xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 8d693a3429b48e0e967bdf9e32acb5881c4b1d62)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/Version.h"
39 #include "clang/Frontend/CodeGenOptions.h"
40 #include "clang/Sema/SemaDiagnostic.h"
41 #include "llvm/ADT/APSInt.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/IR/CallingConv.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/CallSite.h"
49 #include "llvm/Support/ConvertUTF.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Target/Mangler.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return *CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return *CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0),
81       ConstantStringClassRef(0), NSConstantStringType(0),
82       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
83       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
84       LifetimeStartFn(0), LifetimeEndFn(0),
85       SanitizerBlacklist(
86           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
87       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
88                                           : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::applyReplacements() {
176   for (ReplacementsTy::iterator I = Replacements.begin(),
177                                 E = Replacements.end();
178        I != E; ++I) {
179     StringRef MangledName = I->first();
180     llvm::Constant *Replacement = I->second;
181     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
182     if (!Entry)
183       continue;
184     Entry->replaceAllUsesWith(Replacement);
185     Entry->eraseFromParent();
186   }
187 }
188 
189 void CodeGenModule::checkAliases() {
190   bool Error = false;
191   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
192          E = Aliases.end(); I != E; ++I) {
193     const GlobalDecl &GD = *I;
194     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
195     const AliasAttr *AA = D->getAttr<AliasAttr>();
196     StringRef MangledName = getMangledName(GD);
197     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
198     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
199     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
200     if (GV->isDeclaration()) {
201       Error = true;
202       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
203     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
204       Error = true;
205       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
206     }
207   }
208   if (!Error)
209     return;
210 
211   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
212          E = Aliases.end(); I != E; ++I) {
213     const GlobalDecl &GD = *I;
214     StringRef MangledName = getMangledName(GD);
215     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
216     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
217     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
218     Alias->eraseFromParent();
219   }
220 }
221 
222 void CodeGenModule::Release() {
223   EmitDeferred();
224   applyReplacements();
225   checkAliases();
226   EmitCXXGlobalInitFunc();
227   EmitCXXGlobalDtorFunc();
228   EmitCXXThreadLocalInitFunc();
229   if (ObjCRuntime)
230     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
231       AddGlobalCtor(ObjCInitFunction);
232   EmitCtorList(GlobalCtors, "llvm.global_ctors");
233   EmitCtorList(GlobalDtors, "llvm.global_dtors");
234   EmitGlobalAnnotations();
235   EmitStaticExternCAliases();
236   EmitLLVMUsed();
237 
238   if (CodeGenOpts.Autolink &&
239       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
240     EmitModuleLinkOptions();
241   }
242   if (CodeGenOpts.DwarfVersion)
243     // We actually want the latest version when there are conflicts.
244     // We can change from Warning to Latest if such mode is supported.
245     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
246                               CodeGenOpts.DwarfVersion);
247 
248   SimplifyPersonality();
249 
250   if (getCodeGenOpts().EmitDeclMetadata)
251     EmitDeclMetadata();
252 
253   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
254     EmitCoverageFile();
255 
256   if (DebugInfo)
257     DebugInfo->finalize();
258 
259   EmitVersionIdentMetadata();
260 }
261 
262 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
263   // Make sure that this type is translated.
264   Types.UpdateCompletedType(TD);
265 }
266 
267 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
268   if (!TBAA)
269     return 0;
270   return TBAA->getTBAAInfo(QTy);
271 }
272 
273 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
274   if (!TBAA)
275     return 0;
276   return TBAA->getTBAAInfoForVTablePtr();
277 }
278 
279 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
280   if (!TBAA)
281     return 0;
282   return TBAA->getTBAAStructInfo(QTy);
283 }
284 
285 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
286   if (!TBAA)
287     return 0;
288   return TBAA->getTBAAStructTypeInfo(QTy);
289 }
290 
291 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
292                                                   llvm::MDNode *AccessN,
293                                                   uint64_t O) {
294   if (!TBAA)
295     return 0;
296   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
297 }
298 
299 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
300 /// and struct-path aware TBAA, the tag has the same format:
301 /// base type, access type and offset.
302 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
303 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
304                                         llvm::MDNode *TBAAInfo,
305                                         bool ConvertTypeToTag) {
306   if (ConvertTypeToTag && TBAA)
307     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
308                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
309   else
310     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
311 }
312 
313 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
314   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
315   getDiags().Report(Context.getFullLoc(loc), diagID);
316 }
317 
318 /// ErrorUnsupported - Print out an error that codegen doesn't support the
319 /// specified stmt yet.
320 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
321   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
322                                                "cannot compile this %0 yet");
323   std::string Msg = Type;
324   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
325     << Msg << S->getSourceRange();
326 }
327 
328 /// ErrorUnsupported - Print out an error that codegen doesn't support the
329 /// specified decl yet.
330 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
331   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
332                                                "cannot compile this %0 yet");
333   std::string Msg = Type;
334   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
335 }
336 
337 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
338   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
339 }
340 
341 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
342                                         const NamedDecl *D) const {
343   // Internal definitions always have default visibility.
344   if (GV->hasLocalLinkage()) {
345     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
346     return;
347   }
348 
349   // Set visibility for definitions.
350   LinkageInfo LV = D->getLinkageAndVisibility();
351   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
352     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
353 }
354 
355 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
356   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
357       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
358       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
359       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
360       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
361 }
362 
363 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
364     CodeGenOptions::TLSModel M) {
365   switch (M) {
366   case CodeGenOptions::GeneralDynamicTLSModel:
367     return llvm::GlobalVariable::GeneralDynamicTLSModel;
368   case CodeGenOptions::LocalDynamicTLSModel:
369     return llvm::GlobalVariable::LocalDynamicTLSModel;
370   case CodeGenOptions::InitialExecTLSModel:
371     return llvm::GlobalVariable::InitialExecTLSModel;
372   case CodeGenOptions::LocalExecTLSModel:
373     return llvm::GlobalVariable::LocalExecTLSModel;
374   }
375   llvm_unreachable("Invalid TLS model!");
376 }
377 
378 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
379                                const VarDecl &D) const {
380   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
381 
382   llvm::GlobalVariable::ThreadLocalMode TLM;
383   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
384 
385   // Override the TLS model if it is explicitly specified.
386   if (D.hasAttr<TLSModelAttr>()) {
387     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
388     TLM = GetLLVMTLSModel(Attr->getModel());
389   }
390 
391   GV->setThreadLocalMode(TLM);
392 }
393 
394 /// Set the symbol visibility of type information (vtable and RTTI)
395 /// associated with the given type.
396 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
397                                       const CXXRecordDecl *RD,
398                                       TypeVisibilityKind TVK) const {
399   setGlobalVisibility(GV, RD);
400 
401   if (!CodeGenOpts.HiddenWeakVTables)
402     return;
403 
404   // We never want to drop the visibility for RTTI names.
405   if (TVK == TVK_ForRTTIName)
406     return;
407 
408   // We want to drop the visibility to hidden for weak type symbols.
409   // This isn't possible if there might be unresolved references
410   // elsewhere that rely on this symbol being visible.
411 
412   // This should be kept roughly in sync with setThunkVisibility
413   // in CGVTables.cpp.
414 
415   // Preconditions.
416   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
417       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
418     return;
419 
420   // Don't override an explicit visibility attribute.
421   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
422     return;
423 
424   switch (RD->getTemplateSpecializationKind()) {
425   // We have to disable the optimization if this is an EI definition
426   // because there might be EI declarations in other shared objects.
427   case TSK_ExplicitInstantiationDefinition:
428   case TSK_ExplicitInstantiationDeclaration:
429     return;
430 
431   // Every use of a non-template class's type information has to emit it.
432   case TSK_Undeclared:
433     break;
434 
435   // In theory, implicit instantiations can ignore the possibility of
436   // an explicit instantiation declaration because there necessarily
437   // must be an EI definition somewhere with default visibility.  In
438   // practice, it's possible to have an explicit instantiation for
439   // an arbitrary template class, and linkers aren't necessarily able
440   // to deal with mixed-visibility symbols.
441   case TSK_ExplicitSpecialization:
442   case TSK_ImplicitInstantiation:
443     return;
444   }
445 
446   // If there's a key function, there may be translation units
447   // that don't have the key function's definition.  But ignore
448   // this if we're emitting RTTI under -fno-rtti.
449   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
450     // FIXME: what should we do if we "lose" the key function during
451     // the emission of the file?
452     if (Context.getCurrentKeyFunction(RD))
453       return;
454   }
455 
456   // Otherwise, drop the visibility to hidden.
457   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
458   GV->setUnnamedAddr(true);
459 }
460 
461 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
462   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
463 
464   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
465   if (!Str.empty())
466     return Str;
467 
468   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
469     IdentifierInfo *II = ND->getIdentifier();
470     assert(II && "Attempt to mangle unnamed decl.");
471 
472     Str = II->getName();
473     return Str;
474   }
475 
476   SmallString<256> Buffer;
477   llvm::raw_svector_ostream Out(Buffer);
478   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
479     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
480   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
481     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
482   else
483     getCXXABI().getMangleContext().mangleName(ND, Out);
484 
485   // Allocate space for the mangled name.
486   Out.flush();
487   size_t Length = Buffer.size();
488   char *Name = MangledNamesAllocator.Allocate<char>(Length);
489   std::copy(Buffer.begin(), Buffer.end(), Name);
490 
491   Str = StringRef(Name, Length);
492 
493   return Str;
494 }
495 
496 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
497                                         const BlockDecl *BD) {
498   MangleContext &MangleCtx = getCXXABI().getMangleContext();
499   const Decl *D = GD.getDecl();
500   llvm::raw_svector_ostream Out(Buffer.getBuffer());
501   if (D == 0)
502     MangleCtx.mangleGlobalBlock(BD,
503       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
504   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
505     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
506   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
507     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
508   else
509     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
510 }
511 
512 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
513   return getModule().getNamedValue(Name);
514 }
515 
516 /// AddGlobalCtor - Add a function to the list that will be called before
517 /// main() runs.
518 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
519   // FIXME: Type coercion of void()* types.
520   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
521 }
522 
523 /// AddGlobalDtor - Add a function to the list that will be called
524 /// when the module is unloaded.
525 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
526   // FIXME: Type coercion of void()* types.
527   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
528 }
529 
530 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
531   // Ctor function type is void()*.
532   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
533   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
534 
535   // Get the type of a ctor entry, { i32, void ()* }.
536   llvm::StructType *CtorStructTy =
537     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
538 
539   // Construct the constructor and destructor arrays.
540   SmallVector<llvm::Constant*, 8> Ctors;
541   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
542     llvm::Constant *S[] = {
543       llvm::ConstantInt::get(Int32Ty, I->second, false),
544       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
545     };
546     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
547   }
548 
549   if (!Ctors.empty()) {
550     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
551     new llvm::GlobalVariable(TheModule, AT, false,
552                              llvm::GlobalValue::AppendingLinkage,
553                              llvm::ConstantArray::get(AT, Ctors),
554                              GlobalName);
555   }
556 }
557 
558 llvm::GlobalValue::LinkageTypes
559 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
560   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
561 
562   if (isa<CXXDestructorDecl>(D) &&
563       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
564                                          GD.getDtorType()))
565     return llvm::Function::LinkOnceODRLinkage;
566 
567   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
568 
569   if (Linkage == GVA_Internal)
570     return llvm::Function::InternalLinkage;
571 
572   if (D->hasAttr<DLLExportAttr>())
573     return llvm::Function::DLLExportLinkage;
574 
575   if (D->hasAttr<WeakAttr>())
576     return llvm::Function::WeakAnyLinkage;
577 
578   // In C99 mode, 'inline' functions are guaranteed to have a strong
579   // definition somewhere else, so we can use available_externally linkage.
580   if (Linkage == GVA_C99Inline)
581     return llvm::Function::AvailableExternallyLinkage;
582 
583   // Note that Apple's kernel linker doesn't support symbol
584   // coalescing, so we need to avoid linkonce and weak linkages there.
585   // Normally, this means we just map to internal, but for explicit
586   // instantiations we'll map to external.
587 
588   // In C++, the compiler has to emit a definition in every translation unit
589   // that references the function.  We should use linkonce_odr because
590   // a) if all references in this translation unit are optimized away, we
591   // don't need to codegen it.  b) if the function persists, it needs to be
592   // merged with other definitions. c) C++ has the ODR, so we know the
593   // definition is dependable.
594   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
595     return !Context.getLangOpts().AppleKext
596              ? llvm::Function::LinkOnceODRLinkage
597              : llvm::Function::InternalLinkage;
598 
599   // An explicit instantiation of a template has weak linkage, since
600   // explicit instantiations can occur in multiple translation units
601   // and must all be equivalent. However, we are not allowed to
602   // throw away these explicit instantiations.
603   if (Linkage == GVA_ExplicitTemplateInstantiation)
604     return !Context.getLangOpts().AppleKext
605              ? llvm::Function::WeakODRLinkage
606              : llvm::Function::ExternalLinkage;
607 
608   // Otherwise, we have strong external linkage.
609   assert(Linkage == GVA_StrongExternal);
610   return llvm::Function::ExternalLinkage;
611 }
612 
613 
614 /// SetFunctionDefinitionAttributes - Set attributes for a global.
615 ///
616 /// FIXME: This is currently only done for aliases and functions, but not for
617 /// variables (these details are set in EmitGlobalVarDefinition for variables).
618 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
619                                                     llvm::GlobalValue *GV) {
620   SetCommonAttributes(D, GV);
621 }
622 
623 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
624                                               const CGFunctionInfo &Info,
625                                               llvm::Function *F) {
626   unsigned CallingConv;
627   AttributeListType AttributeList;
628   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
629   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
630   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
631 }
632 
633 /// Determines whether the language options require us to model
634 /// unwind exceptions.  We treat -fexceptions as mandating this
635 /// except under the fragile ObjC ABI with only ObjC exceptions
636 /// enabled.  This means, for example, that C with -fexceptions
637 /// enables this.
638 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
639   // If exceptions are completely disabled, obviously this is false.
640   if (!LangOpts.Exceptions) return false;
641 
642   // If C++ exceptions are enabled, this is true.
643   if (LangOpts.CXXExceptions) return true;
644 
645   // If ObjC exceptions are enabled, this depends on the ABI.
646   if (LangOpts.ObjCExceptions) {
647     return LangOpts.ObjCRuntime.hasUnwindExceptions();
648   }
649 
650   return true;
651 }
652 
653 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
654                                                            llvm::Function *F) {
655   llvm::AttrBuilder B;
656 
657   if (CodeGenOpts.UnwindTables)
658     B.addAttribute(llvm::Attribute::UWTable);
659 
660   if (!hasUnwindExceptions(LangOpts))
661     B.addAttribute(llvm::Attribute::NoUnwind);
662 
663   if (D->hasAttr<NakedAttr>()) {
664     // Naked implies noinline: we should not be inlining such functions.
665     B.addAttribute(llvm::Attribute::Naked);
666     B.addAttribute(llvm::Attribute::NoInline);
667   } else if (D->hasAttr<NoInlineAttr>()) {
668     B.addAttribute(llvm::Attribute::NoInline);
669   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
670               D->hasAttr<ForceInlineAttr>()) &&
671              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
672                                               llvm::Attribute::NoInline)) {
673     // (noinline wins over always_inline, and we can't specify both in IR)
674     B.addAttribute(llvm::Attribute::AlwaysInline);
675   }
676 
677   if (D->hasAttr<ColdAttr>()) {
678     B.addAttribute(llvm::Attribute::OptimizeForSize);
679     B.addAttribute(llvm::Attribute::Cold);
680   }
681 
682   if (D->hasAttr<MinSizeAttr>())
683     B.addAttribute(llvm::Attribute::MinSize);
684 
685   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
686     B.addAttribute(llvm::Attribute::StackProtect);
687   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
688     B.addAttribute(llvm::Attribute::StackProtectReq);
689 
690   // Add sanitizer attributes if function is not blacklisted.
691   if (!SanitizerBlacklist->isIn(*F)) {
692     // When AddressSanitizer is enabled, set SanitizeAddress attribute
693     // unless __attribute__((no_sanitize_address)) is used.
694     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
695       B.addAttribute(llvm::Attribute::SanitizeAddress);
696     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
697     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
698       B.addAttribute(llvm::Attribute::SanitizeThread);
699     }
700     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
701     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
702       B.addAttribute(llvm::Attribute::SanitizeMemory);
703   }
704 
705   F->addAttributes(llvm::AttributeSet::FunctionIndex,
706                    llvm::AttributeSet::get(
707                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
708 
709   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
710     F->setUnnamedAddr(true);
711   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
712     if (MD->isVirtual())
713       F->setUnnamedAddr(true);
714 
715   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
716   if (alignment)
717     F->setAlignment(alignment);
718 
719   // C++ ABI requires 2-byte alignment for member functions.
720   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
721     F->setAlignment(2);
722 }
723 
724 void CodeGenModule::SetCommonAttributes(const Decl *D,
725                                         llvm::GlobalValue *GV) {
726   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
727     setGlobalVisibility(GV, ND);
728   else
729     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
730 
731   if (D->hasAttr<UsedAttr>())
732     AddUsedGlobal(GV);
733 
734   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
735     GV->setSection(SA->getName());
736 
737   // Alias cannot have attributes. Filter them here.
738   if (!isa<llvm::GlobalAlias>(GV))
739     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
740 }
741 
742 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
743                                                   llvm::Function *F,
744                                                   const CGFunctionInfo &FI) {
745   SetLLVMFunctionAttributes(D, FI, F);
746   SetLLVMFunctionAttributesForDefinition(D, F);
747 
748   F->setLinkage(llvm::Function::InternalLinkage);
749 
750   SetCommonAttributes(D, F);
751 }
752 
753 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
754                                           llvm::Function *F,
755                                           bool IsIncompleteFunction) {
756   if (unsigned IID = F->getIntrinsicID()) {
757     // If this is an intrinsic function, set the function's attributes
758     // to the intrinsic's attributes.
759     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
760                                                     (llvm::Intrinsic::ID)IID));
761     return;
762   }
763 
764   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
765 
766   if (!IsIncompleteFunction)
767     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
768 
769   if (getCXXABI().HasThisReturn(GD)) {
770     assert(!F->arg_empty() &&
771            F->arg_begin()->getType()
772              ->canLosslesslyBitCastTo(F->getReturnType()) &&
773            "unexpected this return");
774     F->addAttribute(1, llvm::Attribute::Returned);
775   }
776 
777   // Only a few attributes are set on declarations; these may later be
778   // overridden by a definition.
779 
780   if (FD->hasAttr<DLLImportAttr>()) {
781     F->setLinkage(llvm::Function::DLLImportLinkage);
782   } else if (FD->hasAttr<WeakAttr>() ||
783              FD->isWeakImported()) {
784     // "extern_weak" is overloaded in LLVM; we probably should have
785     // separate linkage types for this.
786     F->setLinkage(llvm::Function::ExternalWeakLinkage);
787   } else {
788     F->setLinkage(llvm::Function::ExternalLinkage);
789 
790     LinkageInfo LV = FD->getLinkageAndVisibility();
791     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
792       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
793     }
794   }
795 
796   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
797     F->setSection(SA->getName());
798 
799   // A replaceable global allocation function does not act like a builtin by
800   // default, only if it is invoked by a new-expression or delete-expression.
801   if (FD->isReplaceableGlobalAllocationFunction())
802     F->addAttribute(llvm::AttributeSet::FunctionIndex,
803                     llvm::Attribute::NoBuiltin);
804 }
805 
806 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
807   assert(!GV->isDeclaration() &&
808          "Only globals with definition can force usage.");
809   LLVMUsed.push_back(GV);
810 }
811 
812 void CodeGenModule::EmitLLVMUsed() {
813   // Don't create llvm.used if there is no need.
814   if (LLVMUsed.empty())
815     return;
816 
817   // Convert LLVMUsed to what ConstantArray needs.
818   SmallVector<llvm::Constant*, 8> UsedArray;
819   UsedArray.resize(LLVMUsed.size());
820   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
821     UsedArray[i] =
822      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
823                                     Int8PtrTy);
824   }
825 
826   if (UsedArray.empty())
827     return;
828   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
829 
830   llvm::GlobalVariable *GV =
831     new llvm::GlobalVariable(getModule(), ATy, false,
832                              llvm::GlobalValue::AppendingLinkage,
833                              llvm::ConstantArray::get(ATy, UsedArray),
834                              "llvm.used");
835 
836   GV->setSection("llvm.metadata");
837 }
838 
839 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
840   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
841   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
842 }
843 
844 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
845   llvm::SmallString<32> Opt;
846   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
847   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
848   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
849 }
850 
851 void CodeGenModule::AddDependentLib(StringRef Lib) {
852   llvm::SmallString<24> Opt;
853   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
854   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
855   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
856 }
857 
858 /// \brief Add link options implied by the given module, including modules
859 /// it depends on, using a postorder walk.
860 static void addLinkOptionsPostorder(CodeGenModule &CGM,
861                                     Module *Mod,
862                                     SmallVectorImpl<llvm::Value *> &Metadata,
863                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
864   // Import this module's parent.
865   if (Mod->Parent && Visited.insert(Mod->Parent)) {
866     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
867   }
868 
869   // Import this module's dependencies.
870   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
871     if (Visited.insert(Mod->Imports[I-1]))
872       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
873   }
874 
875   // Add linker options to link against the libraries/frameworks
876   // described by this module.
877   llvm::LLVMContext &Context = CGM.getLLVMContext();
878   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
879     // Link against a framework.  Frameworks are currently Darwin only, so we
880     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
881     if (Mod->LinkLibraries[I-1].IsFramework) {
882       llvm::Value *Args[2] = {
883         llvm::MDString::get(Context, "-framework"),
884         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
885       };
886 
887       Metadata.push_back(llvm::MDNode::get(Context, Args));
888       continue;
889     }
890 
891     // Link against a library.
892     llvm::SmallString<24> Opt;
893     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
894       Mod->LinkLibraries[I-1].Library, Opt);
895     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
896     Metadata.push_back(llvm::MDNode::get(Context, OptString));
897   }
898 }
899 
900 void CodeGenModule::EmitModuleLinkOptions() {
901   // Collect the set of all of the modules we want to visit to emit link
902   // options, which is essentially the imported modules and all of their
903   // non-explicit child modules.
904   llvm::SetVector<clang::Module *> LinkModules;
905   llvm::SmallPtrSet<clang::Module *, 16> Visited;
906   SmallVector<clang::Module *, 16> Stack;
907 
908   // Seed the stack with imported modules.
909   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
910                                                MEnd = ImportedModules.end();
911        M != MEnd; ++M) {
912     if (Visited.insert(*M))
913       Stack.push_back(*M);
914   }
915 
916   // Find all of the modules to import, making a little effort to prune
917   // non-leaf modules.
918   while (!Stack.empty()) {
919     clang::Module *Mod = Stack.pop_back_val();
920 
921     bool AnyChildren = false;
922 
923     // Visit the submodules of this module.
924     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
925                                         SubEnd = Mod->submodule_end();
926          Sub != SubEnd; ++Sub) {
927       // Skip explicit children; they need to be explicitly imported to be
928       // linked against.
929       if ((*Sub)->IsExplicit)
930         continue;
931 
932       if (Visited.insert(*Sub)) {
933         Stack.push_back(*Sub);
934         AnyChildren = true;
935       }
936     }
937 
938     // We didn't find any children, so add this module to the list of
939     // modules to link against.
940     if (!AnyChildren) {
941       LinkModules.insert(Mod);
942     }
943   }
944 
945   // Add link options for all of the imported modules in reverse topological
946   // order.  We don't do anything to try to order import link flags with respect
947   // to linker options inserted by things like #pragma comment().
948   SmallVector<llvm::Value *, 16> MetadataArgs;
949   Visited.clear();
950   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
951                                                MEnd = LinkModules.end();
952        M != MEnd; ++M) {
953     if (Visited.insert(*M))
954       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
955   }
956   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
957   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
958 
959   // Add the linker options metadata flag.
960   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
961                             llvm::MDNode::get(getLLVMContext(),
962                                               LinkerOptionsMetadata));
963 }
964 
965 void CodeGenModule::EmitDeferred() {
966   // Emit code for any potentially referenced deferred decls.  Since a
967   // previously unused static decl may become used during the generation of code
968   // for a static function, iterate until no changes are made.
969 
970   while (true) {
971     if (!DeferredVTables.empty()) {
972       EmitDeferredVTables();
973 
974       // Emitting a v-table doesn't directly cause more v-tables to
975       // become deferred, although it can cause functions to be
976       // emitted that then need those v-tables.
977       assert(DeferredVTables.empty());
978     }
979 
980     // Stop if we're out of both deferred v-tables and deferred declarations.
981     if (DeferredDeclsToEmit.empty()) break;
982 
983     GlobalDecl D = DeferredDeclsToEmit.back();
984     DeferredDeclsToEmit.pop_back();
985 
986     // Check to see if we've already emitted this.  This is necessary
987     // for a couple of reasons: first, decls can end up in the
988     // deferred-decls queue multiple times, and second, decls can end
989     // up with definitions in unusual ways (e.g. by an extern inline
990     // function acquiring a strong function redefinition).  Just
991     // ignore these cases.
992     //
993     // TODO: That said, looking this up multiple times is very wasteful.
994     StringRef Name = getMangledName(D);
995     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
996     assert(CGRef && "Deferred decl wasn't referenced?");
997 
998     if (!CGRef->isDeclaration())
999       continue;
1000 
1001     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
1002     // purposes an alias counts as a definition.
1003     if (isa<llvm::GlobalAlias>(CGRef))
1004       continue;
1005 
1006     // Otherwise, emit the definition and move on to the next one.
1007     EmitGlobalDefinition(D);
1008   }
1009 }
1010 
1011 void CodeGenModule::EmitGlobalAnnotations() {
1012   if (Annotations.empty())
1013     return;
1014 
1015   // Create a new global variable for the ConstantStruct in the Module.
1016   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1017     Annotations[0]->getType(), Annotations.size()), Annotations);
1018   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1019     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1020     "llvm.global.annotations");
1021   gv->setSection(AnnotationSection);
1022 }
1023 
1024 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1025   llvm::Constant *&AStr = AnnotationStrings[Str];
1026   if (AStr)
1027     return AStr;
1028 
1029   // Not found yet, create a new global.
1030   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1031   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1032     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1033   gv->setSection(AnnotationSection);
1034   gv->setUnnamedAddr(true);
1035   AStr = gv;
1036   return gv;
1037 }
1038 
1039 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1040   SourceManager &SM = getContext().getSourceManager();
1041   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1042   if (PLoc.isValid())
1043     return EmitAnnotationString(PLoc.getFilename());
1044   return EmitAnnotationString(SM.getBufferName(Loc));
1045 }
1046 
1047 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1048   SourceManager &SM = getContext().getSourceManager();
1049   PresumedLoc PLoc = SM.getPresumedLoc(L);
1050   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1051     SM.getExpansionLineNumber(L);
1052   return llvm::ConstantInt::get(Int32Ty, LineNo);
1053 }
1054 
1055 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1056                                                 const AnnotateAttr *AA,
1057                                                 SourceLocation L) {
1058   // Get the globals for file name, annotation, and the line number.
1059   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1060                  *UnitGV = EmitAnnotationUnit(L),
1061                  *LineNoCst = EmitAnnotationLineNo(L);
1062 
1063   // Create the ConstantStruct for the global annotation.
1064   llvm::Constant *Fields[4] = {
1065     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1066     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1067     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1068     LineNoCst
1069   };
1070   return llvm::ConstantStruct::getAnon(Fields);
1071 }
1072 
1073 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1074                                          llvm::GlobalValue *GV) {
1075   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1076   // Get the struct elements for these annotations.
1077   for (specific_attr_iterator<AnnotateAttr>
1078        ai = D->specific_attr_begin<AnnotateAttr>(),
1079        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1080     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1081 }
1082 
1083 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1084   // Never defer when EmitAllDecls is specified.
1085   if (LangOpts.EmitAllDecls)
1086     return false;
1087 
1088   return !getContext().DeclMustBeEmitted(Global);
1089 }
1090 
1091 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1092     const CXXUuidofExpr* E) {
1093   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1094   // well-formed.
1095   StringRef Uuid = E->getUuidAsStringRef(Context);
1096   std::string Name = "_GUID_" + Uuid.lower();
1097   std::replace(Name.begin(), Name.end(), '-', '_');
1098 
1099   // Look for an existing global.
1100   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1101     return GV;
1102 
1103   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1104   assert(Init && "failed to initialize as constant");
1105 
1106   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1107       getModule(), Init->getType(),
1108       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1109   return GV;
1110 }
1111 
1112 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1113   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1114   assert(AA && "No alias?");
1115 
1116   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1117 
1118   // See if there is already something with the target's name in the module.
1119   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1120   if (Entry) {
1121     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1122     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1123   }
1124 
1125   llvm::Constant *Aliasee;
1126   if (isa<llvm::FunctionType>(DeclTy))
1127     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1128                                       GlobalDecl(cast<FunctionDecl>(VD)),
1129                                       /*ForVTable=*/false);
1130   else
1131     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1132                                     llvm::PointerType::getUnqual(DeclTy), 0);
1133 
1134   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1135   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1136   WeakRefReferences.insert(F);
1137 
1138   return Aliasee;
1139 }
1140 
1141 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1142   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1143 
1144   // Weak references don't produce any output by themselves.
1145   if (Global->hasAttr<WeakRefAttr>())
1146     return;
1147 
1148   // If this is an alias definition (which otherwise looks like a declaration)
1149   // emit it now.
1150   if (Global->hasAttr<AliasAttr>())
1151     return EmitAliasDefinition(GD);
1152 
1153   // If this is CUDA, be selective about which declarations we emit.
1154   if (LangOpts.CUDA) {
1155     if (CodeGenOpts.CUDAIsDevice) {
1156       if (!Global->hasAttr<CUDADeviceAttr>() &&
1157           !Global->hasAttr<CUDAGlobalAttr>() &&
1158           !Global->hasAttr<CUDAConstantAttr>() &&
1159           !Global->hasAttr<CUDASharedAttr>())
1160         return;
1161     } else {
1162       if (!Global->hasAttr<CUDAHostAttr>() && (
1163             Global->hasAttr<CUDADeviceAttr>() ||
1164             Global->hasAttr<CUDAConstantAttr>() ||
1165             Global->hasAttr<CUDASharedAttr>()))
1166         return;
1167     }
1168   }
1169 
1170   // Ignore declarations, they will be emitted on their first use.
1171   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1172     // Forward declarations are emitted lazily on first use.
1173     if (!FD->doesThisDeclarationHaveABody()) {
1174       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1175         return;
1176 
1177       const FunctionDecl *InlineDefinition = 0;
1178       FD->getBody(InlineDefinition);
1179 
1180       StringRef MangledName = getMangledName(GD);
1181       DeferredDecls.erase(MangledName);
1182       EmitGlobalDefinition(InlineDefinition);
1183       return;
1184     }
1185   } else {
1186     const VarDecl *VD = cast<VarDecl>(Global);
1187     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1188 
1189     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1190       return;
1191   }
1192 
1193   // Defer code generation when possible if this is a static definition, inline
1194   // function etc.  These we only want to emit if they are used.
1195   if (!MayDeferGeneration(Global)) {
1196     // Emit the definition if it can't be deferred.
1197     EmitGlobalDefinition(GD);
1198     return;
1199   }
1200 
1201   // If we're deferring emission of a C++ variable with an
1202   // initializer, remember the order in which it appeared in the file.
1203   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1204       cast<VarDecl>(Global)->hasInit()) {
1205     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1206     CXXGlobalInits.push_back(0);
1207   }
1208 
1209   // If the value has already been used, add it directly to the
1210   // DeferredDeclsToEmit list.
1211   StringRef MangledName = getMangledName(GD);
1212   if (GetGlobalValue(MangledName))
1213     DeferredDeclsToEmit.push_back(GD);
1214   else {
1215     // Otherwise, remember that we saw a deferred decl with this name.  The
1216     // first use of the mangled name will cause it to move into
1217     // DeferredDeclsToEmit.
1218     DeferredDecls[MangledName] = GD;
1219   }
1220 }
1221 
1222 namespace {
1223   struct FunctionIsDirectlyRecursive :
1224     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1225     const StringRef Name;
1226     const Builtin::Context &BI;
1227     bool Result;
1228     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1229       Name(N), BI(C), Result(false) {
1230     }
1231     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1232 
1233     bool TraverseCallExpr(CallExpr *E) {
1234       const FunctionDecl *FD = E->getDirectCallee();
1235       if (!FD)
1236         return true;
1237       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1238       if (Attr && Name == Attr->getLabel()) {
1239         Result = true;
1240         return false;
1241       }
1242       unsigned BuiltinID = FD->getBuiltinID();
1243       if (!BuiltinID)
1244         return true;
1245       StringRef BuiltinName = BI.GetName(BuiltinID);
1246       if (BuiltinName.startswith("__builtin_") &&
1247           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1248         Result = true;
1249         return false;
1250       }
1251       return true;
1252     }
1253   };
1254 }
1255 
1256 // isTriviallyRecursive - Check if this function calls another
1257 // decl that, because of the asm attribute or the other decl being a builtin,
1258 // ends up pointing to itself.
1259 bool
1260 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1261   StringRef Name;
1262   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1263     // asm labels are a special kind of mangling we have to support.
1264     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1265     if (!Attr)
1266       return false;
1267     Name = Attr->getLabel();
1268   } else {
1269     Name = FD->getName();
1270   }
1271 
1272   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1273   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1274   return Walker.Result;
1275 }
1276 
1277 bool
1278 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1279   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1280     return true;
1281   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1282   if (CodeGenOpts.OptimizationLevel == 0 &&
1283       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1284     return false;
1285   // PR9614. Avoid cases where the source code is lying to us. An available
1286   // externally function should have an equivalent function somewhere else,
1287   // but a function that calls itself is clearly not equivalent to the real
1288   // implementation.
1289   // This happens in glibc's btowc and in some configure checks.
1290   return !isTriviallyRecursive(F);
1291 }
1292 
1293 /// If the type for the method's class was generated by
1294 /// CGDebugInfo::createContextChain(), the cache contains only a
1295 /// limited DIType without any declarations. Since EmitFunctionStart()
1296 /// needs to find the canonical declaration for each method, we need
1297 /// to construct the complete type prior to emitting the method.
1298 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1299   if (!D->isInstance())
1300     return;
1301 
1302   if (CGDebugInfo *DI = getModuleDebugInfo())
1303     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1304       const PointerType *ThisPtr =
1305         cast<PointerType>(D->getThisType(getContext()));
1306       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1307     }
1308 }
1309 
1310 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1311   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1312 
1313   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1314                                  Context.getSourceManager(),
1315                                  "Generating code for declaration");
1316 
1317   if (isa<FunctionDecl>(D)) {
1318     // At -O0, don't generate IR for functions with available_externally
1319     // linkage.
1320     if (!shouldEmitFunction(GD))
1321       return;
1322 
1323     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1324       CompleteDIClassType(Method);
1325       // Make sure to emit the definition(s) before we emit the thunks.
1326       // This is necessary for the generation of certain thunks.
1327       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1328         EmitCXXConstructor(CD, GD.getCtorType());
1329       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1330         EmitCXXDestructor(DD, GD.getDtorType());
1331       else
1332         EmitGlobalFunctionDefinition(GD);
1333 
1334       if (Method->isVirtual())
1335         getVTables().EmitThunks(GD);
1336 
1337       return;
1338     }
1339 
1340     return EmitGlobalFunctionDefinition(GD);
1341   }
1342 
1343   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1344     return EmitGlobalVarDefinition(VD);
1345 
1346   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1347 }
1348 
1349 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1350 /// module, create and return an llvm Function with the specified type. If there
1351 /// is something in the module with the specified name, return it potentially
1352 /// bitcasted to the right type.
1353 ///
1354 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1355 /// to set the attributes on the function when it is first created.
1356 llvm::Constant *
1357 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1358                                        llvm::Type *Ty,
1359                                        GlobalDecl GD, bool ForVTable,
1360                                        llvm::AttributeSet ExtraAttrs) {
1361   const Decl *D = GD.getDecl();
1362 
1363   // Lookup the entry, lazily creating it if necessary.
1364   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1365   if (Entry) {
1366     if (WeakRefReferences.erase(Entry)) {
1367       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1368       if (FD && !FD->hasAttr<WeakAttr>())
1369         Entry->setLinkage(llvm::Function::ExternalLinkage);
1370     }
1371 
1372     if (Entry->getType()->getElementType() == Ty)
1373       return Entry;
1374 
1375     // Make sure the result is of the correct type.
1376     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1377   }
1378 
1379   // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1380   // each other bottoming out with the base dtor.  Therefore we emit non-base
1381   // dtors on usage, even if there is no dtor definition in the TU.
1382   if (D && isa<CXXDestructorDecl>(D) &&
1383       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1384                                          GD.getDtorType()))
1385     DeferredDeclsToEmit.push_back(GD);
1386 
1387   // This function doesn't have a complete type (for example, the return
1388   // type is an incomplete struct). Use a fake type instead, and make
1389   // sure not to try to set attributes.
1390   bool IsIncompleteFunction = false;
1391 
1392   llvm::FunctionType *FTy;
1393   if (isa<llvm::FunctionType>(Ty)) {
1394     FTy = cast<llvm::FunctionType>(Ty);
1395   } else {
1396     FTy = llvm::FunctionType::get(VoidTy, false);
1397     IsIncompleteFunction = true;
1398   }
1399 
1400   llvm::Function *F = llvm::Function::Create(FTy,
1401                                              llvm::Function::ExternalLinkage,
1402                                              MangledName, &getModule());
1403   assert(F->getName() == MangledName && "name was uniqued!");
1404   if (D)
1405     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1406   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1407     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1408     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1409                      llvm::AttributeSet::get(VMContext,
1410                                              llvm::AttributeSet::FunctionIndex,
1411                                              B));
1412   }
1413 
1414   // This is the first use or definition of a mangled name.  If there is a
1415   // deferred decl with this name, remember that we need to emit it at the end
1416   // of the file.
1417   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1418   if (DDI != DeferredDecls.end()) {
1419     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1420     // list, and remove it from DeferredDecls (since we don't need it anymore).
1421     DeferredDeclsToEmit.push_back(DDI->second);
1422     DeferredDecls.erase(DDI);
1423 
1424   // Otherwise, if this is a sized deallocation function, emit a weak definition
1425   // for it at the end of the translation unit.
1426   } else if (D && cast<FunctionDecl>(D)
1427                       ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1428     DeferredDeclsToEmit.push_back(GD);
1429 
1430   // Otherwise, there are cases we have to worry about where we're
1431   // using a declaration for which we must emit a definition but where
1432   // we might not find a top-level definition:
1433   //   - member functions defined inline in their classes
1434   //   - friend functions defined inline in some class
1435   //   - special member functions with implicit definitions
1436   // If we ever change our AST traversal to walk into class methods,
1437   // this will be unnecessary.
1438   //
1439   // We also don't emit a definition for a function if it's going to be an entry
1440   // in a vtable, unless it's already marked as used.
1441   } else if (getLangOpts().CPlusPlus && D) {
1442     // Look for a declaration that's lexically in a record.
1443     const FunctionDecl *FD = cast<FunctionDecl>(D);
1444     FD = FD->getMostRecentDecl();
1445     do {
1446       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1447         if (FD->isImplicit() && !ForVTable) {
1448           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1449           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1450           break;
1451         } else if (FD->doesThisDeclarationHaveABody()) {
1452           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1453           break;
1454         }
1455       }
1456       FD = FD->getPreviousDecl();
1457     } while (FD);
1458   }
1459 
1460   // Make sure the result is of the requested type.
1461   if (!IsIncompleteFunction) {
1462     assert(F->getType()->getElementType() == Ty);
1463     return F;
1464   }
1465 
1466   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1467   return llvm::ConstantExpr::getBitCast(F, PTy);
1468 }
1469 
1470 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1471 /// non-null, then this function will use the specified type if it has to
1472 /// create it (this occurs when we see a definition of the function).
1473 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1474                                                  llvm::Type *Ty,
1475                                                  bool ForVTable) {
1476   // If there was no specific requested type, just convert it now.
1477   if (!Ty)
1478     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1479 
1480   StringRef MangledName = getMangledName(GD);
1481   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1482 }
1483 
1484 /// CreateRuntimeFunction - Create a new runtime function with the specified
1485 /// type and name.
1486 llvm::Constant *
1487 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1488                                      StringRef Name,
1489                                      llvm::AttributeSet ExtraAttrs) {
1490   llvm::Constant *C
1491     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1492                               ExtraAttrs);
1493   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1494     if (F->empty())
1495       F->setCallingConv(getRuntimeCC());
1496   return C;
1497 }
1498 
1499 /// isTypeConstant - Determine whether an object of this type can be emitted
1500 /// as a constant.
1501 ///
1502 /// If ExcludeCtor is true, the duration when the object's constructor runs
1503 /// will not be considered. The caller will need to verify that the object is
1504 /// not written to during its construction.
1505 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1506   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1507     return false;
1508 
1509   if (Context.getLangOpts().CPlusPlus) {
1510     if (const CXXRecordDecl *Record
1511           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1512       return ExcludeCtor && !Record->hasMutableFields() &&
1513              Record->hasTrivialDestructor();
1514   }
1515 
1516   return true;
1517 }
1518 
1519 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1520 /// create and return an llvm GlobalVariable with the specified type.  If there
1521 /// is something in the module with the specified name, return it potentially
1522 /// bitcasted to the right type.
1523 ///
1524 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1525 /// to set the attributes on the global when it is first created.
1526 llvm::Constant *
1527 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1528                                      llvm::PointerType *Ty,
1529                                      const VarDecl *D,
1530                                      bool UnnamedAddr) {
1531   // Lookup the entry, lazily creating it if necessary.
1532   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1533   if (Entry) {
1534     if (WeakRefReferences.erase(Entry)) {
1535       if (D && !D->hasAttr<WeakAttr>())
1536         Entry->setLinkage(llvm::Function::ExternalLinkage);
1537     }
1538 
1539     if (UnnamedAddr)
1540       Entry->setUnnamedAddr(true);
1541 
1542     if (Entry->getType() == Ty)
1543       return Entry;
1544 
1545     // Make sure the result is of the correct type.
1546     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1547   }
1548 
1549   // This is the first use or definition of a mangled name.  If there is a
1550   // deferred decl with this name, remember that we need to emit it at the end
1551   // of the file.
1552   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1553   if (DDI != DeferredDecls.end()) {
1554     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1555     // list, and remove it from DeferredDecls (since we don't need it anymore).
1556     DeferredDeclsToEmit.push_back(DDI->second);
1557     DeferredDecls.erase(DDI);
1558   }
1559 
1560   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1561   llvm::GlobalVariable *GV =
1562     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1563                              llvm::GlobalValue::ExternalLinkage,
1564                              0, MangledName, 0,
1565                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1566 
1567   // Handle things which are present even on external declarations.
1568   if (D) {
1569     // FIXME: This code is overly simple and should be merged with other global
1570     // handling.
1571     GV->setConstant(isTypeConstant(D->getType(), false));
1572 
1573     // Set linkage and visibility in case we never see a definition.
1574     LinkageInfo LV = D->getLinkageAndVisibility();
1575     if (LV.getLinkage() != ExternalLinkage) {
1576       // Don't set internal linkage on declarations.
1577     } else {
1578       if (D->hasAttr<DLLImportAttr>())
1579         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1580       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1581         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1582 
1583       // Set visibility on a declaration only if it's explicit.
1584       if (LV.isVisibilityExplicit())
1585         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1586     }
1587 
1588     if (D->getTLSKind()) {
1589       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1590         CXXThreadLocals.push_back(std::make_pair(D, GV));
1591       setTLSMode(GV, *D);
1592     }
1593   }
1594 
1595   if (AddrSpace != Ty->getAddressSpace())
1596     return llvm::ConstantExpr::getBitCast(GV, Ty);
1597   else
1598     return GV;
1599 }
1600 
1601 
1602 llvm::GlobalVariable *
1603 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1604                                       llvm::Type *Ty,
1605                                       llvm::GlobalValue::LinkageTypes Linkage) {
1606   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1607   llvm::GlobalVariable *OldGV = 0;
1608 
1609 
1610   if (GV) {
1611     // Check if the variable has the right type.
1612     if (GV->getType()->getElementType() == Ty)
1613       return GV;
1614 
1615     // Because C++ name mangling, the only way we can end up with an already
1616     // existing global with the same name is if it has been declared extern "C".
1617     assert(GV->isDeclaration() && "Declaration has wrong type!");
1618     OldGV = GV;
1619   }
1620 
1621   // Create a new variable.
1622   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1623                                 Linkage, 0, Name);
1624 
1625   if (OldGV) {
1626     // Replace occurrences of the old variable if needed.
1627     GV->takeName(OldGV);
1628 
1629     if (!OldGV->use_empty()) {
1630       llvm::Constant *NewPtrForOldDecl =
1631       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1632       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1633     }
1634 
1635     OldGV->eraseFromParent();
1636   }
1637 
1638   return GV;
1639 }
1640 
1641 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1642 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1643 /// then it will be created with the specified type instead of whatever the
1644 /// normal requested type would be.
1645 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1646                                                   llvm::Type *Ty) {
1647   assert(D->hasGlobalStorage() && "Not a global variable");
1648   QualType ASTTy = D->getType();
1649   if (Ty == 0)
1650     Ty = getTypes().ConvertTypeForMem(ASTTy);
1651 
1652   llvm::PointerType *PTy =
1653     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1654 
1655   StringRef MangledName = getMangledName(D);
1656   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1657 }
1658 
1659 /// CreateRuntimeVariable - Create a new runtime global variable with the
1660 /// specified type and name.
1661 llvm::Constant *
1662 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1663                                      StringRef Name) {
1664   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1665                                true);
1666 }
1667 
1668 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1669   assert(!D->getInit() && "Cannot emit definite definitions here!");
1670 
1671   if (MayDeferGeneration(D)) {
1672     // If we have not seen a reference to this variable yet, place it
1673     // into the deferred declarations table to be emitted if needed
1674     // later.
1675     StringRef MangledName = getMangledName(D);
1676     if (!GetGlobalValue(MangledName)) {
1677       DeferredDecls[MangledName] = D;
1678       return;
1679     }
1680   }
1681 
1682   // The tentative definition is the only definition.
1683   EmitGlobalVarDefinition(D);
1684 }
1685 
1686 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1687     return Context.toCharUnitsFromBits(
1688       TheDataLayout.getTypeStoreSizeInBits(Ty));
1689 }
1690 
1691 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1692                                                  unsigned AddrSpace) {
1693   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1694     if (D->hasAttr<CUDAConstantAttr>())
1695       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1696     else if (D->hasAttr<CUDASharedAttr>())
1697       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1698     else
1699       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1700   }
1701 
1702   return AddrSpace;
1703 }
1704 
1705 template<typename SomeDecl>
1706 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1707                                                llvm::GlobalValue *GV) {
1708   if (!getLangOpts().CPlusPlus)
1709     return;
1710 
1711   // Must have 'used' attribute, or else inline assembly can't rely on
1712   // the name existing.
1713   if (!D->template hasAttr<UsedAttr>())
1714     return;
1715 
1716   // Must have internal linkage and an ordinary name.
1717   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1718     return;
1719 
1720   // Must be in an extern "C" context. Entities declared directly within
1721   // a record are not extern "C" even if the record is in such a context.
1722   const SomeDecl *First = D->getFirstDecl();
1723   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1724     return;
1725 
1726   // OK, this is an internal linkage entity inside an extern "C" linkage
1727   // specification. Make a note of that so we can give it the "expected"
1728   // mangled name if nothing else is using that name.
1729   std::pair<StaticExternCMap::iterator, bool> R =
1730       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1731 
1732   // If we have multiple internal linkage entities with the same name
1733   // in extern "C" regions, none of them gets that name.
1734   if (!R.second)
1735     R.first->second = 0;
1736 }
1737 
1738 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1739   llvm::Constant *Init = 0;
1740   QualType ASTTy = D->getType();
1741   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1742   bool NeedsGlobalCtor = false;
1743   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1744 
1745   const VarDecl *InitDecl;
1746   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1747 
1748   if (!InitExpr) {
1749     // This is a tentative definition; tentative definitions are
1750     // implicitly initialized with { 0 }.
1751     //
1752     // Note that tentative definitions are only emitted at the end of
1753     // a translation unit, so they should never have incomplete
1754     // type. In addition, EmitTentativeDefinition makes sure that we
1755     // never attempt to emit a tentative definition if a real one
1756     // exists. A use may still exists, however, so we still may need
1757     // to do a RAUW.
1758     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1759     Init = EmitNullConstant(D->getType());
1760   } else {
1761     initializedGlobalDecl = GlobalDecl(D);
1762     Init = EmitConstantInit(*InitDecl);
1763 
1764     if (!Init) {
1765       QualType T = InitExpr->getType();
1766       if (D->getType()->isReferenceType())
1767         T = D->getType();
1768 
1769       if (getLangOpts().CPlusPlus) {
1770         Init = EmitNullConstant(T);
1771         NeedsGlobalCtor = true;
1772       } else {
1773         ErrorUnsupported(D, "static initializer");
1774         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1775       }
1776     } else {
1777       // We don't need an initializer, so remove the entry for the delayed
1778       // initializer position (just in case this entry was delayed) if we
1779       // also don't need to register a destructor.
1780       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1781         DelayedCXXInitPosition.erase(D);
1782     }
1783   }
1784 
1785   llvm::Type* InitType = Init->getType();
1786   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1787 
1788   // Strip off a bitcast if we got one back.
1789   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1790     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1791            // all zero index gep.
1792            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1793     Entry = CE->getOperand(0);
1794   }
1795 
1796   // Entry is now either a Function or GlobalVariable.
1797   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1798 
1799   // We have a definition after a declaration with the wrong type.
1800   // We must make a new GlobalVariable* and update everything that used OldGV
1801   // (a declaration or tentative definition) with the new GlobalVariable*
1802   // (which will be a definition).
1803   //
1804   // This happens if there is a prototype for a global (e.g.
1805   // "extern int x[];") and then a definition of a different type (e.g.
1806   // "int x[10];"). This also happens when an initializer has a different type
1807   // from the type of the global (this happens with unions).
1808   if (GV == 0 ||
1809       GV->getType()->getElementType() != InitType ||
1810       GV->getType()->getAddressSpace() !=
1811        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1812 
1813     // Move the old entry aside so that we'll create a new one.
1814     Entry->setName(StringRef());
1815 
1816     // Make a new global with the correct type, this is now guaranteed to work.
1817     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1818 
1819     // Replace all uses of the old global with the new global
1820     llvm::Constant *NewPtrForOldDecl =
1821         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1822     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1823 
1824     // Erase the old global, since it is no longer used.
1825     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1826   }
1827 
1828   MaybeHandleStaticInExternC(D, GV);
1829 
1830   if (D->hasAttr<AnnotateAttr>())
1831     AddGlobalAnnotations(D, GV);
1832 
1833   GV->setInitializer(Init);
1834 
1835   // If it is safe to mark the global 'constant', do so now.
1836   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1837                   isTypeConstant(D->getType(), true));
1838 
1839   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1840 
1841   // Set the llvm linkage type as appropriate.
1842   llvm::GlobalValue::LinkageTypes Linkage =
1843     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1844   GV->setLinkage(Linkage);
1845   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1846     // common vars aren't constant even if declared const.
1847     GV->setConstant(false);
1848 
1849   SetCommonAttributes(D, GV);
1850 
1851   // Emit the initializer function if necessary.
1852   if (NeedsGlobalCtor || NeedsGlobalDtor)
1853     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1854 
1855   // If we are compiling with ASan, add metadata indicating dynamically
1856   // initialized globals.
1857   if (SanOpts.Address && NeedsGlobalCtor) {
1858     llvm::Module &M = getModule();
1859 
1860     llvm::NamedMDNode *DynamicInitializers =
1861         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1862     llvm::Value *GlobalToAdd[] = { GV };
1863     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1864     DynamicInitializers->addOperand(ThisGlobal);
1865   }
1866 
1867   // Emit global variable debug information.
1868   if (CGDebugInfo *DI = getModuleDebugInfo())
1869     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1870       DI->EmitGlobalVariable(GV, D);
1871 }
1872 
1873 llvm::GlobalValue::LinkageTypes
1874 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1875   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1876   if (Linkage == GVA_Internal)
1877     return llvm::Function::InternalLinkage;
1878   else if (D->hasAttr<DLLImportAttr>())
1879     return llvm::Function::DLLImportLinkage;
1880   else if (D->hasAttr<DLLExportAttr>())
1881     return llvm::Function::DLLExportLinkage;
1882   else if (D->hasAttr<SelectAnyAttr>()) {
1883     // selectany symbols are externally visible, so use weak instead of
1884     // linkonce.  MSVC optimizes away references to const selectany globals, so
1885     // all definitions should be the same and ODR linkage should be used.
1886     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1887     return llvm::GlobalVariable::WeakODRLinkage;
1888   } else if (D->hasAttr<WeakAttr>()) {
1889     if (isConstant)
1890       return llvm::GlobalVariable::WeakODRLinkage;
1891     else
1892       return llvm::GlobalVariable::WeakAnyLinkage;
1893   } else if (Linkage == GVA_TemplateInstantiation ||
1894              Linkage == GVA_ExplicitTemplateInstantiation)
1895     return llvm::GlobalVariable::WeakODRLinkage;
1896   else if (!getLangOpts().CPlusPlus &&
1897            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1898              D->getAttr<CommonAttr>()) &&
1899            !D->hasExternalStorage() && !D->getInit() &&
1900            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1901            !D->getAttr<WeakImportAttr>()) {
1902     // Thread local vars aren't considered common linkage.
1903     return llvm::GlobalVariable::CommonLinkage;
1904   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1905              getTarget().getTriple().isMacOSX())
1906     // On Darwin, the backing variable for a C++11 thread_local variable always
1907     // has internal linkage; all accesses should just be calls to the
1908     // Itanium-specified entry point, which has the normal linkage of the
1909     // variable.
1910     return llvm::GlobalValue::InternalLinkage;
1911   return llvm::GlobalVariable::ExternalLinkage;
1912 }
1913 
1914 /// Replace the uses of a function that was declared with a non-proto type.
1915 /// We want to silently drop extra arguments from call sites
1916 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1917                                           llvm::Function *newFn) {
1918   // Fast path.
1919   if (old->use_empty()) return;
1920 
1921   llvm::Type *newRetTy = newFn->getReturnType();
1922   SmallVector<llvm::Value*, 4> newArgs;
1923 
1924   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1925          ui != ue; ) {
1926     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1927     llvm::User *user = *use;
1928 
1929     // Recognize and replace uses of bitcasts.  Most calls to
1930     // unprototyped functions will use bitcasts.
1931     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1932       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1933         replaceUsesOfNonProtoConstant(bitcast, newFn);
1934       continue;
1935     }
1936 
1937     // Recognize calls to the function.
1938     llvm::CallSite callSite(user);
1939     if (!callSite) continue;
1940     if (!callSite.isCallee(use)) continue;
1941 
1942     // If the return types don't match exactly, then we can't
1943     // transform this call unless it's dead.
1944     if (callSite->getType() != newRetTy && !callSite->use_empty())
1945       continue;
1946 
1947     // Get the call site's attribute list.
1948     SmallVector<llvm::AttributeSet, 8> newAttrs;
1949     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1950 
1951     // Collect any return attributes from the call.
1952     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1953       newAttrs.push_back(
1954         llvm::AttributeSet::get(newFn->getContext(),
1955                                 oldAttrs.getRetAttributes()));
1956 
1957     // If the function was passed too few arguments, don't transform.
1958     unsigned newNumArgs = newFn->arg_size();
1959     if (callSite.arg_size() < newNumArgs) continue;
1960 
1961     // If extra arguments were passed, we silently drop them.
1962     // If any of the types mismatch, we don't transform.
1963     unsigned argNo = 0;
1964     bool dontTransform = false;
1965     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1966            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1967       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1968         dontTransform = true;
1969         break;
1970       }
1971 
1972       // Add any parameter attributes.
1973       if (oldAttrs.hasAttributes(argNo + 1))
1974         newAttrs.
1975           push_back(llvm::
1976                     AttributeSet::get(newFn->getContext(),
1977                                       oldAttrs.getParamAttributes(argNo + 1)));
1978     }
1979     if (dontTransform)
1980       continue;
1981 
1982     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1983       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1984                                                  oldAttrs.getFnAttributes()));
1985 
1986     // Okay, we can transform this.  Create the new call instruction and copy
1987     // over the required information.
1988     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1989 
1990     llvm::CallSite newCall;
1991     if (callSite.isCall()) {
1992       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1993                                        callSite.getInstruction());
1994     } else {
1995       llvm::InvokeInst *oldInvoke =
1996         cast<llvm::InvokeInst>(callSite.getInstruction());
1997       newCall = llvm::InvokeInst::Create(newFn,
1998                                          oldInvoke->getNormalDest(),
1999                                          oldInvoke->getUnwindDest(),
2000                                          newArgs, "",
2001                                          callSite.getInstruction());
2002     }
2003     newArgs.clear(); // for the next iteration
2004 
2005     if (!newCall->getType()->isVoidTy())
2006       newCall->takeName(callSite.getInstruction());
2007     newCall.setAttributes(
2008                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2009     newCall.setCallingConv(callSite.getCallingConv());
2010 
2011     // Finally, remove the old call, replacing any uses with the new one.
2012     if (!callSite->use_empty())
2013       callSite->replaceAllUsesWith(newCall.getInstruction());
2014 
2015     // Copy debug location attached to CI.
2016     if (!callSite->getDebugLoc().isUnknown())
2017       newCall->setDebugLoc(callSite->getDebugLoc());
2018     callSite->eraseFromParent();
2019   }
2020 }
2021 
2022 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2023 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2024 /// existing call uses of the old function in the module, this adjusts them to
2025 /// call the new function directly.
2026 ///
2027 /// This is not just a cleanup: the always_inline pass requires direct calls to
2028 /// functions to be able to inline them.  If there is a bitcast in the way, it
2029 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2030 /// run at -O0.
2031 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2032                                                       llvm::Function *NewFn) {
2033   // If we're redefining a global as a function, don't transform it.
2034   if (!isa<llvm::Function>(Old)) return;
2035 
2036   replaceUsesOfNonProtoConstant(Old, NewFn);
2037 }
2038 
2039 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2040   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2041   // If we have a definition, this might be a deferred decl. If the
2042   // instantiation is explicit, make sure we emit it at the end.
2043   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2044     GetAddrOfGlobalVar(VD);
2045 
2046   EmitTopLevelDecl(VD);
2047 }
2048 
2049 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2050   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2051 
2052   // Compute the function info and LLVM type.
2053   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2054   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2055 
2056   // Get or create the prototype for the function.
2057   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2058 
2059   // Strip off a bitcast if we got one back.
2060   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2061     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2062     Entry = CE->getOperand(0);
2063   }
2064 
2065 
2066   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2067     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2068 
2069     // If the types mismatch then we have to rewrite the definition.
2070     assert(OldFn->isDeclaration() &&
2071            "Shouldn't replace non-declaration");
2072 
2073     // F is the Function* for the one with the wrong type, we must make a new
2074     // Function* and update everything that used F (a declaration) with the new
2075     // Function* (which will be a definition).
2076     //
2077     // This happens if there is a prototype for a function
2078     // (e.g. "int f()") and then a definition of a different type
2079     // (e.g. "int f(int x)").  Move the old function aside so that it
2080     // doesn't interfere with GetAddrOfFunction.
2081     OldFn->setName(StringRef());
2082     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2083 
2084     // This might be an implementation of a function without a
2085     // prototype, in which case, try to do special replacement of
2086     // calls which match the new prototype.  The really key thing here
2087     // is that we also potentially drop arguments from the call site
2088     // so as to make a direct call, which makes the inliner happier
2089     // and suppresses a number of optimizer warnings (!) about
2090     // dropping arguments.
2091     if (!OldFn->use_empty()) {
2092       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2093       OldFn->removeDeadConstantUsers();
2094     }
2095 
2096     // Replace uses of F with the Function we will endow with a body.
2097     if (!Entry->use_empty()) {
2098       llvm::Constant *NewPtrForOldDecl =
2099         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2100       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2101     }
2102 
2103     // Ok, delete the old function now, which is dead.
2104     OldFn->eraseFromParent();
2105 
2106     Entry = NewFn;
2107   }
2108 
2109   // We need to set linkage and visibility on the function before
2110   // generating code for it because various parts of IR generation
2111   // want to propagate this information down (e.g. to local static
2112   // declarations).
2113   llvm::Function *Fn = cast<llvm::Function>(Entry);
2114   setFunctionLinkage(GD, Fn);
2115 
2116   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2117   setGlobalVisibility(Fn, D);
2118 
2119   MaybeHandleStaticInExternC(D, Fn);
2120 
2121   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2122 
2123   SetFunctionDefinitionAttributes(D, Fn);
2124   SetLLVMFunctionAttributesForDefinition(D, Fn);
2125 
2126   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2127     AddGlobalCtor(Fn, CA->getPriority());
2128   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2129     AddGlobalDtor(Fn, DA->getPriority());
2130   if (D->hasAttr<AnnotateAttr>())
2131     AddGlobalAnnotations(D, Fn);
2132 }
2133 
2134 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2135   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2136   const AliasAttr *AA = D->getAttr<AliasAttr>();
2137   assert(AA && "Not an alias?");
2138 
2139   StringRef MangledName = getMangledName(GD);
2140 
2141   // If there is a definition in the module, then it wins over the alias.
2142   // This is dubious, but allow it to be safe.  Just ignore the alias.
2143   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2144   if (Entry && !Entry->isDeclaration())
2145     return;
2146 
2147   Aliases.push_back(GD);
2148 
2149   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2150 
2151   // Create a reference to the named value.  This ensures that it is emitted
2152   // if a deferred decl.
2153   llvm::Constant *Aliasee;
2154   if (isa<llvm::FunctionType>(DeclTy))
2155     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2156                                       /*ForVTable=*/false);
2157   else
2158     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2159                                     llvm::PointerType::getUnqual(DeclTy), 0);
2160 
2161   // Create the new alias itself, but don't set a name yet.
2162   llvm::GlobalValue *GA =
2163     new llvm::GlobalAlias(Aliasee->getType(),
2164                           llvm::Function::ExternalLinkage,
2165                           "", Aliasee, &getModule());
2166 
2167   if (Entry) {
2168     assert(Entry->isDeclaration());
2169 
2170     // If there is a declaration in the module, then we had an extern followed
2171     // by the alias, as in:
2172     //   extern int test6();
2173     //   ...
2174     //   int test6() __attribute__((alias("test7")));
2175     //
2176     // Remove it and replace uses of it with the alias.
2177     GA->takeName(Entry);
2178 
2179     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2180                                                           Entry->getType()));
2181     Entry->eraseFromParent();
2182   } else {
2183     GA->setName(MangledName);
2184   }
2185 
2186   // Set attributes which are particular to an alias; this is a
2187   // specialization of the attributes which may be set on a global
2188   // variable/function.
2189   if (D->hasAttr<DLLExportAttr>()) {
2190     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2191       // The dllexport attribute is ignored for undefined symbols.
2192       if (FD->hasBody())
2193         GA->setLinkage(llvm::Function::DLLExportLinkage);
2194     } else {
2195       GA->setLinkage(llvm::Function::DLLExportLinkage);
2196     }
2197   } else if (D->hasAttr<WeakAttr>() ||
2198              D->hasAttr<WeakRefAttr>() ||
2199              D->isWeakImported()) {
2200     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2201   }
2202 
2203   SetCommonAttributes(D, GA);
2204 }
2205 
2206 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2207                                             ArrayRef<llvm::Type*> Tys) {
2208   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2209                                          Tys);
2210 }
2211 
2212 static llvm::StringMapEntry<llvm::Constant*> &
2213 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2214                          const StringLiteral *Literal,
2215                          bool TargetIsLSB,
2216                          bool &IsUTF16,
2217                          unsigned &StringLength) {
2218   StringRef String = Literal->getString();
2219   unsigned NumBytes = String.size();
2220 
2221   // Check for simple case.
2222   if (!Literal->containsNonAsciiOrNull()) {
2223     StringLength = NumBytes;
2224     return Map.GetOrCreateValue(String);
2225   }
2226 
2227   // Otherwise, convert the UTF8 literals into a string of shorts.
2228   IsUTF16 = true;
2229 
2230   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2231   const UTF8 *FromPtr = (const UTF8 *)String.data();
2232   UTF16 *ToPtr = &ToBuf[0];
2233 
2234   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2235                            &ToPtr, ToPtr + NumBytes,
2236                            strictConversion);
2237 
2238   // ConvertUTF8toUTF16 returns the length in ToPtr.
2239   StringLength = ToPtr - &ToBuf[0];
2240 
2241   // Add an explicit null.
2242   *ToPtr = 0;
2243   return Map.
2244     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2245                                (StringLength + 1) * 2));
2246 }
2247 
2248 static llvm::StringMapEntry<llvm::Constant*> &
2249 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2250                        const StringLiteral *Literal,
2251                        unsigned &StringLength) {
2252   StringRef String = Literal->getString();
2253   StringLength = String.size();
2254   return Map.GetOrCreateValue(String);
2255 }
2256 
2257 llvm::Constant *
2258 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2259   unsigned StringLength = 0;
2260   bool isUTF16 = false;
2261   llvm::StringMapEntry<llvm::Constant*> &Entry =
2262     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2263                              getDataLayout().isLittleEndian(),
2264                              isUTF16, StringLength);
2265 
2266   if (llvm::Constant *C = Entry.getValue())
2267     return C;
2268 
2269   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2270   llvm::Constant *Zeros[] = { Zero, Zero };
2271   llvm::Value *V;
2272 
2273   // If we don't already have it, get __CFConstantStringClassReference.
2274   if (!CFConstantStringClassRef) {
2275     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2276     Ty = llvm::ArrayType::get(Ty, 0);
2277     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2278                                            "__CFConstantStringClassReference");
2279     // Decay array -> ptr
2280     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2281     CFConstantStringClassRef = V;
2282   }
2283   else
2284     V = CFConstantStringClassRef;
2285 
2286   QualType CFTy = getContext().getCFConstantStringType();
2287 
2288   llvm::StructType *STy =
2289     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2290 
2291   llvm::Constant *Fields[4];
2292 
2293   // Class pointer.
2294   Fields[0] = cast<llvm::ConstantExpr>(V);
2295 
2296   // Flags.
2297   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2298   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2299     llvm::ConstantInt::get(Ty, 0x07C8);
2300 
2301   // String pointer.
2302   llvm::Constant *C = 0;
2303   if (isUTF16) {
2304     ArrayRef<uint16_t> Arr =
2305       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2306                                      const_cast<char *>(Entry.getKey().data())),
2307                                    Entry.getKey().size() / 2);
2308     C = llvm::ConstantDataArray::get(VMContext, Arr);
2309   } else {
2310     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2311   }
2312 
2313   llvm::GlobalValue::LinkageTypes Linkage;
2314   if (isUTF16)
2315     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2316     Linkage = llvm::GlobalValue::InternalLinkage;
2317   else
2318     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2319     // when using private linkage. It is not clear if this is a bug in ld
2320     // or a reasonable new restriction.
2321     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2322 
2323   // Note: -fwritable-strings doesn't make the backing store strings of
2324   // CFStrings writable. (See <rdar://problem/10657500>)
2325   llvm::GlobalVariable *GV =
2326     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2327                              Linkage, C, ".str");
2328   GV->setUnnamedAddr(true);
2329   // Don't enforce the target's minimum global alignment, since the only use
2330   // of the string is via this class initializer.
2331   if (isUTF16) {
2332     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2333     GV->setAlignment(Align.getQuantity());
2334   } else {
2335     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2336     GV->setAlignment(Align.getQuantity());
2337   }
2338 
2339   // String.
2340   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2341 
2342   if (isUTF16)
2343     // Cast the UTF16 string to the correct type.
2344     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2345 
2346   // String length.
2347   Ty = getTypes().ConvertType(getContext().LongTy);
2348   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2349 
2350   // The struct.
2351   C = llvm::ConstantStruct::get(STy, Fields);
2352   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2353                                 llvm::GlobalVariable::PrivateLinkage, C,
2354                                 "_unnamed_cfstring_");
2355   if (const char *Sect = getTarget().getCFStringSection())
2356     GV->setSection(Sect);
2357   Entry.setValue(GV);
2358 
2359   return GV;
2360 }
2361 
2362 static RecordDecl *
2363 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2364                  DeclContext *DC, IdentifierInfo *Id) {
2365   SourceLocation Loc;
2366   if (Ctx.getLangOpts().CPlusPlus)
2367     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2368   else
2369     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2370 }
2371 
2372 llvm::Constant *
2373 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2374   unsigned StringLength = 0;
2375   llvm::StringMapEntry<llvm::Constant*> &Entry =
2376     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2377 
2378   if (llvm::Constant *C = Entry.getValue())
2379     return C;
2380 
2381   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2382   llvm::Constant *Zeros[] = { Zero, Zero };
2383   llvm::Value *V;
2384   // If we don't already have it, get _NSConstantStringClassReference.
2385   if (!ConstantStringClassRef) {
2386     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2387     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2388     llvm::Constant *GV;
2389     if (LangOpts.ObjCRuntime.isNonFragile()) {
2390       std::string str =
2391         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2392                             : "OBJC_CLASS_$_" + StringClass;
2393       GV = getObjCRuntime().GetClassGlobal(str);
2394       // Make sure the result is of the correct type.
2395       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2396       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2397       ConstantStringClassRef = V;
2398     } else {
2399       std::string str =
2400         StringClass.empty() ? "_NSConstantStringClassReference"
2401                             : "_" + StringClass + "ClassReference";
2402       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2403       GV = CreateRuntimeVariable(PTy, str);
2404       // Decay array -> ptr
2405       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2406       ConstantStringClassRef = V;
2407     }
2408   }
2409   else
2410     V = ConstantStringClassRef;
2411 
2412   if (!NSConstantStringType) {
2413     // Construct the type for a constant NSString.
2414     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2415                                      Context.getTranslationUnitDecl(),
2416                                    &Context.Idents.get("__builtin_NSString"));
2417     D->startDefinition();
2418 
2419     QualType FieldTypes[3];
2420 
2421     // const int *isa;
2422     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2423     // const char *str;
2424     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2425     // unsigned int length;
2426     FieldTypes[2] = Context.UnsignedIntTy;
2427 
2428     // Create fields
2429     for (unsigned i = 0; i < 3; ++i) {
2430       FieldDecl *Field = FieldDecl::Create(Context, D,
2431                                            SourceLocation(),
2432                                            SourceLocation(), 0,
2433                                            FieldTypes[i], /*TInfo=*/0,
2434                                            /*BitWidth=*/0,
2435                                            /*Mutable=*/false,
2436                                            ICIS_NoInit);
2437       Field->setAccess(AS_public);
2438       D->addDecl(Field);
2439     }
2440 
2441     D->completeDefinition();
2442     QualType NSTy = Context.getTagDeclType(D);
2443     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2444   }
2445 
2446   llvm::Constant *Fields[3];
2447 
2448   // Class pointer.
2449   Fields[0] = cast<llvm::ConstantExpr>(V);
2450 
2451   // String pointer.
2452   llvm::Constant *C =
2453     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2454 
2455   llvm::GlobalValue::LinkageTypes Linkage;
2456   bool isConstant;
2457   Linkage = llvm::GlobalValue::PrivateLinkage;
2458   isConstant = !LangOpts.WritableStrings;
2459 
2460   llvm::GlobalVariable *GV =
2461   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2462                            ".str");
2463   GV->setUnnamedAddr(true);
2464   // Don't enforce the target's minimum global alignment, since the only use
2465   // of the string is via this class initializer.
2466   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2467   GV->setAlignment(Align.getQuantity());
2468   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2469 
2470   // String length.
2471   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2472   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2473 
2474   // The struct.
2475   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2476   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2477                                 llvm::GlobalVariable::PrivateLinkage, C,
2478                                 "_unnamed_nsstring_");
2479   // FIXME. Fix section.
2480   if (const char *Sect =
2481         LangOpts.ObjCRuntime.isNonFragile()
2482           ? getTarget().getNSStringNonFragileABISection()
2483           : getTarget().getNSStringSection())
2484     GV->setSection(Sect);
2485   Entry.setValue(GV);
2486 
2487   return GV;
2488 }
2489 
2490 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2491   if (ObjCFastEnumerationStateType.isNull()) {
2492     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2493                                      Context.getTranslationUnitDecl(),
2494                       &Context.Idents.get("__objcFastEnumerationState"));
2495     D->startDefinition();
2496 
2497     QualType FieldTypes[] = {
2498       Context.UnsignedLongTy,
2499       Context.getPointerType(Context.getObjCIdType()),
2500       Context.getPointerType(Context.UnsignedLongTy),
2501       Context.getConstantArrayType(Context.UnsignedLongTy,
2502                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2503     };
2504 
2505     for (size_t i = 0; i < 4; ++i) {
2506       FieldDecl *Field = FieldDecl::Create(Context,
2507                                            D,
2508                                            SourceLocation(),
2509                                            SourceLocation(), 0,
2510                                            FieldTypes[i], /*TInfo=*/0,
2511                                            /*BitWidth=*/0,
2512                                            /*Mutable=*/false,
2513                                            ICIS_NoInit);
2514       Field->setAccess(AS_public);
2515       D->addDecl(Field);
2516     }
2517 
2518     D->completeDefinition();
2519     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2520   }
2521 
2522   return ObjCFastEnumerationStateType;
2523 }
2524 
2525 llvm::Constant *
2526 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2527   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2528 
2529   // Don't emit it as the address of the string, emit the string data itself
2530   // as an inline array.
2531   if (E->getCharByteWidth() == 1) {
2532     SmallString<64> Str(E->getString());
2533 
2534     // Resize the string to the right size, which is indicated by its type.
2535     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2536     Str.resize(CAT->getSize().getZExtValue());
2537     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2538   }
2539 
2540   llvm::ArrayType *AType =
2541     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2542   llvm::Type *ElemTy = AType->getElementType();
2543   unsigned NumElements = AType->getNumElements();
2544 
2545   // Wide strings have either 2-byte or 4-byte elements.
2546   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2547     SmallVector<uint16_t, 32> Elements;
2548     Elements.reserve(NumElements);
2549 
2550     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2551       Elements.push_back(E->getCodeUnit(i));
2552     Elements.resize(NumElements);
2553     return llvm::ConstantDataArray::get(VMContext, Elements);
2554   }
2555 
2556   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2557   SmallVector<uint32_t, 32> Elements;
2558   Elements.reserve(NumElements);
2559 
2560   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2561     Elements.push_back(E->getCodeUnit(i));
2562   Elements.resize(NumElements);
2563   return llvm::ConstantDataArray::get(VMContext, Elements);
2564 }
2565 
2566 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2567 /// constant array for the given string literal.
2568 llvm::Constant *
2569 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2570   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2571   if (S->isAscii() || S->isUTF8()) {
2572     SmallString<64> Str(S->getString());
2573 
2574     // Resize the string to the right size, which is indicated by its type.
2575     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2576     Str.resize(CAT->getSize().getZExtValue());
2577     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2578   }
2579 
2580   // FIXME: the following does not memoize wide strings.
2581   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2582   llvm::GlobalVariable *GV =
2583     new llvm::GlobalVariable(getModule(),C->getType(),
2584                              !LangOpts.WritableStrings,
2585                              llvm::GlobalValue::PrivateLinkage,
2586                              C,".str");
2587 
2588   GV->setAlignment(Align.getQuantity());
2589   GV->setUnnamedAddr(true);
2590   return GV;
2591 }
2592 
2593 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2594 /// array for the given ObjCEncodeExpr node.
2595 llvm::Constant *
2596 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2597   std::string Str;
2598   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2599 
2600   return GetAddrOfConstantCString(Str);
2601 }
2602 
2603 
2604 /// GenerateWritableString -- Creates storage for a string literal.
2605 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2606                                              bool constant,
2607                                              CodeGenModule &CGM,
2608                                              const char *GlobalName,
2609                                              unsigned Alignment) {
2610   // Create Constant for this string literal. Don't add a '\0'.
2611   llvm::Constant *C =
2612       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2613 
2614   // Create a global variable for this string
2615   llvm::GlobalVariable *GV =
2616     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2617                              llvm::GlobalValue::PrivateLinkage,
2618                              C, GlobalName);
2619   GV->setAlignment(Alignment);
2620   GV->setUnnamedAddr(true);
2621   return GV;
2622 }
2623 
2624 /// GetAddrOfConstantString - Returns a pointer to a character array
2625 /// containing the literal. This contents are exactly that of the
2626 /// given string, i.e. it will not be null terminated automatically;
2627 /// see GetAddrOfConstantCString. Note that whether the result is
2628 /// actually a pointer to an LLVM constant depends on
2629 /// Feature.WriteableStrings.
2630 ///
2631 /// The result has pointer to array type.
2632 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2633                                                        const char *GlobalName,
2634                                                        unsigned Alignment) {
2635   // Get the default prefix if a name wasn't specified.
2636   if (!GlobalName)
2637     GlobalName = ".str";
2638 
2639   if (Alignment == 0)
2640     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2641       .getQuantity();
2642 
2643   // Don't share any string literals if strings aren't constant.
2644   if (LangOpts.WritableStrings)
2645     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2646 
2647   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2648     ConstantStringMap.GetOrCreateValue(Str);
2649 
2650   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2651     if (Alignment > GV->getAlignment()) {
2652       GV->setAlignment(Alignment);
2653     }
2654     return GV;
2655   }
2656 
2657   // Create a global variable for this.
2658   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2659                                                    Alignment);
2660   Entry.setValue(GV);
2661   return GV;
2662 }
2663 
2664 /// GetAddrOfConstantCString - Returns a pointer to a character
2665 /// array containing the literal and a terminating '\0'
2666 /// character. The result has pointer to array type.
2667 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2668                                                         const char *GlobalName,
2669                                                         unsigned Alignment) {
2670   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2671   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2672 }
2673 
2674 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2675     const MaterializeTemporaryExpr *E, const Expr *Init) {
2676   assert((E->getStorageDuration() == SD_Static ||
2677           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2678   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2679 
2680   // If we're not materializing a subobject of the temporary, keep the
2681   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2682   QualType MaterializedType = Init->getType();
2683   if (Init == E->GetTemporaryExpr())
2684     MaterializedType = E->getType();
2685 
2686   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2687   if (Slot)
2688     return Slot;
2689 
2690   // FIXME: If an externally-visible declaration extends multiple temporaries,
2691   // we need to give each temporary the same name in every translation unit (and
2692   // we also need to make the temporaries externally-visible).
2693   SmallString<256> Name;
2694   llvm::raw_svector_ostream Out(Name);
2695   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2696   Out.flush();
2697 
2698   APValue *Value = 0;
2699   if (E->getStorageDuration() == SD_Static) {
2700     // We might have a cached constant initializer for this temporary. Note
2701     // that this might have a different value from the value computed by
2702     // evaluating the initializer if the surrounding constant expression
2703     // modifies the temporary.
2704     Value = getContext().getMaterializedTemporaryValue(E, false);
2705     if (Value && Value->isUninit())
2706       Value = 0;
2707   }
2708 
2709   // Try evaluating it now, it might have a constant initializer.
2710   Expr::EvalResult EvalResult;
2711   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2712       !EvalResult.hasSideEffects())
2713     Value = &EvalResult.Val;
2714 
2715   llvm::Constant *InitialValue = 0;
2716   bool Constant = false;
2717   llvm::Type *Type;
2718   if (Value) {
2719     // The temporary has a constant initializer, use it.
2720     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2721     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2722     Type = InitialValue->getType();
2723   } else {
2724     // No initializer, the initialization will be provided when we
2725     // initialize the declaration which performed lifetime extension.
2726     Type = getTypes().ConvertTypeForMem(MaterializedType);
2727   }
2728 
2729   // Create a global variable for this lifetime-extended temporary.
2730   llvm::GlobalVariable *GV =
2731     new llvm::GlobalVariable(getModule(), Type, Constant,
2732                              llvm::GlobalValue::PrivateLinkage,
2733                              InitialValue, Name.c_str());
2734   GV->setAlignment(
2735       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2736   if (VD->getTLSKind())
2737     setTLSMode(GV, *VD);
2738   Slot = GV;
2739   return GV;
2740 }
2741 
2742 /// EmitObjCPropertyImplementations - Emit information for synthesized
2743 /// properties for an implementation.
2744 void CodeGenModule::EmitObjCPropertyImplementations(const
2745                                                     ObjCImplementationDecl *D) {
2746   for (ObjCImplementationDecl::propimpl_iterator
2747          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2748     ObjCPropertyImplDecl *PID = *i;
2749 
2750     // Dynamic is just for type-checking.
2751     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2752       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2753 
2754       // Determine which methods need to be implemented, some may have
2755       // been overridden. Note that ::isPropertyAccessor is not the method
2756       // we want, that just indicates if the decl came from a
2757       // property. What we want to know is if the method is defined in
2758       // this implementation.
2759       if (!D->getInstanceMethod(PD->getGetterName()))
2760         CodeGenFunction(*this).GenerateObjCGetter(
2761                                  const_cast<ObjCImplementationDecl *>(D), PID);
2762       if (!PD->isReadOnly() &&
2763           !D->getInstanceMethod(PD->getSetterName()))
2764         CodeGenFunction(*this).GenerateObjCSetter(
2765                                  const_cast<ObjCImplementationDecl *>(D), PID);
2766     }
2767   }
2768 }
2769 
2770 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2771   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2772   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2773        ivar; ivar = ivar->getNextIvar())
2774     if (ivar->getType().isDestructedType())
2775       return true;
2776 
2777   return false;
2778 }
2779 
2780 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2781 /// for an implementation.
2782 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2783   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2784   if (needsDestructMethod(D)) {
2785     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2786     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2787     ObjCMethodDecl *DTORMethod =
2788       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2789                              cxxSelector, getContext().VoidTy, 0, D,
2790                              /*isInstance=*/true, /*isVariadic=*/false,
2791                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2792                              /*isDefined=*/false, ObjCMethodDecl::Required);
2793     D->addInstanceMethod(DTORMethod);
2794     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2795     D->setHasDestructors(true);
2796   }
2797 
2798   // If the implementation doesn't have any ivar initializers, we don't need
2799   // a .cxx_construct.
2800   if (D->getNumIvarInitializers() == 0)
2801     return;
2802 
2803   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2804   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2805   // The constructor returns 'self'.
2806   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2807                                                 D->getLocation(),
2808                                                 D->getLocation(),
2809                                                 cxxSelector,
2810                                                 getContext().getObjCIdType(), 0,
2811                                                 D, /*isInstance=*/true,
2812                                                 /*isVariadic=*/false,
2813                                                 /*isPropertyAccessor=*/true,
2814                                                 /*isImplicitlyDeclared=*/true,
2815                                                 /*isDefined=*/false,
2816                                                 ObjCMethodDecl::Required);
2817   D->addInstanceMethod(CTORMethod);
2818   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2819   D->setHasNonZeroConstructors(true);
2820 }
2821 
2822 /// EmitNamespace - Emit all declarations in a namespace.
2823 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2824   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2825        I != E; ++I) {
2826     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2827       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2828           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2829         continue;
2830     EmitTopLevelDecl(*I);
2831   }
2832 }
2833 
2834 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2835 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2836   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2837       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2838     ErrorUnsupported(LSD, "linkage spec");
2839     return;
2840   }
2841 
2842   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2843        I != E; ++I) {
2844     // Meta-data for ObjC class includes references to implemented methods.
2845     // Generate class's method definitions first.
2846     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2847       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2848            MEnd = OID->meth_end();
2849            M != MEnd; ++M)
2850         EmitTopLevelDecl(*M);
2851     }
2852     EmitTopLevelDecl(*I);
2853   }
2854 }
2855 
2856 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2857 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2858   // Ignore dependent declarations.
2859   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2860     return;
2861 
2862   switch (D->getKind()) {
2863   case Decl::CXXConversion:
2864   case Decl::CXXMethod:
2865   case Decl::Function:
2866     // Skip function templates
2867     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2868         cast<FunctionDecl>(D)->isLateTemplateParsed())
2869       return;
2870 
2871     EmitGlobal(cast<FunctionDecl>(D));
2872     break;
2873 
2874   case Decl::Var:
2875     // Skip variable templates
2876     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2877       return;
2878   case Decl::VarTemplateSpecialization:
2879     EmitGlobal(cast<VarDecl>(D));
2880     break;
2881 
2882   // Indirect fields from global anonymous structs and unions can be
2883   // ignored; only the actual variable requires IR gen support.
2884   case Decl::IndirectField:
2885     break;
2886 
2887   // C++ Decls
2888   case Decl::Namespace:
2889     EmitNamespace(cast<NamespaceDecl>(D));
2890     break;
2891     // No code generation needed.
2892   case Decl::UsingShadow:
2893   case Decl::Using:
2894   case Decl::ClassTemplate:
2895   case Decl::VarTemplate:
2896   case Decl::VarTemplatePartialSpecialization:
2897   case Decl::FunctionTemplate:
2898   case Decl::TypeAliasTemplate:
2899   case Decl::Block:
2900   case Decl::Empty:
2901     break;
2902   case Decl::NamespaceAlias:
2903     if (CGDebugInfo *DI = getModuleDebugInfo())
2904         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2905     return;
2906   case Decl::UsingDirective: // using namespace X; [C++]
2907     if (CGDebugInfo *DI = getModuleDebugInfo())
2908       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2909     return;
2910   case Decl::CXXConstructor:
2911     // Skip function templates
2912     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2913         cast<FunctionDecl>(D)->isLateTemplateParsed())
2914       return;
2915 
2916     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2917     break;
2918   case Decl::CXXDestructor:
2919     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2920       return;
2921     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2922     break;
2923 
2924   case Decl::StaticAssert:
2925     // Nothing to do.
2926     break;
2927 
2928   // Objective-C Decls
2929 
2930   // Forward declarations, no (immediate) code generation.
2931   case Decl::ObjCInterface:
2932   case Decl::ObjCCategory:
2933     break;
2934 
2935   case Decl::ObjCProtocol: {
2936     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2937     if (Proto->isThisDeclarationADefinition())
2938       ObjCRuntime->GenerateProtocol(Proto);
2939     break;
2940   }
2941 
2942   case Decl::ObjCCategoryImpl:
2943     // Categories have properties but don't support synthesize so we
2944     // can ignore them here.
2945     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2946     break;
2947 
2948   case Decl::ObjCImplementation: {
2949     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2950     EmitObjCPropertyImplementations(OMD);
2951     EmitObjCIvarInitializations(OMD);
2952     ObjCRuntime->GenerateClass(OMD);
2953     // Emit global variable debug information.
2954     if (CGDebugInfo *DI = getModuleDebugInfo())
2955       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2956         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2957             OMD->getClassInterface()), OMD->getLocation());
2958     break;
2959   }
2960   case Decl::ObjCMethod: {
2961     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2962     // If this is not a prototype, emit the body.
2963     if (OMD->getBody())
2964       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2965     break;
2966   }
2967   case Decl::ObjCCompatibleAlias:
2968     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2969     break;
2970 
2971   case Decl::LinkageSpec:
2972     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2973     break;
2974 
2975   case Decl::FileScopeAsm: {
2976     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2977     StringRef AsmString = AD->getAsmString()->getString();
2978 
2979     const std::string &S = getModule().getModuleInlineAsm();
2980     if (S.empty())
2981       getModule().setModuleInlineAsm(AsmString);
2982     else if (S.end()[-1] == '\n')
2983       getModule().setModuleInlineAsm(S + AsmString.str());
2984     else
2985       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2986     break;
2987   }
2988 
2989   case Decl::Import: {
2990     ImportDecl *Import = cast<ImportDecl>(D);
2991 
2992     // Ignore import declarations that come from imported modules.
2993     if (clang::Module *Owner = Import->getOwningModule()) {
2994       if (getLangOpts().CurrentModule.empty() ||
2995           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2996         break;
2997     }
2998 
2999     ImportedModules.insert(Import->getImportedModule());
3000     break;
3001  }
3002 
3003   default:
3004     // Make sure we handled everything we should, every other kind is a
3005     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3006     // function. Need to recode Decl::Kind to do that easily.
3007     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3008   }
3009 }
3010 
3011 /// Turns the given pointer into a constant.
3012 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3013                                           const void *Ptr) {
3014   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3015   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3016   return llvm::ConstantInt::get(i64, PtrInt);
3017 }
3018 
3019 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3020                                    llvm::NamedMDNode *&GlobalMetadata,
3021                                    GlobalDecl D,
3022                                    llvm::GlobalValue *Addr) {
3023   if (!GlobalMetadata)
3024     GlobalMetadata =
3025       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3026 
3027   // TODO: should we report variant information for ctors/dtors?
3028   llvm::Value *Ops[] = {
3029     Addr,
3030     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3031   };
3032   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3033 }
3034 
3035 /// For each function which is declared within an extern "C" region and marked
3036 /// as 'used', but has internal linkage, create an alias from the unmangled
3037 /// name to the mangled name if possible. People expect to be able to refer
3038 /// to such functions with an unmangled name from inline assembly within the
3039 /// same translation unit.
3040 void CodeGenModule::EmitStaticExternCAliases() {
3041   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3042                                   E = StaticExternCValues.end();
3043        I != E; ++I) {
3044     IdentifierInfo *Name = I->first;
3045     llvm::GlobalValue *Val = I->second;
3046     if (Val && !getModule().getNamedValue(Name->getName()))
3047       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3048                                           Name->getName(), Val, &getModule()));
3049   }
3050 }
3051 
3052 /// Emits metadata nodes associating all the global values in the
3053 /// current module with the Decls they came from.  This is useful for
3054 /// projects using IR gen as a subroutine.
3055 ///
3056 /// Since there's currently no way to associate an MDNode directly
3057 /// with an llvm::GlobalValue, we create a global named metadata
3058 /// with the name 'clang.global.decl.ptrs'.
3059 void CodeGenModule::EmitDeclMetadata() {
3060   llvm::NamedMDNode *GlobalMetadata = 0;
3061 
3062   // StaticLocalDeclMap
3063   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3064          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3065        I != E; ++I) {
3066     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3067     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3068   }
3069 }
3070 
3071 /// Emits metadata nodes for all the local variables in the current
3072 /// function.
3073 void CodeGenFunction::EmitDeclMetadata() {
3074   if (LocalDeclMap.empty()) return;
3075 
3076   llvm::LLVMContext &Context = getLLVMContext();
3077 
3078   // Find the unique metadata ID for this name.
3079   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3080 
3081   llvm::NamedMDNode *GlobalMetadata = 0;
3082 
3083   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3084          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3085     const Decl *D = I->first;
3086     llvm::Value *Addr = I->second;
3087 
3088     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3089       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3090       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3091     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3092       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3093       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3094     }
3095   }
3096 }
3097 
3098 void CodeGenModule::EmitVersionIdentMetadata() {
3099   llvm::NamedMDNode *IdentMetadata =
3100     TheModule.getOrInsertNamedMetadata("llvm.ident");
3101   std::string Version = getClangFullVersion();
3102   llvm::LLVMContext &Ctx = TheModule.getContext();
3103 
3104   llvm::Value *IdentNode[] = {
3105     llvm::MDString::get(Ctx, Version)
3106   };
3107   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3108 }
3109 
3110 void CodeGenModule::EmitCoverageFile() {
3111   if (!getCodeGenOpts().CoverageFile.empty()) {
3112     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3113       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3114       llvm::LLVMContext &Ctx = TheModule.getContext();
3115       llvm::MDString *CoverageFile =
3116           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3117       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3118         llvm::MDNode *CU = CUNode->getOperand(i);
3119         llvm::Value *node[] = { CoverageFile, CU };
3120         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3121         GCov->addOperand(N);
3122       }
3123     }
3124   }
3125 }
3126 
3127 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3128                                                      QualType GuidType) {
3129   // Sema has checked that all uuid strings are of the form
3130   // "12345678-1234-1234-1234-1234567890ab".
3131   assert(Uuid.size() == 36);
3132   for (unsigned i = 0; i < 36; ++i) {
3133     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3134     else                                         assert(isHexDigit(Uuid[i]));
3135   }
3136 
3137   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3138 
3139   llvm::Constant *Field3[8];
3140   for (unsigned Idx = 0; Idx < 8; ++Idx)
3141     Field3[Idx] = llvm::ConstantInt::get(
3142         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3143 
3144   llvm::Constant *Fields[4] = {
3145     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3146     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3147     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3148     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3149   };
3150 
3151   return llvm::ConstantStruct::getAnon(Fields);
3152 }
3153