1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CharInfo.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/Module.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Basic/Version.h" 39 #include "clang/Frontend/CodeGenOptions.h" 40 #include "llvm/ADT/APSInt.h" 41 #include "llvm/ADT/Triple.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/CallSite.h" 48 #include "llvm/Support/ConvertUTF.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Target/Mangler.h" 51 52 using namespace clang; 53 using namespace CodeGen; 54 55 static const char AnnotationSection[] = "llvm.metadata"; 56 57 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 58 switch (CGM.getTarget().getCXXABI().getKind()) { 59 case TargetCXXABI::GenericAArch64: 60 case TargetCXXABI::GenericARM: 61 case TargetCXXABI::iOS: 62 case TargetCXXABI::GenericItanium: 63 return *CreateItaniumCXXABI(CGM); 64 case TargetCXXABI::Microsoft: 65 return *CreateMicrosoftCXXABI(CGM); 66 } 67 68 llvm_unreachable("invalid C++ ABI kind"); 69 } 70 71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 72 llvm::Module &M, const llvm::DataLayout &TD, 73 DiagnosticsEngine &diags) 74 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 75 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 76 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 77 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 78 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 79 NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0), 80 ConstantStringClassRef(0), NSConstantStringType(0), 81 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 82 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 83 LifetimeStartFn(0), LifetimeEndFn(0), 84 SanitizerBlacklist( 85 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 86 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 87 : LangOpts.Sanitize) { 88 89 // Initialize the type cache. 90 llvm::LLVMContext &LLVMContext = M.getContext(); 91 VoidTy = llvm::Type::getVoidTy(LLVMContext); 92 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 93 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 94 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 95 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 96 FloatTy = llvm::Type::getFloatTy(LLVMContext); 97 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 98 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 99 PointerAlignInBytes = 100 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 101 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 102 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 103 Int8PtrTy = Int8Ty->getPointerTo(0); 104 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 105 106 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 107 108 if (LangOpts.ObjC1) 109 createObjCRuntime(); 110 if (LangOpts.OpenCL) 111 createOpenCLRuntime(); 112 if (LangOpts.CUDA) 113 createCUDARuntime(); 114 115 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 116 if (SanOpts.Thread || 117 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 118 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 119 ABI.getMangleContext()); 120 121 // If debug info or coverage generation is enabled, create the CGDebugInfo 122 // object. 123 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 124 CodeGenOpts.EmitGcovArcs || 125 CodeGenOpts.EmitGcovNotes) 126 DebugInfo = new CGDebugInfo(*this); 127 128 Block.GlobalUniqueCount = 0; 129 130 if (C.getLangOpts().ObjCAutoRefCount) 131 ARCData = new ARCEntrypoints(); 132 RRData = new RREntrypoints(); 133 } 134 135 CodeGenModule::~CodeGenModule() { 136 delete ObjCRuntime; 137 delete OpenCLRuntime; 138 delete CUDARuntime; 139 delete TheTargetCodeGenInfo; 140 delete &ABI; 141 delete TBAA; 142 delete DebugInfo; 143 delete ARCData; 144 delete RRData; 145 } 146 147 void CodeGenModule::createObjCRuntime() { 148 // This is just isGNUFamily(), but we want to force implementors of 149 // new ABIs to decide how best to do this. 150 switch (LangOpts.ObjCRuntime.getKind()) { 151 case ObjCRuntime::GNUstep: 152 case ObjCRuntime::GCC: 153 case ObjCRuntime::ObjFW: 154 ObjCRuntime = CreateGNUObjCRuntime(*this); 155 return; 156 157 case ObjCRuntime::FragileMacOSX: 158 case ObjCRuntime::MacOSX: 159 case ObjCRuntime::iOS: 160 ObjCRuntime = CreateMacObjCRuntime(*this); 161 return; 162 } 163 llvm_unreachable("bad runtime kind"); 164 } 165 166 void CodeGenModule::createOpenCLRuntime() { 167 OpenCLRuntime = new CGOpenCLRuntime(*this); 168 } 169 170 void CodeGenModule::createCUDARuntime() { 171 CUDARuntime = CreateNVCUDARuntime(*this); 172 } 173 174 void CodeGenModule::Release() { 175 EmitDeferred(); 176 EmitCXXGlobalInitFunc(); 177 EmitCXXGlobalDtorFunc(); 178 EmitCXXThreadLocalInitFunc(); 179 if (ObjCRuntime) 180 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 181 AddGlobalCtor(ObjCInitFunction); 182 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 183 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 184 EmitGlobalAnnotations(); 185 EmitStaticExternCAliases(); 186 EmitLLVMUsed(); 187 188 if (CodeGenOpts.Autolink && 189 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 190 EmitModuleLinkOptions(); 191 } 192 if (CodeGenOpts.DwarfVersion) 193 // We actually want the latest version when there are conflicts. 194 // We can change from Warning to Latest if such mode is supported. 195 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 196 CodeGenOpts.DwarfVersion); 197 198 SimplifyPersonality(); 199 200 if (getCodeGenOpts().EmitDeclMetadata) 201 EmitDeclMetadata(); 202 203 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 204 EmitCoverageFile(); 205 206 if (DebugInfo) 207 DebugInfo->finalize(); 208 209 EmitVersionIdentMetadata(); 210 } 211 212 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 213 // Make sure that this type is translated. 214 Types.UpdateCompletedType(TD); 215 } 216 217 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 218 if (!TBAA) 219 return 0; 220 return TBAA->getTBAAInfo(QTy); 221 } 222 223 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 224 if (!TBAA) 225 return 0; 226 return TBAA->getTBAAInfoForVTablePtr(); 227 } 228 229 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 230 if (!TBAA) 231 return 0; 232 return TBAA->getTBAAStructInfo(QTy); 233 } 234 235 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 236 if (!TBAA) 237 return 0; 238 return TBAA->getTBAAStructTypeInfo(QTy); 239 } 240 241 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 242 llvm::MDNode *AccessN, 243 uint64_t O) { 244 if (!TBAA) 245 return 0; 246 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 247 } 248 249 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 250 /// and struct-path aware TBAA, the tag has the same format: 251 /// base type, access type and offset. 252 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 253 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 254 llvm::MDNode *TBAAInfo, 255 bool ConvertTypeToTag) { 256 if (ConvertTypeToTag && TBAA) 257 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 258 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 259 else 260 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 261 } 262 263 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 264 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 265 getDiags().Report(Context.getFullLoc(loc), diagID); 266 } 267 268 /// ErrorUnsupported - Print out an error that codegen doesn't support the 269 /// specified stmt yet. 270 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 271 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 272 "cannot compile this %0 yet"); 273 std::string Msg = Type; 274 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 275 << Msg << S->getSourceRange(); 276 } 277 278 /// ErrorUnsupported - Print out an error that codegen doesn't support the 279 /// specified decl yet. 280 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 281 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 282 "cannot compile this %0 yet"); 283 std::string Msg = Type; 284 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 285 } 286 287 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 288 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 289 } 290 291 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 292 const NamedDecl *D) const { 293 // Internal definitions always have default visibility. 294 if (GV->hasLocalLinkage()) { 295 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 296 return; 297 } 298 299 // Set visibility for definitions. 300 LinkageInfo LV = D->getLinkageAndVisibility(); 301 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 302 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 303 } 304 305 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 306 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 307 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 308 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 309 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 310 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 311 } 312 313 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 314 CodeGenOptions::TLSModel M) { 315 switch (M) { 316 case CodeGenOptions::GeneralDynamicTLSModel: 317 return llvm::GlobalVariable::GeneralDynamicTLSModel; 318 case CodeGenOptions::LocalDynamicTLSModel: 319 return llvm::GlobalVariable::LocalDynamicTLSModel; 320 case CodeGenOptions::InitialExecTLSModel: 321 return llvm::GlobalVariable::InitialExecTLSModel; 322 case CodeGenOptions::LocalExecTLSModel: 323 return llvm::GlobalVariable::LocalExecTLSModel; 324 } 325 llvm_unreachable("Invalid TLS model!"); 326 } 327 328 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 329 const VarDecl &D) const { 330 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 331 332 llvm::GlobalVariable::ThreadLocalMode TLM; 333 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 334 335 // Override the TLS model if it is explicitly specified. 336 if (D.hasAttr<TLSModelAttr>()) { 337 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 338 TLM = GetLLVMTLSModel(Attr->getModel()); 339 } 340 341 GV->setThreadLocalMode(TLM); 342 } 343 344 /// Set the symbol visibility of type information (vtable and RTTI) 345 /// associated with the given type. 346 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 347 const CXXRecordDecl *RD, 348 TypeVisibilityKind TVK) const { 349 setGlobalVisibility(GV, RD); 350 351 if (!CodeGenOpts.HiddenWeakVTables) 352 return; 353 354 // We never want to drop the visibility for RTTI names. 355 if (TVK == TVK_ForRTTIName) 356 return; 357 358 // We want to drop the visibility to hidden for weak type symbols. 359 // This isn't possible if there might be unresolved references 360 // elsewhere that rely on this symbol being visible. 361 362 // This should be kept roughly in sync with setThunkVisibility 363 // in CGVTables.cpp. 364 365 // Preconditions. 366 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 367 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 368 return; 369 370 // Don't override an explicit visibility attribute. 371 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType)) 372 return; 373 374 switch (RD->getTemplateSpecializationKind()) { 375 // We have to disable the optimization if this is an EI definition 376 // because there might be EI declarations in other shared objects. 377 case TSK_ExplicitInstantiationDefinition: 378 case TSK_ExplicitInstantiationDeclaration: 379 return; 380 381 // Every use of a non-template class's type information has to emit it. 382 case TSK_Undeclared: 383 break; 384 385 // In theory, implicit instantiations can ignore the possibility of 386 // an explicit instantiation declaration because there necessarily 387 // must be an EI definition somewhere with default visibility. In 388 // practice, it's possible to have an explicit instantiation for 389 // an arbitrary template class, and linkers aren't necessarily able 390 // to deal with mixed-visibility symbols. 391 case TSK_ExplicitSpecialization: 392 case TSK_ImplicitInstantiation: 393 return; 394 } 395 396 // If there's a key function, there may be translation units 397 // that don't have the key function's definition. But ignore 398 // this if we're emitting RTTI under -fno-rtti. 399 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 400 // FIXME: what should we do if we "lose" the key function during 401 // the emission of the file? 402 if (Context.getCurrentKeyFunction(RD)) 403 return; 404 } 405 406 // Otherwise, drop the visibility to hidden. 407 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 408 GV->setUnnamedAddr(true); 409 } 410 411 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 412 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 413 414 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 415 if (!Str.empty()) 416 return Str; 417 418 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 419 IdentifierInfo *II = ND->getIdentifier(); 420 assert(II && "Attempt to mangle unnamed decl."); 421 422 Str = II->getName(); 423 return Str; 424 } 425 426 SmallString<256> Buffer; 427 llvm::raw_svector_ostream Out(Buffer); 428 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 429 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 430 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 431 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 432 else 433 getCXXABI().getMangleContext().mangleName(ND, Out); 434 435 // Allocate space for the mangled name. 436 Out.flush(); 437 size_t Length = Buffer.size(); 438 char *Name = MangledNamesAllocator.Allocate<char>(Length); 439 std::copy(Buffer.begin(), Buffer.end(), Name); 440 441 Str = StringRef(Name, Length); 442 443 return Str; 444 } 445 446 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 447 const BlockDecl *BD) { 448 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 449 const Decl *D = GD.getDecl(); 450 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 451 if (D == 0) 452 MangleCtx.mangleGlobalBlock(BD, 453 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 454 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 455 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 456 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 457 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 458 else 459 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 460 } 461 462 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 463 return getModule().getNamedValue(Name); 464 } 465 466 /// AddGlobalCtor - Add a function to the list that will be called before 467 /// main() runs. 468 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 469 // FIXME: Type coercion of void()* types. 470 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 471 } 472 473 /// AddGlobalDtor - Add a function to the list that will be called 474 /// when the module is unloaded. 475 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 476 // FIXME: Type coercion of void()* types. 477 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 478 } 479 480 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 481 // Ctor function type is void()*. 482 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 483 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 484 485 // Get the type of a ctor entry, { i32, void ()* }. 486 llvm::StructType *CtorStructTy = 487 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 488 489 // Construct the constructor and destructor arrays. 490 SmallVector<llvm::Constant*, 8> Ctors; 491 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 492 llvm::Constant *S[] = { 493 llvm::ConstantInt::get(Int32Ty, I->second, false), 494 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 495 }; 496 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 497 } 498 499 if (!Ctors.empty()) { 500 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 501 new llvm::GlobalVariable(TheModule, AT, false, 502 llvm::GlobalValue::AppendingLinkage, 503 llvm::ConstantArray::get(AT, Ctors), 504 GlobalName); 505 } 506 } 507 508 llvm::GlobalValue::LinkageTypes 509 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 510 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 511 512 if (isa<CXXDestructorDecl>(D) && 513 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 514 GD.getDtorType())) 515 return llvm::Function::LinkOnceODRLinkage; 516 517 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 518 519 if (Linkage == GVA_Internal) 520 return llvm::Function::InternalLinkage; 521 522 if (D->hasAttr<DLLExportAttr>()) 523 return llvm::Function::DLLExportLinkage; 524 525 if (D->hasAttr<WeakAttr>()) 526 return llvm::Function::WeakAnyLinkage; 527 528 // In C99 mode, 'inline' functions are guaranteed to have a strong 529 // definition somewhere else, so we can use available_externally linkage. 530 if (Linkage == GVA_C99Inline) 531 return llvm::Function::AvailableExternallyLinkage; 532 533 // Note that Apple's kernel linker doesn't support symbol 534 // coalescing, so we need to avoid linkonce and weak linkages there. 535 // Normally, this means we just map to internal, but for explicit 536 // instantiations we'll map to external. 537 538 // In C++, the compiler has to emit a definition in every translation unit 539 // that references the function. We should use linkonce_odr because 540 // a) if all references in this translation unit are optimized away, we 541 // don't need to codegen it. b) if the function persists, it needs to be 542 // merged with other definitions. c) C++ has the ODR, so we know the 543 // definition is dependable. 544 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 545 return !Context.getLangOpts().AppleKext 546 ? llvm::Function::LinkOnceODRLinkage 547 : llvm::Function::InternalLinkage; 548 549 // An explicit instantiation of a template has weak linkage, since 550 // explicit instantiations can occur in multiple translation units 551 // and must all be equivalent. However, we are not allowed to 552 // throw away these explicit instantiations. 553 if (Linkage == GVA_ExplicitTemplateInstantiation) 554 return !Context.getLangOpts().AppleKext 555 ? llvm::Function::WeakODRLinkage 556 : llvm::Function::ExternalLinkage; 557 558 // Otherwise, we have strong external linkage. 559 assert(Linkage == GVA_StrongExternal); 560 return llvm::Function::ExternalLinkage; 561 } 562 563 564 /// SetFunctionDefinitionAttributes - Set attributes for a global. 565 /// 566 /// FIXME: This is currently only done for aliases and functions, but not for 567 /// variables (these details are set in EmitGlobalVarDefinition for variables). 568 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 569 llvm::GlobalValue *GV) { 570 SetCommonAttributes(D, GV); 571 } 572 573 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 574 const CGFunctionInfo &Info, 575 llvm::Function *F) { 576 unsigned CallingConv; 577 AttributeListType AttributeList; 578 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 579 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 580 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 581 } 582 583 /// Determines whether the language options require us to model 584 /// unwind exceptions. We treat -fexceptions as mandating this 585 /// except under the fragile ObjC ABI with only ObjC exceptions 586 /// enabled. This means, for example, that C with -fexceptions 587 /// enables this. 588 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 589 // If exceptions are completely disabled, obviously this is false. 590 if (!LangOpts.Exceptions) return false; 591 592 // If C++ exceptions are enabled, this is true. 593 if (LangOpts.CXXExceptions) return true; 594 595 // If ObjC exceptions are enabled, this depends on the ABI. 596 if (LangOpts.ObjCExceptions) { 597 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 598 } 599 600 return true; 601 } 602 603 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 604 llvm::Function *F) { 605 llvm::AttrBuilder B; 606 607 if (CodeGenOpts.UnwindTables) 608 B.addAttribute(llvm::Attribute::UWTable); 609 610 if (!hasUnwindExceptions(LangOpts)) 611 B.addAttribute(llvm::Attribute::NoUnwind); 612 613 if (D->hasAttr<NakedAttr>()) { 614 // Naked implies noinline: we should not be inlining such functions. 615 B.addAttribute(llvm::Attribute::Naked); 616 B.addAttribute(llvm::Attribute::NoInline); 617 } else if (D->hasAttr<NoInlineAttr>()) { 618 B.addAttribute(llvm::Attribute::NoInline); 619 } else if ((D->hasAttr<AlwaysInlineAttr>() || 620 D->hasAttr<ForceInlineAttr>()) && 621 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 622 llvm::Attribute::NoInline)) { 623 // (noinline wins over always_inline, and we can't specify both in IR) 624 B.addAttribute(llvm::Attribute::AlwaysInline); 625 } 626 627 if (D->hasAttr<ColdAttr>()) { 628 B.addAttribute(llvm::Attribute::OptimizeForSize); 629 B.addAttribute(llvm::Attribute::Cold); 630 } 631 632 if (D->hasAttr<MinSizeAttr>()) 633 B.addAttribute(llvm::Attribute::MinSize); 634 635 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 636 B.addAttribute(llvm::Attribute::StackProtect); 637 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 638 B.addAttribute(llvm::Attribute::StackProtectReq); 639 640 // Add sanitizer attributes if function is not blacklisted. 641 if (!SanitizerBlacklist->isIn(*F)) { 642 // When AddressSanitizer is enabled, set SanitizeAddress attribute 643 // unless __attribute__((no_sanitize_address)) is used. 644 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 645 B.addAttribute(llvm::Attribute::SanitizeAddress); 646 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 647 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 648 B.addAttribute(llvm::Attribute::SanitizeThread); 649 } 650 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 651 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 652 B.addAttribute(llvm::Attribute::SanitizeMemory); 653 } 654 655 F->addAttributes(llvm::AttributeSet::FunctionIndex, 656 llvm::AttributeSet::get( 657 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 658 659 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 660 F->setUnnamedAddr(true); 661 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 662 if (MD->isVirtual()) 663 F->setUnnamedAddr(true); 664 665 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 666 if (alignment) 667 F->setAlignment(alignment); 668 669 // C++ ABI requires 2-byte alignment for member functions. 670 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 671 F->setAlignment(2); 672 } 673 674 void CodeGenModule::SetCommonAttributes(const Decl *D, 675 llvm::GlobalValue *GV) { 676 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 677 setGlobalVisibility(GV, ND); 678 else 679 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 680 681 if (D->hasAttr<UsedAttr>()) 682 AddUsedGlobal(GV); 683 684 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 685 GV->setSection(SA->getName()); 686 687 // Alias cannot have attributes. Filter them here. 688 if (!isa<llvm::GlobalAlias>(GV)) 689 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 690 } 691 692 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 693 llvm::Function *F, 694 const CGFunctionInfo &FI) { 695 SetLLVMFunctionAttributes(D, FI, F); 696 SetLLVMFunctionAttributesForDefinition(D, F); 697 698 F->setLinkage(llvm::Function::InternalLinkage); 699 700 SetCommonAttributes(D, F); 701 } 702 703 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 704 llvm::Function *F, 705 bool IsIncompleteFunction) { 706 if (unsigned IID = F->getIntrinsicID()) { 707 // If this is an intrinsic function, set the function's attributes 708 // to the intrinsic's attributes. 709 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 710 (llvm::Intrinsic::ID)IID)); 711 return; 712 } 713 714 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 715 716 if (!IsIncompleteFunction) 717 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 718 719 if (getCXXABI().HasThisReturn(GD)) { 720 assert(!F->arg_empty() && 721 F->arg_begin()->getType() 722 ->canLosslesslyBitCastTo(F->getReturnType()) && 723 "unexpected this return"); 724 F->addAttribute(1, llvm::Attribute::Returned); 725 } 726 727 // Only a few attributes are set on declarations; these may later be 728 // overridden by a definition. 729 730 if (FD->hasAttr<DLLImportAttr>()) { 731 F->setLinkage(llvm::Function::DLLImportLinkage); 732 } else if (FD->hasAttr<WeakAttr>() || 733 FD->isWeakImported()) { 734 // "extern_weak" is overloaded in LLVM; we probably should have 735 // separate linkage types for this. 736 F->setLinkage(llvm::Function::ExternalWeakLinkage); 737 } else { 738 F->setLinkage(llvm::Function::ExternalLinkage); 739 740 LinkageInfo LV = FD->getLinkageAndVisibility(); 741 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 742 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 743 } 744 } 745 746 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 747 F->setSection(SA->getName()); 748 749 // A replaceable global allocation function does not act like a builtin by 750 // default, only if it is invoked by a new-expression or delete-expression. 751 if (FD->isReplaceableGlobalAllocationFunction()) 752 F->addAttribute(llvm::AttributeSet::FunctionIndex, 753 llvm::Attribute::NoBuiltin); 754 } 755 756 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 757 assert(!GV->isDeclaration() && 758 "Only globals with definition can force usage."); 759 LLVMUsed.push_back(GV); 760 } 761 762 void CodeGenModule::EmitLLVMUsed() { 763 // Don't create llvm.used if there is no need. 764 if (LLVMUsed.empty()) 765 return; 766 767 // Convert LLVMUsed to what ConstantArray needs. 768 SmallVector<llvm::Constant*, 8> UsedArray; 769 UsedArray.resize(LLVMUsed.size()); 770 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 771 UsedArray[i] = 772 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 773 Int8PtrTy); 774 } 775 776 if (UsedArray.empty()) 777 return; 778 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 779 780 llvm::GlobalVariable *GV = 781 new llvm::GlobalVariable(getModule(), ATy, false, 782 llvm::GlobalValue::AppendingLinkage, 783 llvm::ConstantArray::get(ATy, UsedArray), 784 "llvm.used"); 785 786 GV->setSection("llvm.metadata"); 787 } 788 789 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 790 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 791 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 792 } 793 794 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 795 llvm::SmallString<32> Opt; 796 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 797 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 798 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 799 } 800 801 void CodeGenModule::AddDependentLib(StringRef Lib) { 802 llvm::SmallString<24> Opt; 803 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 804 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 805 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 806 } 807 808 /// \brief Add link options implied by the given module, including modules 809 /// it depends on, using a postorder walk. 810 static void addLinkOptionsPostorder(CodeGenModule &CGM, 811 Module *Mod, 812 SmallVectorImpl<llvm::Value *> &Metadata, 813 llvm::SmallPtrSet<Module *, 16> &Visited) { 814 // Import this module's parent. 815 if (Mod->Parent && Visited.insert(Mod->Parent)) { 816 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 817 } 818 819 // Import this module's dependencies. 820 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 821 if (Visited.insert(Mod->Imports[I-1])) 822 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 823 } 824 825 // Add linker options to link against the libraries/frameworks 826 // described by this module. 827 llvm::LLVMContext &Context = CGM.getLLVMContext(); 828 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 829 // Link against a framework. Frameworks are currently Darwin only, so we 830 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 831 if (Mod->LinkLibraries[I-1].IsFramework) { 832 llvm::Value *Args[2] = { 833 llvm::MDString::get(Context, "-framework"), 834 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 835 }; 836 837 Metadata.push_back(llvm::MDNode::get(Context, Args)); 838 continue; 839 } 840 841 // Link against a library. 842 llvm::SmallString<24> Opt; 843 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 844 Mod->LinkLibraries[I-1].Library, Opt); 845 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 846 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 847 } 848 } 849 850 void CodeGenModule::EmitModuleLinkOptions() { 851 // Collect the set of all of the modules we want to visit to emit link 852 // options, which is essentially the imported modules and all of their 853 // non-explicit child modules. 854 llvm::SetVector<clang::Module *> LinkModules; 855 llvm::SmallPtrSet<clang::Module *, 16> Visited; 856 SmallVector<clang::Module *, 16> Stack; 857 858 // Seed the stack with imported modules. 859 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 860 MEnd = ImportedModules.end(); 861 M != MEnd; ++M) { 862 if (Visited.insert(*M)) 863 Stack.push_back(*M); 864 } 865 866 // Find all of the modules to import, making a little effort to prune 867 // non-leaf modules. 868 while (!Stack.empty()) { 869 clang::Module *Mod = Stack.pop_back_val(); 870 871 bool AnyChildren = false; 872 873 // Visit the submodules of this module. 874 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 875 SubEnd = Mod->submodule_end(); 876 Sub != SubEnd; ++Sub) { 877 // Skip explicit children; they need to be explicitly imported to be 878 // linked against. 879 if ((*Sub)->IsExplicit) 880 continue; 881 882 if (Visited.insert(*Sub)) { 883 Stack.push_back(*Sub); 884 AnyChildren = true; 885 } 886 } 887 888 // We didn't find any children, so add this module to the list of 889 // modules to link against. 890 if (!AnyChildren) { 891 LinkModules.insert(Mod); 892 } 893 } 894 895 // Add link options for all of the imported modules in reverse topological 896 // order. We don't do anything to try to order import link flags with respect 897 // to linker options inserted by things like #pragma comment(). 898 SmallVector<llvm::Value *, 16> MetadataArgs; 899 Visited.clear(); 900 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 901 MEnd = LinkModules.end(); 902 M != MEnd; ++M) { 903 if (Visited.insert(*M)) 904 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 905 } 906 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 907 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 908 909 // Add the linker options metadata flag. 910 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 911 llvm::MDNode::get(getLLVMContext(), 912 LinkerOptionsMetadata)); 913 } 914 915 void CodeGenModule::EmitDeferred() { 916 // Emit code for any potentially referenced deferred decls. Since a 917 // previously unused static decl may become used during the generation of code 918 // for a static function, iterate until no changes are made. 919 920 while (true) { 921 if (!DeferredVTables.empty()) { 922 EmitDeferredVTables(); 923 924 // Emitting a v-table doesn't directly cause more v-tables to 925 // become deferred, although it can cause functions to be 926 // emitted that then need those v-tables. 927 assert(DeferredVTables.empty()); 928 } 929 930 // Stop if we're out of both deferred v-tables and deferred declarations. 931 if (DeferredDeclsToEmit.empty()) break; 932 933 GlobalDecl D = DeferredDeclsToEmit.back(); 934 DeferredDeclsToEmit.pop_back(); 935 936 // Check to see if we've already emitted this. This is necessary 937 // for a couple of reasons: first, decls can end up in the 938 // deferred-decls queue multiple times, and second, decls can end 939 // up with definitions in unusual ways (e.g. by an extern inline 940 // function acquiring a strong function redefinition). Just 941 // ignore these cases. 942 // 943 // TODO: That said, looking this up multiple times is very wasteful. 944 StringRef Name = getMangledName(D); 945 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 946 assert(CGRef && "Deferred decl wasn't referenced?"); 947 948 if (!CGRef->isDeclaration()) 949 continue; 950 951 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 952 // purposes an alias counts as a definition. 953 if (isa<llvm::GlobalAlias>(CGRef)) 954 continue; 955 956 // Otherwise, emit the definition and move on to the next one. 957 EmitGlobalDefinition(D); 958 } 959 } 960 961 void CodeGenModule::EmitGlobalAnnotations() { 962 if (Annotations.empty()) 963 return; 964 965 // Create a new global variable for the ConstantStruct in the Module. 966 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 967 Annotations[0]->getType(), Annotations.size()), Annotations); 968 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 969 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 970 "llvm.global.annotations"); 971 gv->setSection(AnnotationSection); 972 } 973 974 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 975 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 976 if (i != AnnotationStrings.end()) 977 return i->second; 978 979 // Not found yet, create a new global. 980 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 981 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 982 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 983 gv->setSection(AnnotationSection); 984 gv->setUnnamedAddr(true); 985 AnnotationStrings[Str] = gv; 986 return gv; 987 } 988 989 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 990 SourceManager &SM = getContext().getSourceManager(); 991 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 992 if (PLoc.isValid()) 993 return EmitAnnotationString(PLoc.getFilename()); 994 return EmitAnnotationString(SM.getBufferName(Loc)); 995 } 996 997 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 998 SourceManager &SM = getContext().getSourceManager(); 999 PresumedLoc PLoc = SM.getPresumedLoc(L); 1000 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1001 SM.getExpansionLineNumber(L); 1002 return llvm::ConstantInt::get(Int32Ty, LineNo); 1003 } 1004 1005 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1006 const AnnotateAttr *AA, 1007 SourceLocation L) { 1008 // Get the globals for file name, annotation, and the line number. 1009 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1010 *UnitGV = EmitAnnotationUnit(L), 1011 *LineNoCst = EmitAnnotationLineNo(L); 1012 1013 // Create the ConstantStruct for the global annotation. 1014 llvm::Constant *Fields[4] = { 1015 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1016 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1017 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1018 LineNoCst 1019 }; 1020 return llvm::ConstantStruct::getAnon(Fields); 1021 } 1022 1023 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1024 llvm::GlobalValue *GV) { 1025 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1026 // Get the struct elements for these annotations. 1027 for (specific_attr_iterator<AnnotateAttr> 1028 ai = D->specific_attr_begin<AnnotateAttr>(), 1029 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1030 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1031 } 1032 1033 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1034 // Never defer when EmitAllDecls is specified. 1035 if (LangOpts.EmitAllDecls) 1036 return false; 1037 1038 return !getContext().DeclMustBeEmitted(Global); 1039 } 1040 1041 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1042 const CXXUuidofExpr* E) { 1043 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1044 // well-formed. 1045 StringRef Uuid = E->getUuidAsStringRef(Context); 1046 std::string Name = "_GUID_" + Uuid.lower(); 1047 std::replace(Name.begin(), Name.end(), '-', '_'); 1048 1049 // Look for an existing global. 1050 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1051 return GV; 1052 1053 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1054 assert(Init && "failed to initialize as constant"); 1055 1056 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1057 getModule(), Init->getType(), 1058 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1059 return GV; 1060 } 1061 1062 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1063 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1064 assert(AA && "No alias?"); 1065 1066 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1067 1068 // See if there is already something with the target's name in the module. 1069 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1070 if (Entry) { 1071 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1072 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1073 } 1074 1075 llvm::Constant *Aliasee; 1076 if (isa<llvm::FunctionType>(DeclTy)) 1077 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1078 GlobalDecl(cast<FunctionDecl>(VD)), 1079 /*ForVTable=*/false); 1080 else 1081 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1082 llvm::PointerType::getUnqual(DeclTy), 0); 1083 1084 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1085 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1086 WeakRefReferences.insert(F); 1087 1088 return Aliasee; 1089 } 1090 1091 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1092 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1093 1094 // Weak references don't produce any output by themselves. 1095 if (Global->hasAttr<WeakRefAttr>()) 1096 return; 1097 1098 // If this is an alias definition (which otherwise looks like a declaration) 1099 // emit it now. 1100 if (Global->hasAttr<AliasAttr>()) 1101 return EmitAliasDefinition(GD); 1102 1103 // If this is CUDA, be selective about which declarations we emit. 1104 if (LangOpts.CUDA) { 1105 if (CodeGenOpts.CUDAIsDevice) { 1106 if (!Global->hasAttr<CUDADeviceAttr>() && 1107 !Global->hasAttr<CUDAGlobalAttr>() && 1108 !Global->hasAttr<CUDAConstantAttr>() && 1109 !Global->hasAttr<CUDASharedAttr>()) 1110 return; 1111 } else { 1112 if (!Global->hasAttr<CUDAHostAttr>() && ( 1113 Global->hasAttr<CUDADeviceAttr>() || 1114 Global->hasAttr<CUDAConstantAttr>() || 1115 Global->hasAttr<CUDASharedAttr>())) 1116 return; 1117 } 1118 } 1119 1120 // Ignore declarations, they will be emitted on their first use. 1121 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1122 // Forward declarations are emitted lazily on first use. 1123 if (!FD->doesThisDeclarationHaveABody()) { 1124 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1125 return; 1126 1127 const FunctionDecl *InlineDefinition = 0; 1128 FD->getBody(InlineDefinition); 1129 1130 StringRef MangledName = getMangledName(GD); 1131 DeferredDecls.erase(MangledName); 1132 EmitGlobalDefinition(InlineDefinition); 1133 return; 1134 } 1135 } else { 1136 const VarDecl *VD = cast<VarDecl>(Global); 1137 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1138 1139 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1140 return; 1141 } 1142 1143 // Defer code generation when possible if this is a static definition, inline 1144 // function etc. These we only want to emit if they are used. 1145 if (!MayDeferGeneration(Global)) { 1146 // Emit the definition if it can't be deferred. 1147 EmitGlobalDefinition(GD); 1148 return; 1149 } 1150 1151 // If we're deferring emission of a C++ variable with an 1152 // initializer, remember the order in which it appeared in the file. 1153 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1154 cast<VarDecl>(Global)->hasInit()) { 1155 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1156 CXXGlobalInits.push_back(0); 1157 } 1158 1159 // If the value has already been used, add it directly to the 1160 // DeferredDeclsToEmit list. 1161 StringRef MangledName = getMangledName(GD); 1162 if (GetGlobalValue(MangledName)) 1163 DeferredDeclsToEmit.push_back(GD); 1164 else { 1165 // Otherwise, remember that we saw a deferred decl with this name. The 1166 // first use of the mangled name will cause it to move into 1167 // DeferredDeclsToEmit. 1168 DeferredDecls[MangledName] = GD; 1169 } 1170 } 1171 1172 namespace { 1173 struct FunctionIsDirectlyRecursive : 1174 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1175 const StringRef Name; 1176 const Builtin::Context &BI; 1177 bool Result; 1178 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1179 Name(N), BI(C), Result(false) { 1180 } 1181 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1182 1183 bool TraverseCallExpr(CallExpr *E) { 1184 const FunctionDecl *FD = E->getDirectCallee(); 1185 if (!FD) 1186 return true; 1187 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1188 if (Attr && Name == Attr->getLabel()) { 1189 Result = true; 1190 return false; 1191 } 1192 unsigned BuiltinID = FD->getBuiltinID(); 1193 if (!BuiltinID) 1194 return true; 1195 StringRef BuiltinName = BI.GetName(BuiltinID); 1196 if (BuiltinName.startswith("__builtin_") && 1197 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1198 Result = true; 1199 return false; 1200 } 1201 return true; 1202 } 1203 }; 1204 } 1205 1206 // isTriviallyRecursive - Check if this function calls another 1207 // decl that, because of the asm attribute or the other decl being a builtin, 1208 // ends up pointing to itself. 1209 bool 1210 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1211 StringRef Name; 1212 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1213 // asm labels are a special kind of mangling we have to support. 1214 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1215 if (!Attr) 1216 return false; 1217 Name = Attr->getLabel(); 1218 } else { 1219 Name = FD->getName(); 1220 } 1221 1222 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1223 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1224 return Walker.Result; 1225 } 1226 1227 bool 1228 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1229 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1230 return true; 1231 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1232 if (CodeGenOpts.OptimizationLevel == 0 && 1233 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1234 return false; 1235 // PR9614. Avoid cases where the source code is lying to us. An available 1236 // externally function should have an equivalent function somewhere else, 1237 // but a function that calls itself is clearly not equivalent to the real 1238 // implementation. 1239 // This happens in glibc's btowc and in some configure checks. 1240 return !isTriviallyRecursive(F); 1241 } 1242 1243 /// If the type for the method's class was generated by 1244 /// CGDebugInfo::createContextChain(), the cache contains only a 1245 /// limited DIType without any declarations. Since EmitFunctionStart() 1246 /// needs to find the canonical declaration for each method, we need 1247 /// to construct the complete type prior to emitting the method. 1248 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1249 if (!D->isInstance()) 1250 return; 1251 1252 if (CGDebugInfo *DI = getModuleDebugInfo()) 1253 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1254 const PointerType *ThisPtr = 1255 cast<PointerType>(D->getThisType(getContext())); 1256 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1257 } 1258 } 1259 1260 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1261 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1262 1263 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1264 Context.getSourceManager(), 1265 "Generating code for declaration"); 1266 1267 if (isa<FunctionDecl>(D)) { 1268 // At -O0, don't generate IR for functions with available_externally 1269 // linkage. 1270 if (!shouldEmitFunction(GD)) 1271 return; 1272 1273 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1274 CompleteDIClassType(Method); 1275 // Make sure to emit the definition(s) before we emit the thunks. 1276 // This is necessary for the generation of certain thunks. 1277 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1278 EmitCXXConstructor(CD, GD.getCtorType()); 1279 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1280 EmitCXXDestructor(DD, GD.getDtorType()); 1281 else 1282 EmitGlobalFunctionDefinition(GD); 1283 1284 if (Method->isVirtual()) 1285 getVTables().EmitThunks(GD); 1286 1287 return; 1288 } 1289 1290 return EmitGlobalFunctionDefinition(GD); 1291 } 1292 1293 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1294 return EmitGlobalVarDefinition(VD); 1295 1296 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1297 } 1298 1299 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1300 /// module, create and return an llvm Function with the specified type. If there 1301 /// is something in the module with the specified name, return it potentially 1302 /// bitcasted to the right type. 1303 /// 1304 /// If D is non-null, it specifies a decl that correspond to this. This is used 1305 /// to set the attributes on the function when it is first created. 1306 llvm::Constant * 1307 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1308 llvm::Type *Ty, 1309 GlobalDecl GD, bool ForVTable, 1310 llvm::AttributeSet ExtraAttrs) { 1311 const Decl *D = GD.getDecl(); 1312 1313 // Lookup the entry, lazily creating it if necessary. 1314 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1315 if (Entry) { 1316 if (WeakRefReferences.erase(Entry)) { 1317 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1318 if (FD && !FD->hasAttr<WeakAttr>()) 1319 Entry->setLinkage(llvm::Function::ExternalLinkage); 1320 } 1321 1322 if (Entry->getType()->getElementType() == Ty) 1323 return Entry; 1324 1325 // Make sure the result is of the correct type. 1326 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1327 } 1328 1329 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1330 // each other bottoming out with the base dtor. Therefore we emit non-base 1331 // dtors on usage, even if there is no dtor definition in the TU. 1332 if (D && isa<CXXDestructorDecl>(D) && 1333 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1334 GD.getDtorType())) 1335 DeferredDeclsToEmit.push_back(GD); 1336 1337 // This function doesn't have a complete type (for example, the return 1338 // type is an incomplete struct). Use a fake type instead, and make 1339 // sure not to try to set attributes. 1340 bool IsIncompleteFunction = false; 1341 1342 llvm::FunctionType *FTy; 1343 if (isa<llvm::FunctionType>(Ty)) { 1344 FTy = cast<llvm::FunctionType>(Ty); 1345 } else { 1346 FTy = llvm::FunctionType::get(VoidTy, false); 1347 IsIncompleteFunction = true; 1348 } 1349 1350 llvm::Function *F = llvm::Function::Create(FTy, 1351 llvm::Function::ExternalLinkage, 1352 MangledName, &getModule()); 1353 assert(F->getName() == MangledName && "name was uniqued!"); 1354 if (D) 1355 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1356 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1357 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1358 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1359 llvm::AttributeSet::get(VMContext, 1360 llvm::AttributeSet::FunctionIndex, 1361 B)); 1362 } 1363 1364 // This is the first use or definition of a mangled name. If there is a 1365 // deferred decl with this name, remember that we need to emit it at the end 1366 // of the file. 1367 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1368 if (DDI != DeferredDecls.end()) { 1369 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1370 // list, and remove it from DeferredDecls (since we don't need it anymore). 1371 DeferredDeclsToEmit.push_back(DDI->second); 1372 DeferredDecls.erase(DDI); 1373 1374 // Otherwise, there are cases we have to worry about where we're 1375 // using a declaration for which we must emit a definition but where 1376 // we might not find a top-level definition: 1377 // - member functions defined inline in their classes 1378 // - friend functions defined inline in some class 1379 // - special member functions with implicit definitions 1380 // If we ever change our AST traversal to walk into class methods, 1381 // this will be unnecessary. 1382 // 1383 // We also don't emit a definition for a function if it's going to be an entry 1384 // in a vtable, unless it's already marked as used. 1385 } else if (getLangOpts().CPlusPlus && D) { 1386 // Look for a declaration that's lexically in a record. 1387 const FunctionDecl *FD = cast<FunctionDecl>(D); 1388 FD = FD->getMostRecentDecl(); 1389 do { 1390 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1391 if (FD->isImplicit() && !ForVTable) { 1392 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1393 DeferredDeclsToEmit.push_back(GD.getWithDecl(FD)); 1394 break; 1395 } else if (FD->doesThisDeclarationHaveABody()) { 1396 DeferredDeclsToEmit.push_back(GD.getWithDecl(FD)); 1397 break; 1398 } 1399 } 1400 FD = FD->getPreviousDecl(); 1401 } while (FD); 1402 } 1403 1404 // Make sure the result is of the requested type. 1405 if (!IsIncompleteFunction) { 1406 assert(F->getType()->getElementType() == Ty); 1407 return F; 1408 } 1409 1410 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1411 return llvm::ConstantExpr::getBitCast(F, PTy); 1412 } 1413 1414 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1415 /// non-null, then this function will use the specified type if it has to 1416 /// create it (this occurs when we see a definition of the function). 1417 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1418 llvm::Type *Ty, 1419 bool ForVTable) { 1420 // If there was no specific requested type, just convert it now. 1421 if (!Ty) 1422 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1423 1424 StringRef MangledName = getMangledName(GD); 1425 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1426 } 1427 1428 /// CreateRuntimeFunction - Create a new runtime function with the specified 1429 /// type and name. 1430 llvm::Constant * 1431 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1432 StringRef Name, 1433 llvm::AttributeSet ExtraAttrs) { 1434 llvm::Constant *C 1435 = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1436 ExtraAttrs); 1437 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1438 if (F->empty()) 1439 F->setCallingConv(getRuntimeCC()); 1440 return C; 1441 } 1442 1443 /// isTypeConstant - Determine whether an object of this type can be emitted 1444 /// as a constant. 1445 /// 1446 /// If ExcludeCtor is true, the duration when the object's constructor runs 1447 /// will not be considered. The caller will need to verify that the object is 1448 /// not written to during its construction. 1449 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1450 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1451 return false; 1452 1453 if (Context.getLangOpts().CPlusPlus) { 1454 if (const CXXRecordDecl *Record 1455 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1456 return ExcludeCtor && !Record->hasMutableFields() && 1457 Record->hasTrivialDestructor(); 1458 } 1459 1460 return true; 1461 } 1462 1463 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1464 /// create and return an llvm GlobalVariable with the specified type. If there 1465 /// is something in the module with the specified name, return it potentially 1466 /// bitcasted to the right type. 1467 /// 1468 /// If D is non-null, it specifies a decl that correspond to this. This is used 1469 /// to set the attributes on the global when it is first created. 1470 llvm::Constant * 1471 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1472 llvm::PointerType *Ty, 1473 const VarDecl *D, 1474 bool UnnamedAddr) { 1475 // Lookup the entry, lazily creating it if necessary. 1476 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1477 if (Entry) { 1478 if (WeakRefReferences.erase(Entry)) { 1479 if (D && !D->hasAttr<WeakAttr>()) 1480 Entry->setLinkage(llvm::Function::ExternalLinkage); 1481 } 1482 1483 if (UnnamedAddr) 1484 Entry->setUnnamedAddr(true); 1485 1486 if (Entry->getType() == Ty) 1487 return Entry; 1488 1489 // Make sure the result is of the correct type. 1490 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1491 } 1492 1493 // This is the first use or definition of a mangled name. If there is a 1494 // deferred decl with this name, remember that we need to emit it at the end 1495 // of the file. 1496 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1497 if (DDI != DeferredDecls.end()) { 1498 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1499 // list, and remove it from DeferredDecls (since we don't need it anymore). 1500 DeferredDeclsToEmit.push_back(DDI->second); 1501 DeferredDecls.erase(DDI); 1502 } 1503 1504 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1505 llvm::GlobalVariable *GV = 1506 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1507 llvm::GlobalValue::ExternalLinkage, 1508 0, MangledName, 0, 1509 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1510 1511 // Handle things which are present even on external declarations. 1512 if (D) { 1513 // FIXME: This code is overly simple and should be merged with other global 1514 // handling. 1515 GV->setConstant(isTypeConstant(D->getType(), false)); 1516 1517 // Set linkage and visibility in case we never see a definition. 1518 LinkageInfo LV = D->getLinkageAndVisibility(); 1519 if (LV.getLinkage() != ExternalLinkage) { 1520 // Don't set internal linkage on declarations. 1521 } else { 1522 if (D->hasAttr<DLLImportAttr>()) 1523 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1524 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1525 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1526 1527 // Set visibility on a declaration only if it's explicit. 1528 if (LV.isVisibilityExplicit()) 1529 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1530 } 1531 1532 if (D->getTLSKind()) { 1533 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1534 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1535 setTLSMode(GV, *D); 1536 } 1537 } 1538 1539 if (AddrSpace != Ty->getAddressSpace()) 1540 return llvm::ConstantExpr::getBitCast(GV, Ty); 1541 else 1542 return GV; 1543 } 1544 1545 1546 llvm::GlobalVariable * 1547 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1548 llvm::Type *Ty, 1549 llvm::GlobalValue::LinkageTypes Linkage) { 1550 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1551 llvm::GlobalVariable *OldGV = 0; 1552 1553 1554 if (GV) { 1555 // Check if the variable has the right type. 1556 if (GV->getType()->getElementType() == Ty) 1557 return GV; 1558 1559 // Because C++ name mangling, the only way we can end up with an already 1560 // existing global with the same name is if it has been declared extern "C". 1561 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1562 OldGV = GV; 1563 } 1564 1565 // Create a new variable. 1566 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1567 Linkage, 0, Name); 1568 1569 if (OldGV) { 1570 // Replace occurrences of the old variable if needed. 1571 GV->takeName(OldGV); 1572 1573 if (!OldGV->use_empty()) { 1574 llvm::Constant *NewPtrForOldDecl = 1575 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1576 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1577 } 1578 1579 OldGV->eraseFromParent(); 1580 } 1581 1582 return GV; 1583 } 1584 1585 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1586 /// given global variable. If Ty is non-null and if the global doesn't exist, 1587 /// then it will be created with the specified type instead of whatever the 1588 /// normal requested type would be. 1589 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1590 llvm::Type *Ty) { 1591 assert(D->hasGlobalStorage() && "Not a global variable"); 1592 QualType ASTTy = D->getType(); 1593 if (Ty == 0) 1594 Ty = getTypes().ConvertTypeForMem(ASTTy); 1595 1596 llvm::PointerType *PTy = 1597 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1598 1599 StringRef MangledName = getMangledName(D); 1600 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1601 } 1602 1603 /// CreateRuntimeVariable - Create a new runtime global variable with the 1604 /// specified type and name. 1605 llvm::Constant * 1606 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1607 StringRef Name) { 1608 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1609 true); 1610 } 1611 1612 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1613 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1614 1615 if (MayDeferGeneration(D)) { 1616 // If we have not seen a reference to this variable yet, place it 1617 // into the deferred declarations table to be emitted if needed 1618 // later. 1619 StringRef MangledName = getMangledName(D); 1620 if (!GetGlobalValue(MangledName)) { 1621 DeferredDecls[MangledName] = D; 1622 return; 1623 } 1624 } 1625 1626 // The tentative definition is the only definition. 1627 EmitGlobalVarDefinition(D); 1628 } 1629 1630 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1631 return Context.toCharUnitsFromBits( 1632 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1633 } 1634 1635 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1636 unsigned AddrSpace) { 1637 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1638 if (D->hasAttr<CUDAConstantAttr>()) 1639 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1640 else if (D->hasAttr<CUDASharedAttr>()) 1641 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1642 else 1643 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1644 } 1645 1646 return AddrSpace; 1647 } 1648 1649 template<typename SomeDecl> 1650 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1651 llvm::GlobalValue *GV) { 1652 if (!getLangOpts().CPlusPlus) 1653 return; 1654 1655 // Must have 'used' attribute, or else inline assembly can't rely on 1656 // the name existing. 1657 if (!D->template hasAttr<UsedAttr>()) 1658 return; 1659 1660 // Must have internal linkage and an ordinary name. 1661 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1662 return; 1663 1664 // Must be in an extern "C" context. Entities declared directly within 1665 // a record are not extern "C" even if the record is in such a context. 1666 const SomeDecl *First = D->getFirstDecl(); 1667 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1668 return; 1669 1670 // OK, this is an internal linkage entity inside an extern "C" linkage 1671 // specification. Make a note of that so we can give it the "expected" 1672 // mangled name if nothing else is using that name. 1673 std::pair<StaticExternCMap::iterator, bool> R = 1674 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1675 1676 // If we have multiple internal linkage entities with the same name 1677 // in extern "C" regions, none of them gets that name. 1678 if (!R.second) 1679 R.first->second = 0; 1680 } 1681 1682 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1683 llvm::Constant *Init = 0; 1684 QualType ASTTy = D->getType(); 1685 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1686 bool NeedsGlobalCtor = false; 1687 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1688 1689 const VarDecl *InitDecl; 1690 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1691 1692 if (!InitExpr) { 1693 // This is a tentative definition; tentative definitions are 1694 // implicitly initialized with { 0 }. 1695 // 1696 // Note that tentative definitions are only emitted at the end of 1697 // a translation unit, so they should never have incomplete 1698 // type. In addition, EmitTentativeDefinition makes sure that we 1699 // never attempt to emit a tentative definition if a real one 1700 // exists. A use may still exists, however, so we still may need 1701 // to do a RAUW. 1702 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1703 Init = EmitNullConstant(D->getType()); 1704 } else { 1705 initializedGlobalDecl = GlobalDecl(D); 1706 Init = EmitConstantInit(*InitDecl); 1707 1708 if (!Init) { 1709 QualType T = InitExpr->getType(); 1710 if (D->getType()->isReferenceType()) 1711 T = D->getType(); 1712 1713 if (getLangOpts().CPlusPlus) { 1714 Init = EmitNullConstant(T); 1715 NeedsGlobalCtor = true; 1716 } else { 1717 ErrorUnsupported(D, "static initializer"); 1718 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1719 } 1720 } else { 1721 // We don't need an initializer, so remove the entry for the delayed 1722 // initializer position (just in case this entry was delayed) if we 1723 // also don't need to register a destructor. 1724 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1725 DelayedCXXInitPosition.erase(D); 1726 } 1727 } 1728 1729 llvm::Type* InitType = Init->getType(); 1730 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1731 1732 // Strip off a bitcast if we got one back. 1733 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1734 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1735 // all zero index gep. 1736 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1737 Entry = CE->getOperand(0); 1738 } 1739 1740 // Entry is now either a Function or GlobalVariable. 1741 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1742 1743 // We have a definition after a declaration with the wrong type. 1744 // We must make a new GlobalVariable* and update everything that used OldGV 1745 // (a declaration or tentative definition) with the new GlobalVariable* 1746 // (which will be a definition). 1747 // 1748 // This happens if there is a prototype for a global (e.g. 1749 // "extern int x[];") and then a definition of a different type (e.g. 1750 // "int x[10];"). This also happens when an initializer has a different type 1751 // from the type of the global (this happens with unions). 1752 if (GV == 0 || 1753 GV->getType()->getElementType() != InitType || 1754 GV->getType()->getAddressSpace() != 1755 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1756 1757 // Move the old entry aside so that we'll create a new one. 1758 Entry->setName(StringRef()); 1759 1760 // Make a new global with the correct type, this is now guaranteed to work. 1761 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1762 1763 // Replace all uses of the old global with the new global 1764 llvm::Constant *NewPtrForOldDecl = 1765 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1766 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1767 1768 // Erase the old global, since it is no longer used. 1769 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1770 } 1771 1772 MaybeHandleStaticInExternC(D, GV); 1773 1774 if (D->hasAttr<AnnotateAttr>()) 1775 AddGlobalAnnotations(D, GV); 1776 1777 GV->setInitializer(Init); 1778 1779 // If it is safe to mark the global 'constant', do so now. 1780 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1781 isTypeConstant(D->getType(), true)); 1782 1783 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1784 1785 // Set the llvm linkage type as appropriate. 1786 llvm::GlobalValue::LinkageTypes Linkage = 1787 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1788 GV->setLinkage(Linkage); 1789 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1790 // common vars aren't constant even if declared const. 1791 GV->setConstant(false); 1792 1793 SetCommonAttributes(D, GV); 1794 1795 // Emit the initializer function if necessary. 1796 if (NeedsGlobalCtor || NeedsGlobalDtor) 1797 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1798 1799 // If we are compiling with ASan, add metadata indicating dynamically 1800 // initialized globals. 1801 if (SanOpts.Address && NeedsGlobalCtor) { 1802 llvm::Module &M = getModule(); 1803 1804 llvm::NamedMDNode *DynamicInitializers = 1805 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1806 llvm::Value *GlobalToAdd[] = { GV }; 1807 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1808 DynamicInitializers->addOperand(ThisGlobal); 1809 } 1810 1811 // Emit global variable debug information. 1812 if (CGDebugInfo *DI = getModuleDebugInfo()) 1813 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1814 DI->EmitGlobalVariable(GV, D); 1815 } 1816 1817 llvm::GlobalValue::LinkageTypes 1818 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1819 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1820 if (Linkage == GVA_Internal) 1821 return llvm::Function::InternalLinkage; 1822 else if (D->hasAttr<DLLImportAttr>()) 1823 return llvm::Function::DLLImportLinkage; 1824 else if (D->hasAttr<DLLExportAttr>()) 1825 return llvm::Function::DLLExportLinkage; 1826 else if (D->hasAttr<SelectAnyAttr>()) { 1827 // selectany symbols are externally visible, so use weak instead of 1828 // linkonce. MSVC optimizes away references to const selectany globals, so 1829 // all definitions should be the same and ODR linkage should be used. 1830 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1831 return llvm::GlobalVariable::WeakODRLinkage; 1832 } else if (D->hasAttr<WeakAttr>()) { 1833 if (isConstant) 1834 return llvm::GlobalVariable::WeakODRLinkage; 1835 else 1836 return llvm::GlobalVariable::WeakAnyLinkage; 1837 } else if (Linkage == GVA_TemplateInstantiation || 1838 Linkage == GVA_ExplicitTemplateInstantiation) 1839 return llvm::GlobalVariable::WeakODRLinkage; 1840 else if (!getLangOpts().CPlusPlus && 1841 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1842 D->getAttr<CommonAttr>()) && 1843 !D->hasExternalStorage() && !D->getInit() && 1844 !D->getAttr<SectionAttr>() && !D->getTLSKind() && 1845 !D->getAttr<WeakImportAttr>()) { 1846 // Thread local vars aren't considered common linkage. 1847 return llvm::GlobalVariable::CommonLinkage; 1848 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1849 getTarget().getTriple().isMacOSX()) 1850 // On Darwin, the backing variable for a C++11 thread_local variable always 1851 // has internal linkage; all accesses should just be calls to the 1852 // Itanium-specified entry point, which has the normal linkage of the 1853 // variable. 1854 return llvm::GlobalValue::InternalLinkage; 1855 return llvm::GlobalVariable::ExternalLinkage; 1856 } 1857 1858 /// Replace the uses of a function that was declared with a non-proto type. 1859 /// We want to silently drop extra arguments from call sites 1860 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1861 llvm::Function *newFn) { 1862 // Fast path. 1863 if (old->use_empty()) return; 1864 1865 llvm::Type *newRetTy = newFn->getReturnType(); 1866 SmallVector<llvm::Value*, 4> newArgs; 1867 1868 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1869 ui != ue; ) { 1870 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1871 llvm::User *user = *use; 1872 1873 // Recognize and replace uses of bitcasts. Most calls to 1874 // unprototyped functions will use bitcasts. 1875 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1876 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1877 replaceUsesOfNonProtoConstant(bitcast, newFn); 1878 continue; 1879 } 1880 1881 // Recognize calls to the function. 1882 llvm::CallSite callSite(user); 1883 if (!callSite) continue; 1884 if (!callSite.isCallee(use)) continue; 1885 1886 // If the return types don't match exactly, then we can't 1887 // transform this call unless it's dead. 1888 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1889 continue; 1890 1891 // Get the call site's attribute list. 1892 SmallVector<llvm::AttributeSet, 8> newAttrs; 1893 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1894 1895 // Collect any return attributes from the call. 1896 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1897 newAttrs.push_back( 1898 llvm::AttributeSet::get(newFn->getContext(), 1899 oldAttrs.getRetAttributes())); 1900 1901 // If the function was passed too few arguments, don't transform. 1902 unsigned newNumArgs = newFn->arg_size(); 1903 if (callSite.arg_size() < newNumArgs) continue; 1904 1905 // If extra arguments were passed, we silently drop them. 1906 // If any of the types mismatch, we don't transform. 1907 unsigned argNo = 0; 1908 bool dontTransform = false; 1909 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1910 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1911 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1912 dontTransform = true; 1913 break; 1914 } 1915 1916 // Add any parameter attributes. 1917 if (oldAttrs.hasAttributes(argNo + 1)) 1918 newAttrs. 1919 push_back(llvm:: 1920 AttributeSet::get(newFn->getContext(), 1921 oldAttrs.getParamAttributes(argNo + 1))); 1922 } 1923 if (dontTransform) 1924 continue; 1925 1926 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 1927 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 1928 oldAttrs.getFnAttributes())); 1929 1930 // Okay, we can transform this. Create the new call instruction and copy 1931 // over the required information. 1932 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1933 1934 llvm::CallSite newCall; 1935 if (callSite.isCall()) { 1936 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1937 callSite.getInstruction()); 1938 } else { 1939 llvm::InvokeInst *oldInvoke = 1940 cast<llvm::InvokeInst>(callSite.getInstruction()); 1941 newCall = llvm::InvokeInst::Create(newFn, 1942 oldInvoke->getNormalDest(), 1943 oldInvoke->getUnwindDest(), 1944 newArgs, "", 1945 callSite.getInstruction()); 1946 } 1947 newArgs.clear(); // for the next iteration 1948 1949 if (!newCall->getType()->isVoidTy()) 1950 newCall->takeName(callSite.getInstruction()); 1951 newCall.setAttributes( 1952 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 1953 newCall.setCallingConv(callSite.getCallingConv()); 1954 1955 // Finally, remove the old call, replacing any uses with the new one. 1956 if (!callSite->use_empty()) 1957 callSite->replaceAllUsesWith(newCall.getInstruction()); 1958 1959 // Copy debug location attached to CI. 1960 if (!callSite->getDebugLoc().isUnknown()) 1961 newCall->setDebugLoc(callSite->getDebugLoc()); 1962 callSite->eraseFromParent(); 1963 } 1964 } 1965 1966 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1967 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1968 /// existing call uses of the old function in the module, this adjusts them to 1969 /// call the new function directly. 1970 /// 1971 /// This is not just a cleanup: the always_inline pass requires direct calls to 1972 /// functions to be able to inline them. If there is a bitcast in the way, it 1973 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1974 /// run at -O0. 1975 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1976 llvm::Function *NewFn) { 1977 // If we're redefining a global as a function, don't transform it. 1978 if (!isa<llvm::Function>(Old)) return; 1979 1980 replaceUsesOfNonProtoConstant(Old, NewFn); 1981 } 1982 1983 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1984 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1985 // If we have a definition, this might be a deferred decl. If the 1986 // instantiation is explicit, make sure we emit it at the end. 1987 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1988 GetAddrOfGlobalVar(VD); 1989 1990 EmitTopLevelDecl(VD); 1991 } 1992 1993 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1994 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1995 1996 // Compute the function info and LLVM type. 1997 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1998 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1999 2000 // Get or create the prototype for the function. 2001 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 2002 2003 // Strip off a bitcast if we got one back. 2004 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2005 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2006 Entry = CE->getOperand(0); 2007 } 2008 2009 2010 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2011 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2012 2013 // If the types mismatch then we have to rewrite the definition. 2014 assert(OldFn->isDeclaration() && 2015 "Shouldn't replace non-declaration"); 2016 2017 // F is the Function* for the one with the wrong type, we must make a new 2018 // Function* and update everything that used F (a declaration) with the new 2019 // Function* (which will be a definition). 2020 // 2021 // This happens if there is a prototype for a function 2022 // (e.g. "int f()") and then a definition of a different type 2023 // (e.g. "int f(int x)"). Move the old function aside so that it 2024 // doesn't interfere with GetAddrOfFunction. 2025 OldFn->setName(StringRef()); 2026 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2027 2028 // This might be an implementation of a function without a 2029 // prototype, in which case, try to do special replacement of 2030 // calls which match the new prototype. The really key thing here 2031 // is that we also potentially drop arguments from the call site 2032 // so as to make a direct call, which makes the inliner happier 2033 // and suppresses a number of optimizer warnings (!) about 2034 // dropping arguments. 2035 if (!OldFn->use_empty()) { 2036 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2037 OldFn->removeDeadConstantUsers(); 2038 } 2039 2040 // Replace uses of F with the Function we will endow with a body. 2041 if (!Entry->use_empty()) { 2042 llvm::Constant *NewPtrForOldDecl = 2043 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2044 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2045 } 2046 2047 // Ok, delete the old function now, which is dead. 2048 OldFn->eraseFromParent(); 2049 2050 Entry = NewFn; 2051 } 2052 2053 // We need to set linkage and visibility on the function before 2054 // generating code for it because various parts of IR generation 2055 // want to propagate this information down (e.g. to local static 2056 // declarations). 2057 llvm::Function *Fn = cast<llvm::Function>(Entry); 2058 setFunctionLinkage(GD, Fn); 2059 2060 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2061 setGlobalVisibility(Fn, D); 2062 2063 MaybeHandleStaticInExternC(D, Fn); 2064 2065 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2066 2067 SetFunctionDefinitionAttributes(D, Fn); 2068 SetLLVMFunctionAttributesForDefinition(D, Fn); 2069 2070 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2071 AddGlobalCtor(Fn, CA->getPriority()); 2072 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2073 AddGlobalDtor(Fn, DA->getPriority()); 2074 if (D->hasAttr<AnnotateAttr>()) 2075 AddGlobalAnnotations(D, Fn); 2076 } 2077 2078 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2079 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2080 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2081 assert(AA && "Not an alias?"); 2082 2083 StringRef MangledName = getMangledName(GD); 2084 2085 // If there is a definition in the module, then it wins over the alias. 2086 // This is dubious, but allow it to be safe. Just ignore the alias. 2087 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2088 if (Entry && !Entry->isDeclaration()) 2089 return; 2090 2091 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2092 2093 // Create a reference to the named value. This ensures that it is emitted 2094 // if a deferred decl. 2095 llvm::Constant *Aliasee; 2096 if (isa<llvm::FunctionType>(DeclTy)) 2097 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2098 /*ForVTable=*/false); 2099 else 2100 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2101 llvm::PointerType::getUnqual(DeclTy), 0); 2102 2103 // Create the new alias itself, but don't set a name yet. 2104 llvm::GlobalValue *GA = 2105 new llvm::GlobalAlias(Aliasee->getType(), 2106 llvm::Function::ExternalLinkage, 2107 "", Aliasee, &getModule()); 2108 2109 if (Entry) { 2110 assert(Entry->isDeclaration()); 2111 2112 // If there is a declaration in the module, then we had an extern followed 2113 // by the alias, as in: 2114 // extern int test6(); 2115 // ... 2116 // int test6() __attribute__((alias("test7"))); 2117 // 2118 // Remove it and replace uses of it with the alias. 2119 GA->takeName(Entry); 2120 2121 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2122 Entry->getType())); 2123 Entry->eraseFromParent(); 2124 } else { 2125 GA->setName(MangledName); 2126 } 2127 2128 // Set attributes which are particular to an alias; this is a 2129 // specialization of the attributes which may be set on a global 2130 // variable/function. 2131 if (D->hasAttr<DLLExportAttr>()) { 2132 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2133 // The dllexport attribute is ignored for undefined symbols. 2134 if (FD->hasBody()) 2135 GA->setLinkage(llvm::Function::DLLExportLinkage); 2136 } else { 2137 GA->setLinkage(llvm::Function::DLLExportLinkage); 2138 } 2139 } else if (D->hasAttr<WeakAttr>() || 2140 D->hasAttr<WeakRefAttr>() || 2141 D->isWeakImported()) { 2142 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2143 } 2144 2145 SetCommonAttributes(D, GA); 2146 } 2147 2148 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2149 ArrayRef<llvm::Type*> Tys) { 2150 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2151 Tys); 2152 } 2153 2154 static llvm::StringMapEntry<llvm::Constant*> & 2155 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2156 const StringLiteral *Literal, 2157 bool TargetIsLSB, 2158 bool &IsUTF16, 2159 unsigned &StringLength) { 2160 StringRef String = Literal->getString(); 2161 unsigned NumBytes = String.size(); 2162 2163 // Check for simple case. 2164 if (!Literal->containsNonAsciiOrNull()) { 2165 StringLength = NumBytes; 2166 return Map.GetOrCreateValue(String); 2167 } 2168 2169 // Otherwise, convert the UTF8 literals into a string of shorts. 2170 IsUTF16 = true; 2171 2172 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2173 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2174 UTF16 *ToPtr = &ToBuf[0]; 2175 2176 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2177 &ToPtr, ToPtr + NumBytes, 2178 strictConversion); 2179 2180 // ConvertUTF8toUTF16 returns the length in ToPtr. 2181 StringLength = ToPtr - &ToBuf[0]; 2182 2183 // Add an explicit null. 2184 *ToPtr = 0; 2185 return Map. 2186 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2187 (StringLength + 1) * 2)); 2188 } 2189 2190 static llvm::StringMapEntry<llvm::Constant*> & 2191 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2192 const StringLiteral *Literal, 2193 unsigned &StringLength) { 2194 StringRef String = Literal->getString(); 2195 StringLength = String.size(); 2196 return Map.GetOrCreateValue(String); 2197 } 2198 2199 llvm::Constant * 2200 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2201 unsigned StringLength = 0; 2202 bool isUTF16 = false; 2203 llvm::StringMapEntry<llvm::Constant*> &Entry = 2204 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2205 getDataLayout().isLittleEndian(), 2206 isUTF16, StringLength); 2207 2208 if (llvm::Constant *C = Entry.getValue()) 2209 return C; 2210 2211 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2212 llvm::Constant *Zeros[] = { Zero, Zero }; 2213 llvm::Value *V; 2214 2215 // If we don't already have it, get __CFConstantStringClassReference. 2216 if (!CFConstantStringClassRef) { 2217 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2218 Ty = llvm::ArrayType::get(Ty, 0); 2219 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2220 "__CFConstantStringClassReference"); 2221 // Decay array -> ptr 2222 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2223 CFConstantStringClassRef = V; 2224 } 2225 else 2226 V = CFConstantStringClassRef; 2227 2228 QualType CFTy = getContext().getCFConstantStringType(); 2229 2230 llvm::StructType *STy = 2231 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2232 2233 llvm::Constant *Fields[4]; 2234 2235 // Class pointer. 2236 Fields[0] = cast<llvm::ConstantExpr>(V); 2237 2238 // Flags. 2239 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2240 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2241 llvm::ConstantInt::get(Ty, 0x07C8); 2242 2243 // String pointer. 2244 llvm::Constant *C = 0; 2245 if (isUTF16) { 2246 ArrayRef<uint16_t> Arr = 2247 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2248 const_cast<char *>(Entry.getKey().data())), 2249 Entry.getKey().size() / 2); 2250 C = llvm::ConstantDataArray::get(VMContext, Arr); 2251 } else { 2252 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2253 } 2254 2255 llvm::GlobalValue::LinkageTypes Linkage; 2256 if (isUTF16) 2257 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2258 Linkage = llvm::GlobalValue::InternalLinkage; 2259 else 2260 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2261 // when using private linkage. It is not clear if this is a bug in ld 2262 // or a reasonable new restriction. 2263 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2264 2265 // Note: -fwritable-strings doesn't make the backing store strings of 2266 // CFStrings writable. (See <rdar://problem/10657500>) 2267 llvm::GlobalVariable *GV = 2268 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2269 Linkage, C, ".str"); 2270 GV->setUnnamedAddr(true); 2271 // Don't enforce the target's minimum global alignment, since the only use 2272 // of the string is via this class initializer. 2273 if (isUTF16) { 2274 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2275 GV->setAlignment(Align.getQuantity()); 2276 } else { 2277 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2278 GV->setAlignment(Align.getQuantity()); 2279 } 2280 2281 // String. 2282 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2283 2284 if (isUTF16) 2285 // Cast the UTF16 string to the correct type. 2286 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2287 2288 // String length. 2289 Ty = getTypes().ConvertType(getContext().LongTy); 2290 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2291 2292 // The struct. 2293 C = llvm::ConstantStruct::get(STy, Fields); 2294 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2295 llvm::GlobalVariable::PrivateLinkage, C, 2296 "_unnamed_cfstring_"); 2297 if (const char *Sect = getTarget().getCFStringSection()) 2298 GV->setSection(Sect); 2299 Entry.setValue(GV); 2300 2301 return GV; 2302 } 2303 2304 static RecordDecl * 2305 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2306 DeclContext *DC, IdentifierInfo *Id) { 2307 SourceLocation Loc; 2308 if (Ctx.getLangOpts().CPlusPlus) 2309 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2310 else 2311 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2312 } 2313 2314 llvm::Constant * 2315 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2316 unsigned StringLength = 0; 2317 llvm::StringMapEntry<llvm::Constant*> &Entry = 2318 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2319 2320 if (llvm::Constant *C = Entry.getValue()) 2321 return C; 2322 2323 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2324 llvm::Constant *Zeros[] = { Zero, Zero }; 2325 llvm::Value *V; 2326 // If we don't already have it, get _NSConstantStringClassReference. 2327 if (!ConstantStringClassRef) { 2328 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2329 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2330 llvm::Constant *GV; 2331 if (LangOpts.ObjCRuntime.isNonFragile()) { 2332 std::string str = 2333 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2334 : "OBJC_CLASS_$_" + StringClass; 2335 GV = getObjCRuntime().GetClassGlobal(str); 2336 // Make sure the result is of the correct type. 2337 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2338 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2339 ConstantStringClassRef = V; 2340 } else { 2341 std::string str = 2342 StringClass.empty() ? "_NSConstantStringClassReference" 2343 : "_" + StringClass + "ClassReference"; 2344 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2345 GV = CreateRuntimeVariable(PTy, str); 2346 // Decay array -> ptr 2347 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2348 ConstantStringClassRef = V; 2349 } 2350 } 2351 else 2352 V = ConstantStringClassRef; 2353 2354 if (!NSConstantStringType) { 2355 // Construct the type for a constant NSString. 2356 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2357 Context.getTranslationUnitDecl(), 2358 &Context.Idents.get("__builtin_NSString")); 2359 D->startDefinition(); 2360 2361 QualType FieldTypes[3]; 2362 2363 // const int *isa; 2364 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2365 // const char *str; 2366 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2367 // unsigned int length; 2368 FieldTypes[2] = Context.UnsignedIntTy; 2369 2370 // Create fields 2371 for (unsigned i = 0; i < 3; ++i) { 2372 FieldDecl *Field = FieldDecl::Create(Context, D, 2373 SourceLocation(), 2374 SourceLocation(), 0, 2375 FieldTypes[i], /*TInfo=*/0, 2376 /*BitWidth=*/0, 2377 /*Mutable=*/false, 2378 ICIS_NoInit); 2379 Field->setAccess(AS_public); 2380 D->addDecl(Field); 2381 } 2382 2383 D->completeDefinition(); 2384 QualType NSTy = Context.getTagDeclType(D); 2385 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2386 } 2387 2388 llvm::Constant *Fields[3]; 2389 2390 // Class pointer. 2391 Fields[0] = cast<llvm::ConstantExpr>(V); 2392 2393 // String pointer. 2394 llvm::Constant *C = 2395 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2396 2397 llvm::GlobalValue::LinkageTypes Linkage; 2398 bool isConstant; 2399 Linkage = llvm::GlobalValue::PrivateLinkage; 2400 isConstant = !LangOpts.WritableStrings; 2401 2402 llvm::GlobalVariable *GV = 2403 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2404 ".str"); 2405 GV->setUnnamedAddr(true); 2406 // Don't enforce the target's minimum global alignment, since the only use 2407 // of the string is via this class initializer. 2408 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2409 GV->setAlignment(Align.getQuantity()); 2410 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2411 2412 // String length. 2413 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2414 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2415 2416 // The struct. 2417 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2418 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2419 llvm::GlobalVariable::PrivateLinkage, C, 2420 "_unnamed_nsstring_"); 2421 // FIXME. Fix section. 2422 if (const char *Sect = 2423 LangOpts.ObjCRuntime.isNonFragile() 2424 ? getTarget().getNSStringNonFragileABISection() 2425 : getTarget().getNSStringSection()) 2426 GV->setSection(Sect); 2427 Entry.setValue(GV); 2428 2429 return GV; 2430 } 2431 2432 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2433 if (ObjCFastEnumerationStateType.isNull()) { 2434 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2435 Context.getTranslationUnitDecl(), 2436 &Context.Idents.get("__objcFastEnumerationState")); 2437 D->startDefinition(); 2438 2439 QualType FieldTypes[] = { 2440 Context.UnsignedLongTy, 2441 Context.getPointerType(Context.getObjCIdType()), 2442 Context.getPointerType(Context.UnsignedLongTy), 2443 Context.getConstantArrayType(Context.UnsignedLongTy, 2444 llvm::APInt(32, 5), ArrayType::Normal, 0) 2445 }; 2446 2447 for (size_t i = 0; i < 4; ++i) { 2448 FieldDecl *Field = FieldDecl::Create(Context, 2449 D, 2450 SourceLocation(), 2451 SourceLocation(), 0, 2452 FieldTypes[i], /*TInfo=*/0, 2453 /*BitWidth=*/0, 2454 /*Mutable=*/false, 2455 ICIS_NoInit); 2456 Field->setAccess(AS_public); 2457 D->addDecl(Field); 2458 } 2459 2460 D->completeDefinition(); 2461 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2462 } 2463 2464 return ObjCFastEnumerationStateType; 2465 } 2466 2467 llvm::Constant * 2468 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2469 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2470 2471 // Don't emit it as the address of the string, emit the string data itself 2472 // as an inline array. 2473 if (E->getCharByteWidth() == 1) { 2474 SmallString<64> Str(E->getString()); 2475 2476 // Resize the string to the right size, which is indicated by its type. 2477 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2478 Str.resize(CAT->getSize().getZExtValue()); 2479 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2480 } 2481 2482 llvm::ArrayType *AType = 2483 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2484 llvm::Type *ElemTy = AType->getElementType(); 2485 unsigned NumElements = AType->getNumElements(); 2486 2487 // Wide strings have either 2-byte or 4-byte elements. 2488 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2489 SmallVector<uint16_t, 32> Elements; 2490 Elements.reserve(NumElements); 2491 2492 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2493 Elements.push_back(E->getCodeUnit(i)); 2494 Elements.resize(NumElements); 2495 return llvm::ConstantDataArray::get(VMContext, Elements); 2496 } 2497 2498 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2499 SmallVector<uint32_t, 32> Elements; 2500 Elements.reserve(NumElements); 2501 2502 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2503 Elements.push_back(E->getCodeUnit(i)); 2504 Elements.resize(NumElements); 2505 return llvm::ConstantDataArray::get(VMContext, Elements); 2506 } 2507 2508 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2509 /// constant array for the given string literal. 2510 llvm::Constant * 2511 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2512 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2513 if (S->isAscii() || S->isUTF8()) { 2514 SmallString<64> Str(S->getString()); 2515 2516 // Resize the string to the right size, which is indicated by its type. 2517 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2518 Str.resize(CAT->getSize().getZExtValue()); 2519 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2520 } 2521 2522 // FIXME: the following does not memoize wide strings. 2523 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2524 llvm::GlobalVariable *GV = 2525 new llvm::GlobalVariable(getModule(),C->getType(), 2526 !LangOpts.WritableStrings, 2527 llvm::GlobalValue::PrivateLinkage, 2528 C,".str"); 2529 2530 GV->setAlignment(Align.getQuantity()); 2531 GV->setUnnamedAddr(true); 2532 return GV; 2533 } 2534 2535 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2536 /// array for the given ObjCEncodeExpr node. 2537 llvm::Constant * 2538 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2539 std::string Str; 2540 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2541 2542 return GetAddrOfConstantCString(Str); 2543 } 2544 2545 2546 /// GenerateWritableString -- Creates storage for a string literal. 2547 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2548 bool constant, 2549 CodeGenModule &CGM, 2550 const char *GlobalName, 2551 unsigned Alignment) { 2552 // Create Constant for this string literal. Don't add a '\0'. 2553 llvm::Constant *C = 2554 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2555 2556 // Create a global variable for this string 2557 llvm::GlobalVariable *GV = 2558 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2559 llvm::GlobalValue::PrivateLinkage, 2560 C, GlobalName); 2561 GV->setAlignment(Alignment); 2562 GV->setUnnamedAddr(true); 2563 return GV; 2564 } 2565 2566 /// GetAddrOfConstantString - Returns a pointer to a character array 2567 /// containing the literal. This contents are exactly that of the 2568 /// given string, i.e. it will not be null terminated automatically; 2569 /// see GetAddrOfConstantCString. Note that whether the result is 2570 /// actually a pointer to an LLVM constant depends on 2571 /// Feature.WriteableStrings. 2572 /// 2573 /// The result has pointer to array type. 2574 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2575 const char *GlobalName, 2576 unsigned Alignment) { 2577 // Get the default prefix if a name wasn't specified. 2578 if (!GlobalName) 2579 GlobalName = ".str"; 2580 2581 if (Alignment == 0) 2582 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2583 .getQuantity(); 2584 2585 // Don't share any string literals if strings aren't constant. 2586 if (LangOpts.WritableStrings) 2587 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2588 2589 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2590 ConstantStringMap.GetOrCreateValue(Str); 2591 2592 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2593 if (Alignment > GV->getAlignment()) { 2594 GV->setAlignment(Alignment); 2595 } 2596 return GV; 2597 } 2598 2599 // Create a global variable for this. 2600 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2601 Alignment); 2602 Entry.setValue(GV); 2603 return GV; 2604 } 2605 2606 /// GetAddrOfConstantCString - Returns a pointer to a character 2607 /// array containing the literal and a terminating '\0' 2608 /// character. The result has pointer to array type. 2609 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2610 const char *GlobalName, 2611 unsigned Alignment) { 2612 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2613 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2614 } 2615 2616 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2617 const MaterializeTemporaryExpr *E, const Expr *Init) { 2618 assert((E->getStorageDuration() == SD_Static || 2619 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2620 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2621 2622 // If we're not materializing a subobject of the temporary, keep the 2623 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2624 QualType MaterializedType = Init->getType(); 2625 if (Init == E->GetTemporaryExpr()) 2626 MaterializedType = E->getType(); 2627 2628 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2629 if (Slot) 2630 return Slot; 2631 2632 // FIXME: If an externally-visible declaration extends multiple temporaries, 2633 // we need to give each temporary the same name in every translation unit (and 2634 // we also need to make the temporaries externally-visible). 2635 SmallString<256> Name; 2636 llvm::raw_svector_ostream Out(Name); 2637 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2638 Out.flush(); 2639 2640 APValue *Value = 0; 2641 if (E->getStorageDuration() == SD_Static) { 2642 // We might have a cached constant initializer for this temporary. Note 2643 // that this might have a different value from the value computed by 2644 // evaluating the initializer if the surrounding constant expression 2645 // modifies the temporary. 2646 Value = getContext().getMaterializedTemporaryValue(E, false); 2647 if (Value && Value->isUninit()) 2648 Value = 0; 2649 } 2650 2651 // Try evaluating it now, it might have a constant initializer. 2652 Expr::EvalResult EvalResult; 2653 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2654 !EvalResult.hasSideEffects()) 2655 Value = &EvalResult.Val; 2656 2657 llvm::Constant *InitialValue = 0; 2658 bool Constant = false; 2659 llvm::Type *Type; 2660 if (Value) { 2661 // The temporary has a constant initializer, use it. 2662 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2663 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2664 Type = InitialValue->getType(); 2665 } else { 2666 // No initializer, the initialization will be provided when we 2667 // initialize the declaration which performed lifetime extension. 2668 Type = getTypes().ConvertTypeForMem(MaterializedType); 2669 } 2670 2671 // Create a global variable for this lifetime-extended temporary. 2672 llvm::GlobalVariable *GV = 2673 new llvm::GlobalVariable(getModule(), Type, Constant, 2674 llvm::GlobalValue::PrivateLinkage, 2675 InitialValue, Name.c_str()); 2676 GV->setAlignment( 2677 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2678 if (VD->getTLSKind()) 2679 setTLSMode(GV, *VD); 2680 Slot = GV; 2681 return GV; 2682 } 2683 2684 /// EmitObjCPropertyImplementations - Emit information for synthesized 2685 /// properties for an implementation. 2686 void CodeGenModule::EmitObjCPropertyImplementations(const 2687 ObjCImplementationDecl *D) { 2688 for (ObjCImplementationDecl::propimpl_iterator 2689 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2690 ObjCPropertyImplDecl *PID = *i; 2691 2692 // Dynamic is just for type-checking. 2693 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2694 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2695 2696 // Determine which methods need to be implemented, some may have 2697 // been overridden. Note that ::isPropertyAccessor is not the method 2698 // we want, that just indicates if the decl came from a 2699 // property. What we want to know is if the method is defined in 2700 // this implementation. 2701 if (!D->getInstanceMethod(PD->getGetterName())) 2702 CodeGenFunction(*this).GenerateObjCGetter( 2703 const_cast<ObjCImplementationDecl *>(D), PID); 2704 if (!PD->isReadOnly() && 2705 !D->getInstanceMethod(PD->getSetterName())) 2706 CodeGenFunction(*this).GenerateObjCSetter( 2707 const_cast<ObjCImplementationDecl *>(D), PID); 2708 } 2709 } 2710 } 2711 2712 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2713 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2714 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2715 ivar; ivar = ivar->getNextIvar()) 2716 if (ivar->getType().isDestructedType()) 2717 return true; 2718 2719 return false; 2720 } 2721 2722 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2723 /// for an implementation. 2724 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2725 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2726 if (needsDestructMethod(D)) { 2727 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2728 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2729 ObjCMethodDecl *DTORMethod = 2730 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2731 cxxSelector, getContext().VoidTy, 0, D, 2732 /*isInstance=*/true, /*isVariadic=*/false, 2733 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2734 /*isDefined=*/false, ObjCMethodDecl::Required); 2735 D->addInstanceMethod(DTORMethod); 2736 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2737 D->setHasDestructors(true); 2738 } 2739 2740 // If the implementation doesn't have any ivar initializers, we don't need 2741 // a .cxx_construct. 2742 if (D->getNumIvarInitializers() == 0) 2743 return; 2744 2745 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2746 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2747 // The constructor returns 'self'. 2748 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2749 D->getLocation(), 2750 D->getLocation(), 2751 cxxSelector, 2752 getContext().getObjCIdType(), 0, 2753 D, /*isInstance=*/true, 2754 /*isVariadic=*/false, 2755 /*isPropertyAccessor=*/true, 2756 /*isImplicitlyDeclared=*/true, 2757 /*isDefined=*/false, 2758 ObjCMethodDecl::Required); 2759 D->addInstanceMethod(CTORMethod); 2760 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2761 D->setHasNonZeroConstructors(true); 2762 } 2763 2764 /// EmitNamespace - Emit all declarations in a namespace. 2765 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2766 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2767 I != E; ++I) { 2768 if (const VarDecl *VD = dyn_cast<VarDecl>(*I)) 2769 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2770 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2771 continue; 2772 EmitTopLevelDecl(*I); 2773 } 2774 } 2775 2776 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2777 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2778 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2779 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2780 ErrorUnsupported(LSD, "linkage spec"); 2781 return; 2782 } 2783 2784 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2785 I != E; ++I) { 2786 // Meta-data for ObjC class includes references to implemented methods. 2787 // Generate class's method definitions first. 2788 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2789 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2790 MEnd = OID->meth_end(); 2791 M != MEnd; ++M) 2792 EmitTopLevelDecl(*M); 2793 } 2794 EmitTopLevelDecl(*I); 2795 } 2796 } 2797 2798 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2799 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2800 // Ignore dependent declarations. 2801 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2802 return; 2803 2804 switch (D->getKind()) { 2805 case Decl::CXXConversion: 2806 case Decl::CXXMethod: 2807 case Decl::Function: 2808 // Skip function templates 2809 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2810 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2811 return; 2812 2813 EmitGlobal(cast<FunctionDecl>(D)); 2814 break; 2815 2816 case Decl::Var: 2817 // Skip variable templates 2818 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2819 return; 2820 case Decl::VarTemplateSpecialization: 2821 EmitGlobal(cast<VarDecl>(D)); 2822 break; 2823 2824 // Indirect fields from global anonymous structs and unions can be 2825 // ignored; only the actual variable requires IR gen support. 2826 case Decl::IndirectField: 2827 break; 2828 2829 // C++ Decls 2830 case Decl::Namespace: 2831 EmitNamespace(cast<NamespaceDecl>(D)); 2832 break; 2833 // No code generation needed. 2834 case Decl::UsingShadow: 2835 case Decl::Using: 2836 case Decl::ClassTemplate: 2837 case Decl::VarTemplate: 2838 case Decl::VarTemplatePartialSpecialization: 2839 case Decl::FunctionTemplate: 2840 case Decl::TypeAliasTemplate: 2841 case Decl::Block: 2842 case Decl::Empty: 2843 break; 2844 case Decl::NamespaceAlias: 2845 if (CGDebugInfo *DI = getModuleDebugInfo()) 2846 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2847 return; 2848 case Decl::UsingDirective: // using namespace X; [C++] 2849 if (CGDebugInfo *DI = getModuleDebugInfo()) 2850 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2851 return; 2852 case Decl::CXXConstructor: 2853 // Skip function templates 2854 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2855 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2856 return; 2857 2858 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2859 break; 2860 case Decl::CXXDestructor: 2861 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2862 return; 2863 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2864 break; 2865 2866 case Decl::StaticAssert: 2867 // Nothing to do. 2868 break; 2869 2870 // Objective-C Decls 2871 2872 // Forward declarations, no (immediate) code generation. 2873 case Decl::ObjCInterface: 2874 case Decl::ObjCCategory: 2875 break; 2876 2877 case Decl::ObjCProtocol: { 2878 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2879 if (Proto->isThisDeclarationADefinition()) 2880 ObjCRuntime->GenerateProtocol(Proto); 2881 break; 2882 } 2883 2884 case Decl::ObjCCategoryImpl: 2885 // Categories have properties but don't support synthesize so we 2886 // can ignore them here. 2887 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2888 break; 2889 2890 case Decl::ObjCImplementation: { 2891 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2892 EmitObjCPropertyImplementations(OMD); 2893 EmitObjCIvarInitializations(OMD); 2894 ObjCRuntime->GenerateClass(OMD); 2895 // Emit global variable debug information. 2896 if (CGDebugInfo *DI = getModuleDebugInfo()) 2897 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2898 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2899 OMD->getClassInterface()), OMD->getLocation()); 2900 break; 2901 } 2902 case Decl::ObjCMethod: { 2903 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2904 // If this is not a prototype, emit the body. 2905 if (OMD->getBody()) 2906 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2907 break; 2908 } 2909 case Decl::ObjCCompatibleAlias: 2910 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2911 break; 2912 2913 case Decl::LinkageSpec: 2914 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2915 break; 2916 2917 case Decl::FileScopeAsm: { 2918 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2919 StringRef AsmString = AD->getAsmString()->getString(); 2920 2921 const std::string &S = getModule().getModuleInlineAsm(); 2922 if (S.empty()) 2923 getModule().setModuleInlineAsm(AsmString); 2924 else if (S.end()[-1] == '\n') 2925 getModule().setModuleInlineAsm(S + AsmString.str()); 2926 else 2927 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2928 break; 2929 } 2930 2931 case Decl::Import: { 2932 ImportDecl *Import = cast<ImportDecl>(D); 2933 2934 // Ignore import declarations that come from imported modules. 2935 if (clang::Module *Owner = Import->getOwningModule()) { 2936 if (getLangOpts().CurrentModule.empty() || 2937 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 2938 break; 2939 } 2940 2941 ImportedModules.insert(Import->getImportedModule()); 2942 break; 2943 } 2944 2945 default: 2946 // Make sure we handled everything we should, every other kind is a 2947 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2948 // function. Need to recode Decl::Kind to do that easily. 2949 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2950 } 2951 } 2952 2953 /// Turns the given pointer into a constant. 2954 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2955 const void *Ptr) { 2956 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2957 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2958 return llvm::ConstantInt::get(i64, PtrInt); 2959 } 2960 2961 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2962 llvm::NamedMDNode *&GlobalMetadata, 2963 GlobalDecl D, 2964 llvm::GlobalValue *Addr) { 2965 if (!GlobalMetadata) 2966 GlobalMetadata = 2967 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2968 2969 // TODO: should we report variant information for ctors/dtors? 2970 llvm::Value *Ops[] = { 2971 Addr, 2972 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2973 }; 2974 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2975 } 2976 2977 /// For each function which is declared within an extern "C" region and marked 2978 /// as 'used', but has internal linkage, create an alias from the unmangled 2979 /// name to the mangled name if possible. People expect to be able to refer 2980 /// to such functions with an unmangled name from inline assembly within the 2981 /// same translation unit. 2982 void CodeGenModule::EmitStaticExternCAliases() { 2983 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 2984 E = StaticExternCValues.end(); 2985 I != E; ++I) { 2986 IdentifierInfo *Name = I->first; 2987 llvm::GlobalValue *Val = I->second; 2988 if (Val && !getModule().getNamedValue(Name->getName())) 2989 AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 2990 Name->getName(), Val, &getModule())); 2991 } 2992 } 2993 2994 /// Emits metadata nodes associating all the global values in the 2995 /// current module with the Decls they came from. This is useful for 2996 /// projects using IR gen as a subroutine. 2997 /// 2998 /// Since there's currently no way to associate an MDNode directly 2999 /// with an llvm::GlobalValue, we create a global named metadata 3000 /// with the name 'clang.global.decl.ptrs'. 3001 void CodeGenModule::EmitDeclMetadata() { 3002 llvm::NamedMDNode *GlobalMetadata = 0; 3003 3004 // StaticLocalDeclMap 3005 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3006 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3007 I != E; ++I) { 3008 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3009 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3010 } 3011 } 3012 3013 /// Emits metadata nodes for all the local variables in the current 3014 /// function. 3015 void CodeGenFunction::EmitDeclMetadata() { 3016 if (LocalDeclMap.empty()) return; 3017 3018 llvm::LLVMContext &Context = getLLVMContext(); 3019 3020 // Find the unique metadata ID for this name. 3021 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3022 3023 llvm::NamedMDNode *GlobalMetadata = 0; 3024 3025 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3026 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3027 const Decl *D = I->first; 3028 llvm::Value *Addr = I->second; 3029 3030 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3031 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3032 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3033 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3034 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3035 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3036 } 3037 } 3038 } 3039 3040 void CodeGenModule::EmitVersionIdentMetadata() { 3041 llvm::NamedMDNode *IdentMetadata = 3042 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3043 std::string Version = getClangFullVersion(); 3044 llvm::LLVMContext &Ctx = TheModule.getContext(); 3045 3046 llvm::Value *IdentNode[] = { 3047 llvm::MDString::get(Ctx, Version) 3048 }; 3049 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3050 } 3051 3052 void CodeGenModule::EmitCoverageFile() { 3053 if (!getCodeGenOpts().CoverageFile.empty()) { 3054 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3055 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3056 llvm::LLVMContext &Ctx = TheModule.getContext(); 3057 llvm::MDString *CoverageFile = 3058 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3059 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3060 llvm::MDNode *CU = CUNode->getOperand(i); 3061 llvm::Value *node[] = { CoverageFile, CU }; 3062 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3063 GCov->addOperand(N); 3064 } 3065 } 3066 } 3067 } 3068 3069 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3070 QualType GuidType) { 3071 // Sema has checked that all uuid strings are of the form 3072 // "12345678-1234-1234-1234-1234567890ab". 3073 assert(Uuid.size() == 36); 3074 for (unsigned i = 0; i < 36; ++i) { 3075 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3076 else assert(isHexDigit(Uuid[i])); 3077 } 3078 3079 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3080 3081 llvm::Constant *Field3[8]; 3082 for (unsigned Idx = 0; Idx < 8; ++Idx) 3083 Field3[Idx] = llvm::ConstantInt::get( 3084 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3085 3086 llvm::Constant *Fields[4] = { 3087 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3088 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3089 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3090 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3091 }; 3092 3093 return llvm::ConstantStruct::getAnon(Fields); 3094 } 3095