1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGCXXABI.h" 19 #include "CGObjCRuntime.h" 20 #include "Mangle.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/RecordLayout.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/Diagnostic.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Basic/ConvertUTF.h" 34 #include "llvm/CallingConv.h" 35 #include "llvm/Module.h" 36 #include "llvm/Intrinsics.h" 37 #include "llvm/LLVMContext.h" 38 #include "llvm/ADT/Triple.h" 39 #include "llvm/Target/TargetData.h" 40 #include "llvm/Support/CallSite.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace CodeGen; 44 45 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 46 switch (CGM.getContext().Target.getCXXABI()) { 47 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 48 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 49 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 50 } 51 52 llvm_unreachable("invalid C++ ABI kind"); 53 return *CreateItaniumCXXABI(CGM); 54 } 55 56 57 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 58 llvm::Module &M, const llvm::TargetData &TD, 59 Diagnostic &diags) 60 : BlockModule(C, M, TD, Types, *this), Context(C), 61 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 62 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 63 ABI(createCXXABI(*this)), 64 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 65 VTables(*this), Runtime(0), 66 CFConstantStringClassRef(0), NSConstantStringClassRef(0), 67 VMContext(M.getContext()), 68 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 69 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 70 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 71 BlockObjectAssign(0), BlockObjectDispose(0){ 72 73 if (!Features.ObjC1) 74 Runtime = 0; 75 else if (!Features.NeXTRuntime) 76 Runtime = CreateGNUObjCRuntime(*this); 77 else if (Features.ObjCNonFragileABI) 78 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 79 else 80 Runtime = CreateMacObjCRuntime(*this); 81 82 // If debug info generation is enabled, create the CGDebugInfo object. 83 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 84 } 85 86 CodeGenModule::~CodeGenModule() { 87 delete Runtime; 88 delete &ABI; 89 delete DebugInfo; 90 } 91 92 void CodeGenModule::createObjCRuntime() { 93 if (!Features.NeXTRuntime) 94 Runtime = CreateGNUObjCRuntime(*this); 95 else if (Features.ObjCNonFragileABI) 96 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 97 else 98 Runtime = CreateMacObjCRuntime(*this); 99 } 100 101 void CodeGenModule::Release() { 102 EmitDeferred(); 103 EmitCXXGlobalInitFunc(); 104 EmitCXXGlobalDtorFunc(); 105 if (Runtime) 106 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 107 AddGlobalCtor(ObjCInitFunction); 108 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 109 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 110 EmitAnnotations(); 111 EmitLLVMUsed(); 112 113 SimplifyPersonality(); 114 115 if (getCodeGenOpts().EmitDeclMetadata) 116 EmitDeclMetadata(); 117 } 118 119 bool CodeGenModule::isTargetDarwin() const { 120 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 121 } 122 123 /// ErrorUnsupported - Print out an error that codegen doesn't support the 124 /// specified stmt yet. 125 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 126 bool OmitOnError) { 127 if (OmitOnError && getDiags().hasErrorOccurred()) 128 return; 129 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 130 "cannot compile this %0 yet"); 131 std::string Msg = Type; 132 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 133 << Msg << S->getSourceRange(); 134 } 135 136 /// ErrorUnsupported - Print out an error that codegen doesn't support the 137 /// specified decl yet. 138 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 139 bool OmitOnError) { 140 if (OmitOnError && getDiags().hasErrorOccurred()) 141 return; 142 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 143 "cannot compile this %0 yet"); 144 std::string Msg = Type; 145 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 146 } 147 148 LangOptions::VisibilityMode 149 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 150 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 151 if (VD->getStorageClass() == SC_PrivateExtern) 152 return LangOptions::Hidden; 153 154 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 155 switch (attr->getVisibility()) { 156 default: assert(0 && "Unknown visibility!"); 157 case VisibilityAttr::Default: 158 return LangOptions::Default; 159 case VisibilityAttr::Hidden: 160 return LangOptions::Hidden; 161 case VisibilityAttr::Protected: 162 return LangOptions::Protected; 163 } 164 } 165 166 if (getLangOptions().CPlusPlus) { 167 // Entities subject to an explicit instantiation declaration get default 168 // visibility. 169 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 170 if (Function->getTemplateSpecializationKind() 171 == TSK_ExplicitInstantiationDeclaration) 172 return LangOptions::Default; 173 } else if (const ClassTemplateSpecializationDecl *ClassSpec 174 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 175 if (ClassSpec->getSpecializationKind() 176 == TSK_ExplicitInstantiationDeclaration) 177 return LangOptions::Default; 178 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 179 if (Record->getTemplateSpecializationKind() 180 == TSK_ExplicitInstantiationDeclaration) 181 return LangOptions::Default; 182 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 183 if (Var->isStaticDataMember() && 184 (Var->getTemplateSpecializationKind() 185 == TSK_ExplicitInstantiationDeclaration)) 186 return LangOptions::Default; 187 } 188 189 // If -fvisibility-inlines-hidden was provided, then inline C++ member 190 // functions get "hidden" visibility by default. 191 if (getLangOptions().InlineVisibilityHidden) 192 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 193 if (Method->isInlined()) 194 return LangOptions::Hidden; 195 } 196 197 // If this decl is contained in a class, it should have the same visibility 198 // as the parent class. 199 if (const DeclContext *DC = D->getDeclContext()) 200 if (DC->isRecord()) 201 return getDeclVisibilityMode(cast<Decl>(DC)); 202 203 return getLangOptions().getVisibilityMode(); 204 } 205 206 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 207 const Decl *D) const { 208 // Internal definitions always have default visibility. 209 if (GV->hasLocalLinkage()) { 210 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 211 return; 212 } 213 214 switch (getDeclVisibilityMode(D)) { 215 default: assert(0 && "Unknown visibility!"); 216 case LangOptions::Default: 217 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 218 case LangOptions::Hidden: 219 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 220 case LangOptions::Protected: 221 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 222 } 223 } 224 225 /// Set the symbol visibility of type information (vtable and RTTI) 226 /// associated with the given type. 227 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 228 const CXXRecordDecl *RD, 229 bool IsForRTTI) const { 230 setGlobalVisibility(GV, RD); 231 232 if (!CodeGenOpts.HiddenWeakVTables) 233 return; 234 235 // We want to drop the visibility to hidden for weak type symbols. 236 // This isn't possible if there might be unresolved references 237 // elsewhere that rely on this symbol being visible. 238 239 // This should be kept roughly in sync with setThunkVisibility 240 // in CGVTables.cpp. 241 242 // Preconditions. 243 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 244 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 245 return; 246 247 // Don't override an explicit visibility attribute. 248 if (RD->hasAttr<VisibilityAttr>()) 249 return; 250 251 switch (RD->getTemplateSpecializationKind()) { 252 // We have to disable the optimization if this is an EI definition 253 // because there might be EI declarations in other shared objects. 254 case TSK_ExplicitInstantiationDefinition: 255 case TSK_ExplicitInstantiationDeclaration: 256 return; 257 258 // Every use of a non-template class's type information has to emit it. 259 case TSK_Undeclared: 260 break; 261 262 // In theory, implicit instantiations can ignore the possibility of 263 // an explicit instantiation declaration because there necessarily 264 // must be an EI definition somewhere with default visibility. In 265 // practice, it's possible to have an explicit instantiation for 266 // an arbitrary template class, and linkers aren't necessarily able 267 // to deal with mixed-visibility symbols. 268 case TSK_ExplicitSpecialization: 269 case TSK_ImplicitInstantiation: 270 if (!CodeGenOpts.HiddenWeakTemplateVTables) 271 return; 272 break; 273 } 274 275 // If there's a key function, there may be translation units 276 // that don't have the key function's definition. But ignore 277 // this if we're emitting RTTI under -fno-rtti. 278 if (!IsForRTTI || Features.RTTI) 279 if (Context.getKeyFunction(RD)) 280 return; 281 282 // Otherwise, drop the visibility to hidden. 283 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 284 } 285 286 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 287 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 288 289 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 290 if (!Str.empty()) 291 return Str; 292 293 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 294 IdentifierInfo *II = ND->getIdentifier(); 295 assert(II && "Attempt to mangle unnamed decl."); 296 297 Str = II->getName(); 298 return Str; 299 } 300 301 llvm::SmallString<256> Buffer; 302 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 303 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 304 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 305 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 306 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 307 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer); 308 else 309 getCXXABI().getMangleContext().mangleName(ND, Buffer); 310 311 // Allocate space for the mangled name. 312 size_t Length = Buffer.size(); 313 char *Name = MangledNamesAllocator.Allocate<char>(Length); 314 std::copy(Buffer.begin(), Buffer.end(), Name); 315 316 Str = llvm::StringRef(Name, Length); 317 318 return Str; 319 } 320 321 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 322 const BlockDecl *BD) { 323 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 324 } 325 326 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 327 return getModule().getNamedValue(Name); 328 } 329 330 /// AddGlobalCtor - Add a function to the list that will be called before 331 /// main() runs. 332 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 333 // FIXME: Type coercion of void()* types. 334 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 335 } 336 337 /// AddGlobalDtor - Add a function to the list that will be called 338 /// when the module is unloaded. 339 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 340 // FIXME: Type coercion of void()* types. 341 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 342 } 343 344 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 345 // Ctor function type is void()*. 346 llvm::FunctionType* CtorFTy = 347 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 348 std::vector<const llvm::Type*>(), 349 false); 350 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 351 352 // Get the type of a ctor entry, { i32, void ()* }. 353 llvm::StructType* CtorStructTy = 354 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 355 llvm::PointerType::getUnqual(CtorFTy), NULL); 356 357 // Construct the constructor and destructor arrays. 358 std::vector<llvm::Constant*> Ctors; 359 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 360 std::vector<llvm::Constant*> S; 361 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 362 I->second, false)); 363 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 364 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 365 } 366 367 if (!Ctors.empty()) { 368 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 369 new llvm::GlobalVariable(TheModule, AT, false, 370 llvm::GlobalValue::AppendingLinkage, 371 llvm::ConstantArray::get(AT, Ctors), 372 GlobalName); 373 } 374 } 375 376 void CodeGenModule::EmitAnnotations() { 377 if (Annotations.empty()) 378 return; 379 380 // Create a new global variable for the ConstantStruct in the Module. 381 llvm::Constant *Array = 382 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 383 Annotations.size()), 384 Annotations); 385 llvm::GlobalValue *gv = 386 new llvm::GlobalVariable(TheModule, Array->getType(), false, 387 llvm::GlobalValue::AppendingLinkage, Array, 388 "llvm.global.annotations"); 389 gv->setSection("llvm.metadata"); 390 } 391 392 llvm::GlobalValue::LinkageTypes 393 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 394 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 395 396 if (Linkage == GVA_Internal) 397 return llvm::Function::InternalLinkage; 398 399 if (D->hasAttr<DLLExportAttr>()) 400 return llvm::Function::DLLExportLinkage; 401 402 if (D->hasAttr<WeakAttr>()) 403 return llvm::Function::WeakAnyLinkage; 404 405 // In C99 mode, 'inline' functions are guaranteed to have a strong 406 // definition somewhere else, so we can use available_externally linkage. 407 if (Linkage == GVA_C99Inline) 408 return llvm::Function::AvailableExternallyLinkage; 409 410 // In C++, the compiler has to emit a definition in every translation unit 411 // that references the function. We should use linkonce_odr because 412 // a) if all references in this translation unit are optimized away, we 413 // don't need to codegen it. b) if the function persists, it needs to be 414 // merged with other definitions. c) C++ has the ODR, so we know the 415 // definition is dependable. 416 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 417 return llvm::Function::LinkOnceODRLinkage; 418 419 // An explicit instantiation of a template has weak linkage, since 420 // explicit instantiations can occur in multiple translation units 421 // and must all be equivalent. However, we are not allowed to 422 // throw away these explicit instantiations. 423 if (Linkage == GVA_ExplicitTemplateInstantiation) 424 return llvm::Function::WeakODRLinkage; 425 426 // Otherwise, we have strong external linkage. 427 assert(Linkage == GVA_StrongExternal); 428 return llvm::Function::ExternalLinkage; 429 } 430 431 432 /// SetFunctionDefinitionAttributes - Set attributes for a global. 433 /// 434 /// FIXME: This is currently only done for aliases and functions, but not for 435 /// variables (these details are set in EmitGlobalVarDefinition for variables). 436 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 437 llvm::GlobalValue *GV) { 438 SetCommonAttributes(D, GV); 439 } 440 441 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 442 const CGFunctionInfo &Info, 443 llvm::Function *F) { 444 unsigned CallingConv; 445 AttributeListType AttributeList; 446 ConstructAttributeList(Info, D, AttributeList, CallingConv); 447 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 448 AttributeList.size())); 449 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 450 } 451 452 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 453 llvm::Function *F) { 454 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 455 F->addFnAttr(llvm::Attribute::NoUnwind); 456 457 if (D->hasAttr<AlwaysInlineAttr>()) 458 F->addFnAttr(llvm::Attribute::AlwaysInline); 459 460 if (D->hasAttr<NakedAttr>()) 461 F->addFnAttr(llvm::Attribute::Naked); 462 463 if (D->hasAttr<NoInlineAttr>()) 464 F->addFnAttr(llvm::Attribute::NoInline); 465 466 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 467 F->addFnAttr(llvm::Attribute::StackProtect); 468 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 469 F->addFnAttr(llvm::Attribute::StackProtectReq); 470 471 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 472 if (alignment) 473 F->setAlignment(alignment); 474 475 // C++ ABI requires 2-byte alignment for member functions. 476 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 477 F->setAlignment(2); 478 } 479 480 void CodeGenModule::SetCommonAttributes(const Decl *D, 481 llvm::GlobalValue *GV) { 482 setGlobalVisibility(GV, D); 483 484 if (D->hasAttr<UsedAttr>()) 485 AddUsedGlobal(GV); 486 487 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 488 GV->setSection(SA->getName()); 489 490 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 491 } 492 493 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 494 llvm::Function *F, 495 const CGFunctionInfo &FI) { 496 SetLLVMFunctionAttributes(D, FI, F); 497 SetLLVMFunctionAttributesForDefinition(D, F); 498 499 F->setLinkage(llvm::Function::InternalLinkage); 500 501 SetCommonAttributes(D, F); 502 } 503 504 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 505 llvm::Function *F, 506 bool IsIncompleteFunction) { 507 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 508 509 if (!IsIncompleteFunction) 510 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 511 512 // Only a few attributes are set on declarations; these may later be 513 // overridden by a definition. 514 515 if (FD->hasAttr<DLLImportAttr>()) { 516 F->setLinkage(llvm::Function::DLLImportLinkage); 517 } else if (FD->hasAttr<WeakAttr>() || 518 FD->hasAttr<WeakImportAttr>()) { 519 // "extern_weak" is overloaded in LLVM; we probably should have 520 // separate linkage types for this. 521 F->setLinkage(llvm::Function::ExternalWeakLinkage); 522 } else { 523 F->setLinkage(llvm::Function::ExternalLinkage); 524 } 525 526 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 527 F->setSection(SA->getName()); 528 } 529 530 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 531 assert(!GV->isDeclaration() && 532 "Only globals with definition can force usage."); 533 LLVMUsed.push_back(GV); 534 } 535 536 void CodeGenModule::EmitLLVMUsed() { 537 // Don't create llvm.used if there is no need. 538 if (LLVMUsed.empty()) 539 return; 540 541 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 542 543 // Convert LLVMUsed to what ConstantArray needs. 544 std::vector<llvm::Constant*> UsedArray; 545 UsedArray.resize(LLVMUsed.size()); 546 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 547 UsedArray[i] = 548 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 549 i8PTy); 550 } 551 552 if (UsedArray.empty()) 553 return; 554 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 555 556 llvm::GlobalVariable *GV = 557 new llvm::GlobalVariable(getModule(), ATy, false, 558 llvm::GlobalValue::AppendingLinkage, 559 llvm::ConstantArray::get(ATy, UsedArray), 560 "llvm.used"); 561 562 GV->setSection("llvm.metadata"); 563 } 564 565 void CodeGenModule::EmitDeferred() { 566 // Emit code for any potentially referenced deferred decls. Since a 567 // previously unused static decl may become used during the generation of code 568 // for a static function, iterate until no changes are made. 569 570 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 571 if (!DeferredVTables.empty()) { 572 const CXXRecordDecl *RD = DeferredVTables.back(); 573 DeferredVTables.pop_back(); 574 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 575 continue; 576 } 577 578 GlobalDecl D = DeferredDeclsToEmit.back(); 579 DeferredDeclsToEmit.pop_back(); 580 581 // Check to see if we've already emitted this. This is necessary 582 // for a couple of reasons: first, decls can end up in the 583 // deferred-decls queue multiple times, and second, decls can end 584 // up with definitions in unusual ways (e.g. by an extern inline 585 // function acquiring a strong function redefinition). Just 586 // ignore these cases. 587 // 588 // TODO: That said, looking this up multiple times is very wasteful. 589 llvm::StringRef Name = getMangledName(D); 590 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 591 assert(CGRef && "Deferred decl wasn't referenced?"); 592 593 if (!CGRef->isDeclaration()) 594 continue; 595 596 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 597 // purposes an alias counts as a definition. 598 if (isa<llvm::GlobalAlias>(CGRef)) 599 continue; 600 601 // Otherwise, emit the definition and move on to the next one. 602 EmitGlobalDefinition(D); 603 } 604 } 605 606 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 607 /// annotation information for a given GlobalValue. The annotation struct is 608 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 609 /// GlobalValue being annotated. The second field is the constant string 610 /// created from the AnnotateAttr's annotation. The third field is a constant 611 /// string containing the name of the translation unit. The fourth field is 612 /// the line number in the file of the annotated value declaration. 613 /// 614 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 615 /// appears to. 616 /// 617 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 618 const AnnotateAttr *AA, 619 unsigned LineNo) { 620 llvm::Module *M = &getModule(); 621 622 // get [N x i8] constants for the annotation string, and the filename string 623 // which are the 2nd and 3rd elements of the global annotation structure. 624 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 625 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 626 AA->getAnnotation(), true); 627 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 628 M->getModuleIdentifier(), 629 true); 630 631 // Get the two global values corresponding to the ConstantArrays we just 632 // created to hold the bytes of the strings. 633 llvm::GlobalValue *annoGV = 634 new llvm::GlobalVariable(*M, anno->getType(), false, 635 llvm::GlobalValue::PrivateLinkage, anno, 636 GV->getName()); 637 // translation unit name string, emitted into the llvm.metadata section. 638 llvm::GlobalValue *unitGV = 639 new llvm::GlobalVariable(*M, unit->getType(), false, 640 llvm::GlobalValue::PrivateLinkage, unit, 641 ".str"); 642 643 // Create the ConstantStruct for the global annotation. 644 llvm::Constant *Fields[4] = { 645 llvm::ConstantExpr::getBitCast(GV, SBP), 646 llvm::ConstantExpr::getBitCast(annoGV, SBP), 647 llvm::ConstantExpr::getBitCast(unitGV, SBP), 648 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 649 }; 650 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 651 } 652 653 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 654 // Never defer when EmitAllDecls is specified. 655 if (Features.EmitAllDecls) 656 return false; 657 658 return !getContext().DeclMustBeEmitted(Global); 659 } 660 661 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 662 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 663 assert(AA && "No alias?"); 664 665 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 666 667 // See if there is already something with the target's name in the module. 668 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 669 670 llvm::Constant *Aliasee; 671 if (isa<llvm::FunctionType>(DeclTy)) 672 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 673 else 674 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 675 llvm::PointerType::getUnqual(DeclTy), 0); 676 if (!Entry) { 677 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 678 F->setLinkage(llvm::Function::ExternalWeakLinkage); 679 WeakRefReferences.insert(F); 680 } 681 682 return Aliasee; 683 } 684 685 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 686 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 687 688 // Weak references don't produce any output by themselves. 689 if (Global->hasAttr<WeakRefAttr>()) 690 return; 691 692 // If this is an alias definition (which otherwise looks like a declaration) 693 // emit it now. 694 if (Global->hasAttr<AliasAttr>()) 695 return EmitAliasDefinition(GD); 696 697 // Ignore declarations, they will be emitted on their first use. 698 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 699 if (FD->getIdentifier()) { 700 llvm::StringRef Name = FD->getName(); 701 if (Name == "_Block_object_assign") { 702 BlockObjectAssignDecl = FD; 703 } else if (Name == "_Block_object_dispose") { 704 BlockObjectDisposeDecl = FD; 705 } 706 } 707 708 // Forward declarations are emitted lazily on first use. 709 if (!FD->isThisDeclarationADefinition()) 710 return; 711 } else { 712 const VarDecl *VD = cast<VarDecl>(Global); 713 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 714 715 if (VD->getIdentifier()) { 716 llvm::StringRef Name = VD->getName(); 717 if (Name == "_NSConcreteGlobalBlock") { 718 NSConcreteGlobalBlockDecl = VD; 719 } else if (Name == "_NSConcreteStackBlock") { 720 NSConcreteStackBlockDecl = VD; 721 } 722 } 723 724 725 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 726 return; 727 } 728 729 // Defer code generation when possible if this is a static definition, inline 730 // function etc. These we only want to emit if they are used. 731 if (!MayDeferGeneration(Global)) { 732 // Emit the definition if it can't be deferred. 733 EmitGlobalDefinition(GD); 734 return; 735 } 736 737 // If we're deferring emission of a C++ variable with an 738 // initializer, remember the order in which it appeared in the file. 739 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 740 cast<VarDecl>(Global)->hasInit()) { 741 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 742 CXXGlobalInits.push_back(0); 743 } 744 745 // If the value has already been used, add it directly to the 746 // DeferredDeclsToEmit list. 747 llvm::StringRef MangledName = getMangledName(GD); 748 if (GetGlobalValue(MangledName)) 749 DeferredDeclsToEmit.push_back(GD); 750 else { 751 // Otherwise, remember that we saw a deferred decl with this name. The 752 // first use of the mangled name will cause it to move into 753 // DeferredDeclsToEmit. 754 DeferredDecls[MangledName] = GD; 755 } 756 } 757 758 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 759 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 760 761 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 762 Context.getSourceManager(), 763 "Generating code for declaration"); 764 765 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 766 // At -O0, don't generate IR for functions with available_externally 767 // linkage. 768 if (CodeGenOpts.OptimizationLevel == 0 && 769 !Function->hasAttr<AlwaysInlineAttr>() && 770 getFunctionLinkage(Function) 771 == llvm::Function::AvailableExternallyLinkage) 772 return; 773 774 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 775 if (Method->isVirtual()) 776 getVTables().EmitThunks(GD); 777 778 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 779 return EmitCXXConstructor(CD, GD.getCtorType()); 780 781 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 782 return EmitCXXDestructor(DD, GD.getDtorType()); 783 } 784 785 return EmitGlobalFunctionDefinition(GD); 786 } 787 788 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 789 return EmitGlobalVarDefinition(VD); 790 791 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 792 } 793 794 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 795 /// module, create and return an llvm Function with the specified type. If there 796 /// is something in the module with the specified name, return it potentially 797 /// bitcasted to the right type. 798 /// 799 /// If D is non-null, it specifies a decl that correspond to this. This is used 800 /// to set the attributes on the function when it is first created. 801 llvm::Constant * 802 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 803 const llvm::Type *Ty, 804 GlobalDecl D) { 805 // Lookup the entry, lazily creating it if necessary. 806 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 807 if (Entry) { 808 if (WeakRefReferences.count(Entry)) { 809 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 810 if (FD && !FD->hasAttr<WeakAttr>()) 811 Entry->setLinkage(llvm::Function::ExternalLinkage); 812 813 WeakRefReferences.erase(Entry); 814 } 815 816 if (Entry->getType()->getElementType() == Ty) 817 return Entry; 818 819 // Make sure the result is of the correct type. 820 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 821 return llvm::ConstantExpr::getBitCast(Entry, PTy); 822 } 823 824 // This function doesn't have a complete type (for example, the return 825 // type is an incomplete struct). Use a fake type instead, and make 826 // sure not to try to set attributes. 827 bool IsIncompleteFunction = false; 828 829 const llvm::FunctionType *FTy; 830 if (isa<llvm::FunctionType>(Ty)) { 831 FTy = cast<llvm::FunctionType>(Ty); 832 } else { 833 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 834 std::vector<const llvm::Type*>(), false); 835 IsIncompleteFunction = true; 836 } 837 838 llvm::Function *F = llvm::Function::Create(FTy, 839 llvm::Function::ExternalLinkage, 840 MangledName, &getModule()); 841 assert(F->getName() == MangledName && "name was uniqued!"); 842 if (D.getDecl()) 843 SetFunctionAttributes(D, F, IsIncompleteFunction); 844 845 // This is the first use or definition of a mangled name. If there is a 846 // deferred decl with this name, remember that we need to emit it at the end 847 // of the file. 848 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 849 if (DDI != DeferredDecls.end()) { 850 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 851 // list, and remove it from DeferredDecls (since we don't need it anymore). 852 DeferredDeclsToEmit.push_back(DDI->second); 853 DeferredDecls.erase(DDI); 854 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 855 // If this the first reference to a C++ inline function in a class, queue up 856 // the deferred function body for emission. These are not seen as 857 // top-level declarations. 858 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 859 DeferredDeclsToEmit.push_back(D); 860 // A called constructor which has no definition or declaration need be 861 // synthesized. 862 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 863 if (CD->isImplicit()) { 864 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 865 DeferredDeclsToEmit.push_back(D); 866 } 867 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 868 if (DD->isImplicit()) { 869 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 870 DeferredDeclsToEmit.push_back(D); 871 } 872 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 873 if (MD->isImplicit() && MD->isCopyAssignmentOperator()) { 874 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 875 DeferredDeclsToEmit.push_back(D); 876 } 877 } 878 } 879 880 // Make sure the result is of the requested type. 881 if (!IsIncompleteFunction) { 882 assert(F->getType()->getElementType() == Ty); 883 return F; 884 } 885 886 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 887 return llvm::ConstantExpr::getBitCast(F, PTy); 888 } 889 890 /// GetAddrOfFunction - Return the address of the given function. If Ty is 891 /// non-null, then this function will use the specified type if it has to 892 /// create it (this occurs when we see a definition of the function). 893 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 894 const llvm::Type *Ty) { 895 // If there was no specific requested type, just convert it now. 896 if (!Ty) 897 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 898 899 llvm::StringRef MangledName = getMangledName(GD); 900 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 901 } 902 903 /// CreateRuntimeFunction - Create a new runtime function with the specified 904 /// type and name. 905 llvm::Constant * 906 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 907 llvm::StringRef Name) { 908 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 909 } 910 911 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 912 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 913 return false; 914 if (Context.getLangOptions().CPlusPlus && 915 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 916 // FIXME: We should do something fancier here! 917 return false; 918 } 919 return true; 920 } 921 922 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 923 /// create and return an llvm GlobalVariable with the specified type. If there 924 /// is something in the module with the specified name, return it potentially 925 /// bitcasted to the right type. 926 /// 927 /// If D is non-null, it specifies a decl that correspond to this. This is used 928 /// to set the attributes on the global when it is first created. 929 llvm::Constant * 930 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 931 const llvm::PointerType *Ty, 932 const VarDecl *D) { 933 // Lookup the entry, lazily creating it if necessary. 934 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 935 if (Entry) { 936 if (WeakRefReferences.count(Entry)) { 937 if (D && !D->hasAttr<WeakAttr>()) 938 Entry->setLinkage(llvm::Function::ExternalLinkage); 939 940 WeakRefReferences.erase(Entry); 941 } 942 943 if (Entry->getType() == Ty) 944 return Entry; 945 946 // Make sure the result is of the correct type. 947 return llvm::ConstantExpr::getBitCast(Entry, Ty); 948 } 949 950 // This is the first use or definition of a mangled name. If there is a 951 // deferred decl with this name, remember that we need to emit it at the end 952 // of the file. 953 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 954 if (DDI != DeferredDecls.end()) { 955 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 956 // list, and remove it from DeferredDecls (since we don't need it anymore). 957 DeferredDeclsToEmit.push_back(DDI->second); 958 DeferredDecls.erase(DDI); 959 } 960 961 llvm::GlobalVariable *GV = 962 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 963 llvm::GlobalValue::ExternalLinkage, 964 0, MangledName, 0, 965 false, Ty->getAddressSpace()); 966 967 // Handle things which are present even on external declarations. 968 if (D) { 969 // FIXME: This code is overly simple and should be merged with other global 970 // handling. 971 GV->setConstant(DeclIsConstantGlobal(Context, D)); 972 973 // FIXME: Merge with other attribute handling code. 974 if (D->getStorageClass() == SC_PrivateExtern) 975 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 976 977 if (D->hasAttr<WeakAttr>() || 978 D->hasAttr<WeakImportAttr>()) 979 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 980 981 GV->setThreadLocal(D->isThreadSpecified()); 982 } 983 984 return GV; 985 } 986 987 988 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 989 /// given global variable. If Ty is non-null and if the global doesn't exist, 990 /// then it will be greated with the specified type instead of whatever the 991 /// normal requested type would be. 992 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 993 const llvm::Type *Ty) { 994 assert(D->hasGlobalStorage() && "Not a global variable"); 995 QualType ASTTy = D->getType(); 996 if (Ty == 0) 997 Ty = getTypes().ConvertTypeForMem(ASTTy); 998 999 const llvm::PointerType *PTy = 1000 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1001 1002 llvm::StringRef MangledName = getMangledName(D); 1003 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1004 } 1005 1006 /// CreateRuntimeVariable - Create a new runtime global variable with the 1007 /// specified type and name. 1008 llvm::Constant * 1009 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1010 llvm::StringRef Name) { 1011 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1012 } 1013 1014 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1015 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1016 1017 if (MayDeferGeneration(D)) { 1018 // If we have not seen a reference to this variable yet, place it 1019 // into the deferred declarations table to be emitted if needed 1020 // later. 1021 llvm::StringRef MangledName = getMangledName(D); 1022 if (!GetGlobalValue(MangledName)) { 1023 DeferredDecls[MangledName] = D; 1024 return; 1025 } 1026 } 1027 1028 // The tentative definition is the only definition. 1029 EmitGlobalVarDefinition(D); 1030 } 1031 1032 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1033 if (DefinitionRequired) 1034 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1035 } 1036 1037 llvm::GlobalVariable::LinkageTypes 1038 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1039 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1040 return llvm::GlobalVariable::InternalLinkage; 1041 1042 if (const CXXMethodDecl *KeyFunction 1043 = RD->getASTContext().getKeyFunction(RD)) { 1044 // If this class has a key function, use that to determine the linkage of 1045 // the vtable. 1046 const FunctionDecl *Def = 0; 1047 if (KeyFunction->hasBody(Def)) 1048 KeyFunction = cast<CXXMethodDecl>(Def); 1049 1050 switch (KeyFunction->getTemplateSpecializationKind()) { 1051 case TSK_Undeclared: 1052 case TSK_ExplicitSpecialization: 1053 if (KeyFunction->isInlined()) 1054 return llvm::GlobalVariable::WeakODRLinkage; 1055 1056 return llvm::GlobalVariable::ExternalLinkage; 1057 1058 case TSK_ImplicitInstantiation: 1059 case TSK_ExplicitInstantiationDefinition: 1060 return llvm::GlobalVariable::WeakODRLinkage; 1061 1062 case TSK_ExplicitInstantiationDeclaration: 1063 // FIXME: Use available_externally linkage. However, this currently 1064 // breaks LLVM's build due to undefined symbols. 1065 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1066 return llvm::GlobalVariable::WeakODRLinkage; 1067 } 1068 } 1069 1070 switch (RD->getTemplateSpecializationKind()) { 1071 case TSK_Undeclared: 1072 case TSK_ExplicitSpecialization: 1073 case TSK_ImplicitInstantiation: 1074 case TSK_ExplicitInstantiationDefinition: 1075 return llvm::GlobalVariable::WeakODRLinkage; 1076 1077 case TSK_ExplicitInstantiationDeclaration: 1078 // FIXME: Use available_externally linkage. However, this currently 1079 // breaks LLVM's build due to undefined symbols. 1080 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1081 return llvm::GlobalVariable::WeakODRLinkage; 1082 } 1083 1084 // Silence GCC warning. 1085 return llvm::GlobalVariable::WeakODRLinkage; 1086 } 1087 1088 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1089 return CharUnits::fromQuantity( 1090 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1091 } 1092 1093 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1094 llvm::Constant *Init = 0; 1095 QualType ASTTy = D->getType(); 1096 bool NonConstInit = false; 1097 1098 const Expr *InitExpr = D->getAnyInitializer(); 1099 1100 if (!InitExpr) { 1101 // This is a tentative definition; tentative definitions are 1102 // implicitly initialized with { 0 }. 1103 // 1104 // Note that tentative definitions are only emitted at the end of 1105 // a translation unit, so they should never have incomplete 1106 // type. In addition, EmitTentativeDefinition makes sure that we 1107 // never attempt to emit a tentative definition if a real one 1108 // exists. A use may still exists, however, so we still may need 1109 // to do a RAUW. 1110 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1111 Init = EmitNullConstant(D->getType()); 1112 } else { 1113 Init = EmitConstantExpr(InitExpr, D->getType()); 1114 if (!Init) { 1115 QualType T = InitExpr->getType(); 1116 if (D->getType()->isReferenceType()) 1117 T = D->getType(); 1118 1119 if (getLangOptions().CPlusPlus) { 1120 EmitCXXGlobalVarDeclInitFunc(D); 1121 Init = EmitNullConstant(T); 1122 NonConstInit = true; 1123 } else { 1124 ErrorUnsupported(D, "static initializer"); 1125 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1126 } 1127 } else { 1128 // We don't need an initializer, so remove the entry for the delayed 1129 // initializer position (just in case this entry was delayed). 1130 if (getLangOptions().CPlusPlus) 1131 DelayedCXXInitPosition.erase(D); 1132 } 1133 } 1134 1135 const llvm::Type* InitType = Init->getType(); 1136 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1137 1138 // Strip off a bitcast if we got one back. 1139 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1140 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1141 // all zero index gep. 1142 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1143 Entry = CE->getOperand(0); 1144 } 1145 1146 // Entry is now either a Function or GlobalVariable. 1147 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1148 1149 // We have a definition after a declaration with the wrong type. 1150 // We must make a new GlobalVariable* and update everything that used OldGV 1151 // (a declaration or tentative definition) with the new GlobalVariable* 1152 // (which will be a definition). 1153 // 1154 // This happens if there is a prototype for a global (e.g. 1155 // "extern int x[];") and then a definition of a different type (e.g. 1156 // "int x[10];"). This also happens when an initializer has a different type 1157 // from the type of the global (this happens with unions). 1158 if (GV == 0 || 1159 GV->getType()->getElementType() != InitType || 1160 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1161 1162 // Move the old entry aside so that we'll create a new one. 1163 Entry->setName(llvm::StringRef()); 1164 1165 // Make a new global with the correct type, this is now guaranteed to work. 1166 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1167 1168 // Replace all uses of the old global with the new global 1169 llvm::Constant *NewPtrForOldDecl = 1170 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1171 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1172 1173 // Erase the old global, since it is no longer used. 1174 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1175 } 1176 1177 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1178 SourceManager &SM = Context.getSourceManager(); 1179 AddAnnotation(EmitAnnotateAttr(GV, AA, 1180 SM.getInstantiationLineNumber(D->getLocation()))); 1181 } 1182 1183 GV->setInitializer(Init); 1184 1185 // If it is safe to mark the global 'constant', do so now. 1186 GV->setConstant(false); 1187 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1188 GV->setConstant(true); 1189 1190 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1191 1192 // Set the llvm linkage type as appropriate. 1193 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1194 if (Linkage == GVA_Internal) 1195 GV->setLinkage(llvm::Function::InternalLinkage); 1196 else if (D->hasAttr<DLLImportAttr>()) 1197 GV->setLinkage(llvm::Function::DLLImportLinkage); 1198 else if (D->hasAttr<DLLExportAttr>()) 1199 GV->setLinkage(llvm::Function::DLLExportLinkage); 1200 else if (D->hasAttr<WeakAttr>()) { 1201 if (GV->isConstant()) 1202 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1203 else 1204 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1205 } else if (Linkage == GVA_TemplateInstantiation || 1206 Linkage == GVA_ExplicitTemplateInstantiation) 1207 // FIXME: It seems like we can provide more specific linkage here 1208 // (LinkOnceODR, WeakODR). 1209 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1210 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1211 !D->hasExternalStorage() && !D->getInit() && 1212 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1213 // Thread local vars aren't considered common linkage. 1214 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1215 // common vars aren't constant even if declared const. 1216 GV->setConstant(false); 1217 } else 1218 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1219 1220 SetCommonAttributes(D, GV); 1221 1222 // Emit global variable debug information. 1223 if (CGDebugInfo *DI = getDebugInfo()) { 1224 DI->setLocation(D->getLocation()); 1225 DI->EmitGlobalVariable(GV, D); 1226 } 1227 } 1228 1229 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1230 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1231 /// existing call uses of the old function in the module, this adjusts them to 1232 /// call the new function directly. 1233 /// 1234 /// This is not just a cleanup: the always_inline pass requires direct calls to 1235 /// functions to be able to inline them. If there is a bitcast in the way, it 1236 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1237 /// run at -O0. 1238 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1239 llvm::Function *NewFn) { 1240 // If we're redefining a global as a function, don't transform it. 1241 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1242 if (OldFn == 0) return; 1243 1244 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1245 llvm::SmallVector<llvm::Value*, 4> ArgList; 1246 1247 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1248 UI != E; ) { 1249 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1250 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1251 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1252 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1253 llvm::CallSite CS(CI); 1254 if (!CI || !CS.isCallee(I)) continue; 1255 1256 // If the return types don't match exactly, and if the call isn't dead, then 1257 // we can't transform this call. 1258 if (CI->getType() != NewRetTy && !CI->use_empty()) 1259 continue; 1260 1261 // If the function was passed too few arguments, don't transform. If extra 1262 // arguments were passed, we silently drop them. If any of the types 1263 // mismatch, we don't transform. 1264 unsigned ArgNo = 0; 1265 bool DontTransform = false; 1266 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1267 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1268 if (CS.arg_size() == ArgNo || 1269 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1270 DontTransform = true; 1271 break; 1272 } 1273 } 1274 if (DontTransform) 1275 continue; 1276 1277 // Okay, we can transform this. Create the new call instruction and copy 1278 // over the required information. 1279 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1280 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1281 ArgList.end(), "", CI); 1282 ArgList.clear(); 1283 if (!NewCall->getType()->isVoidTy()) 1284 NewCall->takeName(CI); 1285 NewCall->setAttributes(CI->getAttributes()); 1286 NewCall->setCallingConv(CI->getCallingConv()); 1287 1288 // Finally, remove the old call, replacing any uses with the new one. 1289 if (!CI->use_empty()) 1290 CI->replaceAllUsesWith(NewCall); 1291 1292 // Copy debug location attached to CI. 1293 if (!CI->getDebugLoc().isUnknown()) 1294 NewCall->setDebugLoc(CI->getDebugLoc()); 1295 CI->eraseFromParent(); 1296 } 1297 } 1298 1299 1300 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1301 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1302 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1303 getCXXABI().getMangleContext().mangleInitDiscriminator(); 1304 // Get or create the prototype for the function. 1305 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1306 1307 // Strip off a bitcast if we got one back. 1308 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1309 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1310 Entry = CE->getOperand(0); 1311 } 1312 1313 1314 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1315 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1316 1317 // If the types mismatch then we have to rewrite the definition. 1318 assert(OldFn->isDeclaration() && 1319 "Shouldn't replace non-declaration"); 1320 1321 // F is the Function* for the one with the wrong type, we must make a new 1322 // Function* and update everything that used F (a declaration) with the new 1323 // Function* (which will be a definition). 1324 // 1325 // This happens if there is a prototype for a function 1326 // (e.g. "int f()") and then a definition of a different type 1327 // (e.g. "int f(int x)"). Move the old function aside so that it 1328 // doesn't interfere with GetAddrOfFunction. 1329 OldFn->setName(llvm::StringRef()); 1330 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1331 1332 // If this is an implementation of a function without a prototype, try to 1333 // replace any existing uses of the function (which may be calls) with uses 1334 // of the new function 1335 if (D->getType()->isFunctionNoProtoType()) { 1336 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1337 OldFn->removeDeadConstantUsers(); 1338 } 1339 1340 // Replace uses of F with the Function we will endow with a body. 1341 if (!Entry->use_empty()) { 1342 llvm::Constant *NewPtrForOldDecl = 1343 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1344 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1345 } 1346 1347 // Ok, delete the old function now, which is dead. 1348 OldFn->eraseFromParent(); 1349 1350 Entry = NewFn; 1351 } 1352 1353 llvm::Function *Fn = cast<llvm::Function>(Entry); 1354 setFunctionLinkage(D, Fn); 1355 1356 CodeGenFunction(*this).GenerateCode(D, Fn); 1357 1358 SetFunctionDefinitionAttributes(D, Fn); 1359 SetLLVMFunctionAttributesForDefinition(D, Fn); 1360 1361 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1362 AddGlobalCtor(Fn, CA->getPriority()); 1363 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1364 AddGlobalDtor(Fn, DA->getPriority()); 1365 } 1366 1367 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1368 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1369 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1370 assert(AA && "Not an alias?"); 1371 1372 llvm::StringRef MangledName = getMangledName(GD); 1373 1374 // If there is a definition in the module, then it wins over the alias. 1375 // This is dubious, but allow it to be safe. Just ignore the alias. 1376 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1377 if (Entry && !Entry->isDeclaration()) 1378 return; 1379 1380 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1381 1382 // Create a reference to the named value. This ensures that it is emitted 1383 // if a deferred decl. 1384 llvm::Constant *Aliasee; 1385 if (isa<llvm::FunctionType>(DeclTy)) 1386 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1387 else 1388 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1389 llvm::PointerType::getUnqual(DeclTy), 0); 1390 1391 // Create the new alias itself, but don't set a name yet. 1392 llvm::GlobalValue *GA = 1393 new llvm::GlobalAlias(Aliasee->getType(), 1394 llvm::Function::ExternalLinkage, 1395 "", Aliasee, &getModule()); 1396 1397 if (Entry) { 1398 assert(Entry->isDeclaration()); 1399 1400 // If there is a declaration in the module, then we had an extern followed 1401 // by the alias, as in: 1402 // extern int test6(); 1403 // ... 1404 // int test6() __attribute__((alias("test7"))); 1405 // 1406 // Remove it and replace uses of it with the alias. 1407 GA->takeName(Entry); 1408 1409 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1410 Entry->getType())); 1411 Entry->eraseFromParent(); 1412 } else { 1413 GA->setName(MangledName); 1414 } 1415 1416 // Set attributes which are particular to an alias; this is a 1417 // specialization of the attributes which may be set on a global 1418 // variable/function. 1419 if (D->hasAttr<DLLExportAttr>()) { 1420 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1421 // The dllexport attribute is ignored for undefined symbols. 1422 if (FD->hasBody()) 1423 GA->setLinkage(llvm::Function::DLLExportLinkage); 1424 } else { 1425 GA->setLinkage(llvm::Function::DLLExportLinkage); 1426 } 1427 } else if (D->hasAttr<WeakAttr>() || 1428 D->hasAttr<WeakRefAttr>() || 1429 D->hasAttr<WeakImportAttr>()) { 1430 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1431 } 1432 1433 SetCommonAttributes(D, GA); 1434 } 1435 1436 /// getBuiltinLibFunction - Given a builtin id for a function like 1437 /// "__builtin_fabsf", return a Function* for "fabsf". 1438 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1439 unsigned BuiltinID) { 1440 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1441 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1442 "isn't a lib fn"); 1443 1444 // Get the name, skip over the __builtin_ prefix (if necessary). 1445 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1446 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1447 Name += 10; 1448 1449 const llvm::FunctionType *Ty = 1450 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1451 1452 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1453 } 1454 1455 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1456 unsigned NumTys) { 1457 return llvm::Intrinsic::getDeclaration(&getModule(), 1458 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1459 } 1460 1461 1462 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1463 const llvm::Type *SrcType, 1464 const llvm::Type *SizeType) { 1465 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1466 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1467 } 1468 1469 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1470 const llvm::Type *SrcType, 1471 const llvm::Type *SizeType) { 1472 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1473 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1474 } 1475 1476 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1477 const llvm::Type *SizeType) { 1478 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1479 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1480 } 1481 1482 static llvm::StringMapEntry<llvm::Constant*> & 1483 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1484 const StringLiteral *Literal, 1485 bool TargetIsLSB, 1486 bool &IsUTF16, 1487 unsigned &StringLength) { 1488 llvm::StringRef String = Literal->getString(); 1489 unsigned NumBytes = String.size(); 1490 1491 // Check for simple case. 1492 if (!Literal->containsNonAsciiOrNull()) { 1493 StringLength = NumBytes; 1494 return Map.GetOrCreateValue(String); 1495 } 1496 1497 // Otherwise, convert the UTF8 literals into a byte string. 1498 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1499 const UTF8 *FromPtr = (UTF8 *)String.data(); 1500 UTF16 *ToPtr = &ToBuf[0]; 1501 1502 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1503 &ToPtr, ToPtr + NumBytes, 1504 strictConversion); 1505 1506 // ConvertUTF8toUTF16 returns the length in ToPtr. 1507 StringLength = ToPtr - &ToBuf[0]; 1508 1509 // Render the UTF-16 string into a byte array and convert to the target byte 1510 // order. 1511 // 1512 // FIXME: This isn't something we should need to do here. 1513 llvm::SmallString<128> AsBytes; 1514 AsBytes.reserve(StringLength * 2); 1515 for (unsigned i = 0; i != StringLength; ++i) { 1516 unsigned short Val = ToBuf[i]; 1517 if (TargetIsLSB) { 1518 AsBytes.push_back(Val & 0xFF); 1519 AsBytes.push_back(Val >> 8); 1520 } else { 1521 AsBytes.push_back(Val >> 8); 1522 AsBytes.push_back(Val & 0xFF); 1523 } 1524 } 1525 // Append one extra null character, the second is automatically added by our 1526 // caller. 1527 AsBytes.push_back(0); 1528 1529 IsUTF16 = true; 1530 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1531 } 1532 1533 llvm::Constant * 1534 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1535 unsigned StringLength = 0; 1536 bool isUTF16 = false; 1537 llvm::StringMapEntry<llvm::Constant*> &Entry = 1538 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1539 getTargetData().isLittleEndian(), 1540 isUTF16, StringLength); 1541 1542 if (llvm::Constant *C = Entry.getValue()) 1543 return C; 1544 1545 llvm::Constant *Zero = 1546 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1547 llvm::Constant *Zeros[] = { Zero, Zero }; 1548 1549 // If we don't already have it, get __CFConstantStringClassReference. 1550 if (!CFConstantStringClassRef) { 1551 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1552 Ty = llvm::ArrayType::get(Ty, 0); 1553 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1554 "__CFConstantStringClassReference"); 1555 // Decay array -> ptr 1556 CFConstantStringClassRef = 1557 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1558 } 1559 1560 QualType CFTy = getContext().getCFConstantStringType(); 1561 1562 const llvm::StructType *STy = 1563 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1564 1565 std::vector<llvm::Constant*> Fields(4); 1566 1567 // Class pointer. 1568 Fields[0] = CFConstantStringClassRef; 1569 1570 // Flags. 1571 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1572 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1573 llvm::ConstantInt::get(Ty, 0x07C8); 1574 1575 // String pointer. 1576 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1577 1578 llvm::GlobalValue::LinkageTypes Linkage; 1579 bool isConstant; 1580 if (isUTF16) { 1581 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1582 Linkage = llvm::GlobalValue::InternalLinkage; 1583 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1584 // does make plain ascii ones writable. 1585 isConstant = true; 1586 } else { 1587 Linkage = llvm::GlobalValue::PrivateLinkage; 1588 isConstant = !Features.WritableStrings; 1589 } 1590 1591 llvm::GlobalVariable *GV = 1592 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1593 ".str"); 1594 if (isUTF16) { 1595 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1596 GV->setAlignment(Align.getQuantity()); 1597 } 1598 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1599 1600 // String length. 1601 Ty = getTypes().ConvertType(getContext().LongTy); 1602 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1603 1604 // The struct. 1605 C = llvm::ConstantStruct::get(STy, Fields); 1606 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1607 llvm::GlobalVariable::PrivateLinkage, C, 1608 "_unnamed_cfstring_"); 1609 if (const char *Sect = getContext().Target.getCFStringSection()) 1610 GV->setSection(Sect); 1611 Entry.setValue(GV); 1612 1613 return GV; 1614 } 1615 1616 llvm::Constant * 1617 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1618 unsigned StringLength = 0; 1619 bool isUTF16 = false; 1620 llvm::StringMapEntry<llvm::Constant*> &Entry = 1621 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1622 getTargetData().isLittleEndian(), 1623 isUTF16, StringLength); 1624 1625 if (llvm::Constant *C = Entry.getValue()) 1626 return C; 1627 1628 llvm::Constant *Zero = 1629 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1630 llvm::Constant *Zeros[] = { Zero, Zero }; 1631 1632 // If we don't already have it, get _NSConstantStringClassReference. 1633 if (!NSConstantStringClassRef) { 1634 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1635 Ty = llvm::ArrayType::get(Ty, 0); 1636 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1637 Features.ObjCNonFragileABI ? 1638 "OBJC_CLASS_$_NSConstantString" : 1639 "_NSConstantStringClassReference"); 1640 // Decay array -> ptr 1641 NSConstantStringClassRef = 1642 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1643 } 1644 1645 QualType NSTy = getContext().getNSConstantStringType(); 1646 1647 const llvm::StructType *STy = 1648 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1649 1650 std::vector<llvm::Constant*> Fields(3); 1651 1652 // Class pointer. 1653 Fields[0] = NSConstantStringClassRef; 1654 1655 // String pointer. 1656 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1657 1658 llvm::GlobalValue::LinkageTypes Linkage; 1659 bool isConstant; 1660 if (isUTF16) { 1661 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1662 Linkage = llvm::GlobalValue::InternalLinkage; 1663 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1664 // does make plain ascii ones writable. 1665 isConstant = true; 1666 } else { 1667 Linkage = llvm::GlobalValue::PrivateLinkage; 1668 isConstant = !Features.WritableStrings; 1669 } 1670 1671 llvm::GlobalVariable *GV = 1672 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1673 ".str"); 1674 if (isUTF16) { 1675 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1676 GV->setAlignment(Align.getQuantity()); 1677 } 1678 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1679 1680 // String length. 1681 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1682 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1683 1684 // The struct. 1685 C = llvm::ConstantStruct::get(STy, Fields); 1686 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1687 llvm::GlobalVariable::PrivateLinkage, C, 1688 "_unnamed_nsstring_"); 1689 // FIXME. Fix section. 1690 if (const char *Sect = 1691 Features.ObjCNonFragileABI 1692 ? getContext().Target.getNSStringNonFragileABISection() 1693 : getContext().Target.getNSStringSection()) 1694 GV->setSection(Sect); 1695 Entry.setValue(GV); 1696 1697 return GV; 1698 } 1699 1700 /// GetStringForStringLiteral - Return the appropriate bytes for a 1701 /// string literal, properly padded to match the literal type. 1702 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1703 const ConstantArrayType *CAT = 1704 getContext().getAsConstantArrayType(E->getType()); 1705 assert(CAT && "String isn't pointer or array!"); 1706 1707 // Resize the string to the right size. 1708 uint64_t RealLen = CAT->getSize().getZExtValue(); 1709 1710 if (E->isWide()) 1711 RealLen *= getContext().Target.getWCharWidth()/8; 1712 1713 std::string Str = E->getString().str(); 1714 Str.resize(RealLen, '\0'); 1715 1716 return Str; 1717 } 1718 1719 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1720 /// constant array for the given string literal. 1721 llvm::Constant * 1722 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1723 // FIXME: This can be more efficient. 1724 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1725 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1726 if (S->isWide()) { 1727 llvm::Type *DestTy = 1728 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1729 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1730 } 1731 return C; 1732 } 1733 1734 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1735 /// array for the given ObjCEncodeExpr node. 1736 llvm::Constant * 1737 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1738 std::string Str; 1739 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1740 1741 return GetAddrOfConstantCString(Str); 1742 } 1743 1744 1745 /// GenerateWritableString -- Creates storage for a string literal. 1746 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1747 bool constant, 1748 CodeGenModule &CGM, 1749 const char *GlobalName) { 1750 // Create Constant for this string literal. Don't add a '\0'. 1751 llvm::Constant *C = 1752 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1753 1754 // Create a global variable for this string 1755 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1756 llvm::GlobalValue::PrivateLinkage, 1757 C, GlobalName); 1758 } 1759 1760 /// GetAddrOfConstantString - Returns a pointer to a character array 1761 /// containing the literal. This contents are exactly that of the 1762 /// given string, i.e. it will not be null terminated automatically; 1763 /// see GetAddrOfConstantCString. Note that whether the result is 1764 /// actually a pointer to an LLVM constant depends on 1765 /// Feature.WriteableStrings. 1766 /// 1767 /// The result has pointer to array type. 1768 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1769 const char *GlobalName) { 1770 bool IsConstant = !Features.WritableStrings; 1771 1772 // Get the default prefix if a name wasn't specified. 1773 if (!GlobalName) 1774 GlobalName = ".str"; 1775 1776 // Don't share any string literals if strings aren't constant. 1777 if (!IsConstant) 1778 return GenerateStringLiteral(str, false, *this, GlobalName); 1779 1780 llvm::StringMapEntry<llvm::Constant *> &Entry = 1781 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1782 1783 if (Entry.getValue()) 1784 return Entry.getValue(); 1785 1786 // Create a global variable for this. 1787 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1788 Entry.setValue(C); 1789 return C; 1790 } 1791 1792 /// GetAddrOfConstantCString - Returns a pointer to a character 1793 /// array containing the literal and a terminating '\-' 1794 /// character. The result has pointer to array type. 1795 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1796 const char *GlobalName){ 1797 return GetAddrOfConstantString(str + '\0', GlobalName); 1798 } 1799 1800 /// EmitObjCPropertyImplementations - Emit information for synthesized 1801 /// properties for an implementation. 1802 void CodeGenModule::EmitObjCPropertyImplementations(const 1803 ObjCImplementationDecl *D) { 1804 for (ObjCImplementationDecl::propimpl_iterator 1805 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1806 ObjCPropertyImplDecl *PID = *i; 1807 1808 // Dynamic is just for type-checking. 1809 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1810 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1811 1812 // Determine which methods need to be implemented, some may have 1813 // been overridden. Note that ::isSynthesized is not the method 1814 // we want, that just indicates if the decl came from a 1815 // property. What we want to know is if the method is defined in 1816 // this implementation. 1817 if (!D->getInstanceMethod(PD->getGetterName())) 1818 CodeGenFunction(*this).GenerateObjCGetter( 1819 const_cast<ObjCImplementationDecl *>(D), PID); 1820 if (!PD->isReadOnly() && 1821 !D->getInstanceMethod(PD->getSetterName())) 1822 CodeGenFunction(*this).GenerateObjCSetter( 1823 const_cast<ObjCImplementationDecl *>(D), PID); 1824 } 1825 } 1826 } 1827 1828 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1829 /// for an implementation. 1830 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1831 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1832 return; 1833 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1834 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1835 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1836 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1837 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1838 D->getLocation(), 1839 D->getLocation(), cxxSelector, 1840 getContext().VoidTy, 0, 1841 DC, true, false, true, false, 1842 ObjCMethodDecl::Required); 1843 D->addInstanceMethod(DTORMethod); 1844 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1845 1846 II = &getContext().Idents.get(".cxx_construct"); 1847 cxxSelector = getContext().Selectors.getSelector(0, &II); 1848 // The constructor returns 'self'. 1849 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1850 D->getLocation(), 1851 D->getLocation(), cxxSelector, 1852 getContext().getObjCIdType(), 0, 1853 DC, true, false, true, false, 1854 ObjCMethodDecl::Required); 1855 D->addInstanceMethod(CTORMethod); 1856 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1857 1858 1859 } 1860 1861 /// EmitNamespace - Emit all declarations in a namespace. 1862 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1863 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1864 I != E; ++I) 1865 EmitTopLevelDecl(*I); 1866 } 1867 1868 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1869 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1870 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1871 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1872 ErrorUnsupported(LSD, "linkage spec"); 1873 return; 1874 } 1875 1876 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1877 I != E; ++I) 1878 EmitTopLevelDecl(*I); 1879 } 1880 1881 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1882 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1883 // If an error has occurred, stop code generation, but continue 1884 // parsing and semantic analysis (to ensure all warnings and errors 1885 // are emitted). 1886 if (Diags.hasErrorOccurred()) 1887 return; 1888 1889 // Ignore dependent declarations. 1890 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1891 return; 1892 1893 switch (D->getKind()) { 1894 case Decl::CXXConversion: 1895 case Decl::CXXMethod: 1896 case Decl::Function: 1897 // Skip function templates 1898 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1899 return; 1900 1901 EmitGlobal(cast<FunctionDecl>(D)); 1902 break; 1903 1904 case Decl::Var: 1905 EmitGlobal(cast<VarDecl>(D)); 1906 break; 1907 1908 // C++ Decls 1909 case Decl::Namespace: 1910 EmitNamespace(cast<NamespaceDecl>(D)); 1911 break; 1912 // No code generation needed. 1913 case Decl::UsingShadow: 1914 case Decl::Using: 1915 case Decl::UsingDirective: 1916 case Decl::ClassTemplate: 1917 case Decl::FunctionTemplate: 1918 case Decl::NamespaceAlias: 1919 break; 1920 case Decl::CXXConstructor: 1921 // Skip function templates 1922 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1923 return; 1924 1925 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1926 break; 1927 case Decl::CXXDestructor: 1928 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1929 break; 1930 1931 case Decl::StaticAssert: 1932 // Nothing to do. 1933 break; 1934 1935 // Objective-C Decls 1936 1937 // Forward declarations, no (immediate) code generation. 1938 case Decl::ObjCClass: 1939 case Decl::ObjCForwardProtocol: 1940 case Decl::ObjCInterface: 1941 break; 1942 1943 case Decl::ObjCCategory: { 1944 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 1945 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 1946 Context.ResetObjCLayout(CD->getClassInterface()); 1947 break; 1948 } 1949 1950 1951 case Decl::ObjCProtocol: 1952 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1953 break; 1954 1955 case Decl::ObjCCategoryImpl: 1956 // Categories have properties but don't support synthesize so we 1957 // can ignore them here. 1958 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1959 break; 1960 1961 case Decl::ObjCImplementation: { 1962 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1963 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 1964 Context.ResetObjCLayout(OMD->getClassInterface()); 1965 EmitObjCPropertyImplementations(OMD); 1966 EmitObjCIvarInitializations(OMD); 1967 Runtime->GenerateClass(OMD); 1968 break; 1969 } 1970 case Decl::ObjCMethod: { 1971 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1972 // If this is not a prototype, emit the body. 1973 if (OMD->getBody()) 1974 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1975 break; 1976 } 1977 case Decl::ObjCCompatibleAlias: 1978 // compatibility-alias is a directive and has no code gen. 1979 break; 1980 1981 case Decl::LinkageSpec: 1982 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1983 break; 1984 1985 case Decl::FileScopeAsm: { 1986 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1987 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1988 1989 const std::string &S = getModule().getModuleInlineAsm(); 1990 if (S.empty()) 1991 getModule().setModuleInlineAsm(AsmString); 1992 else 1993 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1994 break; 1995 } 1996 1997 default: 1998 // Make sure we handled everything we should, every other kind is a 1999 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2000 // function. Need to recode Decl::Kind to do that easily. 2001 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2002 } 2003 } 2004 2005 /// Turns the given pointer into a constant. 2006 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2007 const void *Ptr) { 2008 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2009 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2010 return llvm::ConstantInt::get(i64, PtrInt); 2011 } 2012 2013 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2014 llvm::NamedMDNode *&GlobalMetadata, 2015 GlobalDecl D, 2016 llvm::GlobalValue *Addr) { 2017 if (!GlobalMetadata) 2018 GlobalMetadata = 2019 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2020 2021 // TODO: should we report variant information for ctors/dtors? 2022 llvm::Value *Ops[] = { 2023 Addr, 2024 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2025 }; 2026 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2027 } 2028 2029 /// Emits metadata nodes associating all the global values in the 2030 /// current module with the Decls they came from. This is useful for 2031 /// projects using IR gen as a subroutine. 2032 /// 2033 /// Since there's currently no way to associate an MDNode directly 2034 /// with an llvm::GlobalValue, we create a global named metadata 2035 /// with the name 'clang.global.decl.ptrs'. 2036 void CodeGenModule::EmitDeclMetadata() { 2037 llvm::NamedMDNode *GlobalMetadata = 0; 2038 2039 // StaticLocalDeclMap 2040 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2041 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2042 I != E; ++I) { 2043 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2044 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2045 } 2046 } 2047 2048 /// Emits metadata nodes for all the local variables in the current 2049 /// function. 2050 void CodeGenFunction::EmitDeclMetadata() { 2051 if (LocalDeclMap.empty()) return; 2052 2053 llvm::LLVMContext &Context = getLLVMContext(); 2054 2055 // Find the unique metadata ID for this name. 2056 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2057 2058 llvm::NamedMDNode *GlobalMetadata = 0; 2059 2060 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2061 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2062 const Decl *D = I->first; 2063 llvm::Value *Addr = I->second; 2064 2065 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2066 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2067 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2068 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2069 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2070 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2071 } 2072 } 2073 } 2074 2075 ///@name Custom Runtime Function Interfaces 2076 ///@{ 2077 // 2078 // FIXME: These can be eliminated once we can have clients just get the required 2079 // AST nodes from the builtin tables. 2080 2081 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2082 if (BlockObjectDispose) 2083 return BlockObjectDispose; 2084 2085 // If we saw an explicit decl, use that. 2086 if (BlockObjectDisposeDecl) { 2087 return BlockObjectDispose = GetAddrOfFunction( 2088 BlockObjectDisposeDecl, 2089 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2090 } 2091 2092 // Otherwise construct the function by hand. 2093 const llvm::FunctionType *FTy; 2094 std::vector<const llvm::Type*> ArgTys; 2095 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2096 ArgTys.push_back(PtrToInt8Ty); 2097 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2098 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2099 return BlockObjectDispose = 2100 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2101 } 2102 2103 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2104 if (BlockObjectAssign) 2105 return BlockObjectAssign; 2106 2107 // If we saw an explicit decl, use that. 2108 if (BlockObjectAssignDecl) { 2109 return BlockObjectAssign = GetAddrOfFunction( 2110 BlockObjectAssignDecl, 2111 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2112 } 2113 2114 // Otherwise construct the function by hand. 2115 const llvm::FunctionType *FTy; 2116 std::vector<const llvm::Type*> ArgTys; 2117 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2118 ArgTys.push_back(PtrToInt8Ty); 2119 ArgTys.push_back(PtrToInt8Ty); 2120 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2121 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2122 return BlockObjectAssign = 2123 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2124 } 2125 2126 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2127 if (NSConcreteGlobalBlock) 2128 return NSConcreteGlobalBlock; 2129 2130 // If we saw an explicit decl, use that. 2131 if (NSConcreteGlobalBlockDecl) { 2132 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2133 NSConcreteGlobalBlockDecl, 2134 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2135 } 2136 2137 // Otherwise construct the variable by hand. 2138 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2139 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2140 } 2141 2142 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2143 if (NSConcreteStackBlock) 2144 return NSConcreteStackBlock; 2145 2146 // If we saw an explicit decl, use that. 2147 if (NSConcreteStackBlockDecl) { 2148 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2149 NSConcreteStackBlockDecl, 2150 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2151 } 2152 2153 // Otherwise construct the variable by hand. 2154 return NSConcreteStackBlock = CreateRuntimeVariable( 2155 PtrToInt8Ty, "_NSConcreteStackBlock"); 2156 } 2157 2158 ///@} 2159