xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 8e7cb6dcfa1b6fe62097b5abd25611c99bdbcd6e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "Mangle.h"
22 #include "TargetInfo.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : BlockModule(C, M, TD, Types, *this), Context(C),
62     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0){
74 
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 }
92 
93 CodeGenModule::~CodeGenModule() {
94   delete Runtime;
95   delete &ABI;
96   delete TBAA;
97   delete DebugInfo;
98 }
99 
100 void CodeGenModule::createObjCRuntime() {
101   if (!Features.NeXTRuntime)
102     Runtime = CreateGNUObjCRuntime(*this);
103   else if (Features.ObjCNonFragileABI)
104     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105   else
106     Runtime = CreateMacObjCRuntime(*this);
107 }
108 
109 void CodeGenModule::Release() {
110   EmitDeferred();
111   EmitCXXGlobalInitFunc();
112   EmitCXXGlobalDtorFunc();
113   if (Runtime)
114     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115       AddGlobalCtor(ObjCInitFunction);
116   EmitCtorList(GlobalCtors, "llvm.global_ctors");
117   EmitCtorList(GlobalDtors, "llvm.global_dtors");
118   EmitAnnotations();
119   EmitLLVMUsed();
120 
121   SimplifyPersonality();
122 
123   if (getCodeGenOpts().EmitDeclMetadata)
124     EmitDeclMetadata();
125 }
126 
127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128   if (!TBAA)
129     return 0;
130   return TBAA->getTBAAInfo(QTy);
131 }
132 
133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                         llvm::MDNode *TBAAInfo) {
135   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136 }
137 
138 bool CodeGenModule::isTargetDarwin() const {
139   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140 }
141 
142 /// ErrorUnsupported - Print out an error that codegen doesn't support the
143 /// specified stmt yet.
144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                      bool OmitOnError) {
146   if (OmitOnError && getDiags().hasErrorOccurred())
147     return;
148   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                                "cannot compile this %0 yet");
150   std::string Msg = Type;
151   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152     << Msg << S->getSourceRange();
153 }
154 
155 /// ErrorUnsupported - Print out an error that codegen doesn't support the
156 /// specified decl yet.
157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                      bool OmitOnError) {
159   if (OmitOnError && getDiags().hasErrorOccurred())
160     return;
161   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                                "cannot compile this %0 yet");
163   std::string Msg = Type;
164   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165 }
166 
167 static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) {
168   switch (V) {
169   case DefaultVisibility:   return llvm::GlobalValue::DefaultVisibility;
170   case HiddenVisibility:    return llvm::GlobalValue::HiddenVisibility;
171   case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility;
172   }
173   llvm_unreachable("unknown visibility!");
174   return llvm::GlobalValue::DefaultVisibility;
175 }
176 
177 
178 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
179                                         const NamedDecl *D,
180                                         bool IsForDefinition) const {
181   // Internal definitions always have default visibility.
182   if (GV->hasLocalLinkage()) {
183     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
184     return;
185   }
186 
187   // Set visibility for definitions.
188   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
189   if (LV.visibilityExplicit() ||
190       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
191     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
192 }
193 
194 /// Set the symbol visibility of type information (vtable and RTTI)
195 /// associated with the given type.
196 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
197                                       const CXXRecordDecl *RD,
198                                       bool IsForRTTI,
199                                       bool IsForDefinition) const {
200   setGlobalVisibility(GV, RD, IsForDefinition);
201 
202   if (!CodeGenOpts.HiddenWeakVTables)
203     return;
204 
205   // We want to drop the visibility to hidden for weak type symbols.
206   // This isn't possible if there might be unresolved references
207   // elsewhere that rely on this symbol being visible.
208 
209   // This should be kept roughly in sync with setThunkVisibility
210   // in CGVTables.cpp.
211 
212   // Preconditions.
213   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
214       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
215     return;
216 
217   // Don't override an explicit visibility attribute.
218   if (RD->hasAttr<VisibilityAttr>())
219     return;
220 
221   switch (RD->getTemplateSpecializationKind()) {
222   // We have to disable the optimization if this is an EI definition
223   // because there might be EI declarations in other shared objects.
224   case TSK_ExplicitInstantiationDefinition:
225   case TSK_ExplicitInstantiationDeclaration:
226     return;
227 
228   // Every use of a non-template class's type information has to emit it.
229   case TSK_Undeclared:
230     break;
231 
232   // In theory, implicit instantiations can ignore the possibility of
233   // an explicit instantiation declaration because there necessarily
234   // must be an EI definition somewhere with default visibility.  In
235   // practice, it's possible to have an explicit instantiation for
236   // an arbitrary template class, and linkers aren't necessarily able
237   // to deal with mixed-visibility symbols.
238   case TSK_ExplicitSpecialization:
239   case TSK_ImplicitInstantiation:
240     if (!CodeGenOpts.HiddenWeakTemplateVTables)
241       return;
242     break;
243   }
244 
245   // If there's a key function, there may be translation units
246   // that don't have the key function's definition.  But ignore
247   // this if we're emitting RTTI under -fno-rtti.
248   if (!IsForRTTI || Features.RTTI)
249     if (Context.getKeyFunction(RD))
250       return;
251 
252   // Otherwise, drop the visibility to hidden.
253   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
254 }
255 
256 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
257   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
258 
259   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
260   if (!Str.empty())
261     return Str;
262 
263   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
264     IdentifierInfo *II = ND->getIdentifier();
265     assert(II && "Attempt to mangle unnamed decl.");
266 
267     Str = II->getName();
268     return Str;
269   }
270 
271   llvm::SmallString<256> Buffer;
272   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
273     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
274   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
275     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
276   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
277     getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer);
278   else
279     getCXXABI().getMangleContext().mangleName(ND, Buffer);
280 
281   // Allocate space for the mangled name.
282   size_t Length = Buffer.size();
283   char *Name = MangledNamesAllocator.Allocate<char>(Length);
284   std::copy(Buffer.begin(), Buffer.end(), Name);
285 
286   Str = llvm::StringRef(Name, Length);
287 
288   return Str;
289 }
290 
291 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
292                                    const BlockDecl *BD) {
293   getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
294 }
295 
296 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
297   return getModule().getNamedValue(Name);
298 }
299 
300 /// AddGlobalCtor - Add a function to the list that will be called before
301 /// main() runs.
302 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
303   // FIXME: Type coercion of void()* types.
304   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
305 }
306 
307 /// AddGlobalDtor - Add a function to the list that will be called
308 /// when the module is unloaded.
309 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
310   // FIXME: Type coercion of void()* types.
311   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
312 }
313 
314 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
315   // Ctor function type is void()*.
316   llvm::FunctionType* CtorFTy =
317     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
318                             std::vector<const llvm::Type*>(),
319                             false);
320   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
321 
322   // Get the type of a ctor entry, { i32, void ()* }.
323   llvm::StructType* CtorStructTy =
324     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
325                           llvm::PointerType::getUnqual(CtorFTy), NULL);
326 
327   // Construct the constructor and destructor arrays.
328   std::vector<llvm::Constant*> Ctors;
329   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
330     std::vector<llvm::Constant*> S;
331     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
332                 I->second, false));
333     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
334     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
335   }
336 
337   if (!Ctors.empty()) {
338     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
339     new llvm::GlobalVariable(TheModule, AT, false,
340                              llvm::GlobalValue::AppendingLinkage,
341                              llvm::ConstantArray::get(AT, Ctors),
342                              GlobalName);
343   }
344 }
345 
346 void CodeGenModule::EmitAnnotations() {
347   if (Annotations.empty())
348     return;
349 
350   // Create a new global variable for the ConstantStruct in the Module.
351   llvm::Constant *Array =
352   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
353                                                 Annotations.size()),
354                            Annotations);
355   llvm::GlobalValue *gv =
356   new llvm::GlobalVariable(TheModule, Array->getType(), false,
357                            llvm::GlobalValue::AppendingLinkage, Array,
358                            "llvm.global.annotations");
359   gv->setSection("llvm.metadata");
360 }
361 
362 llvm::GlobalValue::LinkageTypes
363 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
364   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
365 
366   if (Linkage == GVA_Internal)
367     return llvm::Function::InternalLinkage;
368 
369   if (D->hasAttr<DLLExportAttr>())
370     return llvm::Function::DLLExportLinkage;
371 
372   if (D->hasAttr<WeakAttr>())
373     return llvm::Function::WeakAnyLinkage;
374 
375   // In C99 mode, 'inline' functions are guaranteed to have a strong
376   // definition somewhere else, so we can use available_externally linkage.
377   if (Linkage == GVA_C99Inline)
378     return llvm::Function::AvailableExternallyLinkage;
379 
380   // In C++, the compiler has to emit a definition in every translation unit
381   // that references the function.  We should use linkonce_odr because
382   // a) if all references in this translation unit are optimized away, we
383   // don't need to codegen it.  b) if the function persists, it needs to be
384   // merged with other definitions. c) C++ has the ODR, so we know the
385   // definition is dependable.
386   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
387     return llvm::Function::LinkOnceODRLinkage;
388 
389   // An explicit instantiation of a template has weak linkage, since
390   // explicit instantiations can occur in multiple translation units
391   // and must all be equivalent. However, we are not allowed to
392   // throw away these explicit instantiations.
393   if (Linkage == GVA_ExplicitTemplateInstantiation)
394     return llvm::Function::WeakODRLinkage;
395 
396   // Otherwise, we have strong external linkage.
397   assert(Linkage == GVA_StrongExternal);
398   return llvm::Function::ExternalLinkage;
399 }
400 
401 
402 /// SetFunctionDefinitionAttributes - Set attributes for a global.
403 ///
404 /// FIXME: This is currently only done for aliases and functions, but not for
405 /// variables (these details are set in EmitGlobalVarDefinition for variables).
406 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
407                                                     llvm::GlobalValue *GV) {
408   SetCommonAttributes(D, GV);
409 }
410 
411 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
412                                               const CGFunctionInfo &Info,
413                                               llvm::Function *F) {
414   unsigned CallingConv;
415   AttributeListType AttributeList;
416   ConstructAttributeList(Info, D, AttributeList, CallingConv);
417   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
418                                           AttributeList.size()));
419   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
420 }
421 
422 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
423                                                            llvm::Function *F) {
424   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
425     F->addFnAttr(llvm::Attribute::NoUnwind);
426 
427   if (D->hasAttr<AlwaysInlineAttr>())
428     F->addFnAttr(llvm::Attribute::AlwaysInline);
429 
430   if (D->hasAttr<NakedAttr>())
431     F->addFnAttr(llvm::Attribute::Naked);
432 
433   if (D->hasAttr<NoInlineAttr>())
434     F->addFnAttr(llvm::Attribute::NoInline);
435 
436   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
437     F->addFnAttr(llvm::Attribute::StackProtect);
438   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
439     F->addFnAttr(llvm::Attribute::StackProtectReq);
440 
441   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
442   if (alignment)
443     F->setAlignment(alignment);
444 
445   // C++ ABI requires 2-byte alignment for member functions.
446   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
447     F->setAlignment(2);
448 }
449 
450 void CodeGenModule::SetCommonAttributes(const Decl *D,
451                                         llvm::GlobalValue *GV) {
452   if (isa<NamedDecl>(D))
453     setGlobalVisibility(GV, cast<NamedDecl>(D), /*ForDef*/ true);
454   else
455     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
456 
457   if (D->hasAttr<UsedAttr>())
458     AddUsedGlobal(GV);
459 
460   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
461     GV->setSection(SA->getName());
462 
463   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
464 }
465 
466 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
467                                                   llvm::Function *F,
468                                                   const CGFunctionInfo &FI) {
469   SetLLVMFunctionAttributes(D, FI, F);
470   SetLLVMFunctionAttributesForDefinition(D, F);
471 
472   F->setLinkage(llvm::Function::InternalLinkage);
473 
474   SetCommonAttributes(D, F);
475 }
476 
477 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
478                                           llvm::Function *F,
479                                           bool IsIncompleteFunction) {
480   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
481 
482   if (!IsIncompleteFunction)
483     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
484 
485   // Only a few attributes are set on declarations; these may later be
486   // overridden by a definition.
487 
488   if (FD->hasAttr<DLLImportAttr>()) {
489     F->setLinkage(llvm::Function::DLLImportLinkage);
490   } else if (FD->hasAttr<WeakAttr>() ||
491              FD->hasAttr<WeakImportAttr>()) {
492     // "extern_weak" is overloaded in LLVM; we probably should have
493     // separate linkage types for this.
494     F->setLinkage(llvm::Function::ExternalWeakLinkage);
495   } else {
496     F->setLinkage(llvm::Function::ExternalLinkage);
497 
498     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
499     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
500       F->setVisibility(GetLLVMVisibility(LV.visibility()));
501     }
502   }
503 
504   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
505     F->setSection(SA->getName());
506 }
507 
508 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
509   assert(!GV->isDeclaration() &&
510          "Only globals with definition can force usage.");
511   LLVMUsed.push_back(GV);
512 }
513 
514 void CodeGenModule::EmitLLVMUsed() {
515   // Don't create llvm.used if there is no need.
516   if (LLVMUsed.empty())
517     return;
518 
519   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
520 
521   // Convert LLVMUsed to what ConstantArray needs.
522   std::vector<llvm::Constant*> UsedArray;
523   UsedArray.resize(LLVMUsed.size());
524   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
525     UsedArray[i] =
526      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
527                                       i8PTy);
528   }
529 
530   if (UsedArray.empty())
531     return;
532   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
533 
534   llvm::GlobalVariable *GV =
535     new llvm::GlobalVariable(getModule(), ATy, false,
536                              llvm::GlobalValue::AppendingLinkage,
537                              llvm::ConstantArray::get(ATy, UsedArray),
538                              "llvm.used");
539 
540   GV->setSection("llvm.metadata");
541 }
542 
543 void CodeGenModule::EmitDeferred() {
544   // Emit code for any potentially referenced deferred decls.  Since a
545   // previously unused static decl may become used during the generation of code
546   // for a static function, iterate until no  changes are made.
547 
548   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
549     if (!DeferredVTables.empty()) {
550       const CXXRecordDecl *RD = DeferredVTables.back();
551       DeferredVTables.pop_back();
552       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
553       continue;
554     }
555 
556     GlobalDecl D = DeferredDeclsToEmit.back();
557     DeferredDeclsToEmit.pop_back();
558 
559     // Check to see if we've already emitted this.  This is necessary
560     // for a couple of reasons: first, decls can end up in the
561     // deferred-decls queue multiple times, and second, decls can end
562     // up with definitions in unusual ways (e.g. by an extern inline
563     // function acquiring a strong function redefinition).  Just
564     // ignore these cases.
565     //
566     // TODO: That said, looking this up multiple times is very wasteful.
567     llvm::StringRef Name = getMangledName(D);
568     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
569     assert(CGRef && "Deferred decl wasn't referenced?");
570 
571     if (!CGRef->isDeclaration())
572       continue;
573 
574     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
575     // purposes an alias counts as a definition.
576     if (isa<llvm::GlobalAlias>(CGRef))
577       continue;
578 
579     // Otherwise, emit the definition and move on to the next one.
580     EmitGlobalDefinition(D);
581   }
582 }
583 
584 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
585 /// annotation information for a given GlobalValue.  The annotation struct is
586 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
587 /// GlobalValue being annotated.  The second field is the constant string
588 /// created from the AnnotateAttr's annotation.  The third field is a constant
589 /// string containing the name of the translation unit.  The fourth field is
590 /// the line number in the file of the annotated value declaration.
591 ///
592 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
593 ///        appears to.
594 ///
595 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
596                                                 const AnnotateAttr *AA,
597                                                 unsigned LineNo) {
598   llvm::Module *M = &getModule();
599 
600   // get [N x i8] constants for the annotation string, and the filename string
601   // which are the 2nd and 3rd elements of the global annotation structure.
602   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
603   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
604                                                   AA->getAnnotation(), true);
605   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
606                                                   M->getModuleIdentifier(),
607                                                   true);
608 
609   // Get the two global values corresponding to the ConstantArrays we just
610   // created to hold the bytes of the strings.
611   llvm::GlobalValue *annoGV =
612     new llvm::GlobalVariable(*M, anno->getType(), false,
613                              llvm::GlobalValue::PrivateLinkage, anno,
614                              GV->getName());
615   // translation unit name string, emitted into the llvm.metadata section.
616   llvm::GlobalValue *unitGV =
617     new llvm::GlobalVariable(*M, unit->getType(), false,
618                              llvm::GlobalValue::PrivateLinkage, unit,
619                              ".str");
620 
621   // Create the ConstantStruct for the global annotation.
622   llvm::Constant *Fields[4] = {
623     llvm::ConstantExpr::getBitCast(GV, SBP),
624     llvm::ConstantExpr::getBitCast(annoGV, SBP),
625     llvm::ConstantExpr::getBitCast(unitGV, SBP),
626     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
627   };
628   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
629 }
630 
631 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
632   // Never defer when EmitAllDecls is specified.
633   if (Features.EmitAllDecls)
634     return false;
635 
636   return !getContext().DeclMustBeEmitted(Global);
637 }
638 
639 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
640   const AliasAttr *AA = VD->getAttr<AliasAttr>();
641   assert(AA && "No alias?");
642 
643   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
644 
645   // See if there is already something with the target's name in the module.
646   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
647 
648   llvm::Constant *Aliasee;
649   if (isa<llvm::FunctionType>(DeclTy))
650     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
651   else
652     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
653                                     llvm::PointerType::getUnqual(DeclTy), 0);
654   if (!Entry) {
655     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
656     F->setLinkage(llvm::Function::ExternalWeakLinkage);
657     WeakRefReferences.insert(F);
658   }
659 
660   return Aliasee;
661 }
662 
663 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
664   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
665 
666   // Weak references don't produce any output by themselves.
667   if (Global->hasAttr<WeakRefAttr>())
668     return;
669 
670   // If this is an alias definition (which otherwise looks like a declaration)
671   // emit it now.
672   if (Global->hasAttr<AliasAttr>())
673     return EmitAliasDefinition(GD);
674 
675   // Ignore declarations, they will be emitted on their first use.
676   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
677     if (FD->getIdentifier()) {
678       llvm::StringRef Name = FD->getName();
679       if (Name == "_Block_object_assign") {
680         BlockObjectAssignDecl = FD;
681       } else if (Name == "_Block_object_dispose") {
682         BlockObjectDisposeDecl = FD;
683       }
684     }
685 
686     // Forward declarations are emitted lazily on first use.
687     if (!FD->isThisDeclarationADefinition())
688       return;
689   } else {
690     const VarDecl *VD = cast<VarDecl>(Global);
691     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
692 
693     if (VD->getIdentifier()) {
694       llvm::StringRef Name = VD->getName();
695       if (Name == "_NSConcreteGlobalBlock") {
696         NSConcreteGlobalBlockDecl = VD;
697       } else if (Name == "_NSConcreteStackBlock") {
698         NSConcreteStackBlockDecl = VD;
699       }
700     }
701 
702 
703     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
704       return;
705   }
706 
707   // Defer code generation when possible if this is a static definition, inline
708   // function etc.  These we only want to emit if they are used.
709   if (!MayDeferGeneration(Global)) {
710     // Emit the definition if it can't be deferred.
711     EmitGlobalDefinition(GD);
712     return;
713   }
714 
715   // If we're deferring emission of a C++ variable with an
716   // initializer, remember the order in which it appeared in the file.
717   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
718       cast<VarDecl>(Global)->hasInit()) {
719     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
720     CXXGlobalInits.push_back(0);
721   }
722 
723   // If the value has already been used, add it directly to the
724   // DeferredDeclsToEmit list.
725   llvm::StringRef MangledName = getMangledName(GD);
726   if (GetGlobalValue(MangledName))
727     DeferredDeclsToEmit.push_back(GD);
728   else {
729     // Otherwise, remember that we saw a deferred decl with this name.  The
730     // first use of the mangled name will cause it to move into
731     // DeferredDeclsToEmit.
732     DeferredDecls[MangledName] = GD;
733   }
734 }
735 
736 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
737   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
738 
739   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
740                                  Context.getSourceManager(),
741                                  "Generating code for declaration");
742 
743   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
744     // At -O0, don't generate IR for functions with available_externally
745     // linkage.
746     if (CodeGenOpts.OptimizationLevel == 0 &&
747         !Function->hasAttr<AlwaysInlineAttr>() &&
748         getFunctionLinkage(Function)
749                                   == llvm::Function::AvailableExternallyLinkage)
750       return;
751 
752     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
753       if (Method->isVirtual())
754         getVTables().EmitThunks(GD);
755 
756       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
757         return EmitCXXConstructor(CD, GD.getCtorType());
758 
759       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
760         return EmitCXXDestructor(DD, GD.getDtorType());
761     }
762 
763     return EmitGlobalFunctionDefinition(GD);
764   }
765 
766   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
767     return EmitGlobalVarDefinition(VD);
768 
769   assert(0 && "Invalid argument to EmitGlobalDefinition()");
770 }
771 
772 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
773 /// module, create and return an llvm Function with the specified type. If there
774 /// is something in the module with the specified name, return it potentially
775 /// bitcasted to the right type.
776 ///
777 /// If D is non-null, it specifies a decl that correspond to this.  This is used
778 /// to set the attributes on the function when it is first created.
779 llvm::Constant *
780 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
781                                        const llvm::Type *Ty,
782                                        GlobalDecl D) {
783   // Lookup the entry, lazily creating it if necessary.
784   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
785   if (Entry) {
786     if (WeakRefReferences.count(Entry)) {
787       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
788       if (FD && !FD->hasAttr<WeakAttr>())
789         Entry->setLinkage(llvm::Function::ExternalLinkage);
790 
791       WeakRefReferences.erase(Entry);
792     }
793 
794     if (Entry->getType()->getElementType() == Ty)
795       return Entry;
796 
797     // Make sure the result is of the correct type.
798     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
799     return llvm::ConstantExpr::getBitCast(Entry, PTy);
800   }
801 
802   // This function doesn't have a complete type (for example, the return
803   // type is an incomplete struct). Use a fake type instead, and make
804   // sure not to try to set attributes.
805   bool IsIncompleteFunction = false;
806 
807   const llvm::FunctionType *FTy;
808   if (isa<llvm::FunctionType>(Ty)) {
809     FTy = cast<llvm::FunctionType>(Ty);
810   } else {
811     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
812                                   std::vector<const llvm::Type*>(), false);
813     IsIncompleteFunction = true;
814   }
815 
816   llvm::Function *F = llvm::Function::Create(FTy,
817                                              llvm::Function::ExternalLinkage,
818                                              MangledName, &getModule());
819   assert(F->getName() == MangledName && "name was uniqued!");
820   if (D.getDecl())
821     SetFunctionAttributes(D, F, IsIncompleteFunction);
822 
823   // This is the first use or definition of a mangled name.  If there is a
824   // deferred decl with this name, remember that we need to emit it at the end
825   // of the file.
826   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
827   if (DDI != DeferredDecls.end()) {
828     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
829     // list, and remove it from DeferredDecls (since we don't need it anymore).
830     DeferredDeclsToEmit.push_back(DDI->second);
831     DeferredDecls.erase(DDI);
832   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
833     // If this the first reference to a C++ inline function in a class, queue up
834     // the deferred function body for emission.  These are not seen as
835     // top-level declarations.
836     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) {
837       DeferredDeclsToEmit.push_back(D);
838     // A called constructor which has no definition or declaration need be
839     // synthesized.
840     } else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
841       if (CD->isImplicit()) {
842         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
843         DeferredDeclsToEmit.push_back(D);
844       }
845     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
846       if (DD->isImplicit()) {
847         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
848         DeferredDeclsToEmit.push_back(D);
849       }
850     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
851       if (MD->isImplicit() && MD->isCopyAssignmentOperator()) {
852         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
853         DeferredDeclsToEmit.push_back(D);
854       }
855     }
856   }
857 
858   // Make sure the result is of the requested type.
859   if (!IsIncompleteFunction) {
860     assert(F->getType()->getElementType() == Ty);
861     return F;
862   }
863 
864   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
865   return llvm::ConstantExpr::getBitCast(F, PTy);
866 }
867 
868 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
869 /// non-null, then this function will use the specified type if it has to
870 /// create it (this occurs when we see a definition of the function).
871 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
872                                                  const llvm::Type *Ty) {
873   // If there was no specific requested type, just convert it now.
874   if (!Ty)
875     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
876 
877   llvm::StringRef MangledName = getMangledName(GD);
878   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
879 }
880 
881 /// CreateRuntimeFunction - Create a new runtime function with the specified
882 /// type and name.
883 llvm::Constant *
884 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
885                                      llvm::StringRef Name) {
886   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
887 }
888 
889 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
890   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
891     return false;
892   if (Context.getLangOptions().CPlusPlus &&
893       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
894     // FIXME: We should do something fancier here!
895     return false;
896   }
897   return true;
898 }
899 
900 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
901 /// create and return an llvm GlobalVariable with the specified type.  If there
902 /// is something in the module with the specified name, return it potentially
903 /// bitcasted to the right type.
904 ///
905 /// If D is non-null, it specifies a decl that correspond to this.  This is used
906 /// to set the attributes on the global when it is first created.
907 llvm::Constant *
908 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
909                                      const llvm::PointerType *Ty,
910                                      const VarDecl *D) {
911   // Lookup the entry, lazily creating it if necessary.
912   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
913   if (Entry) {
914     if (WeakRefReferences.count(Entry)) {
915       if (D && !D->hasAttr<WeakAttr>())
916         Entry->setLinkage(llvm::Function::ExternalLinkage);
917 
918       WeakRefReferences.erase(Entry);
919     }
920 
921     if (Entry->getType() == Ty)
922       return Entry;
923 
924     // Make sure the result is of the correct type.
925     return llvm::ConstantExpr::getBitCast(Entry, Ty);
926   }
927 
928   // This is the first use or definition of a mangled name.  If there is a
929   // deferred decl with this name, remember that we need to emit it at the end
930   // of the file.
931   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
932   if (DDI != DeferredDecls.end()) {
933     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
934     // list, and remove it from DeferredDecls (since we don't need it anymore).
935     DeferredDeclsToEmit.push_back(DDI->second);
936     DeferredDecls.erase(DDI);
937   }
938 
939   llvm::GlobalVariable *GV =
940     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
941                              llvm::GlobalValue::ExternalLinkage,
942                              0, MangledName, 0,
943                              false, Ty->getAddressSpace());
944 
945   // Handle things which are present even on external declarations.
946   if (D) {
947     // FIXME: This code is overly simple and should be merged with other global
948     // handling.
949     GV->setConstant(DeclIsConstantGlobal(Context, D));
950 
951     // Set linkage and visibility in case we never see a definition.
952     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
953     if (LV.linkage() != ExternalLinkage) {
954       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
955     } else {
956       if (D->hasAttr<DLLImportAttr>())
957         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
958       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
959         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
960 
961       // Set visibility on a declaration only if it's explicit.
962       if (LV.visibilityExplicit())
963         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
964     }
965 
966     GV->setThreadLocal(D->isThreadSpecified());
967   }
968 
969   return GV;
970 }
971 
972 
973 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
974 /// given global variable.  If Ty is non-null and if the global doesn't exist,
975 /// then it will be greated with the specified type instead of whatever the
976 /// normal requested type would be.
977 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
978                                                   const llvm::Type *Ty) {
979   assert(D->hasGlobalStorage() && "Not a global variable");
980   QualType ASTTy = D->getType();
981   if (Ty == 0)
982     Ty = getTypes().ConvertTypeForMem(ASTTy);
983 
984   const llvm::PointerType *PTy =
985     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
986 
987   llvm::StringRef MangledName = getMangledName(D);
988   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
989 }
990 
991 /// CreateRuntimeVariable - Create a new runtime global variable with the
992 /// specified type and name.
993 llvm::Constant *
994 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
995                                      llvm::StringRef Name) {
996   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
997 }
998 
999 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1000   assert(!D->getInit() && "Cannot emit definite definitions here!");
1001 
1002   if (MayDeferGeneration(D)) {
1003     // If we have not seen a reference to this variable yet, place it
1004     // into the deferred declarations table to be emitted if needed
1005     // later.
1006     llvm::StringRef MangledName = getMangledName(D);
1007     if (!GetGlobalValue(MangledName)) {
1008       DeferredDecls[MangledName] = D;
1009       return;
1010     }
1011   }
1012 
1013   // The tentative definition is the only definition.
1014   EmitGlobalVarDefinition(D);
1015 }
1016 
1017 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1018   if (DefinitionRequired)
1019     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1020 }
1021 
1022 llvm::GlobalVariable::LinkageTypes
1023 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1024   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1025     return llvm::GlobalVariable::InternalLinkage;
1026 
1027   if (const CXXMethodDecl *KeyFunction
1028                                     = RD->getASTContext().getKeyFunction(RD)) {
1029     // If this class has a key function, use that to determine the linkage of
1030     // the vtable.
1031     const FunctionDecl *Def = 0;
1032     if (KeyFunction->hasBody(Def))
1033       KeyFunction = cast<CXXMethodDecl>(Def);
1034 
1035     switch (KeyFunction->getTemplateSpecializationKind()) {
1036       case TSK_Undeclared:
1037       case TSK_ExplicitSpecialization:
1038         if (KeyFunction->isInlined())
1039           return llvm::GlobalVariable::WeakODRLinkage;
1040 
1041         return llvm::GlobalVariable::ExternalLinkage;
1042 
1043       case TSK_ImplicitInstantiation:
1044       case TSK_ExplicitInstantiationDefinition:
1045         return llvm::GlobalVariable::WeakODRLinkage;
1046 
1047       case TSK_ExplicitInstantiationDeclaration:
1048         // FIXME: Use available_externally linkage. However, this currently
1049         // breaks LLVM's build due to undefined symbols.
1050         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1051         return llvm::GlobalVariable::WeakODRLinkage;
1052     }
1053   }
1054 
1055   switch (RD->getTemplateSpecializationKind()) {
1056   case TSK_Undeclared:
1057   case TSK_ExplicitSpecialization:
1058   case TSK_ImplicitInstantiation:
1059   case TSK_ExplicitInstantiationDefinition:
1060     return llvm::GlobalVariable::WeakODRLinkage;
1061 
1062   case TSK_ExplicitInstantiationDeclaration:
1063     // FIXME: Use available_externally linkage. However, this currently
1064     // breaks LLVM's build due to undefined symbols.
1065     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1066     return llvm::GlobalVariable::WeakODRLinkage;
1067   }
1068 
1069   // Silence GCC warning.
1070   return llvm::GlobalVariable::WeakODRLinkage;
1071 }
1072 
1073 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1074     return CharUnits::fromQuantity(
1075       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1076 }
1077 
1078 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1079   llvm::Constant *Init = 0;
1080   QualType ASTTy = D->getType();
1081   bool NonConstInit = false;
1082 
1083   const Expr *InitExpr = D->getAnyInitializer();
1084 
1085   if (!InitExpr) {
1086     // This is a tentative definition; tentative definitions are
1087     // implicitly initialized with { 0 }.
1088     //
1089     // Note that tentative definitions are only emitted at the end of
1090     // a translation unit, so they should never have incomplete
1091     // type. In addition, EmitTentativeDefinition makes sure that we
1092     // never attempt to emit a tentative definition if a real one
1093     // exists. A use may still exists, however, so we still may need
1094     // to do a RAUW.
1095     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1096     Init = EmitNullConstant(D->getType());
1097   } else {
1098     Init = EmitConstantExpr(InitExpr, D->getType());
1099     if (!Init) {
1100       QualType T = InitExpr->getType();
1101       if (D->getType()->isReferenceType())
1102         T = D->getType();
1103 
1104       if (getLangOptions().CPlusPlus) {
1105         EmitCXXGlobalVarDeclInitFunc(D);
1106         Init = EmitNullConstant(T);
1107         NonConstInit = true;
1108       } else {
1109         ErrorUnsupported(D, "static initializer");
1110         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1111       }
1112     } else {
1113       // We don't need an initializer, so remove the entry for the delayed
1114       // initializer position (just in case this entry was delayed).
1115       if (getLangOptions().CPlusPlus)
1116         DelayedCXXInitPosition.erase(D);
1117     }
1118   }
1119 
1120   const llvm::Type* InitType = Init->getType();
1121   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1122 
1123   // Strip off a bitcast if we got one back.
1124   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1125     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1126            // all zero index gep.
1127            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1128     Entry = CE->getOperand(0);
1129   }
1130 
1131   // Entry is now either a Function or GlobalVariable.
1132   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1133 
1134   // We have a definition after a declaration with the wrong type.
1135   // We must make a new GlobalVariable* and update everything that used OldGV
1136   // (a declaration or tentative definition) with the new GlobalVariable*
1137   // (which will be a definition).
1138   //
1139   // This happens if there is a prototype for a global (e.g.
1140   // "extern int x[];") and then a definition of a different type (e.g.
1141   // "int x[10];"). This also happens when an initializer has a different type
1142   // from the type of the global (this happens with unions).
1143   if (GV == 0 ||
1144       GV->getType()->getElementType() != InitType ||
1145       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1146 
1147     // Move the old entry aside so that we'll create a new one.
1148     Entry->setName(llvm::StringRef());
1149 
1150     // Make a new global with the correct type, this is now guaranteed to work.
1151     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1152 
1153     // Replace all uses of the old global with the new global
1154     llvm::Constant *NewPtrForOldDecl =
1155         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1156     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1157 
1158     // Erase the old global, since it is no longer used.
1159     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1160   }
1161 
1162   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1163     SourceManager &SM = Context.getSourceManager();
1164     AddAnnotation(EmitAnnotateAttr(GV, AA,
1165                               SM.getInstantiationLineNumber(D->getLocation())));
1166   }
1167 
1168   GV->setInitializer(Init);
1169 
1170   // If it is safe to mark the global 'constant', do so now.
1171   GV->setConstant(false);
1172   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1173     GV->setConstant(true);
1174 
1175   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1176 
1177   // Set the llvm linkage type as appropriate.
1178   llvm::GlobalValue::LinkageTypes Linkage =
1179     GetLLVMLinkageVarDefinition(D, GV);
1180   GV->setLinkage(Linkage);
1181   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1182     // common vars aren't constant even if declared const.
1183     GV->setConstant(false);
1184 
1185   SetCommonAttributes(D, GV);
1186 
1187   // Emit global variable debug information.
1188   if (CGDebugInfo *DI = getDebugInfo()) {
1189     DI->setLocation(D->getLocation());
1190     DI->EmitGlobalVariable(GV, D);
1191   }
1192 }
1193 
1194 llvm::GlobalValue::LinkageTypes
1195 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1196                                            llvm::GlobalVariable *GV) {
1197   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1198   if (Linkage == GVA_Internal)
1199     return llvm::Function::InternalLinkage;
1200   else if (D->hasAttr<DLLImportAttr>())
1201     return llvm::Function::DLLImportLinkage;
1202   else if (D->hasAttr<DLLExportAttr>())
1203     return llvm::Function::DLLExportLinkage;
1204   else if (D->hasAttr<WeakAttr>()) {
1205     if (GV->isConstant())
1206       return llvm::GlobalVariable::WeakODRLinkage;
1207     else
1208       return llvm::GlobalVariable::WeakAnyLinkage;
1209   } else if (Linkage == GVA_TemplateInstantiation ||
1210              Linkage == GVA_ExplicitTemplateInstantiation)
1211     // FIXME: It seems like we can provide more specific linkage here
1212     // (LinkOnceODR, WeakODR).
1213     return llvm::GlobalVariable::WeakAnyLinkage;
1214   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1215            !D->hasExternalStorage() && !D->getInit() &&
1216            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1217     // Thread local vars aren't considered common linkage.
1218     return llvm::GlobalVariable::CommonLinkage;
1219   }
1220   return llvm::GlobalVariable::ExternalLinkage;
1221 }
1222 
1223 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1224 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1225 /// existing call uses of the old function in the module, this adjusts them to
1226 /// call the new function directly.
1227 ///
1228 /// This is not just a cleanup: the always_inline pass requires direct calls to
1229 /// functions to be able to inline them.  If there is a bitcast in the way, it
1230 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1231 /// run at -O0.
1232 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1233                                                       llvm::Function *NewFn) {
1234   // If we're redefining a global as a function, don't transform it.
1235   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1236   if (OldFn == 0) return;
1237 
1238   const llvm::Type *NewRetTy = NewFn->getReturnType();
1239   llvm::SmallVector<llvm::Value*, 4> ArgList;
1240 
1241   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1242        UI != E; ) {
1243     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1244     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1245     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1246     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1247     llvm::CallSite CS(CI);
1248     if (!CI || !CS.isCallee(I)) continue;
1249 
1250     // If the return types don't match exactly, and if the call isn't dead, then
1251     // we can't transform this call.
1252     if (CI->getType() != NewRetTy && !CI->use_empty())
1253       continue;
1254 
1255     // If the function was passed too few arguments, don't transform.  If extra
1256     // arguments were passed, we silently drop them.  If any of the types
1257     // mismatch, we don't transform.
1258     unsigned ArgNo = 0;
1259     bool DontTransform = false;
1260     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1261          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1262       if (CS.arg_size() == ArgNo ||
1263           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1264         DontTransform = true;
1265         break;
1266       }
1267     }
1268     if (DontTransform)
1269       continue;
1270 
1271     // Okay, we can transform this.  Create the new call instruction and copy
1272     // over the required information.
1273     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1274     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1275                                                      ArgList.end(), "", CI);
1276     ArgList.clear();
1277     if (!NewCall->getType()->isVoidTy())
1278       NewCall->takeName(CI);
1279     NewCall->setAttributes(CI->getAttributes());
1280     NewCall->setCallingConv(CI->getCallingConv());
1281 
1282     // Finally, remove the old call, replacing any uses with the new one.
1283     if (!CI->use_empty())
1284       CI->replaceAllUsesWith(NewCall);
1285 
1286     // Copy debug location attached to CI.
1287     if (!CI->getDebugLoc().isUnknown())
1288       NewCall->setDebugLoc(CI->getDebugLoc());
1289     CI->eraseFromParent();
1290   }
1291 }
1292 
1293 
1294 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1295   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1296   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1297   getCXXABI().getMangleContext().mangleInitDiscriminator();
1298   // Get or create the prototype for the function.
1299   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1300 
1301   // Strip off a bitcast if we got one back.
1302   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1303     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1304     Entry = CE->getOperand(0);
1305   }
1306 
1307 
1308   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1309     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1310 
1311     // If the types mismatch then we have to rewrite the definition.
1312     assert(OldFn->isDeclaration() &&
1313            "Shouldn't replace non-declaration");
1314 
1315     // F is the Function* for the one with the wrong type, we must make a new
1316     // Function* and update everything that used F (a declaration) with the new
1317     // Function* (which will be a definition).
1318     //
1319     // This happens if there is a prototype for a function
1320     // (e.g. "int f()") and then a definition of a different type
1321     // (e.g. "int f(int x)").  Move the old function aside so that it
1322     // doesn't interfere with GetAddrOfFunction.
1323     OldFn->setName(llvm::StringRef());
1324     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1325 
1326     // If this is an implementation of a function without a prototype, try to
1327     // replace any existing uses of the function (which may be calls) with uses
1328     // of the new function
1329     if (D->getType()->isFunctionNoProtoType()) {
1330       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1331       OldFn->removeDeadConstantUsers();
1332     }
1333 
1334     // Replace uses of F with the Function we will endow with a body.
1335     if (!Entry->use_empty()) {
1336       llvm::Constant *NewPtrForOldDecl =
1337         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1338       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1339     }
1340 
1341     // Ok, delete the old function now, which is dead.
1342     OldFn->eraseFromParent();
1343 
1344     Entry = NewFn;
1345   }
1346 
1347   // We need to set linkage and visibility on the function before
1348   // generating code for it because various parts of IR generation
1349   // want to propagate this information down (e.g. to local static
1350   // declarations).
1351   llvm::Function *Fn = cast<llvm::Function>(Entry);
1352   setFunctionLinkage(D, Fn);
1353 
1354   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1355   setGlobalVisibility(Fn, D, /*ForDef*/ true);
1356 
1357   CodeGenFunction(*this).GenerateCode(D, Fn);
1358 
1359   SetFunctionDefinitionAttributes(D, Fn);
1360   SetLLVMFunctionAttributesForDefinition(D, Fn);
1361 
1362   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1363     AddGlobalCtor(Fn, CA->getPriority());
1364   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1365     AddGlobalDtor(Fn, DA->getPriority());
1366 }
1367 
1368 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1369   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1370   const AliasAttr *AA = D->getAttr<AliasAttr>();
1371   assert(AA && "Not an alias?");
1372 
1373   llvm::StringRef MangledName = getMangledName(GD);
1374 
1375   // If there is a definition in the module, then it wins over the alias.
1376   // This is dubious, but allow it to be safe.  Just ignore the alias.
1377   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1378   if (Entry && !Entry->isDeclaration())
1379     return;
1380 
1381   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1382 
1383   // Create a reference to the named value.  This ensures that it is emitted
1384   // if a deferred decl.
1385   llvm::Constant *Aliasee;
1386   if (isa<llvm::FunctionType>(DeclTy))
1387     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1388   else
1389     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1390                                     llvm::PointerType::getUnqual(DeclTy), 0);
1391 
1392   // Create the new alias itself, but don't set a name yet.
1393   llvm::GlobalValue *GA =
1394     new llvm::GlobalAlias(Aliasee->getType(),
1395                           llvm::Function::ExternalLinkage,
1396                           "", Aliasee, &getModule());
1397 
1398   if (Entry) {
1399     assert(Entry->isDeclaration());
1400 
1401     // If there is a declaration in the module, then we had an extern followed
1402     // by the alias, as in:
1403     //   extern int test6();
1404     //   ...
1405     //   int test6() __attribute__((alias("test7")));
1406     //
1407     // Remove it and replace uses of it with the alias.
1408     GA->takeName(Entry);
1409 
1410     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1411                                                           Entry->getType()));
1412     Entry->eraseFromParent();
1413   } else {
1414     GA->setName(MangledName);
1415   }
1416 
1417   // Set attributes which are particular to an alias; this is a
1418   // specialization of the attributes which may be set on a global
1419   // variable/function.
1420   if (D->hasAttr<DLLExportAttr>()) {
1421     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1422       // The dllexport attribute is ignored for undefined symbols.
1423       if (FD->hasBody())
1424         GA->setLinkage(llvm::Function::DLLExportLinkage);
1425     } else {
1426       GA->setLinkage(llvm::Function::DLLExportLinkage);
1427     }
1428   } else if (D->hasAttr<WeakAttr>() ||
1429              D->hasAttr<WeakRefAttr>() ||
1430              D->hasAttr<WeakImportAttr>()) {
1431     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1432   }
1433 
1434   SetCommonAttributes(D, GA);
1435 }
1436 
1437 /// getBuiltinLibFunction - Given a builtin id for a function like
1438 /// "__builtin_fabsf", return a Function* for "fabsf".
1439 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1440                                                   unsigned BuiltinID) {
1441   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1442           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1443          "isn't a lib fn");
1444 
1445   // Get the name, skip over the __builtin_ prefix (if necessary).
1446   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1447   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1448     Name += 10;
1449 
1450   const llvm::FunctionType *Ty =
1451     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1452 
1453   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1454 }
1455 
1456 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1457                                             unsigned NumTys) {
1458   return llvm::Intrinsic::getDeclaration(&getModule(),
1459                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1460 }
1461 
1462 
1463 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1464                                            const llvm::Type *SrcType,
1465                                            const llvm::Type *SizeType) {
1466   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1467   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1468 }
1469 
1470 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1471                                             const llvm::Type *SrcType,
1472                                             const llvm::Type *SizeType) {
1473   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1474   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1475 }
1476 
1477 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1478                                            const llvm::Type *SizeType) {
1479   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1480   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1481 }
1482 
1483 static llvm::StringMapEntry<llvm::Constant*> &
1484 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1485                          const StringLiteral *Literal,
1486                          bool TargetIsLSB,
1487                          bool &IsUTF16,
1488                          unsigned &StringLength) {
1489   llvm::StringRef String = Literal->getString();
1490   unsigned NumBytes = String.size();
1491 
1492   // Check for simple case.
1493   if (!Literal->containsNonAsciiOrNull()) {
1494     StringLength = NumBytes;
1495     return Map.GetOrCreateValue(String);
1496   }
1497 
1498   // Otherwise, convert the UTF8 literals into a byte string.
1499   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1500   const UTF8 *FromPtr = (UTF8 *)String.data();
1501   UTF16 *ToPtr = &ToBuf[0];
1502 
1503   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1504                            &ToPtr, ToPtr + NumBytes,
1505                            strictConversion);
1506 
1507   // ConvertUTF8toUTF16 returns the length in ToPtr.
1508   StringLength = ToPtr - &ToBuf[0];
1509 
1510   // Render the UTF-16 string into a byte array and convert to the target byte
1511   // order.
1512   //
1513   // FIXME: This isn't something we should need to do here.
1514   llvm::SmallString<128> AsBytes;
1515   AsBytes.reserve(StringLength * 2);
1516   for (unsigned i = 0; i != StringLength; ++i) {
1517     unsigned short Val = ToBuf[i];
1518     if (TargetIsLSB) {
1519       AsBytes.push_back(Val & 0xFF);
1520       AsBytes.push_back(Val >> 8);
1521     } else {
1522       AsBytes.push_back(Val >> 8);
1523       AsBytes.push_back(Val & 0xFF);
1524     }
1525   }
1526   // Append one extra null character, the second is automatically added by our
1527   // caller.
1528   AsBytes.push_back(0);
1529 
1530   IsUTF16 = true;
1531   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1532 }
1533 
1534 llvm::Constant *
1535 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1536   unsigned StringLength = 0;
1537   bool isUTF16 = false;
1538   llvm::StringMapEntry<llvm::Constant*> &Entry =
1539     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1540                              getTargetData().isLittleEndian(),
1541                              isUTF16, StringLength);
1542 
1543   if (llvm::Constant *C = Entry.getValue())
1544     return C;
1545 
1546   llvm::Constant *Zero =
1547       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1548   llvm::Constant *Zeros[] = { Zero, Zero };
1549 
1550   // If we don't already have it, get __CFConstantStringClassReference.
1551   if (!CFConstantStringClassRef) {
1552     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1553     Ty = llvm::ArrayType::get(Ty, 0);
1554     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1555                                            "__CFConstantStringClassReference");
1556     // Decay array -> ptr
1557     CFConstantStringClassRef =
1558       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1559   }
1560 
1561   QualType CFTy = getContext().getCFConstantStringType();
1562 
1563   const llvm::StructType *STy =
1564     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1565 
1566   std::vector<llvm::Constant*> Fields(4);
1567 
1568   // Class pointer.
1569   Fields[0] = CFConstantStringClassRef;
1570 
1571   // Flags.
1572   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1573   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1574     llvm::ConstantInt::get(Ty, 0x07C8);
1575 
1576   // String pointer.
1577   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1578 
1579   llvm::GlobalValue::LinkageTypes Linkage;
1580   bool isConstant;
1581   if (isUTF16) {
1582     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1583     Linkage = llvm::GlobalValue::InternalLinkage;
1584     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1585     // does make plain ascii ones writable.
1586     isConstant = true;
1587   } else {
1588     Linkage = llvm::GlobalValue::PrivateLinkage;
1589     isConstant = !Features.WritableStrings;
1590   }
1591 
1592   llvm::GlobalVariable *GV =
1593     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1594                              ".str");
1595   if (isUTF16) {
1596     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1597     GV->setAlignment(Align.getQuantity());
1598   }
1599   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1600 
1601   // String length.
1602   Ty = getTypes().ConvertType(getContext().LongTy);
1603   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1604 
1605   // The struct.
1606   C = llvm::ConstantStruct::get(STy, Fields);
1607   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1608                                 llvm::GlobalVariable::PrivateLinkage, C,
1609                                 "_unnamed_cfstring_");
1610   if (const char *Sect = getContext().Target.getCFStringSection())
1611     GV->setSection(Sect);
1612   Entry.setValue(GV);
1613 
1614   return GV;
1615 }
1616 
1617 llvm::Constant *
1618 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1619   unsigned StringLength = 0;
1620   bool isUTF16 = false;
1621   llvm::StringMapEntry<llvm::Constant*> &Entry =
1622     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1623                              getTargetData().isLittleEndian(),
1624                              isUTF16, StringLength);
1625 
1626   if (llvm::Constant *C = Entry.getValue())
1627     return C;
1628 
1629   llvm::Constant *Zero =
1630   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1631   llvm::Constant *Zeros[] = { Zero, Zero };
1632 
1633   // If we don't already have it, get _NSConstantStringClassReference.
1634   if (!ConstantStringClassRef) {
1635     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1636     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1637     Ty = llvm::ArrayType::get(Ty, 0);
1638     llvm::Constant *GV;
1639     if (StringClass.empty())
1640       GV = CreateRuntimeVariable(Ty,
1641                                  Features.ObjCNonFragileABI ?
1642                                  "OBJC_CLASS_$_NSConstantString" :
1643                                  "_NSConstantStringClassReference");
1644     else {
1645       std::string str;
1646       if (Features.ObjCNonFragileABI)
1647         str = "OBJC_CLASS_$_" + StringClass;
1648       else
1649         str = "_" + StringClass + "ClassReference";
1650       GV = CreateRuntimeVariable(Ty, str);
1651     }
1652     // Decay array -> ptr
1653     ConstantStringClassRef =
1654     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1655   }
1656 
1657   QualType NSTy = getContext().getNSConstantStringType();
1658 
1659   const llvm::StructType *STy =
1660   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1661 
1662   std::vector<llvm::Constant*> Fields(3);
1663 
1664   // Class pointer.
1665   Fields[0] = ConstantStringClassRef;
1666 
1667   // String pointer.
1668   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1669 
1670   llvm::GlobalValue::LinkageTypes Linkage;
1671   bool isConstant;
1672   if (isUTF16) {
1673     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1674     Linkage = llvm::GlobalValue::InternalLinkage;
1675     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1676     // does make plain ascii ones writable.
1677     isConstant = true;
1678   } else {
1679     Linkage = llvm::GlobalValue::PrivateLinkage;
1680     isConstant = !Features.WritableStrings;
1681   }
1682 
1683   llvm::GlobalVariable *GV =
1684   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1685                            ".str");
1686   if (isUTF16) {
1687     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1688     GV->setAlignment(Align.getQuantity());
1689   }
1690   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1691 
1692   // String length.
1693   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1694   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1695 
1696   // The struct.
1697   C = llvm::ConstantStruct::get(STy, Fields);
1698   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1699                                 llvm::GlobalVariable::PrivateLinkage, C,
1700                                 "_unnamed_nsstring_");
1701   // FIXME. Fix section.
1702   if (const char *Sect =
1703         Features.ObjCNonFragileABI
1704           ? getContext().Target.getNSStringNonFragileABISection()
1705           : getContext().Target.getNSStringSection())
1706     GV->setSection(Sect);
1707   Entry.setValue(GV);
1708 
1709   return GV;
1710 }
1711 
1712 /// GetStringForStringLiteral - Return the appropriate bytes for a
1713 /// string literal, properly padded to match the literal type.
1714 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1715   const ConstantArrayType *CAT =
1716     getContext().getAsConstantArrayType(E->getType());
1717   assert(CAT && "String isn't pointer or array!");
1718 
1719   // Resize the string to the right size.
1720   uint64_t RealLen = CAT->getSize().getZExtValue();
1721 
1722   if (E->isWide())
1723     RealLen *= getContext().Target.getWCharWidth()/8;
1724 
1725   std::string Str = E->getString().str();
1726   Str.resize(RealLen, '\0');
1727 
1728   return Str;
1729 }
1730 
1731 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1732 /// constant array for the given string literal.
1733 llvm::Constant *
1734 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1735   // FIXME: This can be more efficient.
1736   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1737   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1738   if (S->isWide()) {
1739     llvm::Type *DestTy =
1740         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1741     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1742   }
1743   return C;
1744 }
1745 
1746 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1747 /// array for the given ObjCEncodeExpr node.
1748 llvm::Constant *
1749 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1750   std::string Str;
1751   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1752 
1753   return GetAddrOfConstantCString(Str);
1754 }
1755 
1756 
1757 /// GenerateWritableString -- Creates storage for a string literal.
1758 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1759                                              bool constant,
1760                                              CodeGenModule &CGM,
1761                                              const char *GlobalName) {
1762   // Create Constant for this string literal. Don't add a '\0'.
1763   llvm::Constant *C =
1764       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1765 
1766   // Create a global variable for this string
1767   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1768                                   llvm::GlobalValue::PrivateLinkage,
1769                                   C, GlobalName);
1770 }
1771 
1772 /// GetAddrOfConstantString - Returns a pointer to a character array
1773 /// containing the literal. This contents are exactly that of the
1774 /// given string, i.e. it will not be null terminated automatically;
1775 /// see GetAddrOfConstantCString. Note that whether the result is
1776 /// actually a pointer to an LLVM constant depends on
1777 /// Feature.WriteableStrings.
1778 ///
1779 /// The result has pointer to array type.
1780 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1781                                                        const char *GlobalName) {
1782   bool IsConstant = !Features.WritableStrings;
1783 
1784   // Get the default prefix if a name wasn't specified.
1785   if (!GlobalName)
1786     GlobalName = ".str";
1787 
1788   // Don't share any string literals if strings aren't constant.
1789   if (!IsConstant)
1790     return GenerateStringLiteral(str, false, *this, GlobalName);
1791 
1792   llvm::StringMapEntry<llvm::Constant *> &Entry =
1793     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1794 
1795   if (Entry.getValue())
1796     return Entry.getValue();
1797 
1798   // Create a global variable for this.
1799   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1800   Entry.setValue(C);
1801   return C;
1802 }
1803 
1804 /// GetAddrOfConstantCString - Returns a pointer to a character
1805 /// array containing the literal and a terminating '\-'
1806 /// character. The result has pointer to array type.
1807 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1808                                                         const char *GlobalName){
1809   return GetAddrOfConstantString(str + '\0', GlobalName);
1810 }
1811 
1812 /// EmitObjCPropertyImplementations - Emit information for synthesized
1813 /// properties for an implementation.
1814 void CodeGenModule::EmitObjCPropertyImplementations(const
1815                                                     ObjCImplementationDecl *D) {
1816   for (ObjCImplementationDecl::propimpl_iterator
1817          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1818     ObjCPropertyImplDecl *PID = *i;
1819 
1820     // Dynamic is just for type-checking.
1821     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1822       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1823 
1824       // Determine which methods need to be implemented, some may have
1825       // been overridden. Note that ::isSynthesized is not the method
1826       // we want, that just indicates if the decl came from a
1827       // property. What we want to know is if the method is defined in
1828       // this implementation.
1829       if (!D->getInstanceMethod(PD->getGetterName()))
1830         CodeGenFunction(*this).GenerateObjCGetter(
1831                                  const_cast<ObjCImplementationDecl *>(D), PID);
1832       if (!PD->isReadOnly() &&
1833           !D->getInstanceMethod(PD->getSetterName()))
1834         CodeGenFunction(*this).GenerateObjCSetter(
1835                                  const_cast<ObjCImplementationDecl *>(D), PID);
1836     }
1837   }
1838 }
1839 
1840 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1841 /// for an implementation.
1842 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1843   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1844     return;
1845   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1846   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1847   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1848   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1849   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1850                                                   D->getLocation(),
1851                                                   D->getLocation(), cxxSelector,
1852                                                   getContext().VoidTy, 0,
1853                                                   DC, true, false, true, false,
1854                                                   ObjCMethodDecl::Required);
1855   D->addInstanceMethod(DTORMethod);
1856   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1857 
1858   II = &getContext().Idents.get(".cxx_construct");
1859   cxxSelector = getContext().Selectors.getSelector(0, &II);
1860   // The constructor returns 'self'.
1861   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1862                                                 D->getLocation(),
1863                                                 D->getLocation(), cxxSelector,
1864                                                 getContext().getObjCIdType(), 0,
1865                                                 DC, true, false, true, false,
1866                                                 ObjCMethodDecl::Required);
1867   D->addInstanceMethod(CTORMethod);
1868   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1869 
1870 
1871 }
1872 
1873 /// EmitNamespace - Emit all declarations in a namespace.
1874 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1875   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1876        I != E; ++I)
1877     EmitTopLevelDecl(*I);
1878 }
1879 
1880 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1881 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1882   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1883       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1884     ErrorUnsupported(LSD, "linkage spec");
1885     return;
1886   }
1887 
1888   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1889        I != E; ++I)
1890     EmitTopLevelDecl(*I);
1891 }
1892 
1893 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1894 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1895   // If an error has occurred, stop code generation, but continue
1896   // parsing and semantic analysis (to ensure all warnings and errors
1897   // are emitted).
1898   if (Diags.hasErrorOccurred())
1899     return;
1900 
1901   // Ignore dependent declarations.
1902   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1903     return;
1904 
1905   switch (D->getKind()) {
1906   case Decl::CXXConversion:
1907   case Decl::CXXMethod:
1908   case Decl::Function:
1909     // Skip function templates
1910     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1911       return;
1912 
1913     EmitGlobal(cast<FunctionDecl>(D));
1914     break;
1915 
1916   case Decl::Var:
1917     EmitGlobal(cast<VarDecl>(D));
1918     break;
1919 
1920   // C++ Decls
1921   case Decl::Namespace:
1922     EmitNamespace(cast<NamespaceDecl>(D));
1923     break;
1924     // No code generation needed.
1925   case Decl::UsingShadow:
1926   case Decl::Using:
1927   case Decl::UsingDirective:
1928   case Decl::ClassTemplate:
1929   case Decl::FunctionTemplate:
1930   case Decl::NamespaceAlias:
1931     break;
1932   case Decl::CXXConstructor:
1933     // Skip function templates
1934     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1935       return;
1936 
1937     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1938     break;
1939   case Decl::CXXDestructor:
1940     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1941     break;
1942 
1943   case Decl::StaticAssert:
1944     // Nothing to do.
1945     break;
1946 
1947   // Objective-C Decls
1948 
1949   // Forward declarations, no (immediate) code generation.
1950   case Decl::ObjCClass:
1951   case Decl::ObjCForwardProtocol:
1952   case Decl::ObjCInterface:
1953     break;
1954 
1955     case Decl::ObjCCategory: {
1956       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1957       if (CD->IsClassExtension() && CD->hasSynthBitfield())
1958         Context.ResetObjCLayout(CD->getClassInterface());
1959       break;
1960     }
1961 
1962 
1963   case Decl::ObjCProtocol:
1964     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1965     break;
1966 
1967   case Decl::ObjCCategoryImpl:
1968     // Categories have properties but don't support synthesize so we
1969     // can ignore them here.
1970     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1971     break;
1972 
1973   case Decl::ObjCImplementation: {
1974     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1975     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1976       Context.ResetObjCLayout(OMD->getClassInterface());
1977     EmitObjCPropertyImplementations(OMD);
1978     EmitObjCIvarInitializations(OMD);
1979     Runtime->GenerateClass(OMD);
1980     break;
1981   }
1982   case Decl::ObjCMethod: {
1983     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1984     // If this is not a prototype, emit the body.
1985     if (OMD->getBody())
1986       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1987     break;
1988   }
1989   case Decl::ObjCCompatibleAlias:
1990     // compatibility-alias is a directive and has no code gen.
1991     break;
1992 
1993   case Decl::LinkageSpec:
1994     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1995     break;
1996 
1997   case Decl::FileScopeAsm: {
1998     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1999     llvm::StringRef AsmString = AD->getAsmString()->getString();
2000 
2001     const std::string &S = getModule().getModuleInlineAsm();
2002     if (S.empty())
2003       getModule().setModuleInlineAsm(AsmString);
2004     else
2005       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2006     break;
2007   }
2008 
2009   default:
2010     // Make sure we handled everything we should, every other kind is a
2011     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2012     // function. Need to recode Decl::Kind to do that easily.
2013     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2014   }
2015 }
2016 
2017 /// Turns the given pointer into a constant.
2018 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2019                                           const void *Ptr) {
2020   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2021   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2022   return llvm::ConstantInt::get(i64, PtrInt);
2023 }
2024 
2025 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2026                                    llvm::NamedMDNode *&GlobalMetadata,
2027                                    GlobalDecl D,
2028                                    llvm::GlobalValue *Addr) {
2029   if (!GlobalMetadata)
2030     GlobalMetadata =
2031       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2032 
2033   // TODO: should we report variant information for ctors/dtors?
2034   llvm::Value *Ops[] = {
2035     Addr,
2036     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2037   };
2038   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2039 }
2040 
2041 /// Emits metadata nodes associating all the global values in the
2042 /// current module with the Decls they came from.  This is useful for
2043 /// projects using IR gen as a subroutine.
2044 ///
2045 /// Since there's currently no way to associate an MDNode directly
2046 /// with an llvm::GlobalValue, we create a global named metadata
2047 /// with the name 'clang.global.decl.ptrs'.
2048 void CodeGenModule::EmitDeclMetadata() {
2049   llvm::NamedMDNode *GlobalMetadata = 0;
2050 
2051   // StaticLocalDeclMap
2052   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2053          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2054        I != E; ++I) {
2055     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2056     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2057   }
2058 }
2059 
2060 /// Emits metadata nodes for all the local variables in the current
2061 /// function.
2062 void CodeGenFunction::EmitDeclMetadata() {
2063   if (LocalDeclMap.empty()) return;
2064 
2065   llvm::LLVMContext &Context = getLLVMContext();
2066 
2067   // Find the unique metadata ID for this name.
2068   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2069 
2070   llvm::NamedMDNode *GlobalMetadata = 0;
2071 
2072   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2073          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2074     const Decl *D = I->first;
2075     llvm::Value *Addr = I->second;
2076 
2077     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2078       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2079       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2080     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2081       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2082       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2083     }
2084   }
2085 }
2086 
2087 ///@name Custom Runtime Function Interfaces
2088 ///@{
2089 //
2090 // FIXME: These can be eliminated once we can have clients just get the required
2091 // AST nodes from the builtin tables.
2092 
2093 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2094   if (BlockObjectDispose)
2095     return BlockObjectDispose;
2096 
2097   // If we saw an explicit decl, use that.
2098   if (BlockObjectDisposeDecl) {
2099     return BlockObjectDispose = GetAddrOfFunction(
2100       BlockObjectDisposeDecl,
2101       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2102   }
2103 
2104   // Otherwise construct the function by hand.
2105   const llvm::FunctionType *FTy;
2106   std::vector<const llvm::Type*> ArgTys;
2107   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2108   ArgTys.push_back(PtrToInt8Ty);
2109   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2110   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2111   return BlockObjectDispose =
2112     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2113 }
2114 
2115 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2116   if (BlockObjectAssign)
2117     return BlockObjectAssign;
2118 
2119   // If we saw an explicit decl, use that.
2120   if (BlockObjectAssignDecl) {
2121     return BlockObjectAssign = GetAddrOfFunction(
2122       BlockObjectAssignDecl,
2123       getTypes().GetFunctionType(BlockObjectAssignDecl));
2124   }
2125 
2126   // Otherwise construct the function by hand.
2127   const llvm::FunctionType *FTy;
2128   std::vector<const llvm::Type*> ArgTys;
2129   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2130   ArgTys.push_back(PtrToInt8Ty);
2131   ArgTys.push_back(PtrToInt8Ty);
2132   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2133   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2134   return BlockObjectAssign =
2135     CreateRuntimeFunction(FTy, "_Block_object_assign");
2136 }
2137 
2138 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2139   if (NSConcreteGlobalBlock)
2140     return NSConcreteGlobalBlock;
2141 
2142   // If we saw an explicit decl, use that.
2143   if (NSConcreteGlobalBlockDecl) {
2144     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2145       NSConcreteGlobalBlockDecl,
2146       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2147   }
2148 
2149   // Otherwise construct the variable by hand.
2150   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2151     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2152 }
2153 
2154 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2155   if (NSConcreteStackBlock)
2156     return NSConcreteStackBlock;
2157 
2158   // If we saw an explicit decl, use that.
2159   if (NSConcreteStackBlockDecl) {
2160     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2161       NSConcreteStackBlockDecl,
2162       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2163   }
2164 
2165   // Otherwise construct the variable by hand.
2166   return NSConcreteStackBlock = CreateRuntimeVariable(
2167     PtrToInt8Ty, "_NSConcreteStackBlock");
2168 }
2169 
2170 ///@}
2171