xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 8ace12130526f450c822ca232d1f865b247d7434)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   AllocaInt8PtrTy = Int8Ty->getPointerTo(
134       M.getDataLayout().getAllocaAddrSpace());
135   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
136 
137   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
138 
139   if (LangOpts.ObjC)
140     createObjCRuntime();
141   if (LangOpts.OpenCL)
142     createOpenCLRuntime();
143   if (LangOpts.OpenMP)
144     createOpenMPRuntime();
145   if (LangOpts.CUDA)
146     createCUDARuntime();
147 
148   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
149   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
150       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
151     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
152                                getCXXABI().getMangleContext()));
153 
154   // If debug info or coverage generation is enabled, create the CGDebugInfo
155   // object.
156   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
157       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
158     DebugInfo.reset(new CGDebugInfo(*this));
159 
160   Block.GlobalUniqueCount = 0;
161 
162   if (C.getLangOpts().ObjC)
163     ObjCData.reset(new ObjCEntrypoints());
164 
165   if (CodeGenOpts.hasProfileClangUse()) {
166     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
167         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
168     if (auto E = ReaderOrErr.takeError()) {
169       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
170                                               "Could not read profile %0: %1");
171       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
172         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
173                                   << EI.message();
174       });
175     } else
176       PGOReader = std::move(ReaderOrErr.get());
177   }
178 
179   // If coverage mapping generation is enabled, create the
180   // CoverageMappingModuleGen object.
181   if (CodeGenOpts.CoverageMapping)
182     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
183 
184   // Generate the module name hash here if needed.
185   if (CodeGenOpts.UniqueInternalLinkageNames &&
186       !getModule().getSourceFileName().empty()) {
187     std::string Path = getModule().getSourceFileName();
188     // Check if a path substitution is needed from the MacroPrefixMap.
189     for (const auto &Entry : PPO.MacroPrefixMap)
190       if (Path.rfind(Entry.first, 0) != std::string::npos) {
191         Path = Entry.second + Path.substr(Entry.first.size());
192         break;
193       }
194     llvm::MD5 Md5;
195     Md5.update(Path);
196     llvm::MD5::MD5Result R;
197     Md5.final(R);
198     SmallString<32> Str;
199     llvm::MD5::stringifyResult(R, Str);
200     // Convert MD5hash to Decimal. Demangler suffixes can either contain
201     // numbers or characters but not both.
202     llvm::APInt IntHash(128, Str.str(), 16);
203     // Prepend "__uniq" before the hash for tools like profilers to understand
204     // that this symbol is of internal linkage type.  The "__uniq" is the
205     // pre-determined prefix that is used to tell tools that this symbol was
206     // created with -funique-internal-linakge-symbols and the tools can strip or
207     // keep the prefix as needed.
208     ModuleNameHash = (Twine(".__uniq.") +
209         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
210   }
211 }
212 
213 CodeGenModule::~CodeGenModule() {}
214 
215 void CodeGenModule::createObjCRuntime() {
216   // This is just isGNUFamily(), but we want to force implementors of
217   // new ABIs to decide how best to do this.
218   switch (LangOpts.ObjCRuntime.getKind()) {
219   case ObjCRuntime::GNUstep:
220   case ObjCRuntime::GCC:
221   case ObjCRuntime::ObjFW:
222     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
223     return;
224 
225   case ObjCRuntime::FragileMacOSX:
226   case ObjCRuntime::MacOSX:
227   case ObjCRuntime::iOS:
228   case ObjCRuntime::WatchOS:
229     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
230     return;
231   }
232   llvm_unreachable("bad runtime kind");
233 }
234 
235 void CodeGenModule::createOpenCLRuntime() {
236   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
237 }
238 
239 void CodeGenModule::createOpenMPRuntime() {
240   // Select a specialized code generation class based on the target, if any.
241   // If it does not exist use the default implementation.
242   switch (getTriple().getArch()) {
243   case llvm::Triple::nvptx:
244   case llvm::Triple::nvptx64:
245     assert(getLangOpts().OpenMPIsDevice &&
246            "OpenMP NVPTX is only prepared to deal with device code.");
247     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
248     break;
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGCN is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
268   Replacements[Name] = C;
269 }
270 
271 void CodeGenModule::applyReplacements() {
272   for (auto &I : Replacements) {
273     StringRef MangledName = I.first();
274     llvm::Constant *Replacement = I.second;
275     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
276     if (!Entry)
277       continue;
278     auto *OldF = cast<llvm::Function>(Entry);
279     auto *NewF = dyn_cast<llvm::Function>(Replacement);
280     if (!NewF) {
281       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
282         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
283       } else {
284         auto *CE = cast<llvm::ConstantExpr>(Replacement);
285         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
286                CE->getOpcode() == llvm::Instruction::GetElementPtr);
287         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
288       }
289     }
290 
291     // Replace old with new, but keep the old order.
292     OldF->replaceAllUsesWith(Replacement);
293     if (NewF) {
294       NewF->removeFromParent();
295       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
296                                                        NewF);
297     }
298     OldF->eraseFromParent();
299   }
300 }
301 
302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
303   GlobalValReplacements.push_back(std::make_pair(GV, C));
304 }
305 
306 void CodeGenModule::applyGlobalValReplacements() {
307   for (auto &I : GlobalValReplacements) {
308     llvm::GlobalValue *GV = I.first;
309     llvm::Constant *C = I.second;
310 
311     GV->replaceAllUsesWith(C);
312     GV->eraseFromParent();
313   }
314 }
315 
316 // This is only used in aliases that we created and we know they have a
317 // linear structure.
318 static const llvm::GlobalObject *getAliasedGlobal(
319     const llvm::GlobalIndirectSymbol &GIS) {
320   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
321   const llvm::Constant *C = &GIS;
322   for (;;) {
323     C = C->stripPointerCasts();
324     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
325       return GO;
326     // stripPointerCasts will not walk over weak aliases.
327     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
328     if (!GIS2)
329       return nullptr;
330     if (!Visited.insert(GIS2).second)
331       return nullptr;
332     C = GIS2->getIndirectSymbol();
333   }
334 }
335 
336 void CodeGenModule::checkAliases() {
337   // Check if the constructed aliases are well formed. It is really unfortunate
338   // that we have to do this in CodeGen, but we only construct mangled names
339   // and aliases during codegen.
340   bool Error = false;
341   DiagnosticsEngine &Diags = getDiags();
342   for (const GlobalDecl &GD : Aliases) {
343     const auto *D = cast<ValueDecl>(GD.getDecl());
344     SourceLocation Location;
345     bool IsIFunc = D->hasAttr<IFuncAttr>();
346     if (const Attr *A = D->getDefiningAttr())
347       Location = A->getLocation();
348     else
349       llvm_unreachable("Not an alias or ifunc?");
350     StringRef MangledName = getMangledName(GD);
351     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
352     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
353     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
354     if (!GV) {
355       Error = true;
356       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
357     } else if (GV->isDeclaration()) {
358       Error = true;
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361     } else if (IsIFunc) {
362       // Check resolver function type.
363       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
364           GV->getType()->getPointerElementType());
365       assert(FTy);
366       if (!FTy->getReturnType()->isPointerTy())
367         Diags.Report(Location, diag::err_ifunc_resolver_return);
368     }
369 
370     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
371     llvm::GlobalValue *AliaseeGV;
372     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
373       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
374     else
375       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
376 
377     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
378       StringRef AliasSection = SA->getName();
379       if (AliasSection != AliaseeGV->getSection())
380         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
381             << AliasSection << IsIFunc << IsIFunc;
382     }
383 
384     // We have to handle alias to weak aliases in here. LLVM itself disallows
385     // this since the object semantics would not match the IL one. For
386     // compatibility with gcc we implement it by just pointing the alias
387     // to its aliasee's aliasee. We also warn, since the user is probably
388     // expecting the link to be weak.
389     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
390       if (GA->isInterposable()) {
391         Diags.Report(Location, diag::warn_alias_to_weak_alias)
392             << GV->getName() << GA->getName() << IsIFunc;
393         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
394             GA->getIndirectSymbol(), Alias->getType());
395         Alias->setIndirectSymbol(Aliasee);
396       }
397     }
398   }
399   if (!Error)
400     return;
401 
402   for (const GlobalDecl &GD : Aliases) {
403     StringRef MangledName = getMangledName(GD);
404     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
405     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
406     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
407     Alias->eraseFromParent();
408   }
409 }
410 
411 void CodeGenModule::clear() {
412   DeferredDeclsToEmit.clear();
413   if (OpenMPRuntime)
414     OpenMPRuntime->clear();
415 }
416 
417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
418                                        StringRef MainFile) {
419   if (!hasDiagnostics())
420     return;
421   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
422     if (MainFile.empty())
423       MainFile = "<stdin>";
424     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
425   } else {
426     if (Mismatched > 0)
427       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
428 
429     if (Missing > 0)
430       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
431   }
432 }
433 
434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
435                                              llvm::Module &M) {
436   if (!LO.VisibilityFromDLLStorageClass)
437     return;
438 
439   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
440       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
441   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
442       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
443   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
444       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
445   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
446       CodeGenModule::GetLLVMVisibility(
447           LO.getExternDeclNoDLLStorageClassVisibility());
448 
449   for (llvm::GlobalValue &GV : M.global_values()) {
450     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
451       continue;
452 
453     // Reset DSO locality before setting the visibility. This removes
454     // any effects that visibility options and annotations may have
455     // had on the DSO locality. Setting the visibility will implicitly set
456     // appropriate globals to DSO Local; however, this will be pessimistic
457     // w.r.t. to the normal compiler IRGen.
458     GV.setDSOLocal(false);
459 
460     if (GV.isDeclarationForLinker()) {
461       GV.setVisibility(GV.getDLLStorageClass() ==
462                                llvm::GlobalValue::DLLImportStorageClass
463                            ? ExternDeclDLLImportVisibility
464                            : ExternDeclNoDLLStorageClassVisibility);
465     } else {
466       GV.setVisibility(GV.getDLLStorageClass() ==
467                                llvm::GlobalValue::DLLExportStorageClass
468                            ? DLLExportVisibility
469                            : NoDLLStorageClassVisibility);
470     }
471 
472     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
473   }
474 }
475 
476 void CodeGenModule::Release() {
477   EmitDeferred();
478   EmitVTablesOpportunistically();
479   applyGlobalValReplacements();
480   applyReplacements();
481   checkAliases();
482   emitMultiVersionFunctions();
483   EmitCXXGlobalInitFunc();
484   EmitCXXGlobalCleanUpFunc();
485   registerGlobalDtorsWithAtExit();
486   EmitCXXThreadLocalInitFunc();
487   if (ObjCRuntime)
488     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
489       AddGlobalCtor(ObjCInitFunction);
490   if (Context.getLangOpts().CUDA && CUDARuntime) {
491     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
492       AddGlobalCtor(CudaCtorFunction);
493   }
494   if (OpenMPRuntime) {
495     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
496             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
497       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
498     }
499     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
500     OpenMPRuntime->clear();
501   }
502   if (PGOReader) {
503     getModule().setProfileSummary(
504         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
505         llvm::ProfileSummary::PSK_Instr);
506     if (PGOStats.hasDiagnostics())
507       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
508   }
509   EmitCtorList(GlobalCtors, "llvm.global_ctors");
510   EmitCtorList(GlobalDtors, "llvm.global_dtors");
511   EmitGlobalAnnotations();
512   EmitStaticExternCAliases();
513   EmitDeferredUnusedCoverageMappings();
514   CodeGenPGO(*this).setValueProfilingFlag(getModule());
515   if (CoverageMapping)
516     CoverageMapping->emit();
517   if (CodeGenOpts.SanitizeCfiCrossDso) {
518     CodeGenFunction(*this).EmitCfiCheckFail();
519     CodeGenFunction(*this).EmitCfiCheckStub();
520   }
521   emitAtAvailableLinkGuard();
522   if (Context.getTargetInfo().getTriple().isWasm() &&
523       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
524     EmitMainVoidAlias();
525   }
526   emitLLVMUsed();
527   if (SanStats)
528     SanStats->finish();
529 
530   if (CodeGenOpts.Autolink &&
531       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
532     EmitModuleLinkOptions();
533   }
534 
535   // On ELF we pass the dependent library specifiers directly to the linker
536   // without manipulating them. This is in contrast to other platforms where
537   // they are mapped to a specific linker option by the compiler. This
538   // difference is a result of the greater variety of ELF linkers and the fact
539   // that ELF linkers tend to handle libraries in a more complicated fashion
540   // than on other platforms. This forces us to defer handling the dependent
541   // libs to the linker.
542   //
543   // CUDA/HIP device and host libraries are different. Currently there is no
544   // way to differentiate dependent libraries for host or device. Existing
545   // usage of #pragma comment(lib, *) is intended for host libraries on
546   // Windows. Therefore emit llvm.dependent-libraries only for host.
547   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
548     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
549     for (auto *MD : ELFDependentLibraries)
550       NMD->addOperand(MD);
551   }
552 
553   // Record mregparm value now so it is visible through rest of codegen.
554   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
555     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
556                               CodeGenOpts.NumRegisterParameters);
557 
558   if (CodeGenOpts.DwarfVersion) {
559     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
560                               CodeGenOpts.DwarfVersion);
561   }
562 
563   if (CodeGenOpts.Dwarf64)
564     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
565 
566   if (Context.getLangOpts().SemanticInterposition)
567     // Require various optimization to respect semantic interposition.
568     getModule().setSemanticInterposition(1);
569 
570   if (CodeGenOpts.EmitCodeView) {
571     // Indicate that we want CodeView in the metadata.
572     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
573   }
574   if (CodeGenOpts.CodeViewGHash) {
575     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
576   }
577   if (CodeGenOpts.ControlFlowGuard) {
578     // Function ID tables and checks for Control Flow Guard (cfguard=2).
579     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
580   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
581     // Function ID tables for Control Flow Guard (cfguard=1).
582     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
583   }
584   if (CodeGenOpts.EHContGuard) {
585     // Function ID tables for EH Continuation Guard.
586     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
587   }
588   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
589     // We don't support LTO with 2 with different StrictVTablePointers
590     // FIXME: we could support it by stripping all the information introduced
591     // by StrictVTablePointers.
592 
593     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
594 
595     llvm::Metadata *Ops[2] = {
596               llvm::MDString::get(VMContext, "StrictVTablePointers"),
597               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598                   llvm::Type::getInt32Ty(VMContext), 1))};
599 
600     getModule().addModuleFlag(llvm::Module::Require,
601                               "StrictVTablePointersRequirement",
602                               llvm::MDNode::get(VMContext, Ops));
603   }
604   if (getModuleDebugInfo())
605     // We support a single version in the linked module. The LLVM
606     // parser will drop debug info with a different version number
607     // (and warn about it, too).
608     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
609                               llvm::DEBUG_METADATA_VERSION);
610 
611   // We need to record the widths of enums and wchar_t, so that we can generate
612   // the correct build attributes in the ARM backend. wchar_size is also used by
613   // TargetLibraryInfo.
614   uint64_t WCharWidth =
615       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
616   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
617 
618   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
619   if (   Arch == llvm::Triple::arm
620       || Arch == llvm::Triple::armeb
621       || Arch == llvm::Triple::thumb
622       || Arch == llvm::Triple::thumbeb) {
623     // The minimum width of an enum in bytes
624     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
625     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
626   }
627 
628   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
629     StringRef ABIStr = Target.getABI();
630     llvm::LLVMContext &Ctx = TheModule.getContext();
631     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
632                               llvm::MDString::get(Ctx, ABIStr));
633   }
634 
635   if (CodeGenOpts.SanitizeCfiCrossDso) {
636     // Indicate that we want cross-DSO control flow integrity checks.
637     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
638   }
639 
640   if (CodeGenOpts.WholeProgramVTables) {
641     // Indicate whether VFE was enabled for this module, so that the
642     // vcall_visibility metadata added under whole program vtables is handled
643     // appropriately in the optimizer.
644     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
645                               CodeGenOpts.VirtualFunctionElimination);
646   }
647 
648   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
649     getModule().addModuleFlag(llvm::Module::Override,
650                               "CFI Canonical Jump Tables",
651                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
652   }
653 
654   if (CodeGenOpts.CFProtectionReturn &&
655       Target.checkCFProtectionReturnSupported(getDiags())) {
656     // Indicate that we want to instrument return control flow protection.
657     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
658                               1);
659   }
660 
661   if (CodeGenOpts.CFProtectionBranch &&
662       Target.checkCFProtectionBranchSupported(getDiags())) {
663     // Indicate that we want to instrument branch control flow protection.
664     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
665                               1);
666   }
667 
668   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
669       Arch == llvm::Triple::aarch64_be) {
670     getModule().addModuleFlag(llvm::Module::Error,
671                               "branch-target-enforcement",
672                               LangOpts.BranchTargetEnforcement);
673 
674     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
675                               LangOpts.hasSignReturnAddress());
676 
677     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
678                               LangOpts.isSignReturnAddressScopeAll());
679 
680     getModule().addModuleFlag(llvm::Module::Error,
681                               "sign-return-address-with-bkey",
682                               !LangOpts.isSignReturnAddressWithAKey());
683   }
684 
685   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
686     llvm::LLVMContext &Ctx = TheModule.getContext();
687     getModule().addModuleFlag(
688         llvm::Module::Error, "MemProfProfileFilename",
689         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
690   }
691 
692   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
693     // Indicate whether __nvvm_reflect should be configured to flush denormal
694     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
695     // property.)
696     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
697                               CodeGenOpts.FP32DenormalMode.Output !=
698                                   llvm::DenormalMode::IEEE);
699   }
700 
701   if (LangOpts.EHAsynch)
702     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
703 
704   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
705   if (LangOpts.OpenCL) {
706     EmitOpenCLMetadata();
707     // Emit SPIR version.
708     if (getTriple().isSPIR()) {
709       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
710       // opencl.spir.version named metadata.
711       // C++ is backwards compatible with OpenCL v2.0.
712       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
713       llvm::Metadata *SPIRVerElts[] = {
714           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
715               Int32Ty, Version / 100)),
716           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
717               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
718       llvm::NamedMDNode *SPIRVerMD =
719           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
720       llvm::LLVMContext &Ctx = TheModule.getContext();
721       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
722     }
723   }
724 
725   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
726     assert(PLevel < 3 && "Invalid PIC Level");
727     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
728     if (Context.getLangOpts().PIE)
729       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
730   }
731 
732   if (getCodeGenOpts().CodeModel.size() > 0) {
733     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
734                   .Case("tiny", llvm::CodeModel::Tiny)
735                   .Case("small", llvm::CodeModel::Small)
736                   .Case("kernel", llvm::CodeModel::Kernel)
737                   .Case("medium", llvm::CodeModel::Medium)
738                   .Case("large", llvm::CodeModel::Large)
739                   .Default(~0u);
740     if (CM != ~0u) {
741       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
742       getModule().setCodeModel(codeModel);
743     }
744   }
745 
746   if (CodeGenOpts.NoPLT)
747     getModule().setRtLibUseGOT();
748   if (CodeGenOpts.UnwindTables)
749     getModule().setUwtable();
750 
751   switch (CodeGenOpts.getFramePointer()) {
752   case CodeGenOptions::FramePointerKind::None:
753     // 0 ("none") is the default.
754     break;
755   case CodeGenOptions::FramePointerKind::NonLeaf:
756     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
757     break;
758   case CodeGenOptions::FramePointerKind::All:
759     getModule().setFramePointer(llvm::FramePointerKind::All);
760     break;
761   }
762 
763   SimplifyPersonality();
764 
765   if (getCodeGenOpts().EmitDeclMetadata)
766     EmitDeclMetadata();
767 
768   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
769     EmitCoverageFile();
770 
771   if (CGDebugInfo *DI = getModuleDebugInfo())
772     DI->finalize();
773 
774   if (getCodeGenOpts().EmitVersionIdentMetadata)
775     EmitVersionIdentMetadata();
776 
777   if (!getCodeGenOpts().RecordCommandLine.empty())
778     EmitCommandLineMetadata();
779 
780   if (!getCodeGenOpts().StackProtectorGuard.empty())
781     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
782   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
783     getModule().setStackProtectorGuardReg(
784         getCodeGenOpts().StackProtectorGuardReg);
785   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
786     getModule().setStackProtectorGuardOffset(
787         getCodeGenOpts().StackProtectorGuardOffset);
788   if (getCodeGenOpts().StackAlignment)
789     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
790 
791   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
792 
793   EmitBackendOptionsMetadata(getCodeGenOpts());
794 
795   // Set visibility from DLL storage class
796   // We do this at the end of LLVM IR generation; after any operation
797   // that might affect the DLL storage class or the visibility, and
798   // before anything that might act on these.
799   setVisibilityFromDLLStorageClass(LangOpts, getModule());
800 }
801 
802 void CodeGenModule::EmitOpenCLMetadata() {
803   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
804   // opencl.ocl.version named metadata node.
805   // C++ is backwards compatible with OpenCL v2.0.
806   // FIXME: We might need to add CXX version at some point too?
807   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
808   llvm::Metadata *OCLVerElts[] = {
809       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
810           Int32Ty, Version / 100)),
811       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
812           Int32Ty, (Version % 100) / 10))};
813   llvm::NamedMDNode *OCLVerMD =
814       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
815   llvm::LLVMContext &Ctx = TheModule.getContext();
816   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
817 }
818 
819 void CodeGenModule::EmitBackendOptionsMetadata(
820     const CodeGenOptions CodeGenOpts) {
821   switch (getTriple().getArch()) {
822   default:
823     break;
824   case llvm::Triple::riscv32:
825   case llvm::Triple::riscv64:
826     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
827                               CodeGenOpts.SmallDataLimit);
828     break;
829   }
830 }
831 
832 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
833   // Make sure that this type is translated.
834   Types.UpdateCompletedType(TD);
835 }
836 
837 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
838   // Make sure that this type is translated.
839   Types.RefreshTypeCacheForClass(RD);
840 }
841 
842 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
843   if (!TBAA)
844     return nullptr;
845   return TBAA->getTypeInfo(QTy);
846 }
847 
848 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
849   if (!TBAA)
850     return TBAAAccessInfo();
851   if (getLangOpts().CUDAIsDevice) {
852     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
853     // access info.
854     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
855       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
856           nullptr)
857         return TBAAAccessInfo();
858     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
859       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
860           nullptr)
861         return TBAAAccessInfo();
862     }
863   }
864   return TBAA->getAccessInfo(AccessType);
865 }
866 
867 TBAAAccessInfo
868 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
869   if (!TBAA)
870     return TBAAAccessInfo();
871   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
872 }
873 
874 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
875   if (!TBAA)
876     return nullptr;
877   return TBAA->getTBAAStructInfo(QTy);
878 }
879 
880 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
881   if (!TBAA)
882     return nullptr;
883   return TBAA->getBaseTypeInfo(QTy);
884 }
885 
886 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
887   if (!TBAA)
888     return nullptr;
889   return TBAA->getAccessTagInfo(Info);
890 }
891 
892 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
893                                                    TBAAAccessInfo TargetInfo) {
894   if (!TBAA)
895     return TBAAAccessInfo();
896   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
897 }
898 
899 TBAAAccessInfo
900 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
901                                                    TBAAAccessInfo InfoB) {
902   if (!TBAA)
903     return TBAAAccessInfo();
904   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
905 }
906 
907 TBAAAccessInfo
908 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
909                                               TBAAAccessInfo SrcInfo) {
910   if (!TBAA)
911     return TBAAAccessInfo();
912   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
913 }
914 
915 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
916                                                 TBAAAccessInfo TBAAInfo) {
917   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
918     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
919 }
920 
921 void CodeGenModule::DecorateInstructionWithInvariantGroup(
922     llvm::Instruction *I, const CXXRecordDecl *RD) {
923   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
924                  llvm::MDNode::get(getLLVMContext(), {}));
925 }
926 
927 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
928   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
929   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
930 }
931 
932 /// ErrorUnsupported - Print out an error that codegen doesn't support the
933 /// specified stmt yet.
934 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
935   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
936                                                "cannot compile this %0 yet");
937   std::string Msg = Type;
938   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
939       << Msg << S->getSourceRange();
940 }
941 
942 /// ErrorUnsupported - Print out an error that codegen doesn't support the
943 /// specified decl yet.
944 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
945   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
946                                                "cannot compile this %0 yet");
947   std::string Msg = Type;
948   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
949 }
950 
951 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
952   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
953 }
954 
955 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
956                                         const NamedDecl *D) const {
957   if (GV->hasDLLImportStorageClass())
958     return;
959   // Internal definitions always have default visibility.
960   if (GV->hasLocalLinkage()) {
961     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
962     return;
963   }
964   if (!D)
965     return;
966   // Set visibility for definitions, and for declarations if requested globally
967   // or set explicitly.
968   LinkageInfo LV = D->getLinkageAndVisibility();
969   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
970       !GV->isDeclarationForLinker())
971     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
972 }
973 
974 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
975                                  llvm::GlobalValue *GV) {
976   if (GV->hasLocalLinkage())
977     return true;
978 
979   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
980     return true;
981 
982   // DLLImport explicitly marks the GV as external.
983   if (GV->hasDLLImportStorageClass())
984     return false;
985 
986   const llvm::Triple &TT = CGM.getTriple();
987   if (TT.isWindowsGNUEnvironment()) {
988     // In MinGW, variables without DLLImport can still be automatically
989     // imported from a DLL by the linker; don't mark variables that
990     // potentially could come from another DLL as DSO local.
991 
992     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
993     // (and this actually happens in the public interface of libstdc++), so
994     // such variables can't be marked as DSO local. (Native TLS variables
995     // can't be dllimported at all, though.)
996     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
997         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
998       return false;
999   }
1000 
1001   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1002   // remain unresolved in the link, they can be resolved to zero, which is
1003   // outside the current DSO.
1004   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1005     return false;
1006 
1007   // Every other GV is local on COFF.
1008   // Make an exception for windows OS in the triple: Some firmware builds use
1009   // *-win32-macho triples. This (accidentally?) produced windows relocations
1010   // without GOT tables in older clang versions; Keep this behaviour.
1011   // FIXME: even thread local variables?
1012   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1013     return true;
1014 
1015   // Only handle COFF and ELF for now.
1016   if (!TT.isOSBinFormatELF())
1017     return false;
1018 
1019   // If this is not an executable, don't assume anything is local.
1020   const auto &CGOpts = CGM.getCodeGenOpts();
1021   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1022   const auto &LOpts = CGM.getLangOpts();
1023   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1024     // On ELF, if -fno-semantic-interposition is specified and the target
1025     // supports local aliases, there will be neither CC1
1026     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1027     // dso_local on the function if using a local alias is preferable (can avoid
1028     // PLT indirection).
1029     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1030       return false;
1031     return !(CGM.getLangOpts().SemanticInterposition ||
1032              CGM.getLangOpts().HalfNoSemanticInterposition);
1033   }
1034 
1035   // A definition cannot be preempted from an executable.
1036   if (!GV->isDeclarationForLinker())
1037     return true;
1038 
1039   // Most PIC code sequences that assume that a symbol is local cannot produce a
1040   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1041   // depended, it seems worth it to handle it here.
1042   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1043     return false;
1044 
1045   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1046   if (TT.isPPC64())
1047     return false;
1048 
1049   if (CGOpts.DirectAccessExternalData) {
1050     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1051     // for non-thread-local variables. If the symbol is not defined in the
1052     // executable, a copy relocation will be needed at link time. dso_local is
1053     // excluded for thread-local variables because they generally don't support
1054     // copy relocations.
1055     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1056       if (!Var->isThreadLocal())
1057         return true;
1058 
1059     // -fno-pic sets dso_local on a function declaration to allow direct
1060     // accesses when taking its address (similar to a data symbol). If the
1061     // function is not defined in the executable, a canonical PLT entry will be
1062     // needed at link time. -fno-direct-access-external-data can avoid the
1063     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1064     // it could just cause trouble without providing perceptible benefits.
1065     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1066       return true;
1067   }
1068 
1069   // If we can use copy relocations we can assume it is local.
1070 
1071   // Otherwise don't assume it is local.
1072   return false;
1073 }
1074 
1075 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1076   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1077 }
1078 
1079 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1080                                           GlobalDecl GD) const {
1081   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1082   // C++ destructors have a few C++ ABI specific special cases.
1083   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1084     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1085     return;
1086   }
1087   setDLLImportDLLExport(GV, D);
1088 }
1089 
1090 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1091                                           const NamedDecl *D) const {
1092   if (D && D->isExternallyVisible()) {
1093     if (D->hasAttr<DLLImportAttr>())
1094       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1095     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1096       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1097   }
1098 }
1099 
1100 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1101                                     GlobalDecl GD) const {
1102   setDLLImportDLLExport(GV, GD);
1103   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1104 }
1105 
1106 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1107                                     const NamedDecl *D) const {
1108   setDLLImportDLLExport(GV, D);
1109   setGVPropertiesAux(GV, D);
1110 }
1111 
1112 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1113                                        const NamedDecl *D) const {
1114   setGlobalVisibility(GV, D);
1115   setDSOLocal(GV);
1116   GV->setPartition(CodeGenOpts.SymbolPartition);
1117 }
1118 
1119 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1120   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1121       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1122       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1123       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1124       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1125 }
1126 
1127 llvm::GlobalVariable::ThreadLocalMode
1128 CodeGenModule::GetDefaultLLVMTLSModel() const {
1129   switch (CodeGenOpts.getDefaultTLSModel()) {
1130   case CodeGenOptions::GeneralDynamicTLSModel:
1131     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1132   case CodeGenOptions::LocalDynamicTLSModel:
1133     return llvm::GlobalVariable::LocalDynamicTLSModel;
1134   case CodeGenOptions::InitialExecTLSModel:
1135     return llvm::GlobalVariable::InitialExecTLSModel;
1136   case CodeGenOptions::LocalExecTLSModel:
1137     return llvm::GlobalVariable::LocalExecTLSModel;
1138   }
1139   llvm_unreachable("Invalid TLS model!");
1140 }
1141 
1142 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1143   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1144 
1145   llvm::GlobalValue::ThreadLocalMode TLM;
1146   TLM = GetDefaultLLVMTLSModel();
1147 
1148   // Override the TLS model if it is explicitly specified.
1149   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1150     TLM = GetLLVMTLSModel(Attr->getModel());
1151   }
1152 
1153   GV->setThreadLocalMode(TLM);
1154 }
1155 
1156 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1157                                           StringRef Name) {
1158   const TargetInfo &Target = CGM.getTarget();
1159   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1160 }
1161 
1162 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1163                                                  const CPUSpecificAttr *Attr,
1164                                                  unsigned CPUIndex,
1165                                                  raw_ostream &Out) {
1166   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1167   // supported.
1168   if (Attr)
1169     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1170   else if (CGM.getTarget().supportsIFunc())
1171     Out << ".resolver";
1172 }
1173 
1174 static void AppendTargetMangling(const CodeGenModule &CGM,
1175                                  const TargetAttr *Attr, raw_ostream &Out) {
1176   if (Attr->isDefaultVersion())
1177     return;
1178 
1179   Out << '.';
1180   const TargetInfo &Target = CGM.getTarget();
1181   ParsedTargetAttr Info =
1182       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1183         // Multiversioning doesn't allow "no-${feature}", so we can
1184         // only have "+" prefixes here.
1185         assert(LHS.startswith("+") && RHS.startswith("+") &&
1186                "Features should always have a prefix.");
1187         return Target.multiVersionSortPriority(LHS.substr(1)) >
1188                Target.multiVersionSortPriority(RHS.substr(1));
1189       });
1190 
1191   bool IsFirst = true;
1192 
1193   if (!Info.Architecture.empty()) {
1194     IsFirst = false;
1195     Out << "arch_" << Info.Architecture;
1196   }
1197 
1198   for (StringRef Feat : Info.Features) {
1199     if (!IsFirst)
1200       Out << '_';
1201     IsFirst = false;
1202     Out << Feat.substr(1);
1203   }
1204 }
1205 
1206 // Returns true if GD is a function decl with internal linkage and
1207 // needs a unique suffix after the mangled name.
1208 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1209                                         CodeGenModule &CGM) {
1210   const Decl *D = GD.getDecl();
1211   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1212          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1213 }
1214 
1215 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1216                                       const NamedDecl *ND,
1217                                       bool OmitMultiVersionMangling = false) {
1218   SmallString<256> Buffer;
1219   llvm::raw_svector_ostream Out(Buffer);
1220   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1221   if (!CGM.getModuleNameHash().empty())
1222     MC.needsUniqueInternalLinkageNames();
1223   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1224   if (ShouldMangle)
1225     MC.mangleName(GD.getWithDecl(ND), Out);
1226   else {
1227     IdentifierInfo *II = ND->getIdentifier();
1228     assert(II && "Attempt to mangle unnamed decl.");
1229     const auto *FD = dyn_cast<FunctionDecl>(ND);
1230 
1231     if (FD &&
1232         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1233       Out << "__regcall3__" << II->getName();
1234     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1235                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1236       Out << "__device_stub__" << II->getName();
1237     } else {
1238       Out << II->getName();
1239     }
1240   }
1241 
1242   // Check if the module name hash should be appended for internal linkage
1243   // symbols.   This should come before multi-version target suffixes are
1244   // appended. This is to keep the name and module hash suffix of the
1245   // internal linkage function together.  The unique suffix should only be
1246   // added when name mangling is done to make sure that the final name can
1247   // be properly demangled.  For example, for C functions without prototypes,
1248   // name mangling is not done and the unique suffix should not be appeneded
1249   // then.
1250   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1251     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1252            "Hash computed when not explicitly requested");
1253     Out << CGM.getModuleNameHash();
1254   }
1255 
1256   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1257     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1258       switch (FD->getMultiVersionKind()) {
1259       case MultiVersionKind::CPUDispatch:
1260       case MultiVersionKind::CPUSpecific:
1261         AppendCPUSpecificCPUDispatchMangling(CGM,
1262                                              FD->getAttr<CPUSpecificAttr>(),
1263                                              GD.getMultiVersionIndex(), Out);
1264         break;
1265       case MultiVersionKind::Target:
1266         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1267         break;
1268       case MultiVersionKind::None:
1269         llvm_unreachable("None multiversion type isn't valid here");
1270       }
1271     }
1272 
1273   // Make unique name for device side static file-scope variable for HIP.
1274   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1275       CGM.getLangOpts().GPURelocatableDeviceCode &&
1276       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1277     CGM.printPostfixForExternalizedStaticVar(Out);
1278   return std::string(Out.str());
1279 }
1280 
1281 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1282                                             const FunctionDecl *FD) {
1283   if (!FD->isMultiVersion())
1284     return;
1285 
1286   // Get the name of what this would be without the 'target' attribute.  This
1287   // allows us to lookup the version that was emitted when this wasn't a
1288   // multiversion function.
1289   std::string NonTargetName =
1290       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1291   GlobalDecl OtherGD;
1292   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1293     assert(OtherGD.getCanonicalDecl()
1294                .getDecl()
1295                ->getAsFunction()
1296                ->isMultiVersion() &&
1297            "Other GD should now be a multiversioned function");
1298     // OtherFD is the version of this function that was mangled BEFORE
1299     // becoming a MultiVersion function.  It potentially needs to be updated.
1300     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1301                                       .getDecl()
1302                                       ->getAsFunction()
1303                                       ->getMostRecentDecl();
1304     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1305     // This is so that if the initial version was already the 'default'
1306     // version, we don't try to update it.
1307     if (OtherName != NonTargetName) {
1308       // Remove instead of erase, since others may have stored the StringRef
1309       // to this.
1310       const auto ExistingRecord = Manglings.find(NonTargetName);
1311       if (ExistingRecord != std::end(Manglings))
1312         Manglings.remove(&(*ExistingRecord));
1313       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1314       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1315       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1316         Entry->setName(OtherName);
1317     }
1318   }
1319 }
1320 
1321 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1322   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1323 
1324   // Some ABIs don't have constructor variants.  Make sure that base and
1325   // complete constructors get mangled the same.
1326   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1327     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1328       CXXCtorType OrigCtorType = GD.getCtorType();
1329       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1330       if (OrigCtorType == Ctor_Base)
1331         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1332     }
1333   }
1334 
1335   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1336   // static device variable depends on whether the variable is referenced by
1337   // a host or device host function. Therefore the mangled name cannot be
1338   // cached.
1339   if (!LangOpts.CUDAIsDevice ||
1340       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1341     auto FoundName = MangledDeclNames.find(CanonicalGD);
1342     if (FoundName != MangledDeclNames.end())
1343       return FoundName->second;
1344   }
1345 
1346   // Keep the first result in the case of a mangling collision.
1347   const auto *ND = cast<NamedDecl>(GD.getDecl());
1348   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1349 
1350   // Ensure either we have different ABIs between host and device compilations,
1351   // says host compilation following MSVC ABI but device compilation follows
1352   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1353   // mangling should be the same after name stubbing. The later checking is
1354   // very important as the device kernel name being mangled in host-compilation
1355   // is used to resolve the device binaries to be executed. Inconsistent naming
1356   // result in undefined behavior. Even though we cannot check that naming
1357   // directly between host- and device-compilations, the host- and
1358   // device-mangling in host compilation could help catching certain ones.
1359   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1360          getLangOpts().CUDAIsDevice ||
1361          (getContext().getAuxTargetInfo() &&
1362           (getContext().getAuxTargetInfo()->getCXXABI() !=
1363            getContext().getTargetInfo().getCXXABI())) ||
1364          getCUDARuntime().getDeviceSideName(ND) ==
1365              getMangledNameImpl(
1366                  *this,
1367                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1368                  ND));
1369 
1370   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1371   return MangledDeclNames[CanonicalGD] = Result.first->first();
1372 }
1373 
1374 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1375                                              const BlockDecl *BD) {
1376   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1377   const Decl *D = GD.getDecl();
1378 
1379   SmallString<256> Buffer;
1380   llvm::raw_svector_ostream Out(Buffer);
1381   if (!D)
1382     MangleCtx.mangleGlobalBlock(BD,
1383       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1384   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1385     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1386   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1387     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1388   else
1389     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1390 
1391   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1392   return Result.first->first();
1393 }
1394 
1395 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1396   return getModule().getNamedValue(Name);
1397 }
1398 
1399 /// AddGlobalCtor - Add a function to the list that will be called before
1400 /// main() runs.
1401 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1402                                   llvm::Constant *AssociatedData) {
1403   // FIXME: Type coercion of void()* types.
1404   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1405 }
1406 
1407 /// AddGlobalDtor - Add a function to the list that will be called
1408 /// when the module is unloaded.
1409 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1410                                   bool IsDtorAttrFunc) {
1411   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1412       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1413     DtorsUsingAtExit[Priority].push_back(Dtor);
1414     return;
1415   }
1416 
1417   // FIXME: Type coercion of void()* types.
1418   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1419 }
1420 
1421 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1422   if (Fns.empty()) return;
1423 
1424   // Ctor function type is void()*.
1425   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1426   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1427       TheModule.getDataLayout().getProgramAddressSpace());
1428 
1429   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1430   llvm::StructType *CtorStructTy = llvm::StructType::get(
1431       Int32Ty, CtorPFTy, VoidPtrTy);
1432 
1433   // Construct the constructor and destructor arrays.
1434   ConstantInitBuilder builder(*this);
1435   auto ctors = builder.beginArray(CtorStructTy);
1436   for (const auto &I : Fns) {
1437     auto ctor = ctors.beginStruct(CtorStructTy);
1438     ctor.addInt(Int32Ty, I.Priority);
1439     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1440     if (I.AssociatedData)
1441       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1442     else
1443       ctor.addNullPointer(VoidPtrTy);
1444     ctor.finishAndAddTo(ctors);
1445   }
1446 
1447   auto list =
1448     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1449                                 /*constant*/ false,
1450                                 llvm::GlobalValue::AppendingLinkage);
1451 
1452   // The LTO linker doesn't seem to like it when we set an alignment
1453   // on appending variables.  Take it off as a workaround.
1454   list->setAlignment(llvm::None);
1455 
1456   Fns.clear();
1457 }
1458 
1459 llvm::GlobalValue::LinkageTypes
1460 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1461   const auto *D = cast<FunctionDecl>(GD.getDecl());
1462 
1463   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1464 
1465   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1466     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1467 
1468   if (isa<CXXConstructorDecl>(D) &&
1469       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1470       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1471     // Our approach to inheriting constructors is fundamentally different from
1472     // that used by the MS ABI, so keep our inheriting constructor thunks
1473     // internal rather than trying to pick an unambiguous mangling for them.
1474     return llvm::GlobalValue::InternalLinkage;
1475   }
1476 
1477   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1478 }
1479 
1480 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1481   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1482   if (!MDS) return nullptr;
1483 
1484   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1485 }
1486 
1487 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1488                                               const CGFunctionInfo &Info,
1489                                               llvm::Function *F, bool IsThunk) {
1490   unsigned CallingConv;
1491   llvm::AttributeList PAL;
1492   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1493                          /*AttrOnCallSite=*/false, IsThunk);
1494   F->setAttributes(PAL);
1495   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1496 }
1497 
1498 static void removeImageAccessQualifier(std::string& TyName) {
1499   std::string ReadOnlyQual("__read_only");
1500   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1501   if (ReadOnlyPos != std::string::npos)
1502     // "+ 1" for the space after access qualifier.
1503     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1504   else {
1505     std::string WriteOnlyQual("__write_only");
1506     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1507     if (WriteOnlyPos != std::string::npos)
1508       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1509     else {
1510       std::string ReadWriteQual("__read_write");
1511       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1512       if (ReadWritePos != std::string::npos)
1513         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1514     }
1515   }
1516 }
1517 
1518 // Returns the address space id that should be produced to the
1519 // kernel_arg_addr_space metadata. This is always fixed to the ids
1520 // as specified in the SPIR 2.0 specification in order to differentiate
1521 // for example in clGetKernelArgInfo() implementation between the address
1522 // spaces with targets without unique mapping to the OpenCL address spaces
1523 // (basically all single AS CPUs).
1524 static unsigned ArgInfoAddressSpace(LangAS AS) {
1525   switch (AS) {
1526   case LangAS::opencl_global:
1527     return 1;
1528   case LangAS::opencl_constant:
1529     return 2;
1530   case LangAS::opencl_local:
1531     return 3;
1532   case LangAS::opencl_generic:
1533     return 4; // Not in SPIR 2.0 specs.
1534   case LangAS::opencl_global_device:
1535     return 5;
1536   case LangAS::opencl_global_host:
1537     return 6;
1538   default:
1539     return 0; // Assume private.
1540   }
1541 }
1542 
1543 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1544                                          const FunctionDecl *FD,
1545                                          CodeGenFunction *CGF) {
1546   assert(((FD && CGF) || (!FD && !CGF)) &&
1547          "Incorrect use - FD and CGF should either be both null or not!");
1548   // Create MDNodes that represent the kernel arg metadata.
1549   // Each MDNode is a list in the form of "key", N number of values which is
1550   // the same number of values as their are kernel arguments.
1551 
1552   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1553 
1554   // MDNode for the kernel argument address space qualifiers.
1555   SmallVector<llvm::Metadata *, 8> addressQuals;
1556 
1557   // MDNode for the kernel argument access qualifiers (images only).
1558   SmallVector<llvm::Metadata *, 8> accessQuals;
1559 
1560   // MDNode for the kernel argument type names.
1561   SmallVector<llvm::Metadata *, 8> argTypeNames;
1562 
1563   // MDNode for the kernel argument base type names.
1564   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1565 
1566   // MDNode for the kernel argument type qualifiers.
1567   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1568 
1569   // MDNode for the kernel argument names.
1570   SmallVector<llvm::Metadata *, 8> argNames;
1571 
1572   if (FD && CGF)
1573     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1574       const ParmVarDecl *parm = FD->getParamDecl(i);
1575       QualType ty = parm->getType();
1576       std::string typeQuals;
1577 
1578       // Get image and pipe access qualifier:
1579       if (ty->isImageType() || ty->isPipeType()) {
1580         const Decl *PDecl = parm;
1581         if (auto *TD = dyn_cast<TypedefType>(ty))
1582           PDecl = TD->getDecl();
1583         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1584         if (A && A->isWriteOnly())
1585           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1586         else if (A && A->isReadWrite())
1587           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1588         else
1589           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1590       } else
1591         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1592 
1593       // Get argument name.
1594       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1595 
1596       auto getTypeSpelling = [&](QualType Ty) {
1597         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1598 
1599         if (Ty.isCanonical()) {
1600           StringRef typeNameRef = typeName;
1601           // Turn "unsigned type" to "utype"
1602           if (typeNameRef.consume_front("unsigned "))
1603             return std::string("u") + typeNameRef.str();
1604           if (typeNameRef.consume_front("signed "))
1605             return typeNameRef.str();
1606         }
1607 
1608         return typeName;
1609       };
1610 
1611       if (ty->isPointerType()) {
1612         QualType pointeeTy = ty->getPointeeType();
1613 
1614         // Get address qualifier.
1615         addressQuals.push_back(
1616             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1617                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1618 
1619         // Get argument type name.
1620         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1621         std::string baseTypeName =
1622             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1623         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1624         argBaseTypeNames.push_back(
1625             llvm::MDString::get(VMContext, baseTypeName));
1626 
1627         // Get argument type qualifiers:
1628         if (ty.isRestrictQualified())
1629           typeQuals = "restrict";
1630         if (pointeeTy.isConstQualified() ||
1631             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1632           typeQuals += typeQuals.empty() ? "const" : " const";
1633         if (pointeeTy.isVolatileQualified())
1634           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1635       } else {
1636         uint32_t AddrSpc = 0;
1637         bool isPipe = ty->isPipeType();
1638         if (ty->isImageType() || isPipe)
1639           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1640 
1641         addressQuals.push_back(
1642             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1643 
1644         // Get argument type name.
1645         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1646         std::string typeName = getTypeSpelling(ty);
1647         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1648 
1649         // Remove access qualifiers on images
1650         // (as they are inseparable from type in clang implementation,
1651         // but OpenCL spec provides a special query to get access qualifier
1652         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1653         if (ty->isImageType()) {
1654           removeImageAccessQualifier(typeName);
1655           removeImageAccessQualifier(baseTypeName);
1656         }
1657 
1658         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1659         argBaseTypeNames.push_back(
1660             llvm::MDString::get(VMContext, baseTypeName));
1661 
1662         if (isPipe)
1663           typeQuals = "pipe";
1664       }
1665       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1666     }
1667 
1668   Fn->setMetadata("kernel_arg_addr_space",
1669                   llvm::MDNode::get(VMContext, addressQuals));
1670   Fn->setMetadata("kernel_arg_access_qual",
1671                   llvm::MDNode::get(VMContext, accessQuals));
1672   Fn->setMetadata("kernel_arg_type",
1673                   llvm::MDNode::get(VMContext, argTypeNames));
1674   Fn->setMetadata("kernel_arg_base_type",
1675                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1676   Fn->setMetadata("kernel_arg_type_qual",
1677                   llvm::MDNode::get(VMContext, argTypeQuals));
1678   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1679     Fn->setMetadata("kernel_arg_name",
1680                     llvm::MDNode::get(VMContext, argNames));
1681 }
1682 
1683 /// Determines whether the language options require us to model
1684 /// unwind exceptions.  We treat -fexceptions as mandating this
1685 /// except under the fragile ObjC ABI with only ObjC exceptions
1686 /// enabled.  This means, for example, that C with -fexceptions
1687 /// enables this.
1688 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1689   // If exceptions are completely disabled, obviously this is false.
1690   if (!LangOpts.Exceptions) return false;
1691 
1692   // If C++ exceptions are enabled, this is true.
1693   if (LangOpts.CXXExceptions) return true;
1694 
1695   // If ObjC exceptions are enabled, this depends on the ABI.
1696   if (LangOpts.ObjCExceptions) {
1697     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1698   }
1699 
1700   return true;
1701 }
1702 
1703 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1704                                                       const CXXMethodDecl *MD) {
1705   // Check that the type metadata can ever actually be used by a call.
1706   if (!CGM.getCodeGenOpts().LTOUnit ||
1707       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1708     return false;
1709 
1710   // Only functions whose address can be taken with a member function pointer
1711   // need this sort of type metadata.
1712   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1713          !isa<CXXDestructorDecl>(MD);
1714 }
1715 
1716 std::vector<const CXXRecordDecl *>
1717 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1718   llvm::SetVector<const CXXRecordDecl *> MostBases;
1719 
1720   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1721   CollectMostBases = [&](const CXXRecordDecl *RD) {
1722     if (RD->getNumBases() == 0)
1723       MostBases.insert(RD);
1724     for (const CXXBaseSpecifier &B : RD->bases())
1725       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1726   };
1727   CollectMostBases(RD);
1728   return MostBases.takeVector();
1729 }
1730 
1731 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1732                                                            llvm::Function *F) {
1733   llvm::AttrBuilder B;
1734 
1735   if (CodeGenOpts.UnwindTables)
1736     B.addAttribute(llvm::Attribute::UWTable);
1737 
1738   if (CodeGenOpts.StackClashProtector)
1739     B.addAttribute("probe-stack", "inline-asm");
1740 
1741   if (!hasUnwindExceptions(LangOpts))
1742     B.addAttribute(llvm::Attribute::NoUnwind);
1743 
1744   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1745     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1746       B.addAttribute(llvm::Attribute::StackProtect);
1747     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1748       B.addAttribute(llvm::Attribute::StackProtectStrong);
1749     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1750       B.addAttribute(llvm::Attribute::StackProtectReq);
1751   }
1752 
1753   if (!D) {
1754     // If we don't have a declaration to control inlining, the function isn't
1755     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1756     // disabled, mark the function as noinline.
1757     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1758         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1759       B.addAttribute(llvm::Attribute::NoInline);
1760 
1761     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1762     return;
1763   }
1764 
1765   // Track whether we need to add the optnone LLVM attribute,
1766   // starting with the default for this optimization level.
1767   bool ShouldAddOptNone =
1768       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1769   // We can't add optnone in the following cases, it won't pass the verifier.
1770   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1771   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1772 
1773   // Add optnone, but do so only if the function isn't always_inline.
1774   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1775       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1776     B.addAttribute(llvm::Attribute::OptimizeNone);
1777 
1778     // OptimizeNone implies noinline; we should not be inlining such functions.
1779     B.addAttribute(llvm::Attribute::NoInline);
1780 
1781     // We still need to handle naked functions even though optnone subsumes
1782     // much of their semantics.
1783     if (D->hasAttr<NakedAttr>())
1784       B.addAttribute(llvm::Attribute::Naked);
1785 
1786     // OptimizeNone wins over OptimizeForSize and MinSize.
1787     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1788     F->removeFnAttr(llvm::Attribute::MinSize);
1789   } else if (D->hasAttr<NakedAttr>()) {
1790     // Naked implies noinline: we should not be inlining such functions.
1791     B.addAttribute(llvm::Attribute::Naked);
1792     B.addAttribute(llvm::Attribute::NoInline);
1793   } else if (D->hasAttr<NoDuplicateAttr>()) {
1794     B.addAttribute(llvm::Attribute::NoDuplicate);
1795   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1796     // Add noinline if the function isn't always_inline.
1797     B.addAttribute(llvm::Attribute::NoInline);
1798   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1799              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1800     // (noinline wins over always_inline, and we can't specify both in IR)
1801     B.addAttribute(llvm::Attribute::AlwaysInline);
1802   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1803     // If we're not inlining, then force everything that isn't always_inline to
1804     // carry an explicit noinline attribute.
1805     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1806       B.addAttribute(llvm::Attribute::NoInline);
1807   } else {
1808     // Otherwise, propagate the inline hint attribute and potentially use its
1809     // absence to mark things as noinline.
1810     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1811       // Search function and template pattern redeclarations for inline.
1812       auto CheckForInline = [](const FunctionDecl *FD) {
1813         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1814           return Redecl->isInlineSpecified();
1815         };
1816         if (any_of(FD->redecls(), CheckRedeclForInline))
1817           return true;
1818         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1819         if (!Pattern)
1820           return false;
1821         return any_of(Pattern->redecls(), CheckRedeclForInline);
1822       };
1823       if (CheckForInline(FD)) {
1824         B.addAttribute(llvm::Attribute::InlineHint);
1825       } else if (CodeGenOpts.getInlining() ==
1826                      CodeGenOptions::OnlyHintInlining &&
1827                  !FD->isInlined() &&
1828                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1829         B.addAttribute(llvm::Attribute::NoInline);
1830       }
1831     }
1832   }
1833 
1834   // Add other optimization related attributes if we are optimizing this
1835   // function.
1836   if (!D->hasAttr<OptimizeNoneAttr>()) {
1837     if (D->hasAttr<ColdAttr>()) {
1838       if (!ShouldAddOptNone)
1839         B.addAttribute(llvm::Attribute::OptimizeForSize);
1840       B.addAttribute(llvm::Attribute::Cold);
1841     }
1842     if (D->hasAttr<HotAttr>())
1843       B.addAttribute(llvm::Attribute::Hot);
1844     if (D->hasAttr<MinSizeAttr>())
1845       B.addAttribute(llvm::Attribute::MinSize);
1846   }
1847 
1848   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1849 
1850   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1851   if (alignment)
1852     F->setAlignment(llvm::Align(alignment));
1853 
1854   if (!D->hasAttr<AlignedAttr>())
1855     if (LangOpts.FunctionAlignment)
1856       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1857 
1858   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1859   // reserve a bit for differentiating between virtual and non-virtual member
1860   // functions. If the current target's C++ ABI requires this and this is a
1861   // member function, set its alignment accordingly.
1862   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1863     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1864       F->setAlignment(llvm::Align(2));
1865   }
1866 
1867   // In the cross-dso CFI mode with canonical jump tables, we want !type
1868   // attributes on definitions only.
1869   if (CodeGenOpts.SanitizeCfiCrossDso &&
1870       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1871     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1872       // Skip available_externally functions. They won't be codegen'ed in the
1873       // current module anyway.
1874       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1875         CreateFunctionTypeMetadataForIcall(FD, F);
1876     }
1877   }
1878 
1879   // Emit type metadata on member functions for member function pointer checks.
1880   // These are only ever necessary on definitions; we're guaranteed that the
1881   // definition will be present in the LTO unit as a result of LTO visibility.
1882   auto *MD = dyn_cast<CXXMethodDecl>(D);
1883   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1884     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1885       llvm::Metadata *Id =
1886           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1887               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1888       F->addTypeMetadata(0, Id);
1889     }
1890   }
1891 }
1892 
1893 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1894                                                   llvm::Function *F) {
1895   if (D->hasAttr<StrictFPAttr>()) {
1896     llvm::AttrBuilder FuncAttrs;
1897     FuncAttrs.addAttribute("strictfp");
1898     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1899   }
1900 }
1901 
1902 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1903   const Decl *D = GD.getDecl();
1904   if (dyn_cast_or_null<NamedDecl>(D))
1905     setGVProperties(GV, GD);
1906   else
1907     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1908 
1909   if (D && D->hasAttr<UsedAttr>())
1910     addUsedOrCompilerUsedGlobal(GV);
1911 
1912   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1913     const auto *VD = cast<VarDecl>(D);
1914     if (VD->getType().isConstQualified() &&
1915         VD->getStorageDuration() == SD_Static)
1916       addUsedOrCompilerUsedGlobal(GV);
1917   }
1918 }
1919 
1920 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1921                                                 llvm::AttrBuilder &Attrs) {
1922   // Add target-cpu and target-features attributes to functions. If
1923   // we have a decl for the function and it has a target attribute then
1924   // parse that and add it to the feature set.
1925   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1926   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1927   std::vector<std::string> Features;
1928   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1929   FD = FD ? FD->getMostRecentDecl() : FD;
1930   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1931   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1932   bool AddedAttr = false;
1933   if (TD || SD) {
1934     llvm::StringMap<bool> FeatureMap;
1935     getContext().getFunctionFeatureMap(FeatureMap, GD);
1936 
1937     // Produce the canonical string for this set of features.
1938     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1939       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1940 
1941     // Now add the target-cpu and target-features to the function.
1942     // While we populated the feature map above, we still need to
1943     // get and parse the target attribute so we can get the cpu for
1944     // the function.
1945     if (TD) {
1946       ParsedTargetAttr ParsedAttr = TD->parse();
1947       if (!ParsedAttr.Architecture.empty() &&
1948           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1949         TargetCPU = ParsedAttr.Architecture;
1950         TuneCPU = ""; // Clear the tune CPU.
1951       }
1952       if (!ParsedAttr.Tune.empty() &&
1953           getTarget().isValidCPUName(ParsedAttr.Tune))
1954         TuneCPU = ParsedAttr.Tune;
1955     }
1956   } else {
1957     // Otherwise just add the existing target cpu and target features to the
1958     // function.
1959     Features = getTarget().getTargetOpts().Features;
1960   }
1961 
1962   if (!TargetCPU.empty()) {
1963     Attrs.addAttribute("target-cpu", TargetCPU);
1964     AddedAttr = true;
1965   }
1966   if (!TuneCPU.empty()) {
1967     Attrs.addAttribute("tune-cpu", TuneCPU);
1968     AddedAttr = true;
1969   }
1970   if (!Features.empty()) {
1971     llvm::sort(Features);
1972     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1973     AddedAttr = true;
1974   }
1975 
1976   return AddedAttr;
1977 }
1978 
1979 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1980                                           llvm::GlobalObject *GO) {
1981   const Decl *D = GD.getDecl();
1982   SetCommonAttributes(GD, GO);
1983 
1984   if (D) {
1985     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1986       if (D->hasAttr<RetainAttr>())
1987         addUsedGlobal(GV);
1988       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1989         GV->addAttribute("bss-section", SA->getName());
1990       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1991         GV->addAttribute("data-section", SA->getName());
1992       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1993         GV->addAttribute("rodata-section", SA->getName());
1994       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1995         GV->addAttribute("relro-section", SA->getName());
1996     }
1997 
1998     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1999       if (D->hasAttr<RetainAttr>())
2000         addUsedGlobal(F);
2001       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2002         if (!D->getAttr<SectionAttr>())
2003           F->addFnAttr("implicit-section-name", SA->getName());
2004 
2005       llvm::AttrBuilder Attrs;
2006       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2007         // We know that GetCPUAndFeaturesAttributes will always have the
2008         // newest set, since it has the newest possible FunctionDecl, so the
2009         // new ones should replace the old.
2010         llvm::AttrBuilder RemoveAttrs;
2011         RemoveAttrs.addAttribute("target-cpu");
2012         RemoveAttrs.addAttribute("target-features");
2013         RemoveAttrs.addAttribute("tune-cpu");
2014         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
2015         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
2016       }
2017     }
2018 
2019     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2020       GO->setSection(CSA->getName());
2021     else if (const auto *SA = D->getAttr<SectionAttr>())
2022       GO->setSection(SA->getName());
2023   }
2024 
2025   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2026 }
2027 
2028 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2029                                                   llvm::Function *F,
2030                                                   const CGFunctionInfo &FI) {
2031   const Decl *D = GD.getDecl();
2032   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2033   SetLLVMFunctionAttributesForDefinition(D, F);
2034 
2035   F->setLinkage(llvm::Function::InternalLinkage);
2036 
2037   setNonAliasAttributes(GD, F);
2038 }
2039 
2040 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2041   // Set linkage and visibility in case we never see a definition.
2042   LinkageInfo LV = ND->getLinkageAndVisibility();
2043   // Don't set internal linkage on declarations.
2044   // "extern_weak" is overloaded in LLVM; we probably should have
2045   // separate linkage types for this.
2046   if (isExternallyVisible(LV.getLinkage()) &&
2047       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2048     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2049 }
2050 
2051 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2052                                                        llvm::Function *F) {
2053   // Only if we are checking indirect calls.
2054   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2055     return;
2056 
2057   // Non-static class methods are handled via vtable or member function pointer
2058   // checks elsewhere.
2059   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2060     return;
2061 
2062   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2063   F->addTypeMetadata(0, MD);
2064   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2065 
2066   // Emit a hash-based bit set entry for cross-DSO calls.
2067   if (CodeGenOpts.SanitizeCfiCrossDso)
2068     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2069       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2070 }
2071 
2072 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2073                                           bool IsIncompleteFunction,
2074                                           bool IsThunk) {
2075 
2076   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2077     // If this is an intrinsic function, set the function's attributes
2078     // to the intrinsic's attributes.
2079     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2080     return;
2081   }
2082 
2083   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2084 
2085   if (!IsIncompleteFunction)
2086     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2087                               IsThunk);
2088 
2089   // Add the Returned attribute for "this", except for iOS 5 and earlier
2090   // where substantial code, including the libstdc++ dylib, was compiled with
2091   // GCC and does not actually return "this".
2092   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2093       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2094     assert(!F->arg_empty() &&
2095            F->arg_begin()->getType()
2096              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2097            "unexpected this return");
2098     F->addAttribute(1, llvm::Attribute::Returned);
2099   }
2100 
2101   // Only a few attributes are set on declarations; these may later be
2102   // overridden by a definition.
2103 
2104   setLinkageForGV(F, FD);
2105   setGVProperties(F, FD);
2106 
2107   // Setup target-specific attributes.
2108   if (!IsIncompleteFunction && F->isDeclaration())
2109     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2110 
2111   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2112     F->setSection(CSA->getName());
2113   else if (const auto *SA = FD->getAttr<SectionAttr>())
2114      F->setSection(SA->getName());
2115 
2116   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2117   if (FD->isInlineBuiltinDeclaration()) {
2118     const FunctionDecl *FDBody;
2119     bool HasBody = FD->hasBody(FDBody);
2120     (void)HasBody;
2121     assert(HasBody && "Inline builtin declarations should always have an "
2122                       "available body!");
2123     if (shouldEmitFunction(FDBody))
2124       F->addAttribute(llvm::AttributeList::FunctionIndex,
2125                       llvm::Attribute::NoBuiltin);
2126   }
2127 
2128   if (FD->isReplaceableGlobalAllocationFunction()) {
2129     // A replaceable global allocation function does not act like a builtin by
2130     // default, only if it is invoked by a new-expression or delete-expression.
2131     F->addAttribute(llvm::AttributeList::FunctionIndex,
2132                     llvm::Attribute::NoBuiltin);
2133   }
2134 
2135   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2136     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2137   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2138     if (MD->isVirtual())
2139       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2140 
2141   // Don't emit entries for function declarations in the cross-DSO mode. This
2142   // is handled with better precision by the receiving DSO. But if jump tables
2143   // are non-canonical then we need type metadata in order to produce the local
2144   // jump table.
2145   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2146       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2147     CreateFunctionTypeMetadataForIcall(FD, F);
2148 
2149   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2150     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2151 
2152   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2153     // Annotate the callback behavior as metadata:
2154     //  - The callback callee (as argument number).
2155     //  - The callback payloads (as argument numbers).
2156     llvm::LLVMContext &Ctx = F->getContext();
2157     llvm::MDBuilder MDB(Ctx);
2158 
2159     // The payload indices are all but the first one in the encoding. The first
2160     // identifies the callback callee.
2161     int CalleeIdx = *CB->encoding_begin();
2162     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2163     F->addMetadata(llvm::LLVMContext::MD_callback,
2164                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2165                                                CalleeIdx, PayloadIndices,
2166                                                /* VarArgsArePassed */ false)}));
2167   }
2168 }
2169 
2170 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2171   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2172          "Only globals with definition can force usage.");
2173   LLVMUsed.emplace_back(GV);
2174 }
2175 
2176 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2177   assert(!GV->isDeclaration() &&
2178          "Only globals with definition can force usage.");
2179   LLVMCompilerUsed.emplace_back(GV);
2180 }
2181 
2182 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2183   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2184          "Only globals with definition can force usage.");
2185   if (getTriple().isOSBinFormatELF())
2186     LLVMCompilerUsed.emplace_back(GV);
2187   else
2188     LLVMUsed.emplace_back(GV);
2189 }
2190 
2191 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2192                      std::vector<llvm::WeakTrackingVH> &List) {
2193   // Don't create llvm.used if there is no need.
2194   if (List.empty())
2195     return;
2196 
2197   // Convert List to what ConstantArray needs.
2198   SmallVector<llvm::Constant*, 8> UsedArray;
2199   UsedArray.resize(List.size());
2200   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2201     UsedArray[i] =
2202         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2203             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2204   }
2205 
2206   if (UsedArray.empty())
2207     return;
2208   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2209 
2210   auto *GV = new llvm::GlobalVariable(
2211       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2212       llvm::ConstantArray::get(ATy, UsedArray), Name);
2213 
2214   GV->setSection("llvm.metadata");
2215 }
2216 
2217 void CodeGenModule::emitLLVMUsed() {
2218   emitUsed(*this, "llvm.used", LLVMUsed);
2219   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2220 }
2221 
2222 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2223   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2224   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2225 }
2226 
2227 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2228   llvm::SmallString<32> Opt;
2229   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2230   if (Opt.empty())
2231     return;
2232   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2233   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2234 }
2235 
2236 void CodeGenModule::AddDependentLib(StringRef Lib) {
2237   auto &C = getLLVMContext();
2238   if (getTarget().getTriple().isOSBinFormatELF()) {
2239       ELFDependentLibraries.push_back(
2240         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2241     return;
2242   }
2243 
2244   llvm::SmallString<24> Opt;
2245   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2246   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2247   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2248 }
2249 
2250 /// Add link options implied by the given module, including modules
2251 /// it depends on, using a postorder walk.
2252 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2253                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2254                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2255   // Import this module's parent.
2256   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2257     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2258   }
2259 
2260   // Import this module's dependencies.
2261   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2262     if (Visited.insert(Mod->Imports[I - 1]).second)
2263       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2264   }
2265 
2266   // Add linker options to link against the libraries/frameworks
2267   // described by this module.
2268   llvm::LLVMContext &Context = CGM.getLLVMContext();
2269   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2270 
2271   // For modules that use export_as for linking, use that module
2272   // name instead.
2273   if (Mod->UseExportAsModuleLinkName)
2274     return;
2275 
2276   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2277     // Link against a framework.  Frameworks are currently Darwin only, so we
2278     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2279     if (Mod->LinkLibraries[I-1].IsFramework) {
2280       llvm::Metadata *Args[2] = {
2281           llvm::MDString::get(Context, "-framework"),
2282           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2283 
2284       Metadata.push_back(llvm::MDNode::get(Context, Args));
2285       continue;
2286     }
2287 
2288     // Link against a library.
2289     if (IsELF) {
2290       llvm::Metadata *Args[2] = {
2291           llvm::MDString::get(Context, "lib"),
2292           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2293       };
2294       Metadata.push_back(llvm::MDNode::get(Context, Args));
2295     } else {
2296       llvm::SmallString<24> Opt;
2297       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2298           Mod->LinkLibraries[I - 1].Library, Opt);
2299       auto *OptString = llvm::MDString::get(Context, Opt);
2300       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2301     }
2302   }
2303 }
2304 
2305 void CodeGenModule::EmitModuleLinkOptions() {
2306   // Collect the set of all of the modules we want to visit to emit link
2307   // options, which is essentially the imported modules and all of their
2308   // non-explicit child modules.
2309   llvm::SetVector<clang::Module *> LinkModules;
2310   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2311   SmallVector<clang::Module *, 16> Stack;
2312 
2313   // Seed the stack with imported modules.
2314   for (Module *M : ImportedModules) {
2315     // Do not add any link flags when an implementation TU of a module imports
2316     // a header of that same module.
2317     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2318         !getLangOpts().isCompilingModule())
2319       continue;
2320     if (Visited.insert(M).second)
2321       Stack.push_back(M);
2322   }
2323 
2324   // Find all of the modules to import, making a little effort to prune
2325   // non-leaf modules.
2326   while (!Stack.empty()) {
2327     clang::Module *Mod = Stack.pop_back_val();
2328 
2329     bool AnyChildren = false;
2330 
2331     // Visit the submodules of this module.
2332     for (const auto &SM : Mod->submodules()) {
2333       // Skip explicit children; they need to be explicitly imported to be
2334       // linked against.
2335       if (SM->IsExplicit)
2336         continue;
2337 
2338       if (Visited.insert(SM).second) {
2339         Stack.push_back(SM);
2340         AnyChildren = true;
2341       }
2342     }
2343 
2344     // We didn't find any children, so add this module to the list of
2345     // modules to link against.
2346     if (!AnyChildren) {
2347       LinkModules.insert(Mod);
2348     }
2349   }
2350 
2351   // Add link options for all of the imported modules in reverse topological
2352   // order.  We don't do anything to try to order import link flags with respect
2353   // to linker options inserted by things like #pragma comment().
2354   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2355   Visited.clear();
2356   for (Module *M : LinkModules)
2357     if (Visited.insert(M).second)
2358       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2359   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2360   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2361 
2362   // Add the linker options metadata flag.
2363   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2364   for (auto *MD : LinkerOptionsMetadata)
2365     NMD->addOperand(MD);
2366 }
2367 
2368 void CodeGenModule::EmitDeferred() {
2369   // Emit deferred declare target declarations.
2370   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2371     getOpenMPRuntime().emitDeferredTargetDecls();
2372 
2373   // Emit code for any potentially referenced deferred decls.  Since a
2374   // previously unused static decl may become used during the generation of code
2375   // for a static function, iterate until no changes are made.
2376 
2377   if (!DeferredVTables.empty()) {
2378     EmitDeferredVTables();
2379 
2380     // Emitting a vtable doesn't directly cause more vtables to
2381     // become deferred, although it can cause functions to be
2382     // emitted that then need those vtables.
2383     assert(DeferredVTables.empty());
2384   }
2385 
2386   // Emit CUDA/HIP static device variables referenced by host code only.
2387   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2388   // needed for further handling.
2389   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2390     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2391       DeferredDeclsToEmit.push_back(V);
2392 
2393   // Stop if we're out of both deferred vtables and deferred declarations.
2394   if (DeferredDeclsToEmit.empty())
2395     return;
2396 
2397   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2398   // work, it will not interfere with this.
2399   std::vector<GlobalDecl> CurDeclsToEmit;
2400   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2401 
2402   for (GlobalDecl &D : CurDeclsToEmit) {
2403     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2404     // to get GlobalValue with exactly the type we need, not something that
2405     // might had been created for another decl with the same mangled name but
2406     // different type.
2407     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2408         GetAddrOfGlobal(D, ForDefinition));
2409 
2410     // In case of different address spaces, we may still get a cast, even with
2411     // IsForDefinition equal to true. Query mangled names table to get
2412     // GlobalValue.
2413     if (!GV)
2414       GV = GetGlobalValue(getMangledName(D));
2415 
2416     // Make sure GetGlobalValue returned non-null.
2417     assert(GV);
2418 
2419     // Check to see if we've already emitted this.  This is necessary
2420     // for a couple of reasons: first, decls can end up in the
2421     // deferred-decls queue multiple times, and second, decls can end
2422     // up with definitions in unusual ways (e.g. by an extern inline
2423     // function acquiring a strong function redefinition).  Just
2424     // ignore these cases.
2425     if (!GV->isDeclaration())
2426       continue;
2427 
2428     // If this is OpenMP, check if it is legal to emit this global normally.
2429     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2430       continue;
2431 
2432     // Otherwise, emit the definition and move on to the next one.
2433     EmitGlobalDefinition(D, GV);
2434 
2435     // If we found out that we need to emit more decls, do that recursively.
2436     // This has the advantage that the decls are emitted in a DFS and related
2437     // ones are close together, which is convenient for testing.
2438     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2439       EmitDeferred();
2440       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2441     }
2442   }
2443 }
2444 
2445 void CodeGenModule::EmitVTablesOpportunistically() {
2446   // Try to emit external vtables as available_externally if they have emitted
2447   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2448   // is not allowed to create new references to things that need to be emitted
2449   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2450 
2451   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2452          && "Only emit opportunistic vtables with optimizations");
2453 
2454   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2455     assert(getVTables().isVTableExternal(RD) &&
2456            "This queue should only contain external vtables");
2457     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2458       VTables.GenerateClassData(RD);
2459   }
2460   OpportunisticVTables.clear();
2461 }
2462 
2463 void CodeGenModule::EmitGlobalAnnotations() {
2464   if (Annotations.empty())
2465     return;
2466 
2467   // Create a new global variable for the ConstantStruct in the Module.
2468   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2469     Annotations[0]->getType(), Annotations.size()), Annotations);
2470   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2471                                       llvm::GlobalValue::AppendingLinkage,
2472                                       Array, "llvm.global.annotations");
2473   gv->setSection(AnnotationSection);
2474 }
2475 
2476 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2477   llvm::Constant *&AStr = AnnotationStrings[Str];
2478   if (AStr)
2479     return AStr;
2480 
2481   // Not found yet, create a new global.
2482   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2483   auto *gv =
2484       new llvm::GlobalVariable(getModule(), s->getType(), true,
2485                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2486   gv->setSection(AnnotationSection);
2487   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2488   AStr = gv;
2489   return gv;
2490 }
2491 
2492 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2493   SourceManager &SM = getContext().getSourceManager();
2494   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2495   if (PLoc.isValid())
2496     return EmitAnnotationString(PLoc.getFilename());
2497   return EmitAnnotationString(SM.getBufferName(Loc));
2498 }
2499 
2500 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2501   SourceManager &SM = getContext().getSourceManager();
2502   PresumedLoc PLoc = SM.getPresumedLoc(L);
2503   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2504     SM.getExpansionLineNumber(L);
2505   return llvm::ConstantInt::get(Int32Ty, LineNo);
2506 }
2507 
2508 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2509   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2510   if (Exprs.empty())
2511     return llvm::ConstantPointerNull::get(Int8PtrTy);
2512 
2513   llvm::FoldingSetNodeID ID;
2514   for (Expr *E : Exprs) {
2515     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2516   }
2517   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2518   if (Lookup)
2519     return Lookup;
2520 
2521   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2522   LLVMArgs.reserve(Exprs.size());
2523   ConstantEmitter ConstEmiter(*this);
2524   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2525     const auto *CE = cast<clang::ConstantExpr>(E);
2526     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2527                                     CE->getType());
2528   });
2529   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2530   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2531                                       llvm::GlobalValue::PrivateLinkage, Struct,
2532                                       ".args");
2533   GV->setSection(AnnotationSection);
2534   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2535   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2536 
2537   Lookup = Bitcasted;
2538   return Bitcasted;
2539 }
2540 
2541 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2542                                                 const AnnotateAttr *AA,
2543                                                 SourceLocation L) {
2544   // Get the globals for file name, annotation, and the line number.
2545   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2546                  *UnitGV = EmitAnnotationUnit(L),
2547                  *LineNoCst = EmitAnnotationLineNo(L),
2548                  *Args = EmitAnnotationArgs(AA);
2549 
2550   llvm::Constant *ASZeroGV = GV;
2551   if (GV->getAddressSpace() != 0) {
2552     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2553                    GV, GV->getValueType()->getPointerTo(0));
2554   }
2555 
2556   // Create the ConstantStruct for the global annotation.
2557   llvm::Constant *Fields[] = {
2558       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2559       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2560       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2561       LineNoCst,
2562       Args,
2563   };
2564   return llvm::ConstantStruct::getAnon(Fields);
2565 }
2566 
2567 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2568                                          llvm::GlobalValue *GV) {
2569   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2570   // Get the struct elements for these annotations.
2571   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2572     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2573 }
2574 
2575 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2576                                        SourceLocation Loc) const {
2577   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2578   // NoSanitize by function name.
2579   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2580     return true;
2581   // NoSanitize by location.
2582   if (Loc.isValid())
2583     return NoSanitizeL.containsLocation(Kind, Loc);
2584   // If location is unknown, this may be a compiler-generated function. Assume
2585   // it's located in the main file.
2586   auto &SM = Context.getSourceManager();
2587   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2588     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2589   }
2590   return false;
2591 }
2592 
2593 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2594                                        SourceLocation Loc, QualType Ty,
2595                                        StringRef Category) const {
2596   // For now globals can be ignored only in ASan and KASan.
2597   const SanitizerMask EnabledAsanMask =
2598       LangOpts.Sanitize.Mask &
2599       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2600        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2601        SanitizerKind::MemTag);
2602   if (!EnabledAsanMask)
2603     return false;
2604   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2605   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2606     return true;
2607   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2608     return true;
2609   // Check global type.
2610   if (!Ty.isNull()) {
2611     // Drill down the array types: if global variable of a fixed type is
2612     // not sanitized, we also don't instrument arrays of them.
2613     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2614       Ty = AT->getElementType();
2615     Ty = Ty.getCanonicalType().getUnqualifiedType();
2616     // Only record types (classes, structs etc.) are ignored.
2617     if (Ty->isRecordType()) {
2618       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2619       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2620         return true;
2621     }
2622   }
2623   return false;
2624 }
2625 
2626 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2627                                    StringRef Category) const {
2628   const auto &XRayFilter = getContext().getXRayFilter();
2629   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2630   auto Attr = ImbueAttr::NONE;
2631   if (Loc.isValid())
2632     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2633   if (Attr == ImbueAttr::NONE)
2634     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2635   switch (Attr) {
2636   case ImbueAttr::NONE:
2637     return false;
2638   case ImbueAttr::ALWAYS:
2639     Fn->addFnAttr("function-instrument", "xray-always");
2640     break;
2641   case ImbueAttr::ALWAYS_ARG1:
2642     Fn->addFnAttr("function-instrument", "xray-always");
2643     Fn->addFnAttr("xray-log-args", "1");
2644     break;
2645   case ImbueAttr::NEVER:
2646     Fn->addFnAttr("function-instrument", "xray-never");
2647     break;
2648   }
2649   return true;
2650 }
2651 
2652 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2653                                            SourceLocation Loc) const {
2654   const auto &ProfileList = getContext().getProfileList();
2655   // If the profile list is empty, then instrument everything.
2656   if (ProfileList.isEmpty())
2657     return false;
2658   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2659   // First, check the function name.
2660   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2661   if (V.hasValue())
2662     return *V;
2663   // Next, check the source location.
2664   if (Loc.isValid()) {
2665     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2666     if (V.hasValue())
2667       return *V;
2668   }
2669   // If location is unknown, this may be a compiler-generated function. Assume
2670   // it's located in the main file.
2671   auto &SM = Context.getSourceManager();
2672   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2673     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2674     if (V.hasValue())
2675       return *V;
2676   }
2677   return ProfileList.getDefault();
2678 }
2679 
2680 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2681   // Never defer when EmitAllDecls is specified.
2682   if (LangOpts.EmitAllDecls)
2683     return true;
2684 
2685   if (CodeGenOpts.KeepStaticConsts) {
2686     const auto *VD = dyn_cast<VarDecl>(Global);
2687     if (VD && VD->getType().isConstQualified() &&
2688         VD->getStorageDuration() == SD_Static)
2689       return true;
2690   }
2691 
2692   return getContext().DeclMustBeEmitted(Global);
2693 }
2694 
2695 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2696   // In OpenMP 5.0 variables and function may be marked as
2697   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2698   // that they must be emitted on the host/device. To be sure we need to have
2699   // seen a declare target with an explicit mentioning of the function, we know
2700   // we have if the level of the declare target attribute is -1. Note that we
2701   // check somewhere else if we should emit this at all.
2702   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2703     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2704         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2705     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2706       return false;
2707   }
2708 
2709   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2710     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2711       // Implicit template instantiations may change linkage if they are later
2712       // explicitly instantiated, so they should not be emitted eagerly.
2713       return false;
2714   }
2715   if (const auto *VD = dyn_cast<VarDecl>(Global))
2716     if (Context.getInlineVariableDefinitionKind(VD) ==
2717         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2718       // A definition of an inline constexpr static data member may change
2719       // linkage later if it's redeclared outside the class.
2720       return false;
2721   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2722   // codegen for global variables, because they may be marked as threadprivate.
2723   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2724       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2725       !isTypeConstant(Global->getType(), false) &&
2726       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2727     return false;
2728 
2729   return true;
2730 }
2731 
2732 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2733   StringRef Name = getMangledName(GD);
2734 
2735   // The UUID descriptor should be pointer aligned.
2736   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2737 
2738   // Look for an existing global.
2739   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2740     return ConstantAddress(GV, Alignment);
2741 
2742   ConstantEmitter Emitter(*this);
2743   llvm::Constant *Init;
2744 
2745   APValue &V = GD->getAsAPValue();
2746   if (!V.isAbsent()) {
2747     // If possible, emit the APValue version of the initializer. In particular,
2748     // this gets the type of the constant right.
2749     Init = Emitter.emitForInitializer(
2750         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2751   } else {
2752     // As a fallback, directly construct the constant.
2753     // FIXME: This may get padding wrong under esoteric struct layout rules.
2754     // MSVC appears to create a complete type 'struct __s_GUID' that it
2755     // presumably uses to represent these constants.
2756     MSGuidDecl::Parts Parts = GD->getParts();
2757     llvm::Constant *Fields[4] = {
2758         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2759         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2760         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2761         llvm::ConstantDataArray::getRaw(
2762             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2763             Int8Ty)};
2764     Init = llvm::ConstantStruct::getAnon(Fields);
2765   }
2766 
2767   auto *GV = new llvm::GlobalVariable(
2768       getModule(), Init->getType(),
2769       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2770   if (supportsCOMDAT())
2771     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2772   setDSOLocal(GV);
2773 
2774   llvm::Constant *Addr = GV;
2775   if (!V.isAbsent()) {
2776     Emitter.finalize(GV);
2777   } else {
2778     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2779     Addr = llvm::ConstantExpr::getBitCast(
2780         GV, Ty->getPointerTo(GV->getAddressSpace()));
2781   }
2782   return ConstantAddress(Addr, Alignment);
2783 }
2784 
2785 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2786     const TemplateParamObjectDecl *TPO) {
2787   StringRef Name = getMangledName(TPO);
2788   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2789 
2790   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2791     return ConstantAddress(GV, Alignment);
2792 
2793   ConstantEmitter Emitter(*this);
2794   llvm::Constant *Init = Emitter.emitForInitializer(
2795         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2796 
2797   if (!Init) {
2798     ErrorUnsupported(TPO, "template parameter object");
2799     return ConstantAddress::invalid();
2800   }
2801 
2802   auto *GV = new llvm::GlobalVariable(
2803       getModule(), Init->getType(),
2804       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2805   if (supportsCOMDAT())
2806     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2807   Emitter.finalize(GV);
2808 
2809   return ConstantAddress(GV, Alignment);
2810 }
2811 
2812 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2813   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2814   assert(AA && "No alias?");
2815 
2816   CharUnits Alignment = getContext().getDeclAlign(VD);
2817   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2818 
2819   // See if there is already something with the target's name in the module.
2820   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2821   if (Entry) {
2822     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2823     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2824     return ConstantAddress(Ptr, Alignment);
2825   }
2826 
2827   llvm::Constant *Aliasee;
2828   if (isa<llvm::FunctionType>(DeclTy))
2829     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2830                                       GlobalDecl(cast<FunctionDecl>(VD)),
2831                                       /*ForVTable=*/false);
2832   else
2833     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0, nullptr);
2834 
2835   auto *F = cast<llvm::GlobalValue>(Aliasee);
2836   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2837   WeakRefReferences.insert(F);
2838 
2839   return ConstantAddress(Aliasee, Alignment);
2840 }
2841 
2842 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2843   const auto *Global = cast<ValueDecl>(GD.getDecl());
2844 
2845   // Weak references don't produce any output by themselves.
2846   if (Global->hasAttr<WeakRefAttr>())
2847     return;
2848 
2849   // If this is an alias definition (which otherwise looks like a declaration)
2850   // emit it now.
2851   if (Global->hasAttr<AliasAttr>())
2852     return EmitAliasDefinition(GD);
2853 
2854   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2855   if (Global->hasAttr<IFuncAttr>())
2856     return emitIFuncDefinition(GD);
2857 
2858   // If this is a cpu_dispatch multiversion function, emit the resolver.
2859   if (Global->hasAttr<CPUDispatchAttr>())
2860     return emitCPUDispatchDefinition(GD);
2861 
2862   // If this is CUDA, be selective about which declarations we emit.
2863   if (LangOpts.CUDA) {
2864     if (LangOpts.CUDAIsDevice) {
2865       if (!Global->hasAttr<CUDADeviceAttr>() &&
2866           !Global->hasAttr<CUDAGlobalAttr>() &&
2867           !Global->hasAttr<CUDAConstantAttr>() &&
2868           !Global->hasAttr<CUDASharedAttr>() &&
2869           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2870           !Global->getType()->isCUDADeviceBuiltinTextureType())
2871         return;
2872     } else {
2873       // We need to emit host-side 'shadows' for all global
2874       // device-side variables because the CUDA runtime needs their
2875       // size and host-side address in order to provide access to
2876       // their device-side incarnations.
2877 
2878       // So device-only functions are the only things we skip.
2879       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2880           Global->hasAttr<CUDADeviceAttr>())
2881         return;
2882 
2883       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2884              "Expected Variable or Function");
2885     }
2886   }
2887 
2888   if (LangOpts.OpenMP) {
2889     // If this is OpenMP, check if it is legal to emit this global normally.
2890     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2891       return;
2892     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2893       if (MustBeEmitted(Global))
2894         EmitOMPDeclareReduction(DRD);
2895       return;
2896     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2897       if (MustBeEmitted(Global))
2898         EmitOMPDeclareMapper(DMD);
2899       return;
2900     }
2901   }
2902 
2903   // Ignore declarations, they will be emitted on their first use.
2904   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2905     // Forward declarations are emitted lazily on first use.
2906     if (!FD->doesThisDeclarationHaveABody()) {
2907       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2908         return;
2909 
2910       StringRef MangledName = getMangledName(GD);
2911 
2912       // Compute the function info and LLVM type.
2913       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2914       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2915 
2916       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2917                               /*DontDefer=*/false);
2918       return;
2919     }
2920   } else {
2921     const auto *VD = cast<VarDecl>(Global);
2922     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2923     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2924         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2925       if (LangOpts.OpenMP) {
2926         // Emit declaration of the must-be-emitted declare target variable.
2927         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2928                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2929           bool UnifiedMemoryEnabled =
2930               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2931           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2932               !UnifiedMemoryEnabled) {
2933             (void)GetAddrOfGlobalVar(VD);
2934           } else {
2935             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2936                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2937                      UnifiedMemoryEnabled)) &&
2938                    "Link clause or to clause with unified memory expected.");
2939             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2940           }
2941 
2942           return;
2943         }
2944       }
2945       // If this declaration may have caused an inline variable definition to
2946       // change linkage, make sure that it's emitted.
2947       if (Context.getInlineVariableDefinitionKind(VD) ==
2948           ASTContext::InlineVariableDefinitionKind::Strong)
2949         GetAddrOfGlobalVar(VD);
2950       return;
2951     }
2952   }
2953 
2954   // Defer code generation to first use when possible, e.g. if this is an inline
2955   // function. If the global must always be emitted, do it eagerly if possible
2956   // to benefit from cache locality.
2957   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2958     // Emit the definition if it can't be deferred.
2959     EmitGlobalDefinition(GD);
2960     return;
2961   }
2962 
2963   // If we're deferring emission of a C++ variable with an
2964   // initializer, remember the order in which it appeared in the file.
2965   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2966       cast<VarDecl>(Global)->hasInit()) {
2967     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2968     CXXGlobalInits.push_back(nullptr);
2969   }
2970 
2971   StringRef MangledName = getMangledName(GD);
2972   if (GetGlobalValue(MangledName) != nullptr) {
2973     // The value has already been used and should therefore be emitted.
2974     addDeferredDeclToEmit(GD);
2975   } else if (MustBeEmitted(Global)) {
2976     // The value must be emitted, but cannot be emitted eagerly.
2977     assert(!MayBeEmittedEagerly(Global));
2978     addDeferredDeclToEmit(GD);
2979   } else {
2980     // Otherwise, remember that we saw a deferred decl with this name.  The
2981     // first use of the mangled name will cause it to move into
2982     // DeferredDeclsToEmit.
2983     DeferredDecls[MangledName] = GD;
2984   }
2985 }
2986 
2987 // Check if T is a class type with a destructor that's not dllimport.
2988 static bool HasNonDllImportDtor(QualType T) {
2989   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2990     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2991       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2992         return true;
2993 
2994   return false;
2995 }
2996 
2997 namespace {
2998   struct FunctionIsDirectlyRecursive
2999       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3000     const StringRef Name;
3001     const Builtin::Context &BI;
3002     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3003         : Name(N), BI(C) {}
3004 
3005     bool VisitCallExpr(const CallExpr *E) {
3006       const FunctionDecl *FD = E->getDirectCallee();
3007       if (!FD)
3008         return false;
3009       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3010       if (Attr && Name == Attr->getLabel())
3011         return true;
3012       unsigned BuiltinID = FD->getBuiltinID();
3013       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3014         return false;
3015       StringRef BuiltinName = BI.getName(BuiltinID);
3016       if (BuiltinName.startswith("__builtin_") &&
3017           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3018         return true;
3019       }
3020       return false;
3021     }
3022 
3023     bool VisitStmt(const Stmt *S) {
3024       for (const Stmt *Child : S->children())
3025         if (Child && this->Visit(Child))
3026           return true;
3027       return false;
3028     }
3029   };
3030 
3031   // Make sure we're not referencing non-imported vars or functions.
3032   struct DLLImportFunctionVisitor
3033       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3034     bool SafeToInline = true;
3035 
3036     bool shouldVisitImplicitCode() const { return true; }
3037 
3038     bool VisitVarDecl(VarDecl *VD) {
3039       if (VD->getTLSKind()) {
3040         // A thread-local variable cannot be imported.
3041         SafeToInline = false;
3042         return SafeToInline;
3043       }
3044 
3045       // A variable definition might imply a destructor call.
3046       if (VD->isThisDeclarationADefinition())
3047         SafeToInline = !HasNonDllImportDtor(VD->getType());
3048 
3049       return SafeToInline;
3050     }
3051 
3052     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3053       if (const auto *D = E->getTemporary()->getDestructor())
3054         SafeToInline = D->hasAttr<DLLImportAttr>();
3055       return SafeToInline;
3056     }
3057 
3058     bool VisitDeclRefExpr(DeclRefExpr *E) {
3059       ValueDecl *VD = E->getDecl();
3060       if (isa<FunctionDecl>(VD))
3061         SafeToInline = VD->hasAttr<DLLImportAttr>();
3062       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3063         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3064       return SafeToInline;
3065     }
3066 
3067     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3068       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3069       return SafeToInline;
3070     }
3071 
3072     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3073       CXXMethodDecl *M = E->getMethodDecl();
3074       if (!M) {
3075         // Call through a pointer to member function. This is safe to inline.
3076         SafeToInline = true;
3077       } else {
3078         SafeToInline = M->hasAttr<DLLImportAttr>();
3079       }
3080       return SafeToInline;
3081     }
3082 
3083     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3084       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3085       return SafeToInline;
3086     }
3087 
3088     bool VisitCXXNewExpr(CXXNewExpr *E) {
3089       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3090       return SafeToInline;
3091     }
3092   };
3093 }
3094 
3095 // isTriviallyRecursive - Check if this function calls another
3096 // decl that, because of the asm attribute or the other decl being a builtin,
3097 // ends up pointing to itself.
3098 bool
3099 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3100   StringRef Name;
3101   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3102     // asm labels are a special kind of mangling we have to support.
3103     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3104     if (!Attr)
3105       return false;
3106     Name = Attr->getLabel();
3107   } else {
3108     Name = FD->getName();
3109   }
3110 
3111   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3112   const Stmt *Body = FD->getBody();
3113   return Body ? Walker.Visit(Body) : false;
3114 }
3115 
3116 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3117   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3118     return true;
3119   const auto *F = cast<FunctionDecl>(GD.getDecl());
3120   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3121     return false;
3122 
3123   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3124     // Check whether it would be safe to inline this dllimport function.
3125     DLLImportFunctionVisitor Visitor;
3126     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3127     if (!Visitor.SafeToInline)
3128       return false;
3129 
3130     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3131       // Implicit destructor invocations aren't captured in the AST, so the
3132       // check above can't see them. Check for them manually here.
3133       for (const Decl *Member : Dtor->getParent()->decls())
3134         if (isa<FieldDecl>(Member))
3135           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3136             return false;
3137       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3138         if (HasNonDllImportDtor(B.getType()))
3139           return false;
3140     }
3141   }
3142 
3143   // PR9614. Avoid cases where the source code is lying to us. An available
3144   // externally function should have an equivalent function somewhere else,
3145   // but a function that calls itself through asm label/`__builtin_` trickery is
3146   // clearly not equivalent to the real implementation.
3147   // This happens in glibc's btowc and in some configure checks.
3148   return !isTriviallyRecursive(F);
3149 }
3150 
3151 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3152   return CodeGenOpts.OptimizationLevel > 0;
3153 }
3154 
3155 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3156                                                        llvm::GlobalValue *GV) {
3157   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3158 
3159   if (FD->isCPUSpecificMultiVersion()) {
3160     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3161     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3162       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3163     // Requires multiple emits.
3164   } else
3165     EmitGlobalFunctionDefinition(GD, GV);
3166 }
3167 
3168 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3169   const auto *D = cast<ValueDecl>(GD.getDecl());
3170 
3171   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3172                                  Context.getSourceManager(),
3173                                  "Generating code for declaration");
3174 
3175   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3176     // At -O0, don't generate IR for functions with available_externally
3177     // linkage.
3178     if (!shouldEmitFunction(GD))
3179       return;
3180 
3181     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3182       std::string Name;
3183       llvm::raw_string_ostream OS(Name);
3184       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3185                                /*Qualified=*/true);
3186       return Name;
3187     });
3188 
3189     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3190       // Make sure to emit the definition(s) before we emit the thunks.
3191       // This is necessary for the generation of certain thunks.
3192       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3193         ABI->emitCXXStructor(GD);
3194       else if (FD->isMultiVersion())
3195         EmitMultiVersionFunctionDefinition(GD, GV);
3196       else
3197         EmitGlobalFunctionDefinition(GD, GV);
3198 
3199       if (Method->isVirtual())
3200         getVTables().EmitThunks(GD);
3201 
3202       return;
3203     }
3204 
3205     if (FD->isMultiVersion())
3206       return EmitMultiVersionFunctionDefinition(GD, GV);
3207     return EmitGlobalFunctionDefinition(GD, GV);
3208   }
3209 
3210   if (const auto *VD = dyn_cast<VarDecl>(D))
3211     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3212 
3213   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3214 }
3215 
3216 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3217                                                       llvm::Function *NewFn);
3218 
3219 static unsigned
3220 TargetMVPriority(const TargetInfo &TI,
3221                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3222   unsigned Priority = 0;
3223   for (StringRef Feat : RO.Conditions.Features)
3224     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3225 
3226   if (!RO.Conditions.Architecture.empty())
3227     Priority = std::max(
3228         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3229   return Priority;
3230 }
3231 
3232 void CodeGenModule::emitMultiVersionFunctions() {
3233   std::vector<GlobalDecl> MVFuncsToEmit;
3234   MultiVersionFuncs.swap(MVFuncsToEmit);
3235   for (GlobalDecl GD : MVFuncsToEmit) {
3236     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3237     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3238     getContext().forEachMultiversionedFunctionVersion(
3239         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3240           GlobalDecl CurGD{
3241               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3242           StringRef MangledName = getMangledName(CurGD);
3243           llvm::Constant *Func = GetGlobalValue(MangledName);
3244           if (!Func) {
3245             if (CurFD->isDefined()) {
3246               EmitGlobalFunctionDefinition(CurGD, nullptr);
3247               Func = GetGlobalValue(MangledName);
3248             } else {
3249               const CGFunctionInfo &FI =
3250                   getTypes().arrangeGlobalDeclaration(GD);
3251               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3252               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3253                                        /*DontDefer=*/false, ForDefinition);
3254             }
3255             assert(Func && "This should have just been created");
3256           }
3257 
3258           const auto *TA = CurFD->getAttr<TargetAttr>();
3259           llvm::SmallVector<StringRef, 8> Feats;
3260           TA->getAddedFeatures(Feats);
3261 
3262           Options.emplace_back(cast<llvm::Function>(Func),
3263                                TA->getArchitecture(), Feats);
3264         });
3265 
3266     llvm::Function *ResolverFunc;
3267     const TargetInfo &TI = getTarget();
3268 
3269     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3270       ResolverFunc = cast<llvm::Function>(
3271           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3272       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3273     } else {
3274       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3275     }
3276 
3277     if (supportsCOMDAT())
3278       ResolverFunc->setComdat(
3279           getModule().getOrInsertComdat(ResolverFunc->getName()));
3280 
3281     llvm::stable_sort(
3282         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3283                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3284           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3285         });
3286     CodeGenFunction CGF(*this);
3287     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3288   }
3289 
3290   // Ensure that any additions to the deferred decls list caused by emitting a
3291   // variant are emitted.  This can happen when the variant itself is inline and
3292   // calls a function without linkage.
3293   if (!MVFuncsToEmit.empty())
3294     EmitDeferred();
3295 
3296   // Ensure that any additions to the multiversion funcs list from either the
3297   // deferred decls or the multiversion functions themselves are emitted.
3298   if (!MultiVersionFuncs.empty())
3299     emitMultiVersionFunctions();
3300 }
3301 
3302 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3303   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3304   assert(FD && "Not a FunctionDecl?");
3305   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3306   assert(DD && "Not a cpu_dispatch Function?");
3307   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3308 
3309   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3310     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3311     DeclTy = getTypes().GetFunctionType(FInfo);
3312   }
3313 
3314   StringRef ResolverName = getMangledName(GD);
3315 
3316   llvm::Type *ResolverType;
3317   GlobalDecl ResolverGD;
3318   if (getTarget().supportsIFunc())
3319     ResolverType = llvm::FunctionType::get(
3320         llvm::PointerType::get(DeclTy,
3321                                Context.getTargetAddressSpace(FD->getType())),
3322         false);
3323   else {
3324     ResolverType = DeclTy;
3325     ResolverGD = GD;
3326   }
3327 
3328   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3329       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3330   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3331   if (supportsCOMDAT())
3332     ResolverFunc->setComdat(
3333         getModule().getOrInsertComdat(ResolverFunc->getName()));
3334 
3335   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3336   const TargetInfo &Target = getTarget();
3337   unsigned Index = 0;
3338   for (const IdentifierInfo *II : DD->cpus()) {
3339     // Get the name of the target function so we can look it up/create it.
3340     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3341                               getCPUSpecificMangling(*this, II->getName());
3342 
3343     llvm::Constant *Func = GetGlobalValue(MangledName);
3344 
3345     if (!Func) {
3346       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3347       if (ExistingDecl.getDecl() &&
3348           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3349         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3350         Func = GetGlobalValue(MangledName);
3351       } else {
3352         if (!ExistingDecl.getDecl())
3353           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3354 
3355       Func = GetOrCreateLLVMFunction(
3356           MangledName, DeclTy, ExistingDecl,
3357           /*ForVTable=*/false, /*DontDefer=*/true,
3358           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3359       }
3360     }
3361 
3362     llvm::SmallVector<StringRef, 32> Features;
3363     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3364     llvm::transform(Features, Features.begin(),
3365                     [](StringRef Str) { return Str.substr(1); });
3366     Features.erase(std::remove_if(
3367         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3368           return !Target.validateCpuSupports(Feat);
3369         }), Features.end());
3370     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3371     ++Index;
3372   }
3373 
3374   llvm::stable_sort(
3375       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3376                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3377         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3378                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3379       });
3380 
3381   // If the list contains multiple 'default' versions, such as when it contains
3382   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3383   // always run on at least a 'pentium'). We do this by deleting the 'least
3384   // advanced' (read, lowest mangling letter).
3385   while (Options.size() > 1 &&
3386          CodeGenFunction::GetX86CpuSupportsMask(
3387              (Options.end() - 2)->Conditions.Features) == 0) {
3388     StringRef LHSName = (Options.end() - 2)->Function->getName();
3389     StringRef RHSName = (Options.end() - 1)->Function->getName();
3390     if (LHSName.compare(RHSName) < 0)
3391       Options.erase(Options.end() - 2);
3392     else
3393       Options.erase(Options.end() - 1);
3394   }
3395 
3396   CodeGenFunction CGF(*this);
3397   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3398 
3399   if (getTarget().supportsIFunc()) {
3400     std::string AliasName = getMangledNameImpl(
3401         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3402     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3403     if (!AliasFunc) {
3404       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3405           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3406           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3407       auto *GA = llvm::GlobalAlias::create(
3408          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3409       GA->setLinkage(llvm::Function::WeakODRLinkage);
3410       SetCommonAttributes(GD, GA);
3411     }
3412   }
3413 }
3414 
3415 /// If a dispatcher for the specified mangled name is not in the module, create
3416 /// and return an llvm Function with the specified type.
3417 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3418     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3419   std::string MangledName =
3420       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3421 
3422   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3423   // a separate resolver).
3424   std::string ResolverName = MangledName;
3425   if (getTarget().supportsIFunc())
3426     ResolverName += ".ifunc";
3427   else if (FD->isTargetMultiVersion())
3428     ResolverName += ".resolver";
3429 
3430   // If this already exists, just return that one.
3431   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3432     return ResolverGV;
3433 
3434   // Since this is the first time we've created this IFunc, make sure
3435   // that we put this multiversioned function into the list to be
3436   // replaced later if necessary (target multiversioning only).
3437   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3438     MultiVersionFuncs.push_back(GD);
3439 
3440   if (getTarget().supportsIFunc()) {
3441     llvm::Type *ResolverType = llvm::FunctionType::get(
3442         llvm::PointerType::get(
3443             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3444         false);
3445     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3446         MangledName + ".resolver", ResolverType, GlobalDecl{},
3447         /*ForVTable=*/false);
3448     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3449         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3450     GIF->setName(ResolverName);
3451     SetCommonAttributes(FD, GIF);
3452 
3453     return GIF;
3454   }
3455 
3456   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3457       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3458   assert(isa<llvm::GlobalValue>(Resolver) &&
3459          "Resolver should be created for the first time");
3460   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3461   return Resolver;
3462 }
3463 
3464 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3465 /// module, create and return an llvm Function with the specified type. If there
3466 /// is something in the module with the specified name, return it potentially
3467 /// bitcasted to the right type.
3468 ///
3469 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3470 /// to set the attributes on the function when it is first created.
3471 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3472     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3473     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3474     ForDefinition_t IsForDefinition) {
3475   const Decl *D = GD.getDecl();
3476 
3477   // Any attempts to use a MultiVersion function should result in retrieving
3478   // the iFunc instead. Name Mangling will handle the rest of the changes.
3479   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3480     // For the device mark the function as one that should be emitted.
3481     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3482         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3483         !DontDefer && !IsForDefinition) {
3484       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3485         GlobalDecl GDDef;
3486         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3487           GDDef = GlobalDecl(CD, GD.getCtorType());
3488         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3489           GDDef = GlobalDecl(DD, GD.getDtorType());
3490         else
3491           GDDef = GlobalDecl(FDDef);
3492         EmitGlobal(GDDef);
3493       }
3494     }
3495 
3496     if (FD->isMultiVersion()) {
3497       if (FD->hasAttr<TargetAttr>())
3498         UpdateMultiVersionNames(GD, FD);
3499       if (!IsForDefinition)
3500         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3501     }
3502   }
3503 
3504   // Lookup the entry, lazily creating it if necessary.
3505   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3506   if (Entry) {
3507     if (WeakRefReferences.erase(Entry)) {
3508       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3509       if (FD && !FD->hasAttr<WeakAttr>())
3510         Entry->setLinkage(llvm::Function::ExternalLinkage);
3511     }
3512 
3513     // Handle dropped DLL attributes.
3514     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3515       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3516       setDSOLocal(Entry);
3517     }
3518 
3519     // If there are two attempts to define the same mangled name, issue an
3520     // error.
3521     if (IsForDefinition && !Entry->isDeclaration()) {
3522       GlobalDecl OtherGD;
3523       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3524       // to make sure that we issue an error only once.
3525       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3526           (GD.getCanonicalDecl().getDecl() !=
3527            OtherGD.getCanonicalDecl().getDecl()) &&
3528           DiagnosedConflictingDefinitions.insert(GD).second) {
3529         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3530             << MangledName;
3531         getDiags().Report(OtherGD.getDecl()->getLocation(),
3532                           diag::note_previous_definition);
3533       }
3534     }
3535 
3536     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3537         (Entry->getValueType() == Ty)) {
3538       return Entry;
3539     }
3540 
3541     // Make sure the result is of the correct type.
3542     // (If function is requested for a definition, we always need to create a new
3543     // function, not just return a bitcast.)
3544     if (!IsForDefinition)
3545       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3546   }
3547 
3548   // This function doesn't have a complete type (for example, the return
3549   // type is an incomplete struct). Use a fake type instead, and make
3550   // sure not to try to set attributes.
3551   bool IsIncompleteFunction = false;
3552 
3553   llvm::FunctionType *FTy;
3554   if (isa<llvm::FunctionType>(Ty)) {
3555     FTy = cast<llvm::FunctionType>(Ty);
3556   } else {
3557     FTy = llvm::FunctionType::get(VoidTy, false);
3558     IsIncompleteFunction = true;
3559   }
3560 
3561   llvm::Function *F =
3562       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3563                              Entry ? StringRef() : MangledName, &getModule());
3564 
3565   // If we already created a function with the same mangled name (but different
3566   // type) before, take its name and add it to the list of functions to be
3567   // replaced with F at the end of CodeGen.
3568   //
3569   // This happens if there is a prototype for a function (e.g. "int f()") and
3570   // then a definition of a different type (e.g. "int f(int x)").
3571   if (Entry) {
3572     F->takeName(Entry);
3573 
3574     // This might be an implementation of a function without a prototype, in
3575     // which case, try to do special replacement of calls which match the new
3576     // prototype.  The really key thing here is that we also potentially drop
3577     // arguments from the call site so as to make a direct call, which makes the
3578     // inliner happier and suppresses a number of optimizer warnings (!) about
3579     // dropping arguments.
3580     if (!Entry->use_empty()) {
3581       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3582       Entry->removeDeadConstantUsers();
3583     }
3584 
3585     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3586         F, Entry->getValueType()->getPointerTo());
3587     addGlobalValReplacement(Entry, BC);
3588   }
3589 
3590   assert(F->getName() == MangledName && "name was uniqued!");
3591   if (D)
3592     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3593   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3594     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3595     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3596   }
3597 
3598   if (!DontDefer) {
3599     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3600     // each other bottoming out with the base dtor.  Therefore we emit non-base
3601     // dtors on usage, even if there is no dtor definition in the TU.
3602     if (D && isa<CXXDestructorDecl>(D) &&
3603         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3604                                            GD.getDtorType()))
3605       addDeferredDeclToEmit(GD);
3606 
3607     // This is the first use or definition of a mangled name.  If there is a
3608     // deferred decl with this name, remember that we need to emit it at the end
3609     // of the file.
3610     auto DDI = DeferredDecls.find(MangledName);
3611     if (DDI != DeferredDecls.end()) {
3612       // Move the potentially referenced deferred decl to the
3613       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3614       // don't need it anymore).
3615       addDeferredDeclToEmit(DDI->second);
3616       DeferredDecls.erase(DDI);
3617 
3618       // Otherwise, there are cases we have to worry about where we're
3619       // using a declaration for which we must emit a definition but where
3620       // we might not find a top-level definition:
3621       //   - member functions defined inline in their classes
3622       //   - friend functions defined inline in some class
3623       //   - special member functions with implicit definitions
3624       // If we ever change our AST traversal to walk into class methods,
3625       // this will be unnecessary.
3626       //
3627       // We also don't emit a definition for a function if it's going to be an
3628       // entry in a vtable, unless it's already marked as used.
3629     } else if (getLangOpts().CPlusPlus && D) {
3630       // Look for a declaration that's lexically in a record.
3631       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3632            FD = FD->getPreviousDecl()) {
3633         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3634           if (FD->doesThisDeclarationHaveABody()) {
3635             addDeferredDeclToEmit(GD.getWithDecl(FD));
3636             break;
3637           }
3638         }
3639       }
3640     }
3641   }
3642 
3643   // Make sure the result is of the requested type.
3644   if (!IsIncompleteFunction) {
3645     assert(F->getFunctionType() == Ty);
3646     return F;
3647   }
3648 
3649   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3650   return llvm::ConstantExpr::getBitCast(F, PTy);
3651 }
3652 
3653 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3654 /// non-null, then this function will use the specified type if it has to
3655 /// create it (this occurs when we see a definition of the function).
3656 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3657                                                  llvm::Type *Ty,
3658                                                  bool ForVTable,
3659                                                  bool DontDefer,
3660                                               ForDefinition_t IsForDefinition) {
3661   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3662          "consteval function should never be emitted");
3663   // If there was no specific requested type, just convert it now.
3664   if (!Ty) {
3665     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3666     Ty = getTypes().ConvertType(FD->getType());
3667   }
3668 
3669   // Devirtualized destructor calls may come through here instead of via
3670   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3671   // of the complete destructor when necessary.
3672   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3673     if (getTarget().getCXXABI().isMicrosoft() &&
3674         GD.getDtorType() == Dtor_Complete &&
3675         DD->getParent()->getNumVBases() == 0)
3676       GD = GlobalDecl(DD, Dtor_Base);
3677   }
3678 
3679   StringRef MangledName = getMangledName(GD);
3680   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3681                                     /*IsThunk=*/false, llvm::AttributeList(),
3682                                     IsForDefinition);
3683   // Returns kernel handle for HIP kernel stub function.
3684   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3685       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3686     auto *Handle = getCUDARuntime().getKernelHandle(
3687         cast<llvm::Function>(F->stripPointerCasts()), GD);
3688     if (IsForDefinition)
3689       return F;
3690     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3691   }
3692   return F;
3693 }
3694 
3695 static const FunctionDecl *
3696 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3697   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3698   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3699 
3700   IdentifierInfo &CII = C.Idents.get(Name);
3701   for (const auto *Result : DC->lookup(&CII))
3702     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3703       return FD;
3704 
3705   if (!C.getLangOpts().CPlusPlus)
3706     return nullptr;
3707 
3708   // Demangle the premangled name from getTerminateFn()
3709   IdentifierInfo &CXXII =
3710       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3711           ? C.Idents.get("terminate")
3712           : C.Idents.get(Name);
3713 
3714   for (const auto &N : {"__cxxabiv1", "std"}) {
3715     IdentifierInfo &NS = C.Idents.get(N);
3716     for (const auto *Result : DC->lookup(&NS)) {
3717       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3718       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3719         for (const auto *Result : LSD->lookup(&NS))
3720           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3721             break;
3722 
3723       if (ND)
3724         for (const auto *Result : ND->lookup(&CXXII))
3725           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3726             return FD;
3727     }
3728   }
3729 
3730   return nullptr;
3731 }
3732 
3733 /// CreateRuntimeFunction - Create a new runtime function with the specified
3734 /// type and name.
3735 llvm::FunctionCallee
3736 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3737                                      llvm::AttributeList ExtraAttrs, bool Local,
3738                                      bool AssumeConvergent) {
3739   if (AssumeConvergent) {
3740     ExtraAttrs =
3741         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3742                                 llvm::Attribute::Convergent);
3743   }
3744 
3745   llvm::Constant *C =
3746       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3747                               /*DontDefer=*/false, /*IsThunk=*/false,
3748                               ExtraAttrs);
3749 
3750   if (auto *F = dyn_cast<llvm::Function>(C)) {
3751     if (F->empty()) {
3752       F->setCallingConv(getRuntimeCC());
3753 
3754       // In Windows Itanium environments, try to mark runtime functions
3755       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3756       // will link their standard library statically or dynamically. Marking
3757       // functions imported when they are not imported can cause linker errors
3758       // and warnings.
3759       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3760           !getCodeGenOpts().LTOVisibilityPublicStd) {
3761         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3762         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3763           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3764           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3765         }
3766       }
3767       setDSOLocal(F);
3768     }
3769   }
3770 
3771   return {FTy, C};
3772 }
3773 
3774 /// isTypeConstant - Determine whether an object of this type can be emitted
3775 /// as a constant.
3776 ///
3777 /// If ExcludeCtor is true, the duration when the object's constructor runs
3778 /// will not be considered. The caller will need to verify that the object is
3779 /// not written to during its construction.
3780 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3781   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3782     return false;
3783 
3784   if (Context.getLangOpts().CPlusPlus) {
3785     if (const CXXRecordDecl *Record
3786           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3787       return ExcludeCtor && !Record->hasMutableFields() &&
3788              Record->hasTrivialDestructor();
3789   }
3790 
3791   return true;
3792 }
3793 
3794 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3795 /// create and return an llvm GlobalVariable with the specified type and address
3796 /// space. If there is something in the module with the specified name, return
3797 /// it potentially bitcasted to the right type.
3798 ///
3799 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3800 /// to set the attributes on the global when it is first created.
3801 ///
3802 /// If IsForDefinition is true, it is guaranteed that an actual global with
3803 /// type Ty will be returned, not conversion of a variable with the same
3804 /// mangled name but some other type.
3805 llvm::Constant *
3806 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3807                                      unsigned AddrSpace, const VarDecl *D,
3808                                      ForDefinition_t IsForDefinition) {
3809   // Lookup the entry, lazily creating it if necessary.
3810   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3811   if (Entry) {
3812     if (WeakRefReferences.erase(Entry)) {
3813       if (D && !D->hasAttr<WeakAttr>())
3814         Entry->setLinkage(llvm::Function::ExternalLinkage);
3815     }
3816 
3817     // Handle dropped DLL attributes.
3818     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3819       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3820 
3821     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3822       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3823 
3824     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == AddrSpace)
3825       return Entry;
3826 
3827     // If there are two attempts to define the same mangled name, issue an
3828     // error.
3829     if (IsForDefinition && !Entry->isDeclaration()) {
3830       GlobalDecl OtherGD;
3831       const VarDecl *OtherD;
3832 
3833       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3834       // to make sure that we issue an error only once.
3835       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3836           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3837           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3838           OtherD->hasInit() &&
3839           DiagnosedConflictingDefinitions.insert(D).second) {
3840         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3841             << MangledName;
3842         getDiags().Report(OtherGD.getDecl()->getLocation(),
3843                           diag::note_previous_definition);
3844       }
3845     }
3846 
3847     // Make sure the result is of the correct type.
3848     if (Entry->getType()->getAddressSpace() != AddrSpace) {
3849       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3850                                                   Ty->getPointerTo(AddrSpace));
3851     }
3852 
3853     // (If global is requested for a definition, we always need to create a new
3854     // global, not just return a bitcast.)
3855     if (!IsForDefinition)
3856       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(AddrSpace));
3857   }
3858 
3859   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3860   auto TargetAddrSpace = getContext().getTargetAddressSpace(DAddrSpace);
3861 
3862   auto *GV = new llvm::GlobalVariable(
3863       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3864       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3865       TargetAddrSpace);
3866 
3867   // If we already created a global with the same mangled name (but different
3868   // type) before, take its name and remove it from its parent.
3869   if (Entry) {
3870     GV->takeName(Entry);
3871 
3872     if (!Entry->use_empty()) {
3873       llvm::Constant *NewPtrForOldDecl =
3874           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3875       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3876     }
3877 
3878     Entry->eraseFromParent();
3879   }
3880 
3881   // This is the first use or definition of a mangled name.  If there is a
3882   // deferred decl with this name, remember that we need to emit it at the end
3883   // of the file.
3884   auto DDI = DeferredDecls.find(MangledName);
3885   if (DDI != DeferredDecls.end()) {
3886     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3887     // list, and remove it from DeferredDecls (since we don't need it anymore).
3888     addDeferredDeclToEmit(DDI->second);
3889     DeferredDecls.erase(DDI);
3890   }
3891 
3892   // Handle things which are present even on external declarations.
3893   if (D) {
3894     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3895       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3896 
3897     // FIXME: This code is overly simple and should be merged with other global
3898     // handling.
3899     GV->setConstant(isTypeConstant(D->getType(), false));
3900 
3901     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3902 
3903     setLinkageForGV(GV, D);
3904 
3905     if (D->getTLSKind()) {
3906       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3907         CXXThreadLocals.push_back(D);
3908       setTLSMode(GV, *D);
3909     }
3910 
3911     setGVProperties(GV, D);
3912 
3913     // If required by the ABI, treat declarations of static data members with
3914     // inline initializers as definitions.
3915     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3916       EmitGlobalVarDefinition(D);
3917     }
3918 
3919     // Emit section information for extern variables.
3920     if (D->hasExternalStorage()) {
3921       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3922         GV->setSection(SA->getName());
3923     }
3924 
3925     // Handle XCore specific ABI requirements.
3926     if (getTriple().getArch() == llvm::Triple::xcore &&
3927         D->getLanguageLinkage() == CLanguageLinkage &&
3928         D->getType().isConstant(Context) &&
3929         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3930       GV->setSection(".cp.rodata");
3931 
3932     // Check if we a have a const declaration with an initializer, we may be
3933     // able to emit it as available_externally to expose it's value to the
3934     // optimizer.
3935     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3936         D->getType().isConstQualified() && !GV->hasInitializer() &&
3937         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3938       const auto *Record =
3939           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3940       bool HasMutableFields = Record && Record->hasMutableFields();
3941       if (!HasMutableFields) {
3942         const VarDecl *InitDecl;
3943         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3944         if (InitExpr) {
3945           ConstantEmitter emitter(*this);
3946           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3947           if (Init) {
3948             auto *InitType = Init->getType();
3949             if (GV->getValueType() != InitType) {
3950               // The type of the initializer does not match the definition.
3951               // This happens when an initializer has a different type from
3952               // the type of the global (because of padding at the end of a
3953               // structure for instance).
3954               GV->setName(StringRef());
3955               // Make a new global with the correct type, this is now guaranteed
3956               // to work.
3957               auto *NewGV = cast<llvm::GlobalVariable>(
3958                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3959                       ->stripPointerCasts());
3960 
3961               // Erase the old global, since it is no longer used.
3962               GV->eraseFromParent();
3963               GV = NewGV;
3964             } else {
3965               GV->setInitializer(Init);
3966               GV->setConstant(true);
3967               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3968             }
3969             emitter.finalize(GV);
3970           }
3971         }
3972       }
3973     }
3974   }
3975 
3976   if (GV->isDeclaration()) {
3977     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3978     // External HIP managed variables needed to be recorded for transformation
3979     // in both device and host compilations.
3980     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
3981         D->hasExternalStorage())
3982       getCUDARuntime().handleVarRegistration(D, *GV);
3983   }
3984 
3985   LangAS ExpectedAS =
3986       D ? D->getType().getAddressSpace()
3987         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3988   assert(getContext().getTargetAddressSpace(ExpectedAS) == AddrSpace);
3989   if (DAddrSpace != ExpectedAS) {
3990     return getTargetCodeGenInfo().performAddrSpaceCast(
3991         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(AddrSpace));
3992   }
3993 
3994   return GV;
3995 }
3996 
3997 llvm::Constant *
3998 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3999   const Decl *D = GD.getDecl();
4000 
4001   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4002     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4003                                 /*DontDefer=*/false, IsForDefinition);
4004 
4005   if (isa<CXXMethodDecl>(D)) {
4006     auto FInfo =
4007         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4008     auto Ty = getTypes().GetFunctionType(*FInfo);
4009     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4010                              IsForDefinition);
4011   }
4012 
4013   if (isa<FunctionDecl>(D)) {
4014     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4015     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4016     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4017                              IsForDefinition);
4018   }
4019 
4020   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4021 }
4022 
4023 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4024     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4025     unsigned Alignment) {
4026   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4027   llvm::GlobalVariable *OldGV = nullptr;
4028 
4029   if (GV) {
4030     // Check if the variable has the right type.
4031     if (GV->getValueType() == Ty)
4032       return GV;
4033 
4034     // Because C++ name mangling, the only way we can end up with an already
4035     // existing global with the same name is if it has been declared extern "C".
4036     assert(GV->isDeclaration() && "Declaration has wrong type!");
4037     OldGV = GV;
4038   }
4039 
4040   // Create a new variable.
4041   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4042                                 Linkage, nullptr, Name);
4043 
4044   if (OldGV) {
4045     // Replace occurrences of the old variable if needed.
4046     GV->takeName(OldGV);
4047 
4048     if (!OldGV->use_empty()) {
4049       llvm::Constant *NewPtrForOldDecl =
4050       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4051       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4052     }
4053 
4054     OldGV->eraseFromParent();
4055   }
4056 
4057   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4058       !GV->hasAvailableExternallyLinkage())
4059     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4060 
4061   GV->setAlignment(llvm::MaybeAlign(Alignment));
4062 
4063   return GV;
4064 }
4065 
4066 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4067 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4068 /// then it will be created with the specified type instead of whatever the
4069 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4070 /// that an actual global with type Ty will be returned, not conversion of a
4071 /// variable with the same mangled name but some other type.
4072 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4073                                                   llvm::Type *Ty,
4074                                            ForDefinition_t IsForDefinition) {
4075   assert(D->hasGlobalStorage() && "Not a global variable");
4076   QualType ASTTy = D->getType();
4077   if (!Ty)
4078     Ty = getTypes().ConvertTypeForMem(ASTTy);
4079 
4080   StringRef MangledName = getMangledName(D);
4081   return GetOrCreateLLVMGlobal(MangledName, Ty,
4082                                getContext().getTargetAddressSpace(ASTTy), D,
4083                                IsForDefinition);
4084 }
4085 
4086 /// CreateRuntimeVariable - Create a new runtime global variable with the
4087 /// specified type and name.
4088 llvm::Constant *
4089 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4090                                      StringRef Name) {
4091   auto AddrSpace =
4092       getContext().getLangOpts().OpenCL
4093           ? getContext().getTargetAddressSpace(LangAS::opencl_global)
4094           : 0;
4095   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4096   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4097   return Ret;
4098 }
4099 
4100 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4101   assert(!D->getInit() && "Cannot emit definite definitions here!");
4102 
4103   StringRef MangledName = getMangledName(D);
4104   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4105 
4106   // We already have a definition, not declaration, with the same mangled name.
4107   // Emitting of declaration is not required (and actually overwrites emitted
4108   // definition).
4109   if (GV && !GV->isDeclaration())
4110     return;
4111 
4112   // If we have not seen a reference to this variable yet, place it into the
4113   // deferred declarations table to be emitted if needed later.
4114   if (!MustBeEmitted(D) && !GV) {
4115       DeferredDecls[MangledName] = D;
4116       return;
4117   }
4118 
4119   // The tentative definition is the only definition.
4120   EmitGlobalVarDefinition(D);
4121 }
4122 
4123 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4124   EmitExternalVarDeclaration(D);
4125 }
4126 
4127 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4128   return Context.toCharUnitsFromBits(
4129       getDataLayout().getTypeStoreSizeInBits(Ty));
4130 }
4131 
4132 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4133   LangAS AddrSpace = LangAS::Default;
4134   if (LangOpts.OpenCL) {
4135     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4136     assert(AddrSpace == LangAS::opencl_global ||
4137            AddrSpace == LangAS::opencl_global_device ||
4138            AddrSpace == LangAS::opencl_global_host ||
4139            AddrSpace == LangAS::opencl_constant ||
4140            AddrSpace == LangAS::opencl_local ||
4141            AddrSpace >= LangAS::FirstTargetAddressSpace);
4142     return AddrSpace;
4143   }
4144 
4145   if (LangOpts.SYCLIsDevice &&
4146       (!D || D->getType().getAddressSpace() == LangAS::Default))
4147     return LangAS::sycl_global;
4148 
4149   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4150     if (D && D->hasAttr<CUDAConstantAttr>())
4151       return LangAS::cuda_constant;
4152     else if (D && D->hasAttr<CUDASharedAttr>())
4153       return LangAS::cuda_shared;
4154     else if (D && D->hasAttr<CUDADeviceAttr>())
4155       return LangAS::cuda_device;
4156     else if (D && D->getType().isConstQualified())
4157       return LangAS::cuda_constant;
4158     else
4159       return LangAS::cuda_device;
4160   }
4161 
4162   if (LangOpts.OpenMP) {
4163     LangAS AS;
4164     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4165       return AS;
4166   }
4167   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4168 }
4169 
4170 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4171   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4172   if (LangOpts.OpenCL)
4173     return LangAS::opencl_constant;
4174   if (LangOpts.SYCLIsDevice)
4175     return LangAS::sycl_global;
4176   if (auto AS = getTarget().getConstantAddressSpace())
4177     return AS.getValue();
4178   return LangAS::Default;
4179 }
4180 
4181 // In address space agnostic languages, string literals are in default address
4182 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4183 // emitted in constant address space in LLVM IR. To be consistent with other
4184 // parts of AST, string literal global variables in constant address space
4185 // need to be casted to default address space before being put into address
4186 // map and referenced by other part of CodeGen.
4187 // In OpenCL, string literals are in constant address space in AST, therefore
4188 // they should not be casted to default address space.
4189 static llvm::Constant *
4190 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4191                                        llvm::GlobalVariable *GV) {
4192   llvm::Constant *Cast = GV;
4193   if (!CGM.getLangOpts().OpenCL) {
4194     auto AS = CGM.GetGlobalConstantAddressSpace();
4195     if (AS != LangAS::Default)
4196       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4197           CGM, GV, AS, LangAS::Default,
4198           GV->getValueType()->getPointerTo(
4199               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4200   }
4201   return Cast;
4202 }
4203 
4204 template<typename SomeDecl>
4205 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4206                                                llvm::GlobalValue *GV) {
4207   if (!getLangOpts().CPlusPlus)
4208     return;
4209 
4210   // Must have 'used' attribute, or else inline assembly can't rely on
4211   // the name existing.
4212   if (!D->template hasAttr<UsedAttr>())
4213     return;
4214 
4215   // Must have internal linkage and an ordinary name.
4216   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4217     return;
4218 
4219   // Must be in an extern "C" context. Entities declared directly within
4220   // a record are not extern "C" even if the record is in such a context.
4221   const SomeDecl *First = D->getFirstDecl();
4222   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4223     return;
4224 
4225   // OK, this is an internal linkage entity inside an extern "C" linkage
4226   // specification. Make a note of that so we can give it the "expected"
4227   // mangled name if nothing else is using that name.
4228   std::pair<StaticExternCMap::iterator, bool> R =
4229       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4230 
4231   // If we have multiple internal linkage entities with the same name
4232   // in extern "C" regions, none of them gets that name.
4233   if (!R.second)
4234     R.first->second = nullptr;
4235 }
4236 
4237 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4238   if (!CGM.supportsCOMDAT())
4239     return false;
4240 
4241   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4242   // them being "merged" by the COMDAT Folding linker optimization.
4243   if (D.hasAttr<CUDAGlobalAttr>())
4244     return false;
4245 
4246   if (D.hasAttr<SelectAnyAttr>())
4247     return true;
4248 
4249   GVALinkage Linkage;
4250   if (auto *VD = dyn_cast<VarDecl>(&D))
4251     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4252   else
4253     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4254 
4255   switch (Linkage) {
4256   case GVA_Internal:
4257   case GVA_AvailableExternally:
4258   case GVA_StrongExternal:
4259     return false;
4260   case GVA_DiscardableODR:
4261   case GVA_StrongODR:
4262     return true;
4263   }
4264   llvm_unreachable("No such linkage");
4265 }
4266 
4267 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4268                                           llvm::GlobalObject &GO) {
4269   if (!shouldBeInCOMDAT(*this, D))
4270     return;
4271   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4272 }
4273 
4274 /// Pass IsTentative as true if you want to create a tentative definition.
4275 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4276                                             bool IsTentative) {
4277   // OpenCL global variables of sampler type are translated to function calls,
4278   // therefore no need to be translated.
4279   QualType ASTTy = D->getType();
4280   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4281     return;
4282 
4283   // If this is OpenMP device, check if it is legal to emit this global
4284   // normally.
4285   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4286       OpenMPRuntime->emitTargetGlobalVariable(D))
4287     return;
4288 
4289   llvm::TrackingVH<llvm::Constant> Init;
4290   bool NeedsGlobalCtor = false;
4291   bool NeedsGlobalDtor =
4292       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4293 
4294   const VarDecl *InitDecl;
4295   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4296 
4297   Optional<ConstantEmitter> emitter;
4298 
4299   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4300   // as part of their declaration."  Sema has already checked for
4301   // error cases, so we just need to set Init to UndefValue.
4302   bool IsCUDASharedVar =
4303       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4304   // Shadows of initialized device-side global variables are also left
4305   // undefined.
4306   // Managed Variables should be initialized on both host side and device side.
4307   bool IsCUDAShadowVar =
4308       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4309       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4310        D->hasAttr<CUDASharedAttr>());
4311   bool IsCUDADeviceShadowVar =
4312       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4313       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4314        D->getType()->isCUDADeviceBuiltinTextureType());
4315   if (getLangOpts().CUDA &&
4316       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4317     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4318   else if (D->hasAttr<LoaderUninitializedAttr>())
4319     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4320   else if (!InitExpr) {
4321     // This is a tentative definition; tentative definitions are
4322     // implicitly initialized with { 0 }.
4323     //
4324     // Note that tentative definitions are only emitted at the end of
4325     // a translation unit, so they should never have incomplete
4326     // type. In addition, EmitTentativeDefinition makes sure that we
4327     // never attempt to emit a tentative definition if a real one
4328     // exists. A use may still exists, however, so we still may need
4329     // to do a RAUW.
4330     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4331     Init = EmitNullConstant(D->getType());
4332   } else {
4333     initializedGlobalDecl = GlobalDecl(D);
4334     emitter.emplace(*this);
4335     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4336     if (!Initializer) {
4337       QualType T = InitExpr->getType();
4338       if (D->getType()->isReferenceType())
4339         T = D->getType();
4340 
4341       if (getLangOpts().CPlusPlus) {
4342         Init = EmitNullConstant(T);
4343         NeedsGlobalCtor = true;
4344       } else {
4345         ErrorUnsupported(D, "static initializer");
4346         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4347       }
4348     } else {
4349       Init = Initializer;
4350       // We don't need an initializer, so remove the entry for the delayed
4351       // initializer position (just in case this entry was delayed) if we
4352       // also don't need to register a destructor.
4353       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4354         DelayedCXXInitPosition.erase(D);
4355     }
4356   }
4357 
4358   llvm::Type* InitType = Init->getType();
4359   llvm::Constant *Entry =
4360       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4361 
4362   // Strip off pointer casts if we got them.
4363   Entry = Entry->stripPointerCasts();
4364 
4365   // Entry is now either a Function or GlobalVariable.
4366   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4367 
4368   // We have a definition after a declaration with the wrong type.
4369   // We must make a new GlobalVariable* and update everything that used OldGV
4370   // (a declaration or tentative definition) with the new GlobalVariable*
4371   // (which will be a definition).
4372   //
4373   // This happens if there is a prototype for a global (e.g.
4374   // "extern int x[];") and then a definition of a different type (e.g.
4375   // "int x[10];"). This also happens when an initializer has a different type
4376   // from the type of the global (this happens with unions).
4377   if (!GV || GV->getValueType() != InitType ||
4378       GV->getType()->getAddressSpace() !=
4379           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4380 
4381     // Move the old entry aside so that we'll create a new one.
4382     Entry->setName(StringRef());
4383 
4384     // Make a new global with the correct type, this is now guaranteed to work.
4385     GV = cast<llvm::GlobalVariable>(
4386         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4387             ->stripPointerCasts());
4388 
4389     // Replace all uses of the old global with the new global
4390     llvm::Constant *NewPtrForOldDecl =
4391         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4392                                                              Entry->getType());
4393     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4394 
4395     // Erase the old global, since it is no longer used.
4396     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4397   }
4398 
4399   MaybeHandleStaticInExternC(D, GV);
4400 
4401   if (D->hasAttr<AnnotateAttr>())
4402     AddGlobalAnnotations(D, GV);
4403 
4404   // Set the llvm linkage type as appropriate.
4405   llvm::GlobalValue::LinkageTypes Linkage =
4406       getLLVMLinkageVarDefinition(D, GV->isConstant());
4407 
4408   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4409   // the device. [...]"
4410   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4411   // __device__, declares a variable that: [...]
4412   // Is accessible from all the threads within the grid and from the host
4413   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4414   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4415   if (GV && LangOpts.CUDA) {
4416     if (LangOpts.CUDAIsDevice) {
4417       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4418           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4419         GV->setExternallyInitialized(true);
4420     } else {
4421       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4422     }
4423     getCUDARuntime().handleVarRegistration(D, *GV);
4424   }
4425 
4426   GV->setInitializer(Init);
4427   if (emitter)
4428     emitter->finalize(GV);
4429 
4430   // If it is safe to mark the global 'constant', do so now.
4431   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4432                   isTypeConstant(D->getType(), true));
4433 
4434   // If it is in a read-only section, mark it 'constant'.
4435   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4436     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4437     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4438       GV->setConstant(true);
4439   }
4440 
4441   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4442 
4443   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4444   // function is only defined alongside the variable, not also alongside
4445   // callers. Normally, all accesses to a thread_local go through the
4446   // thread-wrapper in order to ensure initialization has occurred, underlying
4447   // variable will never be used other than the thread-wrapper, so it can be
4448   // converted to internal linkage.
4449   //
4450   // However, if the variable has the 'constinit' attribute, it _can_ be
4451   // referenced directly, without calling the thread-wrapper, so the linkage
4452   // must not be changed.
4453   //
4454   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4455   // weak or linkonce, the de-duplication semantics are important to preserve,
4456   // so we don't change the linkage.
4457   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4458       Linkage == llvm::GlobalValue::ExternalLinkage &&
4459       Context.getTargetInfo().getTriple().isOSDarwin() &&
4460       !D->hasAttr<ConstInitAttr>())
4461     Linkage = llvm::GlobalValue::InternalLinkage;
4462 
4463   GV->setLinkage(Linkage);
4464   if (D->hasAttr<DLLImportAttr>())
4465     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4466   else if (D->hasAttr<DLLExportAttr>())
4467     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4468   else
4469     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4470 
4471   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4472     // common vars aren't constant even if declared const.
4473     GV->setConstant(false);
4474     // Tentative definition of global variables may be initialized with
4475     // non-zero null pointers. In this case they should have weak linkage
4476     // since common linkage must have zero initializer and must not have
4477     // explicit section therefore cannot have non-zero initial value.
4478     if (!GV->getInitializer()->isNullValue())
4479       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4480   }
4481 
4482   setNonAliasAttributes(D, GV);
4483 
4484   if (D->getTLSKind() && !GV->isThreadLocal()) {
4485     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4486       CXXThreadLocals.push_back(D);
4487     setTLSMode(GV, *D);
4488   }
4489 
4490   maybeSetTrivialComdat(*D, *GV);
4491 
4492   // Emit the initializer function if necessary.
4493   if (NeedsGlobalCtor || NeedsGlobalDtor)
4494     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4495 
4496   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4497 
4498   // Emit global variable debug information.
4499   if (CGDebugInfo *DI = getModuleDebugInfo())
4500     if (getCodeGenOpts().hasReducedDebugInfo())
4501       DI->EmitGlobalVariable(GV, D);
4502 }
4503 
4504 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4505   if (CGDebugInfo *DI = getModuleDebugInfo())
4506     if (getCodeGenOpts().hasReducedDebugInfo()) {
4507       QualType ASTTy = D->getType();
4508       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4509       llvm::Constant *GV = GetOrCreateLLVMGlobal(
4510           D->getName(), Ty, getContext().getTargetAddressSpace(ASTTy), D);
4511       DI->EmitExternalVariable(
4512           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4513     }
4514 }
4515 
4516 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4517                                       CodeGenModule &CGM, const VarDecl *D,
4518                                       bool NoCommon) {
4519   // Don't give variables common linkage if -fno-common was specified unless it
4520   // was overridden by a NoCommon attribute.
4521   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4522     return true;
4523 
4524   // C11 6.9.2/2:
4525   //   A declaration of an identifier for an object that has file scope without
4526   //   an initializer, and without a storage-class specifier or with the
4527   //   storage-class specifier static, constitutes a tentative definition.
4528   if (D->getInit() || D->hasExternalStorage())
4529     return true;
4530 
4531   // A variable cannot be both common and exist in a section.
4532   if (D->hasAttr<SectionAttr>())
4533     return true;
4534 
4535   // A variable cannot be both common and exist in a section.
4536   // We don't try to determine which is the right section in the front-end.
4537   // If no specialized section name is applicable, it will resort to default.
4538   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4539       D->hasAttr<PragmaClangDataSectionAttr>() ||
4540       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4541       D->hasAttr<PragmaClangRodataSectionAttr>())
4542     return true;
4543 
4544   // Thread local vars aren't considered common linkage.
4545   if (D->getTLSKind())
4546     return true;
4547 
4548   // Tentative definitions marked with WeakImportAttr are true definitions.
4549   if (D->hasAttr<WeakImportAttr>())
4550     return true;
4551 
4552   // A variable cannot be both common and exist in a comdat.
4553   if (shouldBeInCOMDAT(CGM, *D))
4554     return true;
4555 
4556   // Declarations with a required alignment do not have common linkage in MSVC
4557   // mode.
4558   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4559     if (D->hasAttr<AlignedAttr>())
4560       return true;
4561     QualType VarType = D->getType();
4562     if (Context.isAlignmentRequired(VarType))
4563       return true;
4564 
4565     if (const auto *RT = VarType->getAs<RecordType>()) {
4566       const RecordDecl *RD = RT->getDecl();
4567       for (const FieldDecl *FD : RD->fields()) {
4568         if (FD->isBitField())
4569           continue;
4570         if (FD->hasAttr<AlignedAttr>())
4571           return true;
4572         if (Context.isAlignmentRequired(FD->getType()))
4573           return true;
4574       }
4575     }
4576   }
4577 
4578   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4579   // common symbols, so symbols with greater alignment requirements cannot be
4580   // common.
4581   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4582   // alignments for common symbols via the aligncomm directive, so this
4583   // restriction only applies to MSVC environments.
4584   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4585       Context.getTypeAlignIfKnown(D->getType()) >
4586           Context.toBits(CharUnits::fromQuantity(32)))
4587     return true;
4588 
4589   return false;
4590 }
4591 
4592 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4593     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4594   if (Linkage == GVA_Internal)
4595     return llvm::Function::InternalLinkage;
4596 
4597   if (D->hasAttr<WeakAttr>()) {
4598     if (IsConstantVariable)
4599       return llvm::GlobalVariable::WeakODRLinkage;
4600     else
4601       return llvm::GlobalVariable::WeakAnyLinkage;
4602   }
4603 
4604   if (const auto *FD = D->getAsFunction())
4605     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4606       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4607 
4608   // We are guaranteed to have a strong definition somewhere else,
4609   // so we can use available_externally linkage.
4610   if (Linkage == GVA_AvailableExternally)
4611     return llvm::GlobalValue::AvailableExternallyLinkage;
4612 
4613   // Note that Apple's kernel linker doesn't support symbol
4614   // coalescing, so we need to avoid linkonce and weak linkages there.
4615   // Normally, this means we just map to internal, but for explicit
4616   // instantiations we'll map to external.
4617 
4618   // In C++, the compiler has to emit a definition in every translation unit
4619   // that references the function.  We should use linkonce_odr because
4620   // a) if all references in this translation unit are optimized away, we
4621   // don't need to codegen it.  b) if the function persists, it needs to be
4622   // merged with other definitions. c) C++ has the ODR, so we know the
4623   // definition is dependable.
4624   if (Linkage == GVA_DiscardableODR)
4625     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4626                                             : llvm::Function::InternalLinkage;
4627 
4628   // An explicit instantiation of a template has weak linkage, since
4629   // explicit instantiations can occur in multiple translation units
4630   // and must all be equivalent. However, we are not allowed to
4631   // throw away these explicit instantiations.
4632   //
4633   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4634   // so say that CUDA templates are either external (for kernels) or internal.
4635   // This lets llvm perform aggressive inter-procedural optimizations. For
4636   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4637   // therefore we need to follow the normal linkage paradigm.
4638   if (Linkage == GVA_StrongODR) {
4639     if (getLangOpts().AppleKext)
4640       return llvm::Function::ExternalLinkage;
4641     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4642         !getLangOpts().GPURelocatableDeviceCode)
4643       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4644                                           : llvm::Function::InternalLinkage;
4645     return llvm::Function::WeakODRLinkage;
4646   }
4647 
4648   // C++ doesn't have tentative definitions and thus cannot have common
4649   // linkage.
4650   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4651       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4652                                  CodeGenOpts.NoCommon))
4653     return llvm::GlobalVariable::CommonLinkage;
4654 
4655   // selectany symbols are externally visible, so use weak instead of
4656   // linkonce.  MSVC optimizes away references to const selectany globals, so
4657   // all definitions should be the same and ODR linkage should be used.
4658   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4659   if (D->hasAttr<SelectAnyAttr>())
4660     return llvm::GlobalVariable::WeakODRLinkage;
4661 
4662   // Otherwise, we have strong external linkage.
4663   assert(Linkage == GVA_StrongExternal);
4664   return llvm::GlobalVariable::ExternalLinkage;
4665 }
4666 
4667 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4668     const VarDecl *VD, bool IsConstant) {
4669   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4670   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4671 }
4672 
4673 /// Replace the uses of a function that was declared with a non-proto type.
4674 /// We want to silently drop extra arguments from call sites
4675 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4676                                           llvm::Function *newFn) {
4677   // Fast path.
4678   if (old->use_empty()) return;
4679 
4680   llvm::Type *newRetTy = newFn->getReturnType();
4681   SmallVector<llvm::Value*, 4> newArgs;
4682 
4683   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4684          ui != ue; ) {
4685     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4686     llvm::User *user = use->getUser();
4687 
4688     // Recognize and replace uses of bitcasts.  Most calls to
4689     // unprototyped functions will use bitcasts.
4690     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4691       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4692         replaceUsesOfNonProtoConstant(bitcast, newFn);
4693       continue;
4694     }
4695 
4696     // Recognize calls to the function.
4697     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4698     if (!callSite) continue;
4699     if (!callSite->isCallee(&*use))
4700       continue;
4701 
4702     // If the return types don't match exactly, then we can't
4703     // transform this call unless it's dead.
4704     if (callSite->getType() != newRetTy && !callSite->use_empty())
4705       continue;
4706 
4707     // Get the call site's attribute list.
4708     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4709     llvm::AttributeList oldAttrs = callSite->getAttributes();
4710 
4711     // If the function was passed too few arguments, don't transform.
4712     unsigned newNumArgs = newFn->arg_size();
4713     if (callSite->arg_size() < newNumArgs)
4714       continue;
4715 
4716     // If extra arguments were passed, we silently drop them.
4717     // If any of the types mismatch, we don't transform.
4718     unsigned argNo = 0;
4719     bool dontTransform = false;
4720     for (llvm::Argument &A : newFn->args()) {
4721       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4722         dontTransform = true;
4723         break;
4724       }
4725 
4726       // Add any parameter attributes.
4727       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4728       argNo++;
4729     }
4730     if (dontTransform)
4731       continue;
4732 
4733     // Okay, we can transform this.  Create the new call instruction and copy
4734     // over the required information.
4735     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4736 
4737     // Copy over any operand bundles.
4738     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4739     callSite->getOperandBundlesAsDefs(newBundles);
4740 
4741     llvm::CallBase *newCall;
4742     if (dyn_cast<llvm::CallInst>(callSite)) {
4743       newCall =
4744           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4745     } else {
4746       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4747       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4748                                          oldInvoke->getUnwindDest(), newArgs,
4749                                          newBundles, "", callSite);
4750     }
4751     newArgs.clear(); // for the next iteration
4752 
4753     if (!newCall->getType()->isVoidTy())
4754       newCall->takeName(callSite);
4755     newCall->setAttributes(llvm::AttributeList::get(
4756         newFn->getContext(), oldAttrs.getFnAttributes(),
4757         oldAttrs.getRetAttributes(), newArgAttrs));
4758     newCall->setCallingConv(callSite->getCallingConv());
4759 
4760     // Finally, remove the old call, replacing any uses with the new one.
4761     if (!callSite->use_empty())
4762       callSite->replaceAllUsesWith(newCall);
4763 
4764     // Copy debug location attached to CI.
4765     if (callSite->getDebugLoc())
4766       newCall->setDebugLoc(callSite->getDebugLoc());
4767 
4768     callSite->eraseFromParent();
4769   }
4770 }
4771 
4772 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4773 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4774 /// existing call uses of the old function in the module, this adjusts them to
4775 /// call the new function directly.
4776 ///
4777 /// This is not just a cleanup: the always_inline pass requires direct calls to
4778 /// functions to be able to inline them.  If there is a bitcast in the way, it
4779 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4780 /// run at -O0.
4781 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4782                                                       llvm::Function *NewFn) {
4783   // If we're redefining a global as a function, don't transform it.
4784   if (!isa<llvm::Function>(Old)) return;
4785 
4786   replaceUsesOfNonProtoConstant(Old, NewFn);
4787 }
4788 
4789 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4790   auto DK = VD->isThisDeclarationADefinition();
4791   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4792     return;
4793 
4794   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4795   // If we have a definition, this might be a deferred decl. If the
4796   // instantiation is explicit, make sure we emit it at the end.
4797   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4798     GetAddrOfGlobalVar(VD);
4799 
4800   EmitTopLevelDecl(VD);
4801 }
4802 
4803 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4804                                                  llvm::GlobalValue *GV) {
4805   const auto *D = cast<FunctionDecl>(GD.getDecl());
4806 
4807   // Compute the function info and LLVM type.
4808   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4809   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4810 
4811   // Get or create the prototype for the function.
4812   if (!GV || (GV->getValueType() != Ty))
4813     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4814                                                    /*DontDefer=*/true,
4815                                                    ForDefinition));
4816 
4817   // Already emitted.
4818   if (!GV->isDeclaration())
4819     return;
4820 
4821   // We need to set linkage and visibility on the function before
4822   // generating code for it because various parts of IR generation
4823   // want to propagate this information down (e.g. to local static
4824   // declarations).
4825   auto *Fn = cast<llvm::Function>(GV);
4826   setFunctionLinkage(GD, Fn);
4827 
4828   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4829   setGVProperties(Fn, GD);
4830 
4831   MaybeHandleStaticInExternC(D, Fn);
4832 
4833   maybeSetTrivialComdat(*D, *Fn);
4834 
4835   // Set CodeGen attributes that represent floating point environment.
4836   setLLVMFunctionFEnvAttributes(D, Fn);
4837 
4838   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4839 
4840   setNonAliasAttributes(GD, Fn);
4841   SetLLVMFunctionAttributesForDefinition(D, Fn);
4842 
4843   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4844     AddGlobalCtor(Fn, CA->getPriority());
4845   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4846     AddGlobalDtor(Fn, DA->getPriority(), true);
4847   if (D->hasAttr<AnnotateAttr>())
4848     AddGlobalAnnotations(D, Fn);
4849 }
4850 
4851 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4852   const auto *D = cast<ValueDecl>(GD.getDecl());
4853   const AliasAttr *AA = D->getAttr<AliasAttr>();
4854   assert(AA && "Not an alias?");
4855 
4856   StringRef MangledName = getMangledName(GD);
4857 
4858   if (AA->getAliasee() == MangledName) {
4859     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4860     return;
4861   }
4862 
4863   // If there is a definition in the module, then it wins over the alias.
4864   // This is dubious, but allow it to be safe.  Just ignore the alias.
4865   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4866   if (Entry && !Entry->isDeclaration())
4867     return;
4868 
4869   Aliases.push_back(GD);
4870 
4871   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4872 
4873   // Create a reference to the named value.  This ensures that it is emitted
4874   // if a deferred decl.
4875   llvm::Constant *Aliasee;
4876   llvm::GlobalValue::LinkageTypes LT;
4877   if (isa<llvm::FunctionType>(DeclTy)) {
4878     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4879                                       /*ForVTable=*/false);
4880     LT = getFunctionLinkage(GD);
4881   } else {
4882     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0,
4883                                     /*D=*/nullptr);
4884     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4885       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4886     else
4887       LT = getFunctionLinkage(GD);
4888   }
4889 
4890   // Create the new alias itself, but don't set a name yet.
4891   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4892   auto *GA =
4893       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4894 
4895   if (Entry) {
4896     if (GA->getAliasee() == Entry) {
4897       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4898       return;
4899     }
4900 
4901     assert(Entry->isDeclaration());
4902 
4903     // If there is a declaration in the module, then we had an extern followed
4904     // by the alias, as in:
4905     //   extern int test6();
4906     //   ...
4907     //   int test6() __attribute__((alias("test7")));
4908     //
4909     // Remove it and replace uses of it with the alias.
4910     GA->takeName(Entry);
4911 
4912     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4913                                                           Entry->getType()));
4914     Entry->eraseFromParent();
4915   } else {
4916     GA->setName(MangledName);
4917   }
4918 
4919   // Set attributes which are particular to an alias; this is a
4920   // specialization of the attributes which may be set on a global
4921   // variable/function.
4922   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4923       D->isWeakImported()) {
4924     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4925   }
4926 
4927   if (const auto *VD = dyn_cast<VarDecl>(D))
4928     if (VD->getTLSKind())
4929       setTLSMode(GA, *VD);
4930 
4931   SetCommonAttributes(GD, GA);
4932 }
4933 
4934 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4935   const auto *D = cast<ValueDecl>(GD.getDecl());
4936   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4937   assert(IFA && "Not an ifunc?");
4938 
4939   StringRef MangledName = getMangledName(GD);
4940 
4941   if (IFA->getResolver() == MangledName) {
4942     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4943     return;
4944   }
4945 
4946   // Report an error if some definition overrides ifunc.
4947   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4948   if (Entry && !Entry->isDeclaration()) {
4949     GlobalDecl OtherGD;
4950     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4951         DiagnosedConflictingDefinitions.insert(GD).second) {
4952       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4953           << MangledName;
4954       Diags.Report(OtherGD.getDecl()->getLocation(),
4955                    diag::note_previous_definition);
4956     }
4957     return;
4958   }
4959 
4960   Aliases.push_back(GD);
4961 
4962   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4963   llvm::Constant *Resolver =
4964       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4965                               /*ForVTable=*/false);
4966   llvm::GlobalIFunc *GIF =
4967       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4968                                 "", Resolver, &getModule());
4969   if (Entry) {
4970     if (GIF->getResolver() == Entry) {
4971       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4972       return;
4973     }
4974     assert(Entry->isDeclaration());
4975 
4976     // If there is a declaration in the module, then we had an extern followed
4977     // by the ifunc, as in:
4978     //   extern int test();
4979     //   ...
4980     //   int test() __attribute__((ifunc("resolver")));
4981     //
4982     // Remove it and replace uses of it with the ifunc.
4983     GIF->takeName(Entry);
4984 
4985     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4986                                                           Entry->getType()));
4987     Entry->eraseFromParent();
4988   } else
4989     GIF->setName(MangledName);
4990 
4991   SetCommonAttributes(GD, GIF);
4992 }
4993 
4994 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4995                                             ArrayRef<llvm::Type*> Tys) {
4996   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4997                                          Tys);
4998 }
4999 
5000 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5001 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5002                          const StringLiteral *Literal, bool TargetIsLSB,
5003                          bool &IsUTF16, unsigned &StringLength) {
5004   StringRef String = Literal->getString();
5005   unsigned NumBytes = String.size();
5006 
5007   // Check for simple case.
5008   if (!Literal->containsNonAsciiOrNull()) {
5009     StringLength = NumBytes;
5010     return *Map.insert(std::make_pair(String, nullptr)).first;
5011   }
5012 
5013   // Otherwise, convert the UTF8 literals into a string of shorts.
5014   IsUTF16 = true;
5015 
5016   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5017   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5018   llvm::UTF16 *ToPtr = &ToBuf[0];
5019 
5020   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5021                                  ToPtr + NumBytes, llvm::strictConversion);
5022 
5023   // ConvertUTF8toUTF16 returns the length in ToPtr.
5024   StringLength = ToPtr - &ToBuf[0];
5025 
5026   // Add an explicit null.
5027   *ToPtr = 0;
5028   return *Map.insert(std::make_pair(
5029                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5030                                    (StringLength + 1) * 2),
5031                          nullptr)).first;
5032 }
5033 
5034 ConstantAddress
5035 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5036   unsigned StringLength = 0;
5037   bool isUTF16 = false;
5038   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5039       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5040                                getDataLayout().isLittleEndian(), isUTF16,
5041                                StringLength);
5042 
5043   if (auto *C = Entry.second)
5044     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5045 
5046   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5047   llvm::Constant *Zeros[] = { Zero, Zero };
5048 
5049   const ASTContext &Context = getContext();
5050   const llvm::Triple &Triple = getTriple();
5051 
5052   const auto CFRuntime = getLangOpts().CFRuntime;
5053   const bool IsSwiftABI =
5054       static_cast<unsigned>(CFRuntime) >=
5055       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5056   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5057 
5058   // If we don't already have it, get __CFConstantStringClassReference.
5059   if (!CFConstantStringClassRef) {
5060     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5061     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5062     Ty = llvm::ArrayType::get(Ty, 0);
5063 
5064     switch (CFRuntime) {
5065     default: break;
5066     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5067     case LangOptions::CoreFoundationABI::Swift5_0:
5068       CFConstantStringClassName =
5069           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5070                               : "$s10Foundation19_NSCFConstantStringCN";
5071       Ty = IntPtrTy;
5072       break;
5073     case LangOptions::CoreFoundationABI::Swift4_2:
5074       CFConstantStringClassName =
5075           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5076                               : "$S10Foundation19_NSCFConstantStringCN";
5077       Ty = IntPtrTy;
5078       break;
5079     case LangOptions::CoreFoundationABI::Swift4_1:
5080       CFConstantStringClassName =
5081           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5082                               : "__T010Foundation19_NSCFConstantStringCN";
5083       Ty = IntPtrTy;
5084       break;
5085     }
5086 
5087     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5088 
5089     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5090       llvm::GlobalValue *GV = nullptr;
5091 
5092       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5093         IdentifierInfo &II = Context.Idents.get(GV->getName());
5094         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5095         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5096 
5097         const VarDecl *VD = nullptr;
5098         for (const auto *Result : DC->lookup(&II))
5099           if ((VD = dyn_cast<VarDecl>(Result)))
5100             break;
5101 
5102         if (Triple.isOSBinFormatELF()) {
5103           if (!VD)
5104             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5105         } else {
5106           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5107           if (!VD || !VD->hasAttr<DLLExportAttr>())
5108             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5109           else
5110             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5111         }
5112 
5113         setDSOLocal(GV);
5114       }
5115     }
5116 
5117     // Decay array -> ptr
5118     CFConstantStringClassRef =
5119         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5120                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5121   }
5122 
5123   QualType CFTy = Context.getCFConstantStringType();
5124 
5125   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5126 
5127   ConstantInitBuilder Builder(*this);
5128   auto Fields = Builder.beginStruct(STy);
5129 
5130   // Class pointer.
5131   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5132 
5133   // Flags.
5134   if (IsSwiftABI) {
5135     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5136     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5137   } else {
5138     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5139   }
5140 
5141   // String pointer.
5142   llvm::Constant *C = nullptr;
5143   if (isUTF16) {
5144     auto Arr = llvm::makeArrayRef(
5145         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5146         Entry.first().size() / 2);
5147     C = llvm::ConstantDataArray::get(VMContext, Arr);
5148   } else {
5149     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5150   }
5151 
5152   // Note: -fwritable-strings doesn't make the backing store strings of
5153   // CFStrings writable. (See <rdar://problem/10657500>)
5154   auto *GV =
5155       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5156                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5157   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5158   // Don't enforce the target's minimum global alignment, since the only use
5159   // of the string is via this class initializer.
5160   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5161                             : Context.getTypeAlignInChars(Context.CharTy);
5162   GV->setAlignment(Align.getAsAlign());
5163 
5164   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5165   // Without it LLVM can merge the string with a non unnamed_addr one during
5166   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5167   if (Triple.isOSBinFormatMachO())
5168     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5169                            : "__TEXT,__cstring,cstring_literals");
5170   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5171   // the static linker to adjust permissions to read-only later on.
5172   else if (Triple.isOSBinFormatELF())
5173     GV->setSection(".rodata");
5174 
5175   // String.
5176   llvm::Constant *Str =
5177       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5178 
5179   if (isUTF16)
5180     // Cast the UTF16 string to the correct type.
5181     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5182   Fields.add(Str);
5183 
5184   // String length.
5185   llvm::IntegerType *LengthTy =
5186       llvm::IntegerType::get(getModule().getContext(),
5187                              Context.getTargetInfo().getLongWidth());
5188   if (IsSwiftABI) {
5189     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5190         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5191       LengthTy = Int32Ty;
5192     else
5193       LengthTy = IntPtrTy;
5194   }
5195   Fields.addInt(LengthTy, StringLength);
5196 
5197   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5198   // properly aligned on 32-bit platforms.
5199   CharUnits Alignment =
5200       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5201 
5202   // The struct.
5203   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5204                                     /*isConstant=*/false,
5205                                     llvm::GlobalVariable::PrivateLinkage);
5206   GV->addAttribute("objc_arc_inert");
5207   switch (Triple.getObjectFormat()) {
5208   case llvm::Triple::UnknownObjectFormat:
5209     llvm_unreachable("unknown file format");
5210   case llvm::Triple::GOFF:
5211     llvm_unreachable("GOFF is not yet implemented");
5212   case llvm::Triple::XCOFF:
5213     llvm_unreachable("XCOFF is not yet implemented");
5214   case llvm::Triple::COFF:
5215   case llvm::Triple::ELF:
5216   case llvm::Triple::Wasm:
5217     GV->setSection("cfstring");
5218     break;
5219   case llvm::Triple::MachO:
5220     GV->setSection("__DATA,__cfstring");
5221     break;
5222   }
5223   Entry.second = GV;
5224 
5225   return ConstantAddress(GV, Alignment);
5226 }
5227 
5228 bool CodeGenModule::getExpressionLocationsEnabled() const {
5229   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5230 }
5231 
5232 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5233   if (ObjCFastEnumerationStateType.isNull()) {
5234     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5235     D->startDefinition();
5236 
5237     QualType FieldTypes[] = {
5238       Context.UnsignedLongTy,
5239       Context.getPointerType(Context.getObjCIdType()),
5240       Context.getPointerType(Context.UnsignedLongTy),
5241       Context.getConstantArrayType(Context.UnsignedLongTy,
5242                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5243     };
5244 
5245     for (size_t i = 0; i < 4; ++i) {
5246       FieldDecl *Field = FieldDecl::Create(Context,
5247                                            D,
5248                                            SourceLocation(),
5249                                            SourceLocation(), nullptr,
5250                                            FieldTypes[i], /*TInfo=*/nullptr,
5251                                            /*BitWidth=*/nullptr,
5252                                            /*Mutable=*/false,
5253                                            ICIS_NoInit);
5254       Field->setAccess(AS_public);
5255       D->addDecl(Field);
5256     }
5257 
5258     D->completeDefinition();
5259     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5260   }
5261 
5262   return ObjCFastEnumerationStateType;
5263 }
5264 
5265 llvm::Constant *
5266 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5267   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5268 
5269   // Don't emit it as the address of the string, emit the string data itself
5270   // as an inline array.
5271   if (E->getCharByteWidth() == 1) {
5272     SmallString<64> Str(E->getString());
5273 
5274     // Resize the string to the right size, which is indicated by its type.
5275     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5276     Str.resize(CAT->getSize().getZExtValue());
5277     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5278   }
5279 
5280   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5281   llvm::Type *ElemTy = AType->getElementType();
5282   unsigned NumElements = AType->getNumElements();
5283 
5284   // Wide strings have either 2-byte or 4-byte elements.
5285   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5286     SmallVector<uint16_t, 32> Elements;
5287     Elements.reserve(NumElements);
5288 
5289     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5290       Elements.push_back(E->getCodeUnit(i));
5291     Elements.resize(NumElements);
5292     return llvm::ConstantDataArray::get(VMContext, Elements);
5293   }
5294 
5295   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5296   SmallVector<uint32_t, 32> Elements;
5297   Elements.reserve(NumElements);
5298 
5299   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5300     Elements.push_back(E->getCodeUnit(i));
5301   Elements.resize(NumElements);
5302   return llvm::ConstantDataArray::get(VMContext, Elements);
5303 }
5304 
5305 static llvm::GlobalVariable *
5306 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5307                       CodeGenModule &CGM, StringRef GlobalName,
5308                       CharUnits Alignment) {
5309   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5310       CGM.GetGlobalConstantAddressSpace());
5311 
5312   llvm::Module &M = CGM.getModule();
5313   // Create a global variable for this string
5314   auto *GV = new llvm::GlobalVariable(
5315       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5316       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5317   GV->setAlignment(Alignment.getAsAlign());
5318   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5319   if (GV->isWeakForLinker()) {
5320     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5321     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5322   }
5323   CGM.setDSOLocal(GV);
5324 
5325   return GV;
5326 }
5327 
5328 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5329 /// constant array for the given string literal.
5330 ConstantAddress
5331 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5332                                                   StringRef Name) {
5333   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5334 
5335   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5336   llvm::GlobalVariable **Entry = nullptr;
5337   if (!LangOpts.WritableStrings) {
5338     Entry = &ConstantStringMap[C];
5339     if (auto GV = *Entry) {
5340       if (Alignment.getQuantity() > GV->getAlignment())
5341         GV->setAlignment(Alignment.getAsAlign());
5342       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5343                              Alignment);
5344     }
5345   }
5346 
5347   SmallString<256> MangledNameBuffer;
5348   StringRef GlobalVariableName;
5349   llvm::GlobalValue::LinkageTypes LT;
5350 
5351   // Mangle the string literal if that's how the ABI merges duplicate strings.
5352   // Don't do it if they are writable, since we don't want writes in one TU to
5353   // affect strings in another.
5354   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5355       !LangOpts.WritableStrings) {
5356     llvm::raw_svector_ostream Out(MangledNameBuffer);
5357     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5358     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5359     GlobalVariableName = MangledNameBuffer;
5360   } else {
5361     LT = llvm::GlobalValue::PrivateLinkage;
5362     GlobalVariableName = Name;
5363   }
5364 
5365   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5366   if (Entry)
5367     *Entry = GV;
5368 
5369   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5370                                   QualType());
5371 
5372   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5373                          Alignment);
5374 }
5375 
5376 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5377 /// array for the given ObjCEncodeExpr node.
5378 ConstantAddress
5379 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5380   std::string Str;
5381   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5382 
5383   return GetAddrOfConstantCString(Str);
5384 }
5385 
5386 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5387 /// the literal and a terminating '\0' character.
5388 /// The result has pointer to array type.
5389 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5390     const std::string &Str, const char *GlobalName) {
5391   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5392   CharUnits Alignment =
5393     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5394 
5395   llvm::Constant *C =
5396       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5397 
5398   // Don't share any string literals if strings aren't constant.
5399   llvm::GlobalVariable **Entry = nullptr;
5400   if (!LangOpts.WritableStrings) {
5401     Entry = &ConstantStringMap[C];
5402     if (auto GV = *Entry) {
5403       if (Alignment.getQuantity() > GV->getAlignment())
5404         GV->setAlignment(Alignment.getAsAlign());
5405       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5406                              Alignment);
5407     }
5408   }
5409 
5410   // Get the default prefix if a name wasn't specified.
5411   if (!GlobalName)
5412     GlobalName = ".str";
5413   // Create a global variable for this.
5414   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5415                                   GlobalName, Alignment);
5416   if (Entry)
5417     *Entry = GV;
5418 
5419   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5420                          Alignment);
5421 }
5422 
5423 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5424     const MaterializeTemporaryExpr *E, const Expr *Init) {
5425   assert((E->getStorageDuration() == SD_Static ||
5426           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5427   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5428 
5429   // If we're not materializing a subobject of the temporary, keep the
5430   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5431   QualType MaterializedType = Init->getType();
5432   if (Init == E->getSubExpr())
5433     MaterializedType = E->getType();
5434 
5435   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5436 
5437   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5438   if (!InsertResult.second) {
5439     // We've seen this before: either we already created it or we're in the
5440     // process of doing so.
5441     if (!InsertResult.first->second) {
5442       // We recursively re-entered this function, probably during emission of
5443       // the initializer. Create a placeholder. We'll clean this up in the
5444       // outer call, at the end of this function.
5445       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5446       InsertResult.first->second = new llvm::GlobalVariable(
5447           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5448           nullptr);
5449     }
5450     return ConstantAddress(InsertResult.first->second, Align);
5451   }
5452 
5453   // FIXME: If an externally-visible declaration extends multiple temporaries,
5454   // we need to give each temporary the same name in every translation unit (and
5455   // we also need to make the temporaries externally-visible).
5456   SmallString<256> Name;
5457   llvm::raw_svector_ostream Out(Name);
5458   getCXXABI().getMangleContext().mangleReferenceTemporary(
5459       VD, E->getManglingNumber(), Out);
5460 
5461   APValue *Value = nullptr;
5462   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5463     // If the initializer of the extending declaration is a constant
5464     // initializer, we should have a cached constant initializer for this
5465     // temporary. Note that this might have a different value from the value
5466     // computed by evaluating the initializer if the surrounding constant
5467     // expression modifies the temporary.
5468     Value = E->getOrCreateValue(false);
5469   }
5470 
5471   // Try evaluating it now, it might have a constant initializer.
5472   Expr::EvalResult EvalResult;
5473   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5474       !EvalResult.hasSideEffects())
5475     Value = &EvalResult.Val;
5476 
5477   LangAS AddrSpace =
5478       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5479 
5480   Optional<ConstantEmitter> emitter;
5481   llvm::Constant *InitialValue = nullptr;
5482   bool Constant = false;
5483   llvm::Type *Type;
5484   if (Value) {
5485     // The temporary has a constant initializer, use it.
5486     emitter.emplace(*this);
5487     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5488                                                MaterializedType);
5489     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5490     Type = InitialValue->getType();
5491   } else {
5492     // No initializer, the initialization will be provided when we
5493     // initialize the declaration which performed lifetime extension.
5494     Type = getTypes().ConvertTypeForMem(MaterializedType);
5495   }
5496 
5497   // Create a global variable for this lifetime-extended temporary.
5498   llvm::GlobalValue::LinkageTypes Linkage =
5499       getLLVMLinkageVarDefinition(VD, Constant);
5500   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5501     const VarDecl *InitVD;
5502     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5503         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5504       // Temporaries defined inside a class get linkonce_odr linkage because the
5505       // class can be defined in multiple translation units.
5506       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5507     } else {
5508       // There is no need for this temporary to have external linkage if the
5509       // VarDecl has external linkage.
5510       Linkage = llvm::GlobalVariable::InternalLinkage;
5511     }
5512   }
5513   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5514   auto *GV = new llvm::GlobalVariable(
5515       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5516       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5517   if (emitter) emitter->finalize(GV);
5518   setGVProperties(GV, VD);
5519   GV->setAlignment(Align.getAsAlign());
5520   if (supportsCOMDAT() && GV->isWeakForLinker())
5521     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5522   if (VD->getTLSKind())
5523     setTLSMode(GV, *VD);
5524   llvm::Constant *CV = GV;
5525   if (AddrSpace != LangAS::Default)
5526     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5527         *this, GV, AddrSpace, LangAS::Default,
5528         Type->getPointerTo(
5529             getContext().getTargetAddressSpace(LangAS::Default)));
5530 
5531   // Update the map with the new temporary. If we created a placeholder above,
5532   // replace it with the new global now.
5533   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5534   if (Entry) {
5535     Entry->replaceAllUsesWith(
5536         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5537     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5538   }
5539   Entry = CV;
5540 
5541   return ConstantAddress(CV, Align);
5542 }
5543 
5544 /// EmitObjCPropertyImplementations - Emit information for synthesized
5545 /// properties for an implementation.
5546 void CodeGenModule::EmitObjCPropertyImplementations(const
5547                                                     ObjCImplementationDecl *D) {
5548   for (const auto *PID : D->property_impls()) {
5549     // Dynamic is just for type-checking.
5550     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5551       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5552 
5553       // Determine which methods need to be implemented, some may have
5554       // been overridden. Note that ::isPropertyAccessor is not the method
5555       // we want, that just indicates if the decl came from a
5556       // property. What we want to know is if the method is defined in
5557       // this implementation.
5558       auto *Getter = PID->getGetterMethodDecl();
5559       if (!Getter || Getter->isSynthesizedAccessorStub())
5560         CodeGenFunction(*this).GenerateObjCGetter(
5561             const_cast<ObjCImplementationDecl *>(D), PID);
5562       auto *Setter = PID->getSetterMethodDecl();
5563       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5564         CodeGenFunction(*this).GenerateObjCSetter(
5565                                  const_cast<ObjCImplementationDecl *>(D), PID);
5566     }
5567   }
5568 }
5569 
5570 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5571   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5572   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5573        ivar; ivar = ivar->getNextIvar())
5574     if (ivar->getType().isDestructedType())
5575       return true;
5576 
5577   return false;
5578 }
5579 
5580 static bool AllTrivialInitializers(CodeGenModule &CGM,
5581                                    ObjCImplementationDecl *D) {
5582   CodeGenFunction CGF(CGM);
5583   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5584        E = D->init_end(); B != E; ++B) {
5585     CXXCtorInitializer *CtorInitExp = *B;
5586     Expr *Init = CtorInitExp->getInit();
5587     if (!CGF.isTrivialInitializer(Init))
5588       return false;
5589   }
5590   return true;
5591 }
5592 
5593 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5594 /// for an implementation.
5595 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5596   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5597   if (needsDestructMethod(D)) {
5598     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5599     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5600     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5601         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5602         getContext().VoidTy, nullptr, D,
5603         /*isInstance=*/true, /*isVariadic=*/false,
5604         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5605         /*isImplicitlyDeclared=*/true,
5606         /*isDefined=*/false, ObjCMethodDecl::Required);
5607     D->addInstanceMethod(DTORMethod);
5608     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5609     D->setHasDestructors(true);
5610   }
5611 
5612   // If the implementation doesn't have any ivar initializers, we don't need
5613   // a .cxx_construct.
5614   if (D->getNumIvarInitializers() == 0 ||
5615       AllTrivialInitializers(*this, D))
5616     return;
5617 
5618   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5619   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5620   // The constructor returns 'self'.
5621   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5622       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5623       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5624       /*isVariadic=*/false,
5625       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5626       /*isImplicitlyDeclared=*/true,
5627       /*isDefined=*/false, ObjCMethodDecl::Required);
5628   D->addInstanceMethod(CTORMethod);
5629   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5630   D->setHasNonZeroConstructors(true);
5631 }
5632 
5633 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5634 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5635   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5636       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5637     ErrorUnsupported(LSD, "linkage spec");
5638     return;
5639   }
5640 
5641   EmitDeclContext(LSD);
5642 }
5643 
5644 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5645   for (auto *I : DC->decls()) {
5646     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5647     // are themselves considered "top-level", so EmitTopLevelDecl on an
5648     // ObjCImplDecl does not recursively visit them. We need to do that in
5649     // case they're nested inside another construct (LinkageSpecDecl /
5650     // ExportDecl) that does stop them from being considered "top-level".
5651     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5652       for (auto *M : OID->methods())
5653         EmitTopLevelDecl(M);
5654     }
5655 
5656     EmitTopLevelDecl(I);
5657   }
5658 }
5659 
5660 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5661 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5662   // Ignore dependent declarations.
5663   if (D->isTemplated())
5664     return;
5665 
5666   // Consteval function shouldn't be emitted.
5667   if (auto *FD = dyn_cast<FunctionDecl>(D))
5668     if (FD->isConsteval())
5669       return;
5670 
5671   switch (D->getKind()) {
5672   case Decl::CXXConversion:
5673   case Decl::CXXMethod:
5674   case Decl::Function:
5675     EmitGlobal(cast<FunctionDecl>(D));
5676     // Always provide some coverage mapping
5677     // even for the functions that aren't emitted.
5678     AddDeferredUnusedCoverageMapping(D);
5679     break;
5680 
5681   case Decl::CXXDeductionGuide:
5682     // Function-like, but does not result in code emission.
5683     break;
5684 
5685   case Decl::Var:
5686   case Decl::Decomposition:
5687   case Decl::VarTemplateSpecialization:
5688     EmitGlobal(cast<VarDecl>(D));
5689     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5690       for (auto *B : DD->bindings())
5691         if (auto *HD = B->getHoldingVar())
5692           EmitGlobal(HD);
5693     break;
5694 
5695   // Indirect fields from global anonymous structs and unions can be
5696   // ignored; only the actual variable requires IR gen support.
5697   case Decl::IndirectField:
5698     break;
5699 
5700   // C++ Decls
5701   case Decl::Namespace:
5702     EmitDeclContext(cast<NamespaceDecl>(D));
5703     break;
5704   case Decl::ClassTemplateSpecialization: {
5705     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5706     if (CGDebugInfo *DI = getModuleDebugInfo())
5707       if (Spec->getSpecializationKind() ==
5708               TSK_ExplicitInstantiationDefinition &&
5709           Spec->hasDefinition())
5710         DI->completeTemplateDefinition(*Spec);
5711   } LLVM_FALLTHROUGH;
5712   case Decl::CXXRecord: {
5713     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5714     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5715       if (CRD->hasDefinition())
5716         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5717       if (auto *ES = D->getASTContext().getExternalSource())
5718         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5719           DI->completeUnusedClass(*CRD);
5720     }
5721     // Emit any static data members, they may be definitions.
5722     for (auto *I : CRD->decls())
5723       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5724         EmitTopLevelDecl(I);
5725     break;
5726   }
5727     // No code generation needed.
5728   case Decl::UsingShadow:
5729   case Decl::ClassTemplate:
5730   case Decl::VarTemplate:
5731   case Decl::Concept:
5732   case Decl::VarTemplatePartialSpecialization:
5733   case Decl::FunctionTemplate:
5734   case Decl::TypeAliasTemplate:
5735   case Decl::Block:
5736   case Decl::Empty:
5737   case Decl::Binding:
5738     break;
5739   case Decl::Using:          // using X; [C++]
5740     if (CGDebugInfo *DI = getModuleDebugInfo())
5741         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5742     break;
5743   case Decl::UsingEnum: // using enum X; [C++]
5744     if (CGDebugInfo *DI = getModuleDebugInfo())
5745       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5746     break;
5747   case Decl::NamespaceAlias:
5748     if (CGDebugInfo *DI = getModuleDebugInfo())
5749         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5750     break;
5751   case Decl::UsingDirective: // using namespace X; [C++]
5752     if (CGDebugInfo *DI = getModuleDebugInfo())
5753       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5754     break;
5755   case Decl::CXXConstructor:
5756     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5757     break;
5758   case Decl::CXXDestructor:
5759     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5760     break;
5761 
5762   case Decl::StaticAssert:
5763     // Nothing to do.
5764     break;
5765 
5766   // Objective-C Decls
5767 
5768   // Forward declarations, no (immediate) code generation.
5769   case Decl::ObjCInterface:
5770   case Decl::ObjCCategory:
5771     break;
5772 
5773   case Decl::ObjCProtocol: {
5774     auto *Proto = cast<ObjCProtocolDecl>(D);
5775     if (Proto->isThisDeclarationADefinition())
5776       ObjCRuntime->GenerateProtocol(Proto);
5777     break;
5778   }
5779 
5780   case Decl::ObjCCategoryImpl:
5781     // Categories have properties but don't support synthesize so we
5782     // can ignore them here.
5783     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5784     break;
5785 
5786   case Decl::ObjCImplementation: {
5787     auto *OMD = cast<ObjCImplementationDecl>(D);
5788     EmitObjCPropertyImplementations(OMD);
5789     EmitObjCIvarInitializations(OMD);
5790     ObjCRuntime->GenerateClass(OMD);
5791     // Emit global variable debug information.
5792     if (CGDebugInfo *DI = getModuleDebugInfo())
5793       if (getCodeGenOpts().hasReducedDebugInfo())
5794         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5795             OMD->getClassInterface()), OMD->getLocation());
5796     break;
5797   }
5798   case Decl::ObjCMethod: {
5799     auto *OMD = cast<ObjCMethodDecl>(D);
5800     // If this is not a prototype, emit the body.
5801     if (OMD->getBody())
5802       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5803     break;
5804   }
5805   case Decl::ObjCCompatibleAlias:
5806     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5807     break;
5808 
5809   case Decl::PragmaComment: {
5810     const auto *PCD = cast<PragmaCommentDecl>(D);
5811     switch (PCD->getCommentKind()) {
5812     case PCK_Unknown:
5813       llvm_unreachable("unexpected pragma comment kind");
5814     case PCK_Linker:
5815       AppendLinkerOptions(PCD->getArg());
5816       break;
5817     case PCK_Lib:
5818         AddDependentLib(PCD->getArg());
5819       break;
5820     case PCK_Compiler:
5821     case PCK_ExeStr:
5822     case PCK_User:
5823       break; // We ignore all of these.
5824     }
5825     break;
5826   }
5827 
5828   case Decl::PragmaDetectMismatch: {
5829     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5830     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5831     break;
5832   }
5833 
5834   case Decl::LinkageSpec:
5835     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5836     break;
5837 
5838   case Decl::FileScopeAsm: {
5839     // File-scope asm is ignored during device-side CUDA compilation.
5840     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5841       break;
5842     // File-scope asm is ignored during device-side OpenMP compilation.
5843     if (LangOpts.OpenMPIsDevice)
5844       break;
5845     // File-scope asm is ignored during device-side SYCL compilation.
5846     if (LangOpts.SYCLIsDevice)
5847       break;
5848     auto *AD = cast<FileScopeAsmDecl>(D);
5849     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5850     break;
5851   }
5852 
5853   case Decl::Import: {
5854     auto *Import = cast<ImportDecl>(D);
5855 
5856     // If we've already imported this module, we're done.
5857     if (!ImportedModules.insert(Import->getImportedModule()))
5858       break;
5859 
5860     // Emit debug information for direct imports.
5861     if (!Import->getImportedOwningModule()) {
5862       if (CGDebugInfo *DI = getModuleDebugInfo())
5863         DI->EmitImportDecl(*Import);
5864     }
5865 
5866     // Find all of the submodules and emit the module initializers.
5867     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5868     SmallVector<clang::Module *, 16> Stack;
5869     Visited.insert(Import->getImportedModule());
5870     Stack.push_back(Import->getImportedModule());
5871 
5872     while (!Stack.empty()) {
5873       clang::Module *Mod = Stack.pop_back_val();
5874       if (!EmittedModuleInitializers.insert(Mod).second)
5875         continue;
5876 
5877       for (auto *D : Context.getModuleInitializers(Mod))
5878         EmitTopLevelDecl(D);
5879 
5880       // Visit the submodules of this module.
5881       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5882                                              SubEnd = Mod->submodule_end();
5883            Sub != SubEnd; ++Sub) {
5884         // Skip explicit children; they need to be explicitly imported to emit
5885         // the initializers.
5886         if ((*Sub)->IsExplicit)
5887           continue;
5888 
5889         if (Visited.insert(*Sub).second)
5890           Stack.push_back(*Sub);
5891       }
5892     }
5893     break;
5894   }
5895 
5896   case Decl::Export:
5897     EmitDeclContext(cast<ExportDecl>(D));
5898     break;
5899 
5900   case Decl::OMPThreadPrivate:
5901     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5902     break;
5903 
5904   case Decl::OMPAllocate:
5905     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5906     break;
5907 
5908   case Decl::OMPDeclareReduction:
5909     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5910     break;
5911 
5912   case Decl::OMPDeclareMapper:
5913     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5914     break;
5915 
5916   case Decl::OMPRequires:
5917     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5918     break;
5919 
5920   case Decl::Typedef:
5921   case Decl::TypeAlias: // using foo = bar; [C++11]
5922     if (CGDebugInfo *DI = getModuleDebugInfo())
5923       DI->EmitAndRetainType(
5924           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5925     break;
5926 
5927   case Decl::Record:
5928     if (CGDebugInfo *DI = getModuleDebugInfo())
5929       if (cast<RecordDecl>(D)->getDefinition())
5930         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5931     break;
5932 
5933   case Decl::Enum:
5934     if (CGDebugInfo *DI = getModuleDebugInfo())
5935       if (cast<EnumDecl>(D)->getDefinition())
5936         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5937     break;
5938 
5939   default:
5940     // Make sure we handled everything we should, every other kind is a
5941     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5942     // function. Need to recode Decl::Kind to do that easily.
5943     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5944     break;
5945   }
5946 }
5947 
5948 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5949   // Do we need to generate coverage mapping?
5950   if (!CodeGenOpts.CoverageMapping)
5951     return;
5952   switch (D->getKind()) {
5953   case Decl::CXXConversion:
5954   case Decl::CXXMethod:
5955   case Decl::Function:
5956   case Decl::ObjCMethod:
5957   case Decl::CXXConstructor:
5958   case Decl::CXXDestructor: {
5959     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5960       break;
5961     SourceManager &SM = getContext().getSourceManager();
5962     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5963       break;
5964     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5965     if (I == DeferredEmptyCoverageMappingDecls.end())
5966       DeferredEmptyCoverageMappingDecls[D] = true;
5967     break;
5968   }
5969   default:
5970     break;
5971   };
5972 }
5973 
5974 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5975   // Do we need to generate coverage mapping?
5976   if (!CodeGenOpts.CoverageMapping)
5977     return;
5978   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5979     if (Fn->isTemplateInstantiation())
5980       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5981   }
5982   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5983   if (I == DeferredEmptyCoverageMappingDecls.end())
5984     DeferredEmptyCoverageMappingDecls[D] = false;
5985   else
5986     I->second = false;
5987 }
5988 
5989 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5990   // We call takeVector() here to avoid use-after-free.
5991   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5992   // we deserialize function bodies to emit coverage info for them, and that
5993   // deserializes more declarations. How should we handle that case?
5994   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5995     if (!Entry.second)
5996       continue;
5997     const Decl *D = Entry.first;
5998     switch (D->getKind()) {
5999     case Decl::CXXConversion:
6000     case Decl::CXXMethod:
6001     case Decl::Function:
6002     case Decl::ObjCMethod: {
6003       CodeGenPGO PGO(*this);
6004       GlobalDecl GD(cast<FunctionDecl>(D));
6005       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6006                                   getFunctionLinkage(GD));
6007       break;
6008     }
6009     case Decl::CXXConstructor: {
6010       CodeGenPGO PGO(*this);
6011       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6012       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6013                                   getFunctionLinkage(GD));
6014       break;
6015     }
6016     case Decl::CXXDestructor: {
6017       CodeGenPGO PGO(*this);
6018       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6019       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6020                                   getFunctionLinkage(GD));
6021       break;
6022     }
6023     default:
6024       break;
6025     };
6026   }
6027 }
6028 
6029 void CodeGenModule::EmitMainVoidAlias() {
6030   // In order to transition away from "__original_main" gracefully, emit an
6031   // alias for "main" in the no-argument case so that libc can detect when
6032   // new-style no-argument main is in used.
6033   if (llvm::Function *F = getModule().getFunction("main")) {
6034     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6035         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6036       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6037   }
6038 }
6039 
6040 /// Turns the given pointer into a constant.
6041 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6042                                           const void *Ptr) {
6043   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6044   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6045   return llvm::ConstantInt::get(i64, PtrInt);
6046 }
6047 
6048 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6049                                    llvm::NamedMDNode *&GlobalMetadata,
6050                                    GlobalDecl D,
6051                                    llvm::GlobalValue *Addr) {
6052   if (!GlobalMetadata)
6053     GlobalMetadata =
6054       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6055 
6056   // TODO: should we report variant information for ctors/dtors?
6057   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6058                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6059                                CGM.getLLVMContext(), D.getDecl()))};
6060   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6061 }
6062 
6063 /// For each function which is declared within an extern "C" region and marked
6064 /// as 'used', but has internal linkage, create an alias from the unmangled
6065 /// name to the mangled name if possible. People expect to be able to refer
6066 /// to such functions with an unmangled name from inline assembly within the
6067 /// same translation unit.
6068 void CodeGenModule::EmitStaticExternCAliases() {
6069   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6070     return;
6071   for (auto &I : StaticExternCValues) {
6072     IdentifierInfo *Name = I.first;
6073     llvm::GlobalValue *Val = I.second;
6074     if (Val && !getModule().getNamedValue(Name->getName()))
6075       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6076   }
6077 }
6078 
6079 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6080                                              GlobalDecl &Result) const {
6081   auto Res = Manglings.find(MangledName);
6082   if (Res == Manglings.end())
6083     return false;
6084   Result = Res->getValue();
6085   return true;
6086 }
6087 
6088 /// Emits metadata nodes associating all the global values in the
6089 /// current module with the Decls they came from.  This is useful for
6090 /// projects using IR gen as a subroutine.
6091 ///
6092 /// Since there's currently no way to associate an MDNode directly
6093 /// with an llvm::GlobalValue, we create a global named metadata
6094 /// with the name 'clang.global.decl.ptrs'.
6095 void CodeGenModule::EmitDeclMetadata() {
6096   llvm::NamedMDNode *GlobalMetadata = nullptr;
6097 
6098   for (auto &I : MangledDeclNames) {
6099     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6100     // Some mangled names don't necessarily have an associated GlobalValue
6101     // in this module, e.g. if we mangled it for DebugInfo.
6102     if (Addr)
6103       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6104   }
6105 }
6106 
6107 /// Emits metadata nodes for all the local variables in the current
6108 /// function.
6109 void CodeGenFunction::EmitDeclMetadata() {
6110   if (LocalDeclMap.empty()) return;
6111 
6112   llvm::LLVMContext &Context = getLLVMContext();
6113 
6114   // Find the unique metadata ID for this name.
6115   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6116 
6117   llvm::NamedMDNode *GlobalMetadata = nullptr;
6118 
6119   for (auto &I : LocalDeclMap) {
6120     const Decl *D = I.first;
6121     llvm::Value *Addr = I.second.getPointer();
6122     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6123       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6124       Alloca->setMetadata(
6125           DeclPtrKind, llvm::MDNode::get(
6126                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6127     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6128       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6129       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6130     }
6131   }
6132 }
6133 
6134 void CodeGenModule::EmitVersionIdentMetadata() {
6135   llvm::NamedMDNode *IdentMetadata =
6136     TheModule.getOrInsertNamedMetadata("llvm.ident");
6137   std::string Version = getClangFullVersion();
6138   llvm::LLVMContext &Ctx = TheModule.getContext();
6139 
6140   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6141   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6142 }
6143 
6144 void CodeGenModule::EmitCommandLineMetadata() {
6145   llvm::NamedMDNode *CommandLineMetadata =
6146     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6147   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6148   llvm::LLVMContext &Ctx = TheModule.getContext();
6149 
6150   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6151   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6152 }
6153 
6154 void CodeGenModule::EmitCoverageFile() {
6155   if (getCodeGenOpts().CoverageDataFile.empty() &&
6156       getCodeGenOpts().CoverageNotesFile.empty())
6157     return;
6158 
6159   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6160   if (!CUNode)
6161     return;
6162 
6163   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6164   llvm::LLVMContext &Ctx = TheModule.getContext();
6165   auto *CoverageDataFile =
6166       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6167   auto *CoverageNotesFile =
6168       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6169   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6170     llvm::MDNode *CU = CUNode->getOperand(i);
6171     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6172     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6173   }
6174 }
6175 
6176 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6177                                                        bool ForEH) {
6178   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6179   // FIXME: should we even be calling this method if RTTI is disabled
6180   // and it's not for EH?
6181   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6182       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6183        getTriple().isNVPTX()))
6184     return llvm::Constant::getNullValue(Int8PtrTy);
6185 
6186   if (ForEH && Ty->isObjCObjectPointerType() &&
6187       LangOpts.ObjCRuntime.isGNUFamily())
6188     return ObjCRuntime->GetEHType(Ty);
6189 
6190   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6191 }
6192 
6193 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6194   // Do not emit threadprivates in simd-only mode.
6195   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6196     return;
6197   for (auto RefExpr : D->varlists()) {
6198     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6199     bool PerformInit =
6200         VD->getAnyInitializer() &&
6201         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6202                                                         /*ForRef=*/false);
6203 
6204     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6205     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6206             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6207       CXXGlobalInits.push_back(InitFunction);
6208   }
6209 }
6210 
6211 llvm::Metadata *
6212 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6213                                             StringRef Suffix) {
6214   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6215   if (InternalId)
6216     return InternalId;
6217 
6218   if (isExternallyVisible(T->getLinkage())) {
6219     std::string OutName;
6220     llvm::raw_string_ostream Out(OutName);
6221     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6222     Out << Suffix;
6223 
6224     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6225   } else {
6226     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6227                                            llvm::ArrayRef<llvm::Metadata *>());
6228   }
6229 
6230   return InternalId;
6231 }
6232 
6233 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6234   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6235 }
6236 
6237 llvm::Metadata *
6238 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6239   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6240 }
6241 
6242 // Generalize pointer types to a void pointer with the qualifiers of the
6243 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6244 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6245 // 'void *'.
6246 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6247   if (!Ty->isPointerType())
6248     return Ty;
6249 
6250   return Ctx.getPointerType(
6251       QualType(Ctx.VoidTy).withCVRQualifiers(
6252           Ty->getPointeeType().getCVRQualifiers()));
6253 }
6254 
6255 // Apply type generalization to a FunctionType's return and argument types
6256 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6257   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6258     SmallVector<QualType, 8> GeneralizedParams;
6259     for (auto &Param : FnType->param_types())
6260       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6261 
6262     return Ctx.getFunctionType(
6263         GeneralizeType(Ctx, FnType->getReturnType()),
6264         GeneralizedParams, FnType->getExtProtoInfo());
6265   }
6266 
6267   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6268     return Ctx.getFunctionNoProtoType(
6269         GeneralizeType(Ctx, FnType->getReturnType()));
6270 
6271   llvm_unreachable("Encountered unknown FunctionType");
6272 }
6273 
6274 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6275   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6276                                       GeneralizedMetadataIdMap, ".generalized");
6277 }
6278 
6279 /// Returns whether this module needs the "all-vtables" type identifier.
6280 bool CodeGenModule::NeedAllVtablesTypeId() const {
6281   // Returns true if at least one of vtable-based CFI checkers is enabled and
6282   // is not in the trapping mode.
6283   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6284            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6285           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6286            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6287           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6288            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6289           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6290            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6291 }
6292 
6293 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6294                                           CharUnits Offset,
6295                                           const CXXRecordDecl *RD) {
6296   llvm::Metadata *MD =
6297       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6298   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6299 
6300   if (CodeGenOpts.SanitizeCfiCrossDso)
6301     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6302       VTable->addTypeMetadata(Offset.getQuantity(),
6303                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6304 
6305   if (NeedAllVtablesTypeId()) {
6306     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6307     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6308   }
6309 }
6310 
6311 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6312   if (!SanStats)
6313     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6314 
6315   return *SanStats;
6316 }
6317 
6318 llvm::Value *
6319 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6320                                                   CodeGenFunction &CGF) {
6321   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6322   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6323   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6324   auto *Call = CGF.EmitRuntimeCall(
6325       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6326   return Call;
6327 }
6328 
6329 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6330     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6331   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6332                                  /* forPointeeType= */ true);
6333 }
6334 
6335 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6336                                                  LValueBaseInfo *BaseInfo,
6337                                                  TBAAAccessInfo *TBAAInfo,
6338                                                  bool forPointeeType) {
6339   if (TBAAInfo)
6340     *TBAAInfo = getTBAAAccessInfo(T);
6341 
6342   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6343   // that doesn't return the information we need to compute BaseInfo.
6344 
6345   // Honor alignment typedef attributes even on incomplete types.
6346   // We also honor them straight for C++ class types, even as pointees;
6347   // there's an expressivity gap here.
6348   if (auto TT = T->getAs<TypedefType>()) {
6349     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6350       if (BaseInfo)
6351         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6352       return getContext().toCharUnitsFromBits(Align);
6353     }
6354   }
6355 
6356   bool AlignForArray = T->isArrayType();
6357 
6358   // Analyze the base element type, so we don't get confused by incomplete
6359   // array types.
6360   T = getContext().getBaseElementType(T);
6361 
6362   if (T->isIncompleteType()) {
6363     // We could try to replicate the logic from
6364     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6365     // type is incomplete, so it's impossible to test. We could try to reuse
6366     // getTypeAlignIfKnown, but that doesn't return the information we need
6367     // to set BaseInfo.  So just ignore the possibility that the alignment is
6368     // greater than one.
6369     if (BaseInfo)
6370       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6371     return CharUnits::One();
6372   }
6373 
6374   if (BaseInfo)
6375     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6376 
6377   CharUnits Alignment;
6378   const CXXRecordDecl *RD;
6379   if (T.getQualifiers().hasUnaligned()) {
6380     Alignment = CharUnits::One();
6381   } else if (forPointeeType && !AlignForArray &&
6382              (RD = T->getAsCXXRecordDecl())) {
6383     // For C++ class pointees, we don't know whether we're pointing at a
6384     // base or a complete object, so we generally need to use the
6385     // non-virtual alignment.
6386     Alignment = getClassPointerAlignment(RD);
6387   } else {
6388     Alignment = getContext().getTypeAlignInChars(T);
6389   }
6390 
6391   // Cap to the global maximum type alignment unless the alignment
6392   // was somehow explicit on the type.
6393   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6394     if (Alignment.getQuantity() > MaxAlign &&
6395         !getContext().isAlignmentRequired(T))
6396       Alignment = CharUnits::fromQuantity(MaxAlign);
6397   }
6398   return Alignment;
6399 }
6400 
6401 bool CodeGenModule::stopAutoInit() {
6402   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6403   if (StopAfter) {
6404     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6405     // used
6406     if (NumAutoVarInit >= StopAfter) {
6407       return true;
6408     }
6409     if (!NumAutoVarInit) {
6410       unsigned DiagID = getDiags().getCustomDiagID(
6411           DiagnosticsEngine::Warning,
6412           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6413           "number of times ftrivial-auto-var-init=%1 gets applied.");
6414       getDiags().Report(DiagID)
6415           << StopAfter
6416           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6417                       LangOptions::TrivialAutoVarInitKind::Zero
6418                   ? "zero"
6419                   : "pattern");
6420     }
6421     ++NumAutoVarInit;
6422   }
6423   return false;
6424 }
6425 
6426 void CodeGenModule::printPostfixForExternalizedStaticVar(
6427     llvm::raw_ostream &OS) const {
6428   OS << ".static." << getContext().getCUIDHash();
6429 }
6430