1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "Mangle.h" 22 #include "TargetInfo.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) { 168 switch (V) { 169 case DefaultVisibility: return llvm::GlobalValue::DefaultVisibility; 170 case HiddenVisibility: return llvm::GlobalValue::HiddenVisibility; 171 case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility; 172 } 173 llvm_unreachable("unknown visibility!"); 174 return llvm::GlobalValue::DefaultVisibility; 175 } 176 177 178 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 179 const NamedDecl *D, 180 bool IsForDefinition) const { 181 // Internal definitions always have default visibility. 182 if (GV->hasLocalLinkage()) { 183 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 184 return; 185 } 186 187 // Set visibility for definitions. 188 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 189 if (LV.visibilityExplicit() || 190 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 191 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 192 } 193 194 /// Set the symbol visibility of type information (vtable and RTTI) 195 /// associated with the given type. 196 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 197 const CXXRecordDecl *RD, 198 bool IsForRTTI, 199 bool IsForDefinition) const { 200 setGlobalVisibility(GV, RD, IsForDefinition); 201 202 if (!CodeGenOpts.HiddenWeakVTables) 203 return; 204 205 // We want to drop the visibility to hidden for weak type symbols. 206 // This isn't possible if there might be unresolved references 207 // elsewhere that rely on this symbol being visible. 208 209 // This should be kept roughly in sync with setThunkVisibility 210 // in CGVTables.cpp. 211 212 // Preconditions. 213 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 214 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 215 return; 216 217 // Don't override an explicit visibility attribute. 218 if (RD->hasAttr<VisibilityAttr>()) 219 return; 220 221 switch (RD->getTemplateSpecializationKind()) { 222 // We have to disable the optimization if this is an EI definition 223 // because there might be EI declarations in other shared objects. 224 case TSK_ExplicitInstantiationDefinition: 225 case TSK_ExplicitInstantiationDeclaration: 226 return; 227 228 // Every use of a non-template class's type information has to emit it. 229 case TSK_Undeclared: 230 break; 231 232 // In theory, implicit instantiations can ignore the possibility of 233 // an explicit instantiation declaration because there necessarily 234 // must be an EI definition somewhere with default visibility. In 235 // practice, it's possible to have an explicit instantiation for 236 // an arbitrary template class, and linkers aren't necessarily able 237 // to deal with mixed-visibility symbols. 238 case TSK_ExplicitSpecialization: 239 case TSK_ImplicitInstantiation: 240 if (!CodeGenOpts.HiddenWeakTemplateVTables) 241 return; 242 break; 243 } 244 245 // If there's a key function, there may be translation units 246 // that don't have the key function's definition. But ignore 247 // this if we're emitting RTTI under -fno-rtti. 248 if (!IsForRTTI || Features.RTTI) 249 if (Context.getKeyFunction(RD)) 250 return; 251 252 // Otherwise, drop the visibility to hidden. 253 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 254 } 255 256 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 257 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 258 259 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 260 if (!Str.empty()) 261 return Str; 262 263 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 264 IdentifierInfo *II = ND->getIdentifier(); 265 assert(II && "Attempt to mangle unnamed decl."); 266 267 Str = II->getName(); 268 return Str; 269 } 270 271 llvm::SmallString<256> Buffer; 272 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 273 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 274 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 275 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 276 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 277 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer); 278 else 279 getCXXABI().getMangleContext().mangleName(ND, Buffer); 280 281 // Allocate space for the mangled name. 282 size_t Length = Buffer.size(); 283 char *Name = MangledNamesAllocator.Allocate<char>(Length); 284 std::copy(Buffer.begin(), Buffer.end(), Name); 285 286 Str = llvm::StringRef(Name, Length); 287 288 return Str; 289 } 290 291 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 292 const BlockDecl *BD) { 293 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 294 } 295 296 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 297 return getModule().getNamedValue(Name); 298 } 299 300 /// AddGlobalCtor - Add a function to the list that will be called before 301 /// main() runs. 302 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 303 // FIXME: Type coercion of void()* types. 304 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 305 } 306 307 /// AddGlobalDtor - Add a function to the list that will be called 308 /// when the module is unloaded. 309 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 310 // FIXME: Type coercion of void()* types. 311 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 312 } 313 314 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 315 // Ctor function type is void()*. 316 llvm::FunctionType* CtorFTy = 317 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 318 std::vector<const llvm::Type*>(), 319 false); 320 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 321 322 // Get the type of a ctor entry, { i32, void ()* }. 323 llvm::StructType* CtorStructTy = 324 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 325 llvm::PointerType::getUnqual(CtorFTy), NULL); 326 327 // Construct the constructor and destructor arrays. 328 std::vector<llvm::Constant*> Ctors; 329 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 330 std::vector<llvm::Constant*> S; 331 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 332 I->second, false)); 333 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 334 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 335 } 336 337 if (!Ctors.empty()) { 338 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 339 new llvm::GlobalVariable(TheModule, AT, false, 340 llvm::GlobalValue::AppendingLinkage, 341 llvm::ConstantArray::get(AT, Ctors), 342 GlobalName); 343 } 344 } 345 346 void CodeGenModule::EmitAnnotations() { 347 if (Annotations.empty()) 348 return; 349 350 // Create a new global variable for the ConstantStruct in the Module. 351 llvm::Constant *Array = 352 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 353 Annotations.size()), 354 Annotations); 355 llvm::GlobalValue *gv = 356 new llvm::GlobalVariable(TheModule, Array->getType(), false, 357 llvm::GlobalValue::AppendingLinkage, Array, 358 "llvm.global.annotations"); 359 gv->setSection("llvm.metadata"); 360 } 361 362 llvm::GlobalValue::LinkageTypes 363 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 364 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 365 366 if (Linkage == GVA_Internal) 367 return llvm::Function::InternalLinkage; 368 369 if (D->hasAttr<DLLExportAttr>()) 370 return llvm::Function::DLLExportLinkage; 371 372 if (D->hasAttr<WeakAttr>()) 373 return llvm::Function::WeakAnyLinkage; 374 375 // In C99 mode, 'inline' functions are guaranteed to have a strong 376 // definition somewhere else, so we can use available_externally linkage. 377 if (Linkage == GVA_C99Inline) 378 return llvm::Function::AvailableExternallyLinkage; 379 380 // In C++, the compiler has to emit a definition in every translation unit 381 // that references the function. We should use linkonce_odr because 382 // a) if all references in this translation unit are optimized away, we 383 // don't need to codegen it. b) if the function persists, it needs to be 384 // merged with other definitions. c) C++ has the ODR, so we know the 385 // definition is dependable. 386 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 387 return llvm::Function::LinkOnceODRLinkage; 388 389 // An explicit instantiation of a template has weak linkage, since 390 // explicit instantiations can occur in multiple translation units 391 // and must all be equivalent. However, we are not allowed to 392 // throw away these explicit instantiations. 393 if (Linkage == GVA_ExplicitTemplateInstantiation) 394 return llvm::Function::WeakODRLinkage; 395 396 // Otherwise, we have strong external linkage. 397 assert(Linkage == GVA_StrongExternal); 398 return llvm::Function::ExternalLinkage; 399 } 400 401 402 /// SetFunctionDefinitionAttributes - Set attributes for a global. 403 /// 404 /// FIXME: This is currently only done for aliases and functions, but not for 405 /// variables (these details are set in EmitGlobalVarDefinition for variables). 406 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 407 llvm::GlobalValue *GV) { 408 SetCommonAttributes(D, GV); 409 } 410 411 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 412 const CGFunctionInfo &Info, 413 llvm::Function *F) { 414 unsigned CallingConv; 415 AttributeListType AttributeList; 416 ConstructAttributeList(Info, D, AttributeList, CallingConv); 417 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 418 AttributeList.size())); 419 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 420 } 421 422 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 423 llvm::Function *F) { 424 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 425 F->addFnAttr(llvm::Attribute::NoUnwind); 426 427 if (D->hasAttr<AlwaysInlineAttr>()) 428 F->addFnAttr(llvm::Attribute::AlwaysInline); 429 430 if (D->hasAttr<NakedAttr>()) 431 F->addFnAttr(llvm::Attribute::Naked); 432 433 if (D->hasAttr<NoInlineAttr>()) 434 F->addFnAttr(llvm::Attribute::NoInline); 435 436 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 437 F->addFnAttr(llvm::Attribute::StackProtect); 438 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 439 F->addFnAttr(llvm::Attribute::StackProtectReq); 440 441 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 442 if (alignment) 443 F->setAlignment(alignment); 444 445 // C++ ABI requires 2-byte alignment for member functions. 446 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 447 F->setAlignment(2); 448 } 449 450 void CodeGenModule::SetCommonAttributes(const Decl *D, 451 llvm::GlobalValue *GV) { 452 if (isa<NamedDecl>(D)) 453 setGlobalVisibility(GV, cast<NamedDecl>(D), /*ForDef*/ true); 454 else 455 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 456 457 if (D->hasAttr<UsedAttr>()) 458 AddUsedGlobal(GV); 459 460 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 461 GV->setSection(SA->getName()); 462 463 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 464 } 465 466 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 467 llvm::Function *F, 468 const CGFunctionInfo &FI) { 469 SetLLVMFunctionAttributes(D, FI, F); 470 SetLLVMFunctionAttributesForDefinition(D, F); 471 472 F->setLinkage(llvm::Function::InternalLinkage); 473 474 SetCommonAttributes(D, F); 475 } 476 477 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 478 llvm::Function *F, 479 bool IsIncompleteFunction) { 480 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 481 482 if (!IsIncompleteFunction) 483 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 484 485 // Only a few attributes are set on declarations; these may later be 486 // overridden by a definition. 487 488 if (FD->hasAttr<DLLImportAttr>()) { 489 F->setLinkage(llvm::Function::DLLImportLinkage); 490 } else if (FD->hasAttr<WeakAttr>() || 491 FD->hasAttr<WeakImportAttr>()) { 492 // "extern_weak" is overloaded in LLVM; we probably should have 493 // separate linkage types for this. 494 F->setLinkage(llvm::Function::ExternalWeakLinkage); 495 } else { 496 F->setLinkage(llvm::Function::ExternalLinkage); 497 498 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 499 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 500 F->setVisibility(GetLLVMVisibility(LV.visibility())); 501 } 502 } 503 504 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 505 F->setSection(SA->getName()); 506 } 507 508 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 509 assert(!GV->isDeclaration() && 510 "Only globals with definition can force usage."); 511 LLVMUsed.push_back(GV); 512 } 513 514 void CodeGenModule::EmitLLVMUsed() { 515 // Don't create llvm.used if there is no need. 516 if (LLVMUsed.empty()) 517 return; 518 519 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 520 521 // Convert LLVMUsed to what ConstantArray needs. 522 std::vector<llvm::Constant*> UsedArray; 523 UsedArray.resize(LLVMUsed.size()); 524 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 525 UsedArray[i] = 526 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 527 i8PTy); 528 } 529 530 if (UsedArray.empty()) 531 return; 532 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 533 534 llvm::GlobalVariable *GV = 535 new llvm::GlobalVariable(getModule(), ATy, false, 536 llvm::GlobalValue::AppendingLinkage, 537 llvm::ConstantArray::get(ATy, UsedArray), 538 "llvm.used"); 539 540 GV->setSection("llvm.metadata"); 541 } 542 543 void CodeGenModule::EmitDeferred() { 544 // Emit code for any potentially referenced deferred decls. Since a 545 // previously unused static decl may become used during the generation of code 546 // for a static function, iterate until no changes are made. 547 548 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 549 if (!DeferredVTables.empty()) { 550 const CXXRecordDecl *RD = DeferredVTables.back(); 551 DeferredVTables.pop_back(); 552 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 553 continue; 554 } 555 556 GlobalDecl D = DeferredDeclsToEmit.back(); 557 DeferredDeclsToEmit.pop_back(); 558 559 // Check to see if we've already emitted this. This is necessary 560 // for a couple of reasons: first, decls can end up in the 561 // deferred-decls queue multiple times, and second, decls can end 562 // up with definitions in unusual ways (e.g. by an extern inline 563 // function acquiring a strong function redefinition). Just 564 // ignore these cases. 565 // 566 // TODO: That said, looking this up multiple times is very wasteful. 567 llvm::StringRef Name = getMangledName(D); 568 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 569 assert(CGRef && "Deferred decl wasn't referenced?"); 570 571 if (!CGRef->isDeclaration()) 572 continue; 573 574 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 575 // purposes an alias counts as a definition. 576 if (isa<llvm::GlobalAlias>(CGRef)) 577 continue; 578 579 // Otherwise, emit the definition and move on to the next one. 580 EmitGlobalDefinition(D); 581 } 582 } 583 584 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 585 /// annotation information for a given GlobalValue. The annotation struct is 586 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 587 /// GlobalValue being annotated. The second field is the constant string 588 /// created from the AnnotateAttr's annotation. The third field is a constant 589 /// string containing the name of the translation unit. The fourth field is 590 /// the line number in the file of the annotated value declaration. 591 /// 592 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 593 /// appears to. 594 /// 595 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 596 const AnnotateAttr *AA, 597 unsigned LineNo) { 598 llvm::Module *M = &getModule(); 599 600 // get [N x i8] constants for the annotation string, and the filename string 601 // which are the 2nd and 3rd elements of the global annotation structure. 602 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 603 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 604 AA->getAnnotation(), true); 605 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 606 M->getModuleIdentifier(), 607 true); 608 609 // Get the two global values corresponding to the ConstantArrays we just 610 // created to hold the bytes of the strings. 611 llvm::GlobalValue *annoGV = 612 new llvm::GlobalVariable(*M, anno->getType(), false, 613 llvm::GlobalValue::PrivateLinkage, anno, 614 GV->getName()); 615 // translation unit name string, emitted into the llvm.metadata section. 616 llvm::GlobalValue *unitGV = 617 new llvm::GlobalVariable(*M, unit->getType(), false, 618 llvm::GlobalValue::PrivateLinkage, unit, 619 ".str"); 620 621 // Create the ConstantStruct for the global annotation. 622 llvm::Constant *Fields[4] = { 623 llvm::ConstantExpr::getBitCast(GV, SBP), 624 llvm::ConstantExpr::getBitCast(annoGV, SBP), 625 llvm::ConstantExpr::getBitCast(unitGV, SBP), 626 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 627 }; 628 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 629 } 630 631 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 632 // Never defer when EmitAllDecls is specified. 633 if (Features.EmitAllDecls) 634 return false; 635 636 return !getContext().DeclMustBeEmitted(Global); 637 } 638 639 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 640 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 641 assert(AA && "No alias?"); 642 643 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 644 645 // See if there is already something with the target's name in the module. 646 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 647 648 llvm::Constant *Aliasee; 649 if (isa<llvm::FunctionType>(DeclTy)) 650 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 651 else 652 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 653 llvm::PointerType::getUnqual(DeclTy), 0); 654 if (!Entry) { 655 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 656 F->setLinkage(llvm::Function::ExternalWeakLinkage); 657 WeakRefReferences.insert(F); 658 } 659 660 return Aliasee; 661 } 662 663 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 664 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 665 666 // Weak references don't produce any output by themselves. 667 if (Global->hasAttr<WeakRefAttr>()) 668 return; 669 670 // If this is an alias definition (which otherwise looks like a declaration) 671 // emit it now. 672 if (Global->hasAttr<AliasAttr>()) 673 return EmitAliasDefinition(GD); 674 675 // Ignore declarations, they will be emitted on their first use. 676 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 677 if (FD->getIdentifier()) { 678 llvm::StringRef Name = FD->getName(); 679 if (Name == "_Block_object_assign") { 680 BlockObjectAssignDecl = FD; 681 } else if (Name == "_Block_object_dispose") { 682 BlockObjectDisposeDecl = FD; 683 } 684 } 685 686 // Forward declarations are emitted lazily on first use. 687 if (!FD->isThisDeclarationADefinition()) 688 return; 689 } else { 690 const VarDecl *VD = cast<VarDecl>(Global); 691 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 692 693 if (VD->getIdentifier()) { 694 llvm::StringRef Name = VD->getName(); 695 if (Name == "_NSConcreteGlobalBlock") { 696 NSConcreteGlobalBlockDecl = VD; 697 } else if (Name == "_NSConcreteStackBlock") { 698 NSConcreteStackBlockDecl = VD; 699 } 700 } 701 702 703 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 704 return; 705 } 706 707 // Defer code generation when possible if this is a static definition, inline 708 // function etc. These we only want to emit if they are used. 709 if (!MayDeferGeneration(Global)) { 710 // Emit the definition if it can't be deferred. 711 EmitGlobalDefinition(GD); 712 return; 713 } 714 715 // If we're deferring emission of a C++ variable with an 716 // initializer, remember the order in which it appeared in the file. 717 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 718 cast<VarDecl>(Global)->hasInit()) { 719 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 720 CXXGlobalInits.push_back(0); 721 } 722 723 // If the value has already been used, add it directly to the 724 // DeferredDeclsToEmit list. 725 llvm::StringRef MangledName = getMangledName(GD); 726 if (GetGlobalValue(MangledName)) 727 DeferredDeclsToEmit.push_back(GD); 728 else { 729 // Otherwise, remember that we saw a deferred decl with this name. The 730 // first use of the mangled name will cause it to move into 731 // DeferredDeclsToEmit. 732 DeferredDecls[MangledName] = GD; 733 } 734 } 735 736 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 737 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 738 739 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 740 Context.getSourceManager(), 741 "Generating code for declaration"); 742 743 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 744 // At -O0, don't generate IR for functions with available_externally 745 // linkage. 746 if (CodeGenOpts.OptimizationLevel == 0 && 747 !Function->hasAttr<AlwaysInlineAttr>() && 748 getFunctionLinkage(Function) 749 == llvm::Function::AvailableExternallyLinkage) 750 return; 751 752 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 753 if (Method->isVirtual()) 754 getVTables().EmitThunks(GD); 755 756 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 757 return EmitCXXConstructor(CD, GD.getCtorType()); 758 759 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 760 return EmitCXXDestructor(DD, GD.getDtorType()); 761 } 762 763 return EmitGlobalFunctionDefinition(GD); 764 } 765 766 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 767 return EmitGlobalVarDefinition(VD); 768 769 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 770 } 771 772 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 773 /// module, create and return an llvm Function with the specified type. If there 774 /// is something in the module with the specified name, return it potentially 775 /// bitcasted to the right type. 776 /// 777 /// If D is non-null, it specifies a decl that correspond to this. This is used 778 /// to set the attributes on the function when it is first created. 779 llvm::Constant * 780 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 781 const llvm::Type *Ty, 782 GlobalDecl D) { 783 // Lookup the entry, lazily creating it if necessary. 784 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 785 if (Entry) { 786 if (WeakRefReferences.count(Entry)) { 787 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 788 if (FD && !FD->hasAttr<WeakAttr>()) 789 Entry->setLinkage(llvm::Function::ExternalLinkage); 790 791 WeakRefReferences.erase(Entry); 792 } 793 794 if (Entry->getType()->getElementType() == Ty) 795 return Entry; 796 797 // Make sure the result is of the correct type. 798 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 799 return llvm::ConstantExpr::getBitCast(Entry, PTy); 800 } 801 802 // This function doesn't have a complete type (for example, the return 803 // type is an incomplete struct). Use a fake type instead, and make 804 // sure not to try to set attributes. 805 bool IsIncompleteFunction = false; 806 807 const llvm::FunctionType *FTy; 808 if (isa<llvm::FunctionType>(Ty)) { 809 FTy = cast<llvm::FunctionType>(Ty); 810 } else { 811 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 812 std::vector<const llvm::Type*>(), false); 813 IsIncompleteFunction = true; 814 } 815 816 llvm::Function *F = llvm::Function::Create(FTy, 817 llvm::Function::ExternalLinkage, 818 MangledName, &getModule()); 819 assert(F->getName() == MangledName && "name was uniqued!"); 820 if (D.getDecl()) 821 SetFunctionAttributes(D, F, IsIncompleteFunction); 822 823 // This is the first use or definition of a mangled name. If there is a 824 // deferred decl with this name, remember that we need to emit it at the end 825 // of the file. 826 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 827 if (DDI != DeferredDecls.end()) { 828 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 829 // list, and remove it from DeferredDecls (since we don't need it anymore). 830 DeferredDeclsToEmit.push_back(DDI->second); 831 DeferredDecls.erase(DDI); 832 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 833 // If this the first reference to a C++ inline function in a class, queue up 834 // the deferred function body for emission. These are not seen as 835 // top-level declarations. 836 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) { 837 DeferredDeclsToEmit.push_back(D); 838 // A called constructor which has no definition or declaration need be 839 // synthesized. 840 } else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 841 if (CD->isImplicit()) { 842 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 843 DeferredDeclsToEmit.push_back(D); 844 } 845 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 846 if (DD->isImplicit()) { 847 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 848 DeferredDeclsToEmit.push_back(D); 849 } 850 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 851 if (MD->isImplicit() && MD->isCopyAssignmentOperator()) { 852 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 853 DeferredDeclsToEmit.push_back(D); 854 } 855 } 856 } 857 858 // Make sure the result is of the requested type. 859 if (!IsIncompleteFunction) { 860 assert(F->getType()->getElementType() == Ty); 861 return F; 862 } 863 864 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 865 return llvm::ConstantExpr::getBitCast(F, PTy); 866 } 867 868 /// GetAddrOfFunction - Return the address of the given function. If Ty is 869 /// non-null, then this function will use the specified type if it has to 870 /// create it (this occurs when we see a definition of the function). 871 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 872 const llvm::Type *Ty) { 873 // If there was no specific requested type, just convert it now. 874 if (!Ty) 875 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 876 877 llvm::StringRef MangledName = getMangledName(GD); 878 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 879 } 880 881 /// CreateRuntimeFunction - Create a new runtime function with the specified 882 /// type and name. 883 llvm::Constant * 884 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 885 llvm::StringRef Name) { 886 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 887 } 888 889 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 890 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 891 return false; 892 if (Context.getLangOptions().CPlusPlus && 893 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 894 // FIXME: We should do something fancier here! 895 return false; 896 } 897 return true; 898 } 899 900 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 901 /// create and return an llvm GlobalVariable with the specified type. If there 902 /// is something in the module with the specified name, return it potentially 903 /// bitcasted to the right type. 904 /// 905 /// If D is non-null, it specifies a decl that correspond to this. This is used 906 /// to set the attributes on the global when it is first created. 907 llvm::Constant * 908 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 909 const llvm::PointerType *Ty, 910 const VarDecl *D) { 911 // Lookup the entry, lazily creating it if necessary. 912 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 913 if (Entry) { 914 if (WeakRefReferences.count(Entry)) { 915 if (D && !D->hasAttr<WeakAttr>()) 916 Entry->setLinkage(llvm::Function::ExternalLinkage); 917 918 WeakRefReferences.erase(Entry); 919 } 920 921 if (Entry->getType() == Ty) 922 return Entry; 923 924 // Make sure the result is of the correct type. 925 return llvm::ConstantExpr::getBitCast(Entry, Ty); 926 } 927 928 // This is the first use or definition of a mangled name. If there is a 929 // deferred decl with this name, remember that we need to emit it at the end 930 // of the file. 931 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 932 if (DDI != DeferredDecls.end()) { 933 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 934 // list, and remove it from DeferredDecls (since we don't need it anymore). 935 DeferredDeclsToEmit.push_back(DDI->second); 936 DeferredDecls.erase(DDI); 937 } 938 939 llvm::GlobalVariable *GV = 940 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 941 llvm::GlobalValue::ExternalLinkage, 942 0, MangledName, 0, 943 false, Ty->getAddressSpace()); 944 945 // Handle things which are present even on external declarations. 946 if (D) { 947 // FIXME: This code is overly simple and should be merged with other global 948 // handling. 949 GV->setConstant(DeclIsConstantGlobal(Context, D)); 950 951 // Set linkage and visibility in case we never see a definition. 952 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 953 if (LV.linkage() != ExternalLinkage) { 954 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 955 } else { 956 if (D->hasAttr<DLLImportAttr>()) 957 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 958 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 959 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 960 961 // Set visibility on a declaration only if it's explicit. 962 if (LV.visibilityExplicit()) 963 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 964 } 965 966 GV->setThreadLocal(D->isThreadSpecified()); 967 } 968 969 return GV; 970 } 971 972 973 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 974 /// given global variable. If Ty is non-null and if the global doesn't exist, 975 /// then it will be greated with the specified type instead of whatever the 976 /// normal requested type would be. 977 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 978 const llvm::Type *Ty) { 979 assert(D->hasGlobalStorage() && "Not a global variable"); 980 QualType ASTTy = D->getType(); 981 if (Ty == 0) 982 Ty = getTypes().ConvertTypeForMem(ASTTy); 983 984 const llvm::PointerType *PTy = 985 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 986 987 llvm::StringRef MangledName = getMangledName(D); 988 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 989 } 990 991 /// CreateRuntimeVariable - Create a new runtime global variable with the 992 /// specified type and name. 993 llvm::Constant * 994 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 995 llvm::StringRef Name) { 996 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 997 } 998 999 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1000 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1001 1002 if (MayDeferGeneration(D)) { 1003 // If we have not seen a reference to this variable yet, place it 1004 // into the deferred declarations table to be emitted if needed 1005 // later. 1006 llvm::StringRef MangledName = getMangledName(D); 1007 if (!GetGlobalValue(MangledName)) { 1008 DeferredDecls[MangledName] = D; 1009 return; 1010 } 1011 } 1012 1013 // The tentative definition is the only definition. 1014 EmitGlobalVarDefinition(D); 1015 } 1016 1017 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1018 if (DefinitionRequired) 1019 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1020 } 1021 1022 llvm::GlobalVariable::LinkageTypes 1023 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1024 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1025 return llvm::GlobalVariable::InternalLinkage; 1026 1027 if (const CXXMethodDecl *KeyFunction 1028 = RD->getASTContext().getKeyFunction(RD)) { 1029 // If this class has a key function, use that to determine the linkage of 1030 // the vtable. 1031 const FunctionDecl *Def = 0; 1032 if (KeyFunction->hasBody(Def)) 1033 KeyFunction = cast<CXXMethodDecl>(Def); 1034 1035 switch (KeyFunction->getTemplateSpecializationKind()) { 1036 case TSK_Undeclared: 1037 case TSK_ExplicitSpecialization: 1038 if (KeyFunction->isInlined()) 1039 return llvm::GlobalVariable::WeakODRLinkage; 1040 1041 return llvm::GlobalVariable::ExternalLinkage; 1042 1043 case TSK_ImplicitInstantiation: 1044 case TSK_ExplicitInstantiationDefinition: 1045 return llvm::GlobalVariable::WeakODRLinkage; 1046 1047 case TSK_ExplicitInstantiationDeclaration: 1048 // FIXME: Use available_externally linkage. However, this currently 1049 // breaks LLVM's build due to undefined symbols. 1050 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1051 return llvm::GlobalVariable::WeakODRLinkage; 1052 } 1053 } 1054 1055 switch (RD->getTemplateSpecializationKind()) { 1056 case TSK_Undeclared: 1057 case TSK_ExplicitSpecialization: 1058 case TSK_ImplicitInstantiation: 1059 case TSK_ExplicitInstantiationDefinition: 1060 return llvm::GlobalVariable::WeakODRLinkage; 1061 1062 case TSK_ExplicitInstantiationDeclaration: 1063 // FIXME: Use available_externally linkage. However, this currently 1064 // breaks LLVM's build due to undefined symbols. 1065 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1066 return llvm::GlobalVariable::WeakODRLinkage; 1067 } 1068 1069 // Silence GCC warning. 1070 return llvm::GlobalVariable::WeakODRLinkage; 1071 } 1072 1073 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1074 return CharUnits::fromQuantity( 1075 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1076 } 1077 1078 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1079 llvm::Constant *Init = 0; 1080 QualType ASTTy = D->getType(); 1081 bool NonConstInit = false; 1082 1083 const Expr *InitExpr = D->getAnyInitializer(); 1084 1085 if (!InitExpr) { 1086 // This is a tentative definition; tentative definitions are 1087 // implicitly initialized with { 0 }. 1088 // 1089 // Note that tentative definitions are only emitted at the end of 1090 // a translation unit, so they should never have incomplete 1091 // type. In addition, EmitTentativeDefinition makes sure that we 1092 // never attempt to emit a tentative definition if a real one 1093 // exists. A use may still exists, however, so we still may need 1094 // to do a RAUW. 1095 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1096 Init = EmitNullConstant(D->getType()); 1097 } else { 1098 Init = EmitConstantExpr(InitExpr, D->getType()); 1099 if (!Init) { 1100 QualType T = InitExpr->getType(); 1101 if (D->getType()->isReferenceType()) 1102 T = D->getType(); 1103 1104 if (getLangOptions().CPlusPlus) { 1105 Init = EmitNullConstant(T); 1106 NonConstInit = true; 1107 } else { 1108 ErrorUnsupported(D, "static initializer"); 1109 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1110 } 1111 } else { 1112 // We don't need an initializer, so remove the entry for the delayed 1113 // initializer position (just in case this entry was delayed). 1114 if (getLangOptions().CPlusPlus) 1115 DelayedCXXInitPosition.erase(D); 1116 } 1117 } 1118 1119 const llvm::Type* InitType = Init->getType(); 1120 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1121 1122 // Strip off a bitcast if we got one back. 1123 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1124 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1125 // all zero index gep. 1126 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1127 Entry = CE->getOperand(0); 1128 } 1129 1130 // Entry is now either a Function or GlobalVariable. 1131 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1132 1133 // We have a definition after a declaration with the wrong type. 1134 // We must make a new GlobalVariable* and update everything that used OldGV 1135 // (a declaration or tentative definition) with the new GlobalVariable* 1136 // (which will be a definition). 1137 // 1138 // This happens if there is a prototype for a global (e.g. 1139 // "extern int x[];") and then a definition of a different type (e.g. 1140 // "int x[10];"). This also happens when an initializer has a different type 1141 // from the type of the global (this happens with unions). 1142 if (GV == 0 || 1143 GV->getType()->getElementType() != InitType || 1144 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1145 1146 // Move the old entry aside so that we'll create a new one. 1147 Entry->setName(llvm::StringRef()); 1148 1149 // Make a new global with the correct type, this is now guaranteed to work. 1150 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1151 1152 // Replace all uses of the old global with the new global 1153 llvm::Constant *NewPtrForOldDecl = 1154 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1155 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1156 1157 // Erase the old global, since it is no longer used. 1158 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1159 } 1160 1161 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1162 SourceManager &SM = Context.getSourceManager(); 1163 AddAnnotation(EmitAnnotateAttr(GV, AA, 1164 SM.getInstantiationLineNumber(D->getLocation()))); 1165 } 1166 1167 GV->setInitializer(Init); 1168 1169 // If it is safe to mark the global 'constant', do so now. 1170 GV->setConstant(false); 1171 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1172 GV->setConstant(true); 1173 1174 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1175 1176 // Set the llvm linkage type as appropriate. 1177 llvm::GlobalValue::LinkageTypes Linkage = 1178 GetLLVMLinkageVarDefinition(D, GV); 1179 GV->setLinkage(Linkage); 1180 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1181 // common vars aren't constant even if declared const. 1182 GV->setConstant(false); 1183 1184 SetCommonAttributes(D, GV); 1185 1186 // Emit the initializer function if necessary. 1187 if (NonConstInit) 1188 EmitCXXGlobalVarDeclInitFunc(D, GV); 1189 1190 // Emit global variable debug information. 1191 if (CGDebugInfo *DI = getDebugInfo()) { 1192 DI->setLocation(D->getLocation()); 1193 DI->EmitGlobalVariable(GV, D); 1194 } 1195 } 1196 1197 llvm::GlobalValue::LinkageTypes 1198 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1199 llvm::GlobalVariable *GV) { 1200 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1201 if (Linkage == GVA_Internal) 1202 return llvm::Function::InternalLinkage; 1203 else if (D->hasAttr<DLLImportAttr>()) 1204 return llvm::Function::DLLImportLinkage; 1205 else if (D->hasAttr<DLLExportAttr>()) 1206 return llvm::Function::DLLExportLinkage; 1207 else if (D->hasAttr<WeakAttr>()) { 1208 if (GV->isConstant()) 1209 return llvm::GlobalVariable::WeakODRLinkage; 1210 else 1211 return llvm::GlobalVariable::WeakAnyLinkage; 1212 } else if (Linkage == GVA_TemplateInstantiation || 1213 Linkage == GVA_ExplicitTemplateInstantiation) 1214 // FIXME: It seems like we can provide more specific linkage here 1215 // (LinkOnceODR, WeakODR). 1216 return llvm::GlobalVariable::WeakAnyLinkage; 1217 else if (!getLangOptions().CPlusPlus && 1218 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1219 D->getAttr<CommonAttr>()) && 1220 !D->hasExternalStorage() && !D->getInit() && 1221 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1222 // Thread local vars aren't considered common linkage. 1223 return llvm::GlobalVariable::CommonLinkage; 1224 } 1225 return llvm::GlobalVariable::ExternalLinkage; 1226 } 1227 1228 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1229 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1230 /// existing call uses of the old function in the module, this adjusts them to 1231 /// call the new function directly. 1232 /// 1233 /// This is not just a cleanup: the always_inline pass requires direct calls to 1234 /// functions to be able to inline them. If there is a bitcast in the way, it 1235 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1236 /// run at -O0. 1237 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1238 llvm::Function *NewFn) { 1239 // If we're redefining a global as a function, don't transform it. 1240 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1241 if (OldFn == 0) return; 1242 1243 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1244 llvm::SmallVector<llvm::Value*, 4> ArgList; 1245 1246 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1247 UI != E; ) { 1248 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1249 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1250 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1251 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1252 llvm::CallSite CS(CI); 1253 if (!CI || !CS.isCallee(I)) continue; 1254 1255 // If the return types don't match exactly, and if the call isn't dead, then 1256 // we can't transform this call. 1257 if (CI->getType() != NewRetTy && !CI->use_empty()) 1258 continue; 1259 1260 // If the function was passed too few arguments, don't transform. If extra 1261 // arguments were passed, we silently drop them. If any of the types 1262 // mismatch, we don't transform. 1263 unsigned ArgNo = 0; 1264 bool DontTransform = false; 1265 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1266 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1267 if (CS.arg_size() == ArgNo || 1268 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1269 DontTransform = true; 1270 break; 1271 } 1272 } 1273 if (DontTransform) 1274 continue; 1275 1276 // Okay, we can transform this. Create the new call instruction and copy 1277 // over the required information. 1278 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1279 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1280 ArgList.end(), "", CI); 1281 ArgList.clear(); 1282 if (!NewCall->getType()->isVoidTy()) 1283 NewCall->takeName(CI); 1284 NewCall->setAttributes(CI->getAttributes()); 1285 NewCall->setCallingConv(CI->getCallingConv()); 1286 1287 // Finally, remove the old call, replacing any uses with the new one. 1288 if (!CI->use_empty()) 1289 CI->replaceAllUsesWith(NewCall); 1290 1291 // Copy debug location attached to CI. 1292 if (!CI->getDebugLoc().isUnknown()) 1293 NewCall->setDebugLoc(CI->getDebugLoc()); 1294 CI->eraseFromParent(); 1295 } 1296 } 1297 1298 1299 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1300 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1301 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1302 getCXXABI().getMangleContext().mangleInitDiscriminator(); 1303 // Get or create the prototype for the function. 1304 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1305 1306 // Strip off a bitcast if we got one back. 1307 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1308 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1309 Entry = CE->getOperand(0); 1310 } 1311 1312 1313 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1314 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1315 1316 // If the types mismatch then we have to rewrite the definition. 1317 assert(OldFn->isDeclaration() && 1318 "Shouldn't replace non-declaration"); 1319 1320 // F is the Function* for the one with the wrong type, we must make a new 1321 // Function* and update everything that used F (a declaration) with the new 1322 // Function* (which will be a definition). 1323 // 1324 // This happens if there is a prototype for a function 1325 // (e.g. "int f()") and then a definition of a different type 1326 // (e.g. "int f(int x)"). Move the old function aside so that it 1327 // doesn't interfere with GetAddrOfFunction. 1328 OldFn->setName(llvm::StringRef()); 1329 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1330 1331 // If this is an implementation of a function without a prototype, try to 1332 // replace any existing uses of the function (which may be calls) with uses 1333 // of the new function 1334 if (D->getType()->isFunctionNoProtoType()) { 1335 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1336 OldFn->removeDeadConstantUsers(); 1337 } 1338 1339 // Replace uses of F with the Function we will endow with a body. 1340 if (!Entry->use_empty()) { 1341 llvm::Constant *NewPtrForOldDecl = 1342 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1343 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1344 } 1345 1346 // Ok, delete the old function now, which is dead. 1347 OldFn->eraseFromParent(); 1348 1349 Entry = NewFn; 1350 } 1351 1352 // We need to set linkage and visibility on the function before 1353 // generating code for it because various parts of IR generation 1354 // want to propagate this information down (e.g. to local static 1355 // declarations). 1356 llvm::Function *Fn = cast<llvm::Function>(Entry); 1357 setFunctionLinkage(D, Fn); 1358 1359 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1360 setGlobalVisibility(Fn, D, /*ForDef*/ true); 1361 1362 CodeGenFunction(*this).GenerateCode(D, Fn); 1363 1364 SetFunctionDefinitionAttributes(D, Fn); 1365 SetLLVMFunctionAttributesForDefinition(D, Fn); 1366 1367 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1368 AddGlobalCtor(Fn, CA->getPriority()); 1369 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1370 AddGlobalDtor(Fn, DA->getPriority()); 1371 } 1372 1373 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1374 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1375 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1376 assert(AA && "Not an alias?"); 1377 1378 llvm::StringRef MangledName = getMangledName(GD); 1379 1380 // If there is a definition in the module, then it wins over the alias. 1381 // This is dubious, but allow it to be safe. Just ignore the alias. 1382 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1383 if (Entry && !Entry->isDeclaration()) 1384 return; 1385 1386 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1387 1388 // Create a reference to the named value. This ensures that it is emitted 1389 // if a deferred decl. 1390 llvm::Constant *Aliasee; 1391 if (isa<llvm::FunctionType>(DeclTy)) 1392 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1393 else 1394 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1395 llvm::PointerType::getUnqual(DeclTy), 0); 1396 1397 // Create the new alias itself, but don't set a name yet. 1398 llvm::GlobalValue *GA = 1399 new llvm::GlobalAlias(Aliasee->getType(), 1400 llvm::Function::ExternalLinkage, 1401 "", Aliasee, &getModule()); 1402 1403 if (Entry) { 1404 assert(Entry->isDeclaration()); 1405 1406 // If there is a declaration in the module, then we had an extern followed 1407 // by the alias, as in: 1408 // extern int test6(); 1409 // ... 1410 // int test6() __attribute__((alias("test7"))); 1411 // 1412 // Remove it and replace uses of it with the alias. 1413 GA->takeName(Entry); 1414 1415 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1416 Entry->getType())); 1417 Entry->eraseFromParent(); 1418 } else { 1419 GA->setName(MangledName); 1420 } 1421 1422 // Set attributes which are particular to an alias; this is a 1423 // specialization of the attributes which may be set on a global 1424 // variable/function. 1425 if (D->hasAttr<DLLExportAttr>()) { 1426 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1427 // The dllexport attribute is ignored for undefined symbols. 1428 if (FD->hasBody()) 1429 GA->setLinkage(llvm::Function::DLLExportLinkage); 1430 } else { 1431 GA->setLinkage(llvm::Function::DLLExportLinkage); 1432 } 1433 } else if (D->hasAttr<WeakAttr>() || 1434 D->hasAttr<WeakRefAttr>() || 1435 D->hasAttr<WeakImportAttr>()) { 1436 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1437 } 1438 1439 SetCommonAttributes(D, GA); 1440 } 1441 1442 /// getBuiltinLibFunction - Given a builtin id for a function like 1443 /// "__builtin_fabsf", return a Function* for "fabsf". 1444 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1445 unsigned BuiltinID) { 1446 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1447 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1448 "isn't a lib fn"); 1449 1450 // Get the name, skip over the __builtin_ prefix (if necessary). 1451 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1452 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1453 Name += 10; 1454 1455 const llvm::FunctionType *Ty = 1456 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1457 1458 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1459 } 1460 1461 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1462 unsigned NumTys) { 1463 return llvm::Intrinsic::getDeclaration(&getModule(), 1464 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1465 } 1466 1467 1468 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1469 const llvm::Type *SrcType, 1470 const llvm::Type *SizeType) { 1471 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1472 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1473 } 1474 1475 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1476 const llvm::Type *SrcType, 1477 const llvm::Type *SizeType) { 1478 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1479 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1480 } 1481 1482 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1483 const llvm::Type *SizeType) { 1484 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1485 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1486 } 1487 1488 static llvm::StringMapEntry<llvm::Constant*> & 1489 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1490 const StringLiteral *Literal, 1491 bool TargetIsLSB, 1492 bool &IsUTF16, 1493 unsigned &StringLength) { 1494 llvm::StringRef String = Literal->getString(); 1495 unsigned NumBytes = String.size(); 1496 1497 // Check for simple case. 1498 if (!Literal->containsNonAsciiOrNull()) { 1499 StringLength = NumBytes; 1500 return Map.GetOrCreateValue(String); 1501 } 1502 1503 // Otherwise, convert the UTF8 literals into a byte string. 1504 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1505 const UTF8 *FromPtr = (UTF8 *)String.data(); 1506 UTF16 *ToPtr = &ToBuf[0]; 1507 1508 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1509 &ToPtr, ToPtr + NumBytes, 1510 strictConversion); 1511 1512 // ConvertUTF8toUTF16 returns the length in ToPtr. 1513 StringLength = ToPtr - &ToBuf[0]; 1514 1515 // Render the UTF-16 string into a byte array and convert to the target byte 1516 // order. 1517 // 1518 // FIXME: This isn't something we should need to do here. 1519 llvm::SmallString<128> AsBytes; 1520 AsBytes.reserve(StringLength * 2); 1521 for (unsigned i = 0; i != StringLength; ++i) { 1522 unsigned short Val = ToBuf[i]; 1523 if (TargetIsLSB) { 1524 AsBytes.push_back(Val & 0xFF); 1525 AsBytes.push_back(Val >> 8); 1526 } else { 1527 AsBytes.push_back(Val >> 8); 1528 AsBytes.push_back(Val & 0xFF); 1529 } 1530 } 1531 // Append one extra null character, the second is automatically added by our 1532 // caller. 1533 AsBytes.push_back(0); 1534 1535 IsUTF16 = true; 1536 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1537 } 1538 1539 llvm::Constant * 1540 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1541 unsigned StringLength = 0; 1542 bool isUTF16 = false; 1543 llvm::StringMapEntry<llvm::Constant*> &Entry = 1544 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1545 getTargetData().isLittleEndian(), 1546 isUTF16, StringLength); 1547 1548 if (llvm::Constant *C = Entry.getValue()) 1549 return C; 1550 1551 llvm::Constant *Zero = 1552 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1553 llvm::Constant *Zeros[] = { Zero, Zero }; 1554 1555 // If we don't already have it, get __CFConstantStringClassReference. 1556 if (!CFConstantStringClassRef) { 1557 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1558 Ty = llvm::ArrayType::get(Ty, 0); 1559 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1560 "__CFConstantStringClassReference"); 1561 // Decay array -> ptr 1562 CFConstantStringClassRef = 1563 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1564 } 1565 1566 QualType CFTy = getContext().getCFConstantStringType(); 1567 1568 const llvm::StructType *STy = 1569 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1570 1571 std::vector<llvm::Constant*> Fields(4); 1572 1573 // Class pointer. 1574 Fields[0] = CFConstantStringClassRef; 1575 1576 // Flags. 1577 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1578 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1579 llvm::ConstantInt::get(Ty, 0x07C8); 1580 1581 // String pointer. 1582 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1583 1584 llvm::GlobalValue::LinkageTypes Linkage; 1585 bool isConstant; 1586 if (isUTF16) { 1587 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1588 Linkage = llvm::GlobalValue::InternalLinkage; 1589 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1590 // does make plain ascii ones writable. 1591 isConstant = true; 1592 } else { 1593 Linkage = llvm::GlobalValue::PrivateLinkage; 1594 isConstant = !Features.WritableStrings; 1595 } 1596 1597 llvm::GlobalVariable *GV = 1598 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1599 ".str"); 1600 if (isUTF16) { 1601 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1602 GV->setAlignment(Align.getQuantity()); 1603 } 1604 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1605 1606 // String length. 1607 Ty = getTypes().ConvertType(getContext().LongTy); 1608 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1609 1610 // The struct. 1611 C = llvm::ConstantStruct::get(STy, Fields); 1612 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1613 llvm::GlobalVariable::PrivateLinkage, C, 1614 "_unnamed_cfstring_"); 1615 if (const char *Sect = getContext().Target.getCFStringSection()) 1616 GV->setSection(Sect); 1617 Entry.setValue(GV); 1618 1619 return GV; 1620 } 1621 1622 llvm::Constant * 1623 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1624 unsigned StringLength = 0; 1625 bool isUTF16 = false; 1626 llvm::StringMapEntry<llvm::Constant*> &Entry = 1627 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1628 getTargetData().isLittleEndian(), 1629 isUTF16, StringLength); 1630 1631 if (llvm::Constant *C = Entry.getValue()) 1632 return C; 1633 1634 llvm::Constant *Zero = 1635 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1636 llvm::Constant *Zeros[] = { Zero, Zero }; 1637 1638 // If we don't already have it, get _NSConstantStringClassReference. 1639 if (!ConstantStringClassRef) { 1640 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1641 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1642 Ty = llvm::ArrayType::get(Ty, 0); 1643 llvm::Constant *GV; 1644 if (StringClass.empty()) 1645 GV = CreateRuntimeVariable(Ty, 1646 Features.ObjCNonFragileABI ? 1647 "OBJC_CLASS_$_NSConstantString" : 1648 "_NSConstantStringClassReference"); 1649 else { 1650 std::string str; 1651 if (Features.ObjCNonFragileABI) 1652 str = "OBJC_CLASS_$_" + StringClass; 1653 else 1654 str = "_" + StringClass + "ClassReference"; 1655 GV = CreateRuntimeVariable(Ty, str); 1656 } 1657 // Decay array -> ptr 1658 ConstantStringClassRef = 1659 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1660 } 1661 1662 QualType NSTy = getContext().getNSConstantStringType(); 1663 1664 const llvm::StructType *STy = 1665 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1666 1667 std::vector<llvm::Constant*> Fields(3); 1668 1669 // Class pointer. 1670 Fields[0] = ConstantStringClassRef; 1671 1672 // String pointer. 1673 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1674 1675 llvm::GlobalValue::LinkageTypes Linkage; 1676 bool isConstant; 1677 if (isUTF16) { 1678 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1679 Linkage = llvm::GlobalValue::InternalLinkage; 1680 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1681 // does make plain ascii ones writable. 1682 isConstant = true; 1683 } else { 1684 Linkage = llvm::GlobalValue::PrivateLinkage; 1685 isConstant = !Features.WritableStrings; 1686 } 1687 1688 llvm::GlobalVariable *GV = 1689 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1690 ".str"); 1691 if (isUTF16) { 1692 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1693 GV->setAlignment(Align.getQuantity()); 1694 } 1695 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1696 1697 // String length. 1698 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1699 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1700 1701 // The struct. 1702 C = llvm::ConstantStruct::get(STy, Fields); 1703 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1704 llvm::GlobalVariable::PrivateLinkage, C, 1705 "_unnamed_nsstring_"); 1706 // FIXME. Fix section. 1707 if (const char *Sect = 1708 Features.ObjCNonFragileABI 1709 ? getContext().Target.getNSStringNonFragileABISection() 1710 : getContext().Target.getNSStringSection()) 1711 GV->setSection(Sect); 1712 Entry.setValue(GV); 1713 1714 return GV; 1715 } 1716 1717 /// GetStringForStringLiteral - Return the appropriate bytes for a 1718 /// string literal, properly padded to match the literal type. 1719 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1720 const ConstantArrayType *CAT = 1721 getContext().getAsConstantArrayType(E->getType()); 1722 assert(CAT && "String isn't pointer or array!"); 1723 1724 // Resize the string to the right size. 1725 uint64_t RealLen = CAT->getSize().getZExtValue(); 1726 1727 if (E->isWide()) 1728 RealLen *= getContext().Target.getWCharWidth()/8; 1729 1730 std::string Str = E->getString().str(); 1731 Str.resize(RealLen, '\0'); 1732 1733 return Str; 1734 } 1735 1736 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1737 /// constant array for the given string literal. 1738 llvm::Constant * 1739 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1740 // FIXME: This can be more efficient. 1741 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1742 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1743 if (S->isWide()) { 1744 llvm::Type *DestTy = 1745 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1746 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1747 } 1748 return C; 1749 } 1750 1751 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1752 /// array for the given ObjCEncodeExpr node. 1753 llvm::Constant * 1754 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1755 std::string Str; 1756 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1757 1758 return GetAddrOfConstantCString(Str); 1759 } 1760 1761 1762 /// GenerateWritableString -- Creates storage for a string literal. 1763 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1764 bool constant, 1765 CodeGenModule &CGM, 1766 const char *GlobalName) { 1767 // Create Constant for this string literal. Don't add a '\0'. 1768 llvm::Constant *C = 1769 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1770 1771 // Create a global variable for this string 1772 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1773 llvm::GlobalValue::PrivateLinkage, 1774 C, GlobalName); 1775 } 1776 1777 /// GetAddrOfConstantString - Returns a pointer to a character array 1778 /// containing the literal. This contents are exactly that of the 1779 /// given string, i.e. it will not be null terminated automatically; 1780 /// see GetAddrOfConstantCString. Note that whether the result is 1781 /// actually a pointer to an LLVM constant depends on 1782 /// Feature.WriteableStrings. 1783 /// 1784 /// The result has pointer to array type. 1785 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1786 const char *GlobalName) { 1787 bool IsConstant = !Features.WritableStrings; 1788 1789 // Get the default prefix if a name wasn't specified. 1790 if (!GlobalName) 1791 GlobalName = ".str"; 1792 1793 // Don't share any string literals if strings aren't constant. 1794 if (!IsConstant) 1795 return GenerateStringLiteral(str, false, *this, GlobalName); 1796 1797 llvm::StringMapEntry<llvm::Constant *> &Entry = 1798 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1799 1800 if (Entry.getValue()) 1801 return Entry.getValue(); 1802 1803 // Create a global variable for this. 1804 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1805 Entry.setValue(C); 1806 return C; 1807 } 1808 1809 /// GetAddrOfConstantCString - Returns a pointer to a character 1810 /// array containing the literal and a terminating '\-' 1811 /// character. The result has pointer to array type. 1812 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1813 const char *GlobalName){ 1814 return GetAddrOfConstantString(str + '\0', GlobalName); 1815 } 1816 1817 /// EmitObjCPropertyImplementations - Emit information for synthesized 1818 /// properties for an implementation. 1819 void CodeGenModule::EmitObjCPropertyImplementations(const 1820 ObjCImplementationDecl *D) { 1821 for (ObjCImplementationDecl::propimpl_iterator 1822 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1823 ObjCPropertyImplDecl *PID = *i; 1824 1825 // Dynamic is just for type-checking. 1826 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1827 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1828 1829 // Determine which methods need to be implemented, some may have 1830 // been overridden. Note that ::isSynthesized is not the method 1831 // we want, that just indicates if the decl came from a 1832 // property. What we want to know is if the method is defined in 1833 // this implementation. 1834 if (!D->getInstanceMethod(PD->getGetterName())) 1835 CodeGenFunction(*this).GenerateObjCGetter( 1836 const_cast<ObjCImplementationDecl *>(D), PID); 1837 if (!PD->isReadOnly() && 1838 !D->getInstanceMethod(PD->getSetterName())) 1839 CodeGenFunction(*this).GenerateObjCSetter( 1840 const_cast<ObjCImplementationDecl *>(D), PID); 1841 } 1842 } 1843 } 1844 1845 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1846 /// for an implementation. 1847 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1848 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1849 return; 1850 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1851 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1852 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1853 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1854 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1855 D->getLocation(), 1856 D->getLocation(), cxxSelector, 1857 getContext().VoidTy, 0, 1858 DC, true, false, true, false, 1859 ObjCMethodDecl::Required); 1860 D->addInstanceMethod(DTORMethod); 1861 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1862 1863 II = &getContext().Idents.get(".cxx_construct"); 1864 cxxSelector = getContext().Selectors.getSelector(0, &II); 1865 // The constructor returns 'self'. 1866 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1867 D->getLocation(), 1868 D->getLocation(), cxxSelector, 1869 getContext().getObjCIdType(), 0, 1870 DC, true, false, true, false, 1871 ObjCMethodDecl::Required); 1872 D->addInstanceMethod(CTORMethod); 1873 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1874 1875 1876 } 1877 1878 /// EmitNamespace - Emit all declarations in a namespace. 1879 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1880 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1881 I != E; ++I) 1882 EmitTopLevelDecl(*I); 1883 } 1884 1885 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1886 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1887 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1888 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1889 ErrorUnsupported(LSD, "linkage spec"); 1890 return; 1891 } 1892 1893 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1894 I != E; ++I) 1895 EmitTopLevelDecl(*I); 1896 } 1897 1898 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1899 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1900 // If an error has occurred, stop code generation, but continue 1901 // parsing and semantic analysis (to ensure all warnings and errors 1902 // are emitted). 1903 if (Diags.hasErrorOccurred()) 1904 return; 1905 1906 // Ignore dependent declarations. 1907 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1908 return; 1909 1910 switch (D->getKind()) { 1911 case Decl::CXXConversion: 1912 case Decl::CXXMethod: 1913 case Decl::Function: 1914 // Skip function templates 1915 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1916 return; 1917 1918 EmitGlobal(cast<FunctionDecl>(D)); 1919 break; 1920 1921 case Decl::Var: 1922 EmitGlobal(cast<VarDecl>(D)); 1923 break; 1924 1925 // C++ Decls 1926 case Decl::Namespace: 1927 EmitNamespace(cast<NamespaceDecl>(D)); 1928 break; 1929 // No code generation needed. 1930 case Decl::UsingShadow: 1931 case Decl::Using: 1932 case Decl::UsingDirective: 1933 case Decl::ClassTemplate: 1934 case Decl::FunctionTemplate: 1935 case Decl::NamespaceAlias: 1936 break; 1937 case Decl::CXXConstructor: 1938 // Skip function templates 1939 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1940 return; 1941 1942 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1943 break; 1944 case Decl::CXXDestructor: 1945 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1946 break; 1947 1948 case Decl::StaticAssert: 1949 // Nothing to do. 1950 break; 1951 1952 // Objective-C Decls 1953 1954 // Forward declarations, no (immediate) code generation. 1955 case Decl::ObjCClass: 1956 case Decl::ObjCForwardProtocol: 1957 case Decl::ObjCInterface: 1958 break; 1959 1960 case Decl::ObjCCategory: { 1961 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 1962 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 1963 Context.ResetObjCLayout(CD->getClassInterface()); 1964 break; 1965 } 1966 1967 1968 case Decl::ObjCProtocol: 1969 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1970 break; 1971 1972 case Decl::ObjCCategoryImpl: 1973 // Categories have properties but don't support synthesize so we 1974 // can ignore them here. 1975 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1976 break; 1977 1978 case Decl::ObjCImplementation: { 1979 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1980 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 1981 Context.ResetObjCLayout(OMD->getClassInterface()); 1982 EmitObjCPropertyImplementations(OMD); 1983 EmitObjCIvarInitializations(OMD); 1984 Runtime->GenerateClass(OMD); 1985 break; 1986 } 1987 case Decl::ObjCMethod: { 1988 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1989 // If this is not a prototype, emit the body. 1990 if (OMD->getBody()) 1991 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1992 break; 1993 } 1994 case Decl::ObjCCompatibleAlias: 1995 // compatibility-alias is a directive and has no code gen. 1996 break; 1997 1998 case Decl::LinkageSpec: 1999 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2000 break; 2001 2002 case Decl::FileScopeAsm: { 2003 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2004 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2005 2006 const std::string &S = getModule().getModuleInlineAsm(); 2007 if (S.empty()) 2008 getModule().setModuleInlineAsm(AsmString); 2009 else 2010 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2011 break; 2012 } 2013 2014 default: 2015 // Make sure we handled everything we should, every other kind is a 2016 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2017 // function. Need to recode Decl::Kind to do that easily. 2018 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2019 } 2020 } 2021 2022 /// Turns the given pointer into a constant. 2023 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2024 const void *Ptr) { 2025 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2026 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2027 return llvm::ConstantInt::get(i64, PtrInt); 2028 } 2029 2030 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2031 llvm::NamedMDNode *&GlobalMetadata, 2032 GlobalDecl D, 2033 llvm::GlobalValue *Addr) { 2034 if (!GlobalMetadata) 2035 GlobalMetadata = 2036 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2037 2038 // TODO: should we report variant information for ctors/dtors? 2039 llvm::Value *Ops[] = { 2040 Addr, 2041 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2042 }; 2043 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2044 } 2045 2046 /// Emits metadata nodes associating all the global values in the 2047 /// current module with the Decls they came from. This is useful for 2048 /// projects using IR gen as a subroutine. 2049 /// 2050 /// Since there's currently no way to associate an MDNode directly 2051 /// with an llvm::GlobalValue, we create a global named metadata 2052 /// with the name 'clang.global.decl.ptrs'. 2053 void CodeGenModule::EmitDeclMetadata() { 2054 llvm::NamedMDNode *GlobalMetadata = 0; 2055 2056 // StaticLocalDeclMap 2057 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2058 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2059 I != E; ++I) { 2060 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2061 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2062 } 2063 } 2064 2065 /// Emits metadata nodes for all the local variables in the current 2066 /// function. 2067 void CodeGenFunction::EmitDeclMetadata() { 2068 if (LocalDeclMap.empty()) return; 2069 2070 llvm::LLVMContext &Context = getLLVMContext(); 2071 2072 // Find the unique metadata ID for this name. 2073 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2074 2075 llvm::NamedMDNode *GlobalMetadata = 0; 2076 2077 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2078 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2079 const Decl *D = I->first; 2080 llvm::Value *Addr = I->second; 2081 2082 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2083 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2084 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2085 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2086 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2087 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2088 } 2089 } 2090 } 2091 2092 ///@name Custom Runtime Function Interfaces 2093 ///@{ 2094 // 2095 // FIXME: These can be eliminated once we can have clients just get the required 2096 // AST nodes from the builtin tables. 2097 2098 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2099 if (BlockObjectDispose) 2100 return BlockObjectDispose; 2101 2102 // If we saw an explicit decl, use that. 2103 if (BlockObjectDisposeDecl) { 2104 return BlockObjectDispose = GetAddrOfFunction( 2105 BlockObjectDisposeDecl, 2106 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2107 } 2108 2109 // Otherwise construct the function by hand. 2110 const llvm::FunctionType *FTy; 2111 std::vector<const llvm::Type*> ArgTys; 2112 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2113 ArgTys.push_back(PtrToInt8Ty); 2114 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2115 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2116 return BlockObjectDispose = 2117 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2118 } 2119 2120 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2121 if (BlockObjectAssign) 2122 return BlockObjectAssign; 2123 2124 // If we saw an explicit decl, use that. 2125 if (BlockObjectAssignDecl) { 2126 return BlockObjectAssign = GetAddrOfFunction( 2127 BlockObjectAssignDecl, 2128 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2129 } 2130 2131 // Otherwise construct the function by hand. 2132 const llvm::FunctionType *FTy; 2133 std::vector<const llvm::Type*> ArgTys; 2134 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2135 ArgTys.push_back(PtrToInt8Ty); 2136 ArgTys.push_back(PtrToInt8Ty); 2137 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2138 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2139 return BlockObjectAssign = 2140 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2141 } 2142 2143 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2144 if (NSConcreteGlobalBlock) 2145 return NSConcreteGlobalBlock; 2146 2147 // If we saw an explicit decl, use that. 2148 if (NSConcreteGlobalBlockDecl) { 2149 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2150 NSConcreteGlobalBlockDecl, 2151 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2152 } 2153 2154 // Otherwise construct the variable by hand. 2155 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2156 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2157 } 2158 2159 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2160 if (NSConcreteStackBlock) 2161 return NSConcreteStackBlock; 2162 2163 // If we saw an explicit decl, use that. 2164 if (NSConcreteStackBlockDecl) { 2165 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2166 NSConcreteStackBlockDecl, 2167 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2168 } 2169 2170 // Otherwise construct the variable by hand. 2171 return NSConcreteStackBlock = CreateRuntimeVariable( 2172 PtrToInt8Ty, "_NSConcreteStackBlock"); 2173 } 2174 2175 ///@} 2176