1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getContext().getCXXABIKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 184 // Generate the module name hash here if needed. 185 if (CodeGenOpts.UniqueInternalLinkageNames && 186 !getModule().getSourceFileName().empty()) { 187 std::string Path = getModule().getSourceFileName(); 188 // Check if a path substitution is needed from the MacroPrefixMap. 189 for (const auto &Entry : LangOpts.MacroPrefixMap) 190 if (Path.rfind(Entry.first, 0) != std::string::npos) { 191 Path = Entry.second + Path.substr(Entry.first.size()); 192 break; 193 } 194 llvm::MD5 Md5; 195 Md5.update(Path); 196 llvm::MD5::MD5Result R; 197 Md5.final(R); 198 SmallString<32> Str; 199 llvm::MD5::stringifyResult(R, Str); 200 // Convert MD5hash to Decimal. Demangler suffixes can either contain 201 // numbers or characters but not both. 202 llvm::APInt IntHash(128, Str.str(), 16); 203 // Prepend "__uniq" before the hash for tools like profilers to understand 204 // that this symbol is of internal linkage type. The "__uniq" is the 205 // pre-determined prefix that is used to tell tools that this symbol was 206 // created with -funique-internal-linakge-symbols and the tools can strip or 207 // keep the prefix as needed. 208 ModuleNameHash = (Twine(".__uniq.") + 209 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 210 } 211 } 212 213 CodeGenModule::~CodeGenModule() {} 214 215 void CodeGenModule::createObjCRuntime() { 216 // This is just isGNUFamily(), but we want to force implementors of 217 // new ABIs to decide how best to do this. 218 switch (LangOpts.ObjCRuntime.getKind()) { 219 case ObjCRuntime::GNUstep: 220 case ObjCRuntime::GCC: 221 case ObjCRuntime::ObjFW: 222 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 223 return; 224 225 case ObjCRuntime::FragileMacOSX: 226 case ObjCRuntime::MacOSX: 227 case ObjCRuntime::iOS: 228 case ObjCRuntime::WatchOS: 229 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 230 return; 231 } 232 llvm_unreachable("bad runtime kind"); 233 } 234 235 void CodeGenModule::createOpenCLRuntime() { 236 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 237 } 238 239 void CodeGenModule::createOpenMPRuntime() { 240 // Select a specialized code generation class based on the target, if any. 241 // If it does not exist use the default implementation. 242 switch (getTriple().getArch()) { 243 case llvm::Triple::nvptx: 244 case llvm::Triple::nvptx64: 245 assert(getLangOpts().OpenMPIsDevice && 246 "OpenMP NVPTX is only prepared to deal with device code."); 247 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 248 break; 249 case llvm::Triple::amdgcn: 250 assert(getLangOpts().OpenMPIsDevice && 251 "OpenMP AMDGCN is only prepared to deal with device code."); 252 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 253 break; 254 default: 255 if (LangOpts.OpenMPSimd) 256 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 257 else 258 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 259 break; 260 } 261 } 262 263 void CodeGenModule::createCUDARuntime() { 264 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 265 } 266 267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 268 Replacements[Name] = C; 269 } 270 271 void CodeGenModule::applyReplacements() { 272 for (auto &I : Replacements) { 273 StringRef MangledName = I.first(); 274 llvm::Constant *Replacement = I.second; 275 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 276 if (!Entry) 277 continue; 278 auto *OldF = cast<llvm::Function>(Entry); 279 auto *NewF = dyn_cast<llvm::Function>(Replacement); 280 if (!NewF) { 281 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 282 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 283 } else { 284 auto *CE = cast<llvm::ConstantExpr>(Replacement); 285 assert(CE->getOpcode() == llvm::Instruction::BitCast || 286 CE->getOpcode() == llvm::Instruction::GetElementPtr); 287 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 288 } 289 } 290 291 // Replace old with new, but keep the old order. 292 OldF->replaceAllUsesWith(Replacement); 293 if (NewF) { 294 NewF->removeFromParent(); 295 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 296 NewF); 297 } 298 OldF->eraseFromParent(); 299 } 300 } 301 302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 303 GlobalValReplacements.push_back(std::make_pair(GV, C)); 304 } 305 306 void CodeGenModule::applyGlobalValReplacements() { 307 for (auto &I : GlobalValReplacements) { 308 llvm::GlobalValue *GV = I.first; 309 llvm::Constant *C = I.second; 310 311 GV->replaceAllUsesWith(C); 312 GV->eraseFromParent(); 313 } 314 } 315 316 // This is only used in aliases that we created and we know they have a 317 // linear structure. 318 static const llvm::GlobalObject *getAliasedGlobal( 319 const llvm::GlobalIndirectSymbol &GIS) { 320 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 321 const llvm::Constant *C = &GIS; 322 for (;;) { 323 C = C->stripPointerCasts(); 324 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 325 return GO; 326 // stripPointerCasts will not walk over weak aliases. 327 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 328 if (!GIS2) 329 return nullptr; 330 if (!Visited.insert(GIS2).second) 331 return nullptr; 332 C = GIS2->getIndirectSymbol(); 333 } 334 } 335 336 void CodeGenModule::checkAliases() { 337 // Check if the constructed aliases are well formed. It is really unfortunate 338 // that we have to do this in CodeGen, but we only construct mangled names 339 // and aliases during codegen. 340 bool Error = false; 341 DiagnosticsEngine &Diags = getDiags(); 342 for (const GlobalDecl &GD : Aliases) { 343 const auto *D = cast<ValueDecl>(GD.getDecl()); 344 SourceLocation Location; 345 bool IsIFunc = D->hasAttr<IFuncAttr>(); 346 if (const Attr *A = D->getDefiningAttr()) 347 Location = A->getLocation(); 348 else 349 llvm_unreachable("Not an alias or ifunc?"); 350 StringRef MangledName = getMangledName(GD); 351 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 352 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 353 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 354 if (!GV) { 355 Error = true; 356 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 357 } else if (GV->isDeclaration()) { 358 Error = true; 359 Diags.Report(Location, diag::err_alias_to_undefined) 360 << IsIFunc << IsIFunc; 361 } else if (IsIFunc) { 362 // Check resolver function type. 363 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 364 GV->getType()->getPointerElementType()); 365 assert(FTy); 366 if (!FTy->getReturnType()->isPointerTy()) 367 Diags.Report(Location, diag::err_ifunc_resolver_return); 368 } 369 370 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 371 llvm::GlobalValue *AliaseeGV; 372 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 373 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 374 else 375 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 376 377 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 378 StringRef AliasSection = SA->getName(); 379 if (AliasSection != AliaseeGV->getSection()) 380 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 381 << AliasSection << IsIFunc << IsIFunc; 382 } 383 384 // We have to handle alias to weak aliases in here. LLVM itself disallows 385 // this since the object semantics would not match the IL one. For 386 // compatibility with gcc we implement it by just pointing the alias 387 // to its aliasee's aliasee. We also warn, since the user is probably 388 // expecting the link to be weak. 389 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 390 if (GA->isInterposable()) { 391 Diags.Report(Location, diag::warn_alias_to_weak_alias) 392 << GV->getName() << GA->getName() << IsIFunc; 393 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 394 GA->getIndirectSymbol(), Alias->getType()); 395 Alias->setIndirectSymbol(Aliasee); 396 } 397 } 398 } 399 if (!Error) 400 return; 401 402 for (const GlobalDecl &GD : Aliases) { 403 StringRef MangledName = getMangledName(GD); 404 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 405 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 406 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 407 Alias->eraseFromParent(); 408 } 409 } 410 411 void CodeGenModule::clear() { 412 DeferredDeclsToEmit.clear(); 413 if (OpenMPRuntime) 414 OpenMPRuntime->clear(); 415 } 416 417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 418 StringRef MainFile) { 419 if (!hasDiagnostics()) 420 return; 421 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 422 if (MainFile.empty()) 423 MainFile = "<stdin>"; 424 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 425 } else { 426 if (Mismatched > 0) 427 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 428 429 if (Missing > 0) 430 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 431 } 432 } 433 434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 435 llvm::Module &M) { 436 if (!LO.VisibilityFromDLLStorageClass) 437 return; 438 439 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 440 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 441 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 442 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 443 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 444 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 445 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 446 CodeGenModule::GetLLVMVisibility( 447 LO.getExternDeclNoDLLStorageClassVisibility()); 448 449 for (llvm::GlobalValue &GV : M.global_values()) { 450 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 451 continue; 452 453 // Reset DSO locality before setting the visibility. This removes 454 // any effects that visibility options and annotations may have 455 // had on the DSO locality. Setting the visibility will implicitly set 456 // appropriate globals to DSO Local; however, this will be pessimistic 457 // w.r.t. to the normal compiler IRGen. 458 GV.setDSOLocal(false); 459 460 if (GV.isDeclarationForLinker()) { 461 GV.setVisibility(GV.getDLLStorageClass() == 462 llvm::GlobalValue::DLLImportStorageClass 463 ? ExternDeclDLLImportVisibility 464 : ExternDeclNoDLLStorageClassVisibility); 465 } else { 466 GV.setVisibility(GV.getDLLStorageClass() == 467 llvm::GlobalValue::DLLExportStorageClass 468 ? DLLExportVisibility 469 : NoDLLStorageClassVisibility); 470 } 471 472 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 473 } 474 } 475 476 void CodeGenModule::Release() { 477 EmitDeferred(); 478 EmitVTablesOpportunistically(); 479 applyGlobalValReplacements(); 480 applyReplacements(); 481 checkAliases(); 482 emitMultiVersionFunctions(); 483 EmitCXXGlobalInitFunc(); 484 EmitCXXGlobalCleanUpFunc(); 485 registerGlobalDtorsWithAtExit(); 486 EmitCXXThreadLocalInitFunc(); 487 if (ObjCRuntime) 488 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 489 AddGlobalCtor(ObjCInitFunction); 490 if (Context.getLangOpts().CUDA && CUDARuntime) { 491 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 492 AddGlobalCtor(CudaCtorFunction); 493 } 494 if (OpenMPRuntime) { 495 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 496 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 497 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 498 } 499 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 500 OpenMPRuntime->clear(); 501 } 502 if (PGOReader) { 503 getModule().setProfileSummary( 504 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 505 llvm::ProfileSummary::PSK_Instr); 506 if (PGOStats.hasDiagnostics()) 507 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 508 } 509 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 510 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 511 EmitGlobalAnnotations(); 512 EmitStaticExternCAliases(); 513 EmitDeferredUnusedCoverageMappings(); 514 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 515 if (CoverageMapping) 516 CoverageMapping->emit(); 517 if (CodeGenOpts.SanitizeCfiCrossDso) { 518 CodeGenFunction(*this).EmitCfiCheckFail(); 519 CodeGenFunction(*this).EmitCfiCheckStub(); 520 } 521 emitAtAvailableLinkGuard(); 522 if (Context.getTargetInfo().getTriple().isWasm() && 523 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 524 EmitMainVoidAlias(); 525 } 526 527 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 528 // preserve ASAN functions in bitcode libraries. 529 if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) { 530 auto *FT = llvm::FunctionType::get(VoidTy, {}); 531 auto *F = llvm::Function::Create( 532 FT, llvm::GlobalValue::ExternalLinkage, 533 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 534 auto *Var = new llvm::GlobalVariable( 535 getModule(), FT->getPointerTo(), 536 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 537 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 538 llvm::GlobalVariable::NotThreadLocal); 539 addCompilerUsedGlobal(Var); 540 } 541 542 emitLLVMUsed(); 543 if (SanStats) 544 SanStats->finish(); 545 546 if (CodeGenOpts.Autolink && 547 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 548 EmitModuleLinkOptions(); 549 } 550 551 // On ELF we pass the dependent library specifiers directly to the linker 552 // without manipulating them. This is in contrast to other platforms where 553 // they are mapped to a specific linker option by the compiler. This 554 // difference is a result of the greater variety of ELF linkers and the fact 555 // that ELF linkers tend to handle libraries in a more complicated fashion 556 // than on other platforms. This forces us to defer handling the dependent 557 // libs to the linker. 558 // 559 // CUDA/HIP device and host libraries are different. Currently there is no 560 // way to differentiate dependent libraries for host or device. Existing 561 // usage of #pragma comment(lib, *) is intended for host libraries on 562 // Windows. Therefore emit llvm.dependent-libraries only for host. 563 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 564 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 565 for (auto *MD : ELFDependentLibraries) 566 NMD->addOperand(MD); 567 } 568 569 // Record mregparm value now so it is visible through rest of codegen. 570 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 571 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 572 CodeGenOpts.NumRegisterParameters); 573 574 if (CodeGenOpts.DwarfVersion) { 575 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 576 CodeGenOpts.DwarfVersion); 577 } 578 579 if (CodeGenOpts.Dwarf64) 580 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 581 582 if (Context.getLangOpts().SemanticInterposition) 583 // Require various optimization to respect semantic interposition. 584 getModule().setSemanticInterposition(1); 585 586 if (CodeGenOpts.EmitCodeView) { 587 // Indicate that we want CodeView in the metadata. 588 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 589 } 590 if (CodeGenOpts.CodeViewGHash) { 591 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 592 } 593 if (CodeGenOpts.ControlFlowGuard) { 594 // Function ID tables and checks for Control Flow Guard (cfguard=2). 595 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 596 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 597 // Function ID tables for Control Flow Guard (cfguard=1). 598 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 599 } 600 if (CodeGenOpts.EHContGuard) { 601 // Function ID tables for EH Continuation Guard. 602 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 603 } 604 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 605 // We don't support LTO with 2 with different StrictVTablePointers 606 // FIXME: we could support it by stripping all the information introduced 607 // by StrictVTablePointers. 608 609 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 610 611 llvm::Metadata *Ops[2] = { 612 llvm::MDString::get(VMContext, "StrictVTablePointers"), 613 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 614 llvm::Type::getInt32Ty(VMContext), 1))}; 615 616 getModule().addModuleFlag(llvm::Module::Require, 617 "StrictVTablePointersRequirement", 618 llvm::MDNode::get(VMContext, Ops)); 619 } 620 if (getModuleDebugInfo()) 621 // We support a single version in the linked module. The LLVM 622 // parser will drop debug info with a different version number 623 // (and warn about it, too). 624 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 625 llvm::DEBUG_METADATA_VERSION); 626 627 // We need to record the widths of enums and wchar_t, so that we can generate 628 // the correct build attributes in the ARM backend. wchar_size is also used by 629 // TargetLibraryInfo. 630 uint64_t WCharWidth = 631 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 632 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 633 634 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 635 if ( Arch == llvm::Triple::arm 636 || Arch == llvm::Triple::armeb 637 || Arch == llvm::Triple::thumb 638 || Arch == llvm::Triple::thumbeb) { 639 // The minimum width of an enum in bytes 640 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 641 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 642 } 643 644 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 645 StringRef ABIStr = Target.getABI(); 646 llvm::LLVMContext &Ctx = TheModule.getContext(); 647 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 648 llvm::MDString::get(Ctx, ABIStr)); 649 } 650 651 if (CodeGenOpts.SanitizeCfiCrossDso) { 652 // Indicate that we want cross-DSO control flow integrity checks. 653 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 654 } 655 656 if (CodeGenOpts.WholeProgramVTables) { 657 // Indicate whether VFE was enabled for this module, so that the 658 // vcall_visibility metadata added under whole program vtables is handled 659 // appropriately in the optimizer. 660 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 661 CodeGenOpts.VirtualFunctionElimination); 662 } 663 664 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 665 getModule().addModuleFlag(llvm::Module::Override, 666 "CFI Canonical Jump Tables", 667 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 668 } 669 670 if (CodeGenOpts.CFProtectionReturn && 671 Target.checkCFProtectionReturnSupported(getDiags())) { 672 // Indicate that we want to instrument return control flow protection. 673 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 674 1); 675 } 676 677 if (CodeGenOpts.CFProtectionBranch && 678 Target.checkCFProtectionBranchSupported(getDiags())) { 679 // Indicate that we want to instrument branch control flow protection. 680 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 681 1); 682 } 683 684 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 685 Arch == llvm::Triple::aarch64_be) { 686 getModule().addModuleFlag(llvm::Module::Error, 687 "branch-target-enforcement", 688 LangOpts.BranchTargetEnforcement); 689 690 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 691 LangOpts.hasSignReturnAddress()); 692 693 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 694 LangOpts.isSignReturnAddressScopeAll()); 695 696 getModule().addModuleFlag(llvm::Module::Error, 697 "sign-return-address-with-bkey", 698 !LangOpts.isSignReturnAddressWithAKey()); 699 } 700 701 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 702 llvm::LLVMContext &Ctx = TheModule.getContext(); 703 getModule().addModuleFlag( 704 llvm::Module::Error, "MemProfProfileFilename", 705 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 706 } 707 708 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 709 // Indicate whether __nvvm_reflect should be configured to flush denormal 710 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 711 // property.) 712 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 713 CodeGenOpts.FP32DenormalMode.Output != 714 llvm::DenormalMode::IEEE); 715 } 716 717 if (LangOpts.EHAsynch) 718 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 719 720 // Indicate whether this Module was compiled with -fopenmp 721 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 722 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 723 if (getLangOpts().OpenMPIsDevice) 724 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 725 LangOpts.OpenMP); 726 727 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 728 if (LangOpts.OpenCL) { 729 EmitOpenCLMetadata(); 730 // Emit SPIR version. 731 if (getTriple().isSPIR()) { 732 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 733 // opencl.spir.version named metadata. 734 // C++ is backwards compatible with OpenCL v2.0. 735 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 736 llvm::Metadata *SPIRVerElts[] = { 737 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 738 Int32Ty, Version / 100)), 739 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 740 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 741 llvm::NamedMDNode *SPIRVerMD = 742 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 743 llvm::LLVMContext &Ctx = TheModule.getContext(); 744 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 745 } 746 } 747 748 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 749 assert(PLevel < 3 && "Invalid PIC Level"); 750 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 751 if (Context.getLangOpts().PIE) 752 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 753 } 754 755 if (getCodeGenOpts().CodeModel.size() > 0) { 756 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 757 .Case("tiny", llvm::CodeModel::Tiny) 758 .Case("small", llvm::CodeModel::Small) 759 .Case("kernel", llvm::CodeModel::Kernel) 760 .Case("medium", llvm::CodeModel::Medium) 761 .Case("large", llvm::CodeModel::Large) 762 .Default(~0u); 763 if (CM != ~0u) { 764 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 765 getModule().setCodeModel(codeModel); 766 } 767 } 768 769 if (CodeGenOpts.NoPLT) 770 getModule().setRtLibUseGOT(); 771 if (CodeGenOpts.UnwindTables) 772 getModule().setUwtable(); 773 774 switch (CodeGenOpts.getFramePointer()) { 775 case CodeGenOptions::FramePointerKind::None: 776 // 0 ("none") is the default. 777 break; 778 case CodeGenOptions::FramePointerKind::NonLeaf: 779 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 780 break; 781 case CodeGenOptions::FramePointerKind::All: 782 getModule().setFramePointer(llvm::FramePointerKind::All); 783 break; 784 } 785 786 SimplifyPersonality(); 787 788 if (getCodeGenOpts().EmitDeclMetadata) 789 EmitDeclMetadata(); 790 791 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 792 EmitCoverageFile(); 793 794 if (CGDebugInfo *DI = getModuleDebugInfo()) 795 DI->finalize(); 796 797 if (getCodeGenOpts().EmitVersionIdentMetadata) 798 EmitVersionIdentMetadata(); 799 800 if (!getCodeGenOpts().RecordCommandLine.empty()) 801 EmitCommandLineMetadata(); 802 803 if (!getCodeGenOpts().StackProtectorGuard.empty()) 804 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 805 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 806 getModule().setStackProtectorGuardReg( 807 getCodeGenOpts().StackProtectorGuardReg); 808 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 809 getModule().setStackProtectorGuardOffset( 810 getCodeGenOpts().StackProtectorGuardOffset); 811 if (getCodeGenOpts().StackAlignment) 812 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 813 814 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 815 816 EmitBackendOptionsMetadata(getCodeGenOpts()); 817 818 // Set visibility from DLL storage class 819 // We do this at the end of LLVM IR generation; after any operation 820 // that might affect the DLL storage class or the visibility, and 821 // before anything that might act on these. 822 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 823 } 824 825 void CodeGenModule::EmitOpenCLMetadata() { 826 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 827 // opencl.ocl.version named metadata node. 828 // C++ is backwards compatible with OpenCL v2.0. 829 // FIXME: We might need to add CXX version at some point too? 830 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 831 llvm::Metadata *OCLVerElts[] = { 832 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 833 Int32Ty, Version / 100)), 834 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 835 Int32Ty, (Version % 100) / 10))}; 836 llvm::NamedMDNode *OCLVerMD = 837 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 838 llvm::LLVMContext &Ctx = TheModule.getContext(); 839 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 840 } 841 842 void CodeGenModule::EmitBackendOptionsMetadata( 843 const CodeGenOptions CodeGenOpts) { 844 switch (getTriple().getArch()) { 845 default: 846 break; 847 case llvm::Triple::riscv32: 848 case llvm::Triple::riscv64: 849 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 850 CodeGenOpts.SmallDataLimit); 851 break; 852 } 853 } 854 855 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 856 // Make sure that this type is translated. 857 Types.UpdateCompletedType(TD); 858 } 859 860 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 861 // Make sure that this type is translated. 862 Types.RefreshTypeCacheForClass(RD); 863 } 864 865 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 866 if (!TBAA) 867 return nullptr; 868 return TBAA->getTypeInfo(QTy); 869 } 870 871 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 872 if (!TBAA) 873 return TBAAAccessInfo(); 874 if (getLangOpts().CUDAIsDevice) { 875 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 876 // access info. 877 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 878 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 879 nullptr) 880 return TBAAAccessInfo(); 881 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 882 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 883 nullptr) 884 return TBAAAccessInfo(); 885 } 886 } 887 return TBAA->getAccessInfo(AccessType); 888 } 889 890 TBAAAccessInfo 891 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 892 if (!TBAA) 893 return TBAAAccessInfo(); 894 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 895 } 896 897 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 898 if (!TBAA) 899 return nullptr; 900 return TBAA->getTBAAStructInfo(QTy); 901 } 902 903 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 904 if (!TBAA) 905 return nullptr; 906 return TBAA->getBaseTypeInfo(QTy); 907 } 908 909 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 910 if (!TBAA) 911 return nullptr; 912 return TBAA->getAccessTagInfo(Info); 913 } 914 915 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 916 TBAAAccessInfo TargetInfo) { 917 if (!TBAA) 918 return TBAAAccessInfo(); 919 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 920 } 921 922 TBAAAccessInfo 923 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 924 TBAAAccessInfo InfoB) { 925 if (!TBAA) 926 return TBAAAccessInfo(); 927 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 928 } 929 930 TBAAAccessInfo 931 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 932 TBAAAccessInfo SrcInfo) { 933 if (!TBAA) 934 return TBAAAccessInfo(); 935 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 936 } 937 938 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 939 TBAAAccessInfo TBAAInfo) { 940 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 941 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 942 } 943 944 void CodeGenModule::DecorateInstructionWithInvariantGroup( 945 llvm::Instruction *I, const CXXRecordDecl *RD) { 946 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 947 llvm::MDNode::get(getLLVMContext(), {})); 948 } 949 950 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 951 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 952 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 953 } 954 955 /// ErrorUnsupported - Print out an error that codegen doesn't support the 956 /// specified stmt yet. 957 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 958 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 959 "cannot compile this %0 yet"); 960 std::string Msg = Type; 961 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 962 << Msg << S->getSourceRange(); 963 } 964 965 /// ErrorUnsupported - Print out an error that codegen doesn't support the 966 /// specified decl yet. 967 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 968 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 969 "cannot compile this %0 yet"); 970 std::string Msg = Type; 971 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 972 } 973 974 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 975 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 976 } 977 978 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 979 const NamedDecl *D) const { 980 if (GV->hasDLLImportStorageClass()) 981 return; 982 // Internal definitions always have default visibility. 983 if (GV->hasLocalLinkage()) { 984 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 985 return; 986 } 987 if (!D) 988 return; 989 // Set visibility for definitions, and for declarations if requested globally 990 // or set explicitly. 991 LinkageInfo LV = D->getLinkageAndVisibility(); 992 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 993 !GV->isDeclarationForLinker()) 994 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 995 } 996 997 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 998 llvm::GlobalValue *GV) { 999 if (GV->hasLocalLinkage()) 1000 return true; 1001 1002 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1003 return true; 1004 1005 // DLLImport explicitly marks the GV as external. 1006 if (GV->hasDLLImportStorageClass()) 1007 return false; 1008 1009 const llvm::Triple &TT = CGM.getTriple(); 1010 if (TT.isWindowsGNUEnvironment()) { 1011 // In MinGW, variables without DLLImport can still be automatically 1012 // imported from a DLL by the linker; don't mark variables that 1013 // potentially could come from another DLL as DSO local. 1014 1015 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1016 // (and this actually happens in the public interface of libstdc++), so 1017 // such variables can't be marked as DSO local. (Native TLS variables 1018 // can't be dllimported at all, though.) 1019 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1020 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1021 return false; 1022 } 1023 1024 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1025 // remain unresolved in the link, they can be resolved to zero, which is 1026 // outside the current DSO. 1027 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1028 return false; 1029 1030 // Every other GV is local on COFF. 1031 // Make an exception for windows OS in the triple: Some firmware builds use 1032 // *-win32-macho triples. This (accidentally?) produced windows relocations 1033 // without GOT tables in older clang versions; Keep this behaviour. 1034 // FIXME: even thread local variables? 1035 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1036 return true; 1037 1038 // Only handle COFF and ELF for now. 1039 if (!TT.isOSBinFormatELF()) 1040 return false; 1041 1042 // If this is not an executable, don't assume anything is local. 1043 const auto &CGOpts = CGM.getCodeGenOpts(); 1044 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1045 const auto &LOpts = CGM.getLangOpts(); 1046 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1047 // On ELF, if -fno-semantic-interposition is specified and the target 1048 // supports local aliases, there will be neither CC1 1049 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1050 // dso_local on the function if using a local alias is preferable (can avoid 1051 // PLT indirection). 1052 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1053 return false; 1054 return !(CGM.getLangOpts().SemanticInterposition || 1055 CGM.getLangOpts().HalfNoSemanticInterposition); 1056 } 1057 1058 // A definition cannot be preempted from an executable. 1059 if (!GV->isDeclarationForLinker()) 1060 return true; 1061 1062 // Most PIC code sequences that assume that a symbol is local cannot produce a 1063 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1064 // depended, it seems worth it to handle it here. 1065 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1066 return false; 1067 1068 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1069 if (TT.isPPC64()) 1070 return false; 1071 1072 if (CGOpts.DirectAccessExternalData) { 1073 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1074 // for non-thread-local variables. If the symbol is not defined in the 1075 // executable, a copy relocation will be needed at link time. dso_local is 1076 // excluded for thread-local variables because they generally don't support 1077 // copy relocations. 1078 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1079 if (!Var->isThreadLocal()) 1080 return true; 1081 1082 // -fno-pic sets dso_local on a function declaration to allow direct 1083 // accesses when taking its address (similar to a data symbol). If the 1084 // function is not defined in the executable, a canonical PLT entry will be 1085 // needed at link time. -fno-direct-access-external-data can avoid the 1086 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1087 // it could just cause trouble without providing perceptible benefits. 1088 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1089 return true; 1090 } 1091 1092 // If we can use copy relocations we can assume it is local. 1093 1094 // Otherwise don't assume it is local. 1095 return false; 1096 } 1097 1098 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1099 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1100 } 1101 1102 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1103 GlobalDecl GD) const { 1104 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1105 // C++ destructors have a few C++ ABI specific special cases. 1106 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1107 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1108 return; 1109 } 1110 setDLLImportDLLExport(GV, D); 1111 } 1112 1113 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1114 const NamedDecl *D) const { 1115 if (D && D->isExternallyVisible()) { 1116 if (D->hasAttr<DLLImportAttr>()) 1117 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1118 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1119 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1120 } 1121 } 1122 1123 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1124 GlobalDecl GD) const { 1125 setDLLImportDLLExport(GV, GD); 1126 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1127 } 1128 1129 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1130 const NamedDecl *D) const { 1131 setDLLImportDLLExport(GV, D); 1132 setGVPropertiesAux(GV, D); 1133 } 1134 1135 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1136 const NamedDecl *D) const { 1137 setGlobalVisibility(GV, D); 1138 setDSOLocal(GV); 1139 GV->setPartition(CodeGenOpts.SymbolPartition); 1140 } 1141 1142 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1143 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1144 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1145 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1146 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1147 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1148 } 1149 1150 llvm::GlobalVariable::ThreadLocalMode 1151 CodeGenModule::GetDefaultLLVMTLSModel() const { 1152 switch (CodeGenOpts.getDefaultTLSModel()) { 1153 case CodeGenOptions::GeneralDynamicTLSModel: 1154 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1155 case CodeGenOptions::LocalDynamicTLSModel: 1156 return llvm::GlobalVariable::LocalDynamicTLSModel; 1157 case CodeGenOptions::InitialExecTLSModel: 1158 return llvm::GlobalVariable::InitialExecTLSModel; 1159 case CodeGenOptions::LocalExecTLSModel: 1160 return llvm::GlobalVariable::LocalExecTLSModel; 1161 } 1162 llvm_unreachable("Invalid TLS model!"); 1163 } 1164 1165 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1166 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1167 1168 llvm::GlobalValue::ThreadLocalMode TLM; 1169 TLM = GetDefaultLLVMTLSModel(); 1170 1171 // Override the TLS model if it is explicitly specified. 1172 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1173 TLM = GetLLVMTLSModel(Attr->getModel()); 1174 } 1175 1176 GV->setThreadLocalMode(TLM); 1177 } 1178 1179 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1180 StringRef Name) { 1181 const TargetInfo &Target = CGM.getTarget(); 1182 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1183 } 1184 1185 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1186 const CPUSpecificAttr *Attr, 1187 unsigned CPUIndex, 1188 raw_ostream &Out) { 1189 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1190 // supported. 1191 if (Attr) 1192 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1193 else if (CGM.getTarget().supportsIFunc()) 1194 Out << ".resolver"; 1195 } 1196 1197 static void AppendTargetMangling(const CodeGenModule &CGM, 1198 const TargetAttr *Attr, raw_ostream &Out) { 1199 if (Attr->isDefaultVersion()) 1200 return; 1201 1202 Out << '.'; 1203 const TargetInfo &Target = CGM.getTarget(); 1204 ParsedTargetAttr Info = 1205 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1206 // Multiversioning doesn't allow "no-${feature}", so we can 1207 // only have "+" prefixes here. 1208 assert(LHS.startswith("+") && RHS.startswith("+") && 1209 "Features should always have a prefix."); 1210 return Target.multiVersionSortPriority(LHS.substr(1)) > 1211 Target.multiVersionSortPriority(RHS.substr(1)); 1212 }); 1213 1214 bool IsFirst = true; 1215 1216 if (!Info.Architecture.empty()) { 1217 IsFirst = false; 1218 Out << "arch_" << Info.Architecture; 1219 } 1220 1221 for (StringRef Feat : Info.Features) { 1222 if (!IsFirst) 1223 Out << '_'; 1224 IsFirst = false; 1225 Out << Feat.substr(1); 1226 } 1227 } 1228 1229 // Returns true if GD is a function decl with internal linkage and 1230 // needs a unique suffix after the mangled name. 1231 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1232 CodeGenModule &CGM) { 1233 const Decl *D = GD.getDecl(); 1234 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1235 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1236 } 1237 1238 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1239 const NamedDecl *ND, 1240 bool OmitMultiVersionMangling = false) { 1241 SmallString<256> Buffer; 1242 llvm::raw_svector_ostream Out(Buffer); 1243 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1244 if (!CGM.getModuleNameHash().empty()) 1245 MC.needsUniqueInternalLinkageNames(); 1246 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1247 if (ShouldMangle) 1248 MC.mangleName(GD.getWithDecl(ND), Out); 1249 else { 1250 IdentifierInfo *II = ND->getIdentifier(); 1251 assert(II && "Attempt to mangle unnamed decl."); 1252 const auto *FD = dyn_cast<FunctionDecl>(ND); 1253 1254 if (FD && 1255 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1256 Out << "__regcall3__" << II->getName(); 1257 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1258 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1259 Out << "__device_stub__" << II->getName(); 1260 } else { 1261 Out << II->getName(); 1262 } 1263 } 1264 1265 // Check if the module name hash should be appended for internal linkage 1266 // symbols. This should come before multi-version target suffixes are 1267 // appended. This is to keep the name and module hash suffix of the 1268 // internal linkage function together. The unique suffix should only be 1269 // added when name mangling is done to make sure that the final name can 1270 // be properly demangled. For example, for C functions without prototypes, 1271 // name mangling is not done and the unique suffix should not be appeneded 1272 // then. 1273 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1274 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1275 "Hash computed when not explicitly requested"); 1276 Out << CGM.getModuleNameHash(); 1277 } 1278 1279 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1280 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1281 switch (FD->getMultiVersionKind()) { 1282 case MultiVersionKind::CPUDispatch: 1283 case MultiVersionKind::CPUSpecific: 1284 AppendCPUSpecificCPUDispatchMangling(CGM, 1285 FD->getAttr<CPUSpecificAttr>(), 1286 GD.getMultiVersionIndex(), Out); 1287 break; 1288 case MultiVersionKind::Target: 1289 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1290 break; 1291 case MultiVersionKind::None: 1292 llvm_unreachable("None multiversion type isn't valid here"); 1293 } 1294 } 1295 1296 // Make unique name for device side static file-scope variable for HIP. 1297 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1298 CGM.getLangOpts().GPURelocatableDeviceCode && 1299 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1300 CGM.printPostfixForExternalizedStaticVar(Out); 1301 return std::string(Out.str()); 1302 } 1303 1304 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1305 const FunctionDecl *FD) { 1306 if (!FD->isMultiVersion()) 1307 return; 1308 1309 // Get the name of what this would be without the 'target' attribute. This 1310 // allows us to lookup the version that was emitted when this wasn't a 1311 // multiversion function. 1312 std::string NonTargetName = 1313 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1314 GlobalDecl OtherGD; 1315 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1316 assert(OtherGD.getCanonicalDecl() 1317 .getDecl() 1318 ->getAsFunction() 1319 ->isMultiVersion() && 1320 "Other GD should now be a multiversioned function"); 1321 // OtherFD is the version of this function that was mangled BEFORE 1322 // becoming a MultiVersion function. It potentially needs to be updated. 1323 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1324 .getDecl() 1325 ->getAsFunction() 1326 ->getMostRecentDecl(); 1327 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1328 // This is so that if the initial version was already the 'default' 1329 // version, we don't try to update it. 1330 if (OtherName != NonTargetName) { 1331 // Remove instead of erase, since others may have stored the StringRef 1332 // to this. 1333 const auto ExistingRecord = Manglings.find(NonTargetName); 1334 if (ExistingRecord != std::end(Manglings)) 1335 Manglings.remove(&(*ExistingRecord)); 1336 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1337 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1338 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1339 Entry->setName(OtherName); 1340 } 1341 } 1342 } 1343 1344 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1345 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1346 1347 // Some ABIs don't have constructor variants. Make sure that base and 1348 // complete constructors get mangled the same. 1349 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1350 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1351 CXXCtorType OrigCtorType = GD.getCtorType(); 1352 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1353 if (OrigCtorType == Ctor_Base) 1354 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1355 } 1356 } 1357 1358 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1359 // static device variable depends on whether the variable is referenced by 1360 // a host or device host function. Therefore the mangled name cannot be 1361 // cached. 1362 if (!LangOpts.CUDAIsDevice || 1363 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1364 auto FoundName = MangledDeclNames.find(CanonicalGD); 1365 if (FoundName != MangledDeclNames.end()) 1366 return FoundName->second; 1367 } 1368 1369 // Keep the first result in the case of a mangling collision. 1370 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1371 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1372 1373 // Ensure either we have different ABIs between host and device compilations, 1374 // says host compilation following MSVC ABI but device compilation follows 1375 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1376 // mangling should be the same after name stubbing. The later checking is 1377 // very important as the device kernel name being mangled in host-compilation 1378 // is used to resolve the device binaries to be executed. Inconsistent naming 1379 // result in undefined behavior. Even though we cannot check that naming 1380 // directly between host- and device-compilations, the host- and 1381 // device-mangling in host compilation could help catching certain ones. 1382 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1383 getLangOpts().CUDAIsDevice || 1384 (getContext().getAuxTargetInfo() && 1385 (getContext().getAuxTargetInfo()->getCXXABI() != 1386 getContext().getTargetInfo().getCXXABI())) || 1387 getCUDARuntime().getDeviceSideName(ND) == 1388 getMangledNameImpl( 1389 *this, 1390 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1391 ND)); 1392 1393 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1394 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1395 } 1396 1397 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1398 const BlockDecl *BD) { 1399 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1400 const Decl *D = GD.getDecl(); 1401 1402 SmallString<256> Buffer; 1403 llvm::raw_svector_ostream Out(Buffer); 1404 if (!D) 1405 MangleCtx.mangleGlobalBlock(BD, 1406 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1407 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1408 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1409 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1410 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1411 else 1412 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1413 1414 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1415 return Result.first->first(); 1416 } 1417 1418 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1419 return getModule().getNamedValue(Name); 1420 } 1421 1422 /// AddGlobalCtor - Add a function to the list that will be called before 1423 /// main() runs. 1424 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1425 llvm::Constant *AssociatedData) { 1426 // FIXME: Type coercion of void()* types. 1427 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1428 } 1429 1430 /// AddGlobalDtor - Add a function to the list that will be called 1431 /// when the module is unloaded. 1432 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1433 bool IsDtorAttrFunc) { 1434 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1435 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1436 DtorsUsingAtExit[Priority].push_back(Dtor); 1437 return; 1438 } 1439 1440 // FIXME: Type coercion of void()* types. 1441 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1442 } 1443 1444 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1445 if (Fns.empty()) return; 1446 1447 // Ctor function type is void()*. 1448 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1449 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1450 TheModule.getDataLayout().getProgramAddressSpace()); 1451 1452 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1453 llvm::StructType *CtorStructTy = llvm::StructType::get( 1454 Int32Ty, CtorPFTy, VoidPtrTy); 1455 1456 // Construct the constructor and destructor arrays. 1457 ConstantInitBuilder builder(*this); 1458 auto ctors = builder.beginArray(CtorStructTy); 1459 for (const auto &I : Fns) { 1460 auto ctor = ctors.beginStruct(CtorStructTy); 1461 ctor.addInt(Int32Ty, I.Priority); 1462 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1463 if (I.AssociatedData) 1464 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1465 else 1466 ctor.addNullPointer(VoidPtrTy); 1467 ctor.finishAndAddTo(ctors); 1468 } 1469 1470 auto list = 1471 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1472 /*constant*/ false, 1473 llvm::GlobalValue::AppendingLinkage); 1474 1475 // The LTO linker doesn't seem to like it when we set an alignment 1476 // on appending variables. Take it off as a workaround. 1477 list->setAlignment(llvm::None); 1478 1479 Fns.clear(); 1480 } 1481 1482 llvm::GlobalValue::LinkageTypes 1483 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1484 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1485 1486 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1487 1488 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1489 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1490 1491 if (isa<CXXConstructorDecl>(D) && 1492 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1493 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1494 // Our approach to inheriting constructors is fundamentally different from 1495 // that used by the MS ABI, so keep our inheriting constructor thunks 1496 // internal rather than trying to pick an unambiguous mangling for them. 1497 return llvm::GlobalValue::InternalLinkage; 1498 } 1499 1500 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1501 } 1502 1503 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1504 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1505 if (!MDS) return nullptr; 1506 1507 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1508 } 1509 1510 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1511 const CGFunctionInfo &Info, 1512 llvm::Function *F, bool IsThunk) { 1513 unsigned CallingConv; 1514 llvm::AttributeList PAL; 1515 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1516 /*AttrOnCallSite=*/false, IsThunk); 1517 F->setAttributes(PAL); 1518 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1519 } 1520 1521 static void removeImageAccessQualifier(std::string& TyName) { 1522 std::string ReadOnlyQual("__read_only"); 1523 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1524 if (ReadOnlyPos != std::string::npos) 1525 // "+ 1" for the space after access qualifier. 1526 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1527 else { 1528 std::string WriteOnlyQual("__write_only"); 1529 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1530 if (WriteOnlyPos != std::string::npos) 1531 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1532 else { 1533 std::string ReadWriteQual("__read_write"); 1534 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1535 if (ReadWritePos != std::string::npos) 1536 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1537 } 1538 } 1539 } 1540 1541 // Returns the address space id that should be produced to the 1542 // kernel_arg_addr_space metadata. This is always fixed to the ids 1543 // as specified in the SPIR 2.0 specification in order to differentiate 1544 // for example in clGetKernelArgInfo() implementation between the address 1545 // spaces with targets without unique mapping to the OpenCL address spaces 1546 // (basically all single AS CPUs). 1547 static unsigned ArgInfoAddressSpace(LangAS AS) { 1548 switch (AS) { 1549 case LangAS::opencl_global: 1550 return 1; 1551 case LangAS::opencl_constant: 1552 return 2; 1553 case LangAS::opencl_local: 1554 return 3; 1555 case LangAS::opencl_generic: 1556 return 4; // Not in SPIR 2.0 specs. 1557 case LangAS::opencl_global_device: 1558 return 5; 1559 case LangAS::opencl_global_host: 1560 return 6; 1561 default: 1562 return 0; // Assume private. 1563 } 1564 } 1565 1566 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1567 const FunctionDecl *FD, 1568 CodeGenFunction *CGF) { 1569 assert(((FD && CGF) || (!FD && !CGF)) && 1570 "Incorrect use - FD and CGF should either be both null or not!"); 1571 // Create MDNodes that represent the kernel arg metadata. 1572 // Each MDNode is a list in the form of "key", N number of values which is 1573 // the same number of values as their are kernel arguments. 1574 1575 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1576 1577 // MDNode for the kernel argument address space qualifiers. 1578 SmallVector<llvm::Metadata *, 8> addressQuals; 1579 1580 // MDNode for the kernel argument access qualifiers (images only). 1581 SmallVector<llvm::Metadata *, 8> accessQuals; 1582 1583 // MDNode for the kernel argument type names. 1584 SmallVector<llvm::Metadata *, 8> argTypeNames; 1585 1586 // MDNode for the kernel argument base type names. 1587 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1588 1589 // MDNode for the kernel argument type qualifiers. 1590 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1591 1592 // MDNode for the kernel argument names. 1593 SmallVector<llvm::Metadata *, 8> argNames; 1594 1595 if (FD && CGF) 1596 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1597 const ParmVarDecl *parm = FD->getParamDecl(i); 1598 QualType ty = parm->getType(); 1599 std::string typeQuals; 1600 1601 // Get image and pipe access qualifier: 1602 if (ty->isImageType() || ty->isPipeType()) { 1603 const Decl *PDecl = parm; 1604 if (auto *TD = dyn_cast<TypedefType>(ty)) 1605 PDecl = TD->getDecl(); 1606 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1607 if (A && A->isWriteOnly()) 1608 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1609 else if (A && A->isReadWrite()) 1610 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1611 else 1612 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1613 } else 1614 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1615 1616 // Get argument name. 1617 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1618 1619 auto getTypeSpelling = [&](QualType Ty) { 1620 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1621 1622 if (Ty.isCanonical()) { 1623 StringRef typeNameRef = typeName; 1624 // Turn "unsigned type" to "utype" 1625 if (typeNameRef.consume_front("unsigned ")) 1626 return std::string("u") + typeNameRef.str(); 1627 if (typeNameRef.consume_front("signed ")) 1628 return typeNameRef.str(); 1629 } 1630 1631 return typeName; 1632 }; 1633 1634 if (ty->isPointerType()) { 1635 QualType pointeeTy = ty->getPointeeType(); 1636 1637 // Get address qualifier. 1638 addressQuals.push_back( 1639 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1640 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1641 1642 // Get argument type name. 1643 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1644 std::string baseTypeName = 1645 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1646 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1647 argBaseTypeNames.push_back( 1648 llvm::MDString::get(VMContext, baseTypeName)); 1649 1650 // Get argument type qualifiers: 1651 if (ty.isRestrictQualified()) 1652 typeQuals = "restrict"; 1653 if (pointeeTy.isConstQualified() || 1654 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1655 typeQuals += typeQuals.empty() ? "const" : " const"; 1656 if (pointeeTy.isVolatileQualified()) 1657 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1658 } else { 1659 uint32_t AddrSpc = 0; 1660 bool isPipe = ty->isPipeType(); 1661 if (ty->isImageType() || isPipe) 1662 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1663 1664 addressQuals.push_back( 1665 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1666 1667 // Get argument type name. 1668 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1669 std::string typeName = getTypeSpelling(ty); 1670 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1671 1672 // Remove access qualifiers on images 1673 // (as they are inseparable from type in clang implementation, 1674 // but OpenCL spec provides a special query to get access qualifier 1675 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1676 if (ty->isImageType()) { 1677 removeImageAccessQualifier(typeName); 1678 removeImageAccessQualifier(baseTypeName); 1679 } 1680 1681 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1682 argBaseTypeNames.push_back( 1683 llvm::MDString::get(VMContext, baseTypeName)); 1684 1685 if (isPipe) 1686 typeQuals = "pipe"; 1687 } 1688 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1689 } 1690 1691 Fn->setMetadata("kernel_arg_addr_space", 1692 llvm::MDNode::get(VMContext, addressQuals)); 1693 Fn->setMetadata("kernel_arg_access_qual", 1694 llvm::MDNode::get(VMContext, accessQuals)); 1695 Fn->setMetadata("kernel_arg_type", 1696 llvm::MDNode::get(VMContext, argTypeNames)); 1697 Fn->setMetadata("kernel_arg_base_type", 1698 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1699 Fn->setMetadata("kernel_arg_type_qual", 1700 llvm::MDNode::get(VMContext, argTypeQuals)); 1701 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1702 Fn->setMetadata("kernel_arg_name", 1703 llvm::MDNode::get(VMContext, argNames)); 1704 } 1705 1706 /// Determines whether the language options require us to model 1707 /// unwind exceptions. We treat -fexceptions as mandating this 1708 /// except under the fragile ObjC ABI with only ObjC exceptions 1709 /// enabled. This means, for example, that C with -fexceptions 1710 /// enables this. 1711 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1712 // If exceptions are completely disabled, obviously this is false. 1713 if (!LangOpts.Exceptions) return false; 1714 1715 // If C++ exceptions are enabled, this is true. 1716 if (LangOpts.CXXExceptions) return true; 1717 1718 // If ObjC exceptions are enabled, this depends on the ABI. 1719 if (LangOpts.ObjCExceptions) { 1720 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1721 } 1722 1723 return true; 1724 } 1725 1726 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1727 const CXXMethodDecl *MD) { 1728 // Check that the type metadata can ever actually be used by a call. 1729 if (!CGM.getCodeGenOpts().LTOUnit || 1730 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1731 return false; 1732 1733 // Only functions whose address can be taken with a member function pointer 1734 // need this sort of type metadata. 1735 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1736 !isa<CXXDestructorDecl>(MD); 1737 } 1738 1739 std::vector<const CXXRecordDecl *> 1740 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1741 llvm::SetVector<const CXXRecordDecl *> MostBases; 1742 1743 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1744 CollectMostBases = [&](const CXXRecordDecl *RD) { 1745 if (RD->getNumBases() == 0) 1746 MostBases.insert(RD); 1747 for (const CXXBaseSpecifier &B : RD->bases()) 1748 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1749 }; 1750 CollectMostBases(RD); 1751 return MostBases.takeVector(); 1752 } 1753 1754 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1755 llvm::Function *F) { 1756 llvm::AttrBuilder B; 1757 1758 if (CodeGenOpts.UnwindTables) 1759 B.addAttribute(llvm::Attribute::UWTable); 1760 1761 if (CodeGenOpts.StackClashProtector) 1762 B.addAttribute("probe-stack", "inline-asm"); 1763 1764 if (!hasUnwindExceptions(LangOpts)) 1765 B.addAttribute(llvm::Attribute::NoUnwind); 1766 1767 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1768 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1769 B.addAttribute(llvm::Attribute::StackProtect); 1770 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1771 B.addAttribute(llvm::Attribute::StackProtectStrong); 1772 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1773 B.addAttribute(llvm::Attribute::StackProtectReq); 1774 } 1775 1776 if (!D) { 1777 // If we don't have a declaration to control inlining, the function isn't 1778 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1779 // disabled, mark the function as noinline. 1780 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1781 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1782 B.addAttribute(llvm::Attribute::NoInline); 1783 1784 F->addFnAttrs(B); 1785 return; 1786 } 1787 1788 // Track whether we need to add the optnone LLVM attribute, 1789 // starting with the default for this optimization level. 1790 bool ShouldAddOptNone = 1791 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1792 // We can't add optnone in the following cases, it won't pass the verifier. 1793 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1794 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1795 1796 // Add optnone, but do so only if the function isn't always_inline. 1797 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1798 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1799 B.addAttribute(llvm::Attribute::OptimizeNone); 1800 1801 // OptimizeNone implies noinline; we should not be inlining such functions. 1802 B.addAttribute(llvm::Attribute::NoInline); 1803 1804 // We still need to handle naked functions even though optnone subsumes 1805 // much of their semantics. 1806 if (D->hasAttr<NakedAttr>()) 1807 B.addAttribute(llvm::Attribute::Naked); 1808 1809 // OptimizeNone wins over OptimizeForSize and MinSize. 1810 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1811 F->removeFnAttr(llvm::Attribute::MinSize); 1812 } else if (D->hasAttr<NakedAttr>()) { 1813 // Naked implies noinline: we should not be inlining such functions. 1814 B.addAttribute(llvm::Attribute::Naked); 1815 B.addAttribute(llvm::Attribute::NoInline); 1816 } else if (D->hasAttr<NoDuplicateAttr>()) { 1817 B.addAttribute(llvm::Attribute::NoDuplicate); 1818 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1819 // Add noinline if the function isn't always_inline. 1820 B.addAttribute(llvm::Attribute::NoInline); 1821 } else if (D->hasAttr<AlwaysInlineAttr>() && 1822 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1823 // (noinline wins over always_inline, and we can't specify both in IR) 1824 B.addAttribute(llvm::Attribute::AlwaysInline); 1825 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1826 // If we're not inlining, then force everything that isn't always_inline to 1827 // carry an explicit noinline attribute. 1828 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1829 B.addAttribute(llvm::Attribute::NoInline); 1830 } else { 1831 // Otherwise, propagate the inline hint attribute and potentially use its 1832 // absence to mark things as noinline. 1833 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1834 // Search function and template pattern redeclarations for inline. 1835 auto CheckForInline = [](const FunctionDecl *FD) { 1836 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1837 return Redecl->isInlineSpecified(); 1838 }; 1839 if (any_of(FD->redecls(), CheckRedeclForInline)) 1840 return true; 1841 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1842 if (!Pattern) 1843 return false; 1844 return any_of(Pattern->redecls(), CheckRedeclForInline); 1845 }; 1846 if (CheckForInline(FD)) { 1847 B.addAttribute(llvm::Attribute::InlineHint); 1848 } else if (CodeGenOpts.getInlining() == 1849 CodeGenOptions::OnlyHintInlining && 1850 !FD->isInlined() && 1851 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1852 B.addAttribute(llvm::Attribute::NoInline); 1853 } 1854 } 1855 } 1856 1857 // Add other optimization related attributes if we are optimizing this 1858 // function. 1859 if (!D->hasAttr<OptimizeNoneAttr>()) { 1860 if (D->hasAttr<ColdAttr>()) { 1861 if (!ShouldAddOptNone) 1862 B.addAttribute(llvm::Attribute::OptimizeForSize); 1863 B.addAttribute(llvm::Attribute::Cold); 1864 } 1865 if (D->hasAttr<HotAttr>()) 1866 B.addAttribute(llvm::Attribute::Hot); 1867 if (D->hasAttr<MinSizeAttr>()) 1868 B.addAttribute(llvm::Attribute::MinSize); 1869 } 1870 1871 F->addFnAttrs(B); 1872 1873 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1874 if (alignment) 1875 F->setAlignment(llvm::Align(alignment)); 1876 1877 if (!D->hasAttr<AlignedAttr>()) 1878 if (LangOpts.FunctionAlignment) 1879 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1880 1881 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1882 // reserve a bit for differentiating between virtual and non-virtual member 1883 // functions. If the current target's C++ ABI requires this and this is a 1884 // member function, set its alignment accordingly. 1885 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1886 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1887 F->setAlignment(llvm::Align(2)); 1888 } 1889 1890 // In the cross-dso CFI mode with canonical jump tables, we want !type 1891 // attributes on definitions only. 1892 if (CodeGenOpts.SanitizeCfiCrossDso && 1893 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1894 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1895 // Skip available_externally functions. They won't be codegen'ed in the 1896 // current module anyway. 1897 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1898 CreateFunctionTypeMetadataForIcall(FD, F); 1899 } 1900 } 1901 1902 // Emit type metadata on member functions for member function pointer checks. 1903 // These are only ever necessary on definitions; we're guaranteed that the 1904 // definition will be present in the LTO unit as a result of LTO visibility. 1905 auto *MD = dyn_cast<CXXMethodDecl>(D); 1906 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1907 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1908 llvm::Metadata *Id = 1909 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1910 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1911 F->addTypeMetadata(0, Id); 1912 } 1913 } 1914 } 1915 1916 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1917 llvm::Function *F) { 1918 if (D->hasAttr<StrictFPAttr>()) { 1919 llvm::AttrBuilder FuncAttrs; 1920 FuncAttrs.addAttribute("strictfp"); 1921 F->addFnAttrs(FuncAttrs); 1922 } 1923 } 1924 1925 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1926 const Decl *D = GD.getDecl(); 1927 if (dyn_cast_or_null<NamedDecl>(D)) 1928 setGVProperties(GV, GD); 1929 else 1930 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1931 1932 if (D && D->hasAttr<UsedAttr>()) 1933 addUsedOrCompilerUsedGlobal(GV); 1934 1935 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1936 const auto *VD = cast<VarDecl>(D); 1937 if (VD->getType().isConstQualified() && 1938 VD->getStorageDuration() == SD_Static) 1939 addUsedOrCompilerUsedGlobal(GV); 1940 } 1941 } 1942 1943 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1944 llvm::AttrBuilder &Attrs) { 1945 // Add target-cpu and target-features attributes to functions. If 1946 // we have a decl for the function and it has a target attribute then 1947 // parse that and add it to the feature set. 1948 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1949 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1950 std::vector<std::string> Features; 1951 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1952 FD = FD ? FD->getMostRecentDecl() : FD; 1953 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1954 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1955 bool AddedAttr = false; 1956 if (TD || SD) { 1957 llvm::StringMap<bool> FeatureMap; 1958 getContext().getFunctionFeatureMap(FeatureMap, GD); 1959 1960 // Produce the canonical string for this set of features. 1961 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1962 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1963 1964 // Now add the target-cpu and target-features to the function. 1965 // While we populated the feature map above, we still need to 1966 // get and parse the target attribute so we can get the cpu for 1967 // the function. 1968 if (TD) { 1969 ParsedTargetAttr ParsedAttr = TD->parse(); 1970 if (!ParsedAttr.Architecture.empty() && 1971 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1972 TargetCPU = ParsedAttr.Architecture; 1973 TuneCPU = ""; // Clear the tune CPU. 1974 } 1975 if (!ParsedAttr.Tune.empty() && 1976 getTarget().isValidCPUName(ParsedAttr.Tune)) 1977 TuneCPU = ParsedAttr.Tune; 1978 } 1979 } else { 1980 // Otherwise just add the existing target cpu and target features to the 1981 // function. 1982 Features = getTarget().getTargetOpts().Features; 1983 } 1984 1985 if (!TargetCPU.empty()) { 1986 Attrs.addAttribute("target-cpu", TargetCPU); 1987 AddedAttr = true; 1988 } 1989 if (!TuneCPU.empty()) { 1990 Attrs.addAttribute("tune-cpu", TuneCPU); 1991 AddedAttr = true; 1992 } 1993 if (!Features.empty()) { 1994 llvm::sort(Features); 1995 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1996 AddedAttr = true; 1997 } 1998 1999 return AddedAttr; 2000 } 2001 2002 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2003 llvm::GlobalObject *GO) { 2004 const Decl *D = GD.getDecl(); 2005 SetCommonAttributes(GD, GO); 2006 2007 if (D) { 2008 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2009 if (D->hasAttr<RetainAttr>()) 2010 addUsedGlobal(GV); 2011 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2012 GV->addAttribute("bss-section", SA->getName()); 2013 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2014 GV->addAttribute("data-section", SA->getName()); 2015 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2016 GV->addAttribute("rodata-section", SA->getName()); 2017 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2018 GV->addAttribute("relro-section", SA->getName()); 2019 } 2020 2021 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2022 if (D->hasAttr<RetainAttr>()) 2023 addUsedGlobal(F); 2024 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2025 if (!D->getAttr<SectionAttr>()) 2026 F->addFnAttr("implicit-section-name", SA->getName()); 2027 2028 llvm::AttrBuilder Attrs; 2029 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2030 // We know that GetCPUAndFeaturesAttributes will always have the 2031 // newest set, since it has the newest possible FunctionDecl, so the 2032 // new ones should replace the old. 2033 llvm::AttrBuilder RemoveAttrs; 2034 RemoveAttrs.addAttribute("target-cpu"); 2035 RemoveAttrs.addAttribute("target-features"); 2036 RemoveAttrs.addAttribute("tune-cpu"); 2037 F->removeFnAttrs(RemoveAttrs); 2038 F->addFnAttrs(Attrs); 2039 } 2040 } 2041 2042 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2043 GO->setSection(CSA->getName()); 2044 else if (const auto *SA = D->getAttr<SectionAttr>()) 2045 GO->setSection(SA->getName()); 2046 } 2047 2048 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2049 } 2050 2051 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2052 llvm::Function *F, 2053 const CGFunctionInfo &FI) { 2054 const Decl *D = GD.getDecl(); 2055 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2056 SetLLVMFunctionAttributesForDefinition(D, F); 2057 2058 F->setLinkage(llvm::Function::InternalLinkage); 2059 2060 setNonAliasAttributes(GD, F); 2061 } 2062 2063 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2064 // Set linkage and visibility in case we never see a definition. 2065 LinkageInfo LV = ND->getLinkageAndVisibility(); 2066 // Don't set internal linkage on declarations. 2067 // "extern_weak" is overloaded in LLVM; we probably should have 2068 // separate linkage types for this. 2069 if (isExternallyVisible(LV.getLinkage()) && 2070 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2071 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2072 } 2073 2074 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2075 llvm::Function *F) { 2076 // Only if we are checking indirect calls. 2077 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2078 return; 2079 2080 // Non-static class methods are handled via vtable or member function pointer 2081 // checks elsewhere. 2082 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2083 return; 2084 2085 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2086 F->addTypeMetadata(0, MD); 2087 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2088 2089 // Emit a hash-based bit set entry for cross-DSO calls. 2090 if (CodeGenOpts.SanitizeCfiCrossDso) 2091 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2092 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2093 } 2094 2095 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2096 bool IsIncompleteFunction, 2097 bool IsThunk) { 2098 2099 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2100 // If this is an intrinsic function, set the function's attributes 2101 // to the intrinsic's attributes. 2102 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2103 return; 2104 } 2105 2106 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2107 2108 if (!IsIncompleteFunction) 2109 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2110 IsThunk); 2111 2112 // Add the Returned attribute for "this", except for iOS 5 and earlier 2113 // where substantial code, including the libstdc++ dylib, was compiled with 2114 // GCC and does not actually return "this". 2115 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2116 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2117 assert(!F->arg_empty() && 2118 F->arg_begin()->getType() 2119 ->canLosslesslyBitCastTo(F->getReturnType()) && 2120 "unexpected this return"); 2121 F->addParamAttr(0, llvm::Attribute::Returned); 2122 } 2123 2124 // Only a few attributes are set on declarations; these may later be 2125 // overridden by a definition. 2126 2127 setLinkageForGV(F, FD); 2128 setGVProperties(F, FD); 2129 2130 // Setup target-specific attributes. 2131 if (!IsIncompleteFunction && F->isDeclaration()) 2132 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2133 2134 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2135 F->setSection(CSA->getName()); 2136 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2137 F->setSection(SA->getName()); 2138 2139 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2140 if (FD->isInlineBuiltinDeclaration()) { 2141 const FunctionDecl *FDBody; 2142 bool HasBody = FD->hasBody(FDBody); 2143 (void)HasBody; 2144 assert(HasBody && "Inline builtin declarations should always have an " 2145 "available body!"); 2146 if (shouldEmitFunction(FDBody)) 2147 F->addFnAttr(llvm::Attribute::NoBuiltin); 2148 } 2149 2150 if (FD->isReplaceableGlobalAllocationFunction()) { 2151 // A replaceable global allocation function does not act like a builtin by 2152 // default, only if it is invoked by a new-expression or delete-expression. 2153 F->addFnAttr(llvm::Attribute::NoBuiltin); 2154 } 2155 2156 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2157 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2158 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2159 if (MD->isVirtual()) 2160 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2161 2162 // Don't emit entries for function declarations in the cross-DSO mode. This 2163 // is handled with better precision by the receiving DSO. But if jump tables 2164 // are non-canonical then we need type metadata in order to produce the local 2165 // jump table. 2166 if (!CodeGenOpts.SanitizeCfiCrossDso || 2167 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2168 CreateFunctionTypeMetadataForIcall(FD, F); 2169 2170 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2171 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2172 2173 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2174 // Annotate the callback behavior as metadata: 2175 // - The callback callee (as argument number). 2176 // - The callback payloads (as argument numbers). 2177 llvm::LLVMContext &Ctx = F->getContext(); 2178 llvm::MDBuilder MDB(Ctx); 2179 2180 // The payload indices are all but the first one in the encoding. The first 2181 // identifies the callback callee. 2182 int CalleeIdx = *CB->encoding_begin(); 2183 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2184 F->addMetadata(llvm::LLVMContext::MD_callback, 2185 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2186 CalleeIdx, PayloadIndices, 2187 /* VarArgsArePassed */ false)})); 2188 } 2189 } 2190 2191 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2192 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2193 "Only globals with definition can force usage."); 2194 LLVMUsed.emplace_back(GV); 2195 } 2196 2197 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2198 assert(!GV->isDeclaration() && 2199 "Only globals with definition can force usage."); 2200 LLVMCompilerUsed.emplace_back(GV); 2201 } 2202 2203 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2204 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2205 "Only globals with definition can force usage."); 2206 if (getTriple().isOSBinFormatELF()) 2207 LLVMCompilerUsed.emplace_back(GV); 2208 else 2209 LLVMUsed.emplace_back(GV); 2210 } 2211 2212 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2213 std::vector<llvm::WeakTrackingVH> &List) { 2214 // Don't create llvm.used if there is no need. 2215 if (List.empty()) 2216 return; 2217 2218 // Convert List to what ConstantArray needs. 2219 SmallVector<llvm::Constant*, 8> UsedArray; 2220 UsedArray.resize(List.size()); 2221 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2222 UsedArray[i] = 2223 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2224 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2225 } 2226 2227 if (UsedArray.empty()) 2228 return; 2229 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2230 2231 auto *GV = new llvm::GlobalVariable( 2232 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2233 llvm::ConstantArray::get(ATy, UsedArray), Name); 2234 2235 GV->setSection("llvm.metadata"); 2236 } 2237 2238 void CodeGenModule::emitLLVMUsed() { 2239 emitUsed(*this, "llvm.used", LLVMUsed); 2240 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2241 } 2242 2243 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2244 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2245 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2246 } 2247 2248 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2249 llvm::SmallString<32> Opt; 2250 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2251 if (Opt.empty()) 2252 return; 2253 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2254 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2255 } 2256 2257 void CodeGenModule::AddDependentLib(StringRef Lib) { 2258 auto &C = getLLVMContext(); 2259 if (getTarget().getTriple().isOSBinFormatELF()) { 2260 ELFDependentLibraries.push_back( 2261 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2262 return; 2263 } 2264 2265 llvm::SmallString<24> Opt; 2266 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2267 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2268 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2269 } 2270 2271 /// Add link options implied by the given module, including modules 2272 /// it depends on, using a postorder walk. 2273 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2274 SmallVectorImpl<llvm::MDNode *> &Metadata, 2275 llvm::SmallPtrSet<Module *, 16> &Visited) { 2276 // Import this module's parent. 2277 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2278 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2279 } 2280 2281 // Import this module's dependencies. 2282 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2283 if (Visited.insert(Mod->Imports[I - 1]).second) 2284 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2285 } 2286 2287 // Add linker options to link against the libraries/frameworks 2288 // described by this module. 2289 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2290 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2291 2292 // For modules that use export_as for linking, use that module 2293 // name instead. 2294 if (Mod->UseExportAsModuleLinkName) 2295 return; 2296 2297 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2298 // Link against a framework. Frameworks are currently Darwin only, so we 2299 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2300 if (Mod->LinkLibraries[I-1].IsFramework) { 2301 llvm::Metadata *Args[2] = { 2302 llvm::MDString::get(Context, "-framework"), 2303 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2304 2305 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2306 continue; 2307 } 2308 2309 // Link against a library. 2310 if (IsELF) { 2311 llvm::Metadata *Args[2] = { 2312 llvm::MDString::get(Context, "lib"), 2313 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2314 }; 2315 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2316 } else { 2317 llvm::SmallString<24> Opt; 2318 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2319 Mod->LinkLibraries[I - 1].Library, Opt); 2320 auto *OptString = llvm::MDString::get(Context, Opt); 2321 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2322 } 2323 } 2324 } 2325 2326 void CodeGenModule::EmitModuleLinkOptions() { 2327 // Collect the set of all of the modules we want to visit to emit link 2328 // options, which is essentially the imported modules and all of their 2329 // non-explicit child modules. 2330 llvm::SetVector<clang::Module *> LinkModules; 2331 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2332 SmallVector<clang::Module *, 16> Stack; 2333 2334 // Seed the stack with imported modules. 2335 for (Module *M : ImportedModules) { 2336 // Do not add any link flags when an implementation TU of a module imports 2337 // a header of that same module. 2338 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2339 !getLangOpts().isCompilingModule()) 2340 continue; 2341 if (Visited.insert(M).second) 2342 Stack.push_back(M); 2343 } 2344 2345 // Find all of the modules to import, making a little effort to prune 2346 // non-leaf modules. 2347 while (!Stack.empty()) { 2348 clang::Module *Mod = Stack.pop_back_val(); 2349 2350 bool AnyChildren = false; 2351 2352 // Visit the submodules of this module. 2353 for (const auto &SM : Mod->submodules()) { 2354 // Skip explicit children; they need to be explicitly imported to be 2355 // linked against. 2356 if (SM->IsExplicit) 2357 continue; 2358 2359 if (Visited.insert(SM).second) { 2360 Stack.push_back(SM); 2361 AnyChildren = true; 2362 } 2363 } 2364 2365 // We didn't find any children, so add this module to the list of 2366 // modules to link against. 2367 if (!AnyChildren) { 2368 LinkModules.insert(Mod); 2369 } 2370 } 2371 2372 // Add link options for all of the imported modules in reverse topological 2373 // order. We don't do anything to try to order import link flags with respect 2374 // to linker options inserted by things like #pragma comment(). 2375 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2376 Visited.clear(); 2377 for (Module *M : LinkModules) 2378 if (Visited.insert(M).second) 2379 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2380 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2381 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2382 2383 // Add the linker options metadata flag. 2384 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2385 for (auto *MD : LinkerOptionsMetadata) 2386 NMD->addOperand(MD); 2387 } 2388 2389 void CodeGenModule::EmitDeferred() { 2390 // Emit deferred declare target declarations. 2391 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2392 getOpenMPRuntime().emitDeferredTargetDecls(); 2393 2394 // Emit code for any potentially referenced deferred decls. Since a 2395 // previously unused static decl may become used during the generation of code 2396 // for a static function, iterate until no changes are made. 2397 2398 if (!DeferredVTables.empty()) { 2399 EmitDeferredVTables(); 2400 2401 // Emitting a vtable doesn't directly cause more vtables to 2402 // become deferred, although it can cause functions to be 2403 // emitted that then need those vtables. 2404 assert(DeferredVTables.empty()); 2405 } 2406 2407 // Emit CUDA/HIP static device variables referenced by host code only. 2408 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2409 // needed for further handling. 2410 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2411 for (const auto *V : getContext().CUDADeviceVarODRUsedByHost) 2412 DeferredDeclsToEmit.push_back(V); 2413 2414 // Stop if we're out of both deferred vtables and deferred declarations. 2415 if (DeferredDeclsToEmit.empty()) 2416 return; 2417 2418 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2419 // work, it will not interfere with this. 2420 std::vector<GlobalDecl> CurDeclsToEmit; 2421 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2422 2423 for (GlobalDecl &D : CurDeclsToEmit) { 2424 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2425 // to get GlobalValue with exactly the type we need, not something that 2426 // might had been created for another decl with the same mangled name but 2427 // different type. 2428 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2429 GetAddrOfGlobal(D, ForDefinition)); 2430 2431 // In case of different address spaces, we may still get a cast, even with 2432 // IsForDefinition equal to true. Query mangled names table to get 2433 // GlobalValue. 2434 if (!GV) 2435 GV = GetGlobalValue(getMangledName(D)); 2436 2437 // Make sure GetGlobalValue returned non-null. 2438 assert(GV); 2439 2440 // Check to see if we've already emitted this. This is necessary 2441 // for a couple of reasons: first, decls can end up in the 2442 // deferred-decls queue multiple times, and second, decls can end 2443 // up with definitions in unusual ways (e.g. by an extern inline 2444 // function acquiring a strong function redefinition). Just 2445 // ignore these cases. 2446 if (!GV->isDeclaration()) 2447 continue; 2448 2449 // If this is OpenMP, check if it is legal to emit this global normally. 2450 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2451 continue; 2452 2453 // Otherwise, emit the definition and move on to the next one. 2454 EmitGlobalDefinition(D, GV); 2455 2456 // If we found out that we need to emit more decls, do that recursively. 2457 // This has the advantage that the decls are emitted in a DFS and related 2458 // ones are close together, which is convenient for testing. 2459 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2460 EmitDeferred(); 2461 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2462 } 2463 } 2464 } 2465 2466 void CodeGenModule::EmitVTablesOpportunistically() { 2467 // Try to emit external vtables as available_externally if they have emitted 2468 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2469 // is not allowed to create new references to things that need to be emitted 2470 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2471 2472 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2473 && "Only emit opportunistic vtables with optimizations"); 2474 2475 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2476 assert(getVTables().isVTableExternal(RD) && 2477 "This queue should only contain external vtables"); 2478 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2479 VTables.GenerateClassData(RD); 2480 } 2481 OpportunisticVTables.clear(); 2482 } 2483 2484 void CodeGenModule::EmitGlobalAnnotations() { 2485 if (Annotations.empty()) 2486 return; 2487 2488 // Create a new global variable for the ConstantStruct in the Module. 2489 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2490 Annotations[0]->getType(), Annotations.size()), Annotations); 2491 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2492 llvm::GlobalValue::AppendingLinkage, 2493 Array, "llvm.global.annotations"); 2494 gv->setSection(AnnotationSection); 2495 } 2496 2497 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2498 llvm::Constant *&AStr = AnnotationStrings[Str]; 2499 if (AStr) 2500 return AStr; 2501 2502 // Not found yet, create a new global. 2503 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2504 auto *gv = 2505 new llvm::GlobalVariable(getModule(), s->getType(), true, 2506 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2507 gv->setSection(AnnotationSection); 2508 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2509 AStr = gv; 2510 return gv; 2511 } 2512 2513 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2514 SourceManager &SM = getContext().getSourceManager(); 2515 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2516 if (PLoc.isValid()) 2517 return EmitAnnotationString(PLoc.getFilename()); 2518 return EmitAnnotationString(SM.getBufferName(Loc)); 2519 } 2520 2521 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2522 SourceManager &SM = getContext().getSourceManager(); 2523 PresumedLoc PLoc = SM.getPresumedLoc(L); 2524 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2525 SM.getExpansionLineNumber(L); 2526 return llvm::ConstantInt::get(Int32Ty, LineNo); 2527 } 2528 2529 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2530 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2531 if (Exprs.empty()) 2532 return llvm::ConstantPointerNull::get(Int8PtrTy); 2533 2534 llvm::FoldingSetNodeID ID; 2535 for (Expr *E : Exprs) { 2536 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2537 } 2538 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2539 if (Lookup) 2540 return Lookup; 2541 2542 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2543 LLVMArgs.reserve(Exprs.size()); 2544 ConstantEmitter ConstEmiter(*this); 2545 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2546 const auto *CE = cast<clang::ConstantExpr>(E); 2547 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2548 CE->getType()); 2549 }); 2550 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2551 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2552 llvm::GlobalValue::PrivateLinkage, Struct, 2553 ".args"); 2554 GV->setSection(AnnotationSection); 2555 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2556 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2557 2558 Lookup = Bitcasted; 2559 return Bitcasted; 2560 } 2561 2562 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2563 const AnnotateAttr *AA, 2564 SourceLocation L) { 2565 // Get the globals for file name, annotation, and the line number. 2566 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2567 *UnitGV = EmitAnnotationUnit(L), 2568 *LineNoCst = EmitAnnotationLineNo(L), 2569 *Args = EmitAnnotationArgs(AA); 2570 2571 llvm::Constant *ASZeroGV = GV; 2572 if (GV->getAddressSpace() != 0) { 2573 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2574 GV, GV->getValueType()->getPointerTo(0)); 2575 } 2576 2577 // Create the ConstantStruct for the global annotation. 2578 llvm::Constant *Fields[] = { 2579 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2580 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2581 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2582 LineNoCst, 2583 Args, 2584 }; 2585 return llvm::ConstantStruct::getAnon(Fields); 2586 } 2587 2588 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2589 llvm::GlobalValue *GV) { 2590 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2591 // Get the struct elements for these annotations. 2592 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2593 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2594 } 2595 2596 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2597 SourceLocation Loc) const { 2598 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2599 // NoSanitize by function name. 2600 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2601 return true; 2602 // NoSanitize by location. 2603 if (Loc.isValid()) 2604 return NoSanitizeL.containsLocation(Kind, Loc); 2605 // If location is unknown, this may be a compiler-generated function. Assume 2606 // it's located in the main file. 2607 auto &SM = Context.getSourceManager(); 2608 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2609 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2610 } 2611 return false; 2612 } 2613 2614 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2615 SourceLocation Loc, QualType Ty, 2616 StringRef Category) const { 2617 // For now globals can be ignored only in ASan and KASan. 2618 const SanitizerMask EnabledAsanMask = 2619 LangOpts.Sanitize.Mask & 2620 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2621 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2622 SanitizerKind::MemTag); 2623 if (!EnabledAsanMask) 2624 return false; 2625 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2626 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2627 return true; 2628 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2629 return true; 2630 // Check global type. 2631 if (!Ty.isNull()) { 2632 // Drill down the array types: if global variable of a fixed type is 2633 // not sanitized, we also don't instrument arrays of them. 2634 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2635 Ty = AT->getElementType(); 2636 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2637 // Only record types (classes, structs etc.) are ignored. 2638 if (Ty->isRecordType()) { 2639 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2640 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2641 return true; 2642 } 2643 } 2644 return false; 2645 } 2646 2647 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2648 StringRef Category) const { 2649 const auto &XRayFilter = getContext().getXRayFilter(); 2650 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2651 auto Attr = ImbueAttr::NONE; 2652 if (Loc.isValid()) 2653 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2654 if (Attr == ImbueAttr::NONE) 2655 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2656 switch (Attr) { 2657 case ImbueAttr::NONE: 2658 return false; 2659 case ImbueAttr::ALWAYS: 2660 Fn->addFnAttr("function-instrument", "xray-always"); 2661 break; 2662 case ImbueAttr::ALWAYS_ARG1: 2663 Fn->addFnAttr("function-instrument", "xray-always"); 2664 Fn->addFnAttr("xray-log-args", "1"); 2665 break; 2666 case ImbueAttr::NEVER: 2667 Fn->addFnAttr("function-instrument", "xray-never"); 2668 break; 2669 } 2670 return true; 2671 } 2672 2673 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2674 SourceLocation Loc) const { 2675 const auto &ProfileList = getContext().getProfileList(); 2676 // If the profile list is empty, then instrument everything. 2677 if (ProfileList.isEmpty()) 2678 return false; 2679 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2680 // First, check the function name. 2681 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2682 if (V.hasValue()) 2683 return *V; 2684 // Next, check the source location. 2685 if (Loc.isValid()) { 2686 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2687 if (V.hasValue()) 2688 return *V; 2689 } 2690 // If location is unknown, this may be a compiler-generated function. Assume 2691 // it's located in the main file. 2692 auto &SM = Context.getSourceManager(); 2693 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2694 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2695 if (V.hasValue()) 2696 return *V; 2697 } 2698 return ProfileList.getDefault(); 2699 } 2700 2701 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2702 // Never defer when EmitAllDecls is specified. 2703 if (LangOpts.EmitAllDecls) 2704 return true; 2705 2706 if (CodeGenOpts.KeepStaticConsts) { 2707 const auto *VD = dyn_cast<VarDecl>(Global); 2708 if (VD && VD->getType().isConstQualified() && 2709 VD->getStorageDuration() == SD_Static) 2710 return true; 2711 } 2712 2713 return getContext().DeclMustBeEmitted(Global); 2714 } 2715 2716 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2717 // In OpenMP 5.0 variables and function may be marked as 2718 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2719 // that they must be emitted on the host/device. To be sure we need to have 2720 // seen a declare target with an explicit mentioning of the function, we know 2721 // we have if the level of the declare target attribute is -1. Note that we 2722 // check somewhere else if we should emit this at all. 2723 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2724 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2725 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2726 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2727 return false; 2728 } 2729 2730 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2731 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2732 // Implicit template instantiations may change linkage if they are later 2733 // explicitly instantiated, so they should not be emitted eagerly. 2734 return false; 2735 } 2736 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2737 if (Context.getInlineVariableDefinitionKind(VD) == 2738 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2739 // A definition of an inline constexpr static data member may change 2740 // linkage later if it's redeclared outside the class. 2741 return false; 2742 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2743 // codegen for global variables, because they may be marked as threadprivate. 2744 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2745 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2746 !isTypeConstant(Global->getType(), false) && 2747 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2748 return false; 2749 2750 return true; 2751 } 2752 2753 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2754 StringRef Name = getMangledName(GD); 2755 2756 // The UUID descriptor should be pointer aligned. 2757 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2758 2759 // Look for an existing global. 2760 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2761 return ConstantAddress(GV, Alignment); 2762 2763 ConstantEmitter Emitter(*this); 2764 llvm::Constant *Init; 2765 2766 APValue &V = GD->getAsAPValue(); 2767 if (!V.isAbsent()) { 2768 // If possible, emit the APValue version of the initializer. In particular, 2769 // this gets the type of the constant right. 2770 Init = Emitter.emitForInitializer( 2771 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2772 } else { 2773 // As a fallback, directly construct the constant. 2774 // FIXME: This may get padding wrong under esoteric struct layout rules. 2775 // MSVC appears to create a complete type 'struct __s_GUID' that it 2776 // presumably uses to represent these constants. 2777 MSGuidDecl::Parts Parts = GD->getParts(); 2778 llvm::Constant *Fields[4] = { 2779 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2780 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2781 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2782 llvm::ConstantDataArray::getRaw( 2783 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2784 Int8Ty)}; 2785 Init = llvm::ConstantStruct::getAnon(Fields); 2786 } 2787 2788 auto *GV = new llvm::GlobalVariable( 2789 getModule(), Init->getType(), 2790 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2791 if (supportsCOMDAT()) 2792 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2793 setDSOLocal(GV); 2794 2795 llvm::Constant *Addr = GV; 2796 if (!V.isAbsent()) { 2797 Emitter.finalize(GV); 2798 } else { 2799 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2800 Addr = llvm::ConstantExpr::getBitCast( 2801 GV, Ty->getPointerTo(GV->getAddressSpace())); 2802 } 2803 return ConstantAddress(Addr, Alignment); 2804 } 2805 2806 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2807 const TemplateParamObjectDecl *TPO) { 2808 StringRef Name = getMangledName(TPO); 2809 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2810 2811 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2812 return ConstantAddress(GV, Alignment); 2813 2814 ConstantEmitter Emitter(*this); 2815 llvm::Constant *Init = Emitter.emitForInitializer( 2816 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2817 2818 if (!Init) { 2819 ErrorUnsupported(TPO, "template parameter object"); 2820 return ConstantAddress::invalid(); 2821 } 2822 2823 auto *GV = new llvm::GlobalVariable( 2824 getModule(), Init->getType(), 2825 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2826 if (supportsCOMDAT()) 2827 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2828 Emitter.finalize(GV); 2829 2830 return ConstantAddress(GV, Alignment); 2831 } 2832 2833 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2834 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2835 assert(AA && "No alias?"); 2836 2837 CharUnits Alignment = getContext().getDeclAlign(VD); 2838 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2839 2840 // See if there is already something with the target's name in the module. 2841 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2842 if (Entry) { 2843 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2844 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2845 return ConstantAddress(Ptr, Alignment); 2846 } 2847 2848 llvm::Constant *Aliasee; 2849 if (isa<llvm::FunctionType>(DeclTy)) 2850 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2851 GlobalDecl(cast<FunctionDecl>(VD)), 2852 /*ForVTable=*/false); 2853 else 2854 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 2855 nullptr); 2856 2857 auto *F = cast<llvm::GlobalValue>(Aliasee); 2858 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2859 WeakRefReferences.insert(F); 2860 2861 return ConstantAddress(Aliasee, Alignment); 2862 } 2863 2864 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2865 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2866 2867 // Weak references don't produce any output by themselves. 2868 if (Global->hasAttr<WeakRefAttr>()) 2869 return; 2870 2871 // If this is an alias definition (which otherwise looks like a declaration) 2872 // emit it now. 2873 if (Global->hasAttr<AliasAttr>()) 2874 return EmitAliasDefinition(GD); 2875 2876 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2877 if (Global->hasAttr<IFuncAttr>()) 2878 return emitIFuncDefinition(GD); 2879 2880 // If this is a cpu_dispatch multiversion function, emit the resolver. 2881 if (Global->hasAttr<CPUDispatchAttr>()) 2882 return emitCPUDispatchDefinition(GD); 2883 2884 // If this is CUDA, be selective about which declarations we emit. 2885 if (LangOpts.CUDA) { 2886 if (LangOpts.CUDAIsDevice) { 2887 if (!Global->hasAttr<CUDADeviceAttr>() && 2888 !Global->hasAttr<CUDAGlobalAttr>() && 2889 !Global->hasAttr<CUDAConstantAttr>() && 2890 !Global->hasAttr<CUDASharedAttr>() && 2891 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2892 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2893 return; 2894 } else { 2895 // We need to emit host-side 'shadows' for all global 2896 // device-side variables because the CUDA runtime needs their 2897 // size and host-side address in order to provide access to 2898 // their device-side incarnations. 2899 2900 // So device-only functions are the only things we skip. 2901 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2902 Global->hasAttr<CUDADeviceAttr>()) 2903 return; 2904 2905 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2906 "Expected Variable or Function"); 2907 } 2908 } 2909 2910 if (LangOpts.OpenMP) { 2911 // If this is OpenMP, check if it is legal to emit this global normally. 2912 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2913 return; 2914 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2915 if (MustBeEmitted(Global)) 2916 EmitOMPDeclareReduction(DRD); 2917 return; 2918 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2919 if (MustBeEmitted(Global)) 2920 EmitOMPDeclareMapper(DMD); 2921 return; 2922 } 2923 } 2924 2925 // Ignore declarations, they will be emitted on their first use. 2926 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2927 // Forward declarations are emitted lazily on first use. 2928 if (!FD->doesThisDeclarationHaveABody()) { 2929 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2930 return; 2931 2932 StringRef MangledName = getMangledName(GD); 2933 2934 // Compute the function info and LLVM type. 2935 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2936 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2937 2938 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2939 /*DontDefer=*/false); 2940 return; 2941 } 2942 } else { 2943 const auto *VD = cast<VarDecl>(Global); 2944 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2945 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2946 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2947 if (LangOpts.OpenMP) { 2948 // Emit declaration of the must-be-emitted declare target variable. 2949 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2950 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2951 bool UnifiedMemoryEnabled = 2952 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2953 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2954 !UnifiedMemoryEnabled) { 2955 (void)GetAddrOfGlobalVar(VD); 2956 } else { 2957 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2958 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2959 UnifiedMemoryEnabled)) && 2960 "Link clause or to clause with unified memory expected."); 2961 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2962 } 2963 2964 return; 2965 } 2966 } 2967 // If this declaration may have caused an inline variable definition to 2968 // change linkage, make sure that it's emitted. 2969 if (Context.getInlineVariableDefinitionKind(VD) == 2970 ASTContext::InlineVariableDefinitionKind::Strong) 2971 GetAddrOfGlobalVar(VD); 2972 return; 2973 } 2974 } 2975 2976 // Defer code generation to first use when possible, e.g. if this is an inline 2977 // function. If the global must always be emitted, do it eagerly if possible 2978 // to benefit from cache locality. 2979 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2980 // Emit the definition if it can't be deferred. 2981 EmitGlobalDefinition(GD); 2982 return; 2983 } 2984 2985 // If we're deferring emission of a C++ variable with an 2986 // initializer, remember the order in which it appeared in the file. 2987 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2988 cast<VarDecl>(Global)->hasInit()) { 2989 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2990 CXXGlobalInits.push_back(nullptr); 2991 } 2992 2993 StringRef MangledName = getMangledName(GD); 2994 if (GetGlobalValue(MangledName) != nullptr) { 2995 // The value has already been used and should therefore be emitted. 2996 addDeferredDeclToEmit(GD); 2997 } else if (MustBeEmitted(Global)) { 2998 // The value must be emitted, but cannot be emitted eagerly. 2999 assert(!MayBeEmittedEagerly(Global)); 3000 addDeferredDeclToEmit(GD); 3001 } else { 3002 // Otherwise, remember that we saw a deferred decl with this name. The 3003 // first use of the mangled name will cause it to move into 3004 // DeferredDeclsToEmit. 3005 DeferredDecls[MangledName] = GD; 3006 } 3007 } 3008 3009 // Check if T is a class type with a destructor that's not dllimport. 3010 static bool HasNonDllImportDtor(QualType T) { 3011 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3012 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3013 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3014 return true; 3015 3016 return false; 3017 } 3018 3019 namespace { 3020 struct FunctionIsDirectlyRecursive 3021 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3022 const StringRef Name; 3023 const Builtin::Context &BI; 3024 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3025 : Name(N), BI(C) {} 3026 3027 bool VisitCallExpr(const CallExpr *E) { 3028 const FunctionDecl *FD = E->getDirectCallee(); 3029 if (!FD) 3030 return false; 3031 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3032 if (Attr && Name == Attr->getLabel()) 3033 return true; 3034 unsigned BuiltinID = FD->getBuiltinID(); 3035 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3036 return false; 3037 StringRef BuiltinName = BI.getName(BuiltinID); 3038 if (BuiltinName.startswith("__builtin_") && 3039 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3040 return true; 3041 } 3042 return false; 3043 } 3044 3045 bool VisitStmt(const Stmt *S) { 3046 for (const Stmt *Child : S->children()) 3047 if (Child && this->Visit(Child)) 3048 return true; 3049 return false; 3050 } 3051 }; 3052 3053 // Make sure we're not referencing non-imported vars or functions. 3054 struct DLLImportFunctionVisitor 3055 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3056 bool SafeToInline = true; 3057 3058 bool shouldVisitImplicitCode() const { return true; } 3059 3060 bool VisitVarDecl(VarDecl *VD) { 3061 if (VD->getTLSKind()) { 3062 // A thread-local variable cannot be imported. 3063 SafeToInline = false; 3064 return SafeToInline; 3065 } 3066 3067 // A variable definition might imply a destructor call. 3068 if (VD->isThisDeclarationADefinition()) 3069 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3070 3071 return SafeToInline; 3072 } 3073 3074 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3075 if (const auto *D = E->getTemporary()->getDestructor()) 3076 SafeToInline = D->hasAttr<DLLImportAttr>(); 3077 return SafeToInline; 3078 } 3079 3080 bool VisitDeclRefExpr(DeclRefExpr *E) { 3081 ValueDecl *VD = E->getDecl(); 3082 if (isa<FunctionDecl>(VD)) 3083 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3084 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3085 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3086 return SafeToInline; 3087 } 3088 3089 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3090 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3091 return SafeToInline; 3092 } 3093 3094 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3095 CXXMethodDecl *M = E->getMethodDecl(); 3096 if (!M) { 3097 // Call through a pointer to member function. This is safe to inline. 3098 SafeToInline = true; 3099 } else { 3100 SafeToInline = M->hasAttr<DLLImportAttr>(); 3101 } 3102 return SafeToInline; 3103 } 3104 3105 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3106 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3107 return SafeToInline; 3108 } 3109 3110 bool VisitCXXNewExpr(CXXNewExpr *E) { 3111 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3112 return SafeToInline; 3113 } 3114 }; 3115 } 3116 3117 // isTriviallyRecursive - Check if this function calls another 3118 // decl that, because of the asm attribute or the other decl being a builtin, 3119 // ends up pointing to itself. 3120 bool 3121 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3122 StringRef Name; 3123 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3124 // asm labels are a special kind of mangling we have to support. 3125 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3126 if (!Attr) 3127 return false; 3128 Name = Attr->getLabel(); 3129 } else { 3130 Name = FD->getName(); 3131 } 3132 3133 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3134 const Stmt *Body = FD->getBody(); 3135 return Body ? Walker.Visit(Body) : false; 3136 } 3137 3138 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3139 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3140 return true; 3141 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3142 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3143 return false; 3144 3145 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3146 // Check whether it would be safe to inline this dllimport function. 3147 DLLImportFunctionVisitor Visitor; 3148 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3149 if (!Visitor.SafeToInline) 3150 return false; 3151 3152 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3153 // Implicit destructor invocations aren't captured in the AST, so the 3154 // check above can't see them. Check for them manually here. 3155 for (const Decl *Member : Dtor->getParent()->decls()) 3156 if (isa<FieldDecl>(Member)) 3157 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3158 return false; 3159 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3160 if (HasNonDllImportDtor(B.getType())) 3161 return false; 3162 } 3163 } 3164 3165 // PR9614. Avoid cases where the source code is lying to us. An available 3166 // externally function should have an equivalent function somewhere else, 3167 // but a function that calls itself through asm label/`__builtin_` trickery is 3168 // clearly not equivalent to the real implementation. 3169 // This happens in glibc's btowc and in some configure checks. 3170 return !isTriviallyRecursive(F); 3171 } 3172 3173 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3174 return CodeGenOpts.OptimizationLevel > 0; 3175 } 3176 3177 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3178 llvm::GlobalValue *GV) { 3179 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3180 3181 if (FD->isCPUSpecificMultiVersion()) { 3182 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3183 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3184 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3185 // Requires multiple emits. 3186 } else 3187 EmitGlobalFunctionDefinition(GD, GV); 3188 } 3189 3190 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3191 const auto *D = cast<ValueDecl>(GD.getDecl()); 3192 3193 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3194 Context.getSourceManager(), 3195 "Generating code for declaration"); 3196 3197 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3198 // At -O0, don't generate IR for functions with available_externally 3199 // linkage. 3200 if (!shouldEmitFunction(GD)) 3201 return; 3202 3203 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3204 std::string Name; 3205 llvm::raw_string_ostream OS(Name); 3206 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3207 /*Qualified=*/true); 3208 return Name; 3209 }); 3210 3211 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3212 // Make sure to emit the definition(s) before we emit the thunks. 3213 // This is necessary for the generation of certain thunks. 3214 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3215 ABI->emitCXXStructor(GD); 3216 else if (FD->isMultiVersion()) 3217 EmitMultiVersionFunctionDefinition(GD, GV); 3218 else 3219 EmitGlobalFunctionDefinition(GD, GV); 3220 3221 if (Method->isVirtual()) 3222 getVTables().EmitThunks(GD); 3223 3224 return; 3225 } 3226 3227 if (FD->isMultiVersion()) 3228 return EmitMultiVersionFunctionDefinition(GD, GV); 3229 return EmitGlobalFunctionDefinition(GD, GV); 3230 } 3231 3232 if (const auto *VD = dyn_cast<VarDecl>(D)) 3233 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3234 3235 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3236 } 3237 3238 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3239 llvm::Function *NewFn); 3240 3241 static unsigned 3242 TargetMVPriority(const TargetInfo &TI, 3243 const CodeGenFunction::MultiVersionResolverOption &RO) { 3244 unsigned Priority = 0; 3245 for (StringRef Feat : RO.Conditions.Features) 3246 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3247 3248 if (!RO.Conditions.Architecture.empty()) 3249 Priority = std::max( 3250 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3251 return Priority; 3252 } 3253 3254 void CodeGenModule::emitMultiVersionFunctions() { 3255 std::vector<GlobalDecl> MVFuncsToEmit; 3256 MultiVersionFuncs.swap(MVFuncsToEmit); 3257 for (GlobalDecl GD : MVFuncsToEmit) { 3258 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3259 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3260 getContext().forEachMultiversionedFunctionVersion( 3261 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3262 GlobalDecl CurGD{ 3263 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3264 StringRef MangledName = getMangledName(CurGD); 3265 llvm::Constant *Func = GetGlobalValue(MangledName); 3266 if (!Func) { 3267 if (CurFD->isDefined()) { 3268 EmitGlobalFunctionDefinition(CurGD, nullptr); 3269 Func = GetGlobalValue(MangledName); 3270 } else { 3271 const CGFunctionInfo &FI = 3272 getTypes().arrangeGlobalDeclaration(GD); 3273 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3274 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3275 /*DontDefer=*/false, ForDefinition); 3276 } 3277 assert(Func && "This should have just been created"); 3278 } 3279 3280 const auto *TA = CurFD->getAttr<TargetAttr>(); 3281 llvm::SmallVector<StringRef, 8> Feats; 3282 TA->getAddedFeatures(Feats); 3283 3284 Options.emplace_back(cast<llvm::Function>(Func), 3285 TA->getArchitecture(), Feats); 3286 }); 3287 3288 llvm::Function *ResolverFunc; 3289 const TargetInfo &TI = getTarget(); 3290 3291 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3292 ResolverFunc = cast<llvm::Function>( 3293 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3294 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3295 } else { 3296 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3297 } 3298 3299 if (supportsCOMDAT()) 3300 ResolverFunc->setComdat( 3301 getModule().getOrInsertComdat(ResolverFunc->getName())); 3302 3303 llvm::stable_sort( 3304 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3305 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3306 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3307 }); 3308 CodeGenFunction CGF(*this); 3309 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3310 } 3311 3312 // Ensure that any additions to the deferred decls list caused by emitting a 3313 // variant are emitted. This can happen when the variant itself is inline and 3314 // calls a function without linkage. 3315 if (!MVFuncsToEmit.empty()) 3316 EmitDeferred(); 3317 3318 // Ensure that any additions to the multiversion funcs list from either the 3319 // deferred decls or the multiversion functions themselves are emitted. 3320 if (!MultiVersionFuncs.empty()) 3321 emitMultiVersionFunctions(); 3322 } 3323 3324 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3325 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3326 assert(FD && "Not a FunctionDecl?"); 3327 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3328 assert(DD && "Not a cpu_dispatch Function?"); 3329 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3330 3331 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3332 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3333 DeclTy = getTypes().GetFunctionType(FInfo); 3334 } 3335 3336 StringRef ResolverName = getMangledName(GD); 3337 3338 llvm::Type *ResolverType; 3339 GlobalDecl ResolverGD; 3340 if (getTarget().supportsIFunc()) 3341 ResolverType = llvm::FunctionType::get( 3342 llvm::PointerType::get(DeclTy, 3343 Context.getTargetAddressSpace(FD->getType())), 3344 false); 3345 else { 3346 ResolverType = DeclTy; 3347 ResolverGD = GD; 3348 } 3349 3350 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3351 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3352 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3353 if (supportsCOMDAT()) 3354 ResolverFunc->setComdat( 3355 getModule().getOrInsertComdat(ResolverFunc->getName())); 3356 3357 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3358 const TargetInfo &Target = getTarget(); 3359 unsigned Index = 0; 3360 for (const IdentifierInfo *II : DD->cpus()) { 3361 // Get the name of the target function so we can look it up/create it. 3362 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3363 getCPUSpecificMangling(*this, II->getName()); 3364 3365 llvm::Constant *Func = GetGlobalValue(MangledName); 3366 3367 if (!Func) { 3368 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3369 if (ExistingDecl.getDecl() && 3370 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3371 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3372 Func = GetGlobalValue(MangledName); 3373 } else { 3374 if (!ExistingDecl.getDecl()) 3375 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3376 3377 Func = GetOrCreateLLVMFunction( 3378 MangledName, DeclTy, ExistingDecl, 3379 /*ForVTable=*/false, /*DontDefer=*/true, 3380 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3381 } 3382 } 3383 3384 llvm::SmallVector<StringRef, 32> Features; 3385 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3386 llvm::transform(Features, Features.begin(), 3387 [](StringRef Str) { return Str.substr(1); }); 3388 Features.erase(std::remove_if( 3389 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3390 return !Target.validateCpuSupports(Feat); 3391 }), Features.end()); 3392 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3393 ++Index; 3394 } 3395 3396 llvm::stable_sort( 3397 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3398 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3399 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3400 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3401 }); 3402 3403 // If the list contains multiple 'default' versions, such as when it contains 3404 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3405 // always run on at least a 'pentium'). We do this by deleting the 'least 3406 // advanced' (read, lowest mangling letter). 3407 while (Options.size() > 1 && 3408 CodeGenFunction::GetX86CpuSupportsMask( 3409 (Options.end() - 2)->Conditions.Features) == 0) { 3410 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3411 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3412 if (LHSName.compare(RHSName) < 0) 3413 Options.erase(Options.end() - 2); 3414 else 3415 Options.erase(Options.end() - 1); 3416 } 3417 3418 CodeGenFunction CGF(*this); 3419 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3420 3421 if (getTarget().supportsIFunc()) { 3422 std::string AliasName = getMangledNameImpl( 3423 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3424 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3425 if (!AliasFunc) { 3426 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3427 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3428 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3429 auto *GA = llvm::GlobalAlias::create( 3430 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3431 GA->setLinkage(llvm::Function::WeakODRLinkage); 3432 SetCommonAttributes(GD, GA); 3433 } 3434 } 3435 } 3436 3437 /// If a dispatcher for the specified mangled name is not in the module, create 3438 /// and return an llvm Function with the specified type. 3439 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3440 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3441 std::string MangledName = 3442 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3443 3444 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3445 // a separate resolver). 3446 std::string ResolverName = MangledName; 3447 if (getTarget().supportsIFunc()) 3448 ResolverName += ".ifunc"; 3449 else if (FD->isTargetMultiVersion()) 3450 ResolverName += ".resolver"; 3451 3452 // If this already exists, just return that one. 3453 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3454 return ResolverGV; 3455 3456 // Since this is the first time we've created this IFunc, make sure 3457 // that we put this multiversioned function into the list to be 3458 // replaced later if necessary (target multiversioning only). 3459 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3460 MultiVersionFuncs.push_back(GD); 3461 3462 if (getTarget().supportsIFunc()) { 3463 llvm::Type *ResolverType = llvm::FunctionType::get( 3464 llvm::PointerType::get( 3465 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3466 false); 3467 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3468 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3469 /*ForVTable=*/false); 3470 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3471 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3472 GIF->setName(ResolverName); 3473 SetCommonAttributes(FD, GIF); 3474 3475 return GIF; 3476 } 3477 3478 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3479 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3480 assert(isa<llvm::GlobalValue>(Resolver) && 3481 "Resolver should be created for the first time"); 3482 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3483 return Resolver; 3484 } 3485 3486 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3487 /// module, create and return an llvm Function with the specified type. If there 3488 /// is something in the module with the specified name, return it potentially 3489 /// bitcasted to the right type. 3490 /// 3491 /// If D is non-null, it specifies a decl that correspond to this. This is used 3492 /// to set the attributes on the function when it is first created. 3493 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3494 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3495 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3496 ForDefinition_t IsForDefinition) { 3497 const Decl *D = GD.getDecl(); 3498 3499 // Any attempts to use a MultiVersion function should result in retrieving 3500 // the iFunc instead. Name Mangling will handle the rest of the changes. 3501 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3502 // For the device mark the function as one that should be emitted. 3503 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3504 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3505 !DontDefer && !IsForDefinition) { 3506 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3507 GlobalDecl GDDef; 3508 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3509 GDDef = GlobalDecl(CD, GD.getCtorType()); 3510 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3511 GDDef = GlobalDecl(DD, GD.getDtorType()); 3512 else 3513 GDDef = GlobalDecl(FDDef); 3514 EmitGlobal(GDDef); 3515 } 3516 } 3517 3518 if (FD->isMultiVersion()) { 3519 if (FD->hasAttr<TargetAttr>()) 3520 UpdateMultiVersionNames(GD, FD); 3521 if (!IsForDefinition) 3522 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3523 } 3524 } 3525 3526 // Lookup the entry, lazily creating it if necessary. 3527 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3528 if (Entry) { 3529 if (WeakRefReferences.erase(Entry)) { 3530 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3531 if (FD && !FD->hasAttr<WeakAttr>()) 3532 Entry->setLinkage(llvm::Function::ExternalLinkage); 3533 } 3534 3535 // Handle dropped DLL attributes. 3536 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3537 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3538 setDSOLocal(Entry); 3539 } 3540 3541 // If there are two attempts to define the same mangled name, issue an 3542 // error. 3543 if (IsForDefinition && !Entry->isDeclaration()) { 3544 GlobalDecl OtherGD; 3545 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3546 // to make sure that we issue an error only once. 3547 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3548 (GD.getCanonicalDecl().getDecl() != 3549 OtherGD.getCanonicalDecl().getDecl()) && 3550 DiagnosedConflictingDefinitions.insert(GD).second) { 3551 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3552 << MangledName; 3553 getDiags().Report(OtherGD.getDecl()->getLocation(), 3554 diag::note_previous_definition); 3555 } 3556 } 3557 3558 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3559 (Entry->getValueType() == Ty)) { 3560 return Entry; 3561 } 3562 3563 // Make sure the result is of the correct type. 3564 // (If function is requested for a definition, we always need to create a new 3565 // function, not just return a bitcast.) 3566 if (!IsForDefinition) 3567 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3568 } 3569 3570 // This function doesn't have a complete type (for example, the return 3571 // type is an incomplete struct). Use a fake type instead, and make 3572 // sure not to try to set attributes. 3573 bool IsIncompleteFunction = false; 3574 3575 llvm::FunctionType *FTy; 3576 if (isa<llvm::FunctionType>(Ty)) { 3577 FTy = cast<llvm::FunctionType>(Ty); 3578 } else { 3579 FTy = llvm::FunctionType::get(VoidTy, false); 3580 IsIncompleteFunction = true; 3581 } 3582 3583 llvm::Function *F = 3584 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3585 Entry ? StringRef() : MangledName, &getModule()); 3586 3587 // If we already created a function with the same mangled name (but different 3588 // type) before, take its name and add it to the list of functions to be 3589 // replaced with F at the end of CodeGen. 3590 // 3591 // This happens if there is a prototype for a function (e.g. "int f()") and 3592 // then a definition of a different type (e.g. "int f(int x)"). 3593 if (Entry) { 3594 F->takeName(Entry); 3595 3596 // This might be an implementation of a function without a prototype, in 3597 // which case, try to do special replacement of calls which match the new 3598 // prototype. The really key thing here is that we also potentially drop 3599 // arguments from the call site so as to make a direct call, which makes the 3600 // inliner happier and suppresses a number of optimizer warnings (!) about 3601 // dropping arguments. 3602 if (!Entry->use_empty()) { 3603 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3604 Entry->removeDeadConstantUsers(); 3605 } 3606 3607 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3608 F, Entry->getValueType()->getPointerTo()); 3609 addGlobalValReplacement(Entry, BC); 3610 } 3611 3612 assert(F->getName() == MangledName && "name was uniqued!"); 3613 if (D) 3614 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3615 if (ExtraAttrs.hasFnAttrs()) { 3616 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3617 F->addFnAttrs(B); 3618 } 3619 3620 if (!DontDefer) { 3621 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3622 // each other bottoming out with the base dtor. Therefore we emit non-base 3623 // dtors on usage, even if there is no dtor definition in the TU. 3624 if (D && isa<CXXDestructorDecl>(D) && 3625 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3626 GD.getDtorType())) 3627 addDeferredDeclToEmit(GD); 3628 3629 // This is the first use or definition of a mangled name. If there is a 3630 // deferred decl with this name, remember that we need to emit it at the end 3631 // of the file. 3632 auto DDI = DeferredDecls.find(MangledName); 3633 if (DDI != DeferredDecls.end()) { 3634 // Move the potentially referenced deferred decl to the 3635 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3636 // don't need it anymore). 3637 addDeferredDeclToEmit(DDI->second); 3638 DeferredDecls.erase(DDI); 3639 3640 // Otherwise, there are cases we have to worry about where we're 3641 // using a declaration for which we must emit a definition but where 3642 // we might not find a top-level definition: 3643 // - member functions defined inline in their classes 3644 // - friend functions defined inline in some class 3645 // - special member functions with implicit definitions 3646 // If we ever change our AST traversal to walk into class methods, 3647 // this will be unnecessary. 3648 // 3649 // We also don't emit a definition for a function if it's going to be an 3650 // entry in a vtable, unless it's already marked as used. 3651 } else if (getLangOpts().CPlusPlus && D) { 3652 // Look for a declaration that's lexically in a record. 3653 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3654 FD = FD->getPreviousDecl()) { 3655 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3656 if (FD->doesThisDeclarationHaveABody()) { 3657 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3658 break; 3659 } 3660 } 3661 } 3662 } 3663 } 3664 3665 // Make sure the result is of the requested type. 3666 if (!IsIncompleteFunction) { 3667 assert(F->getFunctionType() == Ty); 3668 return F; 3669 } 3670 3671 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3672 return llvm::ConstantExpr::getBitCast(F, PTy); 3673 } 3674 3675 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3676 /// non-null, then this function will use the specified type if it has to 3677 /// create it (this occurs when we see a definition of the function). 3678 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3679 llvm::Type *Ty, 3680 bool ForVTable, 3681 bool DontDefer, 3682 ForDefinition_t IsForDefinition) { 3683 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3684 "consteval function should never be emitted"); 3685 // If there was no specific requested type, just convert it now. 3686 if (!Ty) { 3687 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3688 Ty = getTypes().ConvertType(FD->getType()); 3689 } 3690 3691 // Devirtualized destructor calls may come through here instead of via 3692 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3693 // of the complete destructor when necessary. 3694 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3695 if (getTarget().getCXXABI().isMicrosoft() && 3696 GD.getDtorType() == Dtor_Complete && 3697 DD->getParent()->getNumVBases() == 0) 3698 GD = GlobalDecl(DD, Dtor_Base); 3699 } 3700 3701 StringRef MangledName = getMangledName(GD); 3702 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3703 /*IsThunk=*/false, llvm::AttributeList(), 3704 IsForDefinition); 3705 // Returns kernel handle for HIP kernel stub function. 3706 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3707 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3708 auto *Handle = getCUDARuntime().getKernelHandle( 3709 cast<llvm::Function>(F->stripPointerCasts()), GD); 3710 if (IsForDefinition) 3711 return F; 3712 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3713 } 3714 return F; 3715 } 3716 3717 static const FunctionDecl * 3718 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3719 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3720 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3721 3722 IdentifierInfo &CII = C.Idents.get(Name); 3723 for (const auto *Result : DC->lookup(&CII)) 3724 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3725 return FD; 3726 3727 if (!C.getLangOpts().CPlusPlus) 3728 return nullptr; 3729 3730 // Demangle the premangled name from getTerminateFn() 3731 IdentifierInfo &CXXII = 3732 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3733 ? C.Idents.get("terminate") 3734 : C.Idents.get(Name); 3735 3736 for (const auto &N : {"__cxxabiv1", "std"}) { 3737 IdentifierInfo &NS = C.Idents.get(N); 3738 for (const auto *Result : DC->lookup(&NS)) { 3739 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3740 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3741 for (const auto *Result : LSD->lookup(&NS)) 3742 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3743 break; 3744 3745 if (ND) 3746 for (const auto *Result : ND->lookup(&CXXII)) 3747 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3748 return FD; 3749 } 3750 } 3751 3752 return nullptr; 3753 } 3754 3755 /// CreateRuntimeFunction - Create a new runtime function with the specified 3756 /// type and name. 3757 llvm::FunctionCallee 3758 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3759 llvm::AttributeList ExtraAttrs, bool Local, 3760 bool AssumeConvergent) { 3761 if (AssumeConvergent) { 3762 ExtraAttrs = 3763 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 3764 } 3765 3766 llvm::Constant *C = 3767 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3768 /*DontDefer=*/false, /*IsThunk=*/false, 3769 ExtraAttrs); 3770 3771 if (auto *F = dyn_cast<llvm::Function>(C)) { 3772 if (F->empty()) { 3773 F->setCallingConv(getRuntimeCC()); 3774 3775 // In Windows Itanium environments, try to mark runtime functions 3776 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3777 // will link their standard library statically or dynamically. Marking 3778 // functions imported when they are not imported can cause linker errors 3779 // and warnings. 3780 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3781 !getCodeGenOpts().LTOVisibilityPublicStd) { 3782 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3783 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3784 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3785 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3786 } 3787 } 3788 setDSOLocal(F); 3789 } 3790 } 3791 3792 return {FTy, C}; 3793 } 3794 3795 /// isTypeConstant - Determine whether an object of this type can be emitted 3796 /// as a constant. 3797 /// 3798 /// If ExcludeCtor is true, the duration when the object's constructor runs 3799 /// will not be considered. The caller will need to verify that the object is 3800 /// not written to during its construction. 3801 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3802 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3803 return false; 3804 3805 if (Context.getLangOpts().CPlusPlus) { 3806 if (const CXXRecordDecl *Record 3807 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3808 return ExcludeCtor && !Record->hasMutableFields() && 3809 Record->hasTrivialDestructor(); 3810 } 3811 3812 return true; 3813 } 3814 3815 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3816 /// create and return an llvm GlobalVariable with the specified type and address 3817 /// space. If there is something in the module with the specified name, return 3818 /// it potentially bitcasted to the right type. 3819 /// 3820 /// If D is non-null, it specifies a decl that correspond to this. This is used 3821 /// to set the attributes on the global when it is first created. 3822 /// 3823 /// If IsForDefinition is true, it is guaranteed that an actual global with 3824 /// type Ty will be returned, not conversion of a variable with the same 3825 /// mangled name but some other type. 3826 llvm::Constant * 3827 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 3828 LangAS AddrSpace, const VarDecl *D, 3829 ForDefinition_t IsForDefinition) { 3830 // Lookup the entry, lazily creating it if necessary. 3831 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3832 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3833 if (Entry) { 3834 if (WeakRefReferences.erase(Entry)) { 3835 if (D && !D->hasAttr<WeakAttr>()) 3836 Entry->setLinkage(llvm::Function::ExternalLinkage); 3837 } 3838 3839 // Handle dropped DLL attributes. 3840 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3841 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3842 3843 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3844 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3845 3846 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 3847 return Entry; 3848 3849 // If there are two attempts to define the same mangled name, issue an 3850 // error. 3851 if (IsForDefinition && !Entry->isDeclaration()) { 3852 GlobalDecl OtherGD; 3853 const VarDecl *OtherD; 3854 3855 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3856 // to make sure that we issue an error only once. 3857 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3858 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3859 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3860 OtherD->hasInit() && 3861 DiagnosedConflictingDefinitions.insert(D).second) { 3862 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3863 << MangledName; 3864 getDiags().Report(OtherGD.getDecl()->getLocation(), 3865 diag::note_previous_definition); 3866 } 3867 } 3868 3869 // Make sure the result is of the correct type. 3870 if (Entry->getType()->getAddressSpace() != TargetAS) { 3871 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 3872 Ty->getPointerTo(TargetAS)); 3873 } 3874 3875 // (If global is requested for a definition, we always need to create a new 3876 // global, not just return a bitcast.) 3877 if (!IsForDefinition) 3878 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 3879 } 3880 3881 auto DAddrSpace = GetGlobalVarAddressSpace(D); 3882 3883 auto *GV = new llvm::GlobalVariable( 3884 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 3885 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 3886 getContext().getTargetAddressSpace(DAddrSpace)); 3887 3888 // If we already created a global with the same mangled name (but different 3889 // type) before, take its name and remove it from its parent. 3890 if (Entry) { 3891 GV->takeName(Entry); 3892 3893 if (!Entry->use_empty()) { 3894 llvm::Constant *NewPtrForOldDecl = 3895 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3896 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3897 } 3898 3899 Entry->eraseFromParent(); 3900 } 3901 3902 // This is the first use or definition of a mangled name. If there is a 3903 // deferred decl with this name, remember that we need to emit it at the end 3904 // of the file. 3905 auto DDI = DeferredDecls.find(MangledName); 3906 if (DDI != DeferredDecls.end()) { 3907 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3908 // list, and remove it from DeferredDecls (since we don't need it anymore). 3909 addDeferredDeclToEmit(DDI->second); 3910 DeferredDecls.erase(DDI); 3911 } 3912 3913 // Handle things which are present even on external declarations. 3914 if (D) { 3915 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3916 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3917 3918 // FIXME: This code is overly simple and should be merged with other global 3919 // handling. 3920 GV->setConstant(isTypeConstant(D->getType(), false)); 3921 3922 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3923 3924 setLinkageForGV(GV, D); 3925 3926 if (D->getTLSKind()) { 3927 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3928 CXXThreadLocals.push_back(D); 3929 setTLSMode(GV, *D); 3930 } 3931 3932 setGVProperties(GV, D); 3933 3934 // If required by the ABI, treat declarations of static data members with 3935 // inline initializers as definitions. 3936 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3937 EmitGlobalVarDefinition(D); 3938 } 3939 3940 // Emit section information for extern variables. 3941 if (D->hasExternalStorage()) { 3942 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3943 GV->setSection(SA->getName()); 3944 } 3945 3946 // Handle XCore specific ABI requirements. 3947 if (getTriple().getArch() == llvm::Triple::xcore && 3948 D->getLanguageLinkage() == CLanguageLinkage && 3949 D->getType().isConstant(Context) && 3950 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3951 GV->setSection(".cp.rodata"); 3952 3953 // Check if we a have a const declaration with an initializer, we may be 3954 // able to emit it as available_externally to expose it's value to the 3955 // optimizer. 3956 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3957 D->getType().isConstQualified() && !GV->hasInitializer() && 3958 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3959 const auto *Record = 3960 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3961 bool HasMutableFields = Record && Record->hasMutableFields(); 3962 if (!HasMutableFields) { 3963 const VarDecl *InitDecl; 3964 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3965 if (InitExpr) { 3966 ConstantEmitter emitter(*this); 3967 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3968 if (Init) { 3969 auto *InitType = Init->getType(); 3970 if (GV->getValueType() != InitType) { 3971 // The type of the initializer does not match the definition. 3972 // This happens when an initializer has a different type from 3973 // the type of the global (because of padding at the end of a 3974 // structure for instance). 3975 GV->setName(StringRef()); 3976 // Make a new global with the correct type, this is now guaranteed 3977 // to work. 3978 auto *NewGV = cast<llvm::GlobalVariable>( 3979 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3980 ->stripPointerCasts()); 3981 3982 // Erase the old global, since it is no longer used. 3983 GV->eraseFromParent(); 3984 GV = NewGV; 3985 } else { 3986 GV->setInitializer(Init); 3987 GV->setConstant(true); 3988 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3989 } 3990 emitter.finalize(GV); 3991 } 3992 } 3993 } 3994 } 3995 } 3996 3997 if (GV->isDeclaration()) { 3998 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3999 // External HIP managed variables needed to be recorded for transformation 4000 // in both device and host compilations. 4001 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4002 D->hasExternalStorage()) 4003 getCUDARuntime().handleVarRegistration(D, *GV); 4004 } 4005 4006 LangAS ExpectedAS = 4007 D ? D->getType().getAddressSpace() 4008 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4009 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4010 if (DAddrSpace != ExpectedAS) { 4011 return getTargetCodeGenInfo().performAddrSpaceCast( 4012 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4013 } 4014 4015 return GV; 4016 } 4017 4018 llvm::Constant * 4019 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4020 const Decl *D = GD.getDecl(); 4021 4022 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4023 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4024 /*DontDefer=*/false, IsForDefinition); 4025 4026 if (isa<CXXMethodDecl>(D)) { 4027 auto FInfo = 4028 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4029 auto Ty = getTypes().GetFunctionType(*FInfo); 4030 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4031 IsForDefinition); 4032 } 4033 4034 if (isa<FunctionDecl>(D)) { 4035 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4036 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4037 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4038 IsForDefinition); 4039 } 4040 4041 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4042 } 4043 4044 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4045 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4046 unsigned Alignment) { 4047 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4048 llvm::GlobalVariable *OldGV = nullptr; 4049 4050 if (GV) { 4051 // Check if the variable has the right type. 4052 if (GV->getValueType() == Ty) 4053 return GV; 4054 4055 // Because C++ name mangling, the only way we can end up with an already 4056 // existing global with the same name is if it has been declared extern "C". 4057 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4058 OldGV = GV; 4059 } 4060 4061 // Create a new variable. 4062 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4063 Linkage, nullptr, Name); 4064 4065 if (OldGV) { 4066 // Replace occurrences of the old variable if needed. 4067 GV->takeName(OldGV); 4068 4069 if (!OldGV->use_empty()) { 4070 llvm::Constant *NewPtrForOldDecl = 4071 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4072 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4073 } 4074 4075 OldGV->eraseFromParent(); 4076 } 4077 4078 if (supportsCOMDAT() && GV->isWeakForLinker() && 4079 !GV->hasAvailableExternallyLinkage()) 4080 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4081 4082 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4083 4084 return GV; 4085 } 4086 4087 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4088 /// given global variable. If Ty is non-null and if the global doesn't exist, 4089 /// then it will be created with the specified type instead of whatever the 4090 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4091 /// that an actual global with type Ty will be returned, not conversion of a 4092 /// variable with the same mangled name but some other type. 4093 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4094 llvm::Type *Ty, 4095 ForDefinition_t IsForDefinition) { 4096 assert(D->hasGlobalStorage() && "Not a global variable"); 4097 QualType ASTTy = D->getType(); 4098 if (!Ty) 4099 Ty = getTypes().ConvertTypeForMem(ASTTy); 4100 4101 StringRef MangledName = getMangledName(D); 4102 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4103 IsForDefinition); 4104 } 4105 4106 /// CreateRuntimeVariable - Create a new runtime global variable with the 4107 /// specified type and name. 4108 llvm::Constant * 4109 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4110 StringRef Name) { 4111 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4112 : LangAS::Default; 4113 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4114 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4115 return Ret; 4116 } 4117 4118 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4119 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4120 4121 StringRef MangledName = getMangledName(D); 4122 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4123 4124 // We already have a definition, not declaration, with the same mangled name. 4125 // Emitting of declaration is not required (and actually overwrites emitted 4126 // definition). 4127 if (GV && !GV->isDeclaration()) 4128 return; 4129 4130 // If we have not seen a reference to this variable yet, place it into the 4131 // deferred declarations table to be emitted if needed later. 4132 if (!MustBeEmitted(D) && !GV) { 4133 DeferredDecls[MangledName] = D; 4134 return; 4135 } 4136 4137 // The tentative definition is the only definition. 4138 EmitGlobalVarDefinition(D); 4139 } 4140 4141 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4142 EmitExternalVarDeclaration(D); 4143 } 4144 4145 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4146 return Context.toCharUnitsFromBits( 4147 getDataLayout().getTypeStoreSizeInBits(Ty)); 4148 } 4149 4150 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4151 if (LangOpts.OpenCL) { 4152 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4153 assert(AS == LangAS::opencl_global || 4154 AS == LangAS::opencl_global_device || 4155 AS == LangAS::opencl_global_host || 4156 AS == LangAS::opencl_constant || 4157 AS == LangAS::opencl_local || 4158 AS >= LangAS::FirstTargetAddressSpace); 4159 return AS; 4160 } 4161 4162 if (LangOpts.SYCLIsDevice && 4163 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4164 return LangAS::sycl_global; 4165 4166 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4167 if (D && D->hasAttr<CUDAConstantAttr>()) 4168 return LangAS::cuda_constant; 4169 else if (D && D->hasAttr<CUDASharedAttr>()) 4170 return LangAS::cuda_shared; 4171 else if (D && D->hasAttr<CUDADeviceAttr>()) 4172 return LangAS::cuda_device; 4173 else if (D && D->getType().isConstQualified()) 4174 return LangAS::cuda_constant; 4175 else 4176 return LangAS::cuda_device; 4177 } 4178 4179 if (LangOpts.OpenMP) { 4180 LangAS AS; 4181 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4182 return AS; 4183 } 4184 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4185 } 4186 4187 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4188 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4189 if (LangOpts.OpenCL) 4190 return LangAS::opencl_constant; 4191 if (LangOpts.SYCLIsDevice) 4192 return LangAS::sycl_global; 4193 if (auto AS = getTarget().getConstantAddressSpace()) 4194 return AS.getValue(); 4195 return LangAS::Default; 4196 } 4197 4198 // In address space agnostic languages, string literals are in default address 4199 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4200 // emitted in constant address space in LLVM IR. To be consistent with other 4201 // parts of AST, string literal global variables in constant address space 4202 // need to be casted to default address space before being put into address 4203 // map and referenced by other part of CodeGen. 4204 // In OpenCL, string literals are in constant address space in AST, therefore 4205 // they should not be casted to default address space. 4206 static llvm::Constant * 4207 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4208 llvm::GlobalVariable *GV) { 4209 llvm::Constant *Cast = GV; 4210 if (!CGM.getLangOpts().OpenCL) { 4211 auto AS = CGM.GetGlobalConstantAddressSpace(); 4212 if (AS != LangAS::Default) 4213 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4214 CGM, GV, AS, LangAS::Default, 4215 GV->getValueType()->getPointerTo( 4216 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4217 } 4218 return Cast; 4219 } 4220 4221 template<typename SomeDecl> 4222 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4223 llvm::GlobalValue *GV) { 4224 if (!getLangOpts().CPlusPlus) 4225 return; 4226 4227 // Must have 'used' attribute, or else inline assembly can't rely on 4228 // the name existing. 4229 if (!D->template hasAttr<UsedAttr>()) 4230 return; 4231 4232 // Must have internal linkage and an ordinary name. 4233 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4234 return; 4235 4236 // Must be in an extern "C" context. Entities declared directly within 4237 // a record are not extern "C" even if the record is in such a context. 4238 const SomeDecl *First = D->getFirstDecl(); 4239 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4240 return; 4241 4242 // OK, this is an internal linkage entity inside an extern "C" linkage 4243 // specification. Make a note of that so we can give it the "expected" 4244 // mangled name if nothing else is using that name. 4245 std::pair<StaticExternCMap::iterator, bool> R = 4246 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4247 4248 // If we have multiple internal linkage entities with the same name 4249 // in extern "C" regions, none of them gets that name. 4250 if (!R.second) 4251 R.first->second = nullptr; 4252 } 4253 4254 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4255 if (!CGM.supportsCOMDAT()) 4256 return false; 4257 4258 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4259 // them being "merged" by the COMDAT Folding linker optimization. 4260 if (D.hasAttr<CUDAGlobalAttr>()) 4261 return false; 4262 4263 if (D.hasAttr<SelectAnyAttr>()) 4264 return true; 4265 4266 GVALinkage Linkage; 4267 if (auto *VD = dyn_cast<VarDecl>(&D)) 4268 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4269 else 4270 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4271 4272 switch (Linkage) { 4273 case GVA_Internal: 4274 case GVA_AvailableExternally: 4275 case GVA_StrongExternal: 4276 return false; 4277 case GVA_DiscardableODR: 4278 case GVA_StrongODR: 4279 return true; 4280 } 4281 llvm_unreachable("No such linkage"); 4282 } 4283 4284 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4285 llvm::GlobalObject &GO) { 4286 if (!shouldBeInCOMDAT(*this, D)) 4287 return; 4288 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4289 } 4290 4291 /// Pass IsTentative as true if you want to create a tentative definition. 4292 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4293 bool IsTentative) { 4294 // OpenCL global variables of sampler type are translated to function calls, 4295 // therefore no need to be translated. 4296 QualType ASTTy = D->getType(); 4297 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4298 return; 4299 4300 // If this is OpenMP device, check if it is legal to emit this global 4301 // normally. 4302 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4303 OpenMPRuntime->emitTargetGlobalVariable(D)) 4304 return; 4305 4306 llvm::TrackingVH<llvm::Constant> Init; 4307 bool NeedsGlobalCtor = false; 4308 bool NeedsGlobalDtor = 4309 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4310 4311 const VarDecl *InitDecl; 4312 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4313 4314 Optional<ConstantEmitter> emitter; 4315 4316 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4317 // as part of their declaration." Sema has already checked for 4318 // error cases, so we just need to set Init to UndefValue. 4319 bool IsCUDASharedVar = 4320 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4321 // Shadows of initialized device-side global variables are also left 4322 // undefined. 4323 // Managed Variables should be initialized on both host side and device side. 4324 bool IsCUDAShadowVar = 4325 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4326 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4327 D->hasAttr<CUDASharedAttr>()); 4328 bool IsCUDADeviceShadowVar = 4329 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4330 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4331 D->getType()->isCUDADeviceBuiltinTextureType()); 4332 if (getLangOpts().CUDA && 4333 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4334 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4335 else if (D->hasAttr<LoaderUninitializedAttr>()) 4336 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4337 else if (!InitExpr) { 4338 // This is a tentative definition; tentative definitions are 4339 // implicitly initialized with { 0 }. 4340 // 4341 // Note that tentative definitions are only emitted at the end of 4342 // a translation unit, so they should never have incomplete 4343 // type. In addition, EmitTentativeDefinition makes sure that we 4344 // never attempt to emit a tentative definition if a real one 4345 // exists. A use may still exists, however, so we still may need 4346 // to do a RAUW. 4347 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4348 Init = EmitNullConstant(D->getType()); 4349 } else { 4350 initializedGlobalDecl = GlobalDecl(D); 4351 emitter.emplace(*this); 4352 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4353 if (!Initializer) { 4354 QualType T = InitExpr->getType(); 4355 if (D->getType()->isReferenceType()) 4356 T = D->getType(); 4357 4358 if (getLangOpts().CPlusPlus) { 4359 Init = EmitNullConstant(T); 4360 NeedsGlobalCtor = true; 4361 } else { 4362 ErrorUnsupported(D, "static initializer"); 4363 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4364 } 4365 } else { 4366 Init = Initializer; 4367 // We don't need an initializer, so remove the entry for the delayed 4368 // initializer position (just in case this entry was delayed) if we 4369 // also don't need to register a destructor. 4370 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4371 DelayedCXXInitPosition.erase(D); 4372 } 4373 } 4374 4375 llvm::Type* InitType = Init->getType(); 4376 llvm::Constant *Entry = 4377 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4378 4379 // Strip off pointer casts if we got them. 4380 Entry = Entry->stripPointerCasts(); 4381 4382 // Entry is now either a Function or GlobalVariable. 4383 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4384 4385 // We have a definition after a declaration with the wrong type. 4386 // We must make a new GlobalVariable* and update everything that used OldGV 4387 // (a declaration or tentative definition) with the new GlobalVariable* 4388 // (which will be a definition). 4389 // 4390 // This happens if there is a prototype for a global (e.g. 4391 // "extern int x[];") and then a definition of a different type (e.g. 4392 // "int x[10];"). This also happens when an initializer has a different type 4393 // from the type of the global (this happens with unions). 4394 if (!GV || GV->getValueType() != InitType || 4395 GV->getType()->getAddressSpace() != 4396 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4397 4398 // Move the old entry aside so that we'll create a new one. 4399 Entry->setName(StringRef()); 4400 4401 // Make a new global with the correct type, this is now guaranteed to work. 4402 GV = cast<llvm::GlobalVariable>( 4403 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4404 ->stripPointerCasts()); 4405 4406 // Replace all uses of the old global with the new global 4407 llvm::Constant *NewPtrForOldDecl = 4408 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4409 Entry->getType()); 4410 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4411 4412 // Erase the old global, since it is no longer used. 4413 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4414 } 4415 4416 MaybeHandleStaticInExternC(D, GV); 4417 4418 if (D->hasAttr<AnnotateAttr>()) 4419 AddGlobalAnnotations(D, GV); 4420 4421 // Set the llvm linkage type as appropriate. 4422 llvm::GlobalValue::LinkageTypes Linkage = 4423 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4424 4425 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4426 // the device. [...]" 4427 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4428 // __device__, declares a variable that: [...] 4429 // Is accessible from all the threads within the grid and from the host 4430 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4431 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4432 if (GV && LangOpts.CUDA) { 4433 if (LangOpts.CUDAIsDevice) { 4434 if (Linkage != llvm::GlobalValue::InternalLinkage && 4435 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4436 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4437 D->getType()->isCUDADeviceBuiltinTextureType())) 4438 GV->setExternallyInitialized(true); 4439 } else { 4440 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4441 } 4442 getCUDARuntime().handleVarRegistration(D, *GV); 4443 } 4444 4445 GV->setInitializer(Init); 4446 if (emitter) 4447 emitter->finalize(GV); 4448 4449 // If it is safe to mark the global 'constant', do so now. 4450 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4451 isTypeConstant(D->getType(), true)); 4452 4453 // If it is in a read-only section, mark it 'constant'. 4454 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4455 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4456 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4457 GV->setConstant(true); 4458 } 4459 4460 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4461 4462 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4463 // function is only defined alongside the variable, not also alongside 4464 // callers. Normally, all accesses to a thread_local go through the 4465 // thread-wrapper in order to ensure initialization has occurred, underlying 4466 // variable will never be used other than the thread-wrapper, so it can be 4467 // converted to internal linkage. 4468 // 4469 // However, if the variable has the 'constinit' attribute, it _can_ be 4470 // referenced directly, without calling the thread-wrapper, so the linkage 4471 // must not be changed. 4472 // 4473 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4474 // weak or linkonce, the de-duplication semantics are important to preserve, 4475 // so we don't change the linkage. 4476 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4477 Linkage == llvm::GlobalValue::ExternalLinkage && 4478 Context.getTargetInfo().getTriple().isOSDarwin() && 4479 !D->hasAttr<ConstInitAttr>()) 4480 Linkage = llvm::GlobalValue::InternalLinkage; 4481 4482 GV->setLinkage(Linkage); 4483 if (D->hasAttr<DLLImportAttr>()) 4484 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4485 else if (D->hasAttr<DLLExportAttr>()) 4486 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4487 else 4488 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4489 4490 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4491 // common vars aren't constant even if declared const. 4492 GV->setConstant(false); 4493 // Tentative definition of global variables may be initialized with 4494 // non-zero null pointers. In this case they should have weak linkage 4495 // since common linkage must have zero initializer and must not have 4496 // explicit section therefore cannot have non-zero initial value. 4497 if (!GV->getInitializer()->isNullValue()) 4498 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4499 } 4500 4501 setNonAliasAttributes(D, GV); 4502 4503 if (D->getTLSKind() && !GV->isThreadLocal()) { 4504 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4505 CXXThreadLocals.push_back(D); 4506 setTLSMode(GV, *D); 4507 } 4508 4509 maybeSetTrivialComdat(*D, *GV); 4510 4511 // Emit the initializer function if necessary. 4512 if (NeedsGlobalCtor || NeedsGlobalDtor) 4513 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4514 4515 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4516 4517 // Emit global variable debug information. 4518 if (CGDebugInfo *DI = getModuleDebugInfo()) 4519 if (getCodeGenOpts().hasReducedDebugInfo()) 4520 DI->EmitGlobalVariable(GV, D); 4521 } 4522 4523 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4524 if (CGDebugInfo *DI = getModuleDebugInfo()) 4525 if (getCodeGenOpts().hasReducedDebugInfo()) { 4526 QualType ASTTy = D->getType(); 4527 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4528 llvm::Constant *GV = 4529 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4530 DI->EmitExternalVariable( 4531 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4532 } 4533 } 4534 4535 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4536 CodeGenModule &CGM, const VarDecl *D, 4537 bool NoCommon) { 4538 // Don't give variables common linkage if -fno-common was specified unless it 4539 // was overridden by a NoCommon attribute. 4540 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4541 return true; 4542 4543 // C11 6.9.2/2: 4544 // A declaration of an identifier for an object that has file scope without 4545 // an initializer, and without a storage-class specifier or with the 4546 // storage-class specifier static, constitutes a tentative definition. 4547 if (D->getInit() || D->hasExternalStorage()) 4548 return true; 4549 4550 // A variable cannot be both common and exist in a section. 4551 if (D->hasAttr<SectionAttr>()) 4552 return true; 4553 4554 // A variable cannot be both common and exist in a section. 4555 // We don't try to determine which is the right section in the front-end. 4556 // If no specialized section name is applicable, it will resort to default. 4557 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4558 D->hasAttr<PragmaClangDataSectionAttr>() || 4559 D->hasAttr<PragmaClangRelroSectionAttr>() || 4560 D->hasAttr<PragmaClangRodataSectionAttr>()) 4561 return true; 4562 4563 // Thread local vars aren't considered common linkage. 4564 if (D->getTLSKind()) 4565 return true; 4566 4567 // Tentative definitions marked with WeakImportAttr are true definitions. 4568 if (D->hasAttr<WeakImportAttr>()) 4569 return true; 4570 4571 // A variable cannot be both common and exist in a comdat. 4572 if (shouldBeInCOMDAT(CGM, *D)) 4573 return true; 4574 4575 // Declarations with a required alignment do not have common linkage in MSVC 4576 // mode. 4577 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4578 if (D->hasAttr<AlignedAttr>()) 4579 return true; 4580 QualType VarType = D->getType(); 4581 if (Context.isAlignmentRequired(VarType)) 4582 return true; 4583 4584 if (const auto *RT = VarType->getAs<RecordType>()) { 4585 const RecordDecl *RD = RT->getDecl(); 4586 for (const FieldDecl *FD : RD->fields()) { 4587 if (FD->isBitField()) 4588 continue; 4589 if (FD->hasAttr<AlignedAttr>()) 4590 return true; 4591 if (Context.isAlignmentRequired(FD->getType())) 4592 return true; 4593 } 4594 } 4595 } 4596 4597 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4598 // common symbols, so symbols with greater alignment requirements cannot be 4599 // common. 4600 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4601 // alignments for common symbols via the aligncomm directive, so this 4602 // restriction only applies to MSVC environments. 4603 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4604 Context.getTypeAlignIfKnown(D->getType()) > 4605 Context.toBits(CharUnits::fromQuantity(32))) 4606 return true; 4607 4608 return false; 4609 } 4610 4611 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4612 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4613 if (Linkage == GVA_Internal) 4614 return llvm::Function::InternalLinkage; 4615 4616 if (D->hasAttr<WeakAttr>()) { 4617 if (IsConstantVariable) 4618 return llvm::GlobalVariable::WeakODRLinkage; 4619 else 4620 return llvm::GlobalVariable::WeakAnyLinkage; 4621 } 4622 4623 if (const auto *FD = D->getAsFunction()) 4624 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4625 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4626 4627 // We are guaranteed to have a strong definition somewhere else, 4628 // so we can use available_externally linkage. 4629 if (Linkage == GVA_AvailableExternally) 4630 return llvm::GlobalValue::AvailableExternallyLinkage; 4631 4632 // Note that Apple's kernel linker doesn't support symbol 4633 // coalescing, so we need to avoid linkonce and weak linkages there. 4634 // Normally, this means we just map to internal, but for explicit 4635 // instantiations we'll map to external. 4636 4637 // In C++, the compiler has to emit a definition in every translation unit 4638 // that references the function. We should use linkonce_odr because 4639 // a) if all references in this translation unit are optimized away, we 4640 // don't need to codegen it. b) if the function persists, it needs to be 4641 // merged with other definitions. c) C++ has the ODR, so we know the 4642 // definition is dependable. 4643 if (Linkage == GVA_DiscardableODR) 4644 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4645 : llvm::Function::InternalLinkage; 4646 4647 // An explicit instantiation of a template has weak linkage, since 4648 // explicit instantiations can occur in multiple translation units 4649 // and must all be equivalent. However, we are not allowed to 4650 // throw away these explicit instantiations. 4651 // 4652 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4653 // so say that CUDA templates are either external (for kernels) or internal. 4654 // This lets llvm perform aggressive inter-procedural optimizations. For 4655 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4656 // therefore we need to follow the normal linkage paradigm. 4657 if (Linkage == GVA_StrongODR) { 4658 if (getLangOpts().AppleKext) 4659 return llvm::Function::ExternalLinkage; 4660 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4661 !getLangOpts().GPURelocatableDeviceCode) 4662 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4663 : llvm::Function::InternalLinkage; 4664 return llvm::Function::WeakODRLinkage; 4665 } 4666 4667 // C++ doesn't have tentative definitions and thus cannot have common 4668 // linkage. 4669 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4670 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4671 CodeGenOpts.NoCommon)) 4672 return llvm::GlobalVariable::CommonLinkage; 4673 4674 // selectany symbols are externally visible, so use weak instead of 4675 // linkonce. MSVC optimizes away references to const selectany globals, so 4676 // all definitions should be the same and ODR linkage should be used. 4677 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4678 if (D->hasAttr<SelectAnyAttr>()) 4679 return llvm::GlobalVariable::WeakODRLinkage; 4680 4681 // Otherwise, we have strong external linkage. 4682 assert(Linkage == GVA_StrongExternal); 4683 return llvm::GlobalVariable::ExternalLinkage; 4684 } 4685 4686 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4687 const VarDecl *VD, bool IsConstant) { 4688 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4689 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4690 } 4691 4692 /// Replace the uses of a function that was declared with a non-proto type. 4693 /// We want to silently drop extra arguments from call sites 4694 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4695 llvm::Function *newFn) { 4696 // Fast path. 4697 if (old->use_empty()) return; 4698 4699 llvm::Type *newRetTy = newFn->getReturnType(); 4700 SmallVector<llvm::Value*, 4> newArgs; 4701 4702 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4703 ui != ue; ) { 4704 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4705 llvm::User *user = use->getUser(); 4706 4707 // Recognize and replace uses of bitcasts. Most calls to 4708 // unprototyped functions will use bitcasts. 4709 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4710 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4711 replaceUsesOfNonProtoConstant(bitcast, newFn); 4712 continue; 4713 } 4714 4715 // Recognize calls to the function. 4716 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4717 if (!callSite) continue; 4718 if (!callSite->isCallee(&*use)) 4719 continue; 4720 4721 // If the return types don't match exactly, then we can't 4722 // transform this call unless it's dead. 4723 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4724 continue; 4725 4726 // Get the call site's attribute list. 4727 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4728 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4729 4730 // If the function was passed too few arguments, don't transform. 4731 unsigned newNumArgs = newFn->arg_size(); 4732 if (callSite->arg_size() < newNumArgs) 4733 continue; 4734 4735 // If extra arguments were passed, we silently drop them. 4736 // If any of the types mismatch, we don't transform. 4737 unsigned argNo = 0; 4738 bool dontTransform = false; 4739 for (llvm::Argument &A : newFn->args()) { 4740 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4741 dontTransform = true; 4742 break; 4743 } 4744 4745 // Add any parameter attributes. 4746 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 4747 argNo++; 4748 } 4749 if (dontTransform) 4750 continue; 4751 4752 // Okay, we can transform this. Create the new call instruction and copy 4753 // over the required information. 4754 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4755 4756 // Copy over any operand bundles. 4757 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4758 callSite->getOperandBundlesAsDefs(newBundles); 4759 4760 llvm::CallBase *newCall; 4761 if (dyn_cast<llvm::CallInst>(callSite)) { 4762 newCall = 4763 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4764 } else { 4765 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4766 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4767 oldInvoke->getUnwindDest(), newArgs, 4768 newBundles, "", callSite); 4769 } 4770 newArgs.clear(); // for the next iteration 4771 4772 if (!newCall->getType()->isVoidTy()) 4773 newCall->takeName(callSite); 4774 newCall->setAttributes( 4775 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 4776 oldAttrs.getRetAttrs(), newArgAttrs)); 4777 newCall->setCallingConv(callSite->getCallingConv()); 4778 4779 // Finally, remove the old call, replacing any uses with the new one. 4780 if (!callSite->use_empty()) 4781 callSite->replaceAllUsesWith(newCall); 4782 4783 // Copy debug location attached to CI. 4784 if (callSite->getDebugLoc()) 4785 newCall->setDebugLoc(callSite->getDebugLoc()); 4786 4787 callSite->eraseFromParent(); 4788 } 4789 } 4790 4791 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4792 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4793 /// existing call uses of the old function in the module, this adjusts them to 4794 /// call the new function directly. 4795 /// 4796 /// This is not just a cleanup: the always_inline pass requires direct calls to 4797 /// functions to be able to inline them. If there is a bitcast in the way, it 4798 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4799 /// run at -O0. 4800 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4801 llvm::Function *NewFn) { 4802 // If we're redefining a global as a function, don't transform it. 4803 if (!isa<llvm::Function>(Old)) return; 4804 4805 replaceUsesOfNonProtoConstant(Old, NewFn); 4806 } 4807 4808 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4809 auto DK = VD->isThisDeclarationADefinition(); 4810 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4811 return; 4812 4813 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4814 // If we have a definition, this might be a deferred decl. If the 4815 // instantiation is explicit, make sure we emit it at the end. 4816 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4817 GetAddrOfGlobalVar(VD); 4818 4819 EmitTopLevelDecl(VD); 4820 } 4821 4822 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4823 llvm::GlobalValue *GV) { 4824 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4825 4826 // Compute the function info and LLVM type. 4827 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4828 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4829 4830 // Get or create the prototype for the function. 4831 if (!GV || (GV->getValueType() != Ty)) 4832 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4833 /*DontDefer=*/true, 4834 ForDefinition)); 4835 4836 // Already emitted. 4837 if (!GV->isDeclaration()) 4838 return; 4839 4840 // We need to set linkage and visibility on the function before 4841 // generating code for it because various parts of IR generation 4842 // want to propagate this information down (e.g. to local static 4843 // declarations). 4844 auto *Fn = cast<llvm::Function>(GV); 4845 setFunctionLinkage(GD, Fn); 4846 4847 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4848 setGVProperties(Fn, GD); 4849 4850 MaybeHandleStaticInExternC(D, Fn); 4851 4852 maybeSetTrivialComdat(*D, *Fn); 4853 4854 // Set CodeGen attributes that represent floating point environment. 4855 setLLVMFunctionFEnvAttributes(D, Fn); 4856 4857 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4858 4859 setNonAliasAttributes(GD, Fn); 4860 SetLLVMFunctionAttributesForDefinition(D, Fn); 4861 4862 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4863 AddGlobalCtor(Fn, CA->getPriority()); 4864 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4865 AddGlobalDtor(Fn, DA->getPriority(), true); 4866 if (D->hasAttr<AnnotateAttr>()) 4867 AddGlobalAnnotations(D, Fn); 4868 } 4869 4870 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4871 const auto *D = cast<ValueDecl>(GD.getDecl()); 4872 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4873 assert(AA && "Not an alias?"); 4874 4875 StringRef MangledName = getMangledName(GD); 4876 4877 if (AA->getAliasee() == MangledName) { 4878 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4879 return; 4880 } 4881 4882 // If there is a definition in the module, then it wins over the alias. 4883 // This is dubious, but allow it to be safe. Just ignore the alias. 4884 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4885 if (Entry && !Entry->isDeclaration()) 4886 return; 4887 4888 Aliases.push_back(GD); 4889 4890 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4891 4892 // Create a reference to the named value. This ensures that it is emitted 4893 // if a deferred decl. 4894 llvm::Constant *Aliasee; 4895 llvm::GlobalValue::LinkageTypes LT; 4896 if (isa<llvm::FunctionType>(DeclTy)) { 4897 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4898 /*ForVTable=*/false); 4899 LT = getFunctionLinkage(GD); 4900 } else { 4901 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 4902 /*D=*/nullptr); 4903 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4904 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4905 else 4906 LT = getFunctionLinkage(GD); 4907 } 4908 4909 // Create the new alias itself, but don't set a name yet. 4910 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4911 auto *GA = 4912 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4913 4914 if (Entry) { 4915 if (GA->getAliasee() == Entry) { 4916 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4917 return; 4918 } 4919 4920 assert(Entry->isDeclaration()); 4921 4922 // If there is a declaration in the module, then we had an extern followed 4923 // by the alias, as in: 4924 // extern int test6(); 4925 // ... 4926 // int test6() __attribute__((alias("test7"))); 4927 // 4928 // Remove it and replace uses of it with the alias. 4929 GA->takeName(Entry); 4930 4931 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4932 Entry->getType())); 4933 Entry->eraseFromParent(); 4934 } else { 4935 GA->setName(MangledName); 4936 } 4937 4938 // Set attributes which are particular to an alias; this is a 4939 // specialization of the attributes which may be set on a global 4940 // variable/function. 4941 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4942 D->isWeakImported()) { 4943 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4944 } 4945 4946 if (const auto *VD = dyn_cast<VarDecl>(D)) 4947 if (VD->getTLSKind()) 4948 setTLSMode(GA, *VD); 4949 4950 SetCommonAttributes(GD, GA); 4951 } 4952 4953 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4954 const auto *D = cast<ValueDecl>(GD.getDecl()); 4955 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4956 assert(IFA && "Not an ifunc?"); 4957 4958 StringRef MangledName = getMangledName(GD); 4959 4960 if (IFA->getResolver() == MangledName) { 4961 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4962 return; 4963 } 4964 4965 // Report an error if some definition overrides ifunc. 4966 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4967 if (Entry && !Entry->isDeclaration()) { 4968 GlobalDecl OtherGD; 4969 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4970 DiagnosedConflictingDefinitions.insert(GD).second) { 4971 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4972 << MangledName; 4973 Diags.Report(OtherGD.getDecl()->getLocation(), 4974 diag::note_previous_definition); 4975 } 4976 return; 4977 } 4978 4979 Aliases.push_back(GD); 4980 4981 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4982 llvm::Constant *Resolver = 4983 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4984 /*ForVTable=*/false); 4985 llvm::GlobalIFunc *GIF = 4986 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4987 "", Resolver, &getModule()); 4988 if (Entry) { 4989 if (GIF->getResolver() == Entry) { 4990 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4991 return; 4992 } 4993 assert(Entry->isDeclaration()); 4994 4995 // If there is a declaration in the module, then we had an extern followed 4996 // by the ifunc, as in: 4997 // extern int test(); 4998 // ... 4999 // int test() __attribute__((ifunc("resolver"))); 5000 // 5001 // Remove it and replace uses of it with the ifunc. 5002 GIF->takeName(Entry); 5003 5004 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5005 Entry->getType())); 5006 Entry->eraseFromParent(); 5007 } else 5008 GIF->setName(MangledName); 5009 5010 SetCommonAttributes(GD, GIF); 5011 } 5012 5013 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5014 ArrayRef<llvm::Type*> Tys) { 5015 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5016 Tys); 5017 } 5018 5019 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5020 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5021 const StringLiteral *Literal, bool TargetIsLSB, 5022 bool &IsUTF16, unsigned &StringLength) { 5023 StringRef String = Literal->getString(); 5024 unsigned NumBytes = String.size(); 5025 5026 // Check for simple case. 5027 if (!Literal->containsNonAsciiOrNull()) { 5028 StringLength = NumBytes; 5029 return *Map.insert(std::make_pair(String, nullptr)).first; 5030 } 5031 5032 // Otherwise, convert the UTF8 literals into a string of shorts. 5033 IsUTF16 = true; 5034 5035 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5036 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5037 llvm::UTF16 *ToPtr = &ToBuf[0]; 5038 5039 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5040 ToPtr + NumBytes, llvm::strictConversion); 5041 5042 // ConvertUTF8toUTF16 returns the length in ToPtr. 5043 StringLength = ToPtr - &ToBuf[0]; 5044 5045 // Add an explicit null. 5046 *ToPtr = 0; 5047 return *Map.insert(std::make_pair( 5048 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5049 (StringLength + 1) * 2), 5050 nullptr)).first; 5051 } 5052 5053 ConstantAddress 5054 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5055 unsigned StringLength = 0; 5056 bool isUTF16 = false; 5057 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5058 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5059 getDataLayout().isLittleEndian(), isUTF16, 5060 StringLength); 5061 5062 if (auto *C = Entry.second) 5063 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 5064 5065 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5066 llvm::Constant *Zeros[] = { Zero, Zero }; 5067 5068 const ASTContext &Context = getContext(); 5069 const llvm::Triple &Triple = getTriple(); 5070 5071 const auto CFRuntime = getLangOpts().CFRuntime; 5072 const bool IsSwiftABI = 5073 static_cast<unsigned>(CFRuntime) >= 5074 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5075 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5076 5077 // If we don't already have it, get __CFConstantStringClassReference. 5078 if (!CFConstantStringClassRef) { 5079 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5080 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5081 Ty = llvm::ArrayType::get(Ty, 0); 5082 5083 switch (CFRuntime) { 5084 default: break; 5085 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5086 case LangOptions::CoreFoundationABI::Swift5_0: 5087 CFConstantStringClassName = 5088 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5089 : "$s10Foundation19_NSCFConstantStringCN"; 5090 Ty = IntPtrTy; 5091 break; 5092 case LangOptions::CoreFoundationABI::Swift4_2: 5093 CFConstantStringClassName = 5094 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5095 : "$S10Foundation19_NSCFConstantStringCN"; 5096 Ty = IntPtrTy; 5097 break; 5098 case LangOptions::CoreFoundationABI::Swift4_1: 5099 CFConstantStringClassName = 5100 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5101 : "__T010Foundation19_NSCFConstantStringCN"; 5102 Ty = IntPtrTy; 5103 break; 5104 } 5105 5106 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5107 5108 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5109 llvm::GlobalValue *GV = nullptr; 5110 5111 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5112 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5113 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5114 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5115 5116 const VarDecl *VD = nullptr; 5117 for (const auto *Result : DC->lookup(&II)) 5118 if ((VD = dyn_cast<VarDecl>(Result))) 5119 break; 5120 5121 if (Triple.isOSBinFormatELF()) { 5122 if (!VD) 5123 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5124 } else { 5125 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5126 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5127 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5128 else 5129 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5130 } 5131 5132 setDSOLocal(GV); 5133 } 5134 } 5135 5136 // Decay array -> ptr 5137 CFConstantStringClassRef = 5138 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5139 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5140 } 5141 5142 QualType CFTy = Context.getCFConstantStringType(); 5143 5144 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5145 5146 ConstantInitBuilder Builder(*this); 5147 auto Fields = Builder.beginStruct(STy); 5148 5149 // Class pointer. 5150 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5151 5152 // Flags. 5153 if (IsSwiftABI) { 5154 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5155 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5156 } else { 5157 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5158 } 5159 5160 // String pointer. 5161 llvm::Constant *C = nullptr; 5162 if (isUTF16) { 5163 auto Arr = llvm::makeArrayRef( 5164 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5165 Entry.first().size() / 2); 5166 C = llvm::ConstantDataArray::get(VMContext, Arr); 5167 } else { 5168 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5169 } 5170 5171 // Note: -fwritable-strings doesn't make the backing store strings of 5172 // CFStrings writable. (See <rdar://problem/10657500>) 5173 auto *GV = 5174 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5175 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5176 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5177 // Don't enforce the target's minimum global alignment, since the only use 5178 // of the string is via this class initializer. 5179 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5180 : Context.getTypeAlignInChars(Context.CharTy); 5181 GV->setAlignment(Align.getAsAlign()); 5182 5183 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5184 // Without it LLVM can merge the string with a non unnamed_addr one during 5185 // LTO. Doing that changes the section it ends in, which surprises ld64. 5186 if (Triple.isOSBinFormatMachO()) 5187 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5188 : "__TEXT,__cstring,cstring_literals"); 5189 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5190 // the static linker to adjust permissions to read-only later on. 5191 else if (Triple.isOSBinFormatELF()) 5192 GV->setSection(".rodata"); 5193 5194 // String. 5195 llvm::Constant *Str = 5196 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5197 5198 if (isUTF16) 5199 // Cast the UTF16 string to the correct type. 5200 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5201 Fields.add(Str); 5202 5203 // String length. 5204 llvm::IntegerType *LengthTy = 5205 llvm::IntegerType::get(getModule().getContext(), 5206 Context.getTargetInfo().getLongWidth()); 5207 if (IsSwiftABI) { 5208 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5209 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5210 LengthTy = Int32Ty; 5211 else 5212 LengthTy = IntPtrTy; 5213 } 5214 Fields.addInt(LengthTy, StringLength); 5215 5216 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5217 // properly aligned on 32-bit platforms. 5218 CharUnits Alignment = 5219 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5220 5221 // The struct. 5222 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5223 /*isConstant=*/false, 5224 llvm::GlobalVariable::PrivateLinkage); 5225 GV->addAttribute("objc_arc_inert"); 5226 switch (Triple.getObjectFormat()) { 5227 case llvm::Triple::UnknownObjectFormat: 5228 llvm_unreachable("unknown file format"); 5229 case llvm::Triple::GOFF: 5230 llvm_unreachable("GOFF is not yet implemented"); 5231 case llvm::Triple::XCOFF: 5232 llvm_unreachable("XCOFF is not yet implemented"); 5233 case llvm::Triple::COFF: 5234 case llvm::Triple::ELF: 5235 case llvm::Triple::Wasm: 5236 GV->setSection("cfstring"); 5237 break; 5238 case llvm::Triple::MachO: 5239 GV->setSection("__DATA,__cfstring"); 5240 break; 5241 } 5242 Entry.second = GV; 5243 5244 return ConstantAddress(GV, Alignment); 5245 } 5246 5247 bool CodeGenModule::getExpressionLocationsEnabled() const { 5248 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5249 } 5250 5251 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5252 if (ObjCFastEnumerationStateType.isNull()) { 5253 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5254 D->startDefinition(); 5255 5256 QualType FieldTypes[] = { 5257 Context.UnsignedLongTy, 5258 Context.getPointerType(Context.getObjCIdType()), 5259 Context.getPointerType(Context.UnsignedLongTy), 5260 Context.getConstantArrayType(Context.UnsignedLongTy, 5261 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5262 }; 5263 5264 for (size_t i = 0; i < 4; ++i) { 5265 FieldDecl *Field = FieldDecl::Create(Context, 5266 D, 5267 SourceLocation(), 5268 SourceLocation(), nullptr, 5269 FieldTypes[i], /*TInfo=*/nullptr, 5270 /*BitWidth=*/nullptr, 5271 /*Mutable=*/false, 5272 ICIS_NoInit); 5273 Field->setAccess(AS_public); 5274 D->addDecl(Field); 5275 } 5276 5277 D->completeDefinition(); 5278 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5279 } 5280 5281 return ObjCFastEnumerationStateType; 5282 } 5283 5284 llvm::Constant * 5285 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5286 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5287 5288 // Don't emit it as the address of the string, emit the string data itself 5289 // as an inline array. 5290 if (E->getCharByteWidth() == 1) { 5291 SmallString<64> Str(E->getString()); 5292 5293 // Resize the string to the right size, which is indicated by its type. 5294 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5295 Str.resize(CAT->getSize().getZExtValue()); 5296 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5297 } 5298 5299 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5300 llvm::Type *ElemTy = AType->getElementType(); 5301 unsigned NumElements = AType->getNumElements(); 5302 5303 // Wide strings have either 2-byte or 4-byte elements. 5304 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5305 SmallVector<uint16_t, 32> Elements; 5306 Elements.reserve(NumElements); 5307 5308 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5309 Elements.push_back(E->getCodeUnit(i)); 5310 Elements.resize(NumElements); 5311 return llvm::ConstantDataArray::get(VMContext, Elements); 5312 } 5313 5314 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5315 SmallVector<uint32_t, 32> Elements; 5316 Elements.reserve(NumElements); 5317 5318 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5319 Elements.push_back(E->getCodeUnit(i)); 5320 Elements.resize(NumElements); 5321 return llvm::ConstantDataArray::get(VMContext, Elements); 5322 } 5323 5324 static llvm::GlobalVariable * 5325 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5326 CodeGenModule &CGM, StringRef GlobalName, 5327 CharUnits Alignment) { 5328 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5329 CGM.GetGlobalConstantAddressSpace()); 5330 5331 llvm::Module &M = CGM.getModule(); 5332 // Create a global variable for this string 5333 auto *GV = new llvm::GlobalVariable( 5334 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5335 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5336 GV->setAlignment(Alignment.getAsAlign()); 5337 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5338 if (GV->isWeakForLinker()) { 5339 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5340 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5341 } 5342 CGM.setDSOLocal(GV); 5343 5344 return GV; 5345 } 5346 5347 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5348 /// constant array for the given string literal. 5349 ConstantAddress 5350 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5351 StringRef Name) { 5352 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5353 5354 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5355 llvm::GlobalVariable **Entry = nullptr; 5356 if (!LangOpts.WritableStrings) { 5357 Entry = &ConstantStringMap[C]; 5358 if (auto GV = *Entry) { 5359 if (Alignment.getQuantity() > GV->getAlignment()) 5360 GV->setAlignment(Alignment.getAsAlign()); 5361 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5362 Alignment); 5363 } 5364 } 5365 5366 SmallString<256> MangledNameBuffer; 5367 StringRef GlobalVariableName; 5368 llvm::GlobalValue::LinkageTypes LT; 5369 5370 // Mangle the string literal if that's how the ABI merges duplicate strings. 5371 // Don't do it if they are writable, since we don't want writes in one TU to 5372 // affect strings in another. 5373 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5374 !LangOpts.WritableStrings) { 5375 llvm::raw_svector_ostream Out(MangledNameBuffer); 5376 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5377 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5378 GlobalVariableName = MangledNameBuffer; 5379 } else { 5380 LT = llvm::GlobalValue::PrivateLinkage; 5381 GlobalVariableName = Name; 5382 } 5383 5384 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5385 if (Entry) 5386 *Entry = GV; 5387 5388 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5389 QualType()); 5390 5391 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5392 Alignment); 5393 } 5394 5395 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5396 /// array for the given ObjCEncodeExpr node. 5397 ConstantAddress 5398 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5399 std::string Str; 5400 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5401 5402 return GetAddrOfConstantCString(Str); 5403 } 5404 5405 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5406 /// the literal and a terminating '\0' character. 5407 /// The result has pointer to array type. 5408 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5409 const std::string &Str, const char *GlobalName) { 5410 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5411 CharUnits Alignment = 5412 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5413 5414 llvm::Constant *C = 5415 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5416 5417 // Don't share any string literals if strings aren't constant. 5418 llvm::GlobalVariable **Entry = nullptr; 5419 if (!LangOpts.WritableStrings) { 5420 Entry = &ConstantStringMap[C]; 5421 if (auto GV = *Entry) { 5422 if (Alignment.getQuantity() > GV->getAlignment()) 5423 GV->setAlignment(Alignment.getAsAlign()); 5424 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5425 Alignment); 5426 } 5427 } 5428 5429 // Get the default prefix if a name wasn't specified. 5430 if (!GlobalName) 5431 GlobalName = ".str"; 5432 // Create a global variable for this. 5433 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5434 GlobalName, Alignment); 5435 if (Entry) 5436 *Entry = GV; 5437 5438 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5439 Alignment); 5440 } 5441 5442 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5443 const MaterializeTemporaryExpr *E, const Expr *Init) { 5444 assert((E->getStorageDuration() == SD_Static || 5445 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5446 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5447 5448 // If we're not materializing a subobject of the temporary, keep the 5449 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5450 QualType MaterializedType = Init->getType(); 5451 if (Init == E->getSubExpr()) 5452 MaterializedType = E->getType(); 5453 5454 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5455 5456 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5457 if (!InsertResult.second) { 5458 // We've seen this before: either we already created it or we're in the 5459 // process of doing so. 5460 if (!InsertResult.first->second) { 5461 // We recursively re-entered this function, probably during emission of 5462 // the initializer. Create a placeholder. We'll clean this up in the 5463 // outer call, at the end of this function. 5464 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5465 InsertResult.first->second = new llvm::GlobalVariable( 5466 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5467 nullptr); 5468 } 5469 return ConstantAddress(InsertResult.first->second, Align); 5470 } 5471 5472 // FIXME: If an externally-visible declaration extends multiple temporaries, 5473 // we need to give each temporary the same name in every translation unit (and 5474 // we also need to make the temporaries externally-visible). 5475 SmallString<256> Name; 5476 llvm::raw_svector_ostream Out(Name); 5477 getCXXABI().getMangleContext().mangleReferenceTemporary( 5478 VD, E->getManglingNumber(), Out); 5479 5480 APValue *Value = nullptr; 5481 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5482 // If the initializer of the extending declaration is a constant 5483 // initializer, we should have a cached constant initializer for this 5484 // temporary. Note that this might have a different value from the value 5485 // computed by evaluating the initializer if the surrounding constant 5486 // expression modifies the temporary. 5487 Value = E->getOrCreateValue(false); 5488 } 5489 5490 // Try evaluating it now, it might have a constant initializer. 5491 Expr::EvalResult EvalResult; 5492 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5493 !EvalResult.hasSideEffects()) 5494 Value = &EvalResult.Val; 5495 5496 LangAS AddrSpace = 5497 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5498 5499 Optional<ConstantEmitter> emitter; 5500 llvm::Constant *InitialValue = nullptr; 5501 bool Constant = false; 5502 llvm::Type *Type; 5503 if (Value) { 5504 // The temporary has a constant initializer, use it. 5505 emitter.emplace(*this); 5506 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5507 MaterializedType); 5508 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5509 Type = InitialValue->getType(); 5510 } else { 5511 // No initializer, the initialization will be provided when we 5512 // initialize the declaration which performed lifetime extension. 5513 Type = getTypes().ConvertTypeForMem(MaterializedType); 5514 } 5515 5516 // Create a global variable for this lifetime-extended temporary. 5517 llvm::GlobalValue::LinkageTypes Linkage = 5518 getLLVMLinkageVarDefinition(VD, Constant); 5519 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5520 const VarDecl *InitVD; 5521 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5522 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5523 // Temporaries defined inside a class get linkonce_odr linkage because the 5524 // class can be defined in multiple translation units. 5525 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5526 } else { 5527 // There is no need for this temporary to have external linkage if the 5528 // VarDecl has external linkage. 5529 Linkage = llvm::GlobalVariable::InternalLinkage; 5530 } 5531 } 5532 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5533 auto *GV = new llvm::GlobalVariable( 5534 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5535 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5536 if (emitter) emitter->finalize(GV); 5537 setGVProperties(GV, VD); 5538 GV->setAlignment(Align.getAsAlign()); 5539 if (supportsCOMDAT() && GV->isWeakForLinker()) 5540 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5541 if (VD->getTLSKind()) 5542 setTLSMode(GV, *VD); 5543 llvm::Constant *CV = GV; 5544 if (AddrSpace != LangAS::Default) 5545 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5546 *this, GV, AddrSpace, LangAS::Default, 5547 Type->getPointerTo( 5548 getContext().getTargetAddressSpace(LangAS::Default))); 5549 5550 // Update the map with the new temporary. If we created a placeholder above, 5551 // replace it with the new global now. 5552 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5553 if (Entry) { 5554 Entry->replaceAllUsesWith( 5555 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5556 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5557 } 5558 Entry = CV; 5559 5560 return ConstantAddress(CV, Align); 5561 } 5562 5563 /// EmitObjCPropertyImplementations - Emit information for synthesized 5564 /// properties for an implementation. 5565 void CodeGenModule::EmitObjCPropertyImplementations(const 5566 ObjCImplementationDecl *D) { 5567 for (const auto *PID : D->property_impls()) { 5568 // Dynamic is just for type-checking. 5569 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5570 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5571 5572 // Determine which methods need to be implemented, some may have 5573 // been overridden. Note that ::isPropertyAccessor is not the method 5574 // we want, that just indicates if the decl came from a 5575 // property. What we want to know is if the method is defined in 5576 // this implementation. 5577 auto *Getter = PID->getGetterMethodDecl(); 5578 if (!Getter || Getter->isSynthesizedAccessorStub()) 5579 CodeGenFunction(*this).GenerateObjCGetter( 5580 const_cast<ObjCImplementationDecl *>(D), PID); 5581 auto *Setter = PID->getSetterMethodDecl(); 5582 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5583 CodeGenFunction(*this).GenerateObjCSetter( 5584 const_cast<ObjCImplementationDecl *>(D), PID); 5585 } 5586 } 5587 } 5588 5589 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5590 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5591 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5592 ivar; ivar = ivar->getNextIvar()) 5593 if (ivar->getType().isDestructedType()) 5594 return true; 5595 5596 return false; 5597 } 5598 5599 static bool AllTrivialInitializers(CodeGenModule &CGM, 5600 ObjCImplementationDecl *D) { 5601 CodeGenFunction CGF(CGM); 5602 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5603 E = D->init_end(); B != E; ++B) { 5604 CXXCtorInitializer *CtorInitExp = *B; 5605 Expr *Init = CtorInitExp->getInit(); 5606 if (!CGF.isTrivialInitializer(Init)) 5607 return false; 5608 } 5609 return true; 5610 } 5611 5612 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5613 /// for an implementation. 5614 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5615 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5616 if (needsDestructMethod(D)) { 5617 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5618 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5619 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5620 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5621 getContext().VoidTy, nullptr, D, 5622 /*isInstance=*/true, /*isVariadic=*/false, 5623 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5624 /*isImplicitlyDeclared=*/true, 5625 /*isDefined=*/false, ObjCMethodDecl::Required); 5626 D->addInstanceMethod(DTORMethod); 5627 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5628 D->setHasDestructors(true); 5629 } 5630 5631 // If the implementation doesn't have any ivar initializers, we don't need 5632 // a .cxx_construct. 5633 if (D->getNumIvarInitializers() == 0 || 5634 AllTrivialInitializers(*this, D)) 5635 return; 5636 5637 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5638 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5639 // The constructor returns 'self'. 5640 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5641 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5642 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5643 /*isVariadic=*/false, 5644 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5645 /*isImplicitlyDeclared=*/true, 5646 /*isDefined=*/false, ObjCMethodDecl::Required); 5647 D->addInstanceMethod(CTORMethod); 5648 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5649 D->setHasNonZeroConstructors(true); 5650 } 5651 5652 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5653 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5654 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5655 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5656 ErrorUnsupported(LSD, "linkage spec"); 5657 return; 5658 } 5659 5660 EmitDeclContext(LSD); 5661 } 5662 5663 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5664 for (auto *I : DC->decls()) { 5665 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5666 // are themselves considered "top-level", so EmitTopLevelDecl on an 5667 // ObjCImplDecl does not recursively visit them. We need to do that in 5668 // case they're nested inside another construct (LinkageSpecDecl / 5669 // ExportDecl) that does stop them from being considered "top-level". 5670 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5671 for (auto *M : OID->methods()) 5672 EmitTopLevelDecl(M); 5673 } 5674 5675 EmitTopLevelDecl(I); 5676 } 5677 } 5678 5679 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5680 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5681 // Ignore dependent declarations. 5682 if (D->isTemplated()) 5683 return; 5684 5685 // Consteval function shouldn't be emitted. 5686 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5687 if (FD->isConsteval()) 5688 return; 5689 5690 switch (D->getKind()) { 5691 case Decl::CXXConversion: 5692 case Decl::CXXMethod: 5693 case Decl::Function: 5694 EmitGlobal(cast<FunctionDecl>(D)); 5695 // Always provide some coverage mapping 5696 // even for the functions that aren't emitted. 5697 AddDeferredUnusedCoverageMapping(D); 5698 break; 5699 5700 case Decl::CXXDeductionGuide: 5701 // Function-like, but does not result in code emission. 5702 break; 5703 5704 case Decl::Var: 5705 case Decl::Decomposition: 5706 case Decl::VarTemplateSpecialization: 5707 EmitGlobal(cast<VarDecl>(D)); 5708 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5709 for (auto *B : DD->bindings()) 5710 if (auto *HD = B->getHoldingVar()) 5711 EmitGlobal(HD); 5712 break; 5713 5714 // Indirect fields from global anonymous structs and unions can be 5715 // ignored; only the actual variable requires IR gen support. 5716 case Decl::IndirectField: 5717 break; 5718 5719 // C++ Decls 5720 case Decl::Namespace: 5721 EmitDeclContext(cast<NamespaceDecl>(D)); 5722 break; 5723 case Decl::ClassTemplateSpecialization: { 5724 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5725 if (CGDebugInfo *DI = getModuleDebugInfo()) 5726 if (Spec->getSpecializationKind() == 5727 TSK_ExplicitInstantiationDefinition && 5728 Spec->hasDefinition()) 5729 DI->completeTemplateDefinition(*Spec); 5730 } LLVM_FALLTHROUGH; 5731 case Decl::CXXRecord: { 5732 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5733 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5734 if (CRD->hasDefinition()) 5735 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5736 if (auto *ES = D->getASTContext().getExternalSource()) 5737 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5738 DI->completeUnusedClass(*CRD); 5739 } 5740 // Emit any static data members, they may be definitions. 5741 for (auto *I : CRD->decls()) 5742 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5743 EmitTopLevelDecl(I); 5744 break; 5745 } 5746 // No code generation needed. 5747 case Decl::UsingShadow: 5748 case Decl::ClassTemplate: 5749 case Decl::VarTemplate: 5750 case Decl::Concept: 5751 case Decl::VarTemplatePartialSpecialization: 5752 case Decl::FunctionTemplate: 5753 case Decl::TypeAliasTemplate: 5754 case Decl::Block: 5755 case Decl::Empty: 5756 case Decl::Binding: 5757 break; 5758 case Decl::Using: // using X; [C++] 5759 if (CGDebugInfo *DI = getModuleDebugInfo()) 5760 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5761 break; 5762 case Decl::UsingEnum: // using enum X; [C++] 5763 if (CGDebugInfo *DI = getModuleDebugInfo()) 5764 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 5765 break; 5766 case Decl::NamespaceAlias: 5767 if (CGDebugInfo *DI = getModuleDebugInfo()) 5768 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5769 break; 5770 case Decl::UsingDirective: // using namespace X; [C++] 5771 if (CGDebugInfo *DI = getModuleDebugInfo()) 5772 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5773 break; 5774 case Decl::CXXConstructor: 5775 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5776 break; 5777 case Decl::CXXDestructor: 5778 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5779 break; 5780 5781 case Decl::StaticAssert: 5782 // Nothing to do. 5783 break; 5784 5785 // Objective-C Decls 5786 5787 // Forward declarations, no (immediate) code generation. 5788 case Decl::ObjCInterface: 5789 case Decl::ObjCCategory: 5790 break; 5791 5792 case Decl::ObjCProtocol: { 5793 auto *Proto = cast<ObjCProtocolDecl>(D); 5794 if (Proto->isThisDeclarationADefinition()) 5795 ObjCRuntime->GenerateProtocol(Proto); 5796 break; 5797 } 5798 5799 case Decl::ObjCCategoryImpl: 5800 // Categories have properties but don't support synthesize so we 5801 // can ignore them here. 5802 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5803 break; 5804 5805 case Decl::ObjCImplementation: { 5806 auto *OMD = cast<ObjCImplementationDecl>(D); 5807 EmitObjCPropertyImplementations(OMD); 5808 EmitObjCIvarInitializations(OMD); 5809 ObjCRuntime->GenerateClass(OMD); 5810 // Emit global variable debug information. 5811 if (CGDebugInfo *DI = getModuleDebugInfo()) 5812 if (getCodeGenOpts().hasReducedDebugInfo()) 5813 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5814 OMD->getClassInterface()), OMD->getLocation()); 5815 break; 5816 } 5817 case Decl::ObjCMethod: { 5818 auto *OMD = cast<ObjCMethodDecl>(D); 5819 // If this is not a prototype, emit the body. 5820 if (OMD->getBody()) 5821 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5822 break; 5823 } 5824 case Decl::ObjCCompatibleAlias: 5825 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5826 break; 5827 5828 case Decl::PragmaComment: { 5829 const auto *PCD = cast<PragmaCommentDecl>(D); 5830 switch (PCD->getCommentKind()) { 5831 case PCK_Unknown: 5832 llvm_unreachable("unexpected pragma comment kind"); 5833 case PCK_Linker: 5834 AppendLinkerOptions(PCD->getArg()); 5835 break; 5836 case PCK_Lib: 5837 AddDependentLib(PCD->getArg()); 5838 break; 5839 case PCK_Compiler: 5840 case PCK_ExeStr: 5841 case PCK_User: 5842 break; // We ignore all of these. 5843 } 5844 break; 5845 } 5846 5847 case Decl::PragmaDetectMismatch: { 5848 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5849 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5850 break; 5851 } 5852 5853 case Decl::LinkageSpec: 5854 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5855 break; 5856 5857 case Decl::FileScopeAsm: { 5858 // File-scope asm is ignored during device-side CUDA compilation. 5859 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5860 break; 5861 // File-scope asm is ignored during device-side OpenMP compilation. 5862 if (LangOpts.OpenMPIsDevice) 5863 break; 5864 // File-scope asm is ignored during device-side SYCL compilation. 5865 if (LangOpts.SYCLIsDevice) 5866 break; 5867 auto *AD = cast<FileScopeAsmDecl>(D); 5868 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5869 break; 5870 } 5871 5872 case Decl::Import: { 5873 auto *Import = cast<ImportDecl>(D); 5874 5875 // If we've already imported this module, we're done. 5876 if (!ImportedModules.insert(Import->getImportedModule())) 5877 break; 5878 5879 // Emit debug information for direct imports. 5880 if (!Import->getImportedOwningModule()) { 5881 if (CGDebugInfo *DI = getModuleDebugInfo()) 5882 DI->EmitImportDecl(*Import); 5883 } 5884 5885 // Find all of the submodules and emit the module initializers. 5886 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5887 SmallVector<clang::Module *, 16> Stack; 5888 Visited.insert(Import->getImportedModule()); 5889 Stack.push_back(Import->getImportedModule()); 5890 5891 while (!Stack.empty()) { 5892 clang::Module *Mod = Stack.pop_back_val(); 5893 if (!EmittedModuleInitializers.insert(Mod).second) 5894 continue; 5895 5896 for (auto *D : Context.getModuleInitializers(Mod)) 5897 EmitTopLevelDecl(D); 5898 5899 // Visit the submodules of this module. 5900 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5901 SubEnd = Mod->submodule_end(); 5902 Sub != SubEnd; ++Sub) { 5903 // Skip explicit children; they need to be explicitly imported to emit 5904 // the initializers. 5905 if ((*Sub)->IsExplicit) 5906 continue; 5907 5908 if (Visited.insert(*Sub).second) 5909 Stack.push_back(*Sub); 5910 } 5911 } 5912 break; 5913 } 5914 5915 case Decl::Export: 5916 EmitDeclContext(cast<ExportDecl>(D)); 5917 break; 5918 5919 case Decl::OMPThreadPrivate: 5920 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5921 break; 5922 5923 case Decl::OMPAllocate: 5924 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 5925 break; 5926 5927 case Decl::OMPDeclareReduction: 5928 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5929 break; 5930 5931 case Decl::OMPDeclareMapper: 5932 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5933 break; 5934 5935 case Decl::OMPRequires: 5936 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5937 break; 5938 5939 case Decl::Typedef: 5940 case Decl::TypeAlias: // using foo = bar; [C++11] 5941 if (CGDebugInfo *DI = getModuleDebugInfo()) 5942 DI->EmitAndRetainType( 5943 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5944 break; 5945 5946 case Decl::Record: 5947 if (CGDebugInfo *DI = getModuleDebugInfo()) 5948 if (cast<RecordDecl>(D)->getDefinition()) 5949 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5950 break; 5951 5952 case Decl::Enum: 5953 if (CGDebugInfo *DI = getModuleDebugInfo()) 5954 if (cast<EnumDecl>(D)->getDefinition()) 5955 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5956 break; 5957 5958 default: 5959 // Make sure we handled everything we should, every other kind is a 5960 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5961 // function. Need to recode Decl::Kind to do that easily. 5962 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5963 break; 5964 } 5965 } 5966 5967 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5968 // Do we need to generate coverage mapping? 5969 if (!CodeGenOpts.CoverageMapping) 5970 return; 5971 switch (D->getKind()) { 5972 case Decl::CXXConversion: 5973 case Decl::CXXMethod: 5974 case Decl::Function: 5975 case Decl::ObjCMethod: 5976 case Decl::CXXConstructor: 5977 case Decl::CXXDestructor: { 5978 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5979 break; 5980 SourceManager &SM = getContext().getSourceManager(); 5981 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5982 break; 5983 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5984 if (I == DeferredEmptyCoverageMappingDecls.end()) 5985 DeferredEmptyCoverageMappingDecls[D] = true; 5986 break; 5987 } 5988 default: 5989 break; 5990 }; 5991 } 5992 5993 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5994 // Do we need to generate coverage mapping? 5995 if (!CodeGenOpts.CoverageMapping) 5996 return; 5997 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5998 if (Fn->isTemplateInstantiation()) 5999 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6000 } 6001 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6002 if (I == DeferredEmptyCoverageMappingDecls.end()) 6003 DeferredEmptyCoverageMappingDecls[D] = false; 6004 else 6005 I->second = false; 6006 } 6007 6008 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6009 // We call takeVector() here to avoid use-after-free. 6010 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6011 // we deserialize function bodies to emit coverage info for them, and that 6012 // deserializes more declarations. How should we handle that case? 6013 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6014 if (!Entry.second) 6015 continue; 6016 const Decl *D = Entry.first; 6017 switch (D->getKind()) { 6018 case Decl::CXXConversion: 6019 case Decl::CXXMethod: 6020 case Decl::Function: 6021 case Decl::ObjCMethod: { 6022 CodeGenPGO PGO(*this); 6023 GlobalDecl GD(cast<FunctionDecl>(D)); 6024 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6025 getFunctionLinkage(GD)); 6026 break; 6027 } 6028 case Decl::CXXConstructor: { 6029 CodeGenPGO PGO(*this); 6030 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6031 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6032 getFunctionLinkage(GD)); 6033 break; 6034 } 6035 case Decl::CXXDestructor: { 6036 CodeGenPGO PGO(*this); 6037 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6038 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6039 getFunctionLinkage(GD)); 6040 break; 6041 } 6042 default: 6043 break; 6044 }; 6045 } 6046 } 6047 6048 void CodeGenModule::EmitMainVoidAlias() { 6049 // In order to transition away from "__original_main" gracefully, emit an 6050 // alias for "main" in the no-argument case so that libc can detect when 6051 // new-style no-argument main is in used. 6052 if (llvm::Function *F = getModule().getFunction("main")) { 6053 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6054 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6055 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6056 } 6057 } 6058 6059 /// Turns the given pointer into a constant. 6060 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6061 const void *Ptr) { 6062 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6063 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6064 return llvm::ConstantInt::get(i64, PtrInt); 6065 } 6066 6067 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6068 llvm::NamedMDNode *&GlobalMetadata, 6069 GlobalDecl D, 6070 llvm::GlobalValue *Addr) { 6071 if (!GlobalMetadata) 6072 GlobalMetadata = 6073 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6074 6075 // TODO: should we report variant information for ctors/dtors? 6076 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6077 llvm::ConstantAsMetadata::get(GetPointerConstant( 6078 CGM.getLLVMContext(), D.getDecl()))}; 6079 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6080 } 6081 6082 /// For each function which is declared within an extern "C" region and marked 6083 /// as 'used', but has internal linkage, create an alias from the unmangled 6084 /// name to the mangled name if possible. People expect to be able to refer 6085 /// to such functions with an unmangled name from inline assembly within the 6086 /// same translation unit. 6087 void CodeGenModule::EmitStaticExternCAliases() { 6088 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6089 return; 6090 for (auto &I : StaticExternCValues) { 6091 IdentifierInfo *Name = I.first; 6092 llvm::GlobalValue *Val = I.second; 6093 if (Val && !getModule().getNamedValue(Name->getName())) 6094 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6095 } 6096 } 6097 6098 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6099 GlobalDecl &Result) const { 6100 auto Res = Manglings.find(MangledName); 6101 if (Res == Manglings.end()) 6102 return false; 6103 Result = Res->getValue(); 6104 return true; 6105 } 6106 6107 /// Emits metadata nodes associating all the global values in the 6108 /// current module with the Decls they came from. This is useful for 6109 /// projects using IR gen as a subroutine. 6110 /// 6111 /// Since there's currently no way to associate an MDNode directly 6112 /// with an llvm::GlobalValue, we create a global named metadata 6113 /// with the name 'clang.global.decl.ptrs'. 6114 void CodeGenModule::EmitDeclMetadata() { 6115 llvm::NamedMDNode *GlobalMetadata = nullptr; 6116 6117 for (auto &I : MangledDeclNames) { 6118 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6119 // Some mangled names don't necessarily have an associated GlobalValue 6120 // in this module, e.g. if we mangled it for DebugInfo. 6121 if (Addr) 6122 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6123 } 6124 } 6125 6126 /// Emits metadata nodes for all the local variables in the current 6127 /// function. 6128 void CodeGenFunction::EmitDeclMetadata() { 6129 if (LocalDeclMap.empty()) return; 6130 6131 llvm::LLVMContext &Context = getLLVMContext(); 6132 6133 // Find the unique metadata ID for this name. 6134 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6135 6136 llvm::NamedMDNode *GlobalMetadata = nullptr; 6137 6138 for (auto &I : LocalDeclMap) { 6139 const Decl *D = I.first; 6140 llvm::Value *Addr = I.second.getPointer(); 6141 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6142 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6143 Alloca->setMetadata( 6144 DeclPtrKind, llvm::MDNode::get( 6145 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6146 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6147 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6148 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6149 } 6150 } 6151 } 6152 6153 void CodeGenModule::EmitVersionIdentMetadata() { 6154 llvm::NamedMDNode *IdentMetadata = 6155 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6156 std::string Version = getClangFullVersion(); 6157 llvm::LLVMContext &Ctx = TheModule.getContext(); 6158 6159 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6160 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6161 } 6162 6163 void CodeGenModule::EmitCommandLineMetadata() { 6164 llvm::NamedMDNode *CommandLineMetadata = 6165 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6166 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6167 llvm::LLVMContext &Ctx = TheModule.getContext(); 6168 6169 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6170 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6171 } 6172 6173 void CodeGenModule::EmitCoverageFile() { 6174 if (getCodeGenOpts().CoverageDataFile.empty() && 6175 getCodeGenOpts().CoverageNotesFile.empty()) 6176 return; 6177 6178 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6179 if (!CUNode) 6180 return; 6181 6182 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6183 llvm::LLVMContext &Ctx = TheModule.getContext(); 6184 auto *CoverageDataFile = 6185 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6186 auto *CoverageNotesFile = 6187 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6188 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6189 llvm::MDNode *CU = CUNode->getOperand(i); 6190 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6191 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6192 } 6193 } 6194 6195 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6196 bool ForEH) { 6197 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6198 // FIXME: should we even be calling this method if RTTI is disabled 6199 // and it's not for EH? 6200 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6201 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6202 getTriple().isNVPTX())) 6203 return llvm::Constant::getNullValue(Int8PtrTy); 6204 6205 if (ForEH && Ty->isObjCObjectPointerType() && 6206 LangOpts.ObjCRuntime.isGNUFamily()) 6207 return ObjCRuntime->GetEHType(Ty); 6208 6209 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6210 } 6211 6212 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6213 // Do not emit threadprivates in simd-only mode. 6214 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6215 return; 6216 for (auto RefExpr : D->varlists()) { 6217 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6218 bool PerformInit = 6219 VD->getAnyInitializer() && 6220 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6221 /*ForRef=*/false); 6222 6223 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6224 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6225 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6226 CXXGlobalInits.push_back(InitFunction); 6227 } 6228 } 6229 6230 llvm::Metadata * 6231 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6232 StringRef Suffix) { 6233 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6234 if (InternalId) 6235 return InternalId; 6236 6237 if (isExternallyVisible(T->getLinkage())) { 6238 std::string OutName; 6239 llvm::raw_string_ostream Out(OutName); 6240 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6241 Out << Suffix; 6242 6243 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6244 } else { 6245 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6246 llvm::ArrayRef<llvm::Metadata *>()); 6247 } 6248 6249 return InternalId; 6250 } 6251 6252 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6253 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6254 } 6255 6256 llvm::Metadata * 6257 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6258 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6259 } 6260 6261 // Generalize pointer types to a void pointer with the qualifiers of the 6262 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6263 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6264 // 'void *'. 6265 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6266 if (!Ty->isPointerType()) 6267 return Ty; 6268 6269 return Ctx.getPointerType( 6270 QualType(Ctx.VoidTy).withCVRQualifiers( 6271 Ty->getPointeeType().getCVRQualifiers())); 6272 } 6273 6274 // Apply type generalization to a FunctionType's return and argument types 6275 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6276 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6277 SmallVector<QualType, 8> GeneralizedParams; 6278 for (auto &Param : FnType->param_types()) 6279 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6280 6281 return Ctx.getFunctionType( 6282 GeneralizeType(Ctx, FnType->getReturnType()), 6283 GeneralizedParams, FnType->getExtProtoInfo()); 6284 } 6285 6286 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6287 return Ctx.getFunctionNoProtoType( 6288 GeneralizeType(Ctx, FnType->getReturnType())); 6289 6290 llvm_unreachable("Encountered unknown FunctionType"); 6291 } 6292 6293 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6294 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6295 GeneralizedMetadataIdMap, ".generalized"); 6296 } 6297 6298 /// Returns whether this module needs the "all-vtables" type identifier. 6299 bool CodeGenModule::NeedAllVtablesTypeId() const { 6300 // Returns true if at least one of vtable-based CFI checkers is enabled and 6301 // is not in the trapping mode. 6302 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6303 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6304 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6305 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6306 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6307 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6308 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6309 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6310 } 6311 6312 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6313 CharUnits Offset, 6314 const CXXRecordDecl *RD) { 6315 llvm::Metadata *MD = 6316 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6317 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6318 6319 if (CodeGenOpts.SanitizeCfiCrossDso) 6320 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6321 VTable->addTypeMetadata(Offset.getQuantity(), 6322 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6323 6324 if (NeedAllVtablesTypeId()) { 6325 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6326 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6327 } 6328 } 6329 6330 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6331 if (!SanStats) 6332 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6333 6334 return *SanStats; 6335 } 6336 6337 llvm::Value * 6338 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6339 CodeGenFunction &CGF) { 6340 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6341 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6342 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6343 auto *Call = CGF.EmitRuntimeCall( 6344 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6345 return Call; 6346 } 6347 6348 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6349 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6350 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6351 /* forPointeeType= */ true); 6352 } 6353 6354 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6355 LValueBaseInfo *BaseInfo, 6356 TBAAAccessInfo *TBAAInfo, 6357 bool forPointeeType) { 6358 if (TBAAInfo) 6359 *TBAAInfo = getTBAAAccessInfo(T); 6360 6361 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6362 // that doesn't return the information we need to compute BaseInfo. 6363 6364 // Honor alignment typedef attributes even on incomplete types. 6365 // We also honor them straight for C++ class types, even as pointees; 6366 // there's an expressivity gap here. 6367 if (auto TT = T->getAs<TypedefType>()) { 6368 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6369 if (BaseInfo) 6370 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6371 return getContext().toCharUnitsFromBits(Align); 6372 } 6373 } 6374 6375 bool AlignForArray = T->isArrayType(); 6376 6377 // Analyze the base element type, so we don't get confused by incomplete 6378 // array types. 6379 T = getContext().getBaseElementType(T); 6380 6381 if (T->isIncompleteType()) { 6382 // We could try to replicate the logic from 6383 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6384 // type is incomplete, so it's impossible to test. We could try to reuse 6385 // getTypeAlignIfKnown, but that doesn't return the information we need 6386 // to set BaseInfo. So just ignore the possibility that the alignment is 6387 // greater than one. 6388 if (BaseInfo) 6389 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6390 return CharUnits::One(); 6391 } 6392 6393 if (BaseInfo) 6394 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6395 6396 CharUnits Alignment; 6397 const CXXRecordDecl *RD; 6398 if (T.getQualifiers().hasUnaligned()) { 6399 Alignment = CharUnits::One(); 6400 } else if (forPointeeType && !AlignForArray && 6401 (RD = T->getAsCXXRecordDecl())) { 6402 // For C++ class pointees, we don't know whether we're pointing at a 6403 // base or a complete object, so we generally need to use the 6404 // non-virtual alignment. 6405 Alignment = getClassPointerAlignment(RD); 6406 } else { 6407 Alignment = getContext().getTypeAlignInChars(T); 6408 } 6409 6410 // Cap to the global maximum type alignment unless the alignment 6411 // was somehow explicit on the type. 6412 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6413 if (Alignment.getQuantity() > MaxAlign && 6414 !getContext().isAlignmentRequired(T)) 6415 Alignment = CharUnits::fromQuantity(MaxAlign); 6416 } 6417 return Alignment; 6418 } 6419 6420 bool CodeGenModule::stopAutoInit() { 6421 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6422 if (StopAfter) { 6423 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6424 // used 6425 if (NumAutoVarInit >= StopAfter) { 6426 return true; 6427 } 6428 if (!NumAutoVarInit) { 6429 unsigned DiagID = getDiags().getCustomDiagID( 6430 DiagnosticsEngine::Warning, 6431 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6432 "number of times ftrivial-auto-var-init=%1 gets applied."); 6433 getDiags().Report(DiagID) 6434 << StopAfter 6435 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6436 LangOptions::TrivialAutoVarInitKind::Zero 6437 ? "zero" 6438 : "pattern"); 6439 } 6440 ++NumAutoVarInit; 6441 } 6442 return false; 6443 } 6444 6445 void CodeGenModule::printPostfixForExternalizedStaticVar( 6446 llvm::raw_ostream &OS) const { 6447 OS << ".static." << getContext().getCUIDHash(); 6448 } 6449