xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 8c8a2679a20f621994fa904bcfc68775e7345edc)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeGPU.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/StringSwitch.h"
51 #include "llvm/ADT/Triple.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54 #include "llvm/IR/CallingConv.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ProfileSummary.h"
60 #include "llvm/ProfileData/InstrProfReader.h"
61 #include "llvm/Support/CodeGen.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ConvertUTF.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/MD5.h"
66 #include "llvm/Support/TimeProfiler.h"
67 #include "llvm/Support/X86TargetParser.h"
68 
69 using namespace clang;
70 using namespace CodeGen;
71 
72 static llvm::cl::opt<bool> LimitedCoverage(
73     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
74     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
75     llvm::cl::init(false));
76 
77 static const char AnnotationSection[] = "llvm.metadata";
78 
79 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
80   switch (CGM.getContext().getCXXABIKind()) {
81   case TargetCXXABI::AppleARM64:
82   case TargetCXXABI::Fuchsia:
83   case TargetCXXABI::GenericAArch64:
84   case TargetCXXABI::GenericARM:
85   case TargetCXXABI::iOS:
86   case TargetCXXABI::WatchOS:
87   case TargetCXXABI::GenericMIPS:
88   case TargetCXXABI::GenericItanium:
89   case TargetCXXABI::WebAssembly:
90   case TargetCXXABI::XL:
91     return CreateItaniumCXXABI(CGM);
92   case TargetCXXABI::Microsoft:
93     return CreateMicrosoftCXXABI(CGM);
94   }
95 
96   llvm_unreachable("invalid C++ ABI kind");
97 }
98 
99 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
100                              const PreprocessorOptions &PPO,
101                              const CodeGenOptions &CGO, llvm::Module &M,
102                              DiagnosticsEngine &diags,
103                              CoverageSourceInfo *CoverageInfo)
104     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
105       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
106       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
107       VMContext(M.getContext()), Types(*this), VTables(*this),
108       SanitizerMD(new SanitizerMetadata(*this)) {
109 
110   // Initialize the type cache.
111   llvm::LLVMContext &LLVMContext = M.getContext();
112   VoidTy = llvm::Type::getVoidTy(LLVMContext);
113   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
114   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
115   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
116   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
117   HalfTy = llvm::Type::getHalfTy(LLVMContext);
118   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
119   FloatTy = llvm::Type::getFloatTy(LLVMContext);
120   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
121   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
122   PointerAlignInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
124   SizeSizeInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
126   IntAlignInBytes =
127     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
128   CharTy =
129     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
130   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
131   IntPtrTy = llvm::IntegerType::get(LLVMContext,
132     C.getTargetInfo().getMaxPointerWidth());
133   Int8PtrTy = Int8Ty->getPointerTo(0);
134   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
135   const llvm::DataLayout &DL = M.getDataLayout();
136   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
137   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
138   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
139 
140   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
141 
142   if (LangOpts.ObjC)
143     createObjCRuntime();
144   if (LangOpts.OpenCL)
145     createOpenCLRuntime();
146   if (LangOpts.OpenMP)
147     createOpenMPRuntime();
148   if (LangOpts.CUDA)
149     createCUDARuntime();
150   if (LangOpts.HLSL)
151     createHLSLRuntime();
152 
153   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
154   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
155       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
156     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
157                                getCXXABI().getMangleContext()));
158 
159   // If debug info or coverage generation is enabled, create the CGDebugInfo
160   // object.
161   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
162       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
163     DebugInfo.reset(new CGDebugInfo(*this));
164 
165   Block.GlobalUniqueCount = 0;
166 
167   if (C.getLangOpts().ObjC)
168     ObjCData.reset(new ObjCEntrypoints());
169 
170   if (CodeGenOpts.hasProfileClangUse()) {
171     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
172         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
173     if (auto E = ReaderOrErr.takeError()) {
174       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
175                                               "Could not read profile %0: %1");
176       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
177         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
178                                   << EI.message();
179       });
180     } else
181       PGOReader = std::move(ReaderOrErr.get());
182   }
183 
184   // If coverage mapping generation is enabled, create the
185   // CoverageMappingModuleGen object.
186   if (CodeGenOpts.CoverageMapping)
187     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
188 
189   // Generate the module name hash here if needed.
190   if (CodeGenOpts.UniqueInternalLinkageNames &&
191       !getModule().getSourceFileName().empty()) {
192     std::string Path = getModule().getSourceFileName();
193     // Check if a path substitution is needed from the MacroPrefixMap.
194     for (const auto &Entry : LangOpts.MacroPrefixMap)
195       if (Path.rfind(Entry.first, 0) != std::string::npos) {
196         Path = Entry.second + Path.substr(Entry.first.size());
197         break;
198       }
199     llvm::MD5 Md5;
200     Md5.update(Path);
201     llvm::MD5::MD5Result R;
202     Md5.final(R);
203     SmallString<32> Str;
204     llvm::MD5::stringifyResult(R, Str);
205     // Convert MD5hash to Decimal. Demangler suffixes can either contain
206     // numbers or characters but not both.
207     llvm::APInt IntHash(128, Str.str(), 16);
208     // Prepend "__uniq" before the hash for tools like profilers to understand
209     // that this symbol is of internal linkage type.  The "__uniq" is the
210     // pre-determined prefix that is used to tell tools that this symbol was
211     // created with -funique-internal-linakge-symbols and the tools can strip or
212     // keep the prefix as needed.
213     ModuleNameHash = (Twine(".__uniq.") +
214         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
215   }
216 }
217 
218 CodeGenModule::~CodeGenModule() {}
219 
220 void CodeGenModule::createObjCRuntime() {
221   // This is just isGNUFamily(), but we want to force implementors of
222   // new ABIs to decide how best to do this.
223   switch (LangOpts.ObjCRuntime.getKind()) {
224   case ObjCRuntime::GNUstep:
225   case ObjCRuntime::GCC:
226   case ObjCRuntime::ObjFW:
227     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
228     return;
229 
230   case ObjCRuntime::FragileMacOSX:
231   case ObjCRuntime::MacOSX:
232   case ObjCRuntime::iOS:
233   case ObjCRuntime::WatchOS:
234     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
235     return;
236   }
237   llvm_unreachable("bad runtime kind");
238 }
239 
240 void CodeGenModule::createOpenCLRuntime() {
241   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
242 }
243 
244 void CodeGenModule::createOpenMPRuntime() {
245   // Select a specialized code generation class based on the target, if any.
246   // If it does not exist use the default implementation.
247   switch (getTriple().getArch()) {
248   case llvm::Triple::nvptx:
249   case llvm::Triple::nvptx64:
250   case llvm::Triple::amdgcn:
251     assert(getLangOpts().OpenMPIsDevice &&
252            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
253     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
254     break;
255   default:
256     if (LangOpts.OpenMPSimd)
257       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
258     else
259       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
260     break;
261   }
262 }
263 
264 void CodeGenModule::createCUDARuntime() {
265   CUDARuntime.reset(CreateNVCUDARuntime(*this));
266 }
267 
268 void CodeGenModule::createHLSLRuntime() {
269   HLSLRuntime.reset(new CGHLSLRuntime(*this));
270 }
271 
272 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
273   Replacements[Name] = C;
274 }
275 
276 void CodeGenModule::applyReplacements() {
277   for (auto &I : Replacements) {
278     StringRef MangledName = I.first();
279     llvm::Constant *Replacement = I.second;
280     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
281     if (!Entry)
282       continue;
283     auto *OldF = cast<llvm::Function>(Entry);
284     auto *NewF = dyn_cast<llvm::Function>(Replacement);
285     if (!NewF) {
286       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
287         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
288       } else {
289         auto *CE = cast<llvm::ConstantExpr>(Replacement);
290         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
291                CE->getOpcode() == llvm::Instruction::GetElementPtr);
292         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
293       }
294     }
295 
296     // Replace old with new, but keep the old order.
297     OldF->replaceAllUsesWith(Replacement);
298     if (NewF) {
299       NewF->removeFromParent();
300       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
301                                                        NewF);
302     }
303     OldF->eraseFromParent();
304   }
305 }
306 
307 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
308   GlobalValReplacements.push_back(std::make_pair(GV, C));
309 }
310 
311 void CodeGenModule::applyGlobalValReplacements() {
312   for (auto &I : GlobalValReplacements) {
313     llvm::GlobalValue *GV = I.first;
314     llvm::Constant *C = I.second;
315 
316     GV->replaceAllUsesWith(C);
317     GV->eraseFromParent();
318   }
319 }
320 
321 // This is only used in aliases that we created and we know they have a
322 // linear structure.
323 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
324   const llvm::Constant *C;
325   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
326     C = GA->getAliasee();
327   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
328     C = GI->getResolver();
329   else
330     return GV;
331 
332   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
333   if (!AliaseeGV)
334     return nullptr;
335 
336   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
337   if (FinalGV == GV)
338     return nullptr;
339 
340   return FinalGV;
341 }
342 
343 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
344                                SourceLocation Location, bool IsIFunc,
345                                const llvm::GlobalValue *Alias,
346                                const llvm::GlobalValue *&GV) {
347   GV = getAliasedGlobal(Alias);
348   if (!GV) {
349     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
350     return false;
351   }
352 
353   if (GV->isDeclaration()) {
354     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
355     return false;
356   }
357 
358   if (IsIFunc) {
359     // Check resolver function type.
360     const auto *F = dyn_cast<llvm::Function>(GV);
361     if (!F) {
362       Diags.Report(Location, diag::err_alias_to_undefined)
363           << IsIFunc << IsIFunc;
364       return false;
365     }
366 
367     llvm::FunctionType *FTy = F->getFunctionType();
368     if (!FTy->getReturnType()->isPointerTy()) {
369       Diags.Report(Location, diag::err_ifunc_resolver_return);
370       return false;
371     }
372   }
373 
374   return true;
375 }
376 
377 void CodeGenModule::checkAliases() {
378   // Check if the constructed aliases are well formed. It is really unfortunate
379   // that we have to do this in CodeGen, but we only construct mangled names
380   // and aliases during codegen.
381   bool Error = false;
382   DiagnosticsEngine &Diags = getDiags();
383   for (const GlobalDecl &GD : Aliases) {
384     const auto *D = cast<ValueDecl>(GD.getDecl());
385     SourceLocation Location;
386     bool IsIFunc = D->hasAttr<IFuncAttr>();
387     if (const Attr *A = D->getDefiningAttr())
388       Location = A->getLocation();
389     else
390       llvm_unreachable("Not an alias or ifunc?");
391 
392     StringRef MangledName = getMangledName(GD);
393     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
394     const llvm::GlobalValue *GV = nullptr;
395     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
396       Error = true;
397       continue;
398     }
399 
400     llvm::Constant *Aliasee =
401         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
402                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
403 
404     llvm::GlobalValue *AliaseeGV;
405     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
406       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
407     else
408       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
409 
410     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
411       StringRef AliasSection = SA->getName();
412       if (AliasSection != AliaseeGV->getSection())
413         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
414             << AliasSection << IsIFunc << IsIFunc;
415     }
416 
417     // We have to handle alias to weak aliases in here. LLVM itself disallows
418     // this since the object semantics would not match the IL one. For
419     // compatibility with gcc we implement it by just pointing the alias
420     // to its aliasee's aliasee. We also warn, since the user is probably
421     // expecting the link to be weak.
422     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
423       if (GA->isInterposable()) {
424         Diags.Report(Location, diag::warn_alias_to_weak_alias)
425             << GV->getName() << GA->getName() << IsIFunc;
426         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
427             GA->getAliasee(), Alias->getType());
428 
429         if (IsIFunc)
430           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
431         else
432           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
433       }
434     }
435   }
436   if (!Error)
437     return;
438 
439   for (const GlobalDecl &GD : Aliases) {
440     StringRef MangledName = getMangledName(GD);
441     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
442     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
443     Alias->eraseFromParent();
444   }
445 }
446 
447 void CodeGenModule::clear() {
448   DeferredDeclsToEmit.clear();
449   if (OpenMPRuntime)
450     OpenMPRuntime->clear();
451 }
452 
453 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
454                                        StringRef MainFile) {
455   if (!hasDiagnostics())
456     return;
457   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
458     if (MainFile.empty())
459       MainFile = "<stdin>";
460     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
461   } else {
462     if (Mismatched > 0)
463       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
464 
465     if (Missing > 0)
466       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
467   }
468 }
469 
470 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
471                                              llvm::Module &M) {
472   if (!LO.VisibilityFromDLLStorageClass)
473     return;
474 
475   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
476       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
477   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
478       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
479   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
480       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
481   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
482       CodeGenModule::GetLLVMVisibility(
483           LO.getExternDeclNoDLLStorageClassVisibility());
484 
485   for (llvm::GlobalValue &GV : M.global_values()) {
486     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
487       continue;
488 
489     // Reset DSO locality before setting the visibility. This removes
490     // any effects that visibility options and annotations may have
491     // had on the DSO locality. Setting the visibility will implicitly set
492     // appropriate globals to DSO Local; however, this will be pessimistic
493     // w.r.t. to the normal compiler IRGen.
494     GV.setDSOLocal(false);
495 
496     if (GV.isDeclarationForLinker()) {
497       GV.setVisibility(GV.getDLLStorageClass() ==
498                                llvm::GlobalValue::DLLImportStorageClass
499                            ? ExternDeclDLLImportVisibility
500                            : ExternDeclNoDLLStorageClassVisibility);
501     } else {
502       GV.setVisibility(GV.getDLLStorageClass() ==
503                                llvm::GlobalValue::DLLExportStorageClass
504                            ? DLLExportVisibility
505                            : NoDLLStorageClassVisibility);
506     }
507 
508     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
509   }
510 }
511 
512 void CodeGenModule::Release() {
513   EmitDeferred();
514   EmitVTablesOpportunistically();
515   applyGlobalValReplacements();
516   applyReplacements();
517   emitMultiVersionFunctions();
518   EmitCXXGlobalInitFunc();
519   EmitCXXGlobalCleanUpFunc();
520   registerGlobalDtorsWithAtExit();
521   EmitCXXThreadLocalInitFunc();
522   if (ObjCRuntime)
523     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
524       AddGlobalCtor(ObjCInitFunction);
525   if (Context.getLangOpts().CUDA && CUDARuntime) {
526     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
527       AddGlobalCtor(CudaCtorFunction);
528   }
529   if (OpenMPRuntime) {
530     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
531             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
532       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
533     }
534     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
535     OpenMPRuntime->clear();
536   }
537   if (PGOReader) {
538     getModule().setProfileSummary(
539         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
540         llvm::ProfileSummary::PSK_Instr);
541     if (PGOStats.hasDiagnostics())
542       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
543   }
544   EmitCtorList(GlobalCtors, "llvm.global_ctors");
545   EmitCtorList(GlobalDtors, "llvm.global_dtors");
546   EmitGlobalAnnotations();
547   EmitStaticExternCAliases();
548   checkAliases();
549   EmitDeferredUnusedCoverageMappings();
550   CodeGenPGO(*this).setValueProfilingFlag(getModule());
551   if (CoverageMapping)
552     CoverageMapping->emit();
553   if (CodeGenOpts.SanitizeCfiCrossDso) {
554     CodeGenFunction(*this).EmitCfiCheckFail();
555     CodeGenFunction(*this).EmitCfiCheckStub();
556   }
557   emitAtAvailableLinkGuard();
558   if (Context.getTargetInfo().getTriple().isWasm() &&
559       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
560     EmitMainVoidAlias();
561   }
562 
563   if (getTriple().isAMDGPU()) {
564     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
565     // preserve ASAN functions in bitcode libraries.
566     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
567       auto *FT = llvm::FunctionType::get(VoidTy, {});
568       auto *F = llvm::Function::Create(
569           FT, llvm::GlobalValue::ExternalLinkage,
570           "__amdgpu_device_library_preserve_asan_functions", &getModule());
571       auto *Var = new llvm::GlobalVariable(
572           getModule(), FT->getPointerTo(),
573           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
574           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
575           llvm::GlobalVariable::NotThreadLocal);
576       addCompilerUsedGlobal(Var);
577     }
578     // Emit amdgpu_code_object_version module flag, which is code object version
579     // times 100.
580     // ToDo: Enable module flag for all code object version when ROCm device
581     // library is ready.
582     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
583       getModule().addModuleFlag(llvm::Module::Error,
584                                 "amdgpu_code_object_version",
585                                 getTarget().getTargetOpts().CodeObjectVersion);
586     }
587   }
588 
589   // Emit a global array containing all external kernels or device variables
590   // used by host functions and mark it as used for CUDA/HIP. This is necessary
591   // to get kernels or device variables in archives linked in even if these
592   // kernels or device variables are only used in host functions.
593   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
594     SmallVector<llvm::Constant *, 8> UsedArray;
595     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
596       GlobalDecl GD;
597       if (auto *FD = dyn_cast<FunctionDecl>(D))
598         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
599       else
600         GD = GlobalDecl(D);
601       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
602           GetAddrOfGlobal(GD), Int8PtrTy));
603     }
604 
605     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
606 
607     auto *GV = new llvm::GlobalVariable(
608         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
609         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
610     addCompilerUsedGlobal(GV);
611   }
612 
613   emitLLVMUsed();
614   if (SanStats)
615     SanStats->finish();
616 
617   if (CodeGenOpts.Autolink &&
618       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
619     EmitModuleLinkOptions();
620   }
621 
622   // On ELF we pass the dependent library specifiers directly to the linker
623   // without manipulating them. This is in contrast to other platforms where
624   // they are mapped to a specific linker option by the compiler. This
625   // difference is a result of the greater variety of ELF linkers and the fact
626   // that ELF linkers tend to handle libraries in a more complicated fashion
627   // than on other platforms. This forces us to defer handling the dependent
628   // libs to the linker.
629   //
630   // CUDA/HIP device and host libraries are different. Currently there is no
631   // way to differentiate dependent libraries for host or device. Existing
632   // usage of #pragma comment(lib, *) is intended for host libraries on
633   // Windows. Therefore emit llvm.dependent-libraries only for host.
634   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
635     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
636     for (auto *MD : ELFDependentLibraries)
637       NMD->addOperand(MD);
638   }
639 
640   // Record mregparm value now so it is visible through rest of codegen.
641   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
642     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
643                               CodeGenOpts.NumRegisterParameters);
644 
645   if (CodeGenOpts.DwarfVersion) {
646     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
647                               CodeGenOpts.DwarfVersion);
648   }
649 
650   if (CodeGenOpts.Dwarf64)
651     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
652 
653   if (Context.getLangOpts().SemanticInterposition)
654     // Require various optimization to respect semantic interposition.
655     getModule().setSemanticInterposition(true);
656 
657   if (CodeGenOpts.EmitCodeView) {
658     // Indicate that we want CodeView in the metadata.
659     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
660   }
661   if (CodeGenOpts.CodeViewGHash) {
662     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
663   }
664   if (CodeGenOpts.ControlFlowGuard) {
665     // Function ID tables and checks for Control Flow Guard (cfguard=2).
666     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
667   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
668     // Function ID tables for Control Flow Guard (cfguard=1).
669     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
670   }
671   if (CodeGenOpts.EHContGuard) {
672     // Function ID tables for EH Continuation Guard.
673     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
674   }
675   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
676     // We don't support LTO with 2 with different StrictVTablePointers
677     // FIXME: we could support it by stripping all the information introduced
678     // by StrictVTablePointers.
679 
680     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
681 
682     llvm::Metadata *Ops[2] = {
683               llvm::MDString::get(VMContext, "StrictVTablePointers"),
684               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
685                   llvm::Type::getInt32Ty(VMContext), 1))};
686 
687     getModule().addModuleFlag(llvm::Module::Require,
688                               "StrictVTablePointersRequirement",
689                               llvm::MDNode::get(VMContext, Ops));
690   }
691   if (getModuleDebugInfo())
692     // We support a single version in the linked module. The LLVM
693     // parser will drop debug info with a different version number
694     // (and warn about it, too).
695     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
696                               llvm::DEBUG_METADATA_VERSION);
697 
698   // We need to record the widths of enums and wchar_t, so that we can generate
699   // the correct build attributes in the ARM backend. wchar_size is also used by
700   // TargetLibraryInfo.
701   uint64_t WCharWidth =
702       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
703   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
704 
705   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
706   if (   Arch == llvm::Triple::arm
707       || Arch == llvm::Triple::armeb
708       || Arch == llvm::Triple::thumb
709       || Arch == llvm::Triple::thumbeb) {
710     // The minimum width of an enum in bytes
711     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
712     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
713   }
714 
715   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
716     StringRef ABIStr = Target.getABI();
717     llvm::LLVMContext &Ctx = TheModule.getContext();
718     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
719                               llvm::MDString::get(Ctx, ABIStr));
720   }
721 
722   if (CodeGenOpts.SanitizeCfiCrossDso) {
723     // Indicate that we want cross-DSO control flow integrity checks.
724     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
725   }
726 
727   if (CodeGenOpts.WholeProgramVTables) {
728     // Indicate whether VFE was enabled for this module, so that the
729     // vcall_visibility metadata added under whole program vtables is handled
730     // appropriately in the optimizer.
731     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
732                               CodeGenOpts.VirtualFunctionElimination);
733   }
734 
735   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
736     getModule().addModuleFlag(llvm::Module::Override,
737                               "CFI Canonical Jump Tables",
738                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
739   }
740 
741   if (CodeGenOpts.CFProtectionReturn &&
742       Target.checkCFProtectionReturnSupported(getDiags())) {
743     // Indicate that we want to instrument return control flow protection.
744     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
745                               1);
746   }
747 
748   if (CodeGenOpts.CFProtectionBranch &&
749       Target.checkCFProtectionBranchSupported(getDiags())) {
750     // Indicate that we want to instrument branch control flow protection.
751     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
752                               1);
753   }
754 
755   if (CodeGenOpts.IBTSeal)
756     getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
757 
758   // Add module metadata for return address signing (ignoring
759   // non-leaf/all) and stack tagging. These are actually turned on by function
760   // attributes, but we use module metadata to emit build attributes. This is
761   // needed for LTO, where the function attributes are inside bitcode
762   // serialised into a global variable by the time build attributes are
763   // emitted, so we can't access them. LTO objects could be compiled with
764   // different flags therefore module flags are set to "Min" behavior to achieve
765   // the same end result of the normal build where e.g BTI is off if any object
766   // doesn't support it.
767   if (Context.getTargetInfo().hasFeature("ptrauth") &&
768       LangOpts.getSignReturnAddressScope() !=
769           LangOptions::SignReturnAddressScopeKind::None)
770     getModule().addModuleFlag(llvm::Module::Override,
771                               "sign-return-address-buildattr", 1);
772   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
773     getModule().addModuleFlag(llvm::Module::Override,
774                               "tag-stack-memory-buildattr", 1);
775 
776   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
777       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
778       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
779       Arch == llvm::Triple::aarch64_be) {
780     getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
781                               LangOpts.BranchTargetEnforcement);
782 
783     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address",
784                               LangOpts.hasSignReturnAddress());
785 
786     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
787                               LangOpts.isSignReturnAddressScopeAll());
788 
789     getModule().addModuleFlag(llvm::Module::Min,
790                               "sign-return-address-with-bkey",
791                               !LangOpts.isSignReturnAddressWithAKey());
792   }
793 
794   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
795     llvm::LLVMContext &Ctx = TheModule.getContext();
796     getModule().addModuleFlag(
797         llvm::Module::Error, "MemProfProfileFilename",
798         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
799   }
800 
801   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
802     // Indicate whether __nvvm_reflect should be configured to flush denormal
803     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
804     // property.)
805     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
806                               CodeGenOpts.FP32DenormalMode.Output !=
807                                   llvm::DenormalMode::IEEE);
808   }
809 
810   if (LangOpts.EHAsynch)
811     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
812 
813   // Indicate whether this Module was compiled with -fopenmp
814   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
815     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
816   if (getLangOpts().OpenMPIsDevice)
817     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
818                               LangOpts.OpenMP);
819 
820   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
821   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
822     EmitOpenCLMetadata();
823     // Emit SPIR version.
824     if (getTriple().isSPIR()) {
825       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
826       // opencl.spir.version named metadata.
827       // C++ for OpenCL has a distinct mapping for version compatibility with
828       // OpenCL.
829       auto Version = LangOpts.getOpenCLCompatibleVersion();
830       llvm::Metadata *SPIRVerElts[] = {
831           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
832               Int32Ty, Version / 100)),
833           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
834               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
835       llvm::NamedMDNode *SPIRVerMD =
836           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
837       llvm::LLVMContext &Ctx = TheModule.getContext();
838       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
839     }
840   }
841 
842   // HLSL related end of code gen work items.
843   if (LangOpts.HLSL)
844     getHLSLRuntime().finishCodeGen();
845 
846   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
847     assert(PLevel < 3 && "Invalid PIC Level");
848     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
849     if (Context.getLangOpts().PIE)
850       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
851   }
852 
853   if (getCodeGenOpts().CodeModel.size() > 0) {
854     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
855                   .Case("tiny", llvm::CodeModel::Tiny)
856                   .Case("small", llvm::CodeModel::Small)
857                   .Case("kernel", llvm::CodeModel::Kernel)
858                   .Case("medium", llvm::CodeModel::Medium)
859                   .Case("large", llvm::CodeModel::Large)
860                   .Default(~0u);
861     if (CM != ~0u) {
862       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
863       getModule().setCodeModel(codeModel);
864     }
865   }
866 
867   if (CodeGenOpts.NoPLT)
868     getModule().setRtLibUseGOT();
869   if (CodeGenOpts.UnwindTables)
870     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
871 
872   switch (CodeGenOpts.getFramePointer()) {
873   case CodeGenOptions::FramePointerKind::None:
874     // 0 ("none") is the default.
875     break;
876   case CodeGenOptions::FramePointerKind::NonLeaf:
877     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
878     break;
879   case CodeGenOptions::FramePointerKind::All:
880     getModule().setFramePointer(llvm::FramePointerKind::All);
881     break;
882   }
883 
884   SimplifyPersonality();
885 
886   if (getCodeGenOpts().EmitDeclMetadata)
887     EmitDeclMetadata();
888 
889   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
890     EmitCoverageFile();
891 
892   if (CGDebugInfo *DI = getModuleDebugInfo())
893     DI->finalize();
894 
895   if (getCodeGenOpts().EmitVersionIdentMetadata)
896     EmitVersionIdentMetadata();
897 
898   if (!getCodeGenOpts().RecordCommandLine.empty())
899     EmitCommandLineMetadata();
900 
901   if (!getCodeGenOpts().StackProtectorGuard.empty())
902     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
903   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
904     getModule().setStackProtectorGuardReg(
905         getCodeGenOpts().StackProtectorGuardReg);
906   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
907     getModule().setStackProtectorGuardOffset(
908         getCodeGenOpts().StackProtectorGuardOffset);
909   if (getCodeGenOpts().StackAlignment)
910     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
911   if (getCodeGenOpts().SkipRaxSetup)
912     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
913 
914   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
915 
916   EmitBackendOptionsMetadata(getCodeGenOpts());
917 
918   // If there is device offloading code embed it in the host now.
919   EmbedObject(&getModule(), CodeGenOpts, getDiags());
920 
921   // Set visibility from DLL storage class
922   // We do this at the end of LLVM IR generation; after any operation
923   // that might affect the DLL storage class or the visibility, and
924   // before anything that might act on these.
925   setVisibilityFromDLLStorageClass(LangOpts, getModule());
926 }
927 
928 void CodeGenModule::EmitOpenCLMetadata() {
929   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
930   // opencl.ocl.version named metadata node.
931   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
932   auto Version = LangOpts.getOpenCLCompatibleVersion();
933   llvm::Metadata *OCLVerElts[] = {
934       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
935           Int32Ty, Version / 100)),
936       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
937           Int32Ty, (Version % 100) / 10))};
938   llvm::NamedMDNode *OCLVerMD =
939       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
940   llvm::LLVMContext &Ctx = TheModule.getContext();
941   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
942 }
943 
944 void CodeGenModule::EmitBackendOptionsMetadata(
945     const CodeGenOptions CodeGenOpts) {
946   switch (getTriple().getArch()) {
947   default:
948     break;
949   case llvm::Triple::riscv32:
950   case llvm::Triple::riscv64:
951     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
952                               CodeGenOpts.SmallDataLimit);
953     break;
954   }
955 }
956 
957 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
958   // Make sure that this type is translated.
959   Types.UpdateCompletedType(TD);
960 }
961 
962 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
963   // Make sure that this type is translated.
964   Types.RefreshTypeCacheForClass(RD);
965 }
966 
967 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
968   if (!TBAA)
969     return nullptr;
970   return TBAA->getTypeInfo(QTy);
971 }
972 
973 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
974   if (!TBAA)
975     return TBAAAccessInfo();
976   if (getLangOpts().CUDAIsDevice) {
977     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
978     // access info.
979     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
980       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
981           nullptr)
982         return TBAAAccessInfo();
983     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
984       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
985           nullptr)
986         return TBAAAccessInfo();
987     }
988   }
989   return TBAA->getAccessInfo(AccessType);
990 }
991 
992 TBAAAccessInfo
993 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
994   if (!TBAA)
995     return TBAAAccessInfo();
996   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
997 }
998 
999 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1000   if (!TBAA)
1001     return nullptr;
1002   return TBAA->getTBAAStructInfo(QTy);
1003 }
1004 
1005 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1006   if (!TBAA)
1007     return nullptr;
1008   return TBAA->getBaseTypeInfo(QTy);
1009 }
1010 
1011 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1012   if (!TBAA)
1013     return nullptr;
1014   return TBAA->getAccessTagInfo(Info);
1015 }
1016 
1017 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1018                                                    TBAAAccessInfo TargetInfo) {
1019   if (!TBAA)
1020     return TBAAAccessInfo();
1021   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1022 }
1023 
1024 TBAAAccessInfo
1025 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1026                                                    TBAAAccessInfo InfoB) {
1027   if (!TBAA)
1028     return TBAAAccessInfo();
1029   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1030 }
1031 
1032 TBAAAccessInfo
1033 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1034                                               TBAAAccessInfo SrcInfo) {
1035   if (!TBAA)
1036     return TBAAAccessInfo();
1037   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1038 }
1039 
1040 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1041                                                 TBAAAccessInfo TBAAInfo) {
1042   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1043     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1044 }
1045 
1046 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1047     llvm::Instruction *I, const CXXRecordDecl *RD) {
1048   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1049                  llvm::MDNode::get(getLLVMContext(), {}));
1050 }
1051 
1052 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1053   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1054   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1055 }
1056 
1057 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1058 /// specified stmt yet.
1059 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1060   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1061                                                "cannot compile this %0 yet");
1062   std::string Msg = Type;
1063   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1064       << Msg << S->getSourceRange();
1065 }
1066 
1067 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1068 /// specified decl yet.
1069 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1070   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1071                                                "cannot compile this %0 yet");
1072   std::string Msg = Type;
1073   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1074 }
1075 
1076 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1077   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1078 }
1079 
1080 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1081                                         const NamedDecl *D) const {
1082   if (GV->hasDLLImportStorageClass())
1083     return;
1084   // Internal definitions always have default visibility.
1085   if (GV->hasLocalLinkage()) {
1086     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1087     return;
1088   }
1089   if (!D)
1090     return;
1091   // Set visibility for definitions, and for declarations if requested globally
1092   // or set explicitly.
1093   LinkageInfo LV = D->getLinkageAndVisibility();
1094   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1095       !GV->isDeclarationForLinker())
1096     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1097 }
1098 
1099 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1100                                  llvm::GlobalValue *GV) {
1101   if (GV->hasLocalLinkage())
1102     return true;
1103 
1104   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1105     return true;
1106 
1107   // DLLImport explicitly marks the GV as external.
1108   if (GV->hasDLLImportStorageClass())
1109     return false;
1110 
1111   const llvm::Triple &TT = CGM.getTriple();
1112   if (TT.isWindowsGNUEnvironment()) {
1113     // In MinGW, variables without DLLImport can still be automatically
1114     // imported from a DLL by the linker; don't mark variables that
1115     // potentially could come from another DLL as DSO local.
1116 
1117     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1118     // (and this actually happens in the public interface of libstdc++), so
1119     // such variables can't be marked as DSO local. (Native TLS variables
1120     // can't be dllimported at all, though.)
1121     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1122         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1123       return false;
1124   }
1125 
1126   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1127   // remain unresolved in the link, they can be resolved to zero, which is
1128   // outside the current DSO.
1129   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1130     return false;
1131 
1132   // Every other GV is local on COFF.
1133   // Make an exception for windows OS in the triple: Some firmware builds use
1134   // *-win32-macho triples. This (accidentally?) produced windows relocations
1135   // without GOT tables in older clang versions; Keep this behaviour.
1136   // FIXME: even thread local variables?
1137   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1138     return true;
1139 
1140   // Only handle COFF and ELF for now.
1141   if (!TT.isOSBinFormatELF())
1142     return false;
1143 
1144   // If this is not an executable, don't assume anything is local.
1145   const auto &CGOpts = CGM.getCodeGenOpts();
1146   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1147   const auto &LOpts = CGM.getLangOpts();
1148   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1149     // On ELF, if -fno-semantic-interposition is specified and the target
1150     // supports local aliases, there will be neither CC1
1151     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1152     // dso_local on the function if using a local alias is preferable (can avoid
1153     // PLT indirection).
1154     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1155       return false;
1156     return !(CGM.getLangOpts().SemanticInterposition ||
1157              CGM.getLangOpts().HalfNoSemanticInterposition);
1158   }
1159 
1160   // A definition cannot be preempted from an executable.
1161   if (!GV->isDeclarationForLinker())
1162     return true;
1163 
1164   // Most PIC code sequences that assume that a symbol is local cannot produce a
1165   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1166   // depended, it seems worth it to handle it here.
1167   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1168     return false;
1169 
1170   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1171   if (TT.isPPC64())
1172     return false;
1173 
1174   if (CGOpts.DirectAccessExternalData) {
1175     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1176     // for non-thread-local variables. If the symbol is not defined in the
1177     // executable, a copy relocation will be needed at link time. dso_local is
1178     // excluded for thread-local variables because they generally don't support
1179     // copy relocations.
1180     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1181       if (!Var->isThreadLocal())
1182         return true;
1183 
1184     // -fno-pic sets dso_local on a function declaration to allow direct
1185     // accesses when taking its address (similar to a data symbol). If the
1186     // function is not defined in the executable, a canonical PLT entry will be
1187     // needed at link time. -fno-direct-access-external-data can avoid the
1188     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1189     // it could just cause trouble without providing perceptible benefits.
1190     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1191       return true;
1192   }
1193 
1194   // If we can use copy relocations we can assume it is local.
1195 
1196   // Otherwise don't assume it is local.
1197   return false;
1198 }
1199 
1200 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1201   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1202 }
1203 
1204 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1205                                           GlobalDecl GD) const {
1206   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1207   // C++ destructors have a few C++ ABI specific special cases.
1208   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1209     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1210     return;
1211   }
1212   setDLLImportDLLExport(GV, D);
1213 }
1214 
1215 bool CodeGenModule::shouldMapVisibilityToDLLExport(const NamedDecl *D) const {
1216   return D &&
1217          (D->getLinkageAndVisibility().getVisibility() == DefaultVisibility) &&
1218          ((D->getLinkageAndVisibility().isVisibilityExplicit() &&
1219            getLangOpts().isExplicitDefaultVisibilityExportMapping()) ||
1220           getLangOpts().isAllDefaultVisibilityExportMapping());
1221 }
1222 
1223 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1224                                           const NamedDecl *D) const {
1225   if (D && D->isExternallyVisible()) {
1226     if (D->hasAttr<DLLImportAttr>())
1227       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1228     else if ((D->hasAttr<DLLExportAttr>() ||
1229               shouldMapVisibilityToDLLExport(D)) &&
1230              !GV->isDeclarationForLinker())
1231       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1232   }
1233 }
1234 
1235 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1236                                     GlobalDecl GD) const {
1237   setDLLImportDLLExport(GV, GD);
1238   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1239 }
1240 
1241 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1242                                     const NamedDecl *D) const {
1243   setDLLImportDLLExport(GV, D);
1244   setGVPropertiesAux(GV, D);
1245 }
1246 
1247 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1248                                        const NamedDecl *D) const {
1249   setGlobalVisibility(GV, D);
1250   setDSOLocal(GV);
1251   GV->setPartition(CodeGenOpts.SymbolPartition);
1252 }
1253 
1254 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1255   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1256       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1257       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1258       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1259       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1260 }
1261 
1262 llvm::GlobalVariable::ThreadLocalMode
1263 CodeGenModule::GetDefaultLLVMTLSModel() const {
1264   switch (CodeGenOpts.getDefaultTLSModel()) {
1265   case CodeGenOptions::GeneralDynamicTLSModel:
1266     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1267   case CodeGenOptions::LocalDynamicTLSModel:
1268     return llvm::GlobalVariable::LocalDynamicTLSModel;
1269   case CodeGenOptions::InitialExecTLSModel:
1270     return llvm::GlobalVariable::InitialExecTLSModel;
1271   case CodeGenOptions::LocalExecTLSModel:
1272     return llvm::GlobalVariable::LocalExecTLSModel;
1273   }
1274   llvm_unreachable("Invalid TLS model!");
1275 }
1276 
1277 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1278   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1279 
1280   llvm::GlobalValue::ThreadLocalMode TLM;
1281   TLM = GetDefaultLLVMTLSModel();
1282 
1283   // Override the TLS model if it is explicitly specified.
1284   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1285     TLM = GetLLVMTLSModel(Attr->getModel());
1286   }
1287 
1288   GV->setThreadLocalMode(TLM);
1289 }
1290 
1291 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1292                                           StringRef Name) {
1293   const TargetInfo &Target = CGM.getTarget();
1294   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1295 }
1296 
1297 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1298                                                  const CPUSpecificAttr *Attr,
1299                                                  unsigned CPUIndex,
1300                                                  raw_ostream &Out) {
1301   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1302   // supported.
1303   if (Attr)
1304     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1305   else if (CGM.getTarget().supportsIFunc())
1306     Out << ".resolver";
1307 }
1308 
1309 static void AppendTargetMangling(const CodeGenModule &CGM,
1310                                  const TargetAttr *Attr, raw_ostream &Out) {
1311   if (Attr->isDefaultVersion())
1312     return;
1313 
1314   Out << '.';
1315   const TargetInfo &Target = CGM.getTarget();
1316   ParsedTargetAttr Info =
1317       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1318         // Multiversioning doesn't allow "no-${feature}", so we can
1319         // only have "+" prefixes here.
1320         assert(LHS.startswith("+") && RHS.startswith("+") &&
1321                "Features should always have a prefix.");
1322         return Target.multiVersionSortPriority(LHS.substr(1)) >
1323                Target.multiVersionSortPriority(RHS.substr(1));
1324       });
1325 
1326   bool IsFirst = true;
1327 
1328   if (!Info.Architecture.empty()) {
1329     IsFirst = false;
1330     Out << "arch_" << Info.Architecture;
1331   }
1332 
1333   for (StringRef Feat : Info.Features) {
1334     if (!IsFirst)
1335       Out << '_';
1336     IsFirst = false;
1337     Out << Feat.substr(1);
1338   }
1339 }
1340 
1341 // Returns true if GD is a function decl with internal linkage and
1342 // needs a unique suffix after the mangled name.
1343 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1344                                         CodeGenModule &CGM) {
1345   const Decl *D = GD.getDecl();
1346   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1347          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1348 }
1349 
1350 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1351                                        const TargetClonesAttr *Attr,
1352                                        unsigned VersionIndex,
1353                                        raw_ostream &Out) {
1354   Out << '.';
1355   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1356   if (FeatureStr.startswith("arch="))
1357     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1358   else
1359     Out << FeatureStr;
1360 
1361   Out << '.' << Attr->getMangledIndex(VersionIndex);
1362 }
1363 
1364 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1365                                       const NamedDecl *ND,
1366                                       bool OmitMultiVersionMangling = false) {
1367   SmallString<256> Buffer;
1368   llvm::raw_svector_ostream Out(Buffer);
1369   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1370   if (!CGM.getModuleNameHash().empty())
1371     MC.needsUniqueInternalLinkageNames();
1372   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1373   if (ShouldMangle)
1374     MC.mangleName(GD.getWithDecl(ND), Out);
1375   else {
1376     IdentifierInfo *II = ND->getIdentifier();
1377     assert(II && "Attempt to mangle unnamed decl.");
1378     const auto *FD = dyn_cast<FunctionDecl>(ND);
1379 
1380     if (FD &&
1381         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1382       Out << "__regcall3__" << II->getName();
1383     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1384                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1385       Out << "__device_stub__" << II->getName();
1386     } else {
1387       Out << II->getName();
1388     }
1389   }
1390 
1391   // Check if the module name hash should be appended for internal linkage
1392   // symbols.   This should come before multi-version target suffixes are
1393   // appended. This is to keep the name and module hash suffix of the
1394   // internal linkage function together.  The unique suffix should only be
1395   // added when name mangling is done to make sure that the final name can
1396   // be properly demangled.  For example, for C functions without prototypes,
1397   // name mangling is not done and the unique suffix should not be appeneded
1398   // then.
1399   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1400     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1401            "Hash computed when not explicitly requested");
1402     Out << CGM.getModuleNameHash();
1403   }
1404 
1405   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1406     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1407       switch (FD->getMultiVersionKind()) {
1408       case MultiVersionKind::CPUDispatch:
1409       case MultiVersionKind::CPUSpecific:
1410         AppendCPUSpecificCPUDispatchMangling(CGM,
1411                                              FD->getAttr<CPUSpecificAttr>(),
1412                                              GD.getMultiVersionIndex(), Out);
1413         break;
1414       case MultiVersionKind::Target:
1415         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1416         break;
1417       case MultiVersionKind::TargetClones:
1418         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1419                                    GD.getMultiVersionIndex(), Out);
1420         break;
1421       case MultiVersionKind::None:
1422         llvm_unreachable("None multiversion type isn't valid here");
1423       }
1424     }
1425 
1426   // Make unique name for device side static file-scope variable for HIP.
1427   if (CGM.getContext().shouldExternalize(ND) &&
1428       CGM.getLangOpts().GPURelocatableDeviceCode &&
1429       CGM.getLangOpts().CUDAIsDevice)
1430     CGM.printPostfixForExternalizedDecl(Out, ND);
1431 
1432   return std::string(Out.str());
1433 }
1434 
1435 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1436                                             const FunctionDecl *FD,
1437                                             StringRef &CurName) {
1438   if (!FD->isMultiVersion())
1439     return;
1440 
1441   // Get the name of what this would be without the 'target' attribute.  This
1442   // allows us to lookup the version that was emitted when this wasn't a
1443   // multiversion function.
1444   std::string NonTargetName =
1445       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1446   GlobalDecl OtherGD;
1447   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1448     assert(OtherGD.getCanonicalDecl()
1449                .getDecl()
1450                ->getAsFunction()
1451                ->isMultiVersion() &&
1452            "Other GD should now be a multiversioned function");
1453     // OtherFD is the version of this function that was mangled BEFORE
1454     // becoming a MultiVersion function.  It potentially needs to be updated.
1455     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1456                                       .getDecl()
1457                                       ->getAsFunction()
1458                                       ->getMostRecentDecl();
1459     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1460     // This is so that if the initial version was already the 'default'
1461     // version, we don't try to update it.
1462     if (OtherName != NonTargetName) {
1463       // Remove instead of erase, since others may have stored the StringRef
1464       // to this.
1465       const auto ExistingRecord = Manglings.find(NonTargetName);
1466       if (ExistingRecord != std::end(Manglings))
1467         Manglings.remove(&(*ExistingRecord));
1468       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1469       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1470           Result.first->first();
1471       // If this is the current decl is being created, make sure we update the name.
1472       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1473         CurName = OtherNameRef;
1474       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1475         Entry->setName(OtherName);
1476     }
1477   }
1478 }
1479 
1480 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1481   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1482 
1483   // Some ABIs don't have constructor variants.  Make sure that base and
1484   // complete constructors get mangled the same.
1485   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1486     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1487       CXXCtorType OrigCtorType = GD.getCtorType();
1488       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1489       if (OrigCtorType == Ctor_Base)
1490         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1491     }
1492   }
1493 
1494   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1495   // static device variable depends on whether the variable is referenced by
1496   // a host or device host function. Therefore the mangled name cannot be
1497   // cached.
1498   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1499     auto FoundName = MangledDeclNames.find(CanonicalGD);
1500     if (FoundName != MangledDeclNames.end())
1501       return FoundName->second;
1502   }
1503 
1504   // Keep the first result in the case of a mangling collision.
1505   const auto *ND = cast<NamedDecl>(GD.getDecl());
1506   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1507 
1508   // Ensure either we have different ABIs between host and device compilations,
1509   // says host compilation following MSVC ABI but device compilation follows
1510   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1511   // mangling should be the same after name stubbing. The later checking is
1512   // very important as the device kernel name being mangled in host-compilation
1513   // is used to resolve the device binaries to be executed. Inconsistent naming
1514   // result in undefined behavior. Even though we cannot check that naming
1515   // directly between host- and device-compilations, the host- and
1516   // device-mangling in host compilation could help catching certain ones.
1517   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1518          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1519          (getContext().getAuxTargetInfo() &&
1520           (getContext().getAuxTargetInfo()->getCXXABI() !=
1521            getContext().getTargetInfo().getCXXABI())) ||
1522          getCUDARuntime().getDeviceSideName(ND) ==
1523              getMangledNameImpl(
1524                  *this,
1525                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1526                  ND));
1527 
1528   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1529   return MangledDeclNames[CanonicalGD] = Result.first->first();
1530 }
1531 
1532 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1533                                              const BlockDecl *BD) {
1534   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1535   const Decl *D = GD.getDecl();
1536 
1537   SmallString<256> Buffer;
1538   llvm::raw_svector_ostream Out(Buffer);
1539   if (!D)
1540     MangleCtx.mangleGlobalBlock(BD,
1541       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1542   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1543     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1544   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1545     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1546   else
1547     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1548 
1549   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1550   return Result.first->first();
1551 }
1552 
1553 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1554   auto it = MangledDeclNames.begin();
1555   while (it != MangledDeclNames.end()) {
1556     if (it->second == Name)
1557       return it->first;
1558     it++;
1559   }
1560   return GlobalDecl();
1561 }
1562 
1563 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1564   return getModule().getNamedValue(Name);
1565 }
1566 
1567 /// AddGlobalCtor - Add a function to the list that will be called before
1568 /// main() runs.
1569 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1570                                   llvm::Constant *AssociatedData) {
1571   // FIXME: Type coercion of void()* types.
1572   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1573 }
1574 
1575 /// AddGlobalDtor - Add a function to the list that will be called
1576 /// when the module is unloaded.
1577 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1578                                   bool IsDtorAttrFunc) {
1579   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1580       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1581     DtorsUsingAtExit[Priority].push_back(Dtor);
1582     return;
1583   }
1584 
1585   // FIXME: Type coercion of void()* types.
1586   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1587 }
1588 
1589 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1590   if (Fns.empty()) return;
1591 
1592   // Ctor function type is void()*.
1593   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1594   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1595       TheModule.getDataLayout().getProgramAddressSpace());
1596 
1597   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1598   llvm::StructType *CtorStructTy = llvm::StructType::get(
1599       Int32Ty, CtorPFTy, VoidPtrTy);
1600 
1601   // Construct the constructor and destructor arrays.
1602   ConstantInitBuilder builder(*this);
1603   auto ctors = builder.beginArray(CtorStructTy);
1604   for (const auto &I : Fns) {
1605     auto ctor = ctors.beginStruct(CtorStructTy);
1606     ctor.addInt(Int32Ty, I.Priority);
1607     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1608     if (I.AssociatedData)
1609       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1610     else
1611       ctor.addNullPointer(VoidPtrTy);
1612     ctor.finishAndAddTo(ctors);
1613   }
1614 
1615   auto list =
1616     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1617                                 /*constant*/ false,
1618                                 llvm::GlobalValue::AppendingLinkage);
1619 
1620   // The LTO linker doesn't seem to like it when we set an alignment
1621   // on appending variables.  Take it off as a workaround.
1622   list->setAlignment(llvm::None);
1623 
1624   Fns.clear();
1625 }
1626 
1627 llvm::GlobalValue::LinkageTypes
1628 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1629   const auto *D = cast<FunctionDecl>(GD.getDecl());
1630 
1631   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1632 
1633   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1634     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1635 
1636   if (isa<CXXConstructorDecl>(D) &&
1637       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1638       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1639     // Our approach to inheriting constructors is fundamentally different from
1640     // that used by the MS ABI, so keep our inheriting constructor thunks
1641     // internal rather than trying to pick an unambiguous mangling for them.
1642     return llvm::GlobalValue::InternalLinkage;
1643   }
1644 
1645   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1646 }
1647 
1648 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1649   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1650   if (!MDS) return nullptr;
1651 
1652   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1653 }
1654 
1655 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1656                                               const CGFunctionInfo &Info,
1657                                               llvm::Function *F, bool IsThunk) {
1658   unsigned CallingConv;
1659   llvm::AttributeList PAL;
1660   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1661                          /*AttrOnCallSite=*/false, IsThunk);
1662   F->setAttributes(PAL);
1663   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1664 }
1665 
1666 static void removeImageAccessQualifier(std::string& TyName) {
1667   std::string ReadOnlyQual("__read_only");
1668   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1669   if (ReadOnlyPos != std::string::npos)
1670     // "+ 1" for the space after access qualifier.
1671     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1672   else {
1673     std::string WriteOnlyQual("__write_only");
1674     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1675     if (WriteOnlyPos != std::string::npos)
1676       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1677     else {
1678       std::string ReadWriteQual("__read_write");
1679       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1680       if (ReadWritePos != std::string::npos)
1681         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1682     }
1683   }
1684 }
1685 
1686 // Returns the address space id that should be produced to the
1687 // kernel_arg_addr_space metadata. This is always fixed to the ids
1688 // as specified in the SPIR 2.0 specification in order to differentiate
1689 // for example in clGetKernelArgInfo() implementation between the address
1690 // spaces with targets without unique mapping to the OpenCL address spaces
1691 // (basically all single AS CPUs).
1692 static unsigned ArgInfoAddressSpace(LangAS AS) {
1693   switch (AS) {
1694   case LangAS::opencl_global:
1695     return 1;
1696   case LangAS::opencl_constant:
1697     return 2;
1698   case LangAS::opencl_local:
1699     return 3;
1700   case LangAS::opencl_generic:
1701     return 4; // Not in SPIR 2.0 specs.
1702   case LangAS::opencl_global_device:
1703     return 5;
1704   case LangAS::opencl_global_host:
1705     return 6;
1706   default:
1707     return 0; // Assume private.
1708   }
1709 }
1710 
1711 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1712                                          const FunctionDecl *FD,
1713                                          CodeGenFunction *CGF) {
1714   assert(((FD && CGF) || (!FD && !CGF)) &&
1715          "Incorrect use - FD and CGF should either be both null or not!");
1716   // Create MDNodes that represent the kernel arg metadata.
1717   // Each MDNode is a list in the form of "key", N number of values which is
1718   // the same number of values as their are kernel arguments.
1719 
1720   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1721 
1722   // MDNode for the kernel argument address space qualifiers.
1723   SmallVector<llvm::Metadata *, 8> addressQuals;
1724 
1725   // MDNode for the kernel argument access qualifiers (images only).
1726   SmallVector<llvm::Metadata *, 8> accessQuals;
1727 
1728   // MDNode for the kernel argument type names.
1729   SmallVector<llvm::Metadata *, 8> argTypeNames;
1730 
1731   // MDNode for the kernel argument base type names.
1732   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1733 
1734   // MDNode for the kernel argument type qualifiers.
1735   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1736 
1737   // MDNode for the kernel argument names.
1738   SmallVector<llvm::Metadata *, 8> argNames;
1739 
1740   if (FD && CGF)
1741     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1742       const ParmVarDecl *parm = FD->getParamDecl(i);
1743       QualType ty = parm->getType();
1744       std::string typeQuals;
1745 
1746       // Get image and pipe access qualifier:
1747       if (ty->isImageType() || ty->isPipeType()) {
1748         const Decl *PDecl = parm;
1749         if (auto *TD = dyn_cast<TypedefType>(ty))
1750           PDecl = TD->getDecl();
1751         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1752         if (A && A->isWriteOnly())
1753           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1754         else if (A && A->isReadWrite())
1755           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1756         else
1757           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1758       } else
1759         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1760 
1761       // Get argument name.
1762       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1763 
1764       auto getTypeSpelling = [&](QualType Ty) {
1765         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1766 
1767         if (Ty.isCanonical()) {
1768           StringRef typeNameRef = typeName;
1769           // Turn "unsigned type" to "utype"
1770           if (typeNameRef.consume_front("unsigned "))
1771             return std::string("u") + typeNameRef.str();
1772           if (typeNameRef.consume_front("signed "))
1773             return typeNameRef.str();
1774         }
1775 
1776         return typeName;
1777       };
1778 
1779       if (ty->isPointerType()) {
1780         QualType pointeeTy = ty->getPointeeType();
1781 
1782         // Get address qualifier.
1783         addressQuals.push_back(
1784             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1785                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1786 
1787         // Get argument type name.
1788         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1789         std::string baseTypeName =
1790             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1791         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1792         argBaseTypeNames.push_back(
1793             llvm::MDString::get(VMContext, baseTypeName));
1794 
1795         // Get argument type qualifiers:
1796         if (ty.isRestrictQualified())
1797           typeQuals = "restrict";
1798         if (pointeeTy.isConstQualified() ||
1799             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1800           typeQuals += typeQuals.empty() ? "const" : " const";
1801         if (pointeeTy.isVolatileQualified())
1802           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1803       } else {
1804         uint32_t AddrSpc = 0;
1805         bool isPipe = ty->isPipeType();
1806         if (ty->isImageType() || isPipe)
1807           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1808 
1809         addressQuals.push_back(
1810             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1811 
1812         // Get argument type name.
1813         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1814         std::string typeName = getTypeSpelling(ty);
1815         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1816 
1817         // Remove access qualifiers on images
1818         // (as they are inseparable from type in clang implementation,
1819         // but OpenCL spec provides a special query to get access qualifier
1820         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1821         if (ty->isImageType()) {
1822           removeImageAccessQualifier(typeName);
1823           removeImageAccessQualifier(baseTypeName);
1824         }
1825 
1826         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1827         argBaseTypeNames.push_back(
1828             llvm::MDString::get(VMContext, baseTypeName));
1829 
1830         if (isPipe)
1831           typeQuals = "pipe";
1832       }
1833       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1834     }
1835 
1836   Fn->setMetadata("kernel_arg_addr_space",
1837                   llvm::MDNode::get(VMContext, addressQuals));
1838   Fn->setMetadata("kernel_arg_access_qual",
1839                   llvm::MDNode::get(VMContext, accessQuals));
1840   Fn->setMetadata("kernel_arg_type",
1841                   llvm::MDNode::get(VMContext, argTypeNames));
1842   Fn->setMetadata("kernel_arg_base_type",
1843                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1844   Fn->setMetadata("kernel_arg_type_qual",
1845                   llvm::MDNode::get(VMContext, argTypeQuals));
1846   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1847     Fn->setMetadata("kernel_arg_name",
1848                     llvm::MDNode::get(VMContext, argNames));
1849 }
1850 
1851 /// Determines whether the language options require us to model
1852 /// unwind exceptions.  We treat -fexceptions as mandating this
1853 /// except under the fragile ObjC ABI with only ObjC exceptions
1854 /// enabled.  This means, for example, that C with -fexceptions
1855 /// enables this.
1856 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1857   // If exceptions are completely disabled, obviously this is false.
1858   if (!LangOpts.Exceptions) return false;
1859 
1860   // If C++ exceptions are enabled, this is true.
1861   if (LangOpts.CXXExceptions) return true;
1862 
1863   // If ObjC exceptions are enabled, this depends on the ABI.
1864   if (LangOpts.ObjCExceptions) {
1865     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1866   }
1867 
1868   return true;
1869 }
1870 
1871 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1872                                                       const CXXMethodDecl *MD) {
1873   // Check that the type metadata can ever actually be used by a call.
1874   if (!CGM.getCodeGenOpts().LTOUnit ||
1875       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1876     return false;
1877 
1878   // Only functions whose address can be taken with a member function pointer
1879   // need this sort of type metadata.
1880   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1881          !isa<CXXDestructorDecl>(MD);
1882 }
1883 
1884 std::vector<const CXXRecordDecl *>
1885 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1886   llvm::SetVector<const CXXRecordDecl *> MostBases;
1887 
1888   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1889   CollectMostBases = [&](const CXXRecordDecl *RD) {
1890     if (RD->getNumBases() == 0)
1891       MostBases.insert(RD);
1892     for (const CXXBaseSpecifier &B : RD->bases())
1893       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1894   };
1895   CollectMostBases(RD);
1896   return MostBases.takeVector();
1897 }
1898 
1899 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1900                                                            llvm::Function *F) {
1901   llvm::AttrBuilder B(F->getContext());
1902 
1903   if (CodeGenOpts.UnwindTables)
1904     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1905 
1906   if (CodeGenOpts.StackClashProtector)
1907     B.addAttribute("probe-stack", "inline-asm");
1908 
1909   if (!hasUnwindExceptions(LangOpts))
1910     B.addAttribute(llvm::Attribute::NoUnwind);
1911 
1912   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1913     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1914       B.addAttribute(llvm::Attribute::StackProtect);
1915     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1916       B.addAttribute(llvm::Attribute::StackProtectStrong);
1917     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1918       B.addAttribute(llvm::Attribute::StackProtectReq);
1919   }
1920 
1921   if (!D) {
1922     // If we don't have a declaration to control inlining, the function isn't
1923     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1924     // disabled, mark the function as noinline.
1925     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1926         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1927       B.addAttribute(llvm::Attribute::NoInline);
1928 
1929     F->addFnAttrs(B);
1930     return;
1931   }
1932 
1933   // Track whether we need to add the optnone LLVM attribute,
1934   // starting with the default for this optimization level.
1935   bool ShouldAddOptNone =
1936       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1937   // We can't add optnone in the following cases, it won't pass the verifier.
1938   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1939   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1940 
1941   // Add optnone, but do so only if the function isn't always_inline.
1942   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1943       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1944     B.addAttribute(llvm::Attribute::OptimizeNone);
1945 
1946     // OptimizeNone implies noinline; we should not be inlining such functions.
1947     B.addAttribute(llvm::Attribute::NoInline);
1948 
1949     // We still need to handle naked functions even though optnone subsumes
1950     // much of their semantics.
1951     if (D->hasAttr<NakedAttr>())
1952       B.addAttribute(llvm::Attribute::Naked);
1953 
1954     // OptimizeNone wins over OptimizeForSize and MinSize.
1955     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1956     F->removeFnAttr(llvm::Attribute::MinSize);
1957   } else if (D->hasAttr<NakedAttr>()) {
1958     // Naked implies noinline: we should not be inlining such functions.
1959     B.addAttribute(llvm::Attribute::Naked);
1960     B.addAttribute(llvm::Attribute::NoInline);
1961   } else if (D->hasAttr<NoDuplicateAttr>()) {
1962     B.addAttribute(llvm::Attribute::NoDuplicate);
1963   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1964     // Add noinline if the function isn't always_inline.
1965     B.addAttribute(llvm::Attribute::NoInline);
1966   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1967              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1968     // (noinline wins over always_inline, and we can't specify both in IR)
1969     B.addAttribute(llvm::Attribute::AlwaysInline);
1970   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1971     // If we're not inlining, then force everything that isn't always_inline to
1972     // carry an explicit noinline attribute.
1973     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1974       B.addAttribute(llvm::Attribute::NoInline);
1975   } else {
1976     // Otherwise, propagate the inline hint attribute and potentially use its
1977     // absence to mark things as noinline.
1978     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1979       // Search function and template pattern redeclarations for inline.
1980       auto CheckForInline = [](const FunctionDecl *FD) {
1981         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1982           return Redecl->isInlineSpecified();
1983         };
1984         if (any_of(FD->redecls(), CheckRedeclForInline))
1985           return true;
1986         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1987         if (!Pattern)
1988           return false;
1989         return any_of(Pattern->redecls(), CheckRedeclForInline);
1990       };
1991       if (CheckForInline(FD)) {
1992         B.addAttribute(llvm::Attribute::InlineHint);
1993       } else if (CodeGenOpts.getInlining() ==
1994                      CodeGenOptions::OnlyHintInlining &&
1995                  !FD->isInlined() &&
1996                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1997         B.addAttribute(llvm::Attribute::NoInline);
1998       }
1999     }
2000   }
2001 
2002   // Add other optimization related attributes if we are optimizing this
2003   // function.
2004   if (!D->hasAttr<OptimizeNoneAttr>()) {
2005     if (D->hasAttr<ColdAttr>()) {
2006       if (!ShouldAddOptNone)
2007         B.addAttribute(llvm::Attribute::OptimizeForSize);
2008       B.addAttribute(llvm::Attribute::Cold);
2009     }
2010     if (D->hasAttr<HotAttr>())
2011       B.addAttribute(llvm::Attribute::Hot);
2012     if (D->hasAttr<MinSizeAttr>())
2013       B.addAttribute(llvm::Attribute::MinSize);
2014   }
2015 
2016   F->addFnAttrs(B);
2017 
2018   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2019   if (alignment)
2020     F->setAlignment(llvm::Align(alignment));
2021 
2022   if (!D->hasAttr<AlignedAttr>())
2023     if (LangOpts.FunctionAlignment)
2024       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2025 
2026   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2027   // reserve a bit for differentiating between virtual and non-virtual member
2028   // functions. If the current target's C++ ABI requires this and this is a
2029   // member function, set its alignment accordingly.
2030   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2031     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2032       F->setAlignment(llvm::Align(2));
2033   }
2034 
2035   // In the cross-dso CFI mode with canonical jump tables, we want !type
2036   // attributes on definitions only.
2037   if (CodeGenOpts.SanitizeCfiCrossDso &&
2038       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2039     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2040       // Skip available_externally functions. They won't be codegen'ed in the
2041       // current module anyway.
2042       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2043         CreateFunctionTypeMetadataForIcall(FD, F);
2044     }
2045   }
2046 
2047   // Emit type metadata on member functions for member function pointer checks.
2048   // These are only ever necessary on definitions; we're guaranteed that the
2049   // definition will be present in the LTO unit as a result of LTO visibility.
2050   auto *MD = dyn_cast<CXXMethodDecl>(D);
2051   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2052     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2053       llvm::Metadata *Id =
2054           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2055               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2056       F->addTypeMetadata(0, Id);
2057     }
2058   }
2059 }
2060 
2061 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2062                                                   llvm::Function *F) {
2063   if (D->hasAttr<StrictFPAttr>()) {
2064     llvm::AttrBuilder FuncAttrs(F->getContext());
2065     FuncAttrs.addAttribute("strictfp");
2066     F->addFnAttrs(FuncAttrs);
2067   }
2068 }
2069 
2070 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2071   const Decl *D = GD.getDecl();
2072   if (isa_and_nonnull<NamedDecl>(D))
2073     setGVProperties(GV, GD);
2074   else
2075     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2076 
2077   if (D && D->hasAttr<UsedAttr>())
2078     addUsedOrCompilerUsedGlobal(GV);
2079 
2080   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2081     const auto *VD = cast<VarDecl>(D);
2082     if (VD->getType().isConstQualified() &&
2083         VD->getStorageDuration() == SD_Static)
2084       addUsedOrCompilerUsedGlobal(GV);
2085   }
2086 }
2087 
2088 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2089                                                 llvm::AttrBuilder &Attrs) {
2090   // Add target-cpu and target-features attributes to functions. If
2091   // we have a decl for the function and it has a target attribute then
2092   // parse that and add it to the feature set.
2093   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2094   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2095   std::vector<std::string> Features;
2096   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2097   FD = FD ? FD->getMostRecentDecl() : FD;
2098   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2099   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2100   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2101   bool AddedAttr = false;
2102   if (TD || SD || TC) {
2103     llvm::StringMap<bool> FeatureMap;
2104     getContext().getFunctionFeatureMap(FeatureMap, GD);
2105 
2106     // Produce the canonical string for this set of features.
2107     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2108       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2109 
2110     // Now add the target-cpu and target-features to the function.
2111     // While we populated the feature map above, we still need to
2112     // get and parse the target attribute so we can get the cpu for
2113     // the function.
2114     if (TD) {
2115       ParsedTargetAttr ParsedAttr = TD->parse();
2116       if (!ParsedAttr.Architecture.empty() &&
2117           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2118         TargetCPU = ParsedAttr.Architecture;
2119         TuneCPU = ""; // Clear the tune CPU.
2120       }
2121       if (!ParsedAttr.Tune.empty() &&
2122           getTarget().isValidCPUName(ParsedAttr.Tune))
2123         TuneCPU = ParsedAttr.Tune;
2124     }
2125 
2126     if (SD) {
2127       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2128       // favor this processor.
2129       TuneCPU = getTarget().getCPUSpecificTuneName(
2130           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2131     }
2132   } else {
2133     // Otherwise just add the existing target cpu and target features to the
2134     // function.
2135     Features = getTarget().getTargetOpts().Features;
2136   }
2137 
2138   if (!TargetCPU.empty()) {
2139     Attrs.addAttribute("target-cpu", TargetCPU);
2140     AddedAttr = true;
2141   }
2142   if (!TuneCPU.empty()) {
2143     Attrs.addAttribute("tune-cpu", TuneCPU);
2144     AddedAttr = true;
2145   }
2146   if (!Features.empty()) {
2147     llvm::sort(Features);
2148     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2149     AddedAttr = true;
2150   }
2151 
2152   return AddedAttr;
2153 }
2154 
2155 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2156                                           llvm::GlobalObject *GO) {
2157   const Decl *D = GD.getDecl();
2158   SetCommonAttributes(GD, GO);
2159 
2160   if (D) {
2161     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2162       if (D->hasAttr<RetainAttr>())
2163         addUsedGlobal(GV);
2164       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2165         GV->addAttribute("bss-section", SA->getName());
2166       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2167         GV->addAttribute("data-section", SA->getName());
2168       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2169         GV->addAttribute("rodata-section", SA->getName());
2170       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2171         GV->addAttribute("relro-section", SA->getName());
2172     }
2173 
2174     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2175       if (D->hasAttr<RetainAttr>())
2176         addUsedGlobal(F);
2177       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2178         if (!D->getAttr<SectionAttr>())
2179           F->addFnAttr("implicit-section-name", SA->getName());
2180 
2181       llvm::AttrBuilder Attrs(F->getContext());
2182       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2183         // We know that GetCPUAndFeaturesAttributes will always have the
2184         // newest set, since it has the newest possible FunctionDecl, so the
2185         // new ones should replace the old.
2186         llvm::AttributeMask RemoveAttrs;
2187         RemoveAttrs.addAttribute("target-cpu");
2188         RemoveAttrs.addAttribute("target-features");
2189         RemoveAttrs.addAttribute("tune-cpu");
2190         F->removeFnAttrs(RemoveAttrs);
2191         F->addFnAttrs(Attrs);
2192       }
2193     }
2194 
2195     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2196       GO->setSection(CSA->getName());
2197     else if (const auto *SA = D->getAttr<SectionAttr>())
2198       GO->setSection(SA->getName());
2199   }
2200 
2201   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2202 }
2203 
2204 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2205                                                   llvm::Function *F,
2206                                                   const CGFunctionInfo &FI) {
2207   const Decl *D = GD.getDecl();
2208   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2209   SetLLVMFunctionAttributesForDefinition(D, F);
2210 
2211   F->setLinkage(llvm::Function::InternalLinkage);
2212 
2213   setNonAliasAttributes(GD, F);
2214 }
2215 
2216 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2217   // Set linkage and visibility in case we never see a definition.
2218   LinkageInfo LV = ND->getLinkageAndVisibility();
2219   // Don't set internal linkage on declarations.
2220   // "extern_weak" is overloaded in LLVM; we probably should have
2221   // separate linkage types for this.
2222   if (isExternallyVisible(LV.getLinkage()) &&
2223       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2224     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2225 }
2226 
2227 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2228                                                        llvm::Function *F) {
2229   // Only if we are checking indirect calls.
2230   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2231     return;
2232 
2233   // Non-static class methods are handled via vtable or member function pointer
2234   // checks elsewhere.
2235   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2236     return;
2237 
2238   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2239   F->addTypeMetadata(0, MD);
2240   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2241 
2242   // Emit a hash-based bit set entry for cross-DSO calls.
2243   if (CodeGenOpts.SanitizeCfiCrossDso)
2244     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2245       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2246 }
2247 
2248 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2249                                           bool IsIncompleteFunction,
2250                                           bool IsThunk) {
2251 
2252   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2253     // If this is an intrinsic function, set the function's attributes
2254     // to the intrinsic's attributes.
2255     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2256     return;
2257   }
2258 
2259   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2260 
2261   if (!IsIncompleteFunction)
2262     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2263                               IsThunk);
2264 
2265   // Add the Returned attribute for "this", except for iOS 5 and earlier
2266   // where substantial code, including the libstdc++ dylib, was compiled with
2267   // GCC and does not actually return "this".
2268   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2269       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2270     assert(!F->arg_empty() &&
2271            F->arg_begin()->getType()
2272              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2273            "unexpected this return");
2274     F->addParamAttr(0, llvm::Attribute::Returned);
2275   }
2276 
2277   // Only a few attributes are set on declarations; these may later be
2278   // overridden by a definition.
2279 
2280   setLinkageForGV(F, FD);
2281   setGVProperties(F, FD);
2282 
2283   // Setup target-specific attributes.
2284   if (!IsIncompleteFunction && F->isDeclaration())
2285     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2286 
2287   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2288     F->setSection(CSA->getName());
2289   else if (const auto *SA = FD->getAttr<SectionAttr>())
2290      F->setSection(SA->getName());
2291 
2292   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2293     if (EA->isError())
2294       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2295     else if (EA->isWarning())
2296       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2297   }
2298 
2299   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2300   if (FD->isInlineBuiltinDeclaration()) {
2301     const FunctionDecl *FDBody;
2302     bool HasBody = FD->hasBody(FDBody);
2303     (void)HasBody;
2304     assert(HasBody && "Inline builtin declarations should always have an "
2305                       "available body!");
2306     if (shouldEmitFunction(FDBody))
2307       F->addFnAttr(llvm::Attribute::NoBuiltin);
2308   }
2309 
2310   if (FD->isReplaceableGlobalAllocationFunction()) {
2311     // A replaceable global allocation function does not act like a builtin by
2312     // default, only if it is invoked by a new-expression or delete-expression.
2313     F->addFnAttr(llvm::Attribute::NoBuiltin);
2314   }
2315 
2316   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2317     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2318   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2319     if (MD->isVirtual())
2320       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2321 
2322   // Don't emit entries for function declarations in the cross-DSO mode. This
2323   // is handled with better precision by the receiving DSO. But if jump tables
2324   // are non-canonical then we need type metadata in order to produce the local
2325   // jump table.
2326   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2327       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2328     CreateFunctionTypeMetadataForIcall(FD, F);
2329 
2330   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2331     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2332 
2333   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2334     // Annotate the callback behavior as metadata:
2335     //  - The callback callee (as argument number).
2336     //  - The callback payloads (as argument numbers).
2337     llvm::LLVMContext &Ctx = F->getContext();
2338     llvm::MDBuilder MDB(Ctx);
2339 
2340     // The payload indices are all but the first one in the encoding. The first
2341     // identifies the callback callee.
2342     int CalleeIdx = *CB->encoding_begin();
2343     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2344     F->addMetadata(llvm::LLVMContext::MD_callback,
2345                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2346                                                CalleeIdx, PayloadIndices,
2347                                                /* VarArgsArePassed */ false)}));
2348   }
2349 }
2350 
2351 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2352   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2353          "Only globals with definition can force usage.");
2354   LLVMUsed.emplace_back(GV);
2355 }
2356 
2357 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2358   assert(!GV->isDeclaration() &&
2359          "Only globals with definition can force usage.");
2360   LLVMCompilerUsed.emplace_back(GV);
2361 }
2362 
2363 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2364   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2365          "Only globals with definition can force usage.");
2366   if (getTriple().isOSBinFormatELF())
2367     LLVMCompilerUsed.emplace_back(GV);
2368   else
2369     LLVMUsed.emplace_back(GV);
2370 }
2371 
2372 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2373                      std::vector<llvm::WeakTrackingVH> &List) {
2374   // Don't create llvm.used if there is no need.
2375   if (List.empty())
2376     return;
2377 
2378   // Convert List to what ConstantArray needs.
2379   SmallVector<llvm::Constant*, 8> UsedArray;
2380   UsedArray.resize(List.size());
2381   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2382     UsedArray[i] =
2383         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2384             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2385   }
2386 
2387   if (UsedArray.empty())
2388     return;
2389   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2390 
2391   auto *GV = new llvm::GlobalVariable(
2392       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2393       llvm::ConstantArray::get(ATy, UsedArray), Name);
2394 
2395   GV->setSection("llvm.metadata");
2396 }
2397 
2398 void CodeGenModule::emitLLVMUsed() {
2399   emitUsed(*this, "llvm.used", LLVMUsed);
2400   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2401 }
2402 
2403 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2404   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2405   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2406 }
2407 
2408 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2409   llvm::SmallString<32> Opt;
2410   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2411   if (Opt.empty())
2412     return;
2413   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2414   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2415 }
2416 
2417 void CodeGenModule::AddDependentLib(StringRef Lib) {
2418   auto &C = getLLVMContext();
2419   if (getTarget().getTriple().isOSBinFormatELF()) {
2420       ELFDependentLibraries.push_back(
2421         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2422     return;
2423   }
2424 
2425   llvm::SmallString<24> Opt;
2426   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2427   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2428   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2429 }
2430 
2431 /// Add link options implied by the given module, including modules
2432 /// it depends on, using a postorder walk.
2433 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2434                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2435                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2436   // Import this module's parent.
2437   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2438     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2439   }
2440 
2441   // Import this module's dependencies.
2442   for (Module *Import : llvm::reverse(Mod->Imports)) {
2443     if (Visited.insert(Import).second)
2444       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2445   }
2446 
2447   // Add linker options to link against the libraries/frameworks
2448   // described by this module.
2449   llvm::LLVMContext &Context = CGM.getLLVMContext();
2450   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2451 
2452   // For modules that use export_as for linking, use that module
2453   // name instead.
2454   if (Mod->UseExportAsModuleLinkName)
2455     return;
2456 
2457   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2458     // Link against a framework.  Frameworks are currently Darwin only, so we
2459     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2460     if (LL.IsFramework) {
2461       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2462                                  llvm::MDString::get(Context, LL.Library)};
2463 
2464       Metadata.push_back(llvm::MDNode::get(Context, Args));
2465       continue;
2466     }
2467 
2468     // Link against a library.
2469     if (IsELF) {
2470       llvm::Metadata *Args[2] = {
2471           llvm::MDString::get(Context, "lib"),
2472           llvm::MDString::get(Context, LL.Library),
2473       };
2474       Metadata.push_back(llvm::MDNode::get(Context, Args));
2475     } else {
2476       llvm::SmallString<24> Opt;
2477       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2478       auto *OptString = llvm::MDString::get(Context, Opt);
2479       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2480     }
2481   }
2482 }
2483 
2484 void CodeGenModule::EmitModuleLinkOptions() {
2485   // Collect the set of all of the modules we want to visit to emit link
2486   // options, which is essentially the imported modules and all of their
2487   // non-explicit child modules.
2488   llvm::SetVector<clang::Module *> LinkModules;
2489   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2490   SmallVector<clang::Module *, 16> Stack;
2491 
2492   // Seed the stack with imported modules.
2493   for (Module *M : ImportedModules) {
2494     // Do not add any link flags when an implementation TU of a module imports
2495     // a header of that same module.
2496     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2497         !getLangOpts().isCompilingModule())
2498       continue;
2499     if (Visited.insert(M).second)
2500       Stack.push_back(M);
2501   }
2502 
2503   // Find all of the modules to import, making a little effort to prune
2504   // non-leaf modules.
2505   while (!Stack.empty()) {
2506     clang::Module *Mod = Stack.pop_back_val();
2507 
2508     bool AnyChildren = false;
2509 
2510     // Visit the submodules of this module.
2511     for (const auto &SM : Mod->submodules()) {
2512       // Skip explicit children; they need to be explicitly imported to be
2513       // linked against.
2514       if (SM->IsExplicit)
2515         continue;
2516 
2517       if (Visited.insert(SM).second) {
2518         Stack.push_back(SM);
2519         AnyChildren = true;
2520       }
2521     }
2522 
2523     // We didn't find any children, so add this module to the list of
2524     // modules to link against.
2525     if (!AnyChildren) {
2526       LinkModules.insert(Mod);
2527     }
2528   }
2529 
2530   // Add link options for all of the imported modules in reverse topological
2531   // order.  We don't do anything to try to order import link flags with respect
2532   // to linker options inserted by things like #pragma comment().
2533   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2534   Visited.clear();
2535   for (Module *M : LinkModules)
2536     if (Visited.insert(M).second)
2537       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2538   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2539   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2540 
2541   // Add the linker options metadata flag.
2542   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2543   for (auto *MD : LinkerOptionsMetadata)
2544     NMD->addOperand(MD);
2545 }
2546 
2547 void CodeGenModule::EmitDeferred() {
2548   // Emit deferred declare target declarations.
2549   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2550     getOpenMPRuntime().emitDeferredTargetDecls();
2551 
2552   // Emit code for any potentially referenced deferred decls.  Since a
2553   // previously unused static decl may become used during the generation of code
2554   // for a static function, iterate until no changes are made.
2555 
2556   if (!DeferredVTables.empty()) {
2557     EmitDeferredVTables();
2558 
2559     // Emitting a vtable doesn't directly cause more vtables to
2560     // become deferred, although it can cause functions to be
2561     // emitted that then need those vtables.
2562     assert(DeferredVTables.empty());
2563   }
2564 
2565   // Emit CUDA/HIP static device variables referenced by host code only.
2566   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2567   // needed for further handling.
2568   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2569     llvm::append_range(DeferredDeclsToEmit,
2570                        getContext().CUDADeviceVarODRUsedByHost);
2571 
2572   // Stop if we're out of both deferred vtables and deferred declarations.
2573   if (DeferredDeclsToEmit.empty())
2574     return;
2575 
2576   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2577   // work, it will not interfere with this.
2578   std::vector<GlobalDecl> CurDeclsToEmit;
2579   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2580 
2581   for (GlobalDecl &D : CurDeclsToEmit) {
2582     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2583     // to get GlobalValue with exactly the type we need, not something that
2584     // might had been created for another decl with the same mangled name but
2585     // different type.
2586     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2587         GetAddrOfGlobal(D, ForDefinition));
2588 
2589     // In case of different address spaces, we may still get a cast, even with
2590     // IsForDefinition equal to true. Query mangled names table to get
2591     // GlobalValue.
2592     if (!GV)
2593       GV = GetGlobalValue(getMangledName(D));
2594 
2595     // Make sure GetGlobalValue returned non-null.
2596     assert(GV);
2597 
2598     // Check to see if we've already emitted this.  This is necessary
2599     // for a couple of reasons: first, decls can end up in the
2600     // deferred-decls queue multiple times, and second, decls can end
2601     // up with definitions in unusual ways (e.g. by an extern inline
2602     // function acquiring a strong function redefinition).  Just
2603     // ignore these cases.
2604     if (!GV->isDeclaration())
2605       continue;
2606 
2607     // If this is OpenMP, check if it is legal to emit this global normally.
2608     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2609       continue;
2610 
2611     // Otherwise, emit the definition and move on to the next one.
2612     EmitGlobalDefinition(D, GV);
2613 
2614     // If we found out that we need to emit more decls, do that recursively.
2615     // This has the advantage that the decls are emitted in a DFS and related
2616     // ones are close together, which is convenient for testing.
2617     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2618       EmitDeferred();
2619       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2620     }
2621   }
2622 }
2623 
2624 void CodeGenModule::EmitVTablesOpportunistically() {
2625   // Try to emit external vtables as available_externally if they have emitted
2626   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2627   // is not allowed to create new references to things that need to be emitted
2628   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2629 
2630   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2631          && "Only emit opportunistic vtables with optimizations");
2632 
2633   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2634     assert(getVTables().isVTableExternal(RD) &&
2635            "This queue should only contain external vtables");
2636     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2637       VTables.GenerateClassData(RD);
2638   }
2639   OpportunisticVTables.clear();
2640 }
2641 
2642 void CodeGenModule::EmitGlobalAnnotations() {
2643   if (Annotations.empty())
2644     return;
2645 
2646   // Create a new global variable for the ConstantStruct in the Module.
2647   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2648     Annotations[0]->getType(), Annotations.size()), Annotations);
2649   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2650                                       llvm::GlobalValue::AppendingLinkage,
2651                                       Array, "llvm.global.annotations");
2652   gv->setSection(AnnotationSection);
2653 }
2654 
2655 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2656   llvm::Constant *&AStr = AnnotationStrings[Str];
2657   if (AStr)
2658     return AStr;
2659 
2660   // Not found yet, create a new global.
2661   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2662   auto *gv =
2663       new llvm::GlobalVariable(getModule(), s->getType(), true,
2664                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2665   gv->setSection(AnnotationSection);
2666   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2667   AStr = gv;
2668   return gv;
2669 }
2670 
2671 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2672   SourceManager &SM = getContext().getSourceManager();
2673   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2674   if (PLoc.isValid())
2675     return EmitAnnotationString(PLoc.getFilename());
2676   return EmitAnnotationString(SM.getBufferName(Loc));
2677 }
2678 
2679 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2680   SourceManager &SM = getContext().getSourceManager();
2681   PresumedLoc PLoc = SM.getPresumedLoc(L);
2682   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2683     SM.getExpansionLineNumber(L);
2684   return llvm::ConstantInt::get(Int32Ty, LineNo);
2685 }
2686 
2687 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2688   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2689   if (Exprs.empty())
2690     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2691 
2692   llvm::FoldingSetNodeID ID;
2693   for (Expr *E : Exprs) {
2694     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2695   }
2696   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2697   if (Lookup)
2698     return Lookup;
2699 
2700   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2701   LLVMArgs.reserve(Exprs.size());
2702   ConstantEmitter ConstEmiter(*this);
2703   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2704     const auto *CE = cast<clang::ConstantExpr>(E);
2705     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2706                                     CE->getType());
2707   });
2708   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2709   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2710                                       llvm::GlobalValue::PrivateLinkage, Struct,
2711                                       ".args");
2712   GV->setSection(AnnotationSection);
2713   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2714   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2715 
2716   Lookup = Bitcasted;
2717   return Bitcasted;
2718 }
2719 
2720 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2721                                                 const AnnotateAttr *AA,
2722                                                 SourceLocation L) {
2723   // Get the globals for file name, annotation, and the line number.
2724   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2725                  *UnitGV = EmitAnnotationUnit(L),
2726                  *LineNoCst = EmitAnnotationLineNo(L),
2727                  *Args = EmitAnnotationArgs(AA);
2728 
2729   llvm::Constant *GVInGlobalsAS = GV;
2730   if (GV->getAddressSpace() !=
2731       getDataLayout().getDefaultGlobalsAddressSpace()) {
2732     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2733         GV, GV->getValueType()->getPointerTo(
2734                 getDataLayout().getDefaultGlobalsAddressSpace()));
2735   }
2736 
2737   // Create the ConstantStruct for the global annotation.
2738   llvm::Constant *Fields[] = {
2739       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2740       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2741       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2742       LineNoCst,
2743       Args,
2744   };
2745   return llvm::ConstantStruct::getAnon(Fields);
2746 }
2747 
2748 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2749                                          llvm::GlobalValue *GV) {
2750   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2751   // Get the struct elements for these annotations.
2752   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2753     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2754 }
2755 
2756 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2757                                        SourceLocation Loc) const {
2758   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2759   // NoSanitize by function name.
2760   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2761     return true;
2762   // NoSanitize by location.
2763   if (Loc.isValid())
2764     return NoSanitizeL.containsLocation(Kind, Loc);
2765   // If location is unknown, this may be a compiler-generated function. Assume
2766   // it's located in the main file.
2767   auto &SM = Context.getSourceManager();
2768   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2769     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2770   }
2771   return false;
2772 }
2773 
2774 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2775                                        SourceLocation Loc, QualType Ty,
2776                                        StringRef Category) const {
2777   // For now globals can be ignored only in ASan and KASan.
2778   const SanitizerMask EnabledAsanMask =
2779       LangOpts.Sanitize.Mask &
2780       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2781        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2782        SanitizerKind::MemTag);
2783   if (!EnabledAsanMask)
2784     return false;
2785   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2786   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2787     return true;
2788   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2789     return true;
2790   // Check global type.
2791   if (!Ty.isNull()) {
2792     // Drill down the array types: if global variable of a fixed type is
2793     // not sanitized, we also don't instrument arrays of them.
2794     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2795       Ty = AT->getElementType();
2796     Ty = Ty.getCanonicalType().getUnqualifiedType();
2797     // Only record types (classes, structs etc.) are ignored.
2798     if (Ty->isRecordType()) {
2799       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2800       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2801         return true;
2802     }
2803   }
2804   return false;
2805 }
2806 
2807 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2808                                    StringRef Category) const {
2809   const auto &XRayFilter = getContext().getXRayFilter();
2810   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2811   auto Attr = ImbueAttr::NONE;
2812   if (Loc.isValid())
2813     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2814   if (Attr == ImbueAttr::NONE)
2815     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2816   switch (Attr) {
2817   case ImbueAttr::NONE:
2818     return false;
2819   case ImbueAttr::ALWAYS:
2820     Fn->addFnAttr("function-instrument", "xray-always");
2821     break;
2822   case ImbueAttr::ALWAYS_ARG1:
2823     Fn->addFnAttr("function-instrument", "xray-always");
2824     Fn->addFnAttr("xray-log-args", "1");
2825     break;
2826   case ImbueAttr::NEVER:
2827     Fn->addFnAttr("function-instrument", "xray-never");
2828     break;
2829   }
2830   return true;
2831 }
2832 
2833 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2834                                            SourceLocation Loc) const {
2835   const auto &ProfileList = getContext().getProfileList();
2836   // If the profile list is empty, then instrument everything.
2837   if (ProfileList.isEmpty())
2838     return false;
2839   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2840   // First, check the function name.
2841   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2842   if (V.hasValue())
2843     return *V;
2844   // Next, check the source location.
2845   if (Loc.isValid()) {
2846     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2847     if (V.hasValue())
2848       return *V;
2849   }
2850   // If location is unknown, this may be a compiler-generated function. Assume
2851   // it's located in the main file.
2852   auto &SM = Context.getSourceManager();
2853   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2854     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2855     if (V.hasValue())
2856       return *V;
2857   }
2858   return ProfileList.getDefault();
2859 }
2860 
2861 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2862   // Never defer when EmitAllDecls is specified.
2863   if (LangOpts.EmitAllDecls)
2864     return true;
2865 
2866   if (CodeGenOpts.KeepStaticConsts) {
2867     const auto *VD = dyn_cast<VarDecl>(Global);
2868     if (VD && VD->getType().isConstQualified() &&
2869         VD->getStorageDuration() == SD_Static)
2870       return true;
2871   }
2872 
2873   return getContext().DeclMustBeEmitted(Global);
2874 }
2875 
2876 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2877   // In OpenMP 5.0 variables and function may be marked as
2878   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2879   // that they must be emitted on the host/device. To be sure we need to have
2880   // seen a declare target with an explicit mentioning of the function, we know
2881   // we have if the level of the declare target attribute is -1. Note that we
2882   // check somewhere else if we should emit this at all.
2883   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2884     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2885         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2886     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2887       return false;
2888   }
2889 
2890   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2891     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2892       // Implicit template instantiations may change linkage if they are later
2893       // explicitly instantiated, so they should not be emitted eagerly.
2894       return false;
2895   }
2896   if (const auto *VD = dyn_cast<VarDecl>(Global))
2897     if (Context.getInlineVariableDefinitionKind(VD) ==
2898         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2899       // A definition of an inline constexpr static data member may change
2900       // linkage later if it's redeclared outside the class.
2901       return false;
2902   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2903   // codegen for global variables, because they may be marked as threadprivate.
2904   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2905       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2906       !isTypeConstant(Global->getType(), false) &&
2907       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2908     return false;
2909 
2910   return true;
2911 }
2912 
2913 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2914   StringRef Name = getMangledName(GD);
2915 
2916   // The UUID descriptor should be pointer aligned.
2917   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2918 
2919   // Look for an existing global.
2920   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2921     return ConstantAddress(GV, GV->getValueType(), Alignment);
2922 
2923   ConstantEmitter Emitter(*this);
2924   llvm::Constant *Init;
2925 
2926   APValue &V = GD->getAsAPValue();
2927   if (!V.isAbsent()) {
2928     // If possible, emit the APValue version of the initializer. In particular,
2929     // this gets the type of the constant right.
2930     Init = Emitter.emitForInitializer(
2931         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2932   } else {
2933     // As a fallback, directly construct the constant.
2934     // FIXME: This may get padding wrong under esoteric struct layout rules.
2935     // MSVC appears to create a complete type 'struct __s_GUID' that it
2936     // presumably uses to represent these constants.
2937     MSGuidDecl::Parts Parts = GD->getParts();
2938     llvm::Constant *Fields[4] = {
2939         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2940         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2941         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2942         llvm::ConstantDataArray::getRaw(
2943             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2944             Int8Ty)};
2945     Init = llvm::ConstantStruct::getAnon(Fields);
2946   }
2947 
2948   auto *GV = new llvm::GlobalVariable(
2949       getModule(), Init->getType(),
2950       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2951   if (supportsCOMDAT())
2952     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2953   setDSOLocal(GV);
2954 
2955   if (!V.isAbsent()) {
2956     Emitter.finalize(GV);
2957     return ConstantAddress(GV, GV->getValueType(), Alignment);
2958   }
2959 
2960   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2961   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2962       GV, Ty->getPointerTo(GV->getAddressSpace()));
2963   return ConstantAddress(Addr, Ty, Alignment);
2964 }
2965 
2966 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
2967     const UnnamedGlobalConstantDecl *GCD) {
2968   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
2969 
2970   llvm::GlobalVariable **Entry = nullptr;
2971   Entry = &UnnamedGlobalConstantDeclMap[GCD];
2972   if (*Entry)
2973     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
2974 
2975   ConstantEmitter Emitter(*this);
2976   llvm::Constant *Init;
2977 
2978   const APValue &V = GCD->getValue();
2979 
2980   assert(!V.isAbsent());
2981   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
2982                                     GCD->getType());
2983 
2984   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
2985                                       /*isConstant=*/true,
2986                                       llvm::GlobalValue::PrivateLinkage, Init,
2987                                       ".constant");
2988   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2989   GV->setAlignment(Alignment.getAsAlign());
2990 
2991   Emitter.finalize(GV);
2992 
2993   *Entry = GV;
2994   return ConstantAddress(GV, GV->getValueType(), Alignment);
2995 }
2996 
2997 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2998     const TemplateParamObjectDecl *TPO) {
2999   StringRef Name = getMangledName(TPO);
3000   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3001 
3002   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3003     return ConstantAddress(GV, GV->getValueType(), Alignment);
3004 
3005   ConstantEmitter Emitter(*this);
3006   llvm::Constant *Init = Emitter.emitForInitializer(
3007         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3008 
3009   if (!Init) {
3010     ErrorUnsupported(TPO, "template parameter object");
3011     return ConstantAddress::invalid();
3012   }
3013 
3014   auto *GV = new llvm::GlobalVariable(
3015       getModule(), Init->getType(),
3016       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3017   if (supportsCOMDAT())
3018     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3019   Emitter.finalize(GV);
3020 
3021   return ConstantAddress(GV, GV->getValueType(), Alignment);
3022 }
3023 
3024 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3025   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3026   assert(AA && "No alias?");
3027 
3028   CharUnits Alignment = getContext().getDeclAlign(VD);
3029   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3030 
3031   // See if there is already something with the target's name in the module.
3032   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3033   if (Entry) {
3034     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3035     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3036     return ConstantAddress(Ptr, DeclTy, Alignment);
3037   }
3038 
3039   llvm::Constant *Aliasee;
3040   if (isa<llvm::FunctionType>(DeclTy))
3041     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3042                                       GlobalDecl(cast<FunctionDecl>(VD)),
3043                                       /*ForVTable=*/false);
3044   else
3045     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3046                                     nullptr);
3047 
3048   auto *F = cast<llvm::GlobalValue>(Aliasee);
3049   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3050   WeakRefReferences.insert(F);
3051 
3052   return ConstantAddress(Aliasee, DeclTy, Alignment);
3053 }
3054 
3055 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3056   const auto *Global = cast<ValueDecl>(GD.getDecl());
3057 
3058   // Weak references don't produce any output by themselves.
3059   if (Global->hasAttr<WeakRefAttr>())
3060     return;
3061 
3062   // If this is an alias definition (which otherwise looks like a declaration)
3063   // emit it now.
3064   if (Global->hasAttr<AliasAttr>())
3065     return EmitAliasDefinition(GD);
3066 
3067   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3068   if (Global->hasAttr<IFuncAttr>())
3069     return emitIFuncDefinition(GD);
3070 
3071   // If this is a cpu_dispatch multiversion function, emit the resolver.
3072   if (Global->hasAttr<CPUDispatchAttr>())
3073     return emitCPUDispatchDefinition(GD);
3074 
3075   // If this is CUDA, be selective about which declarations we emit.
3076   if (LangOpts.CUDA) {
3077     if (LangOpts.CUDAIsDevice) {
3078       if (!Global->hasAttr<CUDADeviceAttr>() &&
3079           !Global->hasAttr<CUDAGlobalAttr>() &&
3080           !Global->hasAttr<CUDAConstantAttr>() &&
3081           !Global->hasAttr<CUDASharedAttr>() &&
3082           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3083           !Global->getType()->isCUDADeviceBuiltinTextureType())
3084         return;
3085     } else {
3086       // We need to emit host-side 'shadows' for all global
3087       // device-side variables because the CUDA runtime needs their
3088       // size and host-side address in order to provide access to
3089       // their device-side incarnations.
3090 
3091       // So device-only functions are the only things we skip.
3092       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3093           Global->hasAttr<CUDADeviceAttr>())
3094         return;
3095 
3096       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3097              "Expected Variable or Function");
3098     }
3099   }
3100 
3101   if (LangOpts.OpenMP) {
3102     // If this is OpenMP, check if it is legal to emit this global normally.
3103     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3104       return;
3105     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3106       if (MustBeEmitted(Global))
3107         EmitOMPDeclareReduction(DRD);
3108       return;
3109     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3110       if (MustBeEmitted(Global))
3111         EmitOMPDeclareMapper(DMD);
3112       return;
3113     }
3114   }
3115 
3116   // Ignore declarations, they will be emitted on their first use.
3117   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3118     // Forward declarations are emitted lazily on first use.
3119     if (!FD->doesThisDeclarationHaveABody()) {
3120       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3121         return;
3122 
3123       StringRef MangledName = getMangledName(GD);
3124 
3125       // Compute the function info and LLVM type.
3126       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3127       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3128 
3129       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3130                               /*DontDefer=*/false);
3131       return;
3132     }
3133   } else {
3134     const auto *VD = cast<VarDecl>(Global);
3135     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3136     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3137         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3138       if (LangOpts.OpenMP) {
3139         // Emit declaration of the must-be-emitted declare target variable.
3140         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3141                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3142           bool UnifiedMemoryEnabled =
3143               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3144           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3145               !UnifiedMemoryEnabled) {
3146             (void)GetAddrOfGlobalVar(VD);
3147           } else {
3148             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3149                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3150                      UnifiedMemoryEnabled)) &&
3151                    "Link clause or to clause with unified memory expected.");
3152             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3153           }
3154 
3155           return;
3156         }
3157       }
3158       // If this declaration may have caused an inline variable definition to
3159       // change linkage, make sure that it's emitted.
3160       if (Context.getInlineVariableDefinitionKind(VD) ==
3161           ASTContext::InlineVariableDefinitionKind::Strong)
3162         GetAddrOfGlobalVar(VD);
3163       return;
3164     }
3165   }
3166 
3167   // Defer code generation to first use when possible, e.g. if this is an inline
3168   // function. If the global must always be emitted, do it eagerly if possible
3169   // to benefit from cache locality.
3170   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3171     // Emit the definition if it can't be deferred.
3172     EmitGlobalDefinition(GD);
3173     return;
3174   }
3175 
3176   // If we're deferring emission of a C++ variable with an
3177   // initializer, remember the order in which it appeared in the file.
3178   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3179       cast<VarDecl>(Global)->hasInit()) {
3180     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3181     CXXGlobalInits.push_back(nullptr);
3182   }
3183 
3184   StringRef MangledName = getMangledName(GD);
3185   if (GetGlobalValue(MangledName) != nullptr) {
3186     // The value has already been used and should therefore be emitted.
3187     addDeferredDeclToEmit(GD);
3188   } else if (MustBeEmitted(Global)) {
3189     // The value must be emitted, but cannot be emitted eagerly.
3190     assert(!MayBeEmittedEagerly(Global));
3191     addDeferredDeclToEmit(GD);
3192   } else {
3193     // Otherwise, remember that we saw a deferred decl with this name.  The
3194     // first use of the mangled name will cause it to move into
3195     // DeferredDeclsToEmit.
3196     DeferredDecls[MangledName] = GD;
3197   }
3198 }
3199 
3200 // Check if T is a class type with a destructor that's not dllimport.
3201 static bool HasNonDllImportDtor(QualType T) {
3202   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3203     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3204       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3205         return true;
3206 
3207   return false;
3208 }
3209 
3210 namespace {
3211   struct FunctionIsDirectlyRecursive
3212       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3213     const StringRef Name;
3214     const Builtin::Context &BI;
3215     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3216         : Name(N), BI(C) {}
3217 
3218     bool VisitCallExpr(const CallExpr *E) {
3219       const FunctionDecl *FD = E->getDirectCallee();
3220       if (!FD)
3221         return false;
3222       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3223       if (Attr && Name == Attr->getLabel())
3224         return true;
3225       unsigned BuiltinID = FD->getBuiltinID();
3226       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3227         return false;
3228       StringRef BuiltinName = BI.getName(BuiltinID);
3229       if (BuiltinName.startswith("__builtin_") &&
3230           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3231         return true;
3232       }
3233       return false;
3234     }
3235 
3236     bool VisitStmt(const Stmt *S) {
3237       for (const Stmt *Child : S->children())
3238         if (Child && this->Visit(Child))
3239           return true;
3240       return false;
3241     }
3242   };
3243 
3244   // Make sure we're not referencing non-imported vars or functions.
3245   struct DLLImportFunctionVisitor
3246       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3247     bool SafeToInline = true;
3248 
3249     bool shouldVisitImplicitCode() const { return true; }
3250 
3251     bool VisitVarDecl(VarDecl *VD) {
3252       if (VD->getTLSKind()) {
3253         // A thread-local variable cannot be imported.
3254         SafeToInline = false;
3255         return SafeToInline;
3256       }
3257 
3258       // A variable definition might imply a destructor call.
3259       if (VD->isThisDeclarationADefinition())
3260         SafeToInline = !HasNonDllImportDtor(VD->getType());
3261 
3262       return SafeToInline;
3263     }
3264 
3265     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3266       if (const auto *D = E->getTemporary()->getDestructor())
3267         SafeToInline = D->hasAttr<DLLImportAttr>();
3268       return SafeToInline;
3269     }
3270 
3271     bool VisitDeclRefExpr(DeclRefExpr *E) {
3272       ValueDecl *VD = E->getDecl();
3273       if (isa<FunctionDecl>(VD))
3274         SafeToInline = VD->hasAttr<DLLImportAttr>();
3275       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3276         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3277       return SafeToInline;
3278     }
3279 
3280     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3281       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3282       return SafeToInline;
3283     }
3284 
3285     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3286       CXXMethodDecl *M = E->getMethodDecl();
3287       if (!M) {
3288         // Call through a pointer to member function. This is safe to inline.
3289         SafeToInline = true;
3290       } else {
3291         SafeToInline = M->hasAttr<DLLImportAttr>();
3292       }
3293       return SafeToInline;
3294     }
3295 
3296     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3297       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3298       return SafeToInline;
3299     }
3300 
3301     bool VisitCXXNewExpr(CXXNewExpr *E) {
3302       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3303       return SafeToInline;
3304     }
3305   };
3306 }
3307 
3308 // isTriviallyRecursive - Check if this function calls another
3309 // decl that, because of the asm attribute or the other decl being a builtin,
3310 // ends up pointing to itself.
3311 bool
3312 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3313   StringRef Name;
3314   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3315     // asm labels are a special kind of mangling we have to support.
3316     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3317     if (!Attr)
3318       return false;
3319     Name = Attr->getLabel();
3320   } else {
3321     Name = FD->getName();
3322   }
3323 
3324   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3325   const Stmt *Body = FD->getBody();
3326   return Body ? Walker.Visit(Body) : false;
3327 }
3328 
3329 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3330   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3331     return true;
3332   const auto *F = cast<FunctionDecl>(GD.getDecl());
3333   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3334     return false;
3335 
3336   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3337     // Check whether it would be safe to inline this dllimport function.
3338     DLLImportFunctionVisitor Visitor;
3339     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3340     if (!Visitor.SafeToInline)
3341       return false;
3342 
3343     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3344       // Implicit destructor invocations aren't captured in the AST, so the
3345       // check above can't see them. Check for them manually here.
3346       for (const Decl *Member : Dtor->getParent()->decls())
3347         if (isa<FieldDecl>(Member))
3348           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3349             return false;
3350       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3351         if (HasNonDllImportDtor(B.getType()))
3352           return false;
3353     }
3354   }
3355 
3356   // Inline builtins declaration must be emitted. They often are fortified
3357   // functions.
3358   if (F->isInlineBuiltinDeclaration())
3359     return true;
3360 
3361   // PR9614. Avoid cases where the source code is lying to us. An available
3362   // externally function should have an equivalent function somewhere else,
3363   // but a function that calls itself through asm label/`__builtin_` trickery is
3364   // clearly not equivalent to the real implementation.
3365   // This happens in glibc's btowc and in some configure checks.
3366   return !isTriviallyRecursive(F);
3367 }
3368 
3369 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3370   return CodeGenOpts.OptimizationLevel > 0;
3371 }
3372 
3373 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3374                                                        llvm::GlobalValue *GV) {
3375   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3376 
3377   if (FD->isCPUSpecificMultiVersion()) {
3378     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3379     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3380       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3381   } else if (FD->isTargetClonesMultiVersion()) {
3382     auto *Clone = FD->getAttr<TargetClonesAttr>();
3383     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3384       if (Clone->isFirstOfVersion(I))
3385         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3386     // Ensure that the resolver function is also emitted.
3387     GetOrCreateMultiVersionResolver(GD);
3388   } else
3389     EmitGlobalFunctionDefinition(GD, GV);
3390 }
3391 
3392 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3393   const auto *D = cast<ValueDecl>(GD.getDecl());
3394 
3395   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3396                                  Context.getSourceManager(),
3397                                  "Generating code for declaration");
3398 
3399   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3400     // At -O0, don't generate IR for functions with available_externally
3401     // linkage.
3402     if (!shouldEmitFunction(GD))
3403       return;
3404 
3405     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3406       std::string Name;
3407       llvm::raw_string_ostream OS(Name);
3408       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3409                                /*Qualified=*/true);
3410       return Name;
3411     });
3412 
3413     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3414       // Make sure to emit the definition(s) before we emit the thunks.
3415       // This is necessary for the generation of certain thunks.
3416       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3417         ABI->emitCXXStructor(GD);
3418       else if (FD->isMultiVersion())
3419         EmitMultiVersionFunctionDefinition(GD, GV);
3420       else
3421         EmitGlobalFunctionDefinition(GD, GV);
3422 
3423       if (Method->isVirtual())
3424         getVTables().EmitThunks(GD);
3425 
3426       return;
3427     }
3428 
3429     if (FD->isMultiVersion())
3430       return EmitMultiVersionFunctionDefinition(GD, GV);
3431     return EmitGlobalFunctionDefinition(GD, GV);
3432   }
3433 
3434   if (const auto *VD = dyn_cast<VarDecl>(D))
3435     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3436 
3437   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3438 }
3439 
3440 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3441                                                       llvm::Function *NewFn);
3442 
3443 static unsigned
3444 TargetMVPriority(const TargetInfo &TI,
3445                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3446   unsigned Priority = 0;
3447   for (StringRef Feat : RO.Conditions.Features)
3448     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3449 
3450   if (!RO.Conditions.Architecture.empty())
3451     Priority = std::max(
3452         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3453   return Priority;
3454 }
3455 
3456 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3457 // TU can forward declare the function without causing problems.  Particularly
3458 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3459 // work with internal linkage functions, so that the same function name can be
3460 // used with internal linkage in multiple TUs.
3461 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3462                                                        GlobalDecl GD) {
3463   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3464   if (FD->getFormalLinkage() == InternalLinkage)
3465     return llvm::GlobalValue::InternalLinkage;
3466   return llvm::GlobalValue::WeakODRLinkage;
3467 }
3468 
3469 void CodeGenModule::emitMultiVersionFunctions() {
3470   std::vector<GlobalDecl> MVFuncsToEmit;
3471   MultiVersionFuncs.swap(MVFuncsToEmit);
3472   for (GlobalDecl GD : MVFuncsToEmit) {
3473     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3474     assert(FD && "Expected a FunctionDecl");
3475 
3476     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3477     if (FD->isTargetMultiVersion()) {
3478       getContext().forEachMultiversionedFunctionVersion(
3479           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3480             GlobalDecl CurGD{
3481                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3482             StringRef MangledName = getMangledName(CurGD);
3483             llvm::Constant *Func = GetGlobalValue(MangledName);
3484             if (!Func) {
3485               if (CurFD->isDefined()) {
3486                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3487                 Func = GetGlobalValue(MangledName);
3488               } else {
3489                 const CGFunctionInfo &FI =
3490                     getTypes().arrangeGlobalDeclaration(GD);
3491                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3492                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3493                                          /*DontDefer=*/false, ForDefinition);
3494               }
3495               assert(Func && "This should have just been created");
3496             }
3497 
3498             const auto *TA = CurFD->getAttr<TargetAttr>();
3499             llvm::SmallVector<StringRef, 8> Feats;
3500             TA->getAddedFeatures(Feats);
3501 
3502             Options.emplace_back(cast<llvm::Function>(Func),
3503                                  TA->getArchitecture(), Feats);
3504           });
3505     } else if (FD->isTargetClonesMultiVersion()) {
3506       const auto *TC = FD->getAttr<TargetClonesAttr>();
3507       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3508            ++VersionIndex) {
3509         if (!TC->isFirstOfVersion(VersionIndex))
3510           continue;
3511         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3512                          VersionIndex};
3513         StringRef Version = TC->getFeatureStr(VersionIndex);
3514         StringRef MangledName = getMangledName(CurGD);
3515         llvm::Constant *Func = GetGlobalValue(MangledName);
3516         if (!Func) {
3517           if (FD->isDefined()) {
3518             EmitGlobalFunctionDefinition(CurGD, nullptr);
3519             Func = GetGlobalValue(MangledName);
3520           } else {
3521             const CGFunctionInfo &FI =
3522                 getTypes().arrangeGlobalDeclaration(CurGD);
3523             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3524             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3525                                      /*DontDefer=*/false, ForDefinition);
3526           }
3527           assert(Func && "This should have just been created");
3528         }
3529 
3530         StringRef Architecture;
3531         llvm::SmallVector<StringRef, 1> Feature;
3532 
3533         if (Version.startswith("arch="))
3534           Architecture = Version.drop_front(sizeof("arch=") - 1);
3535         else if (Version != "default")
3536           Feature.push_back(Version);
3537 
3538         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3539       }
3540     } else {
3541       assert(0 && "Expected a target or target_clones multiversion function");
3542       continue;
3543     }
3544 
3545     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3546     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3547       ResolverConstant = IFunc->getResolver();
3548     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3549 
3550     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3551 
3552     if (supportsCOMDAT())
3553       ResolverFunc->setComdat(
3554           getModule().getOrInsertComdat(ResolverFunc->getName()));
3555 
3556     const TargetInfo &TI = getTarget();
3557     llvm::stable_sort(
3558         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3559                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3560           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3561         });
3562     CodeGenFunction CGF(*this);
3563     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3564   }
3565 
3566   // Ensure that any additions to the deferred decls list caused by emitting a
3567   // variant are emitted.  This can happen when the variant itself is inline and
3568   // calls a function without linkage.
3569   if (!MVFuncsToEmit.empty())
3570     EmitDeferred();
3571 
3572   // Ensure that any additions to the multiversion funcs list from either the
3573   // deferred decls or the multiversion functions themselves are emitted.
3574   if (!MultiVersionFuncs.empty())
3575     emitMultiVersionFunctions();
3576 }
3577 
3578 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3579   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3580   assert(FD && "Not a FunctionDecl?");
3581   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3582   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3583   assert(DD && "Not a cpu_dispatch Function?");
3584 
3585   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3586   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3587 
3588   StringRef ResolverName = getMangledName(GD);
3589   UpdateMultiVersionNames(GD, FD, ResolverName);
3590 
3591   llvm::Type *ResolverType;
3592   GlobalDecl ResolverGD;
3593   if (getTarget().supportsIFunc()) {
3594     ResolverType = llvm::FunctionType::get(
3595         llvm::PointerType::get(DeclTy,
3596                                Context.getTargetAddressSpace(FD->getType())),
3597         false);
3598   }
3599   else {
3600     ResolverType = DeclTy;
3601     ResolverGD = GD;
3602   }
3603 
3604   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3605       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3606   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3607   if (supportsCOMDAT())
3608     ResolverFunc->setComdat(
3609         getModule().getOrInsertComdat(ResolverFunc->getName()));
3610 
3611   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3612   const TargetInfo &Target = getTarget();
3613   unsigned Index = 0;
3614   for (const IdentifierInfo *II : DD->cpus()) {
3615     // Get the name of the target function so we can look it up/create it.
3616     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3617                               getCPUSpecificMangling(*this, II->getName());
3618 
3619     llvm::Constant *Func = GetGlobalValue(MangledName);
3620 
3621     if (!Func) {
3622       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3623       if (ExistingDecl.getDecl() &&
3624           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3625         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3626         Func = GetGlobalValue(MangledName);
3627       } else {
3628         if (!ExistingDecl.getDecl())
3629           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3630 
3631       Func = GetOrCreateLLVMFunction(
3632           MangledName, DeclTy, ExistingDecl,
3633           /*ForVTable=*/false, /*DontDefer=*/true,
3634           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3635       }
3636     }
3637 
3638     llvm::SmallVector<StringRef, 32> Features;
3639     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3640     llvm::transform(Features, Features.begin(),
3641                     [](StringRef Str) { return Str.substr(1); });
3642     llvm::erase_if(Features, [&Target](StringRef Feat) {
3643       return !Target.validateCpuSupports(Feat);
3644     });
3645     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3646     ++Index;
3647   }
3648 
3649   llvm::stable_sort(
3650       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3651                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3652         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3653                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3654       });
3655 
3656   // If the list contains multiple 'default' versions, such as when it contains
3657   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3658   // always run on at least a 'pentium'). We do this by deleting the 'least
3659   // advanced' (read, lowest mangling letter).
3660   while (Options.size() > 1 &&
3661          llvm::X86::getCpuSupportsMask(
3662              (Options.end() - 2)->Conditions.Features) == 0) {
3663     StringRef LHSName = (Options.end() - 2)->Function->getName();
3664     StringRef RHSName = (Options.end() - 1)->Function->getName();
3665     if (LHSName.compare(RHSName) < 0)
3666       Options.erase(Options.end() - 2);
3667     else
3668       Options.erase(Options.end() - 1);
3669   }
3670 
3671   CodeGenFunction CGF(*this);
3672   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3673 
3674   if (getTarget().supportsIFunc()) {
3675     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3676     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3677 
3678     // Fix up function declarations that were created for cpu_specific before
3679     // cpu_dispatch was known
3680     if (!dyn_cast<llvm::GlobalIFunc>(IFunc)) {
3681       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3682       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3683                                            &getModule());
3684       GI->takeName(IFunc);
3685       IFunc->replaceAllUsesWith(GI);
3686       IFunc->eraseFromParent();
3687       IFunc = GI;
3688     }
3689 
3690     std::string AliasName = getMangledNameImpl(
3691         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3692     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3693     if (!AliasFunc) {
3694       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3695                                            &getModule());
3696       SetCommonAttributes(GD, GA);
3697     }
3698   }
3699 }
3700 
3701 /// If a dispatcher for the specified mangled name is not in the module, create
3702 /// and return an llvm Function with the specified type.
3703 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3704   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3705   assert(FD && "Not a FunctionDecl?");
3706 
3707   std::string MangledName =
3708       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3709 
3710   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3711   // a separate resolver).
3712   std::string ResolverName = MangledName;
3713   if (getTarget().supportsIFunc())
3714     ResolverName += ".ifunc";
3715   else if (FD->isTargetMultiVersion())
3716     ResolverName += ".resolver";
3717 
3718   // If the resolver has already been created, just return it.
3719   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3720     return ResolverGV;
3721 
3722   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3723   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3724 
3725   // The resolver needs to be created. For target and target_clones, defer
3726   // creation until the end of the TU.
3727   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3728     MultiVersionFuncs.push_back(GD);
3729 
3730   // For cpu_specific, don't create an ifunc yet because we don't know if the
3731   // cpu_dispatch will be emitted in this translation unit.
3732   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3733     llvm::Type *ResolverType = llvm::FunctionType::get(
3734         llvm::PointerType::get(
3735             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3736         false);
3737     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3738         MangledName + ".resolver", ResolverType, GlobalDecl{},
3739         /*ForVTable=*/false);
3740     llvm::GlobalIFunc *GIF =
3741         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3742                                   "", Resolver, &getModule());
3743     GIF->setName(ResolverName);
3744     SetCommonAttributes(FD, GIF);
3745 
3746     return GIF;
3747   }
3748 
3749   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3750       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3751   assert(isa<llvm::GlobalValue>(Resolver) &&
3752          "Resolver should be created for the first time");
3753   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3754   return Resolver;
3755 }
3756 
3757 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3758 /// module, create and return an llvm Function with the specified type. If there
3759 /// is something in the module with the specified name, return it potentially
3760 /// bitcasted to the right type.
3761 ///
3762 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3763 /// to set the attributes on the function when it is first created.
3764 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3765     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3766     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3767     ForDefinition_t IsForDefinition) {
3768   const Decl *D = GD.getDecl();
3769 
3770   // Any attempts to use a MultiVersion function should result in retrieving
3771   // the iFunc instead. Name Mangling will handle the rest of the changes.
3772   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3773     // For the device mark the function as one that should be emitted.
3774     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3775         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3776         !DontDefer && !IsForDefinition) {
3777       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3778         GlobalDecl GDDef;
3779         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3780           GDDef = GlobalDecl(CD, GD.getCtorType());
3781         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3782           GDDef = GlobalDecl(DD, GD.getDtorType());
3783         else
3784           GDDef = GlobalDecl(FDDef);
3785         EmitGlobal(GDDef);
3786       }
3787     }
3788 
3789     if (FD->isMultiVersion()) {
3790       UpdateMultiVersionNames(GD, FD, MangledName);
3791       if (!IsForDefinition)
3792         return GetOrCreateMultiVersionResolver(GD);
3793     }
3794   }
3795 
3796   // Lookup the entry, lazily creating it if necessary.
3797   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3798   if (Entry) {
3799     if (WeakRefReferences.erase(Entry)) {
3800       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3801       if (FD && !FD->hasAttr<WeakAttr>())
3802         Entry->setLinkage(llvm::Function::ExternalLinkage);
3803     }
3804 
3805     // Handle dropped DLL attributes.
3806     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3807         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3808       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3809       setDSOLocal(Entry);
3810     }
3811 
3812     // If there are two attempts to define the same mangled name, issue an
3813     // error.
3814     if (IsForDefinition && !Entry->isDeclaration()) {
3815       GlobalDecl OtherGD;
3816       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3817       // to make sure that we issue an error only once.
3818       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3819           (GD.getCanonicalDecl().getDecl() !=
3820            OtherGD.getCanonicalDecl().getDecl()) &&
3821           DiagnosedConflictingDefinitions.insert(GD).second) {
3822         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3823             << MangledName;
3824         getDiags().Report(OtherGD.getDecl()->getLocation(),
3825                           diag::note_previous_definition);
3826       }
3827     }
3828 
3829     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3830         (Entry->getValueType() == Ty)) {
3831       return Entry;
3832     }
3833 
3834     // Make sure the result is of the correct type.
3835     // (If function is requested for a definition, we always need to create a new
3836     // function, not just return a bitcast.)
3837     if (!IsForDefinition)
3838       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3839   }
3840 
3841   // This function doesn't have a complete type (for example, the return
3842   // type is an incomplete struct). Use a fake type instead, and make
3843   // sure not to try to set attributes.
3844   bool IsIncompleteFunction = false;
3845 
3846   llvm::FunctionType *FTy;
3847   if (isa<llvm::FunctionType>(Ty)) {
3848     FTy = cast<llvm::FunctionType>(Ty);
3849   } else {
3850     FTy = llvm::FunctionType::get(VoidTy, false);
3851     IsIncompleteFunction = true;
3852   }
3853 
3854   llvm::Function *F =
3855       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3856                              Entry ? StringRef() : MangledName, &getModule());
3857 
3858   // If we already created a function with the same mangled name (but different
3859   // type) before, take its name and add it to the list of functions to be
3860   // replaced with F at the end of CodeGen.
3861   //
3862   // This happens if there is a prototype for a function (e.g. "int f()") and
3863   // then a definition of a different type (e.g. "int f(int x)").
3864   if (Entry) {
3865     F->takeName(Entry);
3866 
3867     // This might be an implementation of a function without a prototype, in
3868     // which case, try to do special replacement of calls which match the new
3869     // prototype.  The really key thing here is that we also potentially drop
3870     // arguments from the call site so as to make a direct call, which makes the
3871     // inliner happier and suppresses a number of optimizer warnings (!) about
3872     // dropping arguments.
3873     if (!Entry->use_empty()) {
3874       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3875       Entry->removeDeadConstantUsers();
3876     }
3877 
3878     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3879         F, Entry->getValueType()->getPointerTo());
3880     addGlobalValReplacement(Entry, BC);
3881   }
3882 
3883   assert(F->getName() == MangledName && "name was uniqued!");
3884   if (D)
3885     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3886   if (ExtraAttrs.hasFnAttrs()) {
3887     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3888     F->addFnAttrs(B);
3889   }
3890 
3891   if (!DontDefer) {
3892     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3893     // each other bottoming out with the base dtor.  Therefore we emit non-base
3894     // dtors on usage, even if there is no dtor definition in the TU.
3895     if (D && isa<CXXDestructorDecl>(D) &&
3896         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3897                                            GD.getDtorType()))
3898       addDeferredDeclToEmit(GD);
3899 
3900     // This is the first use or definition of a mangled name.  If there is a
3901     // deferred decl with this name, remember that we need to emit it at the end
3902     // of the file.
3903     auto DDI = DeferredDecls.find(MangledName);
3904     if (DDI != DeferredDecls.end()) {
3905       // Move the potentially referenced deferred decl to the
3906       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3907       // don't need it anymore).
3908       addDeferredDeclToEmit(DDI->second);
3909       DeferredDecls.erase(DDI);
3910 
3911       // Otherwise, there are cases we have to worry about where we're
3912       // using a declaration for which we must emit a definition but where
3913       // we might not find a top-level definition:
3914       //   - member functions defined inline in their classes
3915       //   - friend functions defined inline in some class
3916       //   - special member functions with implicit definitions
3917       // If we ever change our AST traversal to walk into class methods,
3918       // this will be unnecessary.
3919       //
3920       // We also don't emit a definition for a function if it's going to be an
3921       // entry in a vtable, unless it's already marked as used.
3922     } else if (getLangOpts().CPlusPlus && D) {
3923       // Look for a declaration that's lexically in a record.
3924       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3925            FD = FD->getPreviousDecl()) {
3926         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3927           if (FD->doesThisDeclarationHaveABody()) {
3928             addDeferredDeclToEmit(GD.getWithDecl(FD));
3929             break;
3930           }
3931         }
3932       }
3933     }
3934   }
3935 
3936   // Make sure the result is of the requested type.
3937   if (!IsIncompleteFunction) {
3938     assert(F->getFunctionType() == Ty);
3939     return F;
3940   }
3941 
3942   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3943   return llvm::ConstantExpr::getBitCast(F, PTy);
3944 }
3945 
3946 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3947 /// non-null, then this function will use the specified type if it has to
3948 /// create it (this occurs when we see a definition of the function).
3949 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3950                                                  llvm::Type *Ty,
3951                                                  bool ForVTable,
3952                                                  bool DontDefer,
3953                                               ForDefinition_t IsForDefinition) {
3954   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3955          "consteval function should never be emitted");
3956   // If there was no specific requested type, just convert it now.
3957   if (!Ty) {
3958     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3959     Ty = getTypes().ConvertType(FD->getType());
3960   }
3961 
3962   // Devirtualized destructor calls may come through here instead of via
3963   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3964   // of the complete destructor when necessary.
3965   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3966     if (getTarget().getCXXABI().isMicrosoft() &&
3967         GD.getDtorType() == Dtor_Complete &&
3968         DD->getParent()->getNumVBases() == 0)
3969       GD = GlobalDecl(DD, Dtor_Base);
3970   }
3971 
3972   StringRef MangledName = getMangledName(GD);
3973   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3974                                     /*IsThunk=*/false, llvm::AttributeList(),
3975                                     IsForDefinition);
3976   // Returns kernel handle for HIP kernel stub function.
3977   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3978       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3979     auto *Handle = getCUDARuntime().getKernelHandle(
3980         cast<llvm::Function>(F->stripPointerCasts()), GD);
3981     if (IsForDefinition)
3982       return F;
3983     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3984   }
3985   return F;
3986 }
3987 
3988 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3989   llvm::GlobalValue *F =
3990       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3991 
3992   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3993                                         llvm::Type::getInt8PtrTy(VMContext));
3994 }
3995 
3996 static const FunctionDecl *
3997 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3998   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3999   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4000 
4001   IdentifierInfo &CII = C.Idents.get(Name);
4002   for (const auto *Result : DC->lookup(&CII))
4003     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4004       return FD;
4005 
4006   if (!C.getLangOpts().CPlusPlus)
4007     return nullptr;
4008 
4009   // Demangle the premangled name from getTerminateFn()
4010   IdentifierInfo &CXXII =
4011       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4012           ? C.Idents.get("terminate")
4013           : C.Idents.get(Name);
4014 
4015   for (const auto &N : {"__cxxabiv1", "std"}) {
4016     IdentifierInfo &NS = C.Idents.get(N);
4017     for (const auto *Result : DC->lookup(&NS)) {
4018       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4019       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4020         for (const auto *Result : LSD->lookup(&NS))
4021           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4022             break;
4023 
4024       if (ND)
4025         for (const auto *Result : ND->lookup(&CXXII))
4026           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4027             return FD;
4028     }
4029   }
4030 
4031   return nullptr;
4032 }
4033 
4034 /// CreateRuntimeFunction - Create a new runtime function with the specified
4035 /// type and name.
4036 llvm::FunctionCallee
4037 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4038                                      llvm::AttributeList ExtraAttrs, bool Local,
4039                                      bool AssumeConvergent) {
4040   if (AssumeConvergent) {
4041     ExtraAttrs =
4042         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4043   }
4044 
4045   llvm::Constant *C =
4046       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4047                               /*DontDefer=*/false, /*IsThunk=*/false,
4048                               ExtraAttrs);
4049 
4050   if (auto *F = dyn_cast<llvm::Function>(C)) {
4051     if (F->empty()) {
4052       F->setCallingConv(getRuntimeCC());
4053 
4054       // In Windows Itanium environments, try to mark runtime functions
4055       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4056       // will link their standard library statically or dynamically. Marking
4057       // functions imported when they are not imported can cause linker errors
4058       // and warnings.
4059       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4060           !getCodeGenOpts().LTOVisibilityPublicStd) {
4061         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4062         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4063           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4064           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4065         }
4066       }
4067       setDSOLocal(F);
4068     }
4069   }
4070 
4071   return {FTy, C};
4072 }
4073 
4074 /// isTypeConstant - Determine whether an object of this type can be emitted
4075 /// as a constant.
4076 ///
4077 /// If ExcludeCtor is true, the duration when the object's constructor runs
4078 /// will not be considered. The caller will need to verify that the object is
4079 /// not written to during its construction.
4080 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4081   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4082     return false;
4083 
4084   if (Context.getLangOpts().CPlusPlus) {
4085     if (const CXXRecordDecl *Record
4086           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4087       return ExcludeCtor && !Record->hasMutableFields() &&
4088              Record->hasTrivialDestructor();
4089   }
4090 
4091   return true;
4092 }
4093 
4094 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4095 /// create and return an llvm GlobalVariable with the specified type and address
4096 /// space. If there is something in the module with the specified name, return
4097 /// it potentially bitcasted to the right type.
4098 ///
4099 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4100 /// to set the attributes on the global when it is first created.
4101 ///
4102 /// If IsForDefinition is true, it is guaranteed that an actual global with
4103 /// type Ty will be returned, not conversion of a variable with the same
4104 /// mangled name but some other type.
4105 llvm::Constant *
4106 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4107                                      LangAS AddrSpace, const VarDecl *D,
4108                                      ForDefinition_t IsForDefinition) {
4109   // Lookup the entry, lazily creating it if necessary.
4110   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4111   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4112   if (Entry) {
4113     if (WeakRefReferences.erase(Entry)) {
4114       if (D && !D->hasAttr<WeakAttr>())
4115         Entry->setLinkage(llvm::Function::ExternalLinkage);
4116     }
4117 
4118     // Handle dropped DLL attributes.
4119     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4120         !shouldMapVisibilityToDLLExport(D))
4121       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4122 
4123     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4124       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4125 
4126     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4127       return Entry;
4128 
4129     // If there are two attempts to define the same mangled name, issue an
4130     // error.
4131     if (IsForDefinition && !Entry->isDeclaration()) {
4132       GlobalDecl OtherGD;
4133       const VarDecl *OtherD;
4134 
4135       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4136       // to make sure that we issue an error only once.
4137       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4138           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4139           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4140           OtherD->hasInit() &&
4141           DiagnosedConflictingDefinitions.insert(D).second) {
4142         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4143             << MangledName;
4144         getDiags().Report(OtherGD.getDecl()->getLocation(),
4145                           diag::note_previous_definition);
4146       }
4147     }
4148 
4149     // Make sure the result is of the correct type.
4150     if (Entry->getType()->getAddressSpace() != TargetAS) {
4151       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4152                                                   Ty->getPointerTo(TargetAS));
4153     }
4154 
4155     // (If global is requested for a definition, we always need to create a new
4156     // global, not just return a bitcast.)
4157     if (!IsForDefinition)
4158       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4159   }
4160 
4161   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4162 
4163   auto *GV = new llvm::GlobalVariable(
4164       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4165       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4166       getContext().getTargetAddressSpace(DAddrSpace));
4167 
4168   // If we already created a global with the same mangled name (but different
4169   // type) before, take its name and remove it from its parent.
4170   if (Entry) {
4171     GV->takeName(Entry);
4172 
4173     if (!Entry->use_empty()) {
4174       llvm::Constant *NewPtrForOldDecl =
4175           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4176       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4177     }
4178 
4179     Entry->eraseFromParent();
4180   }
4181 
4182   // This is the first use or definition of a mangled name.  If there is a
4183   // deferred decl with this name, remember that we need to emit it at the end
4184   // of the file.
4185   auto DDI = DeferredDecls.find(MangledName);
4186   if (DDI != DeferredDecls.end()) {
4187     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4188     // list, and remove it from DeferredDecls (since we don't need it anymore).
4189     addDeferredDeclToEmit(DDI->second);
4190     DeferredDecls.erase(DDI);
4191   }
4192 
4193   // Handle things which are present even on external declarations.
4194   if (D) {
4195     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4196       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4197 
4198     // FIXME: This code is overly simple and should be merged with other global
4199     // handling.
4200     GV->setConstant(isTypeConstant(D->getType(), false));
4201 
4202     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4203 
4204     setLinkageForGV(GV, D);
4205 
4206     if (D->getTLSKind()) {
4207       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4208         CXXThreadLocals.push_back(D);
4209       setTLSMode(GV, *D);
4210     }
4211 
4212     setGVProperties(GV, D);
4213 
4214     // If required by the ABI, treat declarations of static data members with
4215     // inline initializers as definitions.
4216     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4217       EmitGlobalVarDefinition(D);
4218     }
4219 
4220     // Emit section information for extern variables.
4221     if (D->hasExternalStorage()) {
4222       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4223         GV->setSection(SA->getName());
4224     }
4225 
4226     // Handle XCore specific ABI requirements.
4227     if (getTriple().getArch() == llvm::Triple::xcore &&
4228         D->getLanguageLinkage() == CLanguageLinkage &&
4229         D->getType().isConstant(Context) &&
4230         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4231       GV->setSection(".cp.rodata");
4232 
4233     // Check if we a have a const declaration with an initializer, we may be
4234     // able to emit it as available_externally to expose it's value to the
4235     // optimizer.
4236     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4237         D->getType().isConstQualified() && !GV->hasInitializer() &&
4238         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4239       const auto *Record =
4240           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4241       bool HasMutableFields = Record && Record->hasMutableFields();
4242       if (!HasMutableFields) {
4243         const VarDecl *InitDecl;
4244         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4245         if (InitExpr) {
4246           ConstantEmitter emitter(*this);
4247           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4248           if (Init) {
4249             auto *InitType = Init->getType();
4250             if (GV->getValueType() != InitType) {
4251               // The type of the initializer does not match the definition.
4252               // This happens when an initializer has a different type from
4253               // the type of the global (because of padding at the end of a
4254               // structure for instance).
4255               GV->setName(StringRef());
4256               // Make a new global with the correct type, this is now guaranteed
4257               // to work.
4258               auto *NewGV = cast<llvm::GlobalVariable>(
4259                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4260                       ->stripPointerCasts());
4261 
4262               // Erase the old global, since it is no longer used.
4263               GV->eraseFromParent();
4264               GV = NewGV;
4265             } else {
4266               GV->setInitializer(Init);
4267               GV->setConstant(true);
4268               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4269             }
4270             emitter.finalize(GV);
4271           }
4272         }
4273       }
4274     }
4275   }
4276 
4277   if (GV->isDeclaration()) {
4278     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4279     // External HIP managed variables needed to be recorded for transformation
4280     // in both device and host compilations.
4281     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4282         D->hasExternalStorage())
4283       getCUDARuntime().handleVarRegistration(D, *GV);
4284   }
4285 
4286   LangAS ExpectedAS =
4287       D ? D->getType().getAddressSpace()
4288         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4289   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4290   if (DAddrSpace != ExpectedAS) {
4291     return getTargetCodeGenInfo().performAddrSpaceCast(
4292         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4293   }
4294 
4295   return GV;
4296 }
4297 
4298 llvm::Constant *
4299 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4300   const Decl *D = GD.getDecl();
4301 
4302   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4303     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4304                                 /*DontDefer=*/false, IsForDefinition);
4305 
4306   if (isa<CXXMethodDecl>(D)) {
4307     auto FInfo =
4308         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4309     auto Ty = getTypes().GetFunctionType(*FInfo);
4310     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4311                              IsForDefinition);
4312   }
4313 
4314   if (isa<FunctionDecl>(D)) {
4315     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4316     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4317     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4318                              IsForDefinition);
4319   }
4320 
4321   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4322 }
4323 
4324 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4325     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4326     unsigned Alignment) {
4327   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4328   llvm::GlobalVariable *OldGV = nullptr;
4329 
4330   if (GV) {
4331     // Check if the variable has the right type.
4332     if (GV->getValueType() == Ty)
4333       return GV;
4334 
4335     // Because C++ name mangling, the only way we can end up with an already
4336     // existing global with the same name is if it has been declared extern "C".
4337     assert(GV->isDeclaration() && "Declaration has wrong type!");
4338     OldGV = GV;
4339   }
4340 
4341   // Create a new variable.
4342   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4343                                 Linkage, nullptr, Name);
4344 
4345   if (OldGV) {
4346     // Replace occurrences of the old variable if needed.
4347     GV->takeName(OldGV);
4348 
4349     if (!OldGV->use_empty()) {
4350       llvm::Constant *NewPtrForOldDecl =
4351       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4352       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4353     }
4354 
4355     OldGV->eraseFromParent();
4356   }
4357 
4358   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4359       !GV->hasAvailableExternallyLinkage())
4360     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4361 
4362   GV->setAlignment(llvm::MaybeAlign(Alignment));
4363 
4364   return GV;
4365 }
4366 
4367 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4368 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4369 /// then it will be created with the specified type instead of whatever the
4370 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4371 /// that an actual global with type Ty will be returned, not conversion of a
4372 /// variable with the same mangled name but some other type.
4373 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4374                                                   llvm::Type *Ty,
4375                                            ForDefinition_t IsForDefinition) {
4376   assert(D->hasGlobalStorage() && "Not a global variable");
4377   QualType ASTTy = D->getType();
4378   if (!Ty)
4379     Ty = getTypes().ConvertTypeForMem(ASTTy);
4380 
4381   StringRef MangledName = getMangledName(D);
4382   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4383                                IsForDefinition);
4384 }
4385 
4386 /// CreateRuntimeVariable - Create a new runtime global variable with the
4387 /// specified type and name.
4388 llvm::Constant *
4389 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4390                                      StringRef Name) {
4391   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4392                                                        : LangAS::Default;
4393   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4394   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4395   return Ret;
4396 }
4397 
4398 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4399   assert(!D->getInit() && "Cannot emit definite definitions here!");
4400 
4401   StringRef MangledName = getMangledName(D);
4402   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4403 
4404   // We already have a definition, not declaration, with the same mangled name.
4405   // Emitting of declaration is not required (and actually overwrites emitted
4406   // definition).
4407   if (GV && !GV->isDeclaration())
4408     return;
4409 
4410   // If we have not seen a reference to this variable yet, place it into the
4411   // deferred declarations table to be emitted if needed later.
4412   if (!MustBeEmitted(D) && !GV) {
4413       DeferredDecls[MangledName] = D;
4414       return;
4415   }
4416 
4417   // The tentative definition is the only definition.
4418   EmitGlobalVarDefinition(D);
4419 }
4420 
4421 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4422   EmitExternalVarDeclaration(D);
4423 }
4424 
4425 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4426   return Context.toCharUnitsFromBits(
4427       getDataLayout().getTypeStoreSizeInBits(Ty));
4428 }
4429 
4430 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4431   if (LangOpts.OpenCL) {
4432     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4433     assert(AS == LangAS::opencl_global ||
4434            AS == LangAS::opencl_global_device ||
4435            AS == LangAS::opencl_global_host ||
4436            AS == LangAS::opencl_constant ||
4437            AS == LangAS::opencl_local ||
4438            AS >= LangAS::FirstTargetAddressSpace);
4439     return AS;
4440   }
4441 
4442   if (LangOpts.SYCLIsDevice &&
4443       (!D || D->getType().getAddressSpace() == LangAS::Default))
4444     return LangAS::sycl_global;
4445 
4446   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4447     if (D && D->hasAttr<CUDAConstantAttr>())
4448       return LangAS::cuda_constant;
4449     else if (D && D->hasAttr<CUDASharedAttr>())
4450       return LangAS::cuda_shared;
4451     else if (D && D->hasAttr<CUDADeviceAttr>())
4452       return LangAS::cuda_device;
4453     else if (D && D->getType().isConstQualified())
4454       return LangAS::cuda_constant;
4455     else
4456       return LangAS::cuda_device;
4457   }
4458 
4459   if (LangOpts.OpenMP) {
4460     LangAS AS;
4461     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4462       return AS;
4463   }
4464   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4465 }
4466 
4467 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4468   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4469   if (LangOpts.OpenCL)
4470     return LangAS::opencl_constant;
4471   if (LangOpts.SYCLIsDevice)
4472     return LangAS::sycl_global;
4473   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4474     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4475     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4476     // with OpVariable instructions with Generic storage class which is not
4477     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4478     // UniformConstant storage class is not viable as pointers to it may not be
4479     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4480     return LangAS::cuda_device;
4481   if (auto AS = getTarget().getConstantAddressSpace())
4482     return AS.getValue();
4483   return LangAS::Default;
4484 }
4485 
4486 // In address space agnostic languages, string literals are in default address
4487 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4488 // emitted in constant address space in LLVM IR. To be consistent with other
4489 // parts of AST, string literal global variables in constant address space
4490 // need to be casted to default address space before being put into address
4491 // map and referenced by other part of CodeGen.
4492 // In OpenCL, string literals are in constant address space in AST, therefore
4493 // they should not be casted to default address space.
4494 static llvm::Constant *
4495 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4496                                        llvm::GlobalVariable *GV) {
4497   llvm::Constant *Cast = GV;
4498   if (!CGM.getLangOpts().OpenCL) {
4499     auto AS = CGM.GetGlobalConstantAddressSpace();
4500     if (AS != LangAS::Default)
4501       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4502           CGM, GV, AS, LangAS::Default,
4503           GV->getValueType()->getPointerTo(
4504               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4505   }
4506   return Cast;
4507 }
4508 
4509 template<typename SomeDecl>
4510 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4511                                                llvm::GlobalValue *GV) {
4512   if (!getLangOpts().CPlusPlus)
4513     return;
4514 
4515   // Must have 'used' attribute, or else inline assembly can't rely on
4516   // the name existing.
4517   if (!D->template hasAttr<UsedAttr>())
4518     return;
4519 
4520   // Must have internal linkage and an ordinary name.
4521   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4522     return;
4523 
4524   // Must be in an extern "C" context. Entities declared directly within
4525   // a record are not extern "C" even if the record is in such a context.
4526   const SomeDecl *First = D->getFirstDecl();
4527   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4528     return;
4529 
4530   // OK, this is an internal linkage entity inside an extern "C" linkage
4531   // specification. Make a note of that so we can give it the "expected"
4532   // mangled name if nothing else is using that name.
4533   std::pair<StaticExternCMap::iterator, bool> R =
4534       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4535 
4536   // If we have multiple internal linkage entities with the same name
4537   // in extern "C" regions, none of them gets that name.
4538   if (!R.second)
4539     R.first->second = nullptr;
4540 }
4541 
4542 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4543   if (!CGM.supportsCOMDAT())
4544     return false;
4545 
4546   if (D.hasAttr<SelectAnyAttr>())
4547     return true;
4548 
4549   GVALinkage Linkage;
4550   if (auto *VD = dyn_cast<VarDecl>(&D))
4551     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4552   else
4553     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4554 
4555   switch (Linkage) {
4556   case GVA_Internal:
4557   case GVA_AvailableExternally:
4558   case GVA_StrongExternal:
4559     return false;
4560   case GVA_DiscardableODR:
4561   case GVA_StrongODR:
4562     return true;
4563   }
4564   llvm_unreachable("No such linkage");
4565 }
4566 
4567 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4568                                           llvm::GlobalObject &GO) {
4569   if (!shouldBeInCOMDAT(*this, D))
4570     return;
4571   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4572 }
4573 
4574 /// Pass IsTentative as true if you want to create a tentative definition.
4575 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4576                                             bool IsTentative) {
4577   // OpenCL global variables of sampler type are translated to function calls,
4578   // therefore no need to be translated.
4579   QualType ASTTy = D->getType();
4580   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4581     return;
4582 
4583   // If this is OpenMP device, check if it is legal to emit this global
4584   // normally.
4585   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4586       OpenMPRuntime->emitTargetGlobalVariable(D))
4587     return;
4588 
4589   llvm::TrackingVH<llvm::Constant> Init;
4590   bool NeedsGlobalCtor = false;
4591   bool NeedsGlobalDtor =
4592       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4593 
4594   const VarDecl *InitDecl;
4595   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4596 
4597   Optional<ConstantEmitter> emitter;
4598 
4599   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4600   // as part of their declaration."  Sema has already checked for
4601   // error cases, so we just need to set Init to UndefValue.
4602   bool IsCUDASharedVar =
4603       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4604   // Shadows of initialized device-side global variables are also left
4605   // undefined.
4606   // Managed Variables should be initialized on both host side and device side.
4607   bool IsCUDAShadowVar =
4608       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4609       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4610        D->hasAttr<CUDASharedAttr>());
4611   bool IsCUDADeviceShadowVar =
4612       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4613       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4614        D->getType()->isCUDADeviceBuiltinTextureType());
4615   if (getLangOpts().CUDA &&
4616       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4617     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4618   else if (D->hasAttr<LoaderUninitializedAttr>())
4619     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4620   else if (!InitExpr) {
4621     // This is a tentative definition; tentative definitions are
4622     // implicitly initialized with { 0 }.
4623     //
4624     // Note that tentative definitions are only emitted at the end of
4625     // a translation unit, so they should never have incomplete
4626     // type. In addition, EmitTentativeDefinition makes sure that we
4627     // never attempt to emit a tentative definition if a real one
4628     // exists. A use may still exists, however, so we still may need
4629     // to do a RAUW.
4630     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4631     Init = EmitNullConstant(D->getType());
4632   } else {
4633     initializedGlobalDecl = GlobalDecl(D);
4634     emitter.emplace(*this);
4635     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4636     if (!Initializer) {
4637       QualType T = InitExpr->getType();
4638       if (D->getType()->isReferenceType())
4639         T = D->getType();
4640 
4641       if (getLangOpts().CPlusPlus) {
4642         if (InitDecl->hasFlexibleArrayInit(getContext()))
4643           ErrorUnsupported(D, "flexible array initializer");
4644         Init = EmitNullConstant(T);
4645         NeedsGlobalCtor = true;
4646       } else {
4647         ErrorUnsupported(D, "static initializer");
4648         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4649       }
4650     } else {
4651       Init = Initializer;
4652       // We don't need an initializer, so remove the entry for the delayed
4653       // initializer position (just in case this entry was delayed) if we
4654       // also don't need to register a destructor.
4655       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4656         DelayedCXXInitPosition.erase(D);
4657 
4658 #ifndef NDEBUG
4659       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4660                           InitDecl->getFlexibleArrayInitChars(getContext());
4661       CharUnits CstSize = CharUnits::fromQuantity(
4662           getDataLayout().getTypeAllocSize(Init->getType()));
4663       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4664 #endif
4665     }
4666   }
4667 
4668   llvm::Type* InitType = Init->getType();
4669   llvm::Constant *Entry =
4670       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4671 
4672   // Strip off pointer casts if we got them.
4673   Entry = Entry->stripPointerCasts();
4674 
4675   // Entry is now either a Function or GlobalVariable.
4676   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4677 
4678   // We have a definition after a declaration with the wrong type.
4679   // We must make a new GlobalVariable* and update everything that used OldGV
4680   // (a declaration or tentative definition) with the new GlobalVariable*
4681   // (which will be a definition).
4682   //
4683   // This happens if there is a prototype for a global (e.g.
4684   // "extern int x[];") and then a definition of a different type (e.g.
4685   // "int x[10];"). This also happens when an initializer has a different type
4686   // from the type of the global (this happens with unions).
4687   if (!GV || GV->getValueType() != InitType ||
4688       GV->getType()->getAddressSpace() !=
4689           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4690 
4691     // Move the old entry aside so that we'll create a new one.
4692     Entry->setName(StringRef());
4693 
4694     // Make a new global with the correct type, this is now guaranteed to work.
4695     GV = cast<llvm::GlobalVariable>(
4696         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4697             ->stripPointerCasts());
4698 
4699     // Replace all uses of the old global with the new global
4700     llvm::Constant *NewPtrForOldDecl =
4701         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4702                                                              Entry->getType());
4703     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4704 
4705     // Erase the old global, since it is no longer used.
4706     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4707   }
4708 
4709   MaybeHandleStaticInExternC(D, GV);
4710 
4711   if (D->hasAttr<AnnotateAttr>())
4712     AddGlobalAnnotations(D, GV);
4713 
4714   // Set the llvm linkage type as appropriate.
4715   llvm::GlobalValue::LinkageTypes Linkage =
4716       getLLVMLinkageVarDefinition(D, GV->isConstant());
4717 
4718   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4719   // the device. [...]"
4720   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4721   // __device__, declares a variable that: [...]
4722   // Is accessible from all the threads within the grid and from the host
4723   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4724   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4725   if (GV && LangOpts.CUDA) {
4726     if (LangOpts.CUDAIsDevice) {
4727       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4728           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4729            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4730            D->getType()->isCUDADeviceBuiltinTextureType()))
4731         GV->setExternallyInitialized(true);
4732     } else {
4733       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4734     }
4735     getCUDARuntime().handleVarRegistration(D, *GV);
4736   }
4737 
4738   GV->setInitializer(Init);
4739   if (emitter)
4740     emitter->finalize(GV);
4741 
4742   // If it is safe to mark the global 'constant', do so now.
4743   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4744                   isTypeConstant(D->getType(), true));
4745 
4746   // If it is in a read-only section, mark it 'constant'.
4747   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4748     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4749     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4750       GV->setConstant(true);
4751   }
4752 
4753   CharUnits AlignVal = getContext().getDeclAlign(D);
4754   // Check for alignment specifed in an 'omp allocate' directive.
4755   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4756           getOMPAllocateAlignment(D))
4757     AlignVal = AlignValFromAllocate.getValue();
4758   GV->setAlignment(AlignVal.getAsAlign());
4759 
4760   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4761   // function is only defined alongside the variable, not also alongside
4762   // callers. Normally, all accesses to a thread_local go through the
4763   // thread-wrapper in order to ensure initialization has occurred, underlying
4764   // variable will never be used other than the thread-wrapper, so it can be
4765   // converted to internal linkage.
4766   //
4767   // However, if the variable has the 'constinit' attribute, it _can_ be
4768   // referenced directly, without calling the thread-wrapper, so the linkage
4769   // must not be changed.
4770   //
4771   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4772   // weak or linkonce, the de-duplication semantics are important to preserve,
4773   // so we don't change the linkage.
4774   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4775       Linkage == llvm::GlobalValue::ExternalLinkage &&
4776       Context.getTargetInfo().getTriple().isOSDarwin() &&
4777       !D->hasAttr<ConstInitAttr>())
4778     Linkage = llvm::GlobalValue::InternalLinkage;
4779 
4780   GV->setLinkage(Linkage);
4781   if (D->hasAttr<DLLImportAttr>())
4782     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4783   else if (D->hasAttr<DLLExportAttr>())
4784     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4785   else
4786     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4787 
4788   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4789     // common vars aren't constant even if declared const.
4790     GV->setConstant(false);
4791     // Tentative definition of global variables may be initialized with
4792     // non-zero null pointers. In this case they should have weak linkage
4793     // since common linkage must have zero initializer and must not have
4794     // explicit section therefore cannot have non-zero initial value.
4795     if (!GV->getInitializer()->isNullValue())
4796       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4797   }
4798 
4799   setNonAliasAttributes(D, GV);
4800 
4801   if (D->getTLSKind() && !GV->isThreadLocal()) {
4802     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4803       CXXThreadLocals.push_back(D);
4804     setTLSMode(GV, *D);
4805   }
4806 
4807   maybeSetTrivialComdat(*D, *GV);
4808 
4809   // Emit the initializer function if necessary.
4810   if (NeedsGlobalCtor || NeedsGlobalDtor)
4811     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4812 
4813   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4814 
4815   // Emit global variable debug information.
4816   if (CGDebugInfo *DI = getModuleDebugInfo())
4817     if (getCodeGenOpts().hasReducedDebugInfo())
4818       DI->EmitGlobalVariable(GV, D);
4819 }
4820 
4821 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4822   if (CGDebugInfo *DI = getModuleDebugInfo())
4823     if (getCodeGenOpts().hasReducedDebugInfo()) {
4824       QualType ASTTy = D->getType();
4825       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4826       llvm::Constant *GV =
4827           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4828       DI->EmitExternalVariable(
4829           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4830     }
4831 }
4832 
4833 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4834                                       CodeGenModule &CGM, const VarDecl *D,
4835                                       bool NoCommon) {
4836   // Don't give variables common linkage if -fno-common was specified unless it
4837   // was overridden by a NoCommon attribute.
4838   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4839     return true;
4840 
4841   // C11 6.9.2/2:
4842   //   A declaration of an identifier for an object that has file scope without
4843   //   an initializer, and without a storage-class specifier or with the
4844   //   storage-class specifier static, constitutes a tentative definition.
4845   if (D->getInit() || D->hasExternalStorage())
4846     return true;
4847 
4848   // A variable cannot be both common and exist in a section.
4849   if (D->hasAttr<SectionAttr>())
4850     return true;
4851 
4852   // A variable cannot be both common and exist in a section.
4853   // We don't try to determine which is the right section in the front-end.
4854   // If no specialized section name is applicable, it will resort to default.
4855   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4856       D->hasAttr<PragmaClangDataSectionAttr>() ||
4857       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4858       D->hasAttr<PragmaClangRodataSectionAttr>())
4859     return true;
4860 
4861   // Thread local vars aren't considered common linkage.
4862   if (D->getTLSKind())
4863     return true;
4864 
4865   // Tentative definitions marked with WeakImportAttr are true definitions.
4866   if (D->hasAttr<WeakImportAttr>())
4867     return true;
4868 
4869   // A variable cannot be both common and exist in a comdat.
4870   if (shouldBeInCOMDAT(CGM, *D))
4871     return true;
4872 
4873   // Declarations with a required alignment do not have common linkage in MSVC
4874   // mode.
4875   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4876     if (D->hasAttr<AlignedAttr>())
4877       return true;
4878     QualType VarType = D->getType();
4879     if (Context.isAlignmentRequired(VarType))
4880       return true;
4881 
4882     if (const auto *RT = VarType->getAs<RecordType>()) {
4883       const RecordDecl *RD = RT->getDecl();
4884       for (const FieldDecl *FD : RD->fields()) {
4885         if (FD->isBitField())
4886           continue;
4887         if (FD->hasAttr<AlignedAttr>())
4888           return true;
4889         if (Context.isAlignmentRequired(FD->getType()))
4890           return true;
4891       }
4892     }
4893   }
4894 
4895   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4896   // common symbols, so symbols with greater alignment requirements cannot be
4897   // common.
4898   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4899   // alignments for common symbols via the aligncomm directive, so this
4900   // restriction only applies to MSVC environments.
4901   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4902       Context.getTypeAlignIfKnown(D->getType()) >
4903           Context.toBits(CharUnits::fromQuantity(32)))
4904     return true;
4905 
4906   return false;
4907 }
4908 
4909 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4910     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4911   if (Linkage == GVA_Internal)
4912     return llvm::Function::InternalLinkage;
4913 
4914   if (D->hasAttr<WeakAttr>()) {
4915     if (IsConstantVariable)
4916       return llvm::GlobalVariable::WeakODRLinkage;
4917     else
4918       return llvm::GlobalVariable::WeakAnyLinkage;
4919   }
4920 
4921   if (const auto *FD = D->getAsFunction())
4922     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4923       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4924 
4925   // We are guaranteed to have a strong definition somewhere else,
4926   // so we can use available_externally linkage.
4927   if (Linkage == GVA_AvailableExternally)
4928     return llvm::GlobalValue::AvailableExternallyLinkage;
4929 
4930   // Note that Apple's kernel linker doesn't support symbol
4931   // coalescing, so we need to avoid linkonce and weak linkages there.
4932   // Normally, this means we just map to internal, but for explicit
4933   // instantiations we'll map to external.
4934 
4935   // In C++, the compiler has to emit a definition in every translation unit
4936   // that references the function.  We should use linkonce_odr because
4937   // a) if all references in this translation unit are optimized away, we
4938   // don't need to codegen it.  b) if the function persists, it needs to be
4939   // merged with other definitions. c) C++ has the ODR, so we know the
4940   // definition is dependable.
4941   if (Linkage == GVA_DiscardableODR)
4942     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4943                                             : llvm::Function::InternalLinkage;
4944 
4945   // An explicit instantiation of a template has weak linkage, since
4946   // explicit instantiations can occur in multiple translation units
4947   // and must all be equivalent. However, we are not allowed to
4948   // throw away these explicit instantiations.
4949   //
4950   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4951   // so say that CUDA templates are either external (for kernels) or internal.
4952   // This lets llvm perform aggressive inter-procedural optimizations. For
4953   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4954   // therefore we need to follow the normal linkage paradigm.
4955   if (Linkage == GVA_StrongODR) {
4956     if (getLangOpts().AppleKext)
4957       return llvm::Function::ExternalLinkage;
4958     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4959         !getLangOpts().GPURelocatableDeviceCode)
4960       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4961                                           : llvm::Function::InternalLinkage;
4962     return llvm::Function::WeakODRLinkage;
4963   }
4964 
4965   // C++ doesn't have tentative definitions and thus cannot have common
4966   // linkage.
4967   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4968       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4969                                  CodeGenOpts.NoCommon))
4970     return llvm::GlobalVariable::CommonLinkage;
4971 
4972   // selectany symbols are externally visible, so use weak instead of
4973   // linkonce.  MSVC optimizes away references to const selectany globals, so
4974   // all definitions should be the same and ODR linkage should be used.
4975   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4976   if (D->hasAttr<SelectAnyAttr>())
4977     return llvm::GlobalVariable::WeakODRLinkage;
4978 
4979   // Otherwise, we have strong external linkage.
4980   assert(Linkage == GVA_StrongExternal);
4981   return llvm::GlobalVariable::ExternalLinkage;
4982 }
4983 
4984 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4985     const VarDecl *VD, bool IsConstant) {
4986   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4987   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4988 }
4989 
4990 /// Replace the uses of a function that was declared with a non-proto type.
4991 /// We want to silently drop extra arguments from call sites
4992 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4993                                           llvm::Function *newFn) {
4994   // Fast path.
4995   if (old->use_empty()) return;
4996 
4997   llvm::Type *newRetTy = newFn->getReturnType();
4998   SmallVector<llvm::Value*, 4> newArgs;
4999 
5000   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5001          ui != ue; ) {
5002     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5003     llvm::User *user = use->getUser();
5004 
5005     // Recognize and replace uses of bitcasts.  Most calls to
5006     // unprototyped functions will use bitcasts.
5007     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5008       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5009         replaceUsesOfNonProtoConstant(bitcast, newFn);
5010       continue;
5011     }
5012 
5013     // Recognize calls to the function.
5014     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5015     if (!callSite) continue;
5016     if (!callSite->isCallee(&*use))
5017       continue;
5018 
5019     // If the return types don't match exactly, then we can't
5020     // transform this call unless it's dead.
5021     if (callSite->getType() != newRetTy && !callSite->use_empty())
5022       continue;
5023 
5024     // Get the call site's attribute list.
5025     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5026     llvm::AttributeList oldAttrs = callSite->getAttributes();
5027 
5028     // If the function was passed too few arguments, don't transform.
5029     unsigned newNumArgs = newFn->arg_size();
5030     if (callSite->arg_size() < newNumArgs)
5031       continue;
5032 
5033     // If extra arguments were passed, we silently drop them.
5034     // If any of the types mismatch, we don't transform.
5035     unsigned argNo = 0;
5036     bool dontTransform = false;
5037     for (llvm::Argument &A : newFn->args()) {
5038       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5039         dontTransform = true;
5040         break;
5041       }
5042 
5043       // Add any parameter attributes.
5044       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5045       argNo++;
5046     }
5047     if (dontTransform)
5048       continue;
5049 
5050     // Okay, we can transform this.  Create the new call instruction and copy
5051     // over the required information.
5052     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5053 
5054     // Copy over any operand bundles.
5055     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5056     callSite->getOperandBundlesAsDefs(newBundles);
5057 
5058     llvm::CallBase *newCall;
5059     if (isa<llvm::CallInst>(callSite)) {
5060       newCall =
5061           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5062     } else {
5063       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5064       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5065                                          oldInvoke->getUnwindDest(), newArgs,
5066                                          newBundles, "", callSite);
5067     }
5068     newArgs.clear(); // for the next iteration
5069 
5070     if (!newCall->getType()->isVoidTy())
5071       newCall->takeName(callSite);
5072     newCall->setAttributes(
5073         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5074                                  oldAttrs.getRetAttrs(), newArgAttrs));
5075     newCall->setCallingConv(callSite->getCallingConv());
5076 
5077     // Finally, remove the old call, replacing any uses with the new one.
5078     if (!callSite->use_empty())
5079       callSite->replaceAllUsesWith(newCall);
5080 
5081     // Copy debug location attached to CI.
5082     if (callSite->getDebugLoc())
5083       newCall->setDebugLoc(callSite->getDebugLoc());
5084 
5085     callSite->eraseFromParent();
5086   }
5087 }
5088 
5089 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5090 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5091 /// existing call uses of the old function in the module, this adjusts them to
5092 /// call the new function directly.
5093 ///
5094 /// This is not just a cleanup: the always_inline pass requires direct calls to
5095 /// functions to be able to inline them.  If there is a bitcast in the way, it
5096 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5097 /// run at -O0.
5098 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5099                                                       llvm::Function *NewFn) {
5100   // If we're redefining a global as a function, don't transform it.
5101   if (!isa<llvm::Function>(Old)) return;
5102 
5103   replaceUsesOfNonProtoConstant(Old, NewFn);
5104 }
5105 
5106 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5107   auto DK = VD->isThisDeclarationADefinition();
5108   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5109     return;
5110 
5111   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5112   // If we have a definition, this might be a deferred decl. If the
5113   // instantiation is explicit, make sure we emit it at the end.
5114   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5115     GetAddrOfGlobalVar(VD);
5116 
5117   EmitTopLevelDecl(VD);
5118 }
5119 
5120 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5121                                                  llvm::GlobalValue *GV) {
5122   const auto *D = cast<FunctionDecl>(GD.getDecl());
5123 
5124   // Compute the function info and LLVM type.
5125   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5126   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5127 
5128   // Get or create the prototype for the function.
5129   if (!GV || (GV->getValueType() != Ty))
5130     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5131                                                    /*DontDefer=*/true,
5132                                                    ForDefinition));
5133 
5134   // Already emitted.
5135   if (!GV->isDeclaration())
5136     return;
5137 
5138   // We need to set linkage and visibility on the function before
5139   // generating code for it because various parts of IR generation
5140   // want to propagate this information down (e.g. to local static
5141   // declarations).
5142   auto *Fn = cast<llvm::Function>(GV);
5143   setFunctionLinkage(GD, Fn);
5144 
5145   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5146   setGVProperties(Fn, GD);
5147 
5148   MaybeHandleStaticInExternC(D, Fn);
5149 
5150   maybeSetTrivialComdat(*D, *Fn);
5151 
5152   // Set CodeGen attributes that represent floating point environment.
5153   setLLVMFunctionFEnvAttributes(D, Fn);
5154 
5155   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5156 
5157   setNonAliasAttributes(GD, Fn);
5158   SetLLVMFunctionAttributesForDefinition(D, Fn);
5159 
5160   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5161     AddGlobalCtor(Fn, CA->getPriority());
5162   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5163     AddGlobalDtor(Fn, DA->getPriority(), true);
5164   if (D->hasAttr<AnnotateAttr>())
5165     AddGlobalAnnotations(D, Fn);
5166 }
5167 
5168 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5169   const auto *D = cast<ValueDecl>(GD.getDecl());
5170   const AliasAttr *AA = D->getAttr<AliasAttr>();
5171   assert(AA && "Not an alias?");
5172 
5173   StringRef MangledName = getMangledName(GD);
5174 
5175   if (AA->getAliasee() == MangledName) {
5176     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5177     return;
5178   }
5179 
5180   // If there is a definition in the module, then it wins over the alias.
5181   // This is dubious, but allow it to be safe.  Just ignore the alias.
5182   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5183   if (Entry && !Entry->isDeclaration())
5184     return;
5185 
5186   Aliases.push_back(GD);
5187 
5188   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5189 
5190   // Create a reference to the named value.  This ensures that it is emitted
5191   // if a deferred decl.
5192   llvm::Constant *Aliasee;
5193   llvm::GlobalValue::LinkageTypes LT;
5194   if (isa<llvm::FunctionType>(DeclTy)) {
5195     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5196                                       /*ForVTable=*/false);
5197     LT = getFunctionLinkage(GD);
5198   } else {
5199     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5200                                     /*D=*/nullptr);
5201     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5202       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5203     else
5204       LT = getFunctionLinkage(GD);
5205   }
5206 
5207   // Create the new alias itself, but don't set a name yet.
5208   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5209   auto *GA =
5210       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5211 
5212   if (Entry) {
5213     if (GA->getAliasee() == Entry) {
5214       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5215       return;
5216     }
5217 
5218     assert(Entry->isDeclaration());
5219 
5220     // If there is a declaration in the module, then we had an extern followed
5221     // by the alias, as in:
5222     //   extern int test6();
5223     //   ...
5224     //   int test6() __attribute__((alias("test7")));
5225     //
5226     // Remove it and replace uses of it with the alias.
5227     GA->takeName(Entry);
5228 
5229     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5230                                                           Entry->getType()));
5231     Entry->eraseFromParent();
5232   } else {
5233     GA->setName(MangledName);
5234   }
5235 
5236   // Set attributes which are particular to an alias; this is a
5237   // specialization of the attributes which may be set on a global
5238   // variable/function.
5239   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5240       D->isWeakImported()) {
5241     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5242   }
5243 
5244   if (const auto *VD = dyn_cast<VarDecl>(D))
5245     if (VD->getTLSKind())
5246       setTLSMode(GA, *VD);
5247 
5248   SetCommonAttributes(GD, GA);
5249 
5250   // Emit global alias debug information.
5251   if (isa<VarDecl>(D))
5252     if (CGDebugInfo *DI = getModuleDebugInfo())
5253       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5254 }
5255 
5256 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5257   const auto *D = cast<ValueDecl>(GD.getDecl());
5258   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5259   assert(IFA && "Not an ifunc?");
5260 
5261   StringRef MangledName = getMangledName(GD);
5262 
5263   if (IFA->getResolver() == MangledName) {
5264     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5265     return;
5266   }
5267 
5268   // Report an error if some definition overrides ifunc.
5269   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5270   if (Entry && !Entry->isDeclaration()) {
5271     GlobalDecl OtherGD;
5272     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5273         DiagnosedConflictingDefinitions.insert(GD).second) {
5274       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5275           << MangledName;
5276       Diags.Report(OtherGD.getDecl()->getLocation(),
5277                    diag::note_previous_definition);
5278     }
5279     return;
5280   }
5281 
5282   Aliases.push_back(GD);
5283 
5284   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5285   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5286   llvm::Constant *Resolver =
5287       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5288                               /*ForVTable=*/false);
5289   llvm::GlobalIFunc *GIF =
5290       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5291                                 "", Resolver, &getModule());
5292   if (Entry) {
5293     if (GIF->getResolver() == Entry) {
5294       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5295       return;
5296     }
5297     assert(Entry->isDeclaration());
5298 
5299     // If there is a declaration in the module, then we had an extern followed
5300     // by the ifunc, as in:
5301     //   extern int test();
5302     //   ...
5303     //   int test() __attribute__((ifunc("resolver")));
5304     //
5305     // Remove it and replace uses of it with the ifunc.
5306     GIF->takeName(Entry);
5307 
5308     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5309                                                           Entry->getType()));
5310     Entry->eraseFromParent();
5311   } else
5312     GIF->setName(MangledName);
5313 
5314   SetCommonAttributes(GD, GIF);
5315 }
5316 
5317 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5318                                             ArrayRef<llvm::Type*> Tys) {
5319   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5320                                          Tys);
5321 }
5322 
5323 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5324 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5325                          const StringLiteral *Literal, bool TargetIsLSB,
5326                          bool &IsUTF16, unsigned &StringLength) {
5327   StringRef String = Literal->getString();
5328   unsigned NumBytes = String.size();
5329 
5330   // Check for simple case.
5331   if (!Literal->containsNonAsciiOrNull()) {
5332     StringLength = NumBytes;
5333     return *Map.insert(std::make_pair(String, nullptr)).first;
5334   }
5335 
5336   // Otherwise, convert the UTF8 literals into a string of shorts.
5337   IsUTF16 = true;
5338 
5339   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5340   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5341   llvm::UTF16 *ToPtr = &ToBuf[0];
5342 
5343   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5344                                  ToPtr + NumBytes, llvm::strictConversion);
5345 
5346   // ConvertUTF8toUTF16 returns the length in ToPtr.
5347   StringLength = ToPtr - &ToBuf[0];
5348 
5349   // Add an explicit null.
5350   *ToPtr = 0;
5351   return *Map.insert(std::make_pair(
5352                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5353                                    (StringLength + 1) * 2),
5354                          nullptr)).first;
5355 }
5356 
5357 ConstantAddress
5358 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5359   unsigned StringLength = 0;
5360   bool isUTF16 = false;
5361   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5362       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5363                                getDataLayout().isLittleEndian(), isUTF16,
5364                                StringLength);
5365 
5366   if (auto *C = Entry.second)
5367     return ConstantAddress(
5368         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5369 
5370   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5371   llvm::Constant *Zeros[] = { Zero, Zero };
5372 
5373   const ASTContext &Context = getContext();
5374   const llvm::Triple &Triple = getTriple();
5375 
5376   const auto CFRuntime = getLangOpts().CFRuntime;
5377   const bool IsSwiftABI =
5378       static_cast<unsigned>(CFRuntime) >=
5379       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5380   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5381 
5382   // If we don't already have it, get __CFConstantStringClassReference.
5383   if (!CFConstantStringClassRef) {
5384     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5385     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5386     Ty = llvm::ArrayType::get(Ty, 0);
5387 
5388     switch (CFRuntime) {
5389     default: break;
5390     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5391     case LangOptions::CoreFoundationABI::Swift5_0:
5392       CFConstantStringClassName =
5393           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5394                               : "$s10Foundation19_NSCFConstantStringCN";
5395       Ty = IntPtrTy;
5396       break;
5397     case LangOptions::CoreFoundationABI::Swift4_2:
5398       CFConstantStringClassName =
5399           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5400                               : "$S10Foundation19_NSCFConstantStringCN";
5401       Ty = IntPtrTy;
5402       break;
5403     case LangOptions::CoreFoundationABI::Swift4_1:
5404       CFConstantStringClassName =
5405           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5406                               : "__T010Foundation19_NSCFConstantStringCN";
5407       Ty = IntPtrTy;
5408       break;
5409     }
5410 
5411     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5412 
5413     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5414       llvm::GlobalValue *GV = nullptr;
5415 
5416       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5417         IdentifierInfo &II = Context.Idents.get(GV->getName());
5418         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5419         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5420 
5421         const VarDecl *VD = nullptr;
5422         for (const auto *Result : DC->lookup(&II))
5423           if ((VD = dyn_cast<VarDecl>(Result)))
5424             break;
5425 
5426         if (Triple.isOSBinFormatELF()) {
5427           if (!VD)
5428             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5429         } else {
5430           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5431           if (!VD || !VD->hasAttr<DLLExportAttr>())
5432             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5433           else
5434             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5435         }
5436 
5437         setDSOLocal(GV);
5438       }
5439     }
5440 
5441     // Decay array -> ptr
5442     CFConstantStringClassRef =
5443         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5444                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5445   }
5446 
5447   QualType CFTy = Context.getCFConstantStringType();
5448 
5449   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5450 
5451   ConstantInitBuilder Builder(*this);
5452   auto Fields = Builder.beginStruct(STy);
5453 
5454   // Class pointer.
5455   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5456 
5457   // Flags.
5458   if (IsSwiftABI) {
5459     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5460     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5461   } else {
5462     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5463   }
5464 
5465   // String pointer.
5466   llvm::Constant *C = nullptr;
5467   if (isUTF16) {
5468     auto Arr = llvm::makeArrayRef(
5469         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5470         Entry.first().size() / 2);
5471     C = llvm::ConstantDataArray::get(VMContext, Arr);
5472   } else {
5473     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5474   }
5475 
5476   // Note: -fwritable-strings doesn't make the backing store strings of
5477   // CFStrings writable. (See <rdar://problem/10657500>)
5478   auto *GV =
5479       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5480                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5481   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5482   // Don't enforce the target's minimum global alignment, since the only use
5483   // of the string is via this class initializer.
5484   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5485                             : Context.getTypeAlignInChars(Context.CharTy);
5486   GV->setAlignment(Align.getAsAlign());
5487 
5488   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5489   // Without it LLVM can merge the string with a non unnamed_addr one during
5490   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5491   if (Triple.isOSBinFormatMachO())
5492     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5493                            : "__TEXT,__cstring,cstring_literals");
5494   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5495   // the static linker to adjust permissions to read-only later on.
5496   else if (Triple.isOSBinFormatELF())
5497     GV->setSection(".rodata");
5498 
5499   // String.
5500   llvm::Constant *Str =
5501       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5502 
5503   if (isUTF16)
5504     // Cast the UTF16 string to the correct type.
5505     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5506   Fields.add(Str);
5507 
5508   // String length.
5509   llvm::IntegerType *LengthTy =
5510       llvm::IntegerType::get(getModule().getContext(),
5511                              Context.getTargetInfo().getLongWidth());
5512   if (IsSwiftABI) {
5513     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5514         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5515       LengthTy = Int32Ty;
5516     else
5517       LengthTy = IntPtrTy;
5518   }
5519   Fields.addInt(LengthTy, StringLength);
5520 
5521   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5522   // properly aligned on 32-bit platforms.
5523   CharUnits Alignment =
5524       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5525 
5526   // The struct.
5527   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5528                                     /*isConstant=*/false,
5529                                     llvm::GlobalVariable::PrivateLinkage);
5530   GV->addAttribute("objc_arc_inert");
5531   switch (Triple.getObjectFormat()) {
5532   case llvm::Triple::UnknownObjectFormat:
5533     llvm_unreachable("unknown file format");
5534   case llvm::Triple::DXContainer:
5535   case llvm::Triple::GOFF:
5536   case llvm::Triple::SPIRV:
5537   case llvm::Triple::XCOFF:
5538     llvm_unreachable("unimplemented");
5539   case llvm::Triple::COFF:
5540   case llvm::Triple::ELF:
5541   case llvm::Triple::Wasm:
5542     GV->setSection("cfstring");
5543     break;
5544   case llvm::Triple::MachO:
5545     GV->setSection("__DATA,__cfstring");
5546     break;
5547   }
5548   Entry.second = GV;
5549 
5550   return ConstantAddress(GV, GV->getValueType(), Alignment);
5551 }
5552 
5553 bool CodeGenModule::getExpressionLocationsEnabled() const {
5554   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5555 }
5556 
5557 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5558   if (ObjCFastEnumerationStateType.isNull()) {
5559     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5560     D->startDefinition();
5561 
5562     QualType FieldTypes[] = {
5563       Context.UnsignedLongTy,
5564       Context.getPointerType(Context.getObjCIdType()),
5565       Context.getPointerType(Context.UnsignedLongTy),
5566       Context.getConstantArrayType(Context.UnsignedLongTy,
5567                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5568     };
5569 
5570     for (size_t i = 0; i < 4; ++i) {
5571       FieldDecl *Field = FieldDecl::Create(Context,
5572                                            D,
5573                                            SourceLocation(),
5574                                            SourceLocation(), nullptr,
5575                                            FieldTypes[i], /*TInfo=*/nullptr,
5576                                            /*BitWidth=*/nullptr,
5577                                            /*Mutable=*/false,
5578                                            ICIS_NoInit);
5579       Field->setAccess(AS_public);
5580       D->addDecl(Field);
5581     }
5582 
5583     D->completeDefinition();
5584     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5585   }
5586 
5587   return ObjCFastEnumerationStateType;
5588 }
5589 
5590 llvm::Constant *
5591 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5592   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5593 
5594   // Don't emit it as the address of the string, emit the string data itself
5595   // as an inline array.
5596   if (E->getCharByteWidth() == 1) {
5597     SmallString<64> Str(E->getString());
5598 
5599     // Resize the string to the right size, which is indicated by its type.
5600     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5601     Str.resize(CAT->getSize().getZExtValue());
5602     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5603   }
5604 
5605   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5606   llvm::Type *ElemTy = AType->getElementType();
5607   unsigned NumElements = AType->getNumElements();
5608 
5609   // Wide strings have either 2-byte or 4-byte elements.
5610   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5611     SmallVector<uint16_t, 32> Elements;
5612     Elements.reserve(NumElements);
5613 
5614     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5615       Elements.push_back(E->getCodeUnit(i));
5616     Elements.resize(NumElements);
5617     return llvm::ConstantDataArray::get(VMContext, Elements);
5618   }
5619 
5620   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5621   SmallVector<uint32_t, 32> Elements;
5622   Elements.reserve(NumElements);
5623 
5624   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5625     Elements.push_back(E->getCodeUnit(i));
5626   Elements.resize(NumElements);
5627   return llvm::ConstantDataArray::get(VMContext, Elements);
5628 }
5629 
5630 static llvm::GlobalVariable *
5631 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5632                       CodeGenModule &CGM, StringRef GlobalName,
5633                       CharUnits Alignment) {
5634   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5635       CGM.GetGlobalConstantAddressSpace());
5636 
5637   llvm::Module &M = CGM.getModule();
5638   // Create a global variable for this string
5639   auto *GV = new llvm::GlobalVariable(
5640       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5641       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5642   GV->setAlignment(Alignment.getAsAlign());
5643   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5644   if (GV->isWeakForLinker()) {
5645     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5646     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5647   }
5648   CGM.setDSOLocal(GV);
5649 
5650   return GV;
5651 }
5652 
5653 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5654 /// constant array for the given string literal.
5655 ConstantAddress
5656 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5657                                                   StringRef Name) {
5658   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5659 
5660   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5661   llvm::GlobalVariable **Entry = nullptr;
5662   if (!LangOpts.WritableStrings) {
5663     Entry = &ConstantStringMap[C];
5664     if (auto GV = *Entry) {
5665       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5666         GV->setAlignment(Alignment.getAsAlign());
5667       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5668                              GV->getValueType(), Alignment);
5669     }
5670   }
5671 
5672   SmallString<256> MangledNameBuffer;
5673   StringRef GlobalVariableName;
5674   llvm::GlobalValue::LinkageTypes LT;
5675 
5676   // Mangle the string literal if that's how the ABI merges duplicate strings.
5677   // Don't do it if they are writable, since we don't want writes in one TU to
5678   // affect strings in another.
5679   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5680       !LangOpts.WritableStrings) {
5681     llvm::raw_svector_ostream Out(MangledNameBuffer);
5682     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5683     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5684     GlobalVariableName = MangledNameBuffer;
5685   } else {
5686     LT = llvm::GlobalValue::PrivateLinkage;
5687     GlobalVariableName = Name;
5688   }
5689 
5690   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5691 
5692   CGDebugInfo *DI = getModuleDebugInfo();
5693   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5694     DI->AddStringLiteralDebugInfo(GV, S);
5695 
5696   if (Entry)
5697     *Entry = GV;
5698 
5699   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5700                                   QualType());
5701 
5702   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5703                          GV->getValueType(), Alignment);
5704 }
5705 
5706 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5707 /// array for the given ObjCEncodeExpr node.
5708 ConstantAddress
5709 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5710   std::string Str;
5711   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5712 
5713   return GetAddrOfConstantCString(Str);
5714 }
5715 
5716 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5717 /// the literal and a terminating '\0' character.
5718 /// The result has pointer to array type.
5719 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5720     const std::string &Str, const char *GlobalName) {
5721   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5722   CharUnits Alignment =
5723     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5724 
5725   llvm::Constant *C =
5726       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5727 
5728   // Don't share any string literals if strings aren't constant.
5729   llvm::GlobalVariable **Entry = nullptr;
5730   if (!LangOpts.WritableStrings) {
5731     Entry = &ConstantStringMap[C];
5732     if (auto GV = *Entry) {
5733       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5734         GV->setAlignment(Alignment.getAsAlign());
5735       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5736                              GV->getValueType(), Alignment);
5737     }
5738   }
5739 
5740   // Get the default prefix if a name wasn't specified.
5741   if (!GlobalName)
5742     GlobalName = ".str";
5743   // Create a global variable for this.
5744   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5745                                   GlobalName, Alignment);
5746   if (Entry)
5747     *Entry = GV;
5748 
5749   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5750                          GV->getValueType(), Alignment);
5751 }
5752 
5753 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5754     const MaterializeTemporaryExpr *E, const Expr *Init) {
5755   assert((E->getStorageDuration() == SD_Static ||
5756           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5757   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5758 
5759   // If we're not materializing a subobject of the temporary, keep the
5760   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5761   QualType MaterializedType = Init->getType();
5762   if (Init == E->getSubExpr())
5763     MaterializedType = E->getType();
5764 
5765   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5766 
5767   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5768   if (!InsertResult.second) {
5769     // We've seen this before: either we already created it or we're in the
5770     // process of doing so.
5771     if (!InsertResult.first->second) {
5772       // We recursively re-entered this function, probably during emission of
5773       // the initializer. Create a placeholder. We'll clean this up in the
5774       // outer call, at the end of this function.
5775       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5776       InsertResult.first->second = new llvm::GlobalVariable(
5777           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5778           nullptr);
5779     }
5780     return ConstantAddress(InsertResult.first->second,
5781                            llvm::cast<llvm::GlobalVariable>(
5782                                InsertResult.first->second->stripPointerCasts())
5783                                ->getValueType(),
5784                            Align);
5785   }
5786 
5787   // FIXME: If an externally-visible declaration extends multiple temporaries,
5788   // we need to give each temporary the same name in every translation unit (and
5789   // we also need to make the temporaries externally-visible).
5790   SmallString<256> Name;
5791   llvm::raw_svector_ostream Out(Name);
5792   getCXXABI().getMangleContext().mangleReferenceTemporary(
5793       VD, E->getManglingNumber(), Out);
5794 
5795   APValue *Value = nullptr;
5796   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5797     // If the initializer of the extending declaration is a constant
5798     // initializer, we should have a cached constant initializer for this
5799     // temporary. Note that this might have a different value from the value
5800     // computed by evaluating the initializer if the surrounding constant
5801     // expression modifies the temporary.
5802     Value = E->getOrCreateValue(false);
5803   }
5804 
5805   // Try evaluating it now, it might have a constant initializer.
5806   Expr::EvalResult EvalResult;
5807   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5808       !EvalResult.hasSideEffects())
5809     Value = &EvalResult.Val;
5810 
5811   LangAS AddrSpace =
5812       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5813 
5814   Optional<ConstantEmitter> emitter;
5815   llvm::Constant *InitialValue = nullptr;
5816   bool Constant = false;
5817   llvm::Type *Type;
5818   if (Value) {
5819     // The temporary has a constant initializer, use it.
5820     emitter.emplace(*this);
5821     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5822                                                MaterializedType);
5823     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5824     Type = InitialValue->getType();
5825   } else {
5826     // No initializer, the initialization will be provided when we
5827     // initialize the declaration which performed lifetime extension.
5828     Type = getTypes().ConvertTypeForMem(MaterializedType);
5829   }
5830 
5831   // Create a global variable for this lifetime-extended temporary.
5832   llvm::GlobalValue::LinkageTypes Linkage =
5833       getLLVMLinkageVarDefinition(VD, Constant);
5834   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5835     const VarDecl *InitVD;
5836     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5837         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5838       // Temporaries defined inside a class get linkonce_odr linkage because the
5839       // class can be defined in multiple translation units.
5840       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5841     } else {
5842       // There is no need for this temporary to have external linkage if the
5843       // VarDecl has external linkage.
5844       Linkage = llvm::GlobalVariable::InternalLinkage;
5845     }
5846   }
5847   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5848   auto *GV = new llvm::GlobalVariable(
5849       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5850       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5851   if (emitter) emitter->finalize(GV);
5852   setGVProperties(GV, VD);
5853   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5854     // The reference temporary should never be dllexport.
5855     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5856   GV->setAlignment(Align.getAsAlign());
5857   if (supportsCOMDAT() && GV->isWeakForLinker())
5858     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5859   if (VD->getTLSKind())
5860     setTLSMode(GV, *VD);
5861   llvm::Constant *CV = GV;
5862   if (AddrSpace != LangAS::Default)
5863     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5864         *this, GV, AddrSpace, LangAS::Default,
5865         Type->getPointerTo(
5866             getContext().getTargetAddressSpace(LangAS::Default)));
5867 
5868   // Update the map with the new temporary. If we created a placeholder above,
5869   // replace it with the new global now.
5870   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5871   if (Entry) {
5872     Entry->replaceAllUsesWith(
5873         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5874     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5875   }
5876   Entry = CV;
5877 
5878   return ConstantAddress(CV, Type, Align);
5879 }
5880 
5881 /// EmitObjCPropertyImplementations - Emit information for synthesized
5882 /// properties for an implementation.
5883 void CodeGenModule::EmitObjCPropertyImplementations(const
5884                                                     ObjCImplementationDecl *D) {
5885   for (const auto *PID : D->property_impls()) {
5886     // Dynamic is just for type-checking.
5887     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5888       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5889 
5890       // Determine which methods need to be implemented, some may have
5891       // been overridden. Note that ::isPropertyAccessor is not the method
5892       // we want, that just indicates if the decl came from a
5893       // property. What we want to know is if the method is defined in
5894       // this implementation.
5895       auto *Getter = PID->getGetterMethodDecl();
5896       if (!Getter || Getter->isSynthesizedAccessorStub())
5897         CodeGenFunction(*this).GenerateObjCGetter(
5898             const_cast<ObjCImplementationDecl *>(D), PID);
5899       auto *Setter = PID->getSetterMethodDecl();
5900       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5901         CodeGenFunction(*this).GenerateObjCSetter(
5902                                  const_cast<ObjCImplementationDecl *>(D), PID);
5903     }
5904   }
5905 }
5906 
5907 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5908   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5909   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5910        ivar; ivar = ivar->getNextIvar())
5911     if (ivar->getType().isDestructedType())
5912       return true;
5913 
5914   return false;
5915 }
5916 
5917 static bool AllTrivialInitializers(CodeGenModule &CGM,
5918                                    ObjCImplementationDecl *D) {
5919   CodeGenFunction CGF(CGM);
5920   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5921        E = D->init_end(); B != E; ++B) {
5922     CXXCtorInitializer *CtorInitExp = *B;
5923     Expr *Init = CtorInitExp->getInit();
5924     if (!CGF.isTrivialInitializer(Init))
5925       return false;
5926   }
5927   return true;
5928 }
5929 
5930 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5931 /// for an implementation.
5932 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5933   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5934   if (needsDestructMethod(D)) {
5935     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5936     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5937     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5938         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5939         getContext().VoidTy, nullptr, D,
5940         /*isInstance=*/true, /*isVariadic=*/false,
5941         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5942         /*isImplicitlyDeclared=*/true,
5943         /*isDefined=*/false, ObjCMethodDecl::Required);
5944     D->addInstanceMethod(DTORMethod);
5945     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5946     D->setHasDestructors(true);
5947   }
5948 
5949   // If the implementation doesn't have any ivar initializers, we don't need
5950   // a .cxx_construct.
5951   if (D->getNumIvarInitializers() == 0 ||
5952       AllTrivialInitializers(*this, D))
5953     return;
5954 
5955   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5956   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5957   // The constructor returns 'self'.
5958   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5959       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5960       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5961       /*isVariadic=*/false,
5962       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5963       /*isImplicitlyDeclared=*/true,
5964       /*isDefined=*/false, ObjCMethodDecl::Required);
5965   D->addInstanceMethod(CTORMethod);
5966   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5967   D->setHasNonZeroConstructors(true);
5968 }
5969 
5970 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5971 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5972   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5973       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5974     ErrorUnsupported(LSD, "linkage spec");
5975     return;
5976   }
5977 
5978   EmitDeclContext(LSD);
5979 }
5980 
5981 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5982   for (auto *I : DC->decls()) {
5983     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5984     // are themselves considered "top-level", so EmitTopLevelDecl on an
5985     // ObjCImplDecl does not recursively visit them. We need to do that in
5986     // case they're nested inside another construct (LinkageSpecDecl /
5987     // ExportDecl) that does stop them from being considered "top-level".
5988     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5989       for (auto *M : OID->methods())
5990         EmitTopLevelDecl(M);
5991     }
5992 
5993     EmitTopLevelDecl(I);
5994   }
5995 }
5996 
5997 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5998 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5999   // Ignore dependent declarations.
6000   if (D->isTemplated())
6001     return;
6002 
6003   // Consteval function shouldn't be emitted.
6004   if (auto *FD = dyn_cast<FunctionDecl>(D))
6005     if (FD->isConsteval())
6006       return;
6007 
6008   switch (D->getKind()) {
6009   case Decl::CXXConversion:
6010   case Decl::CXXMethod:
6011   case Decl::Function:
6012     EmitGlobal(cast<FunctionDecl>(D));
6013     // Always provide some coverage mapping
6014     // even for the functions that aren't emitted.
6015     AddDeferredUnusedCoverageMapping(D);
6016     break;
6017 
6018   case Decl::CXXDeductionGuide:
6019     // Function-like, but does not result in code emission.
6020     break;
6021 
6022   case Decl::Var:
6023   case Decl::Decomposition:
6024   case Decl::VarTemplateSpecialization:
6025     EmitGlobal(cast<VarDecl>(D));
6026     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6027       for (auto *B : DD->bindings())
6028         if (auto *HD = B->getHoldingVar())
6029           EmitGlobal(HD);
6030     break;
6031 
6032   // Indirect fields from global anonymous structs and unions can be
6033   // ignored; only the actual variable requires IR gen support.
6034   case Decl::IndirectField:
6035     break;
6036 
6037   // C++ Decls
6038   case Decl::Namespace:
6039     EmitDeclContext(cast<NamespaceDecl>(D));
6040     break;
6041   case Decl::ClassTemplateSpecialization: {
6042     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6043     if (CGDebugInfo *DI = getModuleDebugInfo())
6044       if (Spec->getSpecializationKind() ==
6045               TSK_ExplicitInstantiationDefinition &&
6046           Spec->hasDefinition())
6047         DI->completeTemplateDefinition(*Spec);
6048   } LLVM_FALLTHROUGH;
6049   case Decl::CXXRecord: {
6050     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6051     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6052       if (CRD->hasDefinition())
6053         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6054       if (auto *ES = D->getASTContext().getExternalSource())
6055         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6056           DI->completeUnusedClass(*CRD);
6057     }
6058     // Emit any static data members, they may be definitions.
6059     for (auto *I : CRD->decls())
6060       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6061         EmitTopLevelDecl(I);
6062     break;
6063   }
6064     // No code generation needed.
6065   case Decl::UsingShadow:
6066   case Decl::ClassTemplate:
6067   case Decl::VarTemplate:
6068   case Decl::Concept:
6069   case Decl::VarTemplatePartialSpecialization:
6070   case Decl::FunctionTemplate:
6071   case Decl::TypeAliasTemplate:
6072   case Decl::Block:
6073   case Decl::Empty:
6074   case Decl::Binding:
6075     break;
6076   case Decl::Using:          // using X; [C++]
6077     if (CGDebugInfo *DI = getModuleDebugInfo())
6078         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6079     break;
6080   case Decl::UsingEnum: // using enum X; [C++]
6081     if (CGDebugInfo *DI = getModuleDebugInfo())
6082       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6083     break;
6084   case Decl::NamespaceAlias:
6085     if (CGDebugInfo *DI = getModuleDebugInfo())
6086         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6087     break;
6088   case Decl::UsingDirective: // using namespace X; [C++]
6089     if (CGDebugInfo *DI = getModuleDebugInfo())
6090       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6091     break;
6092   case Decl::CXXConstructor:
6093     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6094     break;
6095   case Decl::CXXDestructor:
6096     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6097     break;
6098 
6099   case Decl::StaticAssert:
6100     // Nothing to do.
6101     break;
6102 
6103   // Objective-C Decls
6104 
6105   // Forward declarations, no (immediate) code generation.
6106   case Decl::ObjCInterface:
6107   case Decl::ObjCCategory:
6108     break;
6109 
6110   case Decl::ObjCProtocol: {
6111     auto *Proto = cast<ObjCProtocolDecl>(D);
6112     if (Proto->isThisDeclarationADefinition())
6113       ObjCRuntime->GenerateProtocol(Proto);
6114     break;
6115   }
6116 
6117   case Decl::ObjCCategoryImpl:
6118     // Categories have properties but don't support synthesize so we
6119     // can ignore them here.
6120     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6121     break;
6122 
6123   case Decl::ObjCImplementation: {
6124     auto *OMD = cast<ObjCImplementationDecl>(D);
6125     EmitObjCPropertyImplementations(OMD);
6126     EmitObjCIvarInitializations(OMD);
6127     ObjCRuntime->GenerateClass(OMD);
6128     // Emit global variable debug information.
6129     if (CGDebugInfo *DI = getModuleDebugInfo())
6130       if (getCodeGenOpts().hasReducedDebugInfo())
6131         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6132             OMD->getClassInterface()), OMD->getLocation());
6133     break;
6134   }
6135   case Decl::ObjCMethod: {
6136     auto *OMD = cast<ObjCMethodDecl>(D);
6137     // If this is not a prototype, emit the body.
6138     if (OMD->getBody())
6139       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6140     break;
6141   }
6142   case Decl::ObjCCompatibleAlias:
6143     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6144     break;
6145 
6146   case Decl::PragmaComment: {
6147     const auto *PCD = cast<PragmaCommentDecl>(D);
6148     switch (PCD->getCommentKind()) {
6149     case PCK_Unknown:
6150       llvm_unreachable("unexpected pragma comment kind");
6151     case PCK_Linker:
6152       AppendLinkerOptions(PCD->getArg());
6153       break;
6154     case PCK_Lib:
6155         AddDependentLib(PCD->getArg());
6156       break;
6157     case PCK_Compiler:
6158     case PCK_ExeStr:
6159     case PCK_User:
6160       break; // We ignore all of these.
6161     }
6162     break;
6163   }
6164 
6165   case Decl::PragmaDetectMismatch: {
6166     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6167     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6168     break;
6169   }
6170 
6171   case Decl::LinkageSpec:
6172     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6173     break;
6174 
6175   case Decl::FileScopeAsm: {
6176     // File-scope asm is ignored during device-side CUDA compilation.
6177     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6178       break;
6179     // File-scope asm is ignored during device-side OpenMP compilation.
6180     if (LangOpts.OpenMPIsDevice)
6181       break;
6182     // File-scope asm is ignored during device-side SYCL compilation.
6183     if (LangOpts.SYCLIsDevice)
6184       break;
6185     auto *AD = cast<FileScopeAsmDecl>(D);
6186     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6187     break;
6188   }
6189 
6190   case Decl::Import: {
6191     auto *Import = cast<ImportDecl>(D);
6192 
6193     // If we've already imported this module, we're done.
6194     if (!ImportedModules.insert(Import->getImportedModule()))
6195       break;
6196 
6197     // Emit debug information for direct imports.
6198     if (!Import->getImportedOwningModule()) {
6199       if (CGDebugInfo *DI = getModuleDebugInfo())
6200         DI->EmitImportDecl(*Import);
6201     }
6202 
6203     // Find all of the submodules and emit the module initializers.
6204     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6205     SmallVector<clang::Module *, 16> Stack;
6206     Visited.insert(Import->getImportedModule());
6207     Stack.push_back(Import->getImportedModule());
6208 
6209     while (!Stack.empty()) {
6210       clang::Module *Mod = Stack.pop_back_val();
6211       if (!EmittedModuleInitializers.insert(Mod).second)
6212         continue;
6213 
6214       for (auto *D : Context.getModuleInitializers(Mod))
6215         EmitTopLevelDecl(D);
6216 
6217       // Visit the submodules of this module.
6218       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6219                                              SubEnd = Mod->submodule_end();
6220            Sub != SubEnd; ++Sub) {
6221         // Skip explicit children; they need to be explicitly imported to emit
6222         // the initializers.
6223         if ((*Sub)->IsExplicit)
6224           continue;
6225 
6226         if (Visited.insert(*Sub).second)
6227           Stack.push_back(*Sub);
6228       }
6229     }
6230     break;
6231   }
6232 
6233   case Decl::Export:
6234     EmitDeclContext(cast<ExportDecl>(D));
6235     break;
6236 
6237   case Decl::OMPThreadPrivate:
6238     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6239     break;
6240 
6241   case Decl::OMPAllocate:
6242     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6243     break;
6244 
6245   case Decl::OMPDeclareReduction:
6246     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6247     break;
6248 
6249   case Decl::OMPDeclareMapper:
6250     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6251     break;
6252 
6253   case Decl::OMPRequires:
6254     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6255     break;
6256 
6257   case Decl::Typedef:
6258   case Decl::TypeAlias: // using foo = bar; [C++11]
6259     if (CGDebugInfo *DI = getModuleDebugInfo())
6260       DI->EmitAndRetainType(
6261           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6262     break;
6263 
6264   case Decl::Record:
6265     if (CGDebugInfo *DI = getModuleDebugInfo())
6266       if (cast<RecordDecl>(D)->getDefinition())
6267         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6268     break;
6269 
6270   case Decl::Enum:
6271     if (CGDebugInfo *DI = getModuleDebugInfo())
6272       if (cast<EnumDecl>(D)->getDefinition())
6273         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6274     break;
6275 
6276   default:
6277     // Make sure we handled everything we should, every other kind is a
6278     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6279     // function. Need to recode Decl::Kind to do that easily.
6280     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6281     break;
6282   }
6283 }
6284 
6285 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6286   // Do we need to generate coverage mapping?
6287   if (!CodeGenOpts.CoverageMapping)
6288     return;
6289   switch (D->getKind()) {
6290   case Decl::CXXConversion:
6291   case Decl::CXXMethod:
6292   case Decl::Function:
6293   case Decl::ObjCMethod:
6294   case Decl::CXXConstructor:
6295   case Decl::CXXDestructor: {
6296     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6297       break;
6298     SourceManager &SM = getContext().getSourceManager();
6299     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6300       break;
6301     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6302     if (I == DeferredEmptyCoverageMappingDecls.end())
6303       DeferredEmptyCoverageMappingDecls[D] = true;
6304     break;
6305   }
6306   default:
6307     break;
6308   };
6309 }
6310 
6311 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6312   // Do we need to generate coverage mapping?
6313   if (!CodeGenOpts.CoverageMapping)
6314     return;
6315   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6316     if (Fn->isTemplateInstantiation())
6317       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6318   }
6319   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6320   if (I == DeferredEmptyCoverageMappingDecls.end())
6321     DeferredEmptyCoverageMappingDecls[D] = false;
6322   else
6323     I->second = false;
6324 }
6325 
6326 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6327   // We call takeVector() here to avoid use-after-free.
6328   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6329   // we deserialize function bodies to emit coverage info for them, and that
6330   // deserializes more declarations. How should we handle that case?
6331   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6332     if (!Entry.second)
6333       continue;
6334     const Decl *D = Entry.first;
6335     switch (D->getKind()) {
6336     case Decl::CXXConversion:
6337     case Decl::CXXMethod:
6338     case Decl::Function:
6339     case Decl::ObjCMethod: {
6340       CodeGenPGO PGO(*this);
6341       GlobalDecl GD(cast<FunctionDecl>(D));
6342       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6343                                   getFunctionLinkage(GD));
6344       break;
6345     }
6346     case Decl::CXXConstructor: {
6347       CodeGenPGO PGO(*this);
6348       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6349       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6350                                   getFunctionLinkage(GD));
6351       break;
6352     }
6353     case Decl::CXXDestructor: {
6354       CodeGenPGO PGO(*this);
6355       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6356       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6357                                   getFunctionLinkage(GD));
6358       break;
6359     }
6360     default:
6361       break;
6362     };
6363   }
6364 }
6365 
6366 void CodeGenModule::EmitMainVoidAlias() {
6367   // In order to transition away from "__original_main" gracefully, emit an
6368   // alias for "main" in the no-argument case so that libc can detect when
6369   // new-style no-argument main is in used.
6370   if (llvm::Function *F = getModule().getFunction("main")) {
6371     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6372         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6373       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6374   }
6375 }
6376 
6377 /// Turns the given pointer into a constant.
6378 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6379                                           const void *Ptr) {
6380   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6381   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6382   return llvm::ConstantInt::get(i64, PtrInt);
6383 }
6384 
6385 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6386                                    llvm::NamedMDNode *&GlobalMetadata,
6387                                    GlobalDecl D,
6388                                    llvm::GlobalValue *Addr) {
6389   if (!GlobalMetadata)
6390     GlobalMetadata =
6391       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6392 
6393   // TODO: should we report variant information for ctors/dtors?
6394   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6395                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6396                                CGM.getLLVMContext(), D.getDecl()))};
6397   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6398 }
6399 
6400 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6401                                                  llvm::GlobalValue *CppFunc) {
6402   // Store the list of ifuncs we need to replace uses in.
6403   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6404   // List of ConstantExprs that we should be able to delete when we're done
6405   // here.
6406   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6407 
6408   // First make sure that all users of this are ifuncs (or ifuncs via a
6409   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6410   // later.
6411   for (llvm::User *User : Elem->users()) {
6412     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6413     // ifunc directly. In any other case, just give up, as we don't know what we
6414     // could break by changing those.
6415     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6416       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6417         return false;
6418 
6419       for (llvm::User *CEUser : ConstExpr->users()) {
6420         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6421           IFuncs.push_back(IFunc);
6422         } else {
6423           return false;
6424         }
6425       }
6426       CEs.push_back(ConstExpr);
6427     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6428       IFuncs.push_back(IFunc);
6429     } else {
6430       // This user is one we don't know how to handle, so fail redirection. This
6431       // will result in an ifunc retaining a resolver name that will ultimately
6432       // fail to be resolved to a defined function.
6433       return false;
6434     }
6435   }
6436 
6437   // Now we know this is a valid case where we can do this alias replacement, we
6438   // need to remove all of the references to Elem (and the bitcasts!) so we can
6439   // delete it.
6440   for (llvm::GlobalIFunc *IFunc : IFuncs)
6441     IFunc->setResolver(nullptr);
6442   for (llvm::ConstantExpr *ConstExpr : CEs)
6443     ConstExpr->destroyConstant();
6444 
6445   // We should now be out of uses for the 'old' version of this function, so we
6446   // can erase it as well.
6447   Elem->eraseFromParent();
6448 
6449   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6450     // The type of the resolver is always just a function-type that returns the
6451     // type of the IFunc, so create that here. If the type of the actual
6452     // resolver doesn't match, it just gets bitcast to the right thing.
6453     auto *ResolverTy =
6454         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6455     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6456         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6457     IFunc->setResolver(Resolver);
6458   }
6459   return true;
6460 }
6461 
6462 /// For each function which is declared within an extern "C" region and marked
6463 /// as 'used', but has internal linkage, create an alias from the unmangled
6464 /// name to the mangled name if possible. People expect to be able to refer
6465 /// to such functions with an unmangled name from inline assembly within the
6466 /// same translation unit.
6467 void CodeGenModule::EmitStaticExternCAliases() {
6468   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6469     return;
6470   for (auto &I : StaticExternCValues) {
6471     IdentifierInfo *Name = I.first;
6472     llvm::GlobalValue *Val = I.second;
6473 
6474     // If Val is null, that implies there were multiple declarations that each
6475     // had a claim to the unmangled name. In this case, generation of the alias
6476     // is suppressed. See CodeGenModule::MaybeHandleStaticInExterC.
6477     if (!Val)
6478       break;
6479 
6480     llvm::GlobalValue *ExistingElem =
6481         getModule().getNamedValue(Name->getName());
6482 
6483     // If there is either not something already by this name, or we were able to
6484     // replace all uses from IFuncs, create the alias.
6485     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6486       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6487   }
6488 }
6489 
6490 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6491                                              GlobalDecl &Result) const {
6492   auto Res = Manglings.find(MangledName);
6493   if (Res == Manglings.end())
6494     return false;
6495   Result = Res->getValue();
6496   return true;
6497 }
6498 
6499 /// Emits metadata nodes associating all the global values in the
6500 /// current module with the Decls they came from.  This is useful for
6501 /// projects using IR gen as a subroutine.
6502 ///
6503 /// Since there's currently no way to associate an MDNode directly
6504 /// with an llvm::GlobalValue, we create a global named metadata
6505 /// with the name 'clang.global.decl.ptrs'.
6506 void CodeGenModule::EmitDeclMetadata() {
6507   llvm::NamedMDNode *GlobalMetadata = nullptr;
6508 
6509   for (auto &I : MangledDeclNames) {
6510     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6511     // Some mangled names don't necessarily have an associated GlobalValue
6512     // in this module, e.g. if we mangled it for DebugInfo.
6513     if (Addr)
6514       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6515   }
6516 }
6517 
6518 /// Emits metadata nodes for all the local variables in the current
6519 /// function.
6520 void CodeGenFunction::EmitDeclMetadata() {
6521   if (LocalDeclMap.empty()) return;
6522 
6523   llvm::LLVMContext &Context = getLLVMContext();
6524 
6525   // Find the unique metadata ID for this name.
6526   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6527 
6528   llvm::NamedMDNode *GlobalMetadata = nullptr;
6529 
6530   for (auto &I : LocalDeclMap) {
6531     const Decl *D = I.first;
6532     llvm::Value *Addr = I.second.getPointer();
6533     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6534       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6535       Alloca->setMetadata(
6536           DeclPtrKind, llvm::MDNode::get(
6537                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6538     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6539       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6540       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6541     }
6542   }
6543 }
6544 
6545 void CodeGenModule::EmitVersionIdentMetadata() {
6546   llvm::NamedMDNode *IdentMetadata =
6547     TheModule.getOrInsertNamedMetadata("llvm.ident");
6548   std::string Version = getClangFullVersion();
6549   llvm::LLVMContext &Ctx = TheModule.getContext();
6550 
6551   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6552   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6553 }
6554 
6555 void CodeGenModule::EmitCommandLineMetadata() {
6556   llvm::NamedMDNode *CommandLineMetadata =
6557     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6558   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6559   llvm::LLVMContext &Ctx = TheModule.getContext();
6560 
6561   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6562   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6563 }
6564 
6565 void CodeGenModule::EmitCoverageFile() {
6566   if (getCodeGenOpts().CoverageDataFile.empty() &&
6567       getCodeGenOpts().CoverageNotesFile.empty())
6568     return;
6569 
6570   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6571   if (!CUNode)
6572     return;
6573 
6574   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6575   llvm::LLVMContext &Ctx = TheModule.getContext();
6576   auto *CoverageDataFile =
6577       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6578   auto *CoverageNotesFile =
6579       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6580   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6581     llvm::MDNode *CU = CUNode->getOperand(i);
6582     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6583     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6584   }
6585 }
6586 
6587 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6588                                                        bool ForEH) {
6589   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6590   // FIXME: should we even be calling this method if RTTI is disabled
6591   // and it's not for EH?
6592   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6593       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6594        getTriple().isNVPTX()))
6595     return llvm::Constant::getNullValue(Int8PtrTy);
6596 
6597   if (ForEH && Ty->isObjCObjectPointerType() &&
6598       LangOpts.ObjCRuntime.isGNUFamily())
6599     return ObjCRuntime->GetEHType(Ty);
6600 
6601   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6602 }
6603 
6604 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6605   // Do not emit threadprivates in simd-only mode.
6606   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6607     return;
6608   for (auto RefExpr : D->varlists()) {
6609     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6610     bool PerformInit =
6611         VD->getAnyInitializer() &&
6612         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6613                                                         /*ForRef=*/false);
6614 
6615     Address Addr(GetAddrOfGlobalVar(VD),
6616                  getTypes().ConvertTypeForMem(VD->getType()),
6617                  getContext().getDeclAlign(VD));
6618     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6619             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6620       CXXGlobalInits.push_back(InitFunction);
6621   }
6622 }
6623 
6624 llvm::Metadata *
6625 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6626                                             StringRef Suffix) {
6627   if (auto *FnType = T->getAs<FunctionProtoType>())
6628     T = getContext().getFunctionType(
6629         FnType->getReturnType(), FnType->getParamTypes(),
6630         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6631 
6632   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6633   if (InternalId)
6634     return InternalId;
6635 
6636   if (isExternallyVisible(T->getLinkage())) {
6637     std::string OutName;
6638     llvm::raw_string_ostream Out(OutName);
6639     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6640     Out << Suffix;
6641 
6642     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6643   } else {
6644     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6645                                            llvm::ArrayRef<llvm::Metadata *>());
6646   }
6647 
6648   return InternalId;
6649 }
6650 
6651 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6652   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6653 }
6654 
6655 llvm::Metadata *
6656 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6657   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6658 }
6659 
6660 // Generalize pointer types to a void pointer with the qualifiers of the
6661 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6662 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6663 // 'void *'.
6664 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6665   if (!Ty->isPointerType())
6666     return Ty;
6667 
6668   return Ctx.getPointerType(
6669       QualType(Ctx.VoidTy).withCVRQualifiers(
6670           Ty->getPointeeType().getCVRQualifiers()));
6671 }
6672 
6673 // Apply type generalization to a FunctionType's return and argument types
6674 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6675   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6676     SmallVector<QualType, 8> GeneralizedParams;
6677     for (auto &Param : FnType->param_types())
6678       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6679 
6680     return Ctx.getFunctionType(
6681         GeneralizeType(Ctx, FnType->getReturnType()),
6682         GeneralizedParams, FnType->getExtProtoInfo());
6683   }
6684 
6685   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6686     return Ctx.getFunctionNoProtoType(
6687         GeneralizeType(Ctx, FnType->getReturnType()));
6688 
6689   llvm_unreachable("Encountered unknown FunctionType");
6690 }
6691 
6692 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6693   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6694                                       GeneralizedMetadataIdMap, ".generalized");
6695 }
6696 
6697 /// Returns whether this module needs the "all-vtables" type identifier.
6698 bool CodeGenModule::NeedAllVtablesTypeId() const {
6699   // Returns true if at least one of vtable-based CFI checkers is enabled and
6700   // is not in the trapping mode.
6701   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6702            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6703           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6704            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6705           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6706            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6707           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6708            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6709 }
6710 
6711 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6712                                           CharUnits Offset,
6713                                           const CXXRecordDecl *RD) {
6714   llvm::Metadata *MD =
6715       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6716   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6717 
6718   if (CodeGenOpts.SanitizeCfiCrossDso)
6719     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6720       VTable->addTypeMetadata(Offset.getQuantity(),
6721                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6722 
6723   if (NeedAllVtablesTypeId()) {
6724     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6725     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6726   }
6727 }
6728 
6729 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6730   if (!SanStats)
6731     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6732 
6733   return *SanStats;
6734 }
6735 
6736 llvm::Value *
6737 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6738                                                   CodeGenFunction &CGF) {
6739   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6740   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6741   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6742   auto *Call = CGF.EmitRuntimeCall(
6743       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6744   return Call;
6745 }
6746 
6747 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6748     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6749   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6750                                  /* forPointeeType= */ true);
6751 }
6752 
6753 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6754                                                  LValueBaseInfo *BaseInfo,
6755                                                  TBAAAccessInfo *TBAAInfo,
6756                                                  bool forPointeeType) {
6757   if (TBAAInfo)
6758     *TBAAInfo = getTBAAAccessInfo(T);
6759 
6760   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6761   // that doesn't return the information we need to compute BaseInfo.
6762 
6763   // Honor alignment typedef attributes even on incomplete types.
6764   // We also honor them straight for C++ class types, even as pointees;
6765   // there's an expressivity gap here.
6766   if (auto TT = T->getAs<TypedefType>()) {
6767     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6768       if (BaseInfo)
6769         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6770       return getContext().toCharUnitsFromBits(Align);
6771     }
6772   }
6773 
6774   bool AlignForArray = T->isArrayType();
6775 
6776   // Analyze the base element type, so we don't get confused by incomplete
6777   // array types.
6778   T = getContext().getBaseElementType(T);
6779 
6780   if (T->isIncompleteType()) {
6781     // We could try to replicate the logic from
6782     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6783     // type is incomplete, so it's impossible to test. We could try to reuse
6784     // getTypeAlignIfKnown, but that doesn't return the information we need
6785     // to set BaseInfo.  So just ignore the possibility that the alignment is
6786     // greater than one.
6787     if (BaseInfo)
6788       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6789     return CharUnits::One();
6790   }
6791 
6792   if (BaseInfo)
6793     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6794 
6795   CharUnits Alignment;
6796   const CXXRecordDecl *RD;
6797   if (T.getQualifiers().hasUnaligned()) {
6798     Alignment = CharUnits::One();
6799   } else if (forPointeeType && !AlignForArray &&
6800              (RD = T->getAsCXXRecordDecl())) {
6801     // For C++ class pointees, we don't know whether we're pointing at a
6802     // base or a complete object, so we generally need to use the
6803     // non-virtual alignment.
6804     Alignment = getClassPointerAlignment(RD);
6805   } else {
6806     Alignment = getContext().getTypeAlignInChars(T);
6807   }
6808 
6809   // Cap to the global maximum type alignment unless the alignment
6810   // was somehow explicit on the type.
6811   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6812     if (Alignment.getQuantity() > MaxAlign &&
6813         !getContext().isAlignmentRequired(T))
6814       Alignment = CharUnits::fromQuantity(MaxAlign);
6815   }
6816   return Alignment;
6817 }
6818 
6819 bool CodeGenModule::stopAutoInit() {
6820   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6821   if (StopAfter) {
6822     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6823     // used
6824     if (NumAutoVarInit >= StopAfter) {
6825       return true;
6826     }
6827     if (!NumAutoVarInit) {
6828       unsigned DiagID = getDiags().getCustomDiagID(
6829           DiagnosticsEngine::Warning,
6830           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6831           "number of times ftrivial-auto-var-init=%1 gets applied.");
6832       getDiags().Report(DiagID)
6833           << StopAfter
6834           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6835                       LangOptions::TrivialAutoVarInitKind::Zero
6836                   ? "zero"
6837                   : "pattern");
6838     }
6839     ++NumAutoVarInit;
6840   }
6841   return false;
6842 }
6843 
6844 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6845                                                     const Decl *D) const {
6846   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6847   // postfix beginning with '.' since the symbol name can be demangled.
6848   if (LangOpts.HIP)
6849     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
6850   else
6851     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
6852 
6853   // If the CUID is not specified we try to generate a unique postfix.
6854   if (getLangOpts().CUID.empty()) {
6855     SourceManager &SM = getContext().getSourceManager();
6856     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
6857     assert(PLoc.isValid() && "Source location is expected to be valid.");
6858 
6859     // Get the hash of the user defined macros.
6860     llvm::MD5 Hash;
6861     llvm::MD5::MD5Result Result;
6862     for (const auto &Arg : PreprocessorOpts.Macros)
6863       Hash.update(Arg.first);
6864     Hash.final(Result);
6865 
6866     // Get the UniqueID for the file containing the decl.
6867     llvm::sys::fs::UniqueID ID;
6868     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
6869       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
6870       assert(PLoc.isValid() && "Source location is expected to be valid.");
6871       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
6872         SM.getDiagnostics().Report(diag::err_cannot_open_file)
6873             << PLoc.getFilename() << EC.message();
6874     }
6875     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
6876        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
6877   } else {
6878     OS << getContext().getCUIDHash();
6879   }
6880 }
6881