1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 } 184 185 CodeGenModule::~CodeGenModule() {} 186 187 void CodeGenModule::createObjCRuntime() { 188 // This is just isGNUFamily(), but we want to force implementors of 189 // new ABIs to decide how best to do this. 190 switch (LangOpts.ObjCRuntime.getKind()) { 191 case ObjCRuntime::GNUstep: 192 case ObjCRuntime::GCC: 193 case ObjCRuntime::ObjFW: 194 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 195 return; 196 197 case ObjCRuntime::FragileMacOSX: 198 case ObjCRuntime::MacOSX: 199 case ObjCRuntime::iOS: 200 case ObjCRuntime::WatchOS: 201 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 202 return; 203 } 204 llvm_unreachable("bad runtime kind"); 205 } 206 207 void CodeGenModule::createOpenCLRuntime() { 208 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 209 } 210 211 void CodeGenModule::createOpenMPRuntime() { 212 // Select a specialized code generation class based on the target, if any. 213 // If it does not exist use the default implementation. 214 switch (getTriple().getArch()) { 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 assert(getLangOpts().OpenMPIsDevice && 218 "OpenMP NVPTX is only prepared to deal with device code."); 219 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 220 break; 221 case llvm::Triple::amdgcn: 222 assert(getLangOpts().OpenMPIsDevice && 223 "OpenMP AMDGCN is only prepared to deal with device code."); 224 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 225 break; 226 default: 227 if (LangOpts.OpenMPSimd) 228 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 229 else 230 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 231 break; 232 } 233 } 234 235 void CodeGenModule::createCUDARuntime() { 236 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 237 } 238 239 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 240 Replacements[Name] = C; 241 } 242 243 void CodeGenModule::applyReplacements() { 244 for (auto &I : Replacements) { 245 StringRef MangledName = I.first(); 246 llvm::Constant *Replacement = I.second; 247 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 248 if (!Entry) 249 continue; 250 auto *OldF = cast<llvm::Function>(Entry); 251 auto *NewF = dyn_cast<llvm::Function>(Replacement); 252 if (!NewF) { 253 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 254 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 255 } else { 256 auto *CE = cast<llvm::ConstantExpr>(Replacement); 257 assert(CE->getOpcode() == llvm::Instruction::BitCast || 258 CE->getOpcode() == llvm::Instruction::GetElementPtr); 259 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 260 } 261 } 262 263 // Replace old with new, but keep the old order. 264 OldF->replaceAllUsesWith(Replacement); 265 if (NewF) { 266 NewF->removeFromParent(); 267 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 268 NewF); 269 } 270 OldF->eraseFromParent(); 271 } 272 } 273 274 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 275 GlobalValReplacements.push_back(std::make_pair(GV, C)); 276 } 277 278 void CodeGenModule::applyGlobalValReplacements() { 279 for (auto &I : GlobalValReplacements) { 280 llvm::GlobalValue *GV = I.first; 281 llvm::Constant *C = I.second; 282 283 GV->replaceAllUsesWith(C); 284 GV->eraseFromParent(); 285 } 286 } 287 288 // This is only used in aliases that we created and we know they have a 289 // linear structure. 290 static const llvm::GlobalObject *getAliasedGlobal( 291 const llvm::GlobalIndirectSymbol &GIS) { 292 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 293 const llvm::Constant *C = &GIS; 294 for (;;) { 295 C = C->stripPointerCasts(); 296 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 297 return GO; 298 // stripPointerCasts will not walk over weak aliases. 299 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 300 if (!GIS2) 301 return nullptr; 302 if (!Visited.insert(GIS2).second) 303 return nullptr; 304 C = GIS2->getIndirectSymbol(); 305 } 306 } 307 308 void CodeGenModule::checkAliases() { 309 // Check if the constructed aliases are well formed. It is really unfortunate 310 // that we have to do this in CodeGen, but we only construct mangled names 311 // and aliases during codegen. 312 bool Error = false; 313 DiagnosticsEngine &Diags = getDiags(); 314 for (const GlobalDecl &GD : Aliases) { 315 const auto *D = cast<ValueDecl>(GD.getDecl()); 316 SourceLocation Location; 317 bool IsIFunc = D->hasAttr<IFuncAttr>(); 318 if (const Attr *A = D->getDefiningAttr()) 319 Location = A->getLocation(); 320 else 321 llvm_unreachable("Not an alias or ifunc?"); 322 StringRef MangledName = getMangledName(GD); 323 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 324 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 325 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 326 if (!GV) { 327 Error = true; 328 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 329 } else if (GV->isDeclaration()) { 330 Error = true; 331 Diags.Report(Location, diag::err_alias_to_undefined) 332 << IsIFunc << IsIFunc; 333 } else if (IsIFunc) { 334 // Check resolver function type. 335 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 336 GV->getType()->getPointerElementType()); 337 assert(FTy); 338 if (!FTy->getReturnType()->isPointerTy()) 339 Diags.Report(Location, diag::err_ifunc_resolver_return); 340 } 341 342 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 343 llvm::GlobalValue *AliaseeGV; 344 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 345 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 346 else 347 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 348 349 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 350 StringRef AliasSection = SA->getName(); 351 if (AliasSection != AliaseeGV->getSection()) 352 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 353 << AliasSection << IsIFunc << IsIFunc; 354 } 355 356 // We have to handle alias to weak aliases in here. LLVM itself disallows 357 // this since the object semantics would not match the IL one. For 358 // compatibility with gcc we implement it by just pointing the alias 359 // to its aliasee's aliasee. We also warn, since the user is probably 360 // expecting the link to be weak. 361 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 362 if (GA->isInterposable()) { 363 Diags.Report(Location, diag::warn_alias_to_weak_alias) 364 << GV->getName() << GA->getName() << IsIFunc; 365 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 366 GA->getIndirectSymbol(), Alias->getType()); 367 Alias->setIndirectSymbol(Aliasee); 368 } 369 } 370 } 371 if (!Error) 372 return; 373 374 for (const GlobalDecl &GD : Aliases) { 375 StringRef MangledName = getMangledName(GD); 376 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 377 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 378 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 379 Alias->eraseFromParent(); 380 } 381 } 382 383 void CodeGenModule::clear() { 384 DeferredDeclsToEmit.clear(); 385 if (OpenMPRuntime) 386 OpenMPRuntime->clear(); 387 } 388 389 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 390 StringRef MainFile) { 391 if (!hasDiagnostics()) 392 return; 393 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 394 if (MainFile.empty()) 395 MainFile = "<stdin>"; 396 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 397 } else { 398 if (Mismatched > 0) 399 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 400 401 if (Missing > 0) 402 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 403 } 404 } 405 406 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 407 llvm::Module &M) { 408 if (!LO.VisibilityFromDLLStorageClass) 409 return; 410 411 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 413 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 416 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 417 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 418 CodeGenModule::GetLLVMVisibility( 419 LO.getExternDeclNoDLLStorageClassVisibility()); 420 421 for (llvm::GlobalValue &GV : M.global_values()) { 422 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 423 continue; 424 425 // Reset DSO locality before setting the visibility. This removes 426 // any effects that visibility options and annotations may have 427 // had on the DSO locality. Setting the visibility will implicitly set 428 // appropriate globals to DSO Local; however, this will be pessimistic 429 // w.r.t. to the normal compiler IRGen. 430 GV.setDSOLocal(false); 431 432 if (GV.isDeclarationForLinker()) { 433 GV.setVisibility(GV.getDLLStorageClass() == 434 llvm::GlobalValue::DLLImportStorageClass 435 ? ExternDeclDLLImportVisibility 436 : ExternDeclNoDLLStorageClassVisibility); 437 } else { 438 GV.setVisibility(GV.getDLLStorageClass() == 439 llvm::GlobalValue::DLLExportStorageClass 440 ? DLLExportVisibility 441 : NoDLLStorageClassVisibility); 442 } 443 444 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 445 } 446 } 447 448 void CodeGenModule::Release() { 449 EmitDeferred(); 450 EmitVTablesOpportunistically(); 451 applyGlobalValReplacements(); 452 applyReplacements(); 453 checkAliases(); 454 emitMultiVersionFunctions(); 455 EmitCXXGlobalInitFunc(); 456 EmitCXXGlobalCleanUpFunc(); 457 registerGlobalDtorsWithAtExit(); 458 EmitCXXThreadLocalInitFunc(); 459 if (ObjCRuntime) 460 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 461 AddGlobalCtor(ObjCInitFunction); 462 if (Context.getLangOpts().CUDA && CUDARuntime) { 463 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 464 AddGlobalCtor(CudaCtorFunction); 465 } 466 if (OpenMPRuntime) { 467 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 468 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 470 } 471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 472 OpenMPRuntime->clear(); 473 } 474 if (PGOReader) { 475 getModule().setProfileSummary( 476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 477 llvm::ProfileSummary::PSK_Instr); 478 if (PGOStats.hasDiagnostics()) 479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 480 } 481 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 482 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 483 EmitGlobalAnnotations(); 484 EmitStaticExternCAliases(); 485 EmitDeferredUnusedCoverageMappings(); 486 if (CoverageMapping) 487 CoverageMapping->emit(); 488 if (CodeGenOpts.SanitizeCfiCrossDso) { 489 CodeGenFunction(*this).EmitCfiCheckFail(); 490 CodeGenFunction(*this).EmitCfiCheckStub(); 491 } 492 emitAtAvailableLinkGuard(); 493 if (Context.getTargetInfo().getTriple().isWasm() && 494 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 495 EmitMainVoidAlias(); 496 } 497 emitLLVMUsed(); 498 if (SanStats) 499 SanStats->finish(); 500 501 if (CodeGenOpts.Autolink && 502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 503 EmitModuleLinkOptions(); 504 } 505 506 // On ELF we pass the dependent library specifiers directly to the linker 507 // without manipulating them. This is in contrast to other platforms where 508 // they are mapped to a specific linker option by the compiler. This 509 // difference is a result of the greater variety of ELF linkers and the fact 510 // that ELF linkers tend to handle libraries in a more complicated fashion 511 // than on other platforms. This forces us to defer handling the dependent 512 // libs to the linker. 513 // 514 // CUDA/HIP device and host libraries are different. Currently there is no 515 // way to differentiate dependent libraries for host or device. Existing 516 // usage of #pragma comment(lib, *) is intended for host libraries on 517 // Windows. Therefore emit llvm.dependent-libraries only for host. 518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 520 for (auto *MD : ELFDependentLibraries) 521 NMD->addOperand(MD); 522 } 523 524 // Record mregparm value now so it is visible through rest of codegen. 525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 527 CodeGenOpts.NumRegisterParameters); 528 529 if (CodeGenOpts.DwarfVersion) { 530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 531 CodeGenOpts.DwarfVersion); 532 } 533 534 if (CodeGenOpts.Dwarf64) 535 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 536 537 if (Context.getLangOpts().SemanticInterposition) 538 // Require various optimization to respect semantic interposition. 539 getModule().setSemanticInterposition(1); 540 541 if (CodeGenOpts.EmitCodeView) { 542 // Indicate that we want CodeView in the metadata. 543 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 544 } 545 if (CodeGenOpts.CodeViewGHash) { 546 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 547 } 548 if (CodeGenOpts.ControlFlowGuard) { 549 // Function ID tables and checks for Control Flow Guard (cfguard=2). 550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 551 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 552 // Function ID tables for Control Flow Guard (cfguard=1). 553 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 554 } 555 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 556 // We don't support LTO with 2 with different StrictVTablePointers 557 // FIXME: we could support it by stripping all the information introduced 558 // by StrictVTablePointers. 559 560 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 561 562 llvm::Metadata *Ops[2] = { 563 llvm::MDString::get(VMContext, "StrictVTablePointers"), 564 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 565 llvm::Type::getInt32Ty(VMContext), 1))}; 566 567 getModule().addModuleFlag(llvm::Module::Require, 568 "StrictVTablePointersRequirement", 569 llvm::MDNode::get(VMContext, Ops)); 570 } 571 if (getModuleDebugInfo()) 572 // We support a single version in the linked module. The LLVM 573 // parser will drop debug info with a different version number 574 // (and warn about it, too). 575 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 576 llvm::DEBUG_METADATA_VERSION); 577 578 // We need to record the widths of enums and wchar_t, so that we can generate 579 // the correct build attributes in the ARM backend. wchar_size is also used by 580 // TargetLibraryInfo. 581 uint64_t WCharWidth = 582 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 583 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 584 585 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 586 if ( Arch == llvm::Triple::arm 587 || Arch == llvm::Triple::armeb 588 || Arch == llvm::Triple::thumb 589 || Arch == llvm::Triple::thumbeb) { 590 // The minimum width of an enum in bytes 591 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 592 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 593 } 594 595 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 596 StringRef ABIStr = Target.getABI(); 597 llvm::LLVMContext &Ctx = TheModule.getContext(); 598 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 599 llvm::MDString::get(Ctx, ABIStr)); 600 } 601 602 if (CodeGenOpts.SanitizeCfiCrossDso) { 603 // Indicate that we want cross-DSO control flow integrity checks. 604 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 605 } 606 607 if (CodeGenOpts.WholeProgramVTables) { 608 // Indicate whether VFE was enabled for this module, so that the 609 // vcall_visibility metadata added under whole program vtables is handled 610 // appropriately in the optimizer. 611 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 612 CodeGenOpts.VirtualFunctionElimination); 613 } 614 615 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 616 getModule().addModuleFlag(llvm::Module::Override, 617 "CFI Canonical Jump Tables", 618 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 619 } 620 621 if (CodeGenOpts.CFProtectionReturn && 622 Target.checkCFProtectionReturnSupported(getDiags())) { 623 // Indicate that we want to instrument return control flow protection. 624 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 625 1); 626 } 627 628 if (CodeGenOpts.CFProtectionBranch && 629 Target.checkCFProtectionBranchSupported(getDiags())) { 630 // Indicate that we want to instrument branch control flow protection. 631 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 632 1); 633 } 634 635 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 636 Arch == llvm::Triple::aarch64_be) { 637 getModule().addModuleFlag(llvm::Module::Error, 638 "branch-target-enforcement", 639 LangOpts.BranchTargetEnforcement); 640 641 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 642 LangOpts.hasSignReturnAddress()); 643 644 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 645 LangOpts.isSignReturnAddressScopeAll()); 646 647 getModule().addModuleFlag(llvm::Module::Error, 648 "sign-return-address-with-bkey", 649 !LangOpts.isSignReturnAddressWithAKey()); 650 } 651 652 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 653 llvm::LLVMContext &Ctx = TheModule.getContext(); 654 getModule().addModuleFlag( 655 llvm::Module::Error, "MemProfProfileFilename", 656 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 657 } 658 659 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 660 // Indicate whether __nvvm_reflect should be configured to flush denormal 661 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 662 // property.) 663 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 664 CodeGenOpts.FP32DenormalMode.Output != 665 llvm::DenormalMode::IEEE); 666 } 667 668 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 669 if (LangOpts.OpenCL) { 670 EmitOpenCLMetadata(); 671 // Emit SPIR version. 672 if (getTriple().isSPIR()) { 673 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 674 // opencl.spir.version named metadata. 675 // C++ is backwards compatible with OpenCL v2.0. 676 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 677 llvm::Metadata *SPIRVerElts[] = { 678 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 679 Int32Ty, Version / 100)), 680 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 681 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 682 llvm::NamedMDNode *SPIRVerMD = 683 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 684 llvm::LLVMContext &Ctx = TheModule.getContext(); 685 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 686 } 687 } 688 689 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 690 assert(PLevel < 3 && "Invalid PIC Level"); 691 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 692 if (Context.getLangOpts().PIE) 693 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 694 } 695 696 if (getCodeGenOpts().CodeModel.size() > 0) { 697 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 698 .Case("tiny", llvm::CodeModel::Tiny) 699 .Case("small", llvm::CodeModel::Small) 700 .Case("kernel", llvm::CodeModel::Kernel) 701 .Case("medium", llvm::CodeModel::Medium) 702 .Case("large", llvm::CodeModel::Large) 703 .Default(~0u); 704 if (CM != ~0u) { 705 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 706 getModule().setCodeModel(codeModel); 707 } 708 } 709 710 if (CodeGenOpts.NoPLT) 711 getModule().setRtLibUseGOT(); 712 713 SimplifyPersonality(); 714 715 if (getCodeGenOpts().EmitDeclMetadata) 716 EmitDeclMetadata(); 717 718 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 719 EmitCoverageFile(); 720 721 if (CGDebugInfo *DI = getModuleDebugInfo()) 722 DI->finalize(); 723 724 if (getCodeGenOpts().EmitVersionIdentMetadata) 725 EmitVersionIdentMetadata(); 726 727 if (!getCodeGenOpts().RecordCommandLine.empty()) 728 EmitCommandLineMetadata(); 729 730 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 731 732 EmitBackendOptionsMetadata(getCodeGenOpts()); 733 734 // Set visibility from DLL storage class 735 // We do this at the end of LLVM IR generation; after any operation 736 // that might affect the DLL storage class or the visibility, and 737 // before anything that might act on these. 738 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 739 } 740 741 void CodeGenModule::EmitOpenCLMetadata() { 742 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 743 // opencl.ocl.version named metadata node. 744 // C++ is backwards compatible with OpenCL v2.0. 745 // FIXME: We might need to add CXX version at some point too? 746 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 747 llvm::Metadata *OCLVerElts[] = { 748 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 749 Int32Ty, Version / 100)), 750 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 751 Int32Ty, (Version % 100) / 10))}; 752 llvm::NamedMDNode *OCLVerMD = 753 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 754 llvm::LLVMContext &Ctx = TheModule.getContext(); 755 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 756 } 757 758 void CodeGenModule::EmitBackendOptionsMetadata( 759 const CodeGenOptions CodeGenOpts) { 760 switch (getTriple().getArch()) { 761 default: 762 break; 763 case llvm::Triple::riscv32: 764 case llvm::Triple::riscv64: 765 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 766 CodeGenOpts.SmallDataLimit); 767 break; 768 } 769 } 770 771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 772 // Make sure that this type is translated. 773 Types.UpdateCompletedType(TD); 774 } 775 776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 777 // Make sure that this type is translated. 778 Types.RefreshTypeCacheForClass(RD); 779 } 780 781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 782 if (!TBAA) 783 return nullptr; 784 return TBAA->getTypeInfo(QTy); 785 } 786 787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 788 if (!TBAA) 789 return TBAAAccessInfo(); 790 if (getLangOpts().CUDAIsDevice) { 791 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 792 // access info. 793 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 794 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 795 nullptr) 796 return TBAAAccessInfo(); 797 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 798 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 799 nullptr) 800 return TBAAAccessInfo(); 801 } 802 } 803 return TBAA->getAccessInfo(AccessType); 804 } 805 806 TBAAAccessInfo 807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 808 if (!TBAA) 809 return TBAAAccessInfo(); 810 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 811 } 812 813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 814 if (!TBAA) 815 return nullptr; 816 return TBAA->getTBAAStructInfo(QTy); 817 } 818 819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 820 if (!TBAA) 821 return nullptr; 822 return TBAA->getBaseTypeInfo(QTy); 823 } 824 825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 826 if (!TBAA) 827 return nullptr; 828 return TBAA->getAccessTagInfo(Info); 829 } 830 831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 832 TBAAAccessInfo TargetInfo) { 833 if (!TBAA) 834 return TBAAAccessInfo(); 835 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 836 } 837 838 TBAAAccessInfo 839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 840 TBAAAccessInfo InfoB) { 841 if (!TBAA) 842 return TBAAAccessInfo(); 843 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 844 } 845 846 TBAAAccessInfo 847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 848 TBAAAccessInfo SrcInfo) { 849 if (!TBAA) 850 return TBAAAccessInfo(); 851 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 852 } 853 854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 855 TBAAAccessInfo TBAAInfo) { 856 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 857 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 858 } 859 860 void CodeGenModule::DecorateInstructionWithInvariantGroup( 861 llvm::Instruction *I, const CXXRecordDecl *RD) { 862 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 863 llvm::MDNode::get(getLLVMContext(), {})); 864 } 865 866 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 867 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 868 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 869 } 870 871 /// ErrorUnsupported - Print out an error that codegen doesn't support the 872 /// specified stmt yet. 873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 874 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 875 "cannot compile this %0 yet"); 876 std::string Msg = Type; 877 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 878 << Msg << S->getSourceRange(); 879 } 880 881 /// ErrorUnsupported - Print out an error that codegen doesn't support the 882 /// specified decl yet. 883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 884 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 885 "cannot compile this %0 yet"); 886 std::string Msg = Type; 887 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 888 } 889 890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 891 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 892 } 893 894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 895 const NamedDecl *D) const { 896 if (GV->hasDLLImportStorageClass()) 897 return; 898 // Internal definitions always have default visibility. 899 if (GV->hasLocalLinkage()) { 900 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 901 return; 902 } 903 if (!D) 904 return; 905 // Set visibility for definitions, and for declarations if requested globally 906 // or set explicitly. 907 LinkageInfo LV = D->getLinkageAndVisibility(); 908 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 909 !GV->isDeclarationForLinker()) 910 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 911 } 912 913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 914 llvm::GlobalValue *GV) { 915 if (GV->hasLocalLinkage()) 916 return true; 917 918 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 919 return true; 920 921 // DLLImport explicitly marks the GV as external. 922 if (GV->hasDLLImportStorageClass()) 923 return false; 924 925 const llvm::Triple &TT = CGM.getTriple(); 926 if (TT.isWindowsGNUEnvironment()) { 927 // In MinGW, variables without DLLImport can still be automatically 928 // imported from a DLL by the linker; don't mark variables that 929 // potentially could come from another DLL as DSO local. 930 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 931 !GV->isThreadLocal()) 932 return false; 933 } 934 935 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 936 // remain unresolved in the link, they can be resolved to zero, which is 937 // outside the current DSO. 938 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 939 return false; 940 941 // Every other GV is local on COFF. 942 // Make an exception for windows OS in the triple: Some firmware builds use 943 // *-win32-macho triples. This (accidentally?) produced windows relocations 944 // without GOT tables in older clang versions; Keep this behaviour. 945 // FIXME: even thread local variables? 946 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 947 return true; 948 949 const auto &CGOpts = CGM.getCodeGenOpts(); 950 llvm::Reloc::Model RM = CGOpts.RelocationModel; 951 const auto &LOpts = CGM.getLangOpts(); 952 953 if (TT.isOSBinFormatMachO()) { 954 if (RM == llvm::Reloc::Static) 955 return true; 956 return GV->isStrongDefinitionForLinker(); 957 } 958 959 // Only handle COFF and ELF for now. 960 if (!TT.isOSBinFormatELF()) 961 return false; 962 963 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 964 // On ELF, if -fno-semantic-interposition is specified and the target 965 // supports local aliases, there will be neither CC1 966 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 967 // dso_local if using a local alias is preferable (can avoid GOT 968 // indirection). 969 if (!GV->canBenefitFromLocalAlias()) 970 return false; 971 return !(CGM.getLangOpts().SemanticInterposition || 972 CGM.getLangOpts().HalfNoSemanticInterposition); 973 } 974 975 // A definition cannot be preempted from an executable. 976 if (!GV->isDeclarationForLinker()) 977 return true; 978 979 // Most PIC code sequences that assume that a symbol is local cannot produce a 980 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 981 // depended, it seems worth it to handle it here. 982 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 983 return false; 984 985 // PowerPC64 prefers TOC indirection to avoid copy relocations. 986 if (TT.isPPC64()) 987 return false; 988 989 if (CGOpts.DirectAccessExternalData) { 990 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 991 // for non-thread-local variables. If the symbol is not defined in the 992 // executable, a copy relocation will be needed at link time. dso_local is 993 // excluded for thread-local variables because they generally don't support 994 // copy relocations. 995 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 996 if (!Var->isThreadLocal()) 997 return true; 998 999 // -fno-pic sets dso_local on a function declaration to allow direct 1000 // accesses when taking its address (similar to a data symbol). If the 1001 // function is not defined in the executable, a canonical PLT entry will be 1002 // needed at link time. -fno-direct-access-external-data can avoid the 1003 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1004 // it could just cause trouble without providing perceptible benefits. 1005 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1006 return true; 1007 } 1008 1009 // If we can use copy relocations we can assume it is local. 1010 1011 // Otherwise don't assume it is local. 1012 return false; 1013 } 1014 1015 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1016 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1017 } 1018 1019 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1020 GlobalDecl GD) const { 1021 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1022 // C++ destructors have a few C++ ABI specific special cases. 1023 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1024 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1025 return; 1026 } 1027 setDLLImportDLLExport(GV, D); 1028 } 1029 1030 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1031 const NamedDecl *D) const { 1032 if (D && D->isExternallyVisible()) { 1033 if (D->hasAttr<DLLImportAttr>()) 1034 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1035 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1036 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1037 } 1038 } 1039 1040 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1041 GlobalDecl GD) const { 1042 setDLLImportDLLExport(GV, GD); 1043 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1044 } 1045 1046 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1047 const NamedDecl *D) const { 1048 setDLLImportDLLExport(GV, D); 1049 setGVPropertiesAux(GV, D); 1050 } 1051 1052 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1053 const NamedDecl *D) const { 1054 setGlobalVisibility(GV, D); 1055 setDSOLocal(GV); 1056 GV->setPartition(CodeGenOpts.SymbolPartition); 1057 } 1058 1059 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1060 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1061 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1062 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1063 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1064 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1065 } 1066 1067 llvm::GlobalVariable::ThreadLocalMode 1068 CodeGenModule::GetDefaultLLVMTLSModel() const { 1069 switch (CodeGenOpts.getDefaultTLSModel()) { 1070 case CodeGenOptions::GeneralDynamicTLSModel: 1071 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1072 case CodeGenOptions::LocalDynamicTLSModel: 1073 return llvm::GlobalVariable::LocalDynamicTLSModel; 1074 case CodeGenOptions::InitialExecTLSModel: 1075 return llvm::GlobalVariable::InitialExecTLSModel; 1076 case CodeGenOptions::LocalExecTLSModel: 1077 return llvm::GlobalVariable::LocalExecTLSModel; 1078 } 1079 llvm_unreachable("Invalid TLS model!"); 1080 } 1081 1082 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1083 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1084 1085 llvm::GlobalValue::ThreadLocalMode TLM; 1086 TLM = GetDefaultLLVMTLSModel(); 1087 1088 // Override the TLS model if it is explicitly specified. 1089 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1090 TLM = GetLLVMTLSModel(Attr->getModel()); 1091 } 1092 1093 GV->setThreadLocalMode(TLM); 1094 } 1095 1096 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1097 StringRef Name) { 1098 const TargetInfo &Target = CGM.getTarget(); 1099 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1100 } 1101 1102 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1103 const CPUSpecificAttr *Attr, 1104 unsigned CPUIndex, 1105 raw_ostream &Out) { 1106 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1107 // supported. 1108 if (Attr) 1109 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1110 else if (CGM.getTarget().supportsIFunc()) 1111 Out << ".resolver"; 1112 } 1113 1114 static void AppendTargetMangling(const CodeGenModule &CGM, 1115 const TargetAttr *Attr, raw_ostream &Out) { 1116 if (Attr->isDefaultVersion()) 1117 return; 1118 1119 Out << '.'; 1120 const TargetInfo &Target = CGM.getTarget(); 1121 ParsedTargetAttr Info = 1122 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1123 // Multiversioning doesn't allow "no-${feature}", so we can 1124 // only have "+" prefixes here. 1125 assert(LHS.startswith("+") && RHS.startswith("+") && 1126 "Features should always have a prefix."); 1127 return Target.multiVersionSortPriority(LHS.substr(1)) > 1128 Target.multiVersionSortPriority(RHS.substr(1)); 1129 }); 1130 1131 bool IsFirst = true; 1132 1133 if (!Info.Architecture.empty()) { 1134 IsFirst = false; 1135 Out << "arch_" << Info.Architecture; 1136 } 1137 1138 for (StringRef Feat : Info.Features) { 1139 if (!IsFirst) 1140 Out << '_'; 1141 IsFirst = false; 1142 Out << Feat.substr(1); 1143 } 1144 } 1145 1146 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1147 const NamedDecl *ND, 1148 bool OmitMultiVersionMangling = false) { 1149 SmallString<256> Buffer; 1150 llvm::raw_svector_ostream Out(Buffer); 1151 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1152 if (MC.shouldMangleDeclName(ND)) 1153 MC.mangleName(GD.getWithDecl(ND), Out); 1154 else { 1155 IdentifierInfo *II = ND->getIdentifier(); 1156 assert(II && "Attempt to mangle unnamed decl."); 1157 const auto *FD = dyn_cast<FunctionDecl>(ND); 1158 1159 if (FD && 1160 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1161 Out << "__regcall3__" << II->getName(); 1162 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1163 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1164 Out << "__device_stub__" << II->getName(); 1165 } else { 1166 Out << II->getName(); 1167 } 1168 } 1169 1170 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1171 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1172 switch (FD->getMultiVersionKind()) { 1173 case MultiVersionKind::CPUDispatch: 1174 case MultiVersionKind::CPUSpecific: 1175 AppendCPUSpecificCPUDispatchMangling(CGM, 1176 FD->getAttr<CPUSpecificAttr>(), 1177 GD.getMultiVersionIndex(), Out); 1178 break; 1179 case MultiVersionKind::Target: 1180 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1181 break; 1182 case MultiVersionKind::None: 1183 llvm_unreachable("None multiversion type isn't valid here"); 1184 } 1185 } 1186 1187 // Make unique name for device side static file-scope variable for HIP. 1188 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1189 CGM.getLangOpts().GPURelocatableDeviceCode && 1190 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1191 CGM.printPostfixForExternalizedStaticVar(Out); 1192 return std::string(Out.str()); 1193 } 1194 1195 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1196 const FunctionDecl *FD) { 1197 if (!FD->isMultiVersion()) 1198 return; 1199 1200 // Get the name of what this would be without the 'target' attribute. This 1201 // allows us to lookup the version that was emitted when this wasn't a 1202 // multiversion function. 1203 std::string NonTargetName = 1204 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1205 GlobalDecl OtherGD; 1206 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1207 assert(OtherGD.getCanonicalDecl() 1208 .getDecl() 1209 ->getAsFunction() 1210 ->isMultiVersion() && 1211 "Other GD should now be a multiversioned function"); 1212 // OtherFD is the version of this function that was mangled BEFORE 1213 // becoming a MultiVersion function. It potentially needs to be updated. 1214 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1215 .getDecl() 1216 ->getAsFunction() 1217 ->getMostRecentDecl(); 1218 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1219 // This is so that if the initial version was already the 'default' 1220 // version, we don't try to update it. 1221 if (OtherName != NonTargetName) { 1222 // Remove instead of erase, since others may have stored the StringRef 1223 // to this. 1224 const auto ExistingRecord = Manglings.find(NonTargetName); 1225 if (ExistingRecord != std::end(Manglings)) 1226 Manglings.remove(&(*ExistingRecord)); 1227 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1228 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1229 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1230 Entry->setName(OtherName); 1231 } 1232 } 1233 } 1234 1235 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1236 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1237 1238 // Some ABIs don't have constructor variants. Make sure that base and 1239 // complete constructors get mangled the same. 1240 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1241 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1242 CXXCtorType OrigCtorType = GD.getCtorType(); 1243 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1244 if (OrigCtorType == Ctor_Base) 1245 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1246 } 1247 } 1248 1249 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1250 // static device variable depends on whether the variable is referenced by 1251 // a host or device host function. Therefore the mangled name cannot be 1252 // cached. 1253 if (!LangOpts.CUDAIsDevice || 1254 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1255 auto FoundName = MangledDeclNames.find(CanonicalGD); 1256 if (FoundName != MangledDeclNames.end()) 1257 return FoundName->second; 1258 } 1259 1260 // Keep the first result in the case of a mangling collision. 1261 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1262 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1263 1264 // Ensure either we have different ABIs between host and device compilations, 1265 // says host compilation following MSVC ABI but device compilation follows 1266 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1267 // mangling should be the same after name stubbing. The later checking is 1268 // very important as the device kernel name being mangled in host-compilation 1269 // is used to resolve the device binaries to be executed. Inconsistent naming 1270 // result in undefined behavior. Even though we cannot check that naming 1271 // directly between host- and device-compilations, the host- and 1272 // device-mangling in host compilation could help catching certain ones. 1273 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1274 getLangOpts().CUDAIsDevice || 1275 (getContext().getAuxTargetInfo() && 1276 (getContext().getAuxTargetInfo()->getCXXABI() != 1277 getContext().getTargetInfo().getCXXABI())) || 1278 getCUDARuntime().getDeviceSideName(ND) == 1279 getMangledNameImpl( 1280 *this, 1281 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1282 ND)); 1283 1284 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1285 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1286 } 1287 1288 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1289 const BlockDecl *BD) { 1290 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1291 const Decl *D = GD.getDecl(); 1292 1293 SmallString<256> Buffer; 1294 llvm::raw_svector_ostream Out(Buffer); 1295 if (!D) 1296 MangleCtx.mangleGlobalBlock(BD, 1297 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1298 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1299 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1300 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1301 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1302 else 1303 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1304 1305 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1306 return Result.first->first(); 1307 } 1308 1309 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1310 return getModule().getNamedValue(Name); 1311 } 1312 1313 /// AddGlobalCtor - Add a function to the list that will be called before 1314 /// main() runs. 1315 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1316 llvm::Constant *AssociatedData) { 1317 // FIXME: Type coercion of void()* types. 1318 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1319 } 1320 1321 /// AddGlobalDtor - Add a function to the list that will be called 1322 /// when the module is unloaded. 1323 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1324 bool IsDtorAttrFunc) { 1325 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1326 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1327 DtorsUsingAtExit[Priority].push_back(Dtor); 1328 return; 1329 } 1330 1331 // FIXME: Type coercion of void()* types. 1332 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1333 } 1334 1335 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1336 if (Fns.empty()) return; 1337 1338 // Ctor function type is void()*. 1339 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1340 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1341 TheModule.getDataLayout().getProgramAddressSpace()); 1342 1343 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1344 llvm::StructType *CtorStructTy = llvm::StructType::get( 1345 Int32Ty, CtorPFTy, VoidPtrTy); 1346 1347 // Construct the constructor and destructor arrays. 1348 ConstantInitBuilder builder(*this); 1349 auto ctors = builder.beginArray(CtorStructTy); 1350 for (const auto &I : Fns) { 1351 auto ctor = ctors.beginStruct(CtorStructTy); 1352 ctor.addInt(Int32Ty, I.Priority); 1353 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1354 if (I.AssociatedData) 1355 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1356 else 1357 ctor.addNullPointer(VoidPtrTy); 1358 ctor.finishAndAddTo(ctors); 1359 } 1360 1361 auto list = 1362 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1363 /*constant*/ false, 1364 llvm::GlobalValue::AppendingLinkage); 1365 1366 // The LTO linker doesn't seem to like it when we set an alignment 1367 // on appending variables. Take it off as a workaround. 1368 list->setAlignment(llvm::None); 1369 1370 Fns.clear(); 1371 } 1372 1373 llvm::GlobalValue::LinkageTypes 1374 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1375 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1376 1377 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1378 1379 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1380 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1381 1382 if (isa<CXXConstructorDecl>(D) && 1383 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1384 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1385 // Our approach to inheriting constructors is fundamentally different from 1386 // that used by the MS ABI, so keep our inheriting constructor thunks 1387 // internal rather than trying to pick an unambiguous mangling for them. 1388 return llvm::GlobalValue::InternalLinkage; 1389 } 1390 1391 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1392 } 1393 1394 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1395 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1396 if (!MDS) return nullptr; 1397 1398 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1399 } 1400 1401 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1402 const CGFunctionInfo &Info, 1403 llvm::Function *F) { 1404 unsigned CallingConv; 1405 llvm::AttributeList PAL; 1406 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1407 F->setAttributes(PAL); 1408 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1409 } 1410 1411 static void removeImageAccessQualifier(std::string& TyName) { 1412 std::string ReadOnlyQual("__read_only"); 1413 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1414 if (ReadOnlyPos != std::string::npos) 1415 // "+ 1" for the space after access qualifier. 1416 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1417 else { 1418 std::string WriteOnlyQual("__write_only"); 1419 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1420 if (WriteOnlyPos != std::string::npos) 1421 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1422 else { 1423 std::string ReadWriteQual("__read_write"); 1424 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1425 if (ReadWritePos != std::string::npos) 1426 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1427 } 1428 } 1429 } 1430 1431 // Returns the address space id that should be produced to the 1432 // kernel_arg_addr_space metadata. This is always fixed to the ids 1433 // as specified in the SPIR 2.0 specification in order to differentiate 1434 // for example in clGetKernelArgInfo() implementation between the address 1435 // spaces with targets without unique mapping to the OpenCL address spaces 1436 // (basically all single AS CPUs). 1437 static unsigned ArgInfoAddressSpace(LangAS AS) { 1438 switch (AS) { 1439 case LangAS::opencl_global: 1440 return 1; 1441 case LangAS::opencl_constant: 1442 return 2; 1443 case LangAS::opencl_local: 1444 return 3; 1445 case LangAS::opencl_generic: 1446 return 4; // Not in SPIR 2.0 specs. 1447 case LangAS::opencl_global_device: 1448 return 5; 1449 case LangAS::opencl_global_host: 1450 return 6; 1451 default: 1452 return 0; // Assume private. 1453 } 1454 } 1455 1456 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1457 const FunctionDecl *FD, 1458 CodeGenFunction *CGF) { 1459 assert(((FD && CGF) || (!FD && !CGF)) && 1460 "Incorrect use - FD and CGF should either be both null or not!"); 1461 // Create MDNodes that represent the kernel arg metadata. 1462 // Each MDNode is a list in the form of "key", N number of values which is 1463 // the same number of values as their are kernel arguments. 1464 1465 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1466 1467 // MDNode for the kernel argument address space qualifiers. 1468 SmallVector<llvm::Metadata *, 8> addressQuals; 1469 1470 // MDNode for the kernel argument access qualifiers (images only). 1471 SmallVector<llvm::Metadata *, 8> accessQuals; 1472 1473 // MDNode for the kernel argument type names. 1474 SmallVector<llvm::Metadata *, 8> argTypeNames; 1475 1476 // MDNode for the kernel argument base type names. 1477 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1478 1479 // MDNode for the kernel argument type qualifiers. 1480 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1481 1482 // MDNode for the kernel argument names. 1483 SmallVector<llvm::Metadata *, 8> argNames; 1484 1485 if (FD && CGF) 1486 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1487 const ParmVarDecl *parm = FD->getParamDecl(i); 1488 QualType ty = parm->getType(); 1489 std::string typeQuals; 1490 1491 // Get image and pipe access qualifier: 1492 if (ty->isImageType() || ty->isPipeType()) { 1493 const Decl *PDecl = parm; 1494 if (auto *TD = dyn_cast<TypedefType>(ty)) 1495 PDecl = TD->getDecl(); 1496 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1497 if (A && A->isWriteOnly()) 1498 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1499 else if (A && A->isReadWrite()) 1500 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1501 else 1502 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1503 } else 1504 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1505 1506 // Get argument name. 1507 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1508 1509 auto getTypeSpelling = [&](QualType Ty) { 1510 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1511 1512 if (Ty.isCanonical()) { 1513 StringRef typeNameRef = typeName; 1514 // Turn "unsigned type" to "utype" 1515 if (typeNameRef.consume_front("unsigned ")) 1516 return std::string("u") + typeNameRef.str(); 1517 if (typeNameRef.consume_front("signed ")) 1518 return typeNameRef.str(); 1519 } 1520 1521 return typeName; 1522 }; 1523 1524 if (ty->isPointerType()) { 1525 QualType pointeeTy = ty->getPointeeType(); 1526 1527 // Get address qualifier. 1528 addressQuals.push_back( 1529 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1530 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1531 1532 // Get argument type name. 1533 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1534 std::string baseTypeName = 1535 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1536 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1537 argBaseTypeNames.push_back( 1538 llvm::MDString::get(VMContext, baseTypeName)); 1539 1540 // Get argument type qualifiers: 1541 if (ty.isRestrictQualified()) 1542 typeQuals = "restrict"; 1543 if (pointeeTy.isConstQualified() || 1544 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1545 typeQuals += typeQuals.empty() ? "const" : " const"; 1546 if (pointeeTy.isVolatileQualified()) 1547 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1548 } else { 1549 uint32_t AddrSpc = 0; 1550 bool isPipe = ty->isPipeType(); 1551 if (ty->isImageType() || isPipe) 1552 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1553 1554 addressQuals.push_back( 1555 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1556 1557 // Get argument type name. 1558 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1559 std::string typeName = getTypeSpelling(ty); 1560 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1561 1562 // Remove access qualifiers on images 1563 // (as they are inseparable from type in clang implementation, 1564 // but OpenCL spec provides a special query to get access qualifier 1565 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1566 if (ty->isImageType()) { 1567 removeImageAccessQualifier(typeName); 1568 removeImageAccessQualifier(baseTypeName); 1569 } 1570 1571 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1572 argBaseTypeNames.push_back( 1573 llvm::MDString::get(VMContext, baseTypeName)); 1574 1575 if (isPipe) 1576 typeQuals = "pipe"; 1577 } 1578 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1579 } 1580 1581 Fn->setMetadata("kernel_arg_addr_space", 1582 llvm::MDNode::get(VMContext, addressQuals)); 1583 Fn->setMetadata("kernel_arg_access_qual", 1584 llvm::MDNode::get(VMContext, accessQuals)); 1585 Fn->setMetadata("kernel_arg_type", 1586 llvm::MDNode::get(VMContext, argTypeNames)); 1587 Fn->setMetadata("kernel_arg_base_type", 1588 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1589 Fn->setMetadata("kernel_arg_type_qual", 1590 llvm::MDNode::get(VMContext, argTypeQuals)); 1591 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1592 Fn->setMetadata("kernel_arg_name", 1593 llvm::MDNode::get(VMContext, argNames)); 1594 } 1595 1596 /// Determines whether the language options require us to model 1597 /// unwind exceptions. We treat -fexceptions as mandating this 1598 /// except under the fragile ObjC ABI with only ObjC exceptions 1599 /// enabled. This means, for example, that C with -fexceptions 1600 /// enables this. 1601 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1602 // If exceptions are completely disabled, obviously this is false. 1603 if (!LangOpts.Exceptions) return false; 1604 1605 // If C++ exceptions are enabled, this is true. 1606 if (LangOpts.CXXExceptions) return true; 1607 1608 // If ObjC exceptions are enabled, this depends on the ABI. 1609 if (LangOpts.ObjCExceptions) { 1610 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1611 } 1612 1613 return true; 1614 } 1615 1616 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1617 const CXXMethodDecl *MD) { 1618 // Check that the type metadata can ever actually be used by a call. 1619 if (!CGM.getCodeGenOpts().LTOUnit || 1620 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1621 return false; 1622 1623 // Only functions whose address can be taken with a member function pointer 1624 // need this sort of type metadata. 1625 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1626 !isa<CXXDestructorDecl>(MD); 1627 } 1628 1629 std::vector<const CXXRecordDecl *> 1630 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1631 llvm::SetVector<const CXXRecordDecl *> MostBases; 1632 1633 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1634 CollectMostBases = [&](const CXXRecordDecl *RD) { 1635 if (RD->getNumBases() == 0) 1636 MostBases.insert(RD); 1637 for (const CXXBaseSpecifier &B : RD->bases()) 1638 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1639 }; 1640 CollectMostBases(RD); 1641 return MostBases.takeVector(); 1642 } 1643 1644 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1645 llvm::Function *F) { 1646 llvm::AttrBuilder B; 1647 1648 if (CodeGenOpts.UnwindTables) 1649 B.addAttribute(llvm::Attribute::UWTable); 1650 1651 if (CodeGenOpts.StackClashProtector) 1652 B.addAttribute("probe-stack", "inline-asm"); 1653 1654 if (!hasUnwindExceptions(LangOpts)) 1655 B.addAttribute(llvm::Attribute::NoUnwind); 1656 1657 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1658 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1659 B.addAttribute(llvm::Attribute::StackProtect); 1660 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1661 B.addAttribute(llvm::Attribute::StackProtectStrong); 1662 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1663 B.addAttribute(llvm::Attribute::StackProtectReq); 1664 } 1665 1666 if (!D) { 1667 // If we don't have a declaration to control inlining, the function isn't 1668 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1669 // disabled, mark the function as noinline. 1670 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1671 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1672 B.addAttribute(llvm::Attribute::NoInline); 1673 1674 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1675 return; 1676 } 1677 1678 // Track whether we need to add the optnone LLVM attribute, 1679 // starting with the default for this optimization level. 1680 bool ShouldAddOptNone = 1681 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1682 // We can't add optnone in the following cases, it won't pass the verifier. 1683 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1684 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1685 1686 // Add optnone, but do so only if the function isn't always_inline. 1687 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1688 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1689 B.addAttribute(llvm::Attribute::OptimizeNone); 1690 1691 // OptimizeNone implies noinline; we should not be inlining such functions. 1692 B.addAttribute(llvm::Attribute::NoInline); 1693 1694 // We still need to handle naked functions even though optnone subsumes 1695 // much of their semantics. 1696 if (D->hasAttr<NakedAttr>()) 1697 B.addAttribute(llvm::Attribute::Naked); 1698 1699 // OptimizeNone wins over OptimizeForSize and MinSize. 1700 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1701 F->removeFnAttr(llvm::Attribute::MinSize); 1702 } else if (D->hasAttr<NakedAttr>()) { 1703 // Naked implies noinline: we should not be inlining such functions. 1704 B.addAttribute(llvm::Attribute::Naked); 1705 B.addAttribute(llvm::Attribute::NoInline); 1706 } else if (D->hasAttr<NoDuplicateAttr>()) { 1707 B.addAttribute(llvm::Attribute::NoDuplicate); 1708 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1709 // Add noinline if the function isn't always_inline. 1710 B.addAttribute(llvm::Attribute::NoInline); 1711 } else if (D->hasAttr<AlwaysInlineAttr>() && 1712 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1713 // (noinline wins over always_inline, and we can't specify both in IR) 1714 B.addAttribute(llvm::Attribute::AlwaysInline); 1715 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1716 // If we're not inlining, then force everything that isn't always_inline to 1717 // carry an explicit noinline attribute. 1718 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1719 B.addAttribute(llvm::Attribute::NoInline); 1720 } else { 1721 // Otherwise, propagate the inline hint attribute and potentially use its 1722 // absence to mark things as noinline. 1723 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1724 // Search function and template pattern redeclarations for inline. 1725 auto CheckForInline = [](const FunctionDecl *FD) { 1726 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1727 return Redecl->isInlineSpecified(); 1728 }; 1729 if (any_of(FD->redecls(), CheckRedeclForInline)) 1730 return true; 1731 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1732 if (!Pattern) 1733 return false; 1734 return any_of(Pattern->redecls(), CheckRedeclForInline); 1735 }; 1736 if (CheckForInline(FD)) { 1737 B.addAttribute(llvm::Attribute::InlineHint); 1738 } else if (CodeGenOpts.getInlining() == 1739 CodeGenOptions::OnlyHintInlining && 1740 !FD->isInlined() && 1741 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1742 B.addAttribute(llvm::Attribute::NoInline); 1743 } 1744 } 1745 } 1746 1747 // Add other optimization related attributes if we are optimizing this 1748 // function. 1749 if (!D->hasAttr<OptimizeNoneAttr>()) { 1750 if (D->hasAttr<ColdAttr>()) { 1751 if (!ShouldAddOptNone) 1752 B.addAttribute(llvm::Attribute::OptimizeForSize); 1753 B.addAttribute(llvm::Attribute::Cold); 1754 } 1755 if (D->hasAttr<HotAttr>()) 1756 B.addAttribute(llvm::Attribute::Hot); 1757 if (D->hasAttr<MinSizeAttr>()) 1758 B.addAttribute(llvm::Attribute::MinSize); 1759 } 1760 1761 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1762 1763 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1764 if (alignment) 1765 F->setAlignment(llvm::Align(alignment)); 1766 1767 if (!D->hasAttr<AlignedAttr>()) 1768 if (LangOpts.FunctionAlignment) 1769 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1770 1771 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1772 // reserve a bit for differentiating between virtual and non-virtual member 1773 // functions. If the current target's C++ ABI requires this and this is a 1774 // member function, set its alignment accordingly. 1775 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1776 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1777 F->setAlignment(llvm::Align(2)); 1778 } 1779 1780 // In the cross-dso CFI mode with canonical jump tables, we want !type 1781 // attributes on definitions only. 1782 if (CodeGenOpts.SanitizeCfiCrossDso && 1783 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1784 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1785 // Skip available_externally functions. They won't be codegen'ed in the 1786 // current module anyway. 1787 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1788 CreateFunctionTypeMetadataForIcall(FD, F); 1789 } 1790 } 1791 1792 // Emit type metadata on member functions for member function pointer checks. 1793 // These are only ever necessary on definitions; we're guaranteed that the 1794 // definition will be present in the LTO unit as a result of LTO visibility. 1795 auto *MD = dyn_cast<CXXMethodDecl>(D); 1796 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1797 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1798 llvm::Metadata *Id = 1799 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1800 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1801 F->addTypeMetadata(0, Id); 1802 } 1803 } 1804 } 1805 1806 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1807 llvm::Function *F) { 1808 if (D->hasAttr<StrictFPAttr>()) { 1809 llvm::AttrBuilder FuncAttrs; 1810 FuncAttrs.addAttribute("strictfp"); 1811 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1812 } 1813 } 1814 1815 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1816 const Decl *D = GD.getDecl(); 1817 if (dyn_cast_or_null<NamedDecl>(D)) 1818 setGVProperties(GV, GD); 1819 else 1820 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1821 1822 if (D && D->hasAttr<UsedAttr>()) 1823 addUsedOrCompilerUsedGlobal(GV); 1824 1825 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1826 const auto *VD = cast<VarDecl>(D); 1827 if (VD->getType().isConstQualified() && 1828 VD->getStorageDuration() == SD_Static) 1829 addUsedOrCompilerUsedGlobal(GV); 1830 } 1831 } 1832 1833 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1834 llvm::AttrBuilder &Attrs) { 1835 // Add target-cpu and target-features attributes to functions. If 1836 // we have a decl for the function and it has a target attribute then 1837 // parse that and add it to the feature set. 1838 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1839 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1840 std::vector<std::string> Features; 1841 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1842 FD = FD ? FD->getMostRecentDecl() : FD; 1843 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1844 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1845 bool AddedAttr = false; 1846 if (TD || SD) { 1847 llvm::StringMap<bool> FeatureMap; 1848 getContext().getFunctionFeatureMap(FeatureMap, GD); 1849 1850 // Produce the canonical string for this set of features. 1851 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1852 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1853 1854 // Now add the target-cpu and target-features to the function. 1855 // While we populated the feature map above, we still need to 1856 // get and parse the target attribute so we can get the cpu for 1857 // the function. 1858 if (TD) { 1859 ParsedTargetAttr ParsedAttr = TD->parse(); 1860 if (!ParsedAttr.Architecture.empty() && 1861 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1862 TargetCPU = ParsedAttr.Architecture; 1863 TuneCPU = ""; // Clear the tune CPU. 1864 } 1865 if (!ParsedAttr.Tune.empty() && 1866 getTarget().isValidCPUName(ParsedAttr.Tune)) 1867 TuneCPU = ParsedAttr.Tune; 1868 } 1869 } else { 1870 // Otherwise just add the existing target cpu and target features to the 1871 // function. 1872 Features = getTarget().getTargetOpts().Features; 1873 } 1874 1875 if (!TargetCPU.empty()) { 1876 Attrs.addAttribute("target-cpu", TargetCPU); 1877 AddedAttr = true; 1878 } 1879 if (!TuneCPU.empty()) { 1880 Attrs.addAttribute("tune-cpu", TuneCPU); 1881 AddedAttr = true; 1882 } 1883 if (!Features.empty()) { 1884 llvm::sort(Features); 1885 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1886 AddedAttr = true; 1887 } 1888 1889 return AddedAttr; 1890 } 1891 1892 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1893 llvm::GlobalObject *GO) { 1894 const Decl *D = GD.getDecl(); 1895 SetCommonAttributes(GD, GO); 1896 1897 if (D) { 1898 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1899 if (D->hasAttr<RetainAttr>()) 1900 addUsedGlobal(GV); 1901 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1902 GV->addAttribute("bss-section", SA->getName()); 1903 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1904 GV->addAttribute("data-section", SA->getName()); 1905 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1906 GV->addAttribute("rodata-section", SA->getName()); 1907 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1908 GV->addAttribute("relro-section", SA->getName()); 1909 } 1910 1911 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1912 if (D->hasAttr<RetainAttr>()) 1913 addUsedGlobal(F); 1914 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1915 if (!D->getAttr<SectionAttr>()) 1916 F->addFnAttr("implicit-section-name", SA->getName()); 1917 1918 llvm::AttrBuilder Attrs; 1919 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1920 // We know that GetCPUAndFeaturesAttributes will always have the 1921 // newest set, since it has the newest possible FunctionDecl, so the 1922 // new ones should replace the old. 1923 llvm::AttrBuilder RemoveAttrs; 1924 RemoveAttrs.addAttribute("target-cpu"); 1925 RemoveAttrs.addAttribute("target-features"); 1926 RemoveAttrs.addAttribute("tune-cpu"); 1927 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1928 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1929 } 1930 } 1931 1932 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1933 GO->setSection(CSA->getName()); 1934 else if (const auto *SA = D->getAttr<SectionAttr>()) 1935 GO->setSection(SA->getName()); 1936 } 1937 1938 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1939 } 1940 1941 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1942 llvm::Function *F, 1943 const CGFunctionInfo &FI) { 1944 const Decl *D = GD.getDecl(); 1945 SetLLVMFunctionAttributes(GD, FI, F); 1946 SetLLVMFunctionAttributesForDefinition(D, F); 1947 1948 F->setLinkage(llvm::Function::InternalLinkage); 1949 1950 setNonAliasAttributes(GD, F); 1951 } 1952 1953 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1954 // Set linkage and visibility in case we never see a definition. 1955 LinkageInfo LV = ND->getLinkageAndVisibility(); 1956 // Don't set internal linkage on declarations. 1957 // "extern_weak" is overloaded in LLVM; we probably should have 1958 // separate linkage types for this. 1959 if (isExternallyVisible(LV.getLinkage()) && 1960 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1961 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1962 } 1963 1964 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1965 llvm::Function *F) { 1966 // Only if we are checking indirect calls. 1967 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1968 return; 1969 1970 // Non-static class methods are handled via vtable or member function pointer 1971 // checks elsewhere. 1972 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1973 return; 1974 1975 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1976 F->addTypeMetadata(0, MD); 1977 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1978 1979 // Emit a hash-based bit set entry for cross-DSO calls. 1980 if (CodeGenOpts.SanitizeCfiCrossDso) 1981 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1982 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1983 } 1984 1985 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1986 bool IsIncompleteFunction, 1987 bool IsThunk) { 1988 1989 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1990 // If this is an intrinsic function, set the function's attributes 1991 // to the intrinsic's attributes. 1992 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1993 return; 1994 } 1995 1996 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1997 1998 if (!IsIncompleteFunction) 1999 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 2000 2001 // Add the Returned attribute for "this", except for iOS 5 and earlier 2002 // where substantial code, including the libstdc++ dylib, was compiled with 2003 // GCC and does not actually return "this". 2004 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2005 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2006 assert(!F->arg_empty() && 2007 F->arg_begin()->getType() 2008 ->canLosslesslyBitCastTo(F->getReturnType()) && 2009 "unexpected this return"); 2010 F->addAttribute(1, llvm::Attribute::Returned); 2011 } 2012 2013 // Only a few attributes are set on declarations; these may later be 2014 // overridden by a definition. 2015 2016 setLinkageForGV(F, FD); 2017 setGVProperties(F, FD); 2018 2019 // Setup target-specific attributes. 2020 if (!IsIncompleteFunction && F->isDeclaration()) 2021 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2022 2023 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2024 F->setSection(CSA->getName()); 2025 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2026 F->setSection(SA->getName()); 2027 2028 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2029 if (FD->isInlineBuiltinDeclaration()) { 2030 const FunctionDecl *FDBody; 2031 bool HasBody = FD->hasBody(FDBody); 2032 (void)HasBody; 2033 assert(HasBody && "Inline builtin declarations should always have an " 2034 "available body!"); 2035 if (shouldEmitFunction(FDBody)) 2036 F->addAttribute(llvm::AttributeList::FunctionIndex, 2037 llvm::Attribute::NoBuiltin); 2038 } 2039 2040 if (FD->isReplaceableGlobalAllocationFunction()) { 2041 // A replaceable global allocation function does not act like a builtin by 2042 // default, only if it is invoked by a new-expression or delete-expression. 2043 F->addAttribute(llvm::AttributeList::FunctionIndex, 2044 llvm::Attribute::NoBuiltin); 2045 } 2046 2047 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2048 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2049 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2050 if (MD->isVirtual()) 2051 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2052 2053 // Don't emit entries for function declarations in the cross-DSO mode. This 2054 // is handled with better precision by the receiving DSO. But if jump tables 2055 // are non-canonical then we need type metadata in order to produce the local 2056 // jump table. 2057 if (!CodeGenOpts.SanitizeCfiCrossDso || 2058 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2059 CreateFunctionTypeMetadataForIcall(FD, F); 2060 2061 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2062 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2063 2064 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2065 // Annotate the callback behavior as metadata: 2066 // - The callback callee (as argument number). 2067 // - The callback payloads (as argument numbers). 2068 llvm::LLVMContext &Ctx = F->getContext(); 2069 llvm::MDBuilder MDB(Ctx); 2070 2071 // The payload indices are all but the first one in the encoding. The first 2072 // identifies the callback callee. 2073 int CalleeIdx = *CB->encoding_begin(); 2074 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2075 F->addMetadata(llvm::LLVMContext::MD_callback, 2076 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2077 CalleeIdx, PayloadIndices, 2078 /* VarArgsArePassed */ false)})); 2079 } 2080 } 2081 2082 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2083 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2084 "Only globals with definition can force usage."); 2085 LLVMUsed.emplace_back(GV); 2086 } 2087 2088 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2089 assert(!GV->isDeclaration() && 2090 "Only globals with definition can force usage."); 2091 LLVMCompilerUsed.emplace_back(GV); 2092 } 2093 2094 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2095 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2096 "Only globals with definition can force usage."); 2097 if (getTriple().isOSBinFormatELF()) 2098 LLVMCompilerUsed.emplace_back(GV); 2099 else 2100 LLVMUsed.emplace_back(GV); 2101 } 2102 2103 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2104 std::vector<llvm::WeakTrackingVH> &List) { 2105 // Don't create llvm.used if there is no need. 2106 if (List.empty()) 2107 return; 2108 2109 // Convert List to what ConstantArray needs. 2110 SmallVector<llvm::Constant*, 8> UsedArray; 2111 UsedArray.resize(List.size()); 2112 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2113 UsedArray[i] = 2114 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2115 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2116 } 2117 2118 if (UsedArray.empty()) 2119 return; 2120 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2121 2122 auto *GV = new llvm::GlobalVariable( 2123 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2124 llvm::ConstantArray::get(ATy, UsedArray), Name); 2125 2126 GV->setSection("llvm.metadata"); 2127 } 2128 2129 void CodeGenModule::emitLLVMUsed() { 2130 emitUsed(*this, "llvm.used", LLVMUsed); 2131 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2132 } 2133 2134 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2135 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2136 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2137 } 2138 2139 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2140 llvm::SmallString<32> Opt; 2141 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2142 if (Opt.empty()) 2143 return; 2144 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2145 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2146 } 2147 2148 void CodeGenModule::AddDependentLib(StringRef Lib) { 2149 auto &C = getLLVMContext(); 2150 if (getTarget().getTriple().isOSBinFormatELF()) { 2151 ELFDependentLibraries.push_back( 2152 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2153 return; 2154 } 2155 2156 llvm::SmallString<24> Opt; 2157 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2158 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2159 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2160 } 2161 2162 /// Add link options implied by the given module, including modules 2163 /// it depends on, using a postorder walk. 2164 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2165 SmallVectorImpl<llvm::MDNode *> &Metadata, 2166 llvm::SmallPtrSet<Module *, 16> &Visited) { 2167 // Import this module's parent. 2168 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2169 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2170 } 2171 2172 // Import this module's dependencies. 2173 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2174 if (Visited.insert(Mod->Imports[I - 1]).second) 2175 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2176 } 2177 2178 // Add linker options to link against the libraries/frameworks 2179 // described by this module. 2180 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2181 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2182 2183 // For modules that use export_as for linking, use that module 2184 // name instead. 2185 if (Mod->UseExportAsModuleLinkName) 2186 return; 2187 2188 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2189 // Link against a framework. Frameworks are currently Darwin only, so we 2190 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2191 if (Mod->LinkLibraries[I-1].IsFramework) { 2192 llvm::Metadata *Args[2] = { 2193 llvm::MDString::get(Context, "-framework"), 2194 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2195 2196 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2197 continue; 2198 } 2199 2200 // Link against a library. 2201 if (IsELF) { 2202 llvm::Metadata *Args[2] = { 2203 llvm::MDString::get(Context, "lib"), 2204 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2205 }; 2206 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2207 } else { 2208 llvm::SmallString<24> Opt; 2209 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2210 Mod->LinkLibraries[I - 1].Library, Opt); 2211 auto *OptString = llvm::MDString::get(Context, Opt); 2212 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2213 } 2214 } 2215 } 2216 2217 void CodeGenModule::EmitModuleLinkOptions() { 2218 // Collect the set of all of the modules we want to visit to emit link 2219 // options, which is essentially the imported modules and all of their 2220 // non-explicit child modules. 2221 llvm::SetVector<clang::Module *> LinkModules; 2222 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2223 SmallVector<clang::Module *, 16> Stack; 2224 2225 // Seed the stack with imported modules. 2226 for (Module *M : ImportedModules) { 2227 // Do not add any link flags when an implementation TU of a module imports 2228 // a header of that same module. 2229 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2230 !getLangOpts().isCompilingModule()) 2231 continue; 2232 if (Visited.insert(M).second) 2233 Stack.push_back(M); 2234 } 2235 2236 // Find all of the modules to import, making a little effort to prune 2237 // non-leaf modules. 2238 while (!Stack.empty()) { 2239 clang::Module *Mod = Stack.pop_back_val(); 2240 2241 bool AnyChildren = false; 2242 2243 // Visit the submodules of this module. 2244 for (const auto &SM : Mod->submodules()) { 2245 // Skip explicit children; they need to be explicitly imported to be 2246 // linked against. 2247 if (SM->IsExplicit) 2248 continue; 2249 2250 if (Visited.insert(SM).second) { 2251 Stack.push_back(SM); 2252 AnyChildren = true; 2253 } 2254 } 2255 2256 // We didn't find any children, so add this module to the list of 2257 // modules to link against. 2258 if (!AnyChildren) { 2259 LinkModules.insert(Mod); 2260 } 2261 } 2262 2263 // Add link options for all of the imported modules in reverse topological 2264 // order. We don't do anything to try to order import link flags with respect 2265 // to linker options inserted by things like #pragma comment(). 2266 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2267 Visited.clear(); 2268 for (Module *M : LinkModules) 2269 if (Visited.insert(M).second) 2270 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2271 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2272 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2273 2274 // Add the linker options metadata flag. 2275 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2276 for (auto *MD : LinkerOptionsMetadata) 2277 NMD->addOperand(MD); 2278 } 2279 2280 void CodeGenModule::EmitDeferred() { 2281 // Emit deferred declare target declarations. 2282 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2283 getOpenMPRuntime().emitDeferredTargetDecls(); 2284 2285 // Emit code for any potentially referenced deferred decls. Since a 2286 // previously unused static decl may become used during the generation of code 2287 // for a static function, iterate until no changes are made. 2288 2289 if (!DeferredVTables.empty()) { 2290 EmitDeferredVTables(); 2291 2292 // Emitting a vtable doesn't directly cause more vtables to 2293 // become deferred, although it can cause functions to be 2294 // emitted that then need those vtables. 2295 assert(DeferredVTables.empty()); 2296 } 2297 2298 // Emit CUDA/HIP static device variables referenced by host code only. 2299 if (getLangOpts().CUDA) 2300 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2301 DeferredDeclsToEmit.push_back(V); 2302 2303 // Stop if we're out of both deferred vtables and deferred declarations. 2304 if (DeferredDeclsToEmit.empty()) 2305 return; 2306 2307 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2308 // work, it will not interfere with this. 2309 std::vector<GlobalDecl> CurDeclsToEmit; 2310 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2311 2312 for (GlobalDecl &D : CurDeclsToEmit) { 2313 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2314 // to get GlobalValue with exactly the type we need, not something that 2315 // might had been created for another decl with the same mangled name but 2316 // different type. 2317 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2318 GetAddrOfGlobal(D, ForDefinition)); 2319 2320 // In case of different address spaces, we may still get a cast, even with 2321 // IsForDefinition equal to true. Query mangled names table to get 2322 // GlobalValue. 2323 if (!GV) 2324 GV = GetGlobalValue(getMangledName(D)); 2325 2326 // Make sure GetGlobalValue returned non-null. 2327 assert(GV); 2328 2329 // Check to see if we've already emitted this. This is necessary 2330 // for a couple of reasons: first, decls can end up in the 2331 // deferred-decls queue multiple times, and second, decls can end 2332 // up with definitions in unusual ways (e.g. by an extern inline 2333 // function acquiring a strong function redefinition). Just 2334 // ignore these cases. 2335 if (!GV->isDeclaration()) 2336 continue; 2337 2338 // If this is OpenMP, check if it is legal to emit this global normally. 2339 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2340 continue; 2341 2342 // Otherwise, emit the definition and move on to the next one. 2343 EmitGlobalDefinition(D, GV); 2344 2345 // If we found out that we need to emit more decls, do that recursively. 2346 // This has the advantage that the decls are emitted in a DFS and related 2347 // ones are close together, which is convenient for testing. 2348 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2349 EmitDeferred(); 2350 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2351 } 2352 } 2353 } 2354 2355 void CodeGenModule::EmitVTablesOpportunistically() { 2356 // Try to emit external vtables as available_externally if they have emitted 2357 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2358 // is not allowed to create new references to things that need to be emitted 2359 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2360 2361 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2362 && "Only emit opportunistic vtables with optimizations"); 2363 2364 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2365 assert(getVTables().isVTableExternal(RD) && 2366 "This queue should only contain external vtables"); 2367 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2368 VTables.GenerateClassData(RD); 2369 } 2370 OpportunisticVTables.clear(); 2371 } 2372 2373 void CodeGenModule::EmitGlobalAnnotations() { 2374 if (Annotations.empty()) 2375 return; 2376 2377 // Create a new global variable for the ConstantStruct in the Module. 2378 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2379 Annotations[0]->getType(), Annotations.size()), Annotations); 2380 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2381 llvm::GlobalValue::AppendingLinkage, 2382 Array, "llvm.global.annotations"); 2383 gv->setSection(AnnotationSection); 2384 } 2385 2386 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2387 llvm::Constant *&AStr = AnnotationStrings[Str]; 2388 if (AStr) 2389 return AStr; 2390 2391 // Not found yet, create a new global. 2392 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2393 auto *gv = 2394 new llvm::GlobalVariable(getModule(), s->getType(), true, 2395 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2396 gv->setSection(AnnotationSection); 2397 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2398 AStr = gv; 2399 return gv; 2400 } 2401 2402 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2403 SourceManager &SM = getContext().getSourceManager(); 2404 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2405 if (PLoc.isValid()) 2406 return EmitAnnotationString(PLoc.getFilename()); 2407 return EmitAnnotationString(SM.getBufferName(Loc)); 2408 } 2409 2410 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2411 SourceManager &SM = getContext().getSourceManager(); 2412 PresumedLoc PLoc = SM.getPresumedLoc(L); 2413 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2414 SM.getExpansionLineNumber(L); 2415 return llvm::ConstantInt::get(Int32Ty, LineNo); 2416 } 2417 2418 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2419 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2420 if (Exprs.empty()) 2421 return llvm::ConstantPointerNull::get(Int8PtrTy); 2422 2423 llvm::FoldingSetNodeID ID; 2424 for (Expr *E : Exprs) { 2425 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2426 } 2427 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2428 if (Lookup) 2429 return Lookup; 2430 2431 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2432 LLVMArgs.reserve(Exprs.size()); 2433 ConstantEmitter ConstEmiter(*this); 2434 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2435 const auto *CE = cast<clang::ConstantExpr>(E); 2436 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2437 CE->getType()); 2438 }); 2439 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2440 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2441 llvm::GlobalValue::PrivateLinkage, Struct, 2442 ".args"); 2443 GV->setSection(AnnotationSection); 2444 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2445 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2446 2447 Lookup = Bitcasted; 2448 return Bitcasted; 2449 } 2450 2451 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2452 const AnnotateAttr *AA, 2453 SourceLocation L) { 2454 // Get the globals for file name, annotation, and the line number. 2455 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2456 *UnitGV = EmitAnnotationUnit(L), 2457 *LineNoCst = EmitAnnotationLineNo(L), 2458 *Args = EmitAnnotationArgs(AA); 2459 2460 llvm::Constant *ASZeroGV = GV; 2461 if (GV->getAddressSpace() != 0) { 2462 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2463 GV, GV->getValueType()->getPointerTo(0)); 2464 } 2465 2466 // Create the ConstantStruct for the global annotation. 2467 llvm::Constant *Fields[] = { 2468 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2469 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2470 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2471 LineNoCst, 2472 Args, 2473 }; 2474 return llvm::ConstantStruct::getAnon(Fields); 2475 } 2476 2477 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2478 llvm::GlobalValue *GV) { 2479 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2480 // Get the struct elements for these annotations. 2481 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2482 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2483 } 2484 2485 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2486 SourceLocation Loc) const { 2487 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2488 // NoSanitize by function name. 2489 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2490 return true; 2491 // NoSanitize by location. 2492 if (Loc.isValid()) 2493 return NoSanitizeL.containsLocation(Kind, Loc); 2494 // If location is unknown, this may be a compiler-generated function. Assume 2495 // it's located in the main file. 2496 auto &SM = Context.getSourceManager(); 2497 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2498 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2499 } 2500 return false; 2501 } 2502 2503 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2504 SourceLocation Loc, QualType Ty, 2505 StringRef Category) const { 2506 // For now globals can be ignored only in ASan and KASan. 2507 const SanitizerMask EnabledAsanMask = 2508 LangOpts.Sanitize.Mask & 2509 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2510 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2511 SanitizerKind::MemTag); 2512 if (!EnabledAsanMask) 2513 return false; 2514 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2515 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2516 return true; 2517 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2518 return true; 2519 // Check global type. 2520 if (!Ty.isNull()) { 2521 // Drill down the array types: if global variable of a fixed type is 2522 // not sanitized, we also don't instrument arrays of them. 2523 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2524 Ty = AT->getElementType(); 2525 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2526 // Only record types (classes, structs etc.) are ignored. 2527 if (Ty->isRecordType()) { 2528 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2529 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2530 return true; 2531 } 2532 } 2533 return false; 2534 } 2535 2536 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2537 StringRef Category) const { 2538 const auto &XRayFilter = getContext().getXRayFilter(); 2539 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2540 auto Attr = ImbueAttr::NONE; 2541 if (Loc.isValid()) 2542 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2543 if (Attr == ImbueAttr::NONE) 2544 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2545 switch (Attr) { 2546 case ImbueAttr::NONE: 2547 return false; 2548 case ImbueAttr::ALWAYS: 2549 Fn->addFnAttr("function-instrument", "xray-always"); 2550 break; 2551 case ImbueAttr::ALWAYS_ARG1: 2552 Fn->addFnAttr("function-instrument", "xray-always"); 2553 Fn->addFnAttr("xray-log-args", "1"); 2554 break; 2555 case ImbueAttr::NEVER: 2556 Fn->addFnAttr("function-instrument", "xray-never"); 2557 break; 2558 } 2559 return true; 2560 } 2561 2562 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2563 SourceLocation Loc) const { 2564 const auto &ProfileList = getContext().getProfileList(); 2565 // If the profile list is empty, then instrument everything. 2566 if (ProfileList.isEmpty()) 2567 return false; 2568 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2569 // First, check the function name. 2570 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2571 if (V.hasValue()) 2572 return *V; 2573 // Next, check the source location. 2574 if (Loc.isValid()) { 2575 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2576 if (V.hasValue()) 2577 return *V; 2578 } 2579 // If location is unknown, this may be a compiler-generated function. Assume 2580 // it's located in the main file. 2581 auto &SM = Context.getSourceManager(); 2582 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2583 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2584 if (V.hasValue()) 2585 return *V; 2586 } 2587 return ProfileList.getDefault(); 2588 } 2589 2590 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2591 // Never defer when EmitAllDecls is specified. 2592 if (LangOpts.EmitAllDecls) 2593 return true; 2594 2595 if (CodeGenOpts.KeepStaticConsts) { 2596 const auto *VD = dyn_cast<VarDecl>(Global); 2597 if (VD && VD->getType().isConstQualified() && 2598 VD->getStorageDuration() == SD_Static) 2599 return true; 2600 } 2601 2602 return getContext().DeclMustBeEmitted(Global); 2603 } 2604 2605 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2606 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2607 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2608 // Implicit template instantiations may change linkage if they are later 2609 // explicitly instantiated, so they should not be emitted eagerly. 2610 return false; 2611 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2612 // not emit them eagerly unless we sure that the function must be emitted on 2613 // the host. 2614 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2615 !LangOpts.OpenMPIsDevice && 2616 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2617 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2618 return false; 2619 } 2620 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2621 if (Context.getInlineVariableDefinitionKind(VD) == 2622 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2623 // A definition of an inline constexpr static data member may change 2624 // linkage later if it's redeclared outside the class. 2625 return false; 2626 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2627 // codegen for global variables, because they may be marked as threadprivate. 2628 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2629 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2630 !isTypeConstant(Global->getType(), false) && 2631 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2632 return false; 2633 2634 return true; 2635 } 2636 2637 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2638 StringRef Name = getMangledName(GD); 2639 2640 // The UUID descriptor should be pointer aligned. 2641 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2642 2643 // Look for an existing global. 2644 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2645 return ConstantAddress(GV, Alignment); 2646 2647 ConstantEmitter Emitter(*this); 2648 llvm::Constant *Init; 2649 2650 APValue &V = GD->getAsAPValue(); 2651 if (!V.isAbsent()) { 2652 // If possible, emit the APValue version of the initializer. In particular, 2653 // this gets the type of the constant right. 2654 Init = Emitter.emitForInitializer( 2655 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2656 } else { 2657 // As a fallback, directly construct the constant. 2658 // FIXME: This may get padding wrong under esoteric struct layout rules. 2659 // MSVC appears to create a complete type 'struct __s_GUID' that it 2660 // presumably uses to represent these constants. 2661 MSGuidDecl::Parts Parts = GD->getParts(); 2662 llvm::Constant *Fields[4] = { 2663 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2664 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2665 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2666 llvm::ConstantDataArray::getRaw( 2667 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2668 Int8Ty)}; 2669 Init = llvm::ConstantStruct::getAnon(Fields); 2670 } 2671 2672 auto *GV = new llvm::GlobalVariable( 2673 getModule(), Init->getType(), 2674 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2675 if (supportsCOMDAT()) 2676 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2677 setDSOLocal(GV); 2678 2679 llvm::Constant *Addr = GV; 2680 if (!V.isAbsent()) { 2681 Emitter.finalize(GV); 2682 } else { 2683 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2684 Addr = llvm::ConstantExpr::getBitCast( 2685 GV, Ty->getPointerTo(GV->getAddressSpace())); 2686 } 2687 return ConstantAddress(Addr, Alignment); 2688 } 2689 2690 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2691 const TemplateParamObjectDecl *TPO) { 2692 StringRef Name = getMangledName(TPO); 2693 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2694 2695 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2696 return ConstantAddress(GV, Alignment); 2697 2698 ConstantEmitter Emitter(*this); 2699 llvm::Constant *Init = Emitter.emitForInitializer( 2700 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2701 2702 if (!Init) { 2703 ErrorUnsupported(TPO, "template parameter object"); 2704 return ConstantAddress::invalid(); 2705 } 2706 2707 auto *GV = new llvm::GlobalVariable( 2708 getModule(), Init->getType(), 2709 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2710 if (supportsCOMDAT()) 2711 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2712 Emitter.finalize(GV); 2713 2714 return ConstantAddress(GV, Alignment); 2715 } 2716 2717 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2718 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2719 assert(AA && "No alias?"); 2720 2721 CharUnits Alignment = getContext().getDeclAlign(VD); 2722 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2723 2724 // See if there is already something with the target's name in the module. 2725 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2726 if (Entry) { 2727 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2728 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2729 return ConstantAddress(Ptr, Alignment); 2730 } 2731 2732 llvm::Constant *Aliasee; 2733 if (isa<llvm::FunctionType>(DeclTy)) 2734 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2735 GlobalDecl(cast<FunctionDecl>(VD)), 2736 /*ForVTable=*/false); 2737 else 2738 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2739 llvm::PointerType::getUnqual(DeclTy), 2740 nullptr); 2741 2742 auto *F = cast<llvm::GlobalValue>(Aliasee); 2743 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2744 WeakRefReferences.insert(F); 2745 2746 return ConstantAddress(Aliasee, Alignment); 2747 } 2748 2749 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2750 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2751 2752 // Weak references don't produce any output by themselves. 2753 if (Global->hasAttr<WeakRefAttr>()) 2754 return; 2755 2756 // If this is an alias definition (which otherwise looks like a declaration) 2757 // emit it now. 2758 if (Global->hasAttr<AliasAttr>()) 2759 return EmitAliasDefinition(GD); 2760 2761 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2762 if (Global->hasAttr<IFuncAttr>()) 2763 return emitIFuncDefinition(GD); 2764 2765 // If this is a cpu_dispatch multiversion function, emit the resolver. 2766 if (Global->hasAttr<CPUDispatchAttr>()) 2767 return emitCPUDispatchDefinition(GD); 2768 2769 // If this is CUDA, be selective about which declarations we emit. 2770 if (LangOpts.CUDA) { 2771 if (LangOpts.CUDAIsDevice) { 2772 if (!Global->hasAttr<CUDADeviceAttr>() && 2773 !Global->hasAttr<CUDAGlobalAttr>() && 2774 !Global->hasAttr<CUDAConstantAttr>() && 2775 !Global->hasAttr<CUDASharedAttr>() && 2776 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2777 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2778 return; 2779 } else { 2780 // We need to emit host-side 'shadows' for all global 2781 // device-side variables because the CUDA runtime needs their 2782 // size and host-side address in order to provide access to 2783 // their device-side incarnations. 2784 2785 // So device-only functions are the only things we skip. 2786 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2787 Global->hasAttr<CUDADeviceAttr>()) 2788 return; 2789 2790 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2791 "Expected Variable or Function"); 2792 } 2793 } 2794 2795 if (LangOpts.OpenMP) { 2796 // If this is OpenMP, check if it is legal to emit this global normally. 2797 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2798 return; 2799 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2800 if (MustBeEmitted(Global)) 2801 EmitOMPDeclareReduction(DRD); 2802 return; 2803 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2804 if (MustBeEmitted(Global)) 2805 EmitOMPDeclareMapper(DMD); 2806 return; 2807 } 2808 } 2809 2810 // Ignore declarations, they will be emitted on their first use. 2811 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2812 // Forward declarations are emitted lazily on first use. 2813 if (!FD->doesThisDeclarationHaveABody()) { 2814 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2815 return; 2816 2817 StringRef MangledName = getMangledName(GD); 2818 2819 // Compute the function info and LLVM type. 2820 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2821 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2822 2823 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2824 /*DontDefer=*/false); 2825 return; 2826 } 2827 } else { 2828 const auto *VD = cast<VarDecl>(Global); 2829 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2830 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2831 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2832 if (LangOpts.OpenMP) { 2833 // Emit declaration of the must-be-emitted declare target variable. 2834 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2835 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2836 bool UnifiedMemoryEnabled = 2837 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2838 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2839 !UnifiedMemoryEnabled) { 2840 (void)GetAddrOfGlobalVar(VD); 2841 } else { 2842 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2843 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2844 UnifiedMemoryEnabled)) && 2845 "Link clause or to clause with unified memory expected."); 2846 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2847 } 2848 2849 return; 2850 } 2851 } 2852 // If this declaration may have caused an inline variable definition to 2853 // change linkage, make sure that it's emitted. 2854 if (Context.getInlineVariableDefinitionKind(VD) == 2855 ASTContext::InlineVariableDefinitionKind::Strong) 2856 GetAddrOfGlobalVar(VD); 2857 return; 2858 } 2859 } 2860 2861 // Defer code generation to first use when possible, e.g. if this is an inline 2862 // function. If the global must always be emitted, do it eagerly if possible 2863 // to benefit from cache locality. 2864 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2865 // Emit the definition if it can't be deferred. 2866 EmitGlobalDefinition(GD); 2867 return; 2868 } 2869 2870 // If we're deferring emission of a C++ variable with an 2871 // initializer, remember the order in which it appeared in the file. 2872 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2873 cast<VarDecl>(Global)->hasInit()) { 2874 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2875 CXXGlobalInits.push_back(nullptr); 2876 } 2877 2878 StringRef MangledName = getMangledName(GD); 2879 if (GetGlobalValue(MangledName) != nullptr) { 2880 // The value has already been used and should therefore be emitted. 2881 addDeferredDeclToEmit(GD); 2882 } else if (MustBeEmitted(Global)) { 2883 // The value must be emitted, but cannot be emitted eagerly. 2884 assert(!MayBeEmittedEagerly(Global)); 2885 addDeferredDeclToEmit(GD); 2886 } else { 2887 // Otherwise, remember that we saw a deferred decl with this name. The 2888 // first use of the mangled name will cause it to move into 2889 // DeferredDeclsToEmit. 2890 DeferredDecls[MangledName] = GD; 2891 } 2892 } 2893 2894 // Check if T is a class type with a destructor that's not dllimport. 2895 static bool HasNonDllImportDtor(QualType T) { 2896 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2897 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2898 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2899 return true; 2900 2901 return false; 2902 } 2903 2904 namespace { 2905 struct FunctionIsDirectlyRecursive 2906 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2907 const StringRef Name; 2908 const Builtin::Context &BI; 2909 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2910 : Name(N), BI(C) {} 2911 2912 bool VisitCallExpr(const CallExpr *E) { 2913 const FunctionDecl *FD = E->getDirectCallee(); 2914 if (!FD) 2915 return false; 2916 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2917 if (Attr && Name == Attr->getLabel()) 2918 return true; 2919 unsigned BuiltinID = FD->getBuiltinID(); 2920 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2921 return false; 2922 StringRef BuiltinName = BI.getName(BuiltinID); 2923 if (BuiltinName.startswith("__builtin_") && 2924 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2925 return true; 2926 } 2927 return false; 2928 } 2929 2930 bool VisitStmt(const Stmt *S) { 2931 for (const Stmt *Child : S->children()) 2932 if (Child && this->Visit(Child)) 2933 return true; 2934 return false; 2935 } 2936 }; 2937 2938 // Make sure we're not referencing non-imported vars or functions. 2939 struct DLLImportFunctionVisitor 2940 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2941 bool SafeToInline = true; 2942 2943 bool shouldVisitImplicitCode() const { return true; } 2944 2945 bool VisitVarDecl(VarDecl *VD) { 2946 if (VD->getTLSKind()) { 2947 // A thread-local variable cannot be imported. 2948 SafeToInline = false; 2949 return SafeToInline; 2950 } 2951 2952 // A variable definition might imply a destructor call. 2953 if (VD->isThisDeclarationADefinition()) 2954 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2955 2956 return SafeToInline; 2957 } 2958 2959 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2960 if (const auto *D = E->getTemporary()->getDestructor()) 2961 SafeToInline = D->hasAttr<DLLImportAttr>(); 2962 return SafeToInline; 2963 } 2964 2965 bool VisitDeclRefExpr(DeclRefExpr *E) { 2966 ValueDecl *VD = E->getDecl(); 2967 if (isa<FunctionDecl>(VD)) 2968 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2969 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2970 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2971 return SafeToInline; 2972 } 2973 2974 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2975 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2976 return SafeToInline; 2977 } 2978 2979 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2980 CXXMethodDecl *M = E->getMethodDecl(); 2981 if (!M) { 2982 // Call through a pointer to member function. This is safe to inline. 2983 SafeToInline = true; 2984 } else { 2985 SafeToInline = M->hasAttr<DLLImportAttr>(); 2986 } 2987 return SafeToInline; 2988 } 2989 2990 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2991 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2992 return SafeToInline; 2993 } 2994 2995 bool VisitCXXNewExpr(CXXNewExpr *E) { 2996 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2997 return SafeToInline; 2998 } 2999 }; 3000 } 3001 3002 // isTriviallyRecursive - Check if this function calls another 3003 // decl that, because of the asm attribute or the other decl being a builtin, 3004 // ends up pointing to itself. 3005 bool 3006 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3007 StringRef Name; 3008 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3009 // asm labels are a special kind of mangling we have to support. 3010 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3011 if (!Attr) 3012 return false; 3013 Name = Attr->getLabel(); 3014 } else { 3015 Name = FD->getName(); 3016 } 3017 3018 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3019 const Stmt *Body = FD->getBody(); 3020 return Body ? Walker.Visit(Body) : false; 3021 } 3022 3023 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3024 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3025 return true; 3026 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3027 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3028 return false; 3029 3030 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3031 // Check whether it would be safe to inline this dllimport function. 3032 DLLImportFunctionVisitor Visitor; 3033 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3034 if (!Visitor.SafeToInline) 3035 return false; 3036 3037 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3038 // Implicit destructor invocations aren't captured in the AST, so the 3039 // check above can't see them. Check for them manually here. 3040 for (const Decl *Member : Dtor->getParent()->decls()) 3041 if (isa<FieldDecl>(Member)) 3042 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3043 return false; 3044 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3045 if (HasNonDllImportDtor(B.getType())) 3046 return false; 3047 } 3048 } 3049 3050 // PR9614. Avoid cases where the source code is lying to us. An available 3051 // externally function should have an equivalent function somewhere else, 3052 // but a function that calls itself through asm label/`__builtin_` trickery is 3053 // clearly not equivalent to the real implementation. 3054 // This happens in glibc's btowc and in some configure checks. 3055 return !isTriviallyRecursive(F); 3056 } 3057 3058 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3059 return CodeGenOpts.OptimizationLevel > 0; 3060 } 3061 3062 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3063 llvm::GlobalValue *GV) { 3064 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3065 3066 if (FD->isCPUSpecificMultiVersion()) { 3067 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3068 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3069 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3070 // Requires multiple emits. 3071 } else 3072 EmitGlobalFunctionDefinition(GD, GV); 3073 } 3074 3075 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3076 const auto *D = cast<ValueDecl>(GD.getDecl()); 3077 3078 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3079 Context.getSourceManager(), 3080 "Generating code for declaration"); 3081 3082 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3083 // At -O0, don't generate IR for functions with available_externally 3084 // linkage. 3085 if (!shouldEmitFunction(GD)) 3086 return; 3087 3088 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3089 std::string Name; 3090 llvm::raw_string_ostream OS(Name); 3091 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3092 /*Qualified=*/true); 3093 return Name; 3094 }); 3095 3096 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3097 // Make sure to emit the definition(s) before we emit the thunks. 3098 // This is necessary for the generation of certain thunks. 3099 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3100 ABI->emitCXXStructor(GD); 3101 else if (FD->isMultiVersion()) 3102 EmitMultiVersionFunctionDefinition(GD, GV); 3103 else 3104 EmitGlobalFunctionDefinition(GD, GV); 3105 3106 if (Method->isVirtual()) 3107 getVTables().EmitThunks(GD); 3108 3109 return; 3110 } 3111 3112 if (FD->isMultiVersion()) 3113 return EmitMultiVersionFunctionDefinition(GD, GV); 3114 return EmitGlobalFunctionDefinition(GD, GV); 3115 } 3116 3117 if (const auto *VD = dyn_cast<VarDecl>(D)) 3118 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3119 3120 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3121 } 3122 3123 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3124 llvm::Function *NewFn); 3125 3126 static unsigned 3127 TargetMVPriority(const TargetInfo &TI, 3128 const CodeGenFunction::MultiVersionResolverOption &RO) { 3129 unsigned Priority = 0; 3130 for (StringRef Feat : RO.Conditions.Features) 3131 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3132 3133 if (!RO.Conditions.Architecture.empty()) 3134 Priority = std::max( 3135 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3136 return Priority; 3137 } 3138 3139 void CodeGenModule::emitMultiVersionFunctions() { 3140 for (GlobalDecl GD : MultiVersionFuncs) { 3141 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3142 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3143 getContext().forEachMultiversionedFunctionVersion( 3144 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3145 GlobalDecl CurGD{ 3146 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3147 StringRef MangledName = getMangledName(CurGD); 3148 llvm::Constant *Func = GetGlobalValue(MangledName); 3149 if (!Func) { 3150 if (CurFD->isDefined()) { 3151 EmitGlobalFunctionDefinition(CurGD, nullptr); 3152 Func = GetGlobalValue(MangledName); 3153 } else { 3154 const CGFunctionInfo &FI = 3155 getTypes().arrangeGlobalDeclaration(GD); 3156 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3157 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3158 /*DontDefer=*/false, ForDefinition); 3159 } 3160 assert(Func && "This should have just been created"); 3161 } 3162 3163 const auto *TA = CurFD->getAttr<TargetAttr>(); 3164 llvm::SmallVector<StringRef, 8> Feats; 3165 TA->getAddedFeatures(Feats); 3166 3167 Options.emplace_back(cast<llvm::Function>(Func), 3168 TA->getArchitecture(), Feats); 3169 }); 3170 3171 llvm::Function *ResolverFunc; 3172 const TargetInfo &TI = getTarget(); 3173 3174 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3175 ResolverFunc = cast<llvm::Function>( 3176 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3177 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3178 } else { 3179 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3180 } 3181 3182 if (supportsCOMDAT()) 3183 ResolverFunc->setComdat( 3184 getModule().getOrInsertComdat(ResolverFunc->getName())); 3185 3186 llvm::stable_sort( 3187 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3188 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3189 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3190 }); 3191 CodeGenFunction CGF(*this); 3192 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3193 } 3194 } 3195 3196 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3197 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3198 assert(FD && "Not a FunctionDecl?"); 3199 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3200 assert(DD && "Not a cpu_dispatch Function?"); 3201 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3202 3203 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3204 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3205 DeclTy = getTypes().GetFunctionType(FInfo); 3206 } 3207 3208 StringRef ResolverName = getMangledName(GD); 3209 3210 llvm::Type *ResolverType; 3211 GlobalDecl ResolverGD; 3212 if (getTarget().supportsIFunc()) 3213 ResolverType = llvm::FunctionType::get( 3214 llvm::PointerType::get(DeclTy, 3215 Context.getTargetAddressSpace(FD->getType())), 3216 false); 3217 else { 3218 ResolverType = DeclTy; 3219 ResolverGD = GD; 3220 } 3221 3222 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3223 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3224 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3225 if (supportsCOMDAT()) 3226 ResolverFunc->setComdat( 3227 getModule().getOrInsertComdat(ResolverFunc->getName())); 3228 3229 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3230 const TargetInfo &Target = getTarget(); 3231 unsigned Index = 0; 3232 for (const IdentifierInfo *II : DD->cpus()) { 3233 // Get the name of the target function so we can look it up/create it. 3234 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3235 getCPUSpecificMangling(*this, II->getName()); 3236 3237 llvm::Constant *Func = GetGlobalValue(MangledName); 3238 3239 if (!Func) { 3240 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3241 if (ExistingDecl.getDecl() && 3242 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3243 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3244 Func = GetGlobalValue(MangledName); 3245 } else { 3246 if (!ExistingDecl.getDecl()) 3247 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3248 3249 Func = GetOrCreateLLVMFunction( 3250 MangledName, DeclTy, ExistingDecl, 3251 /*ForVTable=*/false, /*DontDefer=*/true, 3252 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3253 } 3254 } 3255 3256 llvm::SmallVector<StringRef, 32> Features; 3257 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3258 llvm::transform(Features, Features.begin(), 3259 [](StringRef Str) { return Str.substr(1); }); 3260 Features.erase(std::remove_if( 3261 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3262 return !Target.validateCpuSupports(Feat); 3263 }), Features.end()); 3264 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3265 ++Index; 3266 } 3267 3268 llvm::sort( 3269 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3270 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3271 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3272 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3273 }); 3274 3275 // If the list contains multiple 'default' versions, such as when it contains 3276 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3277 // always run on at least a 'pentium'). We do this by deleting the 'least 3278 // advanced' (read, lowest mangling letter). 3279 while (Options.size() > 1 && 3280 CodeGenFunction::GetX86CpuSupportsMask( 3281 (Options.end() - 2)->Conditions.Features) == 0) { 3282 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3283 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3284 if (LHSName.compare(RHSName) < 0) 3285 Options.erase(Options.end() - 2); 3286 else 3287 Options.erase(Options.end() - 1); 3288 } 3289 3290 CodeGenFunction CGF(*this); 3291 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3292 3293 if (getTarget().supportsIFunc()) { 3294 std::string AliasName = getMangledNameImpl( 3295 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3296 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3297 if (!AliasFunc) { 3298 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3299 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3300 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3301 auto *GA = llvm::GlobalAlias::create( 3302 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3303 GA->setLinkage(llvm::Function::WeakODRLinkage); 3304 SetCommonAttributes(GD, GA); 3305 } 3306 } 3307 } 3308 3309 /// If a dispatcher for the specified mangled name is not in the module, create 3310 /// and return an llvm Function with the specified type. 3311 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3312 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3313 std::string MangledName = 3314 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3315 3316 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3317 // a separate resolver). 3318 std::string ResolverName = MangledName; 3319 if (getTarget().supportsIFunc()) 3320 ResolverName += ".ifunc"; 3321 else if (FD->isTargetMultiVersion()) 3322 ResolverName += ".resolver"; 3323 3324 // If this already exists, just return that one. 3325 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3326 return ResolverGV; 3327 3328 // Since this is the first time we've created this IFunc, make sure 3329 // that we put this multiversioned function into the list to be 3330 // replaced later if necessary (target multiversioning only). 3331 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3332 MultiVersionFuncs.push_back(GD); 3333 3334 if (getTarget().supportsIFunc()) { 3335 llvm::Type *ResolverType = llvm::FunctionType::get( 3336 llvm::PointerType::get( 3337 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3338 false); 3339 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3340 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3341 /*ForVTable=*/false); 3342 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3343 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3344 GIF->setName(ResolverName); 3345 SetCommonAttributes(FD, GIF); 3346 3347 return GIF; 3348 } 3349 3350 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3351 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3352 assert(isa<llvm::GlobalValue>(Resolver) && 3353 "Resolver should be created for the first time"); 3354 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3355 return Resolver; 3356 } 3357 3358 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3359 /// module, create and return an llvm Function with the specified type. If there 3360 /// is something in the module with the specified name, return it potentially 3361 /// bitcasted to the right type. 3362 /// 3363 /// If D is non-null, it specifies a decl that correspond to this. This is used 3364 /// to set the attributes on the function when it is first created. 3365 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3366 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3367 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3368 ForDefinition_t IsForDefinition) { 3369 const Decl *D = GD.getDecl(); 3370 3371 // Any attempts to use a MultiVersion function should result in retrieving 3372 // the iFunc instead. Name Mangling will handle the rest of the changes. 3373 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3374 // For the device mark the function as one that should be emitted. 3375 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3376 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3377 !DontDefer && !IsForDefinition) { 3378 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3379 GlobalDecl GDDef; 3380 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3381 GDDef = GlobalDecl(CD, GD.getCtorType()); 3382 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3383 GDDef = GlobalDecl(DD, GD.getDtorType()); 3384 else 3385 GDDef = GlobalDecl(FDDef); 3386 EmitGlobal(GDDef); 3387 } 3388 } 3389 3390 if (FD->isMultiVersion()) { 3391 if (FD->hasAttr<TargetAttr>()) 3392 UpdateMultiVersionNames(GD, FD); 3393 if (!IsForDefinition) 3394 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3395 } 3396 } 3397 3398 // Lookup the entry, lazily creating it if necessary. 3399 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3400 if (Entry) { 3401 if (WeakRefReferences.erase(Entry)) { 3402 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3403 if (FD && !FD->hasAttr<WeakAttr>()) 3404 Entry->setLinkage(llvm::Function::ExternalLinkage); 3405 } 3406 3407 // Handle dropped DLL attributes. 3408 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3409 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3410 setDSOLocal(Entry); 3411 } 3412 3413 // If there are two attempts to define the same mangled name, issue an 3414 // error. 3415 if (IsForDefinition && !Entry->isDeclaration()) { 3416 GlobalDecl OtherGD; 3417 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3418 // to make sure that we issue an error only once. 3419 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3420 (GD.getCanonicalDecl().getDecl() != 3421 OtherGD.getCanonicalDecl().getDecl()) && 3422 DiagnosedConflictingDefinitions.insert(GD).second) { 3423 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3424 << MangledName; 3425 getDiags().Report(OtherGD.getDecl()->getLocation(), 3426 diag::note_previous_definition); 3427 } 3428 } 3429 3430 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3431 (Entry->getValueType() == Ty)) { 3432 return Entry; 3433 } 3434 3435 // Make sure the result is of the correct type. 3436 // (If function is requested for a definition, we always need to create a new 3437 // function, not just return a bitcast.) 3438 if (!IsForDefinition) 3439 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3440 } 3441 3442 // This function doesn't have a complete type (for example, the return 3443 // type is an incomplete struct). Use a fake type instead, and make 3444 // sure not to try to set attributes. 3445 bool IsIncompleteFunction = false; 3446 3447 llvm::FunctionType *FTy; 3448 if (isa<llvm::FunctionType>(Ty)) { 3449 FTy = cast<llvm::FunctionType>(Ty); 3450 } else { 3451 FTy = llvm::FunctionType::get(VoidTy, false); 3452 IsIncompleteFunction = true; 3453 } 3454 3455 llvm::Function *F = 3456 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3457 Entry ? StringRef() : MangledName, &getModule()); 3458 3459 // If we already created a function with the same mangled name (but different 3460 // type) before, take its name and add it to the list of functions to be 3461 // replaced with F at the end of CodeGen. 3462 // 3463 // This happens if there is a prototype for a function (e.g. "int f()") and 3464 // then a definition of a different type (e.g. "int f(int x)"). 3465 if (Entry) { 3466 F->takeName(Entry); 3467 3468 // This might be an implementation of a function without a prototype, in 3469 // which case, try to do special replacement of calls which match the new 3470 // prototype. The really key thing here is that we also potentially drop 3471 // arguments from the call site so as to make a direct call, which makes the 3472 // inliner happier and suppresses a number of optimizer warnings (!) about 3473 // dropping arguments. 3474 if (!Entry->use_empty()) { 3475 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3476 Entry->removeDeadConstantUsers(); 3477 } 3478 3479 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3480 F, Entry->getValueType()->getPointerTo()); 3481 addGlobalValReplacement(Entry, BC); 3482 } 3483 3484 assert(F->getName() == MangledName && "name was uniqued!"); 3485 if (D) 3486 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3487 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3488 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3489 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3490 } 3491 3492 if (!DontDefer) { 3493 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3494 // each other bottoming out with the base dtor. Therefore we emit non-base 3495 // dtors on usage, even if there is no dtor definition in the TU. 3496 if (D && isa<CXXDestructorDecl>(D) && 3497 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3498 GD.getDtorType())) 3499 addDeferredDeclToEmit(GD); 3500 3501 // This is the first use or definition of a mangled name. If there is a 3502 // deferred decl with this name, remember that we need to emit it at the end 3503 // of the file. 3504 auto DDI = DeferredDecls.find(MangledName); 3505 if (DDI != DeferredDecls.end()) { 3506 // Move the potentially referenced deferred decl to the 3507 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3508 // don't need it anymore). 3509 addDeferredDeclToEmit(DDI->second); 3510 DeferredDecls.erase(DDI); 3511 3512 // Otherwise, there are cases we have to worry about where we're 3513 // using a declaration for which we must emit a definition but where 3514 // we might not find a top-level definition: 3515 // - member functions defined inline in their classes 3516 // - friend functions defined inline in some class 3517 // - special member functions with implicit definitions 3518 // If we ever change our AST traversal to walk into class methods, 3519 // this will be unnecessary. 3520 // 3521 // We also don't emit a definition for a function if it's going to be an 3522 // entry in a vtable, unless it's already marked as used. 3523 } else if (getLangOpts().CPlusPlus && D) { 3524 // Look for a declaration that's lexically in a record. 3525 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3526 FD = FD->getPreviousDecl()) { 3527 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3528 if (FD->doesThisDeclarationHaveABody()) { 3529 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3530 break; 3531 } 3532 } 3533 } 3534 } 3535 } 3536 3537 // Make sure the result is of the requested type. 3538 if (!IsIncompleteFunction) { 3539 assert(F->getFunctionType() == Ty); 3540 return F; 3541 } 3542 3543 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3544 return llvm::ConstantExpr::getBitCast(F, PTy); 3545 } 3546 3547 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3548 /// non-null, then this function will use the specified type if it has to 3549 /// create it (this occurs when we see a definition of the function). 3550 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3551 llvm::Type *Ty, 3552 bool ForVTable, 3553 bool DontDefer, 3554 ForDefinition_t IsForDefinition) { 3555 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3556 "consteval function should never be emitted"); 3557 // If there was no specific requested type, just convert it now. 3558 if (!Ty) { 3559 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3560 Ty = getTypes().ConvertType(FD->getType()); 3561 } 3562 3563 // Devirtualized destructor calls may come through here instead of via 3564 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3565 // of the complete destructor when necessary. 3566 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3567 if (getTarget().getCXXABI().isMicrosoft() && 3568 GD.getDtorType() == Dtor_Complete && 3569 DD->getParent()->getNumVBases() == 0) 3570 GD = GlobalDecl(DD, Dtor_Base); 3571 } 3572 3573 StringRef MangledName = getMangledName(GD); 3574 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3575 /*IsThunk=*/false, llvm::AttributeList(), 3576 IsForDefinition); 3577 } 3578 3579 static const FunctionDecl * 3580 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3581 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3582 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3583 3584 IdentifierInfo &CII = C.Idents.get(Name); 3585 for (const auto &Result : DC->lookup(&CII)) 3586 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3587 return FD; 3588 3589 if (!C.getLangOpts().CPlusPlus) 3590 return nullptr; 3591 3592 // Demangle the premangled name from getTerminateFn() 3593 IdentifierInfo &CXXII = 3594 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3595 ? C.Idents.get("terminate") 3596 : C.Idents.get(Name); 3597 3598 for (const auto &N : {"__cxxabiv1", "std"}) { 3599 IdentifierInfo &NS = C.Idents.get(N); 3600 for (const auto &Result : DC->lookup(&NS)) { 3601 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3602 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3603 for (const auto &Result : LSD->lookup(&NS)) 3604 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3605 break; 3606 3607 if (ND) 3608 for (const auto &Result : ND->lookup(&CXXII)) 3609 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3610 return FD; 3611 } 3612 } 3613 3614 return nullptr; 3615 } 3616 3617 /// CreateRuntimeFunction - Create a new runtime function with the specified 3618 /// type and name. 3619 llvm::FunctionCallee 3620 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3621 llvm::AttributeList ExtraAttrs, bool Local, 3622 bool AssumeConvergent) { 3623 if (AssumeConvergent) { 3624 ExtraAttrs = 3625 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3626 llvm::Attribute::Convergent); 3627 } 3628 3629 llvm::Constant *C = 3630 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3631 /*DontDefer=*/false, /*IsThunk=*/false, 3632 ExtraAttrs); 3633 3634 if (auto *F = dyn_cast<llvm::Function>(C)) { 3635 if (F->empty()) { 3636 F->setCallingConv(getRuntimeCC()); 3637 3638 // In Windows Itanium environments, try to mark runtime functions 3639 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3640 // will link their standard library statically or dynamically. Marking 3641 // functions imported when they are not imported can cause linker errors 3642 // and warnings. 3643 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3644 !getCodeGenOpts().LTOVisibilityPublicStd) { 3645 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3646 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3647 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3648 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3649 } 3650 } 3651 setDSOLocal(F); 3652 } 3653 } 3654 3655 return {FTy, C}; 3656 } 3657 3658 /// isTypeConstant - Determine whether an object of this type can be emitted 3659 /// as a constant. 3660 /// 3661 /// If ExcludeCtor is true, the duration when the object's constructor runs 3662 /// will not be considered. The caller will need to verify that the object is 3663 /// not written to during its construction. 3664 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3665 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3666 return false; 3667 3668 if (Context.getLangOpts().CPlusPlus) { 3669 if (const CXXRecordDecl *Record 3670 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3671 return ExcludeCtor && !Record->hasMutableFields() && 3672 Record->hasTrivialDestructor(); 3673 } 3674 3675 return true; 3676 } 3677 3678 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3679 /// create and return an llvm GlobalVariable with the specified type. If there 3680 /// is something in the module with the specified name, return it potentially 3681 /// bitcasted to the right type. 3682 /// 3683 /// If D is non-null, it specifies a decl that correspond to this. This is used 3684 /// to set the attributes on the global when it is first created. 3685 /// 3686 /// If IsForDefinition is true, it is guaranteed that an actual global with 3687 /// type Ty will be returned, not conversion of a variable with the same 3688 /// mangled name but some other type. 3689 llvm::Constant * 3690 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3691 llvm::PointerType *Ty, 3692 const VarDecl *D, 3693 ForDefinition_t IsForDefinition) { 3694 // Lookup the entry, lazily creating it if necessary. 3695 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3696 if (Entry) { 3697 if (WeakRefReferences.erase(Entry)) { 3698 if (D && !D->hasAttr<WeakAttr>()) 3699 Entry->setLinkage(llvm::Function::ExternalLinkage); 3700 } 3701 3702 // Handle dropped DLL attributes. 3703 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3704 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3705 3706 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3707 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3708 3709 if (Entry->getType() == Ty) 3710 return Entry; 3711 3712 // If there are two attempts to define the same mangled name, issue an 3713 // error. 3714 if (IsForDefinition && !Entry->isDeclaration()) { 3715 GlobalDecl OtherGD; 3716 const VarDecl *OtherD; 3717 3718 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3719 // to make sure that we issue an error only once. 3720 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3721 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3722 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3723 OtherD->hasInit() && 3724 DiagnosedConflictingDefinitions.insert(D).second) { 3725 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3726 << MangledName; 3727 getDiags().Report(OtherGD.getDecl()->getLocation(), 3728 diag::note_previous_definition); 3729 } 3730 } 3731 3732 // Make sure the result is of the correct type. 3733 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3734 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3735 3736 // (If global is requested for a definition, we always need to create a new 3737 // global, not just return a bitcast.) 3738 if (!IsForDefinition) 3739 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3740 } 3741 3742 auto AddrSpace = GetGlobalVarAddressSpace(D); 3743 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3744 3745 auto *GV = new llvm::GlobalVariable( 3746 getModule(), Ty->getElementType(), false, 3747 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3748 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3749 3750 // If we already created a global with the same mangled name (but different 3751 // type) before, take its name and remove it from its parent. 3752 if (Entry) { 3753 GV->takeName(Entry); 3754 3755 if (!Entry->use_empty()) { 3756 llvm::Constant *NewPtrForOldDecl = 3757 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3758 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3759 } 3760 3761 Entry->eraseFromParent(); 3762 } 3763 3764 // This is the first use or definition of a mangled name. If there is a 3765 // deferred decl with this name, remember that we need to emit it at the end 3766 // of the file. 3767 auto DDI = DeferredDecls.find(MangledName); 3768 if (DDI != DeferredDecls.end()) { 3769 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3770 // list, and remove it from DeferredDecls (since we don't need it anymore). 3771 addDeferredDeclToEmit(DDI->second); 3772 DeferredDecls.erase(DDI); 3773 } 3774 3775 // Handle things which are present even on external declarations. 3776 if (D) { 3777 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3778 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3779 3780 // FIXME: This code is overly simple and should be merged with other global 3781 // handling. 3782 GV->setConstant(isTypeConstant(D->getType(), false)); 3783 3784 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3785 3786 setLinkageForGV(GV, D); 3787 3788 if (D->getTLSKind()) { 3789 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3790 CXXThreadLocals.push_back(D); 3791 setTLSMode(GV, *D); 3792 } 3793 3794 setGVProperties(GV, D); 3795 3796 // If required by the ABI, treat declarations of static data members with 3797 // inline initializers as definitions. 3798 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3799 EmitGlobalVarDefinition(D); 3800 } 3801 3802 // Emit section information for extern variables. 3803 if (D->hasExternalStorage()) { 3804 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3805 GV->setSection(SA->getName()); 3806 } 3807 3808 // Handle XCore specific ABI requirements. 3809 if (getTriple().getArch() == llvm::Triple::xcore && 3810 D->getLanguageLinkage() == CLanguageLinkage && 3811 D->getType().isConstant(Context) && 3812 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3813 GV->setSection(".cp.rodata"); 3814 3815 // Check if we a have a const declaration with an initializer, we may be 3816 // able to emit it as available_externally to expose it's value to the 3817 // optimizer. 3818 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3819 D->getType().isConstQualified() && !GV->hasInitializer() && 3820 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3821 const auto *Record = 3822 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3823 bool HasMutableFields = Record && Record->hasMutableFields(); 3824 if (!HasMutableFields) { 3825 const VarDecl *InitDecl; 3826 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3827 if (InitExpr) { 3828 ConstantEmitter emitter(*this); 3829 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3830 if (Init) { 3831 auto *InitType = Init->getType(); 3832 if (GV->getValueType() != InitType) { 3833 // The type of the initializer does not match the definition. 3834 // This happens when an initializer has a different type from 3835 // the type of the global (because of padding at the end of a 3836 // structure for instance). 3837 GV->setName(StringRef()); 3838 // Make a new global with the correct type, this is now guaranteed 3839 // to work. 3840 auto *NewGV = cast<llvm::GlobalVariable>( 3841 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3842 ->stripPointerCasts()); 3843 3844 // Erase the old global, since it is no longer used. 3845 GV->eraseFromParent(); 3846 GV = NewGV; 3847 } else { 3848 GV->setInitializer(Init); 3849 GV->setConstant(true); 3850 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3851 } 3852 emitter.finalize(GV); 3853 } 3854 } 3855 } 3856 } 3857 } 3858 3859 if (GV->isDeclaration()) { 3860 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3861 // External HIP managed variables needed to be recorded for transformation 3862 // in both device and host compilations. 3863 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 3864 D->hasExternalStorage()) 3865 getCUDARuntime().handleVarRegistration(D, *GV); 3866 } 3867 3868 LangAS ExpectedAS = 3869 D ? D->getType().getAddressSpace() 3870 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3871 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3872 Ty->getPointerAddressSpace()); 3873 if (AddrSpace != ExpectedAS) 3874 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3875 ExpectedAS, Ty); 3876 3877 return GV; 3878 } 3879 3880 llvm::Constant * 3881 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3882 const Decl *D = GD.getDecl(); 3883 3884 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3885 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3886 /*DontDefer=*/false, IsForDefinition); 3887 3888 if (isa<CXXMethodDecl>(D)) { 3889 auto FInfo = 3890 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3891 auto Ty = getTypes().GetFunctionType(*FInfo); 3892 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3893 IsForDefinition); 3894 } 3895 3896 if (isa<FunctionDecl>(D)) { 3897 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3898 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3899 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3900 IsForDefinition); 3901 } 3902 3903 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3904 } 3905 3906 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3907 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3908 unsigned Alignment) { 3909 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3910 llvm::GlobalVariable *OldGV = nullptr; 3911 3912 if (GV) { 3913 // Check if the variable has the right type. 3914 if (GV->getValueType() == Ty) 3915 return GV; 3916 3917 // Because C++ name mangling, the only way we can end up with an already 3918 // existing global with the same name is if it has been declared extern "C". 3919 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3920 OldGV = GV; 3921 } 3922 3923 // Create a new variable. 3924 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3925 Linkage, nullptr, Name); 3926 3927 if (OldGV) { 3928 // Replace occurrences of the old variable if needed. 3929 GV->takeName(OldGV); 3930 3931 if (!OldGV->use_empty()) { 3932 llvm::Constant *NewPtrForOldDecl = 3933 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3934 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3935 } 3936 3937 OldGV->eraseFromParent(); 3938 } 3939 3940 if (supportsCOMDAT() && GV->isWeakForLinker() && 3941 !GV->hasAvailableExternallyLinkage()) 3942 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3943 3944 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3945 3946 return GV; 3947 } 3948 3949 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3950 /// given global variable. If Ty is non-null and if the global doesn't exist, 3951 /// then it will be created with the specified type instead of whatever the 3952 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3953 /// that an actual global with type Ty will be returned, not conversion of a 3954 /// variable with the same mangled name but some other type. 3955 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3956 llvm::Type *Ty, 3957 ForDefinition_t IsForDefinition) { 3958 assert(D->hasGlobalStorage() && "Not a global variable"); 3959 QualType ASTTy = D->getType(); 3960 if (!Ty) 3961 Ty = getTypes().ConvertTypeForMem(ASTTy); 3962 3963 llvm::PointerType *PTy = 3964 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3965 3966 StringRef MangledName = getMangledName(D); 3967 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3968 } 3969 3970 /// CreateRuntimeVariable - Create a new runtime global variable with the 3971 /// specified type and name. 3972 llvm::Constant * 3973 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3974 StringRef Name) { 3975 auto PtrTy = 3976 getContext().getLangOpts().OpenCL 3977 ? llvm::PointerType::get( 3978 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3979 : llvm::PointerType::getUnqual(Ty); 3980 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3981 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3982 return Ret; 3983 } 3984 3985 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3986 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3987 3988 StringRef MangledName = getMangledName(D); 3989 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3990 3991 // We already have a definition, not declaration, with the same mangled name. 3992 // Emitting of declaration is not required (and actually overwrites emitted 3993 // definition). 3994 if (GV && !GV->isDeclaration()) 3995 return; 3996 3997 // If we have not seen a reference to this variable yet, place it into the 3998 // deferred declarations table to be emitted if needed later. 3999 if (!MustBeEmitted(D) && !GV) { 4000 DeferredDecls[MangledName] = D; 4001 return; 4002 } 4003 4004 // The tentative definition is the only definition. 4005 EmitGlobalVarDefinition(D); 4006 } 4007 4008 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4009 EmitExternalVarDeclaration(D); 4010 } 4011 4012 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4013 return Context.toCharUnitsFromBits( 4014 getDataLayout().getTypeStoreSizeInBits(Ty)); 4015 } 4016 4017 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4018 LangAS AddrSpace = LangAS::Default; 4019 if (LangOpts.OpenCL) { 4020 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4021 assert(AddrSpace == LangAS::opencl_global || 4022 AddrSpace == LangAS::opencl_global_device || 4023 AddrSpace == LangAS::opencl_global_host || 4024 AddrSpace == LangAS::opencl_constant || 4025 AddrSpace == LangAS::opencl_local || 4026 AddrSpace >= LangAS::FirstTargetAddressSpace); 4027 return AddrSpace; 4028 } 4029 4030 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4031 if (D && D->hasAttr<CUDAConstantAttr>()) 4032 return LangAS::cuda_constant; 4033 else if (D && D->hasAttr<CUDASharedAttr>()) 4034 return LangAS::cuda_shared; 4035 else if (D && D->hasAttr<CUDADeviceAttr>()) 4036 return LangAS::cuda_device; 4037 else if (D && D->getType().isConstQualified()) 4038 return LangAS::cuda_constant; 4039 else 4040 return LangAS::cuda_device; 4041 } 4042 4043 if (LangOpts.OpenMP) { 4044 LangAS AS; 4045 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4046 return AS; 4047 } 4048 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4049 } 4050 4051 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4052 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4053 if (LangOpts.OpenCL) 4054 return LangAS::opencl_constant; 4055 if (auto AS = getTarget().getConstantAddressSpace()) 4056 return AS.getValue(); 4057 return LangAS::Default; 4058 } 4059 4060 // In address space agnostic languages, string literals are in default address 4061 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4062 // emitted in constant address space in LLVM IR. To be consistent with other 4063 // parts of AST, string literal global variables in constant address space 4064 // need to be casted to default address space before being put into address 4065 // map and referenced by other part of CodeGen. 4066 // In OpenCL, string literals are in constant address space in AST, therefore 4067 // they should not be casted to default address space. 4068 static llvm::Constant * 4069 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4070 llvm::GlobalVariable *GV) { 4071 llvm::Constant *Cast = GV; 4072 if (!CGM.getLangOpts().OpenCL) { 4073 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4074 if (AS != LangAS::Default) 4075 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4076 CGM, GV, AS.getValue(), LangAS::Default, 4077 GV->getValueType()->getPointerTo( 4078 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4079 } 4080 } 4081 return Cast; 4082 } 4083 4084 template<typename SomeDecl> 4085 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4086 llvm::GlobalValue *GV) { 4087 if (!getLangOpts().CPlusPlus) 4088 return; 4089 4090 // Must have 'used' attribute, or else inline assembly can't rely on 4091 // the name existing. 4092 if (!D->template hasAttr<UsedAttr>()) 4093 return; 4094 4095 // Must have internal linkage and an ordinary name. 4096 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4097 return; 4098 4099 // Must be in an extern "C" context. Entities declared directly within 4100 // a record are not extern "C" even if the record is in such a context. 4101 const SomeDecl *First = D->getFirstDecl(); 4102 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4103 return; 4104 4105 // OK, this is an internal linkage entity inside an extern "C" linkage 4106 // specification. Make a note of that so we can give it the "expected" 4107 // mangled name if nothing else is using that name. 4108 std::pair<StaticExternCMap::iterator, bool> R = 4109 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4110 4111 // If we have multiple internal linkage entities with the same name 4112 // in extern "C" regions, none of them gets that name. 4113 if (!R.second) 4114 R.first->second = nullptr; 4115 } 4116 4117 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4118 if (!CGM.supportsCOMDAT()) 4119 return false; 4120 4121 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4122 // them being "merged" by the COMDAT Folding linker optimization. 4123 if (D.hasAttr<CUDAGlobalAttr>()) 4124 return false; 4125 4126 if (D.hasAttr<SelectAnyAttr>()) 4127 return true; 4128 4129 GVALinkage Linkage; 4130 if (auto *VD = dyn_cast<VarDecl>(&D)) 4131 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4132 else 4133 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4134 4135 switch (Linkage) { 4136 case GVA_Internal: 4137 case GVA_AvailableExternally: 4138 case GVA_StrongExternal: 4139 return false; 4140 case GVA_DiscardableODR: 4141 case GVA_StrongODR: 4142 return true; 4143 } 4144 llvm_unreachable("No such linkage"); 4145 } 4146 4147 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4148 llvm::GlobalObject &GO) { 4149 if (!shouldBeInCOMDAT(*this, D)) 4150 return; 4151 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4152 } 4153 4154 /// Pass IsTentative as true if you want to create a tentative definition. 4155 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4156 bool IsTentative) { 4157 // OpenCL global variables of sampler type are translated to function calls, 4158 // therefore no need to be translated. 4159 QualType ASTTy = D->getType(); 4160 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4161 return; 4162 4163 // If this is OpenMP device, check if it is legal to emit this global 4164 // normally. 4165 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4166 OpenMPRuntime->emitTargetGlobalVariable(D)) 4167 return; 4168 4169 llvm::Constant *Init = nullptr; 4170 bool NeedsGlobalCtor = false; 4171 bool NeedsGlobalDtor = 4172 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4173 4174 const VarDecl *InitDecl; 4175 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4176 4177 Optional<ConstantEmitter> emitter; 4178 4179 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4180 // as part of their declaration." Sema has already checked for 4181 // error cases, so we just need to set Init to UndefValue. 4182 bool IsCUDASharedVar = 4183 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4184 // Shadows of initialized device-side global variables are also left 4185 // undefined. 4186 // Managed Variables should be initialized on both host side and device side. 4187 bool IsCUDAShadowVar = 4188 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4189 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4190 D->hasAttr<CUDASharedAttr>()); 4191 bool IsCUDADeviceShadowVar = 4192 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4193 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4194 D->getType()->isCUDADeviceBuiltinTextureType()); 4195 if (getLangOpts().CUDA && 4196 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4197 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4198 else if (D->hasAttr<LoaderUninitializedAttr>()) 4199 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4200 else if (!InitExpr) { 4201 // This is a tentative definition; tentative definitions are 4202 // implicitly initialized with { 0 }. 4203 // 4204 // Note that tentative definitions are only emitted at the end of 4205 // a translation unit, so they should never have incomplete 4206 // type. In addition, EmitTentativeDefinition makes sure that we 4207 // never attempt to emit a tentative definition if a real one 4208 // exists. A use may still exists, however, so we still may need 4209 // to do a RAUW. 4210 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4211 Init = EmitNullConstant(D->getType()); 4212 } else { 4213 initializedGlobalDecl = GlobalDecl(D); 4214 emitter.emplace(*this); 4215 Init = emitter->tryEmitForInitializer(*InitDecl); 4216 4217 if (!Init) { 4218 QualType T = InitExpr->getType(); 4219 if (D->getType()->isReferenceType()) 4220 T = D->getType(); 4221 4222 if (getLangOpts().CPlusPlus) { 4223 Init = EmitNullConstant(T); 4224 NeedsGlobalCtor = true; 4225 } else { 4226 ErrorUnsupported(D, "static initializer"); 4227 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4228 } 4229 } else { 4230 // We don't need an initializer, so remove the entry for the delayed 4231 // initializer position (just in case this entry was delayed) if we 4232 // also don't need to register a destructor. 4233 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4234 DelayedCXXInitPosition.erase(D); 4235 } 4236 } 4237 4238 llvm::Type* InitType = Init->getType(); 4239 llvm::Constant *Entry = 4240 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4241 4242 // Strip off pointer casts if we got them. 4243 Entry = Entry->stripPointerCasts(); 4244 4245 // Entry is now either a Function or GlobalVariable. 4246 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4247 4248 // We have a definition after a declaration with the wrong type. 4249 // We must make a new GlobalVariable* and update everything that used OldGV 4250 // (a declaration or tentative definition) with the new GlobalVariable* 4251 // (which will be a definition). 4252 // 4253 // This happens if there is a prototype for a global (e.g. 4254 // "extern int x[];") and then a definition of a different type (e.g. 4255 // "int x[10];"). This also happens when an initializer has a different type 4256 // from the type of the global (this happens with unions). 4257 if (!GV || GV->getValueType() != InitType || 4258 GV->getType()->getAddressSpace() != 4259 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4260 4261 // Move the old entry aside so that we'll create a new one. 4262 Entry->setName(StringRef()); 4263 4264 // Make a new global with the correct type, this is now guaranteed to work. 4265 GV = cast<llvm::GlobalVariable>( 4266 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4267 ->stripPointerCasts()); 4268 4269 // Replace all uses of the old global with the new global 4270 llvm::Constant *NewPtrForOldDecl = 4271 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4272 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4273 4274 // Erase the old global, since it is no longer used. 4275 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4276 } 4277 4278 MaybeHandleStaticInExternC(D, GV); 4279 4280 if (D->hasAttr<AnnotateAttr>()) 4281 AddGlobalAnnotations(D, GV); 4282 4283 // Set the llvm linkage type as appropriate. 4284 llvm::GlobalValue::LinkageTypes Linkage = 4285 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4286 4287 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4288 // the device. [...]" 4289 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4290 // __device__, declares a variable that: [...] 4291 // Is accessible from all the threads within the grid and from the host 4292 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4293 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4294 if (GV && LangOpts.CUDA) { 4295 if (LangOpts.CUDAIsDevice) { 4296 if (Linkage != llvm::GlobalValue::InternalLinkage && 4297 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4298 GV->setExternallyInitialized(true); 4299 } else { 4300 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4301 } 4302 getCUDARuntime().handleVarRegistration(D, *GV); 4303 } 4304 4305 GV->setInitializer(Init); 4306 if (emitter) 4307 emitter->finalize(GV); 4308 4309 // If it is safe to mark the global 'constant', do so now. 4310 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4311 isTypeConstant(D->getType(), true)); 4312 4313 // If it is in a read-only section, mark it 'constant'. 4314 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4315 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4316 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4317 GV->setConstant(true); 4318 } 4319 4320 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4321 4322 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4323 // function is only defined alongside the variable, not also alongside 4324 // callers. Normally, all accesses to a thread_local go through the 4325 // thread-wrapper in order to ensure initialization has occurred, underlying 4326 // variable will never be used other than the thread-wrapper, so it can be 4327 // converted to internal linkage. 4328 // 4329 // However, if the variable has the 'constinit' attribute, it _can_ be 4330 // referenced directly, without calling the thread-wrapper, so the linkage 4331 // must not be changed. 4332 // 4333 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4334 // weak or linkonce, the de-duplication semantics are important to preserve, 4335 // so we don't change the linkage. 4336 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4337 Linkage == llvm::GlobalValue::ExternalLinkage && 4338 Context.getTargetInfo().getTriple().isOSDarwin() && 4339 !D->hasAttr<ConstInitAttr>()) 4340 Linkage = llvm::GlobalValue::InternalLinkage; 4341 4342 GV->setLinkage(Linkage); 4343 if (D->hasAttr<DLLImportAttr>()) 4344 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4345 else if (D->hasAttr<DLLExportAttr>()) 4346 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4347 else 4348 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4349 4350 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4351 // common vars aren't constant even if declared const. 4352 GV->setConstant(false); 4353 // Tentative definition of global variables may be initialized with 4354 // non-zero null pointers. In this case they should have weak linkage 4355 // since common linkage must have zero initializer and must not have 4356 // explicit section therefore cannot have non-zero initial value. 4357 if (!GV->getInitializer()->isNullValue()) 4358 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4359 } 4360 4361 setNonAliasAttributes(D, GV); 4362 4363 if (D->getTLSKind() && !GV->isThreadLocal()) { 4364 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4365 CXXThreadLocals.push_back(D); 4366 setTLSMode(GV, *D); 4367 } 4368 4369 maybeSetTrivialComdat(*D, *GV); 4370 4371 // Emit the initializer function if necessary. 4372 if (NeedsGlobalCtor || NeedsGlobalDtor) 4373 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4374 4375 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4376 4377 // Emit global variable debug information. 4378 if (CGDebugInfo *DI = getModuleDebugInfo()) 4379 if (getCodeGenOpts().hasReducedDebugInfo()) 4380 DI->EmitGlobalVariable(GV, D); 4381 } 4382 4383 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4384 if (CGDebugInfo *DI = getModuleDebugInfo()) 4385 if (getCodeGenOpts().hasReducedDebugInfo()) { 4386 QualType ASTTy = D->getType(); 4387 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4388 llvm::PointerType *PTy = 4389 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4390 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4391 DI->EmitExternalVariable( 4392 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4393 } 4394 } 4395 4396 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4397 CodeGenModule &CGM, const VarDecl *D, 4398 bool NoCommon) { 4399 // Don't give variables common linkage if -fno-common was specified unless it 4400 // was overridden by a NoCommon attribute. 4401 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4402 return true; 4403 4404 // C11 6.9.2/2: 4405 // A declaration of an identifier for an object that has file scope without 4406 // an initializer, and without a storage-class specifier or with the 4407 // storage-class specifier static, constitutes a tentative definition. 4408 if (D->getInit() || D->hasExternalStorage()) 4409 return true; 4410 4411 // A variable cannot be both common and exist in a section. 4412 if (D->hasAttr<SectionAttr>()) 4413 return true; 4414 4415 // A variable cannot be both common and exist in a section. 4416 // We don't try to determine which is the right section in the front-end. 4417 // If no specialized section name is applicable, it will resort to default. 4418 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4419 D->hasAttr<PragmaClangDataSectionAttr>() || 4420 D->hasAttr<PragmaClangRelroSectionAttr>() || 4421 D->hasAttr<PragmaClangRodataSectionAttr>()) 4422 return true; 4423 4424 // Thread local vars aren't considered common linkage. 4425 if (D->getTLSKind()) 4426 return true; 4427 4428 // Tentative definitions marked with WeakImportAttr are true definitions. 4429 if (D->hasAttr<WeakImportAttr>()) 4430 return true; 4431 4432 // A variable cannot be both common and exist in a comdat. 4433 if (shouldBeInCOMDAT(CGM, *D)) 4434 return true; 4435 4436 // Declarations with a required alignment do not have common linkage in MSVC 4437 // mode. 4438 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4439 if (D->hasAttr<AlignedAttr>()) 4440 return true; 4441 QualType VarType = D->getType(); 4442 if (Context.isAlignmentRequired(VarType)) 4443 return true; 4444 4445 if (const auto *RT = VarType->getAs<RecordType>()) { 4446 const RecordDecl *RD = RT->getDecl(); 4447 for (const FieldDecl *FD : RD->fields()) { 4448 if (FD->isBitField()) 4449 continue; 4450 if (FD->hasAttr<AlignedAttr>()) 4451 return true; 4452 if (Context.isAlignmentRequired(FD->getType())) 4453 return true; 4454 } 4455 } 4456 } 4457 4458 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4459 // common symbols, so symbols with greater alignment requirements cannot be 4460 // common. 4461 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4462 // alignments for common symbols via the aligncomm directive, so this 4463 // restriction only applies to MSVC environments. 4464 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4465 Context.getTypeAlignIfKnown(D->getType()) > 4466 Context.toBits(CharUnits::fromQuantity(32))) 4467 return true; 4468 4469 return false; 4470 } 4471 4472 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4473 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4474 if (Linkage == GVA_Internal) 4475 return llvm::Function::InternalLinkage; 4476 4477 if (D->hasAttr<WeakAttr>()) { 4478 if (IsConstantVariable) 4479 return llvm::GlobalVariable::WeakODRLinkage; 4480 else 4481 return llvm::GlobalVariable::WeakAnyLinkage; 4482 } 4483 4484 if (const auto *FD = D->getAsFunction()) 4485 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4486 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4487 4488 // We are guaranteed to have a strong definition somewhere else, 4489 // so we can use available_externally linkage. 4490 if (Linkage == GVA_AvailableExternally) 4491 return llvm::GlobalValue::AvailableExternallyLinkage; 4492 4493 // Note that Apple's kernel linker doesn't support symbol 4494 // coalescing, so we need to avoid linkonce and weak linkages there. 4495 // Normally, this means we just map to internal, but for explicit 4496 // instantiations we'll map to external. 4497 4498 // In C++, the compiler has to emit a definition in every translation unit 4499 // that references the function. We should use linkonce_odr because 4500 // a) if all references in this translation unit are optimized away, we 4501 // don't need to codegen it. b) if the function persists, it needs to be 4502 // merged with other definitions. c) C++ has the ODR, so we know the 4503 // definition is dependable. 4504 if (Linkage == GVA_DiscardableODR) 4505 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4506 : llvm::Function::InternalLinkage; 4507 4508 // An explicit instantiation of a template has weak linkage, since 4509 // explicit instantiations can occur in multiple translation units 4510 // and must all be equivalent. However, we are not allowed to 4511 // throw away these explicit instantiations. 4512 // 4513 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4514 // so say that CUDA templates are either external (for kernels) or internal. 4515 // This lets llvm perform aggressive inter-procedural optimizations. For 4516 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4517 // therefore we need to follow the normal linkage paradigm. 4518 if (Linkage == GVA_StrongODR) { 4519 if (getLangOpts().AppleKext) 4520 return llvm::Function::ExternalLinkage; 4521 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4522 !getLangOpts().GPURelocatableDeviceCode) 4523 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4524 : llvm::Function::InternalLinkage; 4525 return llvm::Function::WeakODRLinkage; 4526 } 4527 4528 // C++ doesn't have tentative definitions and thus cannot have common 4529 // linkage. 4530 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4531 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4532 CodeGenOpts.NoCommon)) 4533 return llvm::GlobalVariable::CommonLinkage; 4534 4535 // selectany symbols are externally visible, so use weak instead of 4536 // linkonce. MSVC optimizes away references to const selectany globals, so 4537 // all definitions should be the same and ODR linkage should be used. 4538 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4539 if (D->hasAttr<SelectAnyAttr>()) 4540 return llvm::GlobalVariable::WeakODRLinkage; 4541 4542 // Otherwise, we have strong external linkage. 4543 assert(Linkage == GVA_StrongExternal); 4544 return llvm::GlobalVariable::ExternalLinkage; 4545 } 4546 4547 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4548 const VarDecl *VD, bool IsConstant) { 4549 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4550 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4551 } 4552 4553 /// Replace the uses of a function that was declared with a non-proto type. 4554 /// We want to silently drop extra arguments from call sites 4555 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4556 llvm::Function *newFn) { 4557 // Fast path. 4558 if (old->use_empty()) return; 4559 4560 llvm::Type *newRetTy = newFn->getReturnType(); 4561 SmallVector<llvm::Value*, 4> newArgs; 4562 4563 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4564 ui != ue; ) { 4565 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4566 llvm::User *user = use->getUser(); 4567 4568 // Recognize and replace uses of bitcasts. Most calls to 4569 // unprototyped functions will use bitcasts. 4570 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4571 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4572 replaceUsesOfNonProtoConstant(bitcast, newFn); 4573 continue; 4574 } 4575 4576 // Recognize calls to the function. 4577 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4578 if (!callSite) continue; 4579 if (!callSite->isCallee(&*use)) 4580 continue; 4581 4582 // If the return types don't match exactly, then we can't 4583 // transform this call unless it's dead. 4584 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4585 continue; 4586 4587 // Get the call site's attribute list. 4588 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4589 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4590 4591 // If the function was passed too few arguments, don't transform. 4592 unsigned newNumArgs = newFn->arg_size(); 4593 if (callSite->arg_size() < newNumArgs) 4594 continue; 4595 4596 // If extra arguments were passed, we silently drop them. 4597 // If any of the types mismatch, we don't transform. 4598 unsigned argNo = 0; 4599 bool dontTransform = false; 4600 for (llvm::Argument &A : newFn->args()) { 4601 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4602 dontTransform = true; 4603 break; 4604 } 4605 4606 // Add any parameter attributes. 4607 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4608 argNo++; 4609 } 4610 if (dontTransform) 4611 continue; 4612 4613 // Okay, we can transform this. Create the new call instruction and copy 4614 // over the required information. 4615 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4616 4617 // Copy over any operand bundles. 4618 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4619 callSite->getOperandBundlesAsDefs(newBundles); 4620 4621 llvm::CallBase *newCall; 4622 if (dyn_cast<llvm::CallInst>(callSite)) { 4623 newCall = 4624 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4625 } else { 4626 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4627 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4628 oldInvoke->getUnwindDest(), newArgs, 4629 newBundles, "", callSite); 4630 } 4631 newArgs.clear(); // for the next iteration 4632 4633 if (!newCall->getType()->isVoidTy()) 4634 newCall->takeName(callSite); 4635 newCall->setAttributes(llvm::AttributeList::get( 4636 newFn->getContext(), oldAttrs.getFnAttributes(), 4637 oldAttrs.getRetAttributes(), newArgAttrs)); 4638 newCall->setCallingConv(callSite->getCallingConv()); 4639 4640 // Finally, remove the old call, replacing any uses with the new one. 4641 if (!callSite->use_empty()) 4642 callSite->replaceAllUsesWith(newCall); 4643 4644 // Copy debug location attached to CI. 4645 if (callSite->getDebugLoc()) 4646 newCall->setDebugLoc(callSite->getDebugLoc()); 4647 4648 callSite->eraseFromParent(); 4649 } 4650 } 4651 4652 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4653 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4654 /// existing call uses of the old function in the module, this adjusts them to 4655 /// call the new function directly. 4656 /// 4657 /// This is not just a cleanup: the always_inline pass requires direct calls to 4658 /// functions to be able to inline them. If there is a bitcast in the way, it 4659 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4660 /// run at -O0. 4661 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4662 llvm::Function *NewFn) { 4663 // If we're redefining a global as a function, don't transform it. 4664 if (!isa<llvm::Function>(Old)) return; 4665 4666 replaceUsesOfNonProtoConstant(Old, NewFn); 4667 } 4668 4669 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4670 auto DK = VD->isThisDeclarationADefinition(); 4671 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4672 return; 4673 4674 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4675 // If we have a definition, this might be a deferred decl. If the 4676 // instantiation is explicit, make sure we emit it at the end. 4677 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4678 GetAddrOfGlobalVar(VD); 4679 4680 EmitTopLevelDecl(VD); 4681 } 4682 4683 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4684 llvm::GlobalValue *GV) { 4685 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4686 4687 // Compute the function info and LLVM type. 4688 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4689 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4690 4691 // Get or create the prototype for the function. 4692 if (!GV || (GV->getValueType() != Ty)) 4693 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4694 /*DontDefer=*/true, 4695 ForDefinition)); 4696 4697 // Already emitted. 4698 if (!GV->isDeclaration()) 4699 return; 4700 4701 // We need to set linkage and visibility on the function before 4702 // generating code for it because various parts of IR generation 4703 // want to propagate this information down (e.g. to local static 4704 // declarations). 4705 auto *Fn = cast<llvm::Function>(GV); 4706 setFunctionLinkage(GD, Fn); 4707 4708 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4709 setGVProperties(Fn, GD); 4710 4711 MaybeHandleStaticInExternC(D, Fn); 4712 4713 maybeSetTrivialComdat(*D, *Fn); 4714 4715 // Set CodeGen attributes that represent floating point environment. 4716 setLLVMFunctionFEnvAttributes(D, Fn); 4717 4718 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4719 4720 setNonAliasAttributes(GD, Fn); 4721 SetLLVMFunctionAttributesForDefinition(D, Fn); 4722 4723 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4724 AddGlobalCtor(Fn, CA->getPriority()); 4725 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4726 AddGlobalDtor(Fn, DA->getPriority(), true); 4727 if (D->hasAttr<AnnotateAttr>()) 4728 AddGlobalAnnotations(D, Fn); 4729 } 4730 4731 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4732 const auto *D = cast<ValueDecl>(GD.getDecl()); 4733 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4734 assert(AA && "Not an alias?"); 4735 4736 StringRef MangledName = getMangledName(GD); 4737 4738 if (AA->getAliasee() == MangledName) { 4739 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4740 return; 4741 } 4742 4743 // If there is a definition in the module, then it wins over the alias. 4744 // This is dubious, but allow it to be safe. Just ignore the alias. 4745 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4746 if (Entry && !Entry->isDeclaration()) 4747 return; 4748 4749 Aliases.push_back(GD); 4750 4751 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4752 4753 // Create a reference to the named value. This ensures that it is emitted 4754 // if a deferred decl. 4755 llvm::Constant *Aliasee; 4756 llvm::GlobalValue::LinkageTypes LT; 4757 if (isa<llvm::FunctionType>(DeclTy)) { 4758 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4759 /*ForVTable=*/false); 4760 LT = getFunctionLinkage(GD); 4761 } else { 4762 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4763 llvm::PointerType::getUnqual(DeclTy), 4764 /*D=*/nullptr); 4765 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4766 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4767 else 4768 LT = getFunctionLinkage(GD); 4769 } 4770 4771 // Create the new alias itself, but don't set a name yet. 4772 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4773 auto *GA = 4774 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4775 4776 if (Entry) { 4777 if (GA->getAliasee() == Entry) { 4778 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4779 return; 4780 } 4781 4782 assert(Entry->isDeclaration()); 4783 4784 // If there is a declaration in the module, then we had an extern followed 4785 // by the alias, as in: 4786 // extern int test6(); 4787 // ... 4788 // int test6() __attribute__((alias("test7"))); 4789 // 4790 // Remove it and replace uses of it with the alias. 4791 GA->takeName(Entry); 4792 4793 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4794 Entry->getType())); 4795 Entry->eraseFromParent(); 4796 } else { 4797 GA->setName(MangledName); 4798 } 4799 4800 // Set attributes which are particular to an alias; this is a 4801 // specialization of the attributes which may be set on a global 4802 // variable/function. 4803 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4804 D->isWeakImported()) { 4805 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4806 } 4807 4808 if (const auto *VD = dyn_cast<VarDecl>(D)) 4809 if (VD->getTLSKind()) 4810 setTLSMode(GA, *VD); 4811 4812 SetCommonAttributes(GD, GA); 4813 } 4814 4815 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4816 const auto *D = cast<ValueDecl>(GD.getDecl()); 4817 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4818 assert(IFA && "Not an ifunc?"); 4819 4820 StringRef MangledName = getMangledName(GD); 4821 4822 if (IFA->getResolver() == MangledName) { 4823 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4824 return; 4825 } 4826 4827 // Report an error if some definition overrides ifunc. 4828 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4829 if (Entry && !Entry->isDeclaration()) { 4830 GlobalDecl OtherGD; 4831 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4832 DiagnosedConflictingDefinitions.insert(GD).second) { 4833 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4834 << MangledName; 4835 Diags.Report(OtherGD.getDecl()->getLocation(), 4836 diag::note_previous_definition); 4837 } 4838 return; 4839 } 4840 4841 Aliases.push_back(GD); 4842 4843 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4844 llvm::Constant *Resolver = 4845 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4846 /*ForVTable=*/false); 4847 llvm::GlobalIFunc *GIF = 4848 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4849 "", Resolver, &getModule()); 4850 if (Entry) { 4851 if (GIF->getResolver() == Entry) { 4852 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4853 return; 4854 } 4855 assert(Entry->isDeclaration()); 4856 4857 // If there is a declaration in the module, then we had an extern followed 4858 // by the ifunc, as in: 4859 // extern int test(); 4860 // ... 4861 // int test() __attribute__((ifunc("resolver"))); 4862 // 4863 // Remove it and replace uses of it with the ifunc. 4864 GIF->takeName(Entry); 4865 4866 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4867 Entry->getType())); 4868 Entry->eraseFromParent(); 4869 } else 4870 GIF->setName(MangledName); 4871 4872 SetCommonAttributes(GD, GIF); 4873 } 4874 4875 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4876 ArrayRef<llvm::Type*> Tys) { 4877 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4878 Tys); 4879 } 4880 4881 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4882 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4883 const StringLiteral *Literal, bool TargetIsLSB, 4884 bool &IsUTF16, unsigned &StringLength) { 4885 StringRef String = Literal->getString(); 4886 unsigned NumBytes = String.size(); 4887 4888 // Check for simple case. 4889 if (!Literal->containsNonAsciiOrNull()) { 4890 StringLength = NumBytes; 4891 return *Map.insert(std::make_pair(String, nullptr)).first; 4892 } 4893 4894 // Otherwise, convert the UTF8 literals into a string of shorts. 4895 IsUTF16 = true; 4896 4897 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4898 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4899 llvm::UTF16 *ToPtr = &ToBuf[0]; 4900 4901 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4902 ToPtr + NumBytes, llvm::strictConversion); 4903 4904 // ConvertUTF8toUTF16 returns the length in ToPtr. 4905 StringLength = ToPtr - &ToBuf[0]; 4906 4907 // Add an explicit null. 4908 *ToPtr = 0; 4909 return *Map.insert(std::make_pair( 4910 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4911 (StringLength + 1) * 2), 4912 nullptr)).first; 4913 } 4914 4915 ConstantAddress 4916 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4917 unsigned StringLength = 0; 4918 bool isUTF16 = false; 4919 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4920 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4921 getDataLayout().isLittleEndian(), isUTF16, 4922 StringLength); 4923 4924 if (auto *C = Entry.second) 4925 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4926 4927 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4928 llvm::Constant *Zeros[] = { Zero, Zero }; 4929 4930 const ASTContext &Context = getContext(); 4931 const llvm::Triple &Triple = getTriple(); 4932 4933 const auto CFRuntime = getLangOpts().CFRuntime; 4934 const bool IsSwiftABI = 4935 static_cast<unsigned>(CFRuntime) >= 4936 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4937 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4938 4939 // If we don't already have it, get __CFConstantStringClassReference. 4940 if (!CFConstantStringClassRef) { 4941 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4942 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4943 Ty = llvm::ArrayType::get(Ty, 0); 4944 4945 switch (CFRuntime) { 4946 default: break; 4947 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4948 case LangOptions::CoreFoundationABI::Swift5_0: 4949 CFConstantStringClassName = 4950 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4951 : "$s10Foundation19_NSCFConstantStringCN"; 4952 Ty = IntPtrTy; 4953 break; 4954 case LangOptions::CoreFoundationABI::Swift4_2: 4955 CFConstantStringClassName = 4956 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4957 : "$S10Foundation19_NSCFConstantStringCN"; 4958 Ty = IntPtrTy; 4959 break; 4960 case LangOptions::CoreFoundationABI::Swift4_1: 4961 CFConstantStringClassName = 4962 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4963 : "__T010Foundation19_NSCFConstantStringCN"; 4964 Ty = IntPtrTy; 4965 break; 4966 } 4967 4968 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4969 4970 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4971 llvm::GlobalValue *GV = nullptr; 4972 4973 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4974 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4975 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4976 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4977 4978 const VarDecl *VD = nullptr; 4979 for (const auto &Result : DC->lookup(&II)) 4980 if ((VD = dyn_cast<VarDecl>(Result))) 4981 break; 4982 4983 if (Triple.isOSBinFormatELF()) { 4984 if (!VD) 4985 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4986 } else { 4987 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4988 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4989 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4990 else 4991 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4992 } 4993 4994 setDSOLocal(GV); 4995 } 4996 } 4997 4998 // Decay array -> ptr 4999 CFConstantStringClassRef = 5000 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5001 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5002 } 5003 5004 QualType CFTy = Context.getCFConstantStringType(); 5005 5006 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5007 5008 ConstantInitBuilder Builder(*this); 5009 auto Fields = Builder.beginStruct(STy); 5010 5011 // Class pointer. 5012 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5013 5014 // Flags. 5015 if (IsSwiftABI) { 5016 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5017 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5018 } else { 5019 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5020 } 5021 5022 // String pointer. 5023 llvm::Constant *C = nullptr; 5024 if (isUTF16) { 5025 auto Arr = llvm::makeArrayRef( 5026 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5027 Entry.first().size() / 2); 5028 C = llvm::ConstantDataArray::get(VMContext, Arr); 5029 } else { 5030 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5031 } 5032 5033 // Note: -fwritable-strings doesn't make the backing store strings of 5034 // CFStrings writable. (See <rdar://problem/10657500>) 5035 auto *GV = 5036 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5037 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5038 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5039 // Don't enforce the target's minimum global alignment, since the only use 5040 // of the string is via this class initializer. 5041 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5042 : Context.getTypeAlignInChars(Context.CharTy); 5043 GV->setAlignment(Align.getAsAlign()); 5044 5045 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5046 // Without it LLVM can merge the string with a non unnamed_addr one during 5047 // LTO. Doing that changes the section it ends in, which surprises ld64. 5048 if (Triple.isOSBinFormatMachO()) 5049 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5050 : "__TEXT,__cstring,cstring_literals"); 5051 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5052 // the static linker to adjust permissions to read-only later on. 5053 else if (Triple.isOSBinFormatELF()) 5054 GV->setSection(".rodata"); 5055 5056 // String. 5057 llvm::Constant *Str = 5058 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5059 5060 if (isUTF16) 5061 // Cast the UTF16 string to the correct type. 5062 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5063 Fields.add(Str); 5064 5065 // String length. 5066 llvm::IntegerType *LengthTy = 5067 llvm::IntegerType::get(getModule().getContext(), 5068 Context.getTargetInfo().getLongWidth()); 5069 if (IsSwiftABI) { 5070 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5071 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5072 LengthTy = Int32Ty; 5073 else 5074 LengthTy = IntPtrTy; 5075 } 5076 Fields.addInt(LengthTy, StringLength); 5077 5078 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5079 // properly aligned on 32-bit platforms. 5080 CharUnits Alignment = 5081 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5082 5083 // The struct. 5084 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5085 /*isConstant=*/false, 5086 llvm::GlobalVariable::PrivateLinkage); 5087 GV->addAttribute("objc_arc_inert"); 5088 switch (Triple.getObjectFormat()) { 5089 case llvm::Triple::UnknownObjectFormat: 5090 llvm_unreachable("unknown file format"); 5091 case llvm::Triple::GOFF: 5092 llvm_unreachable("GOFF is not yet implemented"); 5093 case llvm::Triple::XCOFF: 5094 llvm_unreachable("XCOFF is not yet implemented"); 5095 case llvm::Triple::COFF: 5096 case llvm::Triple::ELF: 5097 case llvm::Triple::Wasm: 5098 GV->setSection("cfstring"); 5099 break; 5100 case llvm::Triple::MachO: 5101 GV->setSection("__DATA,__cfstring"); 5102 break; 5103 } 5104 Entry.second = GV; 5105 5106 return ConstantAddress(GV, Alignment); 5107 } 5108 5109 bool CodeGenModule::getExpressionLocationsEnabled() const { 5110 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5111 } 5112 5113 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5114 if (ObjCFastEnumerationStateType.isNull()) { 5115 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5116 D->startDefinition(); 5117 5118 QualType FieldTypes[] = { 5119 Context.UnsignedLongTy, 5120 Context.getPointerType(Context.getObjCIdType()), 5121 Context.getPointerType(Context.UnsignedLongTy), 5122 Context.getConstantArrayType(Context.UnsignedLongTy, 5123 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5124 }; 5125 5126 for (size_t i = 0; i < 4; ++i) { 5127 FieldDecl *Field = FieldDecl::Create(Context, 5128 D, 5129 SourceLocation(), 5130 SourceLocation(), nullptr, 5131 FieldTypes[i], /*TInfo=*/nullptr, 5132 /*BitWidth=*/nullptr, 5133 /*Mutable=*/false, 5134 ICIS_NoInit); 5135 Field->setAccess(AS_public); 5136 D->addDecl(Field); 5137 } 5138 5139 D->completeDefinition(); 5140 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5141 } 5142 5143 return ObjCFastEnumerationStateType; 5144 } 5145 5146 llvm::Constant * 5147 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5148 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5149 5150 // Don't emit it as the address of the string, emit the string data itself 5151 // as an inline array. 5152 if (E->getCharByteWidth() == 1) { 5153 SmallString<64> Str(E->getString()); 5154 5155 // Resize the string to the right size, which is indicated by its type. 5156 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5157 Str.resize(CAT->getSize().getZExtValue()); 5158 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5159 } 5160 5161 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5162 llvm::Type *ElemTy = AType->getElementType(); 5163 unsigned NumElements = AType->getNumElements(); 5164 5165 // Wide strings have either 2-byte or 4-byte elements. 5166 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5167 SmallVector<uint16_t, 32> Elements; 5168 Elements.reserve(NumElements); 5169 5170 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5171 Elements.push_back(E->getCodeUnit(i)); 5172 Elements.resize(NumElements); 5173 return llvm::ConstantDataArray::get(VMContext, Elements); 5174 } 5175 5176 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5177 SmallVector<uint32_t, 32> Elements; 5178 Elements.reserve(NumElements); 5179 5180 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5181 Elements.push_back(E->getCodeUnit(i)); 5182 Elements.resize(NumElements); 5183 return llvm::ConstantDataArray::get(VMContext, Elements); 5184 } 5185 5186 static llvm::GlobalVariable * 5187 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5188 CodeGenModule &CGM, StringRef GlobalName, 5189 CharUnits Alignment) { 5190 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5191 CGM.getStringLiteralAddressSpace()); 5192 5193 llvm::Module &M = CGM.getModule(); 5194 // Create a global variable for this string 5195 auto *GV = new llvm::GlobalVariable( 5196 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5197 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5198 GV->setAlignment(Alignment.getAsAlign()); 5199 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5200 if (GV->isWeakForLinker()) { 5201 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5202 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5203 } 5204 CGM.setDSOLocal(GV); 5205 5206 return GV; 5207 } 5208 5209 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5210 /// constant array for the given string literal. 5211 ConstantAddress 5212 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5213 StringRef Name) { 5214 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5215 5216 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5217 llvm::GlobalVariable **Entry = nullptr; 5218 if (!LangOpts.WritableStrings) { 5219 Entry = &ConstantStringMap[C]; 5220 if (auto GV = *Entry) { 5221 if (Alignment.getQuantity() > GV->getAlignment()) 5222 GV->setAlignment(Alignment.getAsAlign()); 5223 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5224 Alignment); 5225 } 5226 } 5227 5228 SmallString<256> MangledNameBuffer; 5229 StringRef GlobalVariableName; 5230 llvm::GlobalValue::LinkageTypes LT; 5231 5232 // Mangle the string literal if that's how the ABI merges duplicate strings. 5233 // Don't do it if they are writable, since we don't want writes in one TU to 5234 // affect strings in another. 5235 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5236 !LangOpts.WritableStrings) { 5237 llvm::raw_svector_ostream Out(MangledNameBuffer); 5238 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5239 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5240 GlobalVariableName = MangledNameBuffer; 5241 } else { 5242 LT = llvm::GlobalValue::PrivateLinkage; 5243 GlobalVariableName = Name; 5244 } 5245 5246 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5247 if (Entry) 5248 *Entry = GV; 5249 5250 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5251 QualType()); 5252 5253 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5254 Alignment); 5255 } 5256 5257 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5258 /// array for the given ObjCEncodeExpr node. 5259 ConstantAddress 5260 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5261 std::string Str; 5262 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5263 5264 return GetAddrOfConstantCString(Str); 5265 } 5266 5267 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5268 /// the literal and a terminating '\0' character. 5269 /// The result has pointer to array type. 5270 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5271 const std::string &Str, const char *GlobalName) { 5272 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5273 CharUnits Alignment = 5274 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5275 5276 llvm::Constant *C = 5277 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5278 5279 // Don't share any string literals if strings aren't constant. 5280 llvm::GlobalVariable **Entry = nullptr; 5281 if (!LangOpts.WritableStrings) { 5282 Entry = &ConstantStringMap[C]; 5283 if (auto GV = *Entry) { 5284 if (Alignment.getQuantity() > GV->getAlignment()) 5285 GV->setAlignment(Alignment.getAsAlign()); 5286 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5287 Alignment); 5288 } 5289 } 5290 5291 // Get the default prefix if a name wasn't specified. 5292 if (!GlobalName) 5293 GlobalName = ".str"; 5294 // Create a global variable for this. 5295 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5296 GlobalName, Alignment); 5297 if (Entry) 5298 *Entry = GV; 5299 5300 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5301 Alignment); 5302 } 5303 5304 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5305 const MaterializeTemporaryExpr *E, const Expr *Init) { 5306 assert((E->getStorageDuration() == SD_Static || 5307 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5308 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5309 5310 // If we're not materializing a subobject of the temporary, keep the 5311 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5312 QualType MaterializedType = Init->getType(); 5313 if (Init == E->getSubExpr()) 5314 MaterializedType = E->getType(); 5315 5316 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5317 5318 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5319 return ConstantAddress(Slot, Align); 5320 5321 // FIXME: If an externally-visible declaration extends multiple temporaries, 5322 // we need to give each temporary the same name in every translation unit (and 5323 // we also need to make the temporaries externally-visible). 5324 SmallString<256> Name; 5325 llvm::raw_svector_ostream Out(Name); 5326 getCXXABI().getMangleContext().mangleReferenceTemporary( 5327 VD, E->getManglingNumber(), Out); 5328 5329 APValue *Value = nullptr; 5330 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5331 // If the initializer of the extending declaration is a constant 5332 // initializer, we should have a cached constant initializer for this 5333 // temporary. Note that this might have a different value from the value 5334 // computed by evaluating the initializer if the surrounding constant 5335 // expression modifies the temporary. 5336 Value = E->getOrCreateValue(false); 5337 } 5338 5339 // Try evaluating it now, it might have a constant initializer. 5340 Expr::EvalResult EvalResult; 5341 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5342 !EvalResult.hasSideEffects()) 5343 Value = &EvalResult.Val; 5344 5345 LangAS AddrSpace = 5346 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5347 5348 Optional<ConstantEmitter> emitter; 5349 llvm::Constant *InitialValue = nullptr; 5350 bool Constant = false; 5351 llvm::Type *Type; 5352 if (Value) { 5353 // The temporary has a constant initializer, use it. 5354 emitter.emplace(*this); 5355 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5356 MaterializedType); 5357 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5358 Type = InitialValue->getType(); 5359 } else { 5360 // No initializer, the initialization will be provided when we 5361 // initialize the declaration which performed lifetime extension. 5362 Type = getTypes().ConvertTypeForMem(MaterializedType); 5363 } 5364 5365 // Create a global variable for this lifetime-extended temporary. 5366 llvm::GlobalValue::LinkageTypes Linkage = 5367 getLLVMLinkageVarDefinition(VD, Constant); 5368 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5369 const VarDecl *InitVD; 5370 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5371 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5372 // Temporaries defined inside a class get linkonce_odr linkage because the 5373 // class can be defined in multiple translation units. 5374 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5375 } else { 5376 // There is no need for this temporary to have external linkage if the 5377 // VarDecl has external linkage. 5378 Linkage = llvm::GlobalVariable::InternalLinkage; 5379 } 5380 } 5381 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5382 auto *GV = new llvm::GlobalVariable( 5383 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5384 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5385 if (emitter) emitter->finalize(GV); 5386 setGVProperties(GV, VD); 5387 GV->setAlignment(Align.getAsAlign()); 5388 if (supportsCOMDAT() && GV->isWeakForLinker()) 5389 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5390 if (VD->getTLSKind()) 5391 setTLSMode(GV, *VD); 5392 llvm::Constant *CV = GV; 5393 if (AddrSpace != LangAS::Default) 5394 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5395 *this, GV, AddrSpace, LangAS::Default, 5396 Type->getPointerTo( 5397 getContext().getTargetAddressSpace(LangAS::Default))); 5398 MaterializedGlobalTemporaryMap[E] = CV; 5399 return ConstantAddress(CV, Align); 5400 } 5401 5402 /// EmitObjCPropertyImplementations - Emit information for synthesized 5403 /// properties for an implementation. 5404 void CodeGenModule::EmitObjCPropertyImplementations(const 5405 ObjCImplementationDecl *D) { 5406 for (const auto *PID : D->property_impls()) { 5407 // Dynamic is just for type-checking. 5408 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5409 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5410 5411 // Determine which methods need to be implemented, some may have 5412 // been overridden. Note that ::isPropertyAccessor is not the method 5413 // we want, that just indicates if the decl came from a 5414 // property. What we want to know is if the method is defined in 5415 // this implementation. 5416 auto *Getter = PID->getGetterMethodDecl(); 5417 if (!Getter || Getter->isSynthesizedAccessorStub()) 5418 CodeGenFunction(*this).GenerateObjCGetter( 5419 const_cast<ObjCImplementationDecl *>(D), PID); 5420 auto *Setter = PID->getSetterMethodDecl(); 5421 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5422 CodeGenFunction(*this).GenerateObjCSetter( 5423 const_cast<ObjCImplementationDecl *>(D), PID); 5424 } 5425 } 5426 } 5427 5428 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5429 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5430 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5431 ivar; ivar = ivar->getNextIvar()) 5432 if (ivar->getType().isDestructedType()) 5433 return true; 5434 5435 return false; 5436 } 5437 5438 static bool AllTrivialInitializers(CodeGenModule &CGM, 5439 ObjCImplementationDecl *D) { 5440 CodeGenFunction CGF(CGM); 5441 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5442 E = D->init_end(); B != E; ++B) { 5443 CXXCtorInitializer *CtorInitExp = *B; 5444 Expr *Init = CtorInitExp->getInit(); 5445 if (!CGF.isTrivialInitializer(Init)) 5446 return false; 5447 } 5448 return true; 5449 } 5450 5451 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5452 /// for an implementation. 5453 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5454 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5455 if (needsDestructMethod(D)) { 5456 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5457 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5458 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5459 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5460 getContext().VoidTy, nullptr, D, 5461 /*isInstance=*/true, /*isVariadic=*/false, 5462 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5463 /*isImplicitlyDeclared=*/true, 5464 /*isDefined=*/false, ObjCMethodDecl::Required); 5465 D->addInstanceMethod(DTORMethod); 5466 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5467 D->setHasDestructors(true); 5468 } 5469 5470 // If the implementation doesn't have any ivar initializers, we don't need 5471 // a .cxx_construct. 5472 if (D->getNumIvarInitializers() == 0 || 5473 AllTrivialInitializers(*this, D)) 5474 return; 5475 5476 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5477 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5478 // The constructor returns 'self'. 5479 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5480 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5481 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5482 /*isVariadic=*/false, 5483 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5484 /*isImplicitlyDeclared=*/true, 5485 /*isDefined=*/false, ObjCMethodDecl::Required); 5486 D->addInstanceMethod(CTORMethod); 5487 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5488 D->setHasNonZeroConstructors(true); 5489 } 5490 5491 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5492 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5493 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5494 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5495 ErrorUnsupported(LSD, "linkage spec"); 5496 return; 5497 } 5498 5499 EmitDeclContext(LSD); 5500 } 5501 5502 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5503 for (auto *I : DC->decls()) { 5504 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5505 // are themselves considered "top-level", so EmitTopLevelDecl on an 5506 // ObjCImplDecl does not recursively visit them. We need to do that in 5507 // case they're nested inside another construct (LinkageSpecDecl / 5508 // ExportDecl) that does stop them from being considered "top-level". 5509 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5510 for (auto *M : OID->methods()) 5511 EmitTopLevelDecl(M); 5512 } 5513 5514 EmitTopLevelDecl(I); 5515 } 5516 } 5517 5518 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5519 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5520 // Ignore dependent declarations. 5521 if (D->isTemplated()) 5522 return; 5523 5524 // Consteval function shouldn't be emitted. 5525 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5526 if (FD->isConsteval()) 5527 return; 5528 5529 switch (D->getKind()) { 5530 case Decl::CXXConversion: 5531 case Decl::CXXMethod: 5532 case Decl::Function: 5533 EmitGlobal(cast<FunctionDecl>(D)); 5534 // Always provide some coverage mapping 5535 // even for the functions that aren't emitted. 5536 AddDeferredUnusedCoverageMapping(D); 5537 break; 5538 5539 case Decl::CXXDeductionGuide: 5540 // Function-like, but does not result in code emission. 5541 break; 5542 5543 case Decl::Var: 5544 case Decl::Decomposition: 5545 case Decl::VarTemplateSpecialization: 5546 EmitGlobal(cast<VarDecl>(D)); 5547 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5548 for (auto *B : DD->bindings()) 5549 if (auto *HD = B->getHoldingVar()) 5550 EmitGlobal(HD); 5551 break; 5552 5553 // Indirect fields from global anonymous structs and unions can be 5554 // ignored; only the actual variable requires IR gen support. 5555 case Decl::IndirectField: 5556 break; 5557 5558 // C++ Decls 5559 case Decl::Namespace: 5560 EmitDeclContext(cast<NamespaceDecl>(D)); 5561 break; 5562 case Decl::ClassTemplateSpecialization: { 5563 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5564 if (CGDebugInfo *DI = getModuleDebugInfo()) 5565 if (Spec->getSpecializationKind() == 5566 TSK_ExplicitInstantiationDefinition && 5567 Spec->hasDefinition()) 5568 DI->completeTemplateDefinition(*Spec); 5569 } LLVM_FALLTHROUGH; 5570 case Decl::CXXRecord: { 5571 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5572 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5573 if (CRD->hasDefinition()) 5574 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5575 if (auto *ES = D->getASTContext().getExternalSource()) 5576 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5577 DI->completeUnusedClass(*CRD); 5578 } 5579 // Emit any static data members, they may be definitions. 5580 for (auto *I : CRD->decls()) 5581 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5582 EmitTopLevelDecl(I); 5583 break; 5584 } 5585 // No code generation needed. 5586 case Decl::UsingShadow: 5587 case Decl::ClassTemplate: 5588 case Decl::VarTemplate: 5589 case Decl::Concept: 5590 case Decl::VarTemplatePartialSpecialization: 5591 case Decl::FunctionTemplate: 5592 case Decl::TypeAliasTemplate: 5593 case Decl::Block: 5594 case Decl::Empty: 5595 case Decl::Binding: 5596 break; 5597 case Decl::Using: // using X; [C++] 5598 if (CGDebugInfo *DI = getModuleDebugInfo()) 5599 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5600 break; 5601 case Decl::NamespaceAlias: 5602 if (CGDebugInfo *DI = getModuleDebugInfo()) 5603 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5604 break; 5605 case Decl::UsingDirective: // using namespace X; [C++] 5606 if (CGDebugInfo *DI = getModuleDebugInfo()) 5607 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5608 break; 5609 case Decl::CXXConstructor: 5610 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5611 break; 5612 case Decl::CXXDestructor: 5613 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5614 break; 5615 5616 case Decl::StaticAssert: 5617 // Nothing to do. 5618 break; 5619 5620 // Objective-C Decls 5621 5622 // Forward declarations, no (immediate) code generation. 5623 case Decl::ObjCInterface: 5624 case Decl::ObjCCategory: 5625 break; 5626 5627 case Decl::ObjCProtocol: { 5628 auto *Proto = cast<ObjCProtocolDecl>(D); 5629 if (Proto->isThisDeclarationADefinition()) 5630 ObjCRuntime->GenerateProtocol(Proto); 5631 break; 5632 } 5633 5634 case Decl::ObjCCategoryImpl: 5635 // Categories have properties but don't support synthesize so we 5636 // can ignore them here. 5637 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5638 break; 5639 5640 case Decl::ObjCImplementation: { 5641 auto *OMD = cast<ObjCImplementationDecl>(D); 5642 EmitObjCPropertyImplementations(OMD); 5643 EmitObjCIvarInitializations(OMD); 5644 ObjCRuntime->GenerateClass(OMD); 5645 // Emit global variable debug information. 5646 if (CGDebugInfo *DI = getModuleDebugInfo()) 5647 if (getCodeGenOpts().hasReducedDebugInfo()) 5648 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5649 OMD->getClassInterface()), OMD->getLocation()); 5650 break; 5651 } 5652 case Decl::ObjCMethod: { 5653 auto *OMD = cast<ObjCMethodDecl>(D); 5654 // If this is not a prototype, emit the body. 5655 if (OMD->getBody()) 5656 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5657 break; 5658 } 5659 case Decl::ObjCCompatibleAlias: 5660 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5661 break; 5662 5663 case Decl::PragmaComment: { 5664 const auto *PCD = cast<PragmaCommentDecl>(D); 5665 switch (PCD->getCommentKind()) { 5666 case PCK_Unknown: 5667 llvm_unreachable("unexpected pragma comment kind"); 5668 case PCK_Linker: 5669 AppendLinkerOptions(PCD->getArg()); 5670 break; 5671 case PCK_Lib: 5672 AddDependentLib(PCD->getArg()); 5673 break; 5674 case PCK_Compiler: 5675 case PCK_ExeStr: 5676 case PCK_User: 5677 break; // We ignore all of these. 5678 } 5679 break; 5680 } 5681 5682 case Decl::PragmaDetectMismatch: { 5683 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5684 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5685 break; 5686 } 5687 5688 case Decl::LinkageSpec: 5689 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5690 break; 5691 5692 case Decl::FileScopeAsm: { 5693 // File-scope asm is ignored during device-side CUDA compilation. 5694 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5695 break; 5696 // File-scope asm is ignored during device-side OpenMP compilation. 5697 if (LangOpts.OpenMPIsDevice) 5698 break; 5699 // File-scope asm is ignored during device-side SYCL compilation. 5700 if (LangOpts.SYCLIsDevice) 5701 break; 5702 auto *AD = cast<FileScopeAsmDecl>(D); 5703 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5704 break; 5705 } 5706 5707 case Decl::Import: { 5708 auto *Import = cast<ImportDecl>(D); 5709 5710 // If we've already imported this module, we're done. 5711 if (!ImportedModules.insert(Import->getImportedModule())) 5712 break; 5713 5714 // Emit debug information for direct imports. 5715 if (!Import->getImportedOwningModule()) { 5716 if (CGDebugInfo *DI = getModuleDebugInfo()) 5717 DI->EmitImportDecl(*Import); 5718 } 5719 5720 // Find all of the submodules and emit the module initializers. 5721 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5722 SmallVector<clang::Module *, 16> Stack; 5723 Visited.insert(Import->getImportedModule()); 5724 Stack.push_back(Import->getImportedModule()); 5725 5726 while (!Stack.empty()) { 5727 clang::Module *Mod = Stack.pop_back_val(); 5728 if (!EmittedModuleInitializers.insert(Mod).second) 5729 continue; 5730 5731 for (auto *D : Context.getModuleInitializers(Mod)) 5732 EmitTopLevelDecl(D); 5733 5734 // Visit the submodules of this module. 5735 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5736 SubEnd = Mod->submodule_end(); 5737 Sub != SubEnd; ++Sub) { 5738 // Skip explicit children; they need to be explicitly imported to emit 5739 // the initializers. 5740 if ((*Sub)->IsExplicit) 5741 continue; 5742 5743 if (Visited.insert(*Sub).second) 5744 Stack.push_back(*Sub); 5745 } 5746 } 5747 break; 5748 } 5749 5750 case Decl::Export: 5751 EmitDeclContext(cast<ExportDecl>(D)); 5752 break; 5753 5754 case Decl::OMPThreadPrivate: 5755 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5756 break; 5757 5758 case Decl::OMPAllocate: 5759 break; 5760 5761 case Decl::OMPDeclareReduction: 5762 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5763 break; 5764 5765 case Decl::OMPDeclareMapper: 5766 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5767 break; 5768 5769 case Decl::OMPRequires: 5770 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5771 break; 5772 5773 case Decl::Typedef: 5774 case Decl::TypeAlias: // using foo = bar; [C++11] 5775 if (CGDebugInfo *DI = getModuleDebugInfo()) 5776 DI->EmitAndRetainType( 5777 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5778 break; 5779 5780 case Decl::Record: 5781 if (CGDebugInfo *DI = getModuleDebugInfo()) 5782 if (cast<RecordDecl>(D)->getDefinition()) 5783 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5784 break; 5785 5786 case Decl::Enum: 5787 if (CGDebugInfo *DI = getModuleDebugInfo()) 5788 if (cast<EnumDecl>(D)->getDefinition()) 5789 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5790 break; 5791 5792 default: 5793 // Make sure we handled everything we should, every other kind is a 5794 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5795 // function. Need to recode Decl::Kind to do that easily. 5796 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5797 break; 5798 } 5799 } 5800 5801 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5802 // Do we need to generate coverage mapping? 5803 if (!CodeGenOpts.CoverageMapping) 5804 return; 5805 switch (D->getKind()) { 5806 case Decl::CXXConversion: 5807 case Decl::CXXMethod: 5808 case Decl::Function: 5809 case Decl::ObjCMethod: 5810 case Decl::CXXConstructor: 5811 case Decl::CXXDestructor: { 5812 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5813 break; 5814 SourceManager &SM = getContext().getSourceManager(); 5815 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5816 break; 5817 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5818 if (I == DeferredEmptyCoverageMappingDecls.end()) 5819 DeferredEmptyCoverageMappingDecls[D] = true; 5820 break; 5821 } 5822 default: 5823 break; 5824 }; 5825 } 5826 5827 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5828 // Do we need to generate coverage mapping? 5829 if (!CodeGenOpts.CoverageMapping) 5830 return; 5831 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5832 if (Fn->isTemplateInstantiation()) 5833 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5834 } 5835 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5836 if (I == DeferredEmptyCoverageMappingDecls.end()) 5837 DeferredEmptyCoverageMappingDecls[D] = false; 5838 else 5839 I->second = false; 5840 } 5841 5842 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5843 // We call takeVector() here to avoid use-after-free. 5844 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5845 // we deserialize function bodies to emit coverage info for them, and that 5846 // deserializes more declarations. How should we handle that case? 5847 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5848 if (!Entry.second) 5849 continue; 5850 const Decl *D = Entry.first; 5851 switch (D->getKind()) { 5852 case Decl::CXXConversion: 5853 case Decl::CXXMethod: 5854 case Decl::Function: 5855 case Decl::ObjCMethod: { 5856 CodeGenPGO PGO(*this); 5857 GlobalDecl GD(cast<FunctionDecl>(D)); 5858 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5859 getFunctionLinkage(GD)); 5860 break; 5861 } 5862 case Decl::CXXConstructor: { 5863 CodeGenPGO PGO(*this); 5864 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5865 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5866 getFunctionLinkage(GD)); 5867 break; 5868 } 5869 case Decl::CXXDestructor: { 5870 CodeGenPGO PGO(*this); 5871 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5872 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5873 getFunctionLinkage(GD)); 5874 break; 5875 } 5876 default: 5877 break; 5878 }; 5879 } 5880 } 5881 5882 void CodeGenModule::EmitMainVoidAlias() { 5883 // In order to transition away from "__original_main" gracefully, emit an 5884 // alias for "main" in the no-argument case so that libc can detect when 5885 // new-style no-argument main is in used. 5886 if (llvm::Function *F = getModule().getFunction("main")) { 5887 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5888 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5889 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5890 } 5891 } 5892 5893 /// Turns the given pointer into a constant. 5894 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5895 const void *Ptr) { 5896 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5897 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5898 return llvm::ConstantInt::get(i64, PtrInt); 5899 } 5900 5901 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5902 llvm::NamedMDNode *&GlobalMetadata, 5903 GlobalDecl D, 5904 llvm::GlobalValue *Addr) { 5905 if (!GlobalMetadata) 5906 GlobalMetadata = 5907 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5908 5909 // TODO: should we report variant information for ctors/dtors? 5910 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5911 llvm::ConstantAsMetadata::get(GetPointerConstant( 5912 CGM.getLLVMContext(), D.getDecl()))}; 5913 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5914 } 5915 5916 /// For each function which is declared within an extern "C" region and marked 5917 /// as 'used', but has internal linkage, create an alias from the unmangled 5918 /// name to the mangled name if possible. People expect to be able to refer 5919 /// to such functions with an unmangled name from inline assembly within the 5920 /// same translation unit. 5921 void CodeGenModule::EmitStaticExternCAliases() { 5922 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5923 return; 5924 for (auto &I : StaticExternCValues) { 5925 IdentifierInfo *Name = I.first; 5926 llvm::GlobalValue *Val = I.second; 5927 if (Val && !getModule().getNamedValue(Name->getName())) 5928 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5929 } 5930 } 5931 5932 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5933 GlobalDecl &Result) const { 5934 auto Res = Manglings.find(MangledName); 5935 if (Res == Manglings.end()) 5936 return false; 5937 Result = Res->getValue(); 5938 return true; 5939 } 5940 5941 /// Emits metadata nodes associating all the global values in the 5942 /// current module with the Decls they came from. This is useful for 5943 /// projects using IR gen as a subroutine. 5944 /// 5945 /// Since there's currently no way to associate an MDNode directly 5946 /// with an llvm::GlobalValue, we create a global named metadata 5947 /// with the name 'clang.global.decl.ptrs'. 5948 void CodeGenModule::EmitDeclMetadata() { 5949 llvm::NamedMDNode *GlobalMetadata = nullptr; 5950 5951 for (auto &I : MangledDeclNames) { 5952 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5953 // Some mangled names don't necessarily have an associated GlobalValue 5954 // in this module, e.g. if we mangled it for DebugInfo. 5955 if (Addr) 5956 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5957 } 5958 } 5959 5960 /// Emits metadata nodes for all the local variables in the current 5961 /// function. 5962 void CodeGenFunction::EmitDeclMetadata() { 5963 if (LocalDeclMap.empty()) return; 5964 5965 llvm::LLVMContext &Context = getLLVMContext(); 5966 5967 // Find the unique metadata ID for this name. 5968 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5969 5970 llvm::NamedMDNode *GlobalMetadata = nullptr; 5971 5972 for (auto &I : LocalDeclMap) { 5973 const Decl *D = I.first; 5974 llvm::Value *Addr = I.second.getPointer(); 5975 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5976 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5977 Alloca->setMetadata( 5978 DeclPtrKind, llvm::MDNode::get( 5979 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5980 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5981 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5982 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5983 } 5984 } 5985 } 5986 5987 void CodeGenModule::EmitVersionIdentMetadata() { 5988 llvm::NamedMDNode *IdentMetadata = 5989 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5990 std::string Version = getClangFullVersion(); 5991 llvm::LLVMContext &Ctx = TheModule.getContext(); 5992 5993 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5994 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5995 } 5996 5997 void CodeGenModule::EmitCommandLineMetadata() { 5998 llvm::NamedMDNode *CommandLineMetadata = 5999 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6000 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6001 llvm::LLVMContext &Ctx = TheModule.getContext(); 6002 6003 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6004 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6005 } 6006 6007 void CodeGenModule::EmitCoverageFile() { 6008 if (getCodeGenOpts().CoverageDataFile.empty() && 6009 getCodeGenOpts().CoverageNotesFile.empty()) 6010 return; 6011 6012 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6013 if (!CUNode) 6014 return; 6015 6016 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6017 llvm::LLVMContext &Ctx = TheModule.getContext(); 6018 auto *CoverageDataFile = 6019 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6020 auto *CoverageNotesFile = 6021 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6022 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6023 llvm::MDNode *CU = CUNode->getOperand(i); 6024 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6025 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6026 } 6027 } 6028 6029 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6030 bool ForEH) { 6031 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6032 // FIXME: should we even be calling this method if RTTI is disabled 6033 // and it's not for EH? 6034 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6035 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6036 getTriple().isNVPTX())) 6037 return llvm::Constant::getNullValue(Int8PtrTy); 6038 6039 if (ForEH && Ty->isObjCObjectPointerType() && 6040 LangOpts.ObjCRuntime.isGNUFamily()) 6041 return ObjCRuntime->GetEHType(Ty); 6042 6043 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6044 } 6045 6046 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6047 // Do not emit threadprivates in simd-only mode. 6048 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6049 return; 6050 for (auto RefExpr : D->varlists()) { 6051 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6052 bool PerformInit = 6053 VD->getAnyInitializer() && 6054 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6055 /*ForRef=*/false); 6056 6057 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6058 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6059 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6060 CXXGlobalInits.push_back(InitFunction); 6061 } 6062 } 6063 6064 llvm::Metadata * 6065 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6066 StringRef Suffix) { 6067 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6068 if (InternalId) 6069 return InternalId; 6070 6071 if (isExternallyVisible(T->getLinkage())) { 6072 std::string OutName; 6073 llvm::raw_string_ostream Out(OutName); 6074 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6075 Out << Suffix; 6076 6077 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6078 } else { 6079 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6080 llvm::ArrayRef<llvm::Metadata *>()); 6081 } 6082 6083 return InternalId; 6084 } 6085 6086 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6087 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6088 } 6089 6090 llvm::Metadata * 6091 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6092 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6093 } 6094 6095 // Generalize pointer types to a void pointer with the qualifiers of the 6096 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6097 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6098 // 'void *'. 6099 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6100 if (!Ty->isPointerType()) 6101 return Ty; 6102 6103 return Ctx.getPointerType( 6104 QualType(Ctx.VoidTy).withCVRQualifiers( 6105 Ty->getPointeeType().getCVRQualifiers())); 6106 } 6107 6108 // Apply type generalization to a FunctionType's return and argument types 6109 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6110 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6111 SmallVector<QualType, 8> GeneralizedParams; 6112 for (auto &Param : FnType->param_types()) 6113 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6114 6115 return Ctx.getFunctionType( 6116 GeneralizeType(Ctx, FnType->getReturnType()), 6117 GeneralizedParams, FnType->getExtProtoInfo()); 6118 } 6119 6120 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6121 return Ctx.getFunctionNoProtoType( 6122 GeneralizeType(Ctx, FnType->getReturnType())); 6123 6124 llvm_unreachable("Encountered unknown FunctionType"); 6125 } 6126 6127 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6128 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6129 GeneralizedMetadataIdMap, ".generalized"); 6130 } 6131 6132 /// Returns whether this module needs the "all-vtables" type identifier. 6133 bool CodeGenModule::NeedAllVtablesTypeId() const { 6134 // Returns true if at least one of vtable-based CFI checkers is enabled and 6135 // is not in the trapping mode. 6136 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6137 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6138 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6139 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6140 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6141 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6142 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6143 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6144 } 6145 6146 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6147 CharUnits Offset, 6148 const CXXRecordDecl *RD) { 6149 llvm::Metadata *MD = 6150 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6151 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6152 6153 if (CodeGenOpts.SanitizeCfiCrossDso) 6154 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6155 VTable->addTypeMetadata(Offset.getQuantity(), 6156 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6157 6158 if (NeedAllVtablesTypeId()) { 6159 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6160 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6161 } 6162 } 6163 6164 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6165 if (!SanStats) 6166 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6167 6168 return *SanStats; 6169 } 6170 llvm::Value * 6171 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6172 CodeGenFunction &CGF) { 6173 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6174 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6175 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6176 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6177 "__translate_sampler_initializer"), 6178 {C}); 6179 } 6180 6181 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6182 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6183 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6184 /* forPointeeType= */ true); 6185 } 6186 6187 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6188 LValueBaseInfo *BaseInfo, 6189 TBAAAccessInfo *TBAAInfo, 6190 bool forPointeeType) { 6191 if (TBAAInfo) 6192 *TBAAInfo = getTBAAAccessInfo(T); 6193 6194 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6195 // that doesn't return the information we need to compute BaseInfo. 6196 6197 // Honor alignment typedef attributes even on incomplete types. 6198 // We also honor them straight for C++ class types, even as pointees; 6199 // there's an expressivity gap here. 6200 if (auto TT = T->getAs<TypedefType>()) { 6201 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6202 if (BaseInfo) 6203 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6204 return getContext().toCharUnitsFromBits(Align); 6205 } 6206 } 6207 6208 bool AlignForArray = T->isArrayType(); 6209 6210 // Analyze the base element type, so we don't get confused by incomplete 6211 // array types. 6212 T = getContext().getBaseElementType(T); 6213 6214 if (T->isIncompleteType()) { 6215 // We could try to replicate the logic from 6216 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6217 // type is incomplete, so it's impossible to test. We could try to reuse 6218 // getTypeAlignIfKnown, but that doesn't return the information we need 6219 // to set BaseInfo. So just ignore the possibility that the alignment is 6220 // greater than one. 6221 if (BaseInfo) 6222 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6223 return CharUnits::One(); 6224 } 6225 6226 if (BaseInfo) 6227 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6228 6229 CharUnits Alignment; 6230 const CXXRecordDecl *RD; 6231 if (T.getQualifiers().hasUnaligned()) { 6232 Alignment = CharUnits::One(); 6233 } else if (forPointeeType && !AlignForArray && 6234 (RD = T->getAsCXXRecordDecl())) { 6235 // For C++ class pointees, we don't know whether we're pointing at a 6236 // base or a complete object, so we generally need to use the 6237 // non-virtual alignment. 6238 Alignment = getClassPointerAlignment(RD); 6239 } else { 6240 Alignment = getContext().getTypeAlignInChars(T); 6241 } 6242 6243 // Cap to the global maximum type alignment unless the alignment 6244 // was somehow explicit on the type. 6245 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6246 if (Alignment.getQuantity() > MaxAlign && 6247 !getContext().isAlignmentRequired(T)) 6248 Alignment = CharUnits::fromQuantity(MaxAlign); 6249 } 6250 return Alignment; 6251 } 6252 6253 bool CodeGenModule::stopAutoInit() { 6254 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6255 if (StopAfter) { 6256 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6257 // used 6258 if (NumAutoVarInit >= StopAfter) { 6259 return true; 6260 } 6261 if (!NumAutoVarInit) { 6262 unsigned DiagID = getDiags().getCustomDiagID( 6263 DiagnosticsEngine::Warning, 6264 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6265 "number of times ftrivial-auto-var-init=%1 gets applied."); 6266 getDiags().Report(DiagID) 6267 << StopAfter 6268 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6269 LangOptions::TrivialAutoVarInitKind::Zero 6270 ? "zero" 6271 : "pattern"); 6272 } 6273 ++NumAutoVarInit; 6274 } 6275 return false; 6276 } 6277 6278 void CodeGenModule::printPostfixForExternalizedStaticVar( 6279 llvm::raw_ostream &OS) const { 6280 OS << ".static." << getContext().getCUIDHash(); 6281 } 6282