EmitCXXDestructor(DD, GD.getDtorType());
777     }
778 
779     return EmitGlobalFunctionDefinition(GD);
780   }
781 
782   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
783     return EmitGlobalVarDefinition(VD);
784 
785   assert(0 && "Invalid argument to EmitGlobalDefinition()");
786 }
787 
788 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
789 /// module, create and return an llvm Function with the specified type. If there
790 /// is something in the module with the specified name, return it potentially
791 /// bitcasted to the right type.
792 ///
793 /// If D is non-null, it specifies a decl that correspond to this.  This is used
794 /// to set the attributes on the function when it is first created.
795 llvm::Constant *
796 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
797                                        const llvm::Type *Ty,
798                                        GlobalDecl D) {
799   // Lookup the entry, lazily creating it if necessary.
800   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
801   if (Entry) {
802     if (WeakRefReferences.count(Entry)) {
803       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
804       if (FD && !FD->hasAttr<WeakAttr>())
805         Entry->setLinkage(llvm::Function::ExternalLinkage);
806 
807       WeakRefReferences.erase(Entry);
808     }
809 
810     if (Entry->getType()->getElementType() == Ty)
811       return Entry;
812 
813     // Make sure the result is of the correct type.
814     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
815     return llvm::ConstantExpr::getBitCast(Entry, PTy);
816   }
817 
818   // This function doesn't have a complete type (for example, the return
819   // type is an incomplete struct). Use a fake type instead, and make
820   // sure not to try to set attributes.
821   bool IsIncompleteFunction = false;
822 
823   const llvm::FunctionType *FTy;
824   if (isa<llvm::FunctionType>(Ty)) {
825     FTy = cast<llvm::FunctionType>(Ty);
826   } else {
827     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
828                                   std::vector<const llvm::Type*>(), false);
829     IsIncompleteFunction = true;
830   }
831 
832   llvm::Function *F = llvm::Function::Create(FTy,
833                                              llvm::Function::ExternalLinkage,
834                                              MangledName, &getModule());
835   assert(F->getName() == MangledName && "name was uniqued!");
836   if (D.getDecl())
837     SetFunctionAttributes(D, F, IsIncompleteFunction);
838 
839   // This is the first use or definition of a mangled name.  If there is a
840   // deferred decl with this name, remember that we need to emit it at the end
841   // of the file.
842   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
843   if (DDI != DeferredDecls.end()) {
844     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
845     // list, and remove it from DeferredDecls (since we don't need it anymore).
846     DeferredDeclsToEmit.push_back(DDI->second);
847     DeferredDecls.erase(DDI);
848   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
849     // If this the first reference to a C++ inline function in a class, queue up
850     // the deferred function body for emission.  These are not seen as
851     // top-level declarations.
852     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
853       DeferredDeclsToEmit.push_back(D);
854     // A called constructor which has no definition or declaration need be
855     // synthesized.
856     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
857       if (CD->isImplicit()) {
858         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
859         DeferredDeclsToEmit.push_back(D);
860       }
861     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
862       if (DD->isImplicit()) {
863         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
864         DeferredDeclsToEmit.push_back(D);
865       }
866     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
867       if (MD->isCopyAssignment() && MD->isImplicit()) {
868         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
869         DeferredDeclsToEmit.push_back(D);
870       }
871     }
872   }
873 
874   // Make sure the result is of the requested type.
875   if (!IsIncompleteFunction) {
876     assert(F->getType()->getElementType() == Ty);
877     return F;
878   }
879 
880   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
881   return llvm::ConstantExpr::getBitCast(F, PTy);
882 }
883 
884 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
885 /// non-null, then this function will use the specified type if it has to
886 /// create it (this occurs when we see a definition of the function).
887 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
888                                                  const llvm::Type *Ty) {
889   // If there was no specific requested type, just convert it now.
890   if (!Ty)
891     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
892 
893   llvm::StringRef MangledName = getMangledName(GD);
894   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
895 }
896 
897 /// CreateRuntimeFunction - Create a new runtime function with the specified
898 /// type and name.
899 llvm::Constant *
900 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
901                                      llvm::StringRef Name) {
902   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
903 }
904 
905 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
906   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
907     return false;
908   if (Context.getLangOptions().CPlusPlus &&
909       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
910     // FIXME: We should do something fancier here!
911     return false;
912   }
913   return true;
914 }
915 
916 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
917 /// create and return an llvm GlobalVariable with the specified type.  If there
918 /// is something in the module with the specified name, return it potentially
919 /// bitcasted to the right type.
920 ///
921 /// If D is non-null, it specifies a decl that correspond to this.  This is used
922 /// to set the attributes on the global when it is first created.
923 llvm::Constant *
924 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
925                                      const llvm::PointerType *Ty,
926                                      const VarDecl *D) {
927   // Lookup the entry, lazily creating it if necessary.
928   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
929   if (Entry) {
930     if (WeakRefReferences.count(Entry)) {
931       if (D && !D->hasAttr<WeakAttr>())
932         Entry->setLinkage(llvm::Function::ExternalLinkage);
933 
934       WeakRefReferences.erase(Entry);
935     }
936 
937     if (Entry->getType() == Ty)
938       return Entry;
939 
940     // Make sure the result is of the correct type.
941     return llvm::ConstantExpr::getBitCast(Entry, Ty);
942   }
943 
944   // This is the first use or definition of a mangled name.  If there is a
945   // deferred decl with this name, remember that we need to emit it at the end
946   // of the file.
947   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
948   if (DDI != DeferredDecls.end()) {
949     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
950     // list, and remove it from DeferredDecls (since we don't need it anymore).
951     DeferredDeclsToEmit.push_back(DDI->second);
952     DeferredDecls.erase(DDI);
953   }
954 
955   llvm::GlobalVariable *GV =
956     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
957                              llvm::GlobalValue::ExternalLinkage,
958                              0, MangledName, 0,
959                              false, Ty->getAddressSpace());
960 
961   // Handle things which are present even on external declarations.
962   if (D) {
963     // FIXME: This code is overly simple and should be merged with other global
964     // handling.
965     GV->setConstant(DeclIsConstantGlobal(Context, D));
966 
967     // FIXME: Merge with other attribute handling code.
968     if (D->getStorageClass() == SC_PrivateExtern)
969       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
970 
971     if (D->hasAttr<WeakAttr>() ||
972         D->hasAttr<WeakImportAttr>())
973       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
974 
975     GV->setThreadLocal(D->isThreadSpecified());
976   }
977 
978   return GV;
979 }
980 
981 
982 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
983 /// given global variable.  If Ty is non-null and if the global doesn't exist,
984 /// then it will be greated with the specified type instead of whatever the
985 /// normal requested type would be.
986 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
987                                                   const llvm::Type *Ty) {
988   assert(D->hasGlobalStorage() && "Not a global variable");
989   QualType ASTTy = D->getType();
990   if (Ty == 0)
991     Ty = getTypes().ConvertTypeForMem(ASTTy);
992 
993   const llvm::PointerType *PTy =
994     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
995 
996   llvm::StringRef MangledName = getMangledName(D);
997   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
998 }
999 
1000 /// CreateRuntimeVariable - Create a new runtime global variable with the
1001 /// specified type and name.
1002 llvm::Constant *
1003 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1004                                      llvm::StringRef Name) {
1005   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1006 }
1007 
1008 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1009   assert(!D->getInit() && "Cannot emit definite definitions here!");
1010 
1011   if (MayDeferGeneration(D)) {
1012     // If we have not seen a reference to this variable yet, place it
1013     // into the deferred declarations table to be emitted if needed
1014     // later.
1015     llvm::StringRef MangledName = getMangledName(D);
1016     if (!GetGlobalValue(MangledName)) {
1017       DeferredDecls[MangledName] = D;
1018       return;
1019     }
1020   }
1021 
1022   // The tentative definition is the only definition.
1023   EmitGlobalVarDefinition(D);
1024 }
1025 
1026 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1027   if (DefinitionRequired)
1028     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1029 }
1030 
1031 llvm::GlobalVariable::LinkageTypes
1032 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1033   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1034     return llvm::GlobalVariable::InternalLinkage;
1035 
1036   if (const CXXMethodDecl *KeyFunction
1037                                     = RD->getASTContext().getKeyFunction(RD)) {
1038     // If this class has a key function, use that to determine the linkage of
1039     // the vtable.
1040     const FunctionDecl *Def = 0;
1041     if (KeyFunction->hasBody(Def))
1042       KeyFunction = cast<CXXMethodDecl>(Def);
1043 
1044     switch (KeyFunction->getTemplateSpecializationKind()) {
1045       case TSK_Undeclared:
1046       case TSK_ExplicitSpecialization:
1047         if (KeyFunction->isInlined())
1048           return llvm::GlobalVariable::WeakODRLinkage;
1049 
1050         return llvm::GlobalVariable::ExternalLinkage;
1051 
1052       case TSK_ImplicitInstantiation:
1053       case TSK_ExplicitInstantiationDefinition:
1054         return llvm::GlobalVariable::WeakODRLinkage;
1055 
1056       case TSK_ExplicitInstantiationDeclaration:
1057         // FIXME: Use available_externally linkage. However, this currently
1058         // breaks LLVM's build due to undefined symbols.
1059         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1060         return llvm::GlobalVariable::WeakODRLinkage;
1061     }
1062   }
1063 
1064   switch (RD->getTemplateSpecializationKind()) {
1065   case TSK_Undeclared:
1066   case TSK_ExplicitSpecialization:
1067   case TSK_ImplicitInstantiation:
1068   case TSK_ExplicitInstantiationDefinition:
1069     return llvm::GlobalVariable::WeakODRLinkage;
1070 
1071   case TSK_ExplicitInstantiationDeclaration:
1072     // FIXME: Use available_externally linkage. However, this currently
1073     // breaks LLVM's build due to undefined symbols.
1074     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1075     return llvm::GlobalVariable::WeakODRLinkage;
1076   }
1077 
1078   // Silence GCC warning.
1079   return llvm::GlobalVariable::WeakODRLinkage;
1080 }
1081 
1082 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1083     return CharUnits::fromQuantity(
1084       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1085 }
1086 
1087 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1088   llvm::Constant *Init = 0;
1089   QualType ASTTy = D->getType();
1090   bool NonConstInit = false;
1091 
1092   const Expr *InitExpr = D->getAnyInitializer();
1093 
1094   if (!InitExpr) {
1095     // This is a tentative definition; tentative definitions are
1096     // implicitly initialized with { 0 }.
1097     //
1098     // Note that tentative definitions are only emitted at the end of
1099     // a translation unit, so they should never have incomplete
1100     // type. In addition, EmitTentativeDefinition makes sure that we
1101     // never attempt to emit a tentative definition if a real one
1102     // exists. A use may still exists, however, so we still may need
1103     // to do a RAUW.
1104     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1105     Init = EmitNullConstant(D->getType());
1106   } else {
1107     Init = EmitConstantExpr(InitExpr, D->getType());
1108     if (!Init) {
1109       QualType T = InitExpr->getType();
1110       if (D->getType()->isReferenceType())
1111         T = D->getType();
1112 
1113       if (getLangOptions().CPlusPlus) {
1114         EmitCXXGlobalVarDeclInitFunc(D);
1115         Init = EmitNullConstant(T);
1116         NonConstInit = true;
1117       } else {
1118         ErrorUnsupported(D, "static initializer");
1119         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1120       }
1121     } else {
1122       // We don't need an initializer, so remove the entry for the delayed
1123       // initializer position (just in case this entry was delayed).
1124       if (getLangOptions().CPlusPlus)
1125         DelayedCXXInitPosition.erase(D);
1126     }
1127   }
1128 
1129   const llvm::Type* InitType = Init->getType();
1130   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1131 
1132   // Strip off a bitcast if we got one back.
1133   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1134     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1135            // all zero index gep.
1136            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1137     Entry = CE->getOperand(0);
1138   }
1139 
1140   // Entry is now either a Function or GlobalVariable.
1141   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1142 
1143   // We have a definition after a declaration with the wrong type.
1144   // We must make a new GlobalVariable* and update everything that used OldGV
1145   // (a declaration or tentative definition) with the new GlobalVariable*
1146   // (which will be a definition).
1147   //
1148   // This happens if there is a prototype for a global (e.g.
1149   // "extern int x[];") and then a definition of a different type (e.g.
1150   // "int x[10];"). This also happens when an initializer has a different type
1151   // from the type of the global (this happens with unions).
1152   if (GV == 0 ||
1153       GV->getType()->getElementType() != InitType ||
1154       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1155 
1156     // Move the old entry aside so that we'll create a new one.
1157     Entry->setName(llvm::StringRef());
1158 
1159     // Make a new global with the correct type, this is now guaranteed to work.
1160     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1161 
1162     // Replace all uses of the old global with the new global
1163     llvm::Constant *NewPtrForOldDecl =
1164         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1165     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1166 
1167     // Erase the old global, since it is no longer used.
1168     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1169   }
1170 
1171   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1172     SourceManager &SM = Context.getSourceManager();
1173     AddAnnotation(EmitAnnotateAttr(GV, AA,
1174                               SM.getInstantiationLineNumber(D->getLocation())));
1175   }
1176 
1177   GV->setInitializer(Init);
1178 
1179   // If it is safe to mark the global 'constant', do so now.
1180   GV->setConstant(false);
1181   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1182     GV->setConstant(true);
1183 
1184   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1185 
1186   // Set the llvm linkage type as appropriate.
1187   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1188   if (Linkage == GVA_Internal)
1189     GV->setLinkage(llvm::Function::InternalLinkage);
1190   else if (D->hasAttr<DLLImportAttr>())
1191     GV->setLinkage(llvm::Function::DLLImportLinkage);
1192   else if (D->hasAttr<DLLExportAttr>())
1193     GV->setLinkage(llvm::Function::DLLExportLinkage);
1194   else if (D->hasAttr<WeakAttr>()) {
1195     if (GV->isConstant())
1196       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1197     else
1198       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1199   } else if (Linkage == GVA_TemplateInstantiation ||
1200              Linkage == GVA_ExplicitTemplateInstantiation)
1201     // FIXME: It seems like we can provide more specific linkage here
1202     // (LinkOnceODR, WeakODR).
1203     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1204   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1205            !D->hasExternalStorage() && !D->getInit() &&
1206            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1207     // Thread local vars aren't considered common linkage.
1208     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1209     // common vars aren't constant even if declared const.
1210     GV->setConstant(false);
1211   } else
1212     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1213 
1214   SetCommonAttributes(D, GV);
1215 
1216   // Emit global variable debug information.
1217   if (CGDebugInfo *DI = getDebugInfo()) {
1218     DI->setLocation(D->getLocation());
1219     DI->EmitGlobalVariable(GV, D);
1220   }
1221 }
1222 
1223 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1224 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1225 /// existing call uses of the old function in the module, this adjusts them to
1226 /// call the new function directly.
1227 ///
1228 /// This is not just a cleanup: the always_inline pass requires direct calls to
1229 /// functions to be able to inline them.  If there is a bitcast in the way, it
1230 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1231 /// run at -O0.
1232 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1233                                                       llvm::Function *NewFn) {
1234   // If we're redefining a global as a function, don't transform it.
1235   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1236   if (OldFn == 0) return;
1237 
1238   const llvm::Type *NewRetTy = NewFn->getReturnType();
1239   llvm::SmallVector<llvm::Value*, 4> ArgList;
1240 
1241   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1242        UI != E; ) {
1243     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1244     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1245     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1246     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1247     llvm::CallSite CS(CI);
1248     if (!CI || !CS.isCallee(I)) continue;
1249 
1250     // If the return types don't match exactly, and if the call isn't dead, then
1251     // we can't transform this call.
1252     if (CI->getType() != NewRetTy && !CI->use_empty())
1253       continue;
1254 
1255     // If the function was passed too few arguments, don't transform.  If extra
1256     // arguments were passed, we silently drop them.  If any of the types
1257     // mismatch, we don't transform.
1258     unsigned ArgNo = 0;
1259     bool DontTransform = false;
1260     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1261          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1262       if (CS.arg_size() == ArgNo ||
1263           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1264         DontTransform = true;
1265         break;
1266       }
1267     }
1268     if (DontTransform)
1269       continue;
1270 
1271     // Okay, we can transform this.  Create the new call instruction and copy
1272     // over the required information.
1273     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1274     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1275                                                      ArgList.end(), "", CI);
1276     ArgList.clear();
1277     if (!NewCall->getType()->isVoidTy())
1278       NewCall->takeName(CI);
1279     NewCall->setAttributes(CI->getAttributes());
1280     NewCall->setCallingConv(CI->getCallingConv());
1281 
1282     // Finally, remove the old call, replacing any uses with the new one.
1283     if (!CI->use_empty())
1284       CI->replaceAllUsesWith(NewCall);
1285 
1286     // Copy debug location attached to CI.
1287     if (!CI->getDebugLoc().isUnknown())
1288       NewCall->setDebugLoc(CI->getDebugLoc());
1289     CI->eraseFromParent();
1290   }
1291 }
1292 
1293 
1294 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1295   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1296   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1297   getMangleContext().mangleInitDiscriminator();
1298   // Get or create the prototype for the function.
1299   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1300 
1301   // Strip off a bitcast if we got one back.
1302   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1303     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1304     Entry = CE->getOperand(0);
1305   }
1306 
1307 
1308   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1309     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1310 
1311     // If the types mismatch then we have to rewrite the definition.
1312     assert(OldFn->isDeclaration() &&
1313            "Shouldn't replace non-declaration");
1314 
1315     // F is the Function* for the one with the wrong type, we must make a new
1316     // Function* and update everything that used F (a declaration) with the new
1317     // Function* (which will be a definition).
1318     //
1319     // This happens if there is a prototype for a function
1320     // (e.g. "int f()") and then a definition of a different type
1321     // (e.g. "int f(int x)").  Move the old function aside so that it
1322     // doesn't interfere with GetAddrOfFunction.
1323     OldFn->setName(llvm::StringRef());
1324     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1325 
1326     // If this is an implementation of a function without a prototype, try to
1327     // replace any existing uses of the function (which may be calls) with uses
1328     // of the new function
1329     if (D->getType()->isFunctionNoProtoType()) {
1330       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1331       OldFn->removeDeadConstantUsers();
1332     }
1333 
1334     // Replace uses of F with the Function we will endow with a body.
1335     if (!Entry->use_empty()) {
1336       llvm::Constant *NewPtrForOldDecl =
1337         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1338       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1339     }
1340 
1341     // Ok, delete the old function now, which is dead.
1342     OldFn->eraseFromParent();
1343 
1344     Entry = NewFn;
1345   }
1346 
1347   llvm::Function *Fn = cast<llvm::Function>(Entry);
1348   setFunctionLinkage(D, Fn);
1349 
1350   CodeGenFunction(*this).GenerateCode(D, Fn);
1351 
1352   SetFunctionDefinitionAttributes(D, Fn);
1353   SetLLVMFunctionAttributesForDefinition(D, Fn);
1354 
1355   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1356     AddGlobalCtor(Fn, CA->getPriority());
1357   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1358     AddGlobalDtor(Fn, DA->getPriority());
1359 }
1360 
1361 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1362   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1363   const AliasAttr *AA = D->getAttr<AliasAttr>();
1364   assert(AA && "Not an alias?");
1365 
1366   llvm::StringRef MangledName = getMangledName(GD);
1367 
1368   // If there is a definition in the module, then it wins over the alias.
1369   // This is dubious, but allow it to be safe.  Just ignore the alias.
1370   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1371   if (Entry && !Entry->isDeclaration())
1372     return;
1373 
1374   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1375 
1376   // Create a reference to the named value.  This ensures that it is emitted
1377   // if a deferred decl.
1378   llvm::Constant *Aliasee;
1379   if (isa<llvm::FunctionType>(DeclTy))
1380     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1381   else
1382     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1383                                     llvm::PointerType::getUnqual(DeclTy), 0);
1384 
1385   // Create the new alias itself, but don't set a name yet.
1386   llvm::GlobalValue *GA =
1387     new llvm::GlobalAlias(Aliasee->getType(),
1388                           llvm::Function::ExternalLinkage,
1389                           "", Aliasee, &getModule());
1390 
1391   if (Entry) {
1392     assert(Entry->isDeclaration());
1393 
1394     // If there is a declaration in the module, then we had an extern followed
1395     // by the alias, as in:
1396     //   extern int test6();
1397     //   ...
1398     //   int test6() __attribute__((alias("test7")));
1399     //
1400     // Remove it and replace uses of it with the alias.
1401     GA->takeName(Entry);
1402 
1403     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1404                                                           Entry->getType()));
1405     Entry->eraseFromParent();
1406   } else {
1407     GA->setName(MangledName);
1408   }
1409 
1410   // Set attributes which are particular to an alias; this is a
1411   // specialization of the attributes which may be set on a global
1412   // variable/function.
1413   if (D->hasAttr<DLLExportAttr>()) {
1414     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1415       // The dllexport attribute is ignored for undefined symbols.
1416       if (FD->hasBody())
1417         GA->setLinkage(llvm::Function::DLLExportLinkage);
1418     } else {
1419       GA->setLinkage(llvm::Function::DLLExportLinkage);
1420     }
1421   } else if (D->hasAttr<WeakAttr>() ||
1422              D->hasAttr<WeakRefAttr>() ||
1423              D->hasAttr<WeakImportAttr>()) {
1424     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1425   }
1426 
1427   SetCommonAttributes(D, GA);
1428 }
1429 
1430 /// getBuiltinLibFunction - Given a builtin id for a function like
1431 /// "__builtin_fabsf", return a Function* for "fabsf".
1432 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1433                                                   unsigned BuiltinID) {
1434   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1435           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1436          "isn't a lib fn");
1437 
1438   // Get the name, skip over the __builtin_ prefix (if necessary).
1439   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1440   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1441     Name += 10;
1442 
1443   const llvm::FunctionType *Ty =
1444     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1445 
1446   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1447 }
1448 
1449 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1450                                             unsigned NumTys) {
1451   return llvm::Intrinsic::getDeclaration(&getModule(),
1452                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1453 }
1454 
1455 
1456 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1457                                            const llvm::Type *SrcType,
1458                                            const llvm::Type *SizeType) {
1459   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1460   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1461 }
1462 
1463 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1464                                             const llvm::Type *SrcType,
1465                                             const llvm::Type *SizeType) {
1466   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1467   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1468 }
1469 
1470 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1471                                            const llvm::Type *SizeType) {
1472   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1473   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1474 }
1475 
1476 static llvm::StringMapEntry<llvm::Constant*> &
1477 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1478                          const StringLiteral *Literal,
1479                          bool TargetIsLSB,
1480                          bool &IsUTF16,
1481                          unsigned &StringLength) {
1482   llvm::StringRef String = Literal->getString();
1483   unsigned NumBytes = String.size();
1484 
1485   // Check for simple case.
1486   if (!Literal->containsNonAsciiOrNull()) {
1487     StringLength = NumBytes;
1488     return Map.GetOrCreateValue(String);
1489   }
1490 
1491   // Otherwise, convert the UTF8 literals into a byte string.
1492   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1493   const UTF8 *FromPtr = (UTF8 *)String.data();
1494   UTF16 *ToPtr = &ToBuf[0];
1495 
1496   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1497                                                &ToPtr, ToPtr + NumBytes,
1498                                                strictConversion);
1499 
1500   // Check for conversion failure.
1501   if (Result != conversionOK) {
1502     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1503     // this duplicate code.
1504     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1505     StringLength = NumBytes;
1506     return Map.GetOrCreateValue(String);
1507   }
1508 
1509   // ConvertUTF8toUTF16 returns the length in ToPtr.
1510   StringLength = ToPtr - &ToBuf[0];
1511 
1512   // Render the UTF-16 string into a byte array and convert to the target byte
1513   // order.
1514   //
1515   // FIXME: This isn't something we should need to do here.
1516   llvm::SmallString<128> AsBytes;
1517   AsBytes.reserve(StringLength * 2);
1518   for (unsigned i = 0; i != StringLength; ++i) {
1519     unsigned short Val = ToBuf[i];
1520     if (TargetIsLSB) {
1521       AsBytes.push_back(Val & 0xFF);
1522       AsBytes.push_back(Val >> 8);
1523     } else {
1524       AsBytes.push_back(Val >> 8);
1525       AsBytes.push_back(Val & 0xFF);
1526     }
1527   }
1528   // Append one extra null character, the second is automatically added by our
1529   // caller.
1530   AsBytes.push_back(0);
1531 
1532   IsUTF16 = true;
1533   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1534 }
1535 
1536 llvm::Constant *
1537 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1538   unsigned StringLength = 0;
1539   bool isUTF16 = false;
1540   llvm::StringMapEntry<llvm::Constant*> &Entry =
1541     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1542                              getTargetData().isLittleEndian(),
1543                              isUTF16, StringLength);
1544 
1545   if (llvm::Constant *C = Entry.getValue())
1546     return C;
1547 
1548   llvm::Constant *Zero =
1549       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1550   llvm::Constant *Zeros[] = { Zero, Zero };
1551 
1552   // If we don't already have it, get __CFConstantStringClassReference.
1553   if (!CFConstantStringClassRef) {
1554     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1555     Ty = llvm::ArrayType::get(Ty, 0);
1556     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1557                                            "__CFConstantStringClassReference");
1558     // Decay array -> ptr
1559     CFConstantStringClassRef =
1560       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1561   }
1562 
1563   QualType CFTy = getContext().getCFConstantStringType();
1564 
1565   const llvm::StructType *STy =
1566     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1567 
1568   std::vector<llvm::Constant*> Fields(4);
1569 
1570   // Class pointer.
1571   Fields[0] = CFConstantStringClassRef;
1572 
1573   // Flags.
1574   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1575   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1576     llvm::ConstantInt::get(Ty, 0x07C8);
1577 
1578   // String pointer.
1579   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1580 
1581   llvm::GlobalValue::LinkageTypes Linkage;
1582   bool isConstant;
1583   if (isUTF16) {
1584     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1585     Linkage = llvm::GlobalValue::InternalLinkage;
1586     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1587     // does make plain ascii ones writable.
1588     isConstant = true;
1589   } else {
1590     Linkage = llvm::GlobalValue::PrivateLinkage;
1591     isConstant = !Features.WritableStrings;
1592   }
1593 
1594   llvm::GlobalVariable *GV =
1595     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1596                              ".str");
1597   if (isUTF16) {
1598     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1599     GV->setAlignment(Align.getQuantity());
1600   }
1601   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1602 
1603   // String length.
1604   Ty = getTypes().ConvertType(getContext().LongTy);
1605   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1606 
1607   // The struct.
1608   C = llvm::ConstantStruct::get(STy, Fields);
1609   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1610                                 llvm::GlobalVariable::PrivateLinkage, C,
1611                                 "_unnamed_cfstring_");
1612   if (const char *Sect = getContext().Target.getCFStringSection())
1613     GV->setSection(Sect);
1614   Entry.setValue(GV);
1615 
1616   return GV;
1617 }
1618 
1619 llvm::Constant *
1620 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1621   unsigned StringLength = 0;
1622   bool isUTF16 = false;
1623   llvm::StringMapEntry<llvm::Constant*> &Entry =
1624     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1625                              getTargetData().isLittleEndian(),
1626                              isUTF16, StringLength);
1627 
1628   if (llvm::Constant *C = Entry.getValue())
1629     return C;
1630 
1631   llvm::Constant *Zero =
1632   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1633   llvm::Constant *Zeros[] = { Zero, Zero };
1634 
1635   // If we don't already have it, get _NSConstantStringClassReference.
1636   if (!NSConstantStringClassRef) {
1637     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1638     Ty = llvm::ArrayType::get(Ty, 0);
1639     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1640                                         Features.ObjCNonFragileABI ?
1641                                         "OBJC_CLASS_$_NSConstantString" :
1642                                         "_NSConstantStringClassReference");
1643     // Decay array -> ptr
1644     NSConstantStringClassRef =
1645       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1646   }
1647 
1648   QualType NSTy = getContext().getNSConstantStringType();
1649 
1650   const llvm::StructType *STy =
1651   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1652 
1653   std::vector<llvm::Constant*> Fields(3);
1654 
1655   // Class pointer.
1656   Fields[0] = NSConstantStringClassRef;
1657 
1658   // String pointer.
1659   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1660 
1661   llvm::GlobalValue::LinkageTypes Linkage;
1662   bool isConstant;
1663   if (isUTF16) {
1664     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1665     Linkage = llvm::GlobalValue::InternalLinkage;
1666     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1667     // does make plain ascii ones writable.
1668     isConstant = true;
1669   } else {
1670     Linkage = llvm::GlobalValue::PrivateLinkage;
1671     isConstant = !Features.WritableStrings;
1672   }
1673 
1674   llvm::GlobalVariable *GV =
1675   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1676                            ".str");
1677   if (isUTF16) {
1678     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1679     GV->setAlignment(Align.getQuantity());
1680   }
1681   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1682 
1683   // String length.
1684   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1685   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1686 
1687   // The struct.
1688   C = llvm::ConstantStruct::get(STy, Fields);
1689   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1690                                 llvm::GlobalVariable::PrivateLinkage, C,
1691                                 "_unnamed_nsstring_");
1692   // FIXME. Fix section.
1693   if (const char *Sect =
1694         Features.ObjCNonFragileABI
1695           ? getContext().Target.getNSStringNonFragileABISection()
1696           : getContext().Target.getNSStringSection())
1697     GV->setSection(Sect);
1698   Entry.setValue(GV);
1699 
1700   return GV;
1701 }
1702 
1703 /// GetStringForStringLiteral - Return the appropriate bytes for a
1704 /// string literal, properly padded to match the literal type.
1705 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1706   const ConstantArrayType *CAT =
1707     getContext().getAsConstantArrayType(E->getType());
1708   assert(CAT && "String isn't pointer or array!");
1709 
1710   // Resize the string to the right size.
1711   uint64_t RealLen = CAT->getSize().getZExtValue();
1712 
1713   if (E->isWide())
1714     RealLen *= getContext().Target.getWCharWidth()/8;
1715 
1716   std::string Str = E->getString().str();
1717   Str.resize(RealLen, '\0');
1718 
1719   return Str;
1720 }
1721 
1722 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1723 /// constant array for the given string literal.
1724 llvm::Constant *
1725 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1726   // FIXME: This can be more efficient.
1727   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1728   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1729   if (S->isWide()) {
1730     llvm::Type *DestTy =
1731         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1732     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1733   }
1734   return C;
1735 }
1736 
1737 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1738 /// array for the given ObjCEncodeExpr node.
1739 llvm::Constant *
1740 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1741   std::string Str;
1742   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1743 
1744   return GetAddrOfConstantCString(Str);
1745 }
1746 
1747 
1748 /// GenerateWritableString -- Creates storage for a string literal.
1749 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1750                                              bool constant,
1751                                              CodeGenModule &CGM,
1752                                              const char *GlobalName) {
1753   // Create Constant for this string literal. Don't add a '\0'.
1754   llvm::Constant *C =
1755       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1756 
1757   // Create a global variable for this string
1758   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1759                                   llvm::GlobalValue::PrivateLinkage,
1760                                   C, GlobalName);
1761 }
1762 
1763 /// GetAddrOfConstantString - Returns a pointer to a character array
1764 /// containing the literal. This contents are exactly that of the
1765 /// given string, i.e. it will not be null terminated automatically;
1766 /// see GetAddrOfConstantCString. Note that whether the result is
1767 /// actually a pointer to an LLVM constant depends on
1768 /// Feature.WriteableStrings.
1769 ///
1770 /// The result has pointer to array type.
1771 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1772                                                        const char *GlobalName) {
1773   bool IsConstant = !Features.WritableStrings;
1774 
1775   // Get the default prefix if a name wasn't specified.
1776   if (!GlobalName)
1777     GlobalName = ".str";
1778 
1779   // Don't share any string literals if strings aren't constant.
1780   if (!IsConstant)
1781     return GenerateStringLiteral(str, false, *this, GlobalName);
1782 
1783   llvm::StringMapEntry<llvm::Constant *> &Entry =
1784     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1785 
1786   if (Entry.getValue())
1787     return Entry.getValue();
1788 
1789   // Create a global variable for this.
1790   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1791   Entry.setValue(C);
1792   return C;
1793 }
1794 
1795 /// GetAddrOfConstantCString - Returns a pointer to a character
1796 /// array containing the literal and a terminating '\-'
1797 /// character. The result has pointer to array type.
1798 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1799                                                         const char *GlobalName){
1800   return GetAddrOfConstantString(str + '\0', GlobalName);
1801 }
1802 
1803 /// EmitObjCPropertyImplementations - Emit information for synthesized
1804 /// properties for an implementation.
1805 void CodeGenModule::EmitObjCPropertyImplementations(const
1806                                                     ObjCImplementationDecl *D) {
1807   for (ObjCImplementationDecl::propimpl_iterator
1808          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1809     ObjCPropertyImplDecl *PID = *i;
1810 
1811     // Dynamic is just for type-checking.
1812     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1813       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1814 
1815       // Determine which methods need to be implemented, some may have
1816       // been overridden. Note that ::isSynthesized is not the method
1817       // we want, that just indicates if the decl came from a
1818       // property. What we want to know is if the method is defined in
1819       // this implementation.
1820       if (!D->getInstanceMethod(PD->getGetterName()))
1821         CodeGenFunction(*this).GenerateObjCGetter(
1822                                  const_cast<ObjCImplementationDecl *>(D), PID);
1823       if (!PD->isReadOnly() &&
1824           !D->getInstanceMethod(PD->getSetterName()))
1825         CodeGenFunction(*this).GenerateObjCSetter(
1826                                  const_cast<ObjCImplementationDecl *>(D), PID);
1827     }
1828   }
1829 }
1830 
1831 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1832 /// for an implementation.
1833 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1834   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1835     return;
1836   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1837   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1838   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1839   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1840   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1841                                                   D->getLocation(),
1842                                                   D->getLocation(), cxxSelector,
1843                                                   getContext().VoidTy, 0,
1844                                                   DC, true, false, true, false,
1845                                                   ObjCMethodDecl::Required);
1846   D->addInstanceMethod(DTORMethod);
1847   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1848 
1849   II = &getContext().Idents.get(".cxx_construct");
1850   cxxSelector = getContext().Selectors.getSelector(0, &II);
1851   // The constructor returns 'self'.
1852   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1853                                                 D->getLocation(),
1854                                                 D->getLocation(), cxxSelector,
1855                                                 getContext().getObjCIdType(), 0,
1856                                                 DC, true, false, true, false,
1857                                                 ObjCMethodDecl::Required);
1858   D->addInstanceMethod(CTORMethod);
1859   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1860 
1861 
1862 }
1863 
1864 /// EmitNamespace - Emit all declarations in a namespace.
1865 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1866   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1867        I != E; ++I)
1868     EmitTopLevelDecl(*I);
1869 }
1870 
1871 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1872 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1873   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1874       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1875     ErrorUnsupported(LSD, "linkage spec");
1876     return;
1877   }
1878 
1879   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1880        I != E; ++I)
1881     EmitTopLevelDecl(*I);
1882 }
1883 
1884 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1885 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1886   // If an error has occurred, stop code generation, but continue
1887   // parsing and semantic analysis (to ensure all warnings and errors
1888   // are emitted).
1889   if (Diags.hasErrorOccurred())
1890     return;
1891 
1892   // Ignore dependent declarations.
1893   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1894     return;
1895 
1896   switch (D->getKind()) {
1897   case Decl::CXXConversion:
1898   case Decl::CXXMethod:
1899   case Decl::Function:
1900     // Skip function templates
1901     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1902       return;
1903 
1904     EmitGlobal(cast<FunctionDecl>(D));
1905     break;
1906 
1907   case Decl::Var:
1908     EmitGlobal(cast<VarDecl>(D));
1909     break;
1910 
1911   // C++ Decls
1912   case Decl::Namespace:
1913     EmitNamespace(cast<NamespaceDecl>(D));
1914     break;
1915     // No code generation needed.
1916   case Decl::UsingShadow:
1917   case Decl::Using:
1918   case Decl::UsingDirective:
1919   case Decl::ClassTemplate:
1920   case Decl::FunctionTemplate:
1921   case Decl::NamespaceAlias:
1922     break;
1923   case Decl::CXXConstructor:
1924     // Skip function templates
1925     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1926       return;
1927 
1928     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1929     break;
1930   case Decl::CXXDestructor:
1931     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1932     break;
1933 
1934   case Decl::StaticAssert:
1935     // Nothing to do.
1936     break;
1937 
1938   // Objective-C Decls
1939 
1940   // Forward declarations, no (immediate) code generation.
1941   case Decl::ObjCClass:
1942   case Decl::ObjCForwardProtocol:
1943   case Decl::ObjCInterface:
1944     break;
1945 
1946     case Decl::ObjCCategory: {
1947       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1948       if (CD->IsClassExtension() && CD->hasSynthBitfield())
1949         Context.ResetObjCLayout(CD->getClassInterface());
1950       break;
1951     }
1952 
1953 
1954   case Decl::ObjCProtocol:
1955     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1956     break;
1957 
1958   case Decl::ObjCCategoryImpl:
1959     // Categories have properties but don't support synthesize so we
1960     // can ignore them here.
1961     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1962     break;
1963 
1964   case Decl::ObjCImplementation: {
1965     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1966     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1967       Context.ResetObjCLayout(OMD->getClassInterface());
1968     EmitObjCPropertyImplementations(OMD);
1969     EmitObjCIvarInitializations(OMD);
1970     Runtime->GenerateClass(OMD);
1971     break;
1972   }
1973   case Decl::ObjCMethod: {
1974     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1975     // If this is not a prototype, emit the body.
1976     if (OMD->getBody())
1977       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1978     break;
1979   }
1980   case Decl::ObjCCompatibleAlias:
1981     // compatibility-alias is a directive and has no code gen.
1982     break;
1983 
1984   case Decl::LinkageSpec:
1985     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1986     break;
1987 
1988   case Decl::FileScopeAsm: {
1989     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1990     llvm::StringRef AsmString = AD->getAsmString()->getString();
1991 
1992     const std::string &S = getModule().getModuleInlineAsm();
1993     if (S.empty())
1994       getModule().setModuleInlineAsm(AsmString);
1995     else
1996       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1997     break;
1998   }
1999 
2000   default:
2001     // Make sure we handled everything we should, every other kind is a
2002     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2003     // function. Need to recode Decl::Kind to do that easily.
2004     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2005   }
2006 }
2007 
2008 /// Turns the given pointer into a constant.
2009 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2010                                           const void *Ptr) {
2011   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2012   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2013   return llvm::ConstantInt::get(i64, PtrInt);
2014 }
2015 
2016 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2017                                    llvm::NamedMDNode *&GlobalMetadata,
2018                                    GlobalDecl D,
2019                                    llvm::GlobalValue *Addr) {
2020   if (!GlobalMetadata)
2021     GlobalMetadata =
2022       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2023 
2024   // TODO: should we report variant information for ctors/dtors?
2025   llvm::Value *Ops[] = {
2026     Addr,
2027     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2028   };
2029   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2030 }
2031 
2032 /// Emits metadata nodes associating all the global values in the
2033 /// current module with the Decls they came from.  This is useful for
2034 /// projects using IR gen as a subroutine.
2035 ///
2036 /// Since there's currently no way to associate an MDNode directly
2037 /// with an llvm::GlobalValue, we create a global named metadata
2038 /// with the name 'clang.global.decl.ptrs'.
2039 void CodeGenModule::EmitDeclMetadata() {
2040   llvm::NamedMDNode *GlobalMetadata = 0;
2041 
2042   // StaticLocalDeclMap
2043   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2044          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2045        I != E; ++I) {
2046     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2047     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2048   }
2049 }
2050 
2051 /// Emits metadata nodes for all the local variables in the current
2052 /// function.
2053 void CodeGenFunction::EmitDeclMetadata() {
2054   if (LocalDeclMap.empty()) return;
2055 
2056   llvm::LLVMContext &Context = getLLVMContext();
2057 
2058   // Find the unique metadata ID for this name.
2059   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2060 
2061   llvm::NamedMDNode *GlobalMetadata = 0;
2062 
2063   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2064          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2065     const Decl *D = I->first;
2066     llvm::Value *Addr = I->second;
2067 
2068     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2069       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2070       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2071     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2072       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2073       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2074     }
2075   }
2076 }
2077 
2078 ///@name Custom Runtime Function Interfaces
2079 ///@{
2080 //
2081 // FIXME: These can be eliminated once we can have clients just get the required
2082 // AST nodes from the builtin tables.
2083 
2084 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2085   if (BlockObjectDispose)
2086     return BlockObjectDispose;
2087 
2088   // If we saw an explicit decl, use that.
2089   if (BlockObjectDisposeDecl) {
2090     return BlockObjectDispose = GetAddrOfFunction(
2091       BlockObjectDisposeDecl,
2092       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2093   }
2094 
2095   // Otherwise construct the function by hand.
2096   const llvm::FunctionType *FTy;
2097   std::vector<const llvm::Type*> ArgTys;
2098   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2099   ArgTys.push_back(PtrToInt8Ty);
2100   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2101   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2102   return BlockObjectDispose =
2103     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2104 }
2105 
2106 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2107   if (BlockObjectAssign)
2108     return BlockObjectAssign;
2109 
2110   // If we saw an explicit decl, use that.
2111   if (BlockObjectAssignDecl) {
2112     return BlockObjectAssign = GetAddrOfFunction(
2113       BlockObjectAssignDecl,
2114       getTypes().GetFunctionType(BlockObjectAssignDecl));
2115   }
2116 
2117   // Otherwise construct the function by hand.
2118   const llvm::FunctionType *FTy;
2119   std::vector<const llvm::Type*> ArgTys;
2120   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2121   ArgTys.push_back(PtrToInt8Ty);
2122   ArgTys.push_back(PtrToInt8Ty);
2123   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2124   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2125   return BlockObjectAssign =
2126     CreateRuntimeFunction(FTy, "_Block_object_assign");
2127 }
2128 
2129 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2130   if (NSConcreteGlobalBlock)
2131     return NSConcreteGlobalBlock;
2132 
2133   // If we saw an explicit decl, use that.
2134   if (NSConcreteGlobalBlockDecl) {
2135     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2136       NSConcreteGlobalBlockDecl,
2137       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2138   }
2139 
2140   // Otherwise construct the variable by hand.
2141   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2142     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2143 }
2144 
2145 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2146   if (NSConcreteStackBlock)
2147     return NSConcreteStackBlock;
2148 
2149   // If we saw an explicit decl, use that.
2150   if (NSConcreteStackBlockDecl) {
2151     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2152       NSConcreteStackBlockDecl,
2153       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2154   }
2155 
2156   // Otherwise construct the variable by hand.
2157   return NSConcreteStackBlock = CreateRuntimeVariable(
2158     PtrToInt8Ty, "_NSConcreteStackBlock");
2159 }
2160 
2161 ///@}
2162