1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenPGO.h" 23 #include "CodeGenTBAA.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/CharInfo.h" 35 #include "clang/Basic/Diagnostic.h" 36 #include "clang/Basic/Module.h" 37 #include "clang/Basic/SourceManager.h" 38 #include "clang/Basic/TargetInfo.h" 39 #include "clang/Basic/Version.h" 40 #include "clang/Frontend/CodeGenOptions.h" 41 #include "clang/Sema/SemaDiagnostic.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/CallingConv.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/ConvertUTF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 static const char AnnotationSection[] = "llvm.metadata"; 57 58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 59 switch (CGM.getTarget().getCXXABI().getKind()) { 60 case TargetCXXABI::GenericAArch64: 61 case TargetCXXABI::GenericARM: 62 case TargetCXXABI::iOS: 63 case TargetCXXABI::GenericItanium: 64 return CreateItaniumCXXABI(CGM); 65 case TargetCXXABI::Microsoft: 66 return CreateMicrosoftCXXABI(CGM); 67 } 68 69 llvm_unreachable("invalid C++ ABI kind"); 70 } 71 72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 73 llvm::Module &M, const llvm::DataLayout &TD, 74 DiagnosticsEngine &diags) 75 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 76 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 77 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 78 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 79 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 80 NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0), 81 CFConstantStringClassRef(0), 82 ConstantStringClassRef(0), NSConstantStringType(0), 83 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 84 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 85 LifetimeStartFn(0), LifetimeEndFn(0), 86 SanitizerBlacklist( 87 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 88 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 89 : LangOpts.Sanitize) { 90 91 // Initialize the type cache. 92 llvm::LLVMContext &LLVMContext = M.getContext(); 93 VoidTy = llvm::Type::getVoidTy(LLVMContext); 94 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 95 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 96 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 97 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 98 FloatTy = llvm::Type::getFloatTy(LLVMContext); 99 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 100 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 101 PointerAlignInBytes = 102 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 103 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 104 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 105 Int8PtrTy = Int8Ty->getPointerTo(0); 106 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 107 108 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 109 110 if (LangOpts.ObjC1) 111 createObjCRuntime(); 112 if (LangOpts.OpenCL) 113 createOpenCLRuntime(); 114 if (LangOpts.CUDA) 115 createCUDARuntime(); 116 117 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 118 if (SanOpts.Thread || 119 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 120 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 121 getCXXABI().getMangleContext()); 122 123 // If debug info or coverage generation is enabled, create the CGDebugInfo 124 // object. 125 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 126 CodeGenOpts.EmitGcovArcs || 127 CodeGenOpts.EmitGcovNotes) 128 DebugInfo = new CGDebugInfo(*this); 129 130 Block.GlobalUniqueCount = 0; 131 132 if (C.getLangOpts().ObjCAutoRefCount) 133 ARCData = new ARCEntrypoints(); 134 RRData = new RREntrypoints(); 135 136 if (!CodeGenOpts.InstrProfileInput.empty()) 137 PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput); 138 } 139 140 CodeGenModule::~CodeGenModule() { 141 delete ObjCRuntime; 142 delete OpenCLRuntime; 143 delete CUDARuntime; 144 delete TheTargetCodeGenInfo; 145 delete TBAA; 146 delete DebugInfo; 147 delete ARCData; 148 delete RRData; 149 } 150 151 void CodeGenModule::createObjCRuntime() { 152 // This is just isGNUFamily(), but we want to force implementors of 153 // new ABIs to decide how best to do this. 154 switch (LangOpts.ObjCRuntime.getKind()) { 155 case ObjCRuntime::GNUstep: 156 case ObjCRuntime::GCC: 157 case ObjCRuntime::ObjFW: 158 ObjCRuntime = CreateGNUObjCRuntime(*this); 159 return; 160 161 case ObjCRuntime::FragileMacOSX: 162 case ObjCRuntime::MacOSX: 163 case ObjCRuntime::iOS: 164 ObjCRuntime = CreateMacObjCRuntime(*this); 165 return; 166 } 167 llvm_unreachable("bad runtime kind"); 168 } 169 170 void CodeGenModule::createOpenCLRuntime() { 171 OpenCLRuntime = new CGOpenCLRuntime(*this); 172 } 173 174 void CodeGenModule::createCUDARuntime() { 175 CUDARuntime = CreateNVCUDARuntime(*this); 176 } 177 178 void CodeGenModule::applyReplacements() { 179 for (ReplacementsTy::iterator I = Replacements.begin(), 180 E = Replacements.end(); 181 I != E; ++I) { 182 StringRef MangledName = I->first(); 183 llvm::Constant *Replacement = I->second; 184 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 185 if (!Entry) 186 continue; 187 llvm::Function *OldF = cast<llvm::Function>(Entry); 188 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 189 if (!NewF) { 190 if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 191 NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal()); 192 } else { 193 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 194 assert(CE->getOpcode() == llvm::Instruction::BitCast || 195 CE->getOpcode() == llvm::Instruction::GetElementPtr); 196 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 197 } 198 } 199 200 // Replace old with new, but keep the old order. 201 OldF->replaceAllUsesWith(Replacement); 202 if (NewF) { 203 NewF->removeFromParent(); 204 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 205 } 206 OldF->eraseFromParent(); 207 } 208 } 209 210 void CodeGenModule::checkAliases() { 211 bool Error = false; 212 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 213 E = Aliases.end(); I != E; ++I) { 214 const GlobalDecl &GD = *I; 215 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 216 const AliasAttr *AA = D->getAttr<AliasAttr>(); 217 StringRef MangledName = getMangledName(GD); 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 220 llvm::GlobalValue *GV = Alias->resolveAliasedGlobal(/*stopOnWeak*/ false); 221 if (!GV) { 222 Error = true; 223 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 224 } else if (GV->isDeclaration()) { 225 Error = true; 226 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 227 } 228 } 229 if (!Error) 230 return; 231 232 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 233 E = Aliases.end(); I != E; ++I) { 234 const GlobalDecl &GD = *I; 235 StringRef MangledName = getMangledName(GD); 236 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 237 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 238 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 239 Alias->eraseFromParent(); 240 } 241 } 242 243 void CodeGenModule::clear() { 244 DeferredDeclsToEmit.clear(); 245 } 246 247 void CodeGenModule::Release() { 248 EmitDeferred(); 249 applyReplacements(); 250 checkAliases(); 251 EmitCXXGlobalInitFunc(); 252 EmitCXXGlobalDtorFunc(); 253 EmitCXXThreadLocalInitFunc(); 254 if (ObjCRuntime) 255 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 256 AddGlobalCtor(ObjCInitFunction); 257 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 258 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 259 EmitGlobalAnnotations(); 260 EmitStaticExternCAliases(); 261 emitLLVMUsed(); 262 263 if (CodeGenOpts.Autolink && 264 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 265 EmitModuleLinkOptions(); 266 } 267 if (CodeGenOpts.DwarfVersion) 268 // We actually want the latest version when there are conflicts. 269 // We can change from Warning to Latest if such mode is supported. 270 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 271 CodeGenOpts.DwarfVersion); 272 if (DebugInfo) 273 // We support a single version in the linked module: error out when 274 // modules do not have the same version. We are going to implement dropping 275 // debug info when the version number is not up-to-date. Once that is 276 // done, the bitcode linker is not going to see modules with different 277 // version numbers. 278 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 279 llvm::DEBUG_METADATA_VERSION); 280 281 SimplifyPersonality(); 282 283 if (getCodeGenOpts().EmitDeclMetadata) 284 EmitDeclMetadata(); 285 286 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 287 EmitCoverageFile(); 288 289 if (DebugInfo) 290 DebugInfo->finalize(); 291 292 EmitVersionIdentMetadata(); 293 } 294 295 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 296 // Make sure that this type is translated. 297 Types.UpdateCompletedType(TD); 298 } 299 300 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 301 if (!TBAA) 302 return 0; 303 return TBAA->getTBAAInfo(QTy); 304 } 305 306 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 307 if (!TBAA) 308 return 0; 309 return TBAA->getTBAAInfoForVTablePtr(); 310 } 311 312 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 313 if (!TBAA) 314 return 0; 315 return TBAA->getTBAAStructInfo(QTy); 316 } 317 318 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 319 if (!TBAA) 320 return 0; 321 return TBAA->getTBAAStructTypeInfo(QTy); 322 } 323 324 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 325 llvm::MDNode *AccessN, 326 uint64_t O) { 327 if (!TBAA) 328 return 0; 329 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 330 } 331 332 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 333 /// and struct-path aware TBAA, the tag has the same format: 334 /// base type, access type and offset. 335 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 336 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 337 llvm::MDNode *TBAAInfo, 338 bool ConvertTypeToTag) { 339 if (ConvertTypeToTag && TBAA) 340 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 341 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 342 else 343 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 344 } 345 346 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 347 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 348 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 349 } 350 351 /// ErrorUnsupported - Print out an error that codegen doesn't support the 352 /// specified stmt yet. 353 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 354 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 355 "cannot compile this %0 yet"); 356 std::string Msg = Type; 357 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 358 << Msg << S->getSourceRange(); 359 } 360 361 /// ErrorUnsupported - Print out an error that codegen doesn't support the 362 /// specified decl yet. 363 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 364 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 365 "cannot compile this %0 yet"); 366 std::string Msg = Type; 367 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 368 } 369 370 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 371 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 372 } 373 374 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 375 const NamedDecl *D) const { 376 // Internal definitions always have default visibility. 377 if (GV->hasLocalLinkage()) { 378 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 379 return; 380 } 381 382 // Set visibility for definitions. 383 LinkageInfo LV = D->getLinkageAndVisibility(); 384 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 385 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 386 } 387 388 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 389 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 390 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 391 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 392 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 393 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 394 } 395 396 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 397 CodeGenOptions::TLSModel M) { 398 switch (M) { 399 case CodeGenOptions::GeneralDynamicTLSModel: 400 return llvm::GlobalVariable::GeneralDynamicTLSModel; 401 case CodeGenOptions::LocalDynamicTLSModel: 402 return llvm::GlobalVariable::LocalDynamicTLSModel; 403 case CodeGenOptions::InitialExecTLSModel: 404 return llvm::GlobalVariable::InitialExecTLSModel; 405 case CodeGenOptions::LocalExecTLSModel: 406 return llvm::GlobalVariable::LocalExecTLSModel; 407 } 408 llvm_unreachable("Invalid TLS model!"); 409 } 410 411 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 412 const VarDecl &D) const { 413 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 414 415 llvm::GlobalVariable::ThreadLocalMode TLM; 416 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 417 418 // Override the TLS model if it is explicitly specified. 419 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 420 TLM = GetLLVMTLSModel(Attr->getModel()); 421 } 422 423 GV->setThreadLocalMode(TLM); 424 } 425 426 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 427 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 428 429 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 430 if (!Str.empty()) 431 return Str; 432 433 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 434 IdentifierInfo *II = ND->getIdentifier(); 435 assert(II && "Attempt to mangle unnamed decl."); 436 437 Str = II->getName(); 438 return Str; 439 } 440 441 SmallString<256> Buffer; 442 llvm::raw_svector_ostream Out(Buffer); 443 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 444 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 445 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 446 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 447 else 448 getCXXABI().getMangleContext().mangleName(ND, Out); 449 450 // Allocate space for the mangled name. 451 Out.flush(); 452 size_t Length = Buffer.size(); 453 char *Name = MangledNamesAllocator.Allocate<char>(Length); 454 std::copy(Buffer.begin(), Buffer.end(), Name); 455 456 Str = StringRef(Name, Length); 457 458 return Str; 459 } 460 461 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 462 const BlockDecl *BD) { 463 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 464 const Decl *D = GD.getDecl(); 465 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 466 if (D == 0) 467 MangleCtx.mangleGlobalBlock(BD, 468 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 469 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 470 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 471 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 472 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 473 else 474 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 475 } 476 477 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 478 return getModule().getNamedValue(Name); 479 } 480 481 /// AddGlobalCtor - Add a function to the list that will be called before 482 /// main() runs. 483 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 484 // FIXME: Type coercion of void()* types. 485 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 486 } 487 488 /// AddGlobalDtor - Add a function to the list that will be called 489 /// when the module is unloaded. 490 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 491 // FIXME: Type coercion of void()* types. 492 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 493 } 494 495 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 496 // Ctor function type is void()*. 497 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 498 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 499 500 // Get the type of a ctor entry, { i32, void ()* }. 501 llvm::StructType *CtorStructTy = 502 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 503 504 // Construct the constructor and destructor arrays. 505 SmallVector<llvm::Constant*, 8> Ctors; 506 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 507 llvm::Constant *S[] = { 508 llvm::ConstantInt::get(Int32Ty, I->second, false), 509 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 510 }; 511 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 512 } 513 514 if (!Ctors.empty()) { 515 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 516 new llvm::GlobalVariable(TheModule, AT, false, 517 llvm::GlobalValue::AppendingLinkage, 518 llvm::ConstantArray::get(AT, Ctors), 519 GlobalName); 520 } 521 } 522 523 llvm::GlobalValue::LinkageTypes 524 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 525 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 526 527 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 528 529 if (Linkage == GVA_Internal) 530 return llvm::Function::InternalLinkage; 531 532 if (D->hasAttr<DLLExportAttr>()) 533 return llvm::Function::ExternalLinkage; 534 535 if (D->hasAttr<WeakAttr>()) 536 return llvm::Function::WeakAnyLinkage; 537 538 // In C99 mode, 'inline' functions are guaranteed to have a strong 539 // definition somewhere else, so we can use available_externally linkage. 540 if (Linkage == GVA_C99Inline) 541 return llvm::Function::AvailableExternallyLinkage; 542 543 // Note that Apple's kernel linker doesn't support symbol 544 // coalescing, so we need to avoid linkonce and weak linkages there. 545 // Normally, this means we just map to internal, but for explicit 546 // instantiations we'll map to external. 547 548 // In C++, the compiler has to emit a definition in every translation unit 549 // that references the function. We should use linkonce_odr because 550 // a) if all references in this translation unit are optimized away, we 551 // don't need to codegen it. b) if the function persists, it needs to be 552 // merged with other definitions. c) C++ has the ODR, so we know the 553 // definition is dependable. 554 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 555 return !Context.getLangOpts().AppleKext 556 ? llvm::Function::LinkOnceODRLinkage 557 : llvm::Function::InternalLinkage; 558 559 // An explicit instantiation of a template has weak linkage, since 560 // explicit instantiations can occur in multiple translation units 561 // and must all be equivalent. However, we are not allowed to 562 // throw away these explicit instantiations. 563 if (Linkage == GVA_ExplicitTemplateInstantiation) 564 return !Context.getLangOpts().AppleKext 565 ? llvm::Function::WeakODRLinkage 566 : llvm::Function::ExternalLinkage; 567 568 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 569 // emitted on an as-needed basis. 570 if (isa<CXXDestructorDecl>(D) && 571 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 572 GD.getDtorType())) 573 return llvm::Function::LinkOnceODRLinkage; 574 575 // Otherwise, we have strong external linkage. 576 assert(Linkage == GVA_StrongExternal); 577 return llvm::Function::ExternalLinkage; 578 } 579 580 581 /// SetFunctionDefinitionAttributes - Set attributes for a global. 582 /// 583 /// FIXME: This is currently only done for aliases and functions, but not for 584 /// variables (these details are set in EmitGlobalVarDefinition for variables). 585 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 586 llvm::GlobalValue *GV) { 587 SetCommonAttributes(D, GV); 588 } 589 590 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 591 const CGFunctionInfo &Info, 592 llvm::Function *F) { 593 unsigned CallingConv; 594 AttributeListType AttributeList; 595 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 596 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 597 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 598 } 599 600 /// Determines whether the language options require us to model 601 /// unwind exceptions. We treat -fexceptions as mandating this 602 /// except under the fragile ObjC ABI with only ObjC exceptions 603 /// enabled. This means, for example, that C with -fexceptions 604 /// enables this. 605 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 606 // If exceptions are completely disabled, obviously this is false. 607 if (!LangOpts.Exceptions) return false; 608 609 // If C++ exceptions are enabled, this is true. 610 if (LangOpts.CXXExceptions) return true; 611 612 // If ObjC exceptions are enabled, this depends on the ABI. 613 if (LangOpts.ObjCExceptions) { 614 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 615 } 616 617 return true; 618 } 619 620 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 621 llvm::Function *F) { 622 llvm::AttrBuilder B; 623 624 if (CodeGenOpts.UnwindTables) 625 B.addAttribute(llvm::Attribute::UWTable); 626 627 if (!hasUnwindExceptions(LangOpts)) 628 B.addAttribute(llvm::Attribute::NoUnwind); 629 630 if (D->hasAttr<NakedAttr>()) { 631 // Naked implies noinline: we should not be inlining such functions. 632 B.addAttribute(llvm::Attribute::Naked); 633 B.addAttribute(llvm::Attribute::NoInline); 634 } else if (D->hasAttr<NoDuplicateAttr>()) { 635 B.addAttribute(llvm::Attribute::NoDuplicate); 636 } else if (D->hasAttr<NoInlineAttr>()) { 637 B.addAttribute(llvm::Attribute::NoInline); 638 } else if (D->hasAttr<AlwaysInlineAttr>() && 639 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 640 llvm::Attribute::NoInline)) { 641 // (noinline wins over always_inline, and we can't specify both in IR) 642 B.addAttribute(llvm::Attribute::AlwaysInline); 643 } 644 645 if (D->hasAttr<ColdAttr>()) { 646 B.addAttribute(llvm::Attribute::OptimizeForSize); 647 B.addAttribute(llvm::Attribute::Cold); 648 } 649 650 if (D->hasAttr<MinSizeAttr>()) 651 B.addAttribute(llvm::Attribute::MinSize); 652 653 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 654 B.addAttribute(llvm::Attribute::StackProtect); 655 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 656 B.addAttribute(llvm::Attribute::StackProtectStrong); 657 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 658 B.addAttribute(llvm::Attribute::StackProtectReq); 659 660 // Add sanitizer attributes if function is not blacklisted. 661 if (!SanitizerBlacklist->isIn(*F)) { 662 // When AddressSanitizer is enabled, set SanitizeAddress attribute 663 // unless __attribute__((no_sanitize_address)) is used. 664 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 665 B.addAttribute(llvm::Attribute::SanitizeAddress); 666 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 667 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 668 B.addAttribute(llvm::Attribute::SanitizeThread); 669 } 670 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 671 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 672 B.addAttribute(llvm::Attribute::SanitizeMemory); 673 } 674 675 F->addAttributes(llvm::AttributeSet::FunctionIndex, 676 llvm::AttributeSet::get( 677 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 678 679 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 680 F->setUnnamedAddr(true); 681 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 682 if (MD->isVirtual()) 683 F->setUnnamedAddr(true); 684 685 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 686 if (alignment) 687 F->setAlignment(alignment); 688 689 // C++ ABI requires 2-byte alignment for member functions. 690 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 691 F->setAlignment(2); 692 } 693 694 void CodeGenModule::SetCommonAttributes(const Decl *D, 695 llvm::GlobalValue *GV) { 696 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 697 setGlobalVisibility(GV, ND); 698 else 699 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 700 701 if (D->hasAttr<UsedAttr>()) 702 addUsedGlobal(GV); 703 704 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 705 GV->setSection(SA->getName()); 706 707 // Alias cannot have attributes. Filter them here. 708 if (!isa<llvm::GlobalAlias>(GV)) 709 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 710 } 711 712 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 713 llvm::Function *F, 714 const CGFunctionInfo &FI) { 715 SetLLVMFunctionAttributes(D, FI, F); 716 SetLLVMFunctionAttributesForDefinition(D, F); 717 718 F->setLinkage(llvm::Function::InternalLinkage); 719 720 SetCommonAttributes(D, F); 721 } 722 723 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 724 llvm::Function *F, 725 bool IsIncompleteFunction) { 726 if (unsigned IID = F->getIntrinsicID()) { 727 // If this is an intrinsic function, set the function's attributes 728 // to the intrinsic's attributes. 729 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 730 (llvm::Intrinsic::ID)IID)); 731 return; 732 } 733 734 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 735 736 if (!IsIncompleteFunction) 737 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 738 739 if (getCXXABI().HasThisReturn(GD)) { 740 assert(!F->arg_empty() && 741 F->arg_begin()->getType() 742 ->canLosslesslyBitCastTo(F->getReturnType()) && 743 "unexpected this return"); 744 F->addAttribute(1, llvm::Attribute::Returned); 745 } 746 747 // Only a few attributes are set on declarations; these may later be 748 // overridden by a definition. 749 750 if (FD->hasAttr<DLLImportAttr>()) { 751 F->setLinkage(llvm::Function::ExternalLinkage); 752 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 753 } else if (FD->hasAttr<WeakAttr>() || 754 FD->isWeakImported()) { 755 // "extern_weak" is overloaded in LLVM; we probably should have 756 // separate linkage types for this. 757 F->setLinkage(llvm::Function::ExternalWeakLinkage); 758 } else { 759 F->setLinkage(llvm::Function::ExternalLinkage); 760 if (FD->hasAttr<DLLExportAttr>()) 761 F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 762 763 LinkageInfo LV = FD->getLinkageAndVisibility(); 764 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 765 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 766 } 767 } 768 769 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 770 F->setSection(SA->getName()); 771 772 // A replaceable global allocation function does not act like a builtin by 773 // default, only if it is invoked by a new-expression or delete-expression. 774 if (FD->isReplaceableGlobalAllocationFunction()) 775 F->addAttribute(llvm::AttributeSet::FunctionIndex, 776 llvm::Attribute::NoBuiltin); 777 } 778 779 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 780 assert(!GV->isDeclaration() && 781 "Only globals with definition can force usage."); 782 LLVMUsed.push_back(GV); 783 } 784 785 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 786 assert(!GV->isDeclaration() && 787 "Only globals with definition can force usage."); 788 LLVMCompilerUsed.push_back(GV); 789 } 790 791 static void emitUsed(CodeGenModule &CGM, StringRef Name, 792 std::vector<llvm::WeakVH> &List) { 793 // Don't create llvm.used if there is no need. 794 if (List.empty()) 795 return; 796 797 // Convert List to what ConstantArray needs. 798 SmallVector<llvm::Constant*, 8> UsedArray; 799 UsedArray.resize(List.size()); 800 for (unsigned i = 0, e = List.size(); i != e; ++i) { 801 UsedArray[i] = 802 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 803 CGM.Int8PtrTy); 804 } 805 806 if (UsedArray.empty()) 807 return; 808 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 809 810 llvm::GlobalVariable *GV = 811 new llvm::GlobalVariable(CGM.getModule(), ATy, false, 812 llvm::GlobalValue::AppendingLinkage, 813 llvm::ConstantArray::get(ATy, UsedArray), 814 Name); 815 816 GV->setSection("llvm.metadata"); 817 } 818 819 void CodeGenModule::emitLLVMUsed() { 820 emitUsed(*this, "llvm.used", LLVMUsed); 821 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 822 } 823 824 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 825 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 826 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 827 } 828 829 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 830 llvm::SmallString<32> Opt; 831 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 832 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 833 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 834 } 835 836 void CodeGenModule::AddDependentLib(StringRef Lib) { 837 llvm::SmallString<24> Opt; 838 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 839 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 840 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 841 } 842 843 /// \brief Add link options implied by the given module, including modules 844 /// it depends on, using a postorder walk. 845 static void addLinkOptionsPostorder(CodeGenModule &CGM, 846 Module *Mod, 847 SmallVectorImpl<llvm::Value *> &Metadata, 848 llvm::SmallPtrSet<Module *, 16> &Visited) { 849 // Import this module's parent. 850 if (Mod->Parent && Visited.insert(Mod->Parent)) { 851 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 852 } 853 854 // Import this module's dependencies. 855 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 856 if (Visited.insert(Mod->Imports[I-1])) 857 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 858 } 859 860 // Add linker options to link against the libraries/frameworks 861 // described by this module. 862 llvm::LLVMContext &Context = CGM.getLLVMContext(); 863 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 864 // Link against a framework. Frameworks are currently Darwin only, so we 865 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 866 if (Mod->LinkLibraries[I-1].IsFramework) { 867 llvm::Value *Args[2] = { 868 llvm::MDString::get(Context, "-framework"), 869 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 870 }; 871 872 Metadata.push_back(llvm::MDNode::get(Context, Args)); 873 continue; 874 } 875 876 // Link against a library. 877 llvm::SmallString<24> Opt; 878 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 879 Mod->LinkLibraries[I-1].Library, Opt); 880 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 881 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 882 } 883 } 884 885 void CodeGenModule::EmitModuleLinkOptions() { 886 // Collect the set of all of the modules we want to visit to emit link 887 // options, which is essentially the imported modules and all of their 888 // non-explicit child modules. 889 llvm::SetVector<clang::Module *> LinkModules; 890 llvm::SmallPtrSet<clang::Module *, 16> Visited; 891 SmallVector<clang::Module *, 16> Stack; 892 893 // Seed the stack with imported modules. 894 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 895 MEnd = ImportedModules.end(); 896 M != MEnd; ++M) { 897 if (Visited.insert(*M)) 898 Stack.push_back(*M); 899 } 900 901 // Find all of the modules to import, making a little effort to prune 902 // non-leaf modules. 903 while (!Stack.empty()) { 904 clang::Module *Mod = Stack.pop_back_val(); 905 906 bool AnyChildren = false; 907 908 // Visit the submodules of this module. 909 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 910 SubEnd = Mod->submodule_end(); 911 Sub != SubEnd; ++Sub) { 912 // Skip explicit children; they need to be explicitly imported to be 913 // linked against. 914 if ((*Sub)->IsExplicit) 915 continue; 916 917 if (Visited.insert(*Sub)) { 918 Stack.push_back(*Sub); 919 AnyChildren = true; 920 } 921 } 922 923 // We didn't find any children, so add this module to the list of 924 // modules to link against. 925 if (!AnyChildren) { 926 LinkModules.insert(Mod); 927 } 928 } 929 930 // Add link options for all of the imported modules in reverse topological 931 // order. We don't do anything to try to order import link flags with respect 932 // to linker options inserted by things like #pragma comment(). 933 SmallVector<llvm::Value *, 16> MetadataArgs; 934 Visited.clear(); 935 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 936 MEnd = LinkModules.end(); 937 M != MEnd; ++M) { 938 if (Visited.insert(*M)) 939 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 940 } 941 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 942 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 943 944 // Add the linker options metadata flag. 945 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 946 llvm::MDNode::get(getLLVMContext(), 947 LinkerOptionsMetadata)); 948 } 949 950 void CodeGenModule::EmitDeferred() { 951 // Emit code for any potentially referenced deferred decls. Since a 952 // previously unused static decl may become used during the generation of code 953 // for a static function, iterate until no changes are made. 954 955 while (true) { 956 if (!DeferredVTables.empty()) { 957 EmitDeferredVTables(); 958 959 // Emitting a v-table doesn't directly cause more v-tables to 960 // become deferred, although it can cause functions to be 961 // emitted that then need those v-tables. 962 assert(DeferredVTables.empty()); 963 } 964 965 // Stop if we're out of both deferred v-tables and deferred declarations. 966 if (DeferredDeclsToEmit.empty()) break; 967 968 DeferredGlobal &G = DeferredDeclsToEmit.back(); 969 GlobalDecl D = G.GD; 970 llvm::GlobalValue *GV = G.GV; 971 DeferredDeclsToEmit.pop_back(); 972 973 assert(GV == GetGlobalValue(getMangledName(D))); 974 // Check to see if we've already emitted this. This is necessary 975 // for a couple of reasons: first, decls can end up in the 976 // deferred-decls queue multiple times, and second, decls can end 977 // up with definitions in unusual ways (e.g. by an extern inline 978 // function acquiring a strong function redefinition). Just 979 // ignore these cases. 980 if(!GV->isDeclaration()) 981 continue; 982 983 // Otherwise, emit the definition and move on to the next one. 984 EmitGlobalDefinition(D, GV); 985 } 986 } 987 988 void CodeGenModule::EmitGlobalAnnotations() { 989 if (Annotations.empty()) 990 return; 991 992 // Create a new global variable for the ConstantStruct in the Module. 993 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 994 Annotations[0]->getType(), Annotations.size()), Annotations); 995 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 996 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 997 "llvm.global.annotations"); 998 gv->setSection(AnnotationSection); 999 } 1000 1001 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1002 llvm::Constant *&AStr = AnnotationStrings[Str]; 1003 if (AStr) 1004 return AStr; 1005 1006 // Not found yet, create a new global. 1007 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1008 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1009 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1010 gv->setSection(AnnotationSection); 1011 gv->setUnnamedAddr(true); 1012 AStr = gv; 1013 return gv; 1014 } 1015 1016 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1017 SourceManager &SM = getContext().getSourceManager(); 1018 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1019 if (PLoc.isValid()) 1020 return EmitAnnotationString(PLoc.getFilename()); 1021 return EmitAnnotationString(SM.getBufferName(Loc)); 1022 } 1023 1024 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1025 SourceManager &SM = getContext().getSourceManager(); 1026 PresumedLoc PLoc = SM.getPresumedLoc(L); 1027 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1028 SM.getExpansionLineNumber(L); 1029 return llvm::ConstantInt::get(Int32Ty, LineNo); 1030 } 1031 1032 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1033 const AnnotateAttr *AA, 1034 SourceLocation L) { 1035 // Get the globals for file name, annotation, and the line number. 1036 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1037 *UnitGV = EmitAnnotationUnit(L), 1038 *LineNoCst = EmitAnnotationLineNo(L); 1039 1040 // Create the ConstantStruct for the global annotation. 1041 llvm::Constant *Fields[4] = { 1042 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1043 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1044 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1045 LineNoCst 1046 }; 1047 return llvm::ConstantStruct::getAnon(Fields); 1048 } 1049 1050 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1051 llvm::GlobalValue *GV) { 1052 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1053 // Get the struct elements for these annotations. 1054 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1055 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1056 } 1057 1058 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1059 // Never defer when EmitAllDecls is specified. 1060 if (LangOpts.EmitAllDecls) 1061 return false; 1062 1063 return !getContext().DeclMustBeEmitted(Global); 1064 } 1065 1066 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1067 const CXXUuidofExpr* E) { 1068 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1069 // well-formed. 1070 StringRef Uuid = E->getUuidAsStringRef(Context); 1071 std::string Name = "_GUID_" + Uuid.lower(); 1072 std::replace(Name.begin(), Name.end(), '-', '_'); 1073 1074 // Look for an existing global. 1075 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1076 return GV; 1077 1078 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1079 assert(Init && "failed to initialize as constant"); 1080 1081 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1082 getModule(), Init->getType(), 1083 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1084 return GV; 1085 } 1086 1087 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1088 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1089 assert(AA && "No alias?"); 1090 1091 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1092 1093 // See if there is already something with the target's name in the module. 1094 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1095 if (Entry) { 1096 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1097 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1098 } 1099 1100 llvm::Constant *Aliasee; 1101 if (isa<llvm::FunctionType>(DeclTy)) 1102 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1103 GlobalDecl(cast<FunctionDecl>(VD)), 1104 /*ForVTable=*/false); 1105 else 1106 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1107 llvm::PointerType::getUnqual(DeclTy), 0); 1108 1109 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1110 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1111 WeakRefReferences.insert(F); 1112 1113 return Aliasee; 1114 } 1115 1116 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1117 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1118 1119 // Weak references don't produce any output by themselves. 1120 if (Global->hasAttr<WeakRefAttr>()) 1121 return; 1122 1123 // If this is an alias definition (which otherwise looks like a declaration) 1124 // emit it now. 1125 if (Global->hasAttr<AliasAttr>()) 1126 return EmitAliasDefinition(GD); 1127 1128 // If this is CUDA, be selective about which declarations we emit. 1129 if (LangOpts.CUDA) { 1130 if (CodeGenOpts.CUDAIsDevice) { 1131 if (!Global->hasAttr<CUDADeviceAttr>() && 1132 !Global->hasAttr<CUDAGlobalAttr>() && 1133 !Global->hasAttr<CUDAConstantAttr>() && 1134 !Global->hasAttr<CUDASharedAttr>()) 1135 return; 1136 } else { 1137 if (!Global->hasAttr<CUDAHostAttr>() && ( 1138 Global->hasAttr<CUDADeviceAttr>() || 1139 Global->hasAttr<CUDAConstantAttr>() || 1140 Global->hasAttr<CUDASharedAttr>())) 1141 return; 1142 } 1143 } 1144 1145 // Ignore declarations, they will be emitted on their first use. 1146 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1147 // Forward declarations are emitted lazily on first use. 1148 if (!FD->doesThisDeclarationHaveABody()) { 1149 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1150 return; 1151 1152 const FunctionDecl *InlineDefinition = 0; 1153 FD->getBody(InlineDefinition); 1154 1155 StringRef MangledName = getMangledName(GD); 1156 DeferredDecls.erase(MangledName); 1157 EmitGlobalDefinition(InlineDefinition); 1158 return; 1159 } 1160 } else { 1161 const VarDecl *VD = cast<VarDecl>(Global); 1162 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1163 1164 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1165 return; 1166 } 1167 1168 // Defer code generation when possible if this is a static definition, inline 1169 // function etc. These we only want to emit if they are used. 1170 if (!MayDeferGeneration(Global)) { 1171 // Emit the definition if it can't be deferred. 1172 EmitGlobalDefinition(GD); 1173 return; 1174 } 1175 1176 // If we're deferring emission of a C++ variable with an 1177 // initializer, remember the order in which it appeared in the file. 1178 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1179 cast<VarDecl>(Global)->hasInit()) { 1180 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1181 CXXGlobalInits.push_back(0); 1182 } 1183 1184 // If the value has already been used, add it directly to the 1185 // DeferredDeclsToEmit list. 1186 StringRef MangledName = getMangledName(GD); 1187 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1188 addDeferredDeclToEmit(GV, GD); 1189 else { 1190 // Otherwise, remember that we saw a deferred decl with this name. The 1191 // first use of the mangled name will cause it to move into 1192 // DeferredDeclsToEmit. 1193 DeferredDecls[MangledName] = GD; 1194 } 1195 } 1196 1197 namespace { 1198 struct FunctionIsDirectlyRecursive : 1199 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1200 const StringRef Name; 1201 const Builtin::Context &BI; 1202 bool Result; 1203 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1204 Name(N), BI(C), Result(false) { 1205 } 1206 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1207 1208 bool TraverseCallExpr(CallExpr *E) { 1209 const FunctionDecl *FD = E->getDirectCallee(); 1210 if (!FD) 1211 return true; 1212 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1213 if (Attr && Name == Attr->getLabel()) { 1214 Result = true; 1215 return false; 1216 } 1217 unsigned BuiltinID = FD->getBuiltinID(); 1218 if (!BuiltinID) 1219 return true; 1220 StringRef BuiltinName = BI.GetName(BuiltinID); 1221 if (BuiltinName.startswith("__builtin_") && 1222 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1223 Result = true; 1224 return false; 1225 } 1226 return true; 1227 } 1228 }; 1229 } 1230 1231 // isTriviallyRecursive - Check if this function calls another 1232 // decl that, because of the asm attribute or the other decl being a builtin, 1233 // ends up pointing to itself. 1234 bool 1235 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1236 StringRef Name; 1237 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1238 // asm labels are a special kind of mangling we have to support. 1239 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1240 if (!Attr) 1241 return false; 1242 Name = Attr->getLabel(); 1243 } else { 1244 Name = FD->getName(); 1245 } 1246 1247 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1248 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1249 return Walker.Result; 1250 } 1251 1252 bool 1253 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1254 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1255 return true; 1256 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1257 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1258 return false; 1259 // PR9614. Avoid cases where the source code is lying to us. An available 1260 // externally function should have an equivalent function somewhere else, 1261 // but a function that calls itself is clearly not equivalent to the real 1262 // implementation. 1263 // This happens in glibc's btowc and in some configure checks. 1264 return !isTriviallyRecursive(F); 1265 } 1266 1267 /// If the type for the method's class was generated by 1268 /// CGDebugInfo::createContextChain(), the cache contains only a 1269 /// limited DIType without any declarations. Since EmitFunctionStart() 1270 /// needs to find the canonical declaration for each method, we need 1271 /// to construct the complete type prior to emitting the method. 1272 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1273 if (!D->isInstance()) 1274 return; 1275 1276 if (CGDebugInfo *DI = getModuleDebugInfo()) 1277 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1278 const PointerType *ThisPtr = 1279 cast<PointerType>(D->getThisType(getContext())); 1280 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1281 } 1282 } 1283 1284 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1285 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1286 1287 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1288 Context.getSourceManager(), 1289 "Generating code for declaration"); 1290 1291 if (isa<FunctionDecl>(D)) { 1292 // At -O0, don't generate IR for functions with available_externally 1293 // linkage. 1294 if (!shouldEmitFunction(GD)) 1295 return; 1296 1297 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1298 CompleteDIClassType(Method); 1299 // Make sure to emit the definition(s) before we emit the thunks. 1300 // This is necessary for the generation of certain thunks. 1301 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1302 EmitCXXConstructor(CD, GD.getCtorType()); 1303 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1304 EmitCXXDestructor(DD, GD.getDtorType()); 1305 else 1306 EmitGlobalFunctionDefinition(GD, GV); 1307 1308 if (Method->isVirtual()) 1309 getVTables().EmitThunks(GD); 1310 1311 return; 1312 } 1313 1314 return EmitGlobalFunctionDefinition(GD, GV); 1315 } 1316 1317 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1318 return EmitGlobalVarDefinition(VD); 1319 1320 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1321 } 1322 1323 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1324 /// module, create and return an llvm Function with the specified type. If there 1325 /// is something in the module with the specified name, return it potentially 1326 /// bitcasted to the right type. 1327 /// 1328 /// If D is non-null, it specifies a decl that correspond to this. This is used 1329 /// to set the attributes on the function when it is first created. 1330 llvm::Constant * 1331 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1332 llvm::Type *Ty, 1333 GlobalDecl GD, bool ForVTable, 1334 bool DontDefer, 1335 llvm::AttributeSet ExtraAttrs) { 1336 const Decl *D = GD.getDecl(); 1337 1338 // Lookup the entry, lazily creating it if necessary. 1339 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1340 if (Entry) { 1341 if (WeakRefReferences.erase(Entry)) { 1342 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1343 if (FD && !FD->hasAttr<WeakAttr>()) 1344 Entry->setLinkage(llvm::Function::ExternalLinkage); 1345 } 1346 1347 if (Entry->getType()->getElementType() == Ty) 1348 return Entry; 1349 1350 // Make sure the result is of the correct type. 1351 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1352 } 1353 1354 // This function doesn't have a complete type (for example, the return 1355 // type is an incomplete struct). Use a fake type instead, and make 1356 // sure not to try to set attributes. 1357 bool IsIncompleteFunction = false; 1358 1359 llvm::FunctionType *FTy; 1360 if (isa<llvm::FunctionType>(Ty)) { 1361 FTy = cast<llvm::FunctionType>(Ty); 1362 } else { 1363 FTy = llvm::FunctionType::get(VoidTy, false); 1364 IsIncompleteFunction = true; 1365 } 1366 1367 llvm::Function *F = llvm::Function::Create(FTy, 1368 llvm::Function::ExternalLinkage, 1369 MangledName, &getModule()); 1370 assert(F->getName() == MangledName && "name was uniqued!"); 1371 if (D) 1372 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1373 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1374 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1375 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1376 llvm::AttributeSet::get(VMContext, 1377 llvm::AttributeSet::FunctionIndex, 1378 B)); 1379 } 1380 1381 if (!DontDefer) { 1382 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1383 // each other bottoming out with the base dtor. Therefore we emit non-base 1384 // dtors on usage, even if there is no dtor definition in the TU. 1385 if (D && isa<CXXDestructorDecl>(D) && 1386 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1387 GD.getDtorType())) 1388 addDeferredDeclToEmit(F, GD); 1389 1390 // This is the first use or definition of a mangled name. If there is a 1391 // deferred decl with this name, remember that we need to emit it at the end 1392 // of the file. 1393 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1394 if (DDI != DeferredDecls.end()) { 1395 // Move the potentially referenced deferred decl to the 1396 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1397 // don't need it anymore). 1398 addDeferredDeclToEmit(F, DDI->second); 1399 DeferredDecls.erase(DDI); 1400 1401 // Otherwise, if this is a sized deallocation function, emit a weak 1402 // definition 1403 // for it at the end of the translation unit. 1404 } else if (D && cast<FunctionDecl>(D) 1405 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1406 addDeferredDeclToEmit(F, GD); 1407 1408 // Otherwise, there are cases we have to worry about where we're 1409 // using a declaration for which we must emit a definition but where 1410 // we might not find a top-level definition: 1411 // - member functions defined inline in their classes 1412 // - friend functions defined inline in some class 1413 // - special member functions with implicit definitions 1414 // If we ever change our AST traversal to walk into class methods, 1415 // this will be unnecessary. 1416 // 1417 // We also don't emit a definition for a function if it's going to be an 1418 // entry 1419 // in a vtable, unless it's already marked as used. 1420 } else if (getLangOpts().CPlusPlus && D) { 1421 // Look for a declaration that's lexically in a record. 1422 const FunctionDecl *FD = cast<FunctionDecl>(D); 1423 FD = FD->getMostRecentDecl(); 1424 do { 1425 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1426 if (FD->isImplicit() && !ForVTable) { 1427 assert(FD->isUsed() && 1428 "Sema didn't mark implicit function as used!"); 1429 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1430 break; 1431 } else if (FD->doesThisDeclarationHaveABody()) { 1432 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1433 break; 1434 } 1435 } 1436 FD = FD->getPreviousDecl(); 1437 } while (FD); 1438 } 1439 } 1440 1441 // Make sure the result is of the requested type. 1442 if (!IsIncompleteFunction) { 1443 assert(F->getType()->getElementType() == Ty); 1444 return F; 1445 } 1446 1447 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1448 return llvm::ConstantExpr::getBitCast(F, PTy); 1449 } 1450 1451 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1452 /// non-null, then this function will use the specified type if it has to 1453 /// create it (this occurs when we see a definition of the function). 1454 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1455 llvm::Type *Ty, 1456 bool ForVTable, 1457 bool DontDefer) { 1458 // If there was no specific requested type, just convert it now. 1459 if (!Ty) 1460 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1461 1462 StringRef MangledName = getMangledName(GD); 1463 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1464 } 1465 1466 /// CreateRuntimeFunction - Create a new runtime function with the specified 1467 /// type and name. 1468 llvm::Constant * 1469 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1470 StringRef Name, 1471 llvm::AttributeSet ExtraAttrs) { 1472 llvm::Constant *C = 1473 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1474 /*DontDefer=*/false, ExtraAttrs); 1475 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1476 if (F->empty()) 1477 F->setCallingConv(getRuntimeCC()); 1478 return C; 1479 } 1480 1481 /// isTypeConstant - Determine whether an object of this type can be emitted 1482 /// as a constant. 1483 /// 1484 /// If ExcludeCtor is true, the duration when the object's constructor runs 1485 /// will not be considered. The caller will need to verify that the object is 1486 /// not written to during its construction. 1487 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1488 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1489 return false; 1490 1491 if (Context.getLangOpts().CPlusPlus) { 1492 if (const CXXRecordDecl *Record 1493 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1494 return ExcludeCtor && !Record->hasMutableFields() && 1495 Record->hasTrivialDestructor(); 1496 } 1497 1498 return true; 1499 } 1500 1501 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1502 /// create and return an llvm GlobalVariable with the specified type. If there 1503 /// is something in the module with the specified name, return it potentially 1504 /// bitcasted to the right type. 1505 /// 1506 /// If D is non-null, it specifies a decl that correspond to this. This is used 1507 /// to set the attributes on the global when it is first created. 1508 llvm::Constant * 1509 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1510 llvm::PointerType *Ty, 1511 const VarDecl *D, 1512 bool UnnamedAddr) { 1513 // Lookup the entry, lazily creating it if necessary. 1514 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1515 if (Entry) { 1516 if (WeakRefReferences.erase(Entry)) { 1517 if (D && !D->hasAttr<WeakAttr>()) 1518 Entry->setLinkage(llvm::Function::ExternalLinkage); 1519 } 1520 1521 if (UnnamedAddr) 1522 Entry->setUnnamedAddr(true); 1523 1524 if (Entry->getType() == Ty) 1525 return Entry; 1526 1527 // Make sure the result is of the correct type. 1528 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1529 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1530 1531 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1532 } 1533 1534 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1535 llvm::GlobalVariable *GV = 1536 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1537 llvm::GlobalValue::ExternalLinkage, 1538 0, MangledName, 0, 1539 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1540 1541 // This is the first use or definition of a mangled name. If there is a 1542 // deferred decl with this name, remember that we need to emit it at the end 1543 // of the file. 1544 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1545 if (DDI != DeferredDecls.end()) { 1546 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1547 // list, and remove it from DeferredDecls (since we don't need it anymore). 1548 addDeferredDeclToEmit(GV, DDI->second); 1549 DeferredDecls.erase(DDI); 1550 } 1551 1552 // Handle things which are present even on external declarations. 1553 if (D) { 1554 // FIXME: This code is overly simple and should be merged with other global 1555 // handling. 1556 GV->setConstant(isTypeConstant(D->getType(), false)); 1557 1558 // Set linkage and visibility in case we never see a definition. 1559 LinkageInfo LV = D->getLinkageAndVisibility(); 1560 if (LV.getLinkage() != ExternalLinkage) { 1561 // Don't set internal linkage on declarations. 1562 } else { 1563 if (D->hasAttr<DLLImportAttr>()) { 1564 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1565 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1566 } else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1567 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1568 1569 // Set visibility on a declaration only if it's explicit. 1570 if (LV.isVisibilityExplicit()) 1571 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1572 } 1573 1574 if (D->getTLSKind()) { 1575 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1576 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1577 setTLSMode(GV, *D); 1578 } 1579 1580 // If required by the ABI, treat declarations of static data members with 1581 // inline initializers as definitions. 1582 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1583 D->isStaticDataMember() && D->hasInit() && 1584 !D->isThisDeclarationADefinition()) 1585 EmitGlobalVarDefinition(D); 1586 } 1587 1588 if (AddrSpace != Ty->getAddressSpace()) 1589 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1590 1591 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1592 D->getLanguageLinkage() == CLanguageLinkage && 1593 D->getType().isConstant(Context) && 1594 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1595 GV->setSection(".cp.rodata"); 1596 1597 return GV; 1598 } 1599 1600 1601 llvm::GlobalVariable * 1602 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1603 llvm::Type *Ty, 1604 llvm::GlobalValue::LinkageTypes Linkage) { 1605 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1606 llvm::GlobalVariable *OldGV = 0; 1607 1608 1609 if (GV) { 1610 // Check if the variable has the right type. 1611 if (GV->getType()->getElementType() == Ty) 1612 return GV; 1613 1614 // Because C++ name mangling, the only way we can end up with an already 1615 // existing global with the same name is if it has been declared extern "C". 1616 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1617 OldGV = GV; 1618 } 1619 1620 // Create a new variable. 1621 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1622 Linkage, 0, Name); 1623 1624 if (OldGV) { 1625 // Replace occurrences of the old variable if needed. 1626 GV->takeName(OldGV); 1627 1628 if (!OldGV->use_empty()) { 1629 llvm::Constant *NewPtrForOldDecl = 1630 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1631 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1632 } 1633 1634 OldGV->eraseFromParent(); 1635 } 1636 1637 return GV; 1638 } 1639 1640 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1641 /// given global variable. If Ty is non-null and if the global doesn't exist, 1642 /// then it will be created with the specified type instead of whatever the 1643 /// normal requested type would be. 1644 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1645 llvm::Type *Ty) { 1646 assert(D->hasGlobalStorage() && "Not a global variable"); 1647 QualType ASTTy = D->getType(); 1648 if (Ty == 0) 1649 Ty = getTypes().ConvertTypeForMem(ASTTy); 1650 1651 llvm::PointerType *PTy = 1652 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1653 1654 StringRef MangledName = getMangledName(D); 1655 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1656 } 1657 1658 /// CreateRuntimeVariable - Create a new runtime global variable with the 1659 /// specified type and name. 1660 llvm::Constant * 1661 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1662 StringRef Name) { 1663 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1664 true); 1665 } 1666 1667 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1668 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1669 1670 if (MayDeferGeneration(D)) { 1671 // If we have not seen a reference to this variable yet, place it 1672 // into the deferred declarations table to be emitted if needed 1673 // later. 1674 StringRef MangledName = getMangledName(D); 1675 if (!GetGlobalValue(MangledName)) { 1676 DeferredDecls[MangledName] = D; 1677 return; 1678 } 1679 } 1680 1681 // The tentative definition is the only definition. 1682 EmitGlobalVarDefinition(D); 1683 } 1684 1685 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1686 return Context.toCharUnitsFromBits( 1687 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1688 } 1689 1690 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1691 unsigned AddrSpace) { 1692 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1693 if (D->hasAttr<CUDAConstantAttr>()) 1694 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1695 else if (D->hasAttr<CUDASharedAttr>()) 1696 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1697 else 1698 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1699 } 1700 1701 return AddrSpace; 1702 } 1703 1704 template<typename SomeDecl> 1705 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1706 llvm::GlobalValue *GV) { 1707 if (!getLangOpts().CPlusPlus) 1708 return; 1709 1710 // Must have 'used' attribute, or else inline assembly can't rely on 1711 // the name existing. 1712 if (!D->template hasAttr<UsedAttr>()) 1713 return; 1714 1715 // Must have internal linkage and an ordinary name. 1716 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1717 return; 1718 1719 // Must be in an extern "C" context. Entities declared directly within 1720 // a record are not extern "C" even if the record is in such a context. 1721 const SomeDecl *First = D->getFirstDecl(); 1722 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1723 return; 1724 1725 // OK, this is an internal linkage entity inside an extern "C" linkage 1726 // specification. Make a note of that so we can give it the "expected" 1727 // mangled name if nothing else is using that name. 1728 std::pair<StaticExternCMap::iterator, bool> R = 1729 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1730 1731 // If we have multiple internal linkage entities with the same name 1732 // in extern "C" regions, none of them gets that name. 1733 if (!R.second) 1734 R.first->second = 0; 1735 } 1736 1737 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1738 llvm::Constant *Init = 0; 1739 QualType ASTTy = D->getType(); 1740 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1741 bool NeedsGlobalCtor = false; 1742 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1743 1744 const VarDecl *InitDecl; 1745 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1746 1747 if (!InitExpr) { 1748 // This is a tentative definition; tentative definitions are 1749 // implicitly initialized with { 0 }. 1750 // 1751 // Note that tentative definitions are only emitted at the end of 1752 // a translation unit, so they should never have incomplete 1753 // type. In addition, EmitTentativeDefinition makes sure that we 1754 // never attempt to emit a tentative definition if a real one 1755 // exists. A use may still exists, however, so we still may need 1756 // to do a RAUW. 1757 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1758 Init = EmitNullConstant(D->getType()); 1759 } else { 1760 initializedGlobalDecl = GlobalDecl(D); 1761 Init = EmitConstantInit(*InitDecl); 1762 1763 if (!Init) { 1764 QualType T = InitExpr->getType(); 1765 if (D->getType()->isReferenceType()) 1766 T = D->getType(); 1767 1768 if (getLangOpts().CPlusPlus) { 1769 Init = EmitNullConstant(T); 1770 NeedsGlobalCtor = true; 1771 } else { 1772 ErrorUnsupported(D, "static initializer"); 1773 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1774 } 1775 } else { 1776 // We don't need an initializer, so remove the entry for the delayed 1777 // initializer position (just in case this entry was delayed) if we 1778 // also don't need to register a destructor. 1779 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1780 DelayedCXXInitPosition.erase(D); 1781 } 1782 } 1783 1784 llvm::Type* InitType = Init->getType(); 1785 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1786 1787 // Strip off a bitcast if we got one back. 1788 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1789 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1790 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1791 // All zero index gep. 1792 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1793 Entry = CE->getOperand(0); 1794 } 1795 1796 // Entry is now either a Function or GlobalVariable. 1797 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1798 1799 // We have a definition after a declaration with the wrong type. 1800 // We must make a new GlobalVariable* and update everything that used OldGV 1801 // (a declaration or tentative definition) with the new GlobalVariable* 1802 // (which will be a definition). 1803 // 1804 // This happens if there is a prototype for a global (e.g. 1805 // "extern int x[];") and then a definition of a different type (e.g. 1806 // "int x[10];"). This also happens when an initializer has a different type 1807 // from the type of the global (this happens with unions). 1808 if (GV == 0 || 1809 GV->getType()->getElementType() != InitType || 1810 GV->getType()->getAddressSpace() != 1811 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1812 1813 // Move the old entry aside so that we'll create a new one. 1814 Entry->setName(StringRef()); 1815 1816 // Make a new global with the correct type, this is now guaranteed to work. 1817 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1818 1819 // Replace all uses of the old global with the new global 1820 llvm::Constant *NewPtrForOldDecl = 1821 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1822 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1823 1824 // Erase the old global, since it is no longer used. 1825 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1826 } 1827 1828 MaybeHandleStaticInExternC(D, GV); 1829 1830 if (D->hasAttr<AnnotateAttr>()) 1831 AddGlobalAnnotations(D, GV); 1832 1833 GV->setInitializer(Init); 1834 1835 // If it is safe to mark the global 'constant', do so now. 1836 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1837 isTypeConstant(D->getType(), true)); 1838 1839 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1840 1841 // Set the llvm linkage type as appropriate. 1842 llvm::GlobalValue::LinkageTypes Linkage = 1843 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1844 GV->setLinkage(Linkage); 1845 if (D->hasAttr<DLLImportAttr>()) 1846 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1847 else if (D->hasAttr<DLLExportAttr>()) 1848 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1849 1850 // If required by the ABI, give definitions of static data members with inline 1851 // initializers linkonce_odr linkage. 1852 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1853 D->isStaticDataMember() && InitExpr && 1854 !InitDecl->isThisDeclarationADefinition()) 1855 GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage); 1856 1857 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1858 // common vars aren't constant even if declared const. 1859 GV->setConstant(false); 1860 1861 SetCommonAttributes(D, GV); 1862 1863 // Emit the initializer function if necessary. 1864 if (NeedsGlobalCtor || NeedsGlobalDtor) 1865 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1866 1867 // If we are compiling with ASan, add metadata indicating dynamically 1868 // initialized globals. 1869 if (SanOpts.Address && NeedsGlobalCtor) { 1870 llvm::Module &M = getModule(); 1871 1872 llvm::NamedMDNode *DynamicInitializers = 1873 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1874 llvm::Value *GlobalToAdd[] = { GV }; 1875 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1876 DynamicInitializers->addOperand(ThisGlobal); 1877 } 1878 1879 // Emit global variable debug information. 1880 if (CGDebugInfo *DI = getModuleDebugInfo()) 1881 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1882 DI->EmitGlobalVariable(GV, D); 1883 } 1884 1885 llvm::GlobalValue::LinkageTypes 1886 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1887 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1888 if (Linkage == GVA_Internal) 1889 return llvm::Function::InternalLinkage; 1890 else if (D->hasAttr<DLLImportAttr>()) 1891 return llvm::Function::ExternalLinkage; 1892 else if (D->hasAttr<DLLExportAttr>()) 1893 return llvm::Function::ExternalLinkage; 1894 else if (D->hasAttr<SelectAnyAttr>()) { 1895 // selectany symbols are externally visible, so use weak instead of 1896 // linkonce. MSVC optimizes away references to const selectany globals, so 1897 // all definitions should be the same and ODR linkage should be used. 1898 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1899 return llvm::GlobalVariable::WeakODRLinkage; 1900 } else if (D->hasAttr<WeakAttr>()) { 1901 if (isConstant) 1902 return llvm::GlobalVariable::WeakODRLinkage; 1903 else 1904 return llvm::GlobalVariable::WeakAnyLinkage; 1905 } else if (Linkage == GVA_TemplateInstantiation || 1906 Linkage == GVA_ExplicitTemplateInstantiation) 1907 return llvm::GlobalVariable::WeakODRLinkage; 1908 else if (!getLangOpts().CPlusPlus && 1909 ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) || 1910 D->hasAttr<CommonAttr>()) && 1911 !D->hasExternalStorage() && !D->getInit() && 1912 !D->hasAttr<SectionAttr>() && !D->getTLSKind() && 1913 !D->hasAttr<WeakImportAttr>()) { 1914 // Thread local vars aren't considered common linkage. 1915 return llvm::GlobalVariable::CommonLinkage; 1916 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1917 getTarget().getTriple().isMacOSX()) 1918 // On Darwin, the backing variable for a C++11 thread_local variable always 1919 // has internal linkage; all accesses should just be calls to the 1920 // Itanium-specified entry point, which has the normal linkage of the 1921 // variable. 1922 return llvm::GlobalValue::InternalLinkage; 1923 return llvm::GlobalVariable::ExternalLinkage; 1924 } 1925 1926 /// Replace the uses of a function that was declared with a non-proto type. 1927 /// We want to silently drop extra arguments from call sites 1928 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1929 llvm::Function *newFn) { 1930 // Fast path. 1931 if (old->use_empty()) return; 1932 1933 llvm::Type *newRetTy = newFn->getReturnType(); 1934 SmallVector<llvm::Value*, 4> newArgs; 1935 1936 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1937 ui != ue; ) { 1938 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1939 llvm::User *user = use->getUser(); 1940 1941 // Recognize and replace uses of bitcasts. Most calls to 1942 // unprototyped functions will use bitcasts. 1943 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1944 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1945 replaceUsesOfNonProtoConstant(bitcast, newFn); 1946 continue; 1947 } 1948 1949 // Recognize calls to the function. 1950 llvm::CallSite callSite(user); 1951 if (!callSite) continue; 1952 if (!callSite.isCallee(&*use)) continue; 1953 1954 // If the return types don't match exactly, then we can't 1955 // transform this call unless it's dead. 1956 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1957 continue; 1958 1959 // Get the call site's attribute list. 1960 SmallVector<llvm::AttributeSet, 8> newAttrs; 1961 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1962 1963 // Collect any return attributes from the call. 1964 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1965 newAttrs.push_back( 1966 llvm::AttributeSet::get(newFn->getContext(), 1967 oldAttrs.getRetAttributes())); 1968 1969 // If the function was passed too few arguments, don't transform. 1970 unsigned newNumArgs = newFn->arg_size(); 1971 if (callSite.arg_size() < newNumArgs) continue; 1972 1973 // If extra arguments were passed, we silently drop them. 1974 // If any of the types mismatch, we don't transform. 1975 unsigned argNo = 0; 1976 bool dontTransform = false; 1977 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1978 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1979 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1980 dontTransform = true; 1981 break; 1982 } 1983 1984 // Add any parameter attributes. 1985 if (oldAttrs.hasAttributes(argNo + 1)) 1986 newAttrs. 1987 push_back(llvm:: 1988 AttributeSet::get(newFn->getContext(), 1989 oldAttrs.getParamAttributes(argNo + 1))); 1990 } 1991 if (dontTransform) 1992 continue; 1993 1994 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 1995 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 1996 oldAttrs.getFnAttributes())); 1997 1998 // Okay, we can transform this. Create the new call instruction and copy 1999 // over the required information. 2000 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2001 2002 llvm::CallSite newCall; 2003 if (callSite.isCall()) { 2004 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2005 callSite.getInstruction()); 2006 } else { 2007 llvm::InvokeInst *oldInvoke = 2008 cast<llvm::InvokeInst>(callSite.getInstruction()); 2009 newCall = llvm::InvokeInst::Create(newFn, 2010 oldInvoke->getNormalDest(), 2011 oldInvoke->getUnwindDest(), 2012 newArgs, "", 2013 callSite.getInstruction()); 2014 } 2015 newArgs.clear(); // for the next iteration 2016 2017 if (!newCall->getType()->isVoidTy()) 2018 newCall->takeName(callSite.getInstruction()); 2019 newCall.setAttributes( 2020 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2021 newCall.setCallingConv(callSite.getCallingConv()); 2022 2023 // Finally, remove the old call, replacing any uses with the new one. 2024 if (!callSite->use_empty()) 2025 callSite->replaceAllUsesWith(newCall.getInstruction()); 2026 2027 // Copy debug location attached to CI. 2028 if (!callSite->getDebugLoc().isUnknown()) 2029 newCall->setDebugLoc(callSite->getDebugLoc()); 2030 callSite->eraseFromParent(); 2031 } 2032 } 2033 2034 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2035 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2036 /// existing call uses of the old function in the module, this adjusts them to 2037 /// call the new function directly. 2038 /// 2039 /// This is not just a cleanup: the always_inline pass requires direct calls to 2040 /// functions to be able to inline them. If there is a bitcast in the way, it 2041 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2042 /// run at -O0. 2043 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2044 llvm::Function *NewFn) { 2045 // If we're redefining a global as a function, don't transform it. 2046 if (!isa<llvm::Function>(Old)) return; 2047 2048 replaceUsesOfNonProtoConstant(Old, NewFn); 2049 } 2050 2051 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2052 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2053 // If we have a definition, this might be a deferred decl. If the 2054 // instantiation is explicit, make sure we emit it at the end. 2055 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2056 GetAddrOfGlobalVar(VD); 2057 2058 EmitTopLevelDecl(VD); 2059 } 2060 2061 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2062 llvm::GlobalValue *GV) { 2063 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2064 2065 // Compute the function info and LLVM type. 2066 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2067 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2068 2069 // Get or create the prototype for the function. 2070 llvm::Constant *Entry = 2071 GV ? GV 2072 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2073 2074 // Strip off a bitcast if we got one back. 2075 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2076 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2077 Entry = CE->getOperand(0); 2078 } 2079 2080 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2081 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2082 return; 2083 } 2084 2085 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2086 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2087 2088 // If the types mismatch then we have to rewrite the definition. 2089 assert(OldFn->isDeclaration() && 2090 "Shouldn't replace non-declaration"); 2091 2092 // F is the Function* for the one with the wrong type, we must make a new 2093 // Function* and update everything that used F (a declaration) with the new 2094 // Function* (which will be a definition). 2095 // 2096 // This happens if there is a prototype for a function 2097 // (e.g. "int f()") and then a definition of a different type 2098 // (e.g. "int f(int x)"). Move the old function aside so that it 2099 // doesn't interfere with GetAddrOfFunction. 2100 OldFn->setName(StringRef()); 2101 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2102 2103 // This might be an implementation of a function without a 2104 // prototype, in which case, try to do special replacement of 2105 // calls which match the new prototype. The really key thing here 2106 // is that we also potentially drop arguments from the call site 2107 // so as to make a direct call, which makes the inliner happier 2108 // and suppresses a number of optimizer warnings (!) about 2109 // dropping arguments. 2110 if (!OldFn->use_empty()) { 2111 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2112 OldFn->removeDeadConstantUsers(); 2113 } 2114 2115 // Replace uses of F with the Function we will endow with a body. 2116 if (!Entry->use_empty()) { 2117 llvm::Constant *NewPtrForOldDecl = 2118 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2119 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2120 } 2121 2122 // Ok, delete the old function now, which is dead. 2123 OldFn->eraseFromParent(); 2124 2125 Entry = NewFn; 2126 } 2127 2128 // We need to set linkage and visibility on the function before 2129 // generating code for it because various parts of IR generation 2130 // want to propagate this information down (e.g. to local static 2131 // declarations). 2132 llvm::Function *Fn = cast<llvm::Function>(Entry); 2133 setFunctionLinkage(GD, Fn); 2134 2135 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2136 setGlobalVisibility(Fn, D); 2137 2138 MaybeHandleStaticInExternC(D, Fn); 2139 2140 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2141 2142 SetFunctionDefinitionAttributes(D, Fn); 2143 SetLLVMFunctionAttributesForDefinition(D, Fn); 2144 2145 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2146 AddGlobalCtor(Fn, CA->getPriority()); 2147 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2148 AddGlobalDtor(Fn, DA->getPriority()); 2149 if (D->hasAttr<AnnotateAttr>()) 2150 AddGlobalAnnotations(D, Fn); 2151 2152 llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this); 2153 if (PGOInit) 2154 AddGlobalCtor(PGOInit, 0); 2155 } 2156 2157 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2158 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2159 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2160 assert(AA && "Not an alias?"); 2161 2162 StringRef MangledName = getMangledName(GD); 2163 2164 // If there is a definition in the module, then it wins over the alias. 2165 // This is dubious, but allow it to be safe. Just ignore the alias. 2166 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2167 if (Entry && !Entry->isDeclaration()) 2168 return; 2169 2170 Aliases.push_back(GD); 2171 2172 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2173 2174 // Create a reference to the named value. This ensures that it is emitted 2175 // if a deferred decl. 2176 llvm::Constant *Aliasee; 2177 if (isa<llvm::FunctionType>(DeclTy)) 2178 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2179 /*ForVTable=*/false); 2180 else 2181 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2182 llvm::PointerType::getUnqual(DeclTy), 0); 2183 2184 // Create the new alias itself, but don't set a name yet. 2185 llvm::GlobalValue *GA = 2186 new llvm::GlobalAlias(Aliasee->getType(), 2187 llvm::Function::ExternalLinkage, 2188 "", Aliasee, &getModule()); 2189 2190 if (Entry) { 2191 assert(Entry->isDeclaration()); 2192 2193 // If there is a declaration in the module, then we had an extern followed 2194 // by the alias, as in: 2195 // extern int test6(); 2196 // ... 2197 // int test6() __attribute__((alias("test7"))); 2198 // 2199 // Remove it and replace uses of it with the alias. 2200 GA->takeName(Entry); 2201 2202 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2203 Entry->getType())); 2204 Entry->eraseFromParent(); 2205 } else { 2206 GA->setName(MangledName); 2207 } 2208 2209 // Set attributes which are particular to an alias; this is a 2210 // specialization of the attributes which may be set on a global 2211 // variable/function. 2212 if (D->hasAttr<DLLExportAttr>()) { 2213 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2214 // The dllexport attribute is ignored for undefined symbols. 2215 if (FD->hasBody()) 2216 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2217 } else { 2218 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2219 } 2220 } else if (D->hasAttr<WeakAttr>() || 2221 D->hasAttr<WeakRefAttr>() || 2222 D->isWeakImported()) { 2223 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2224 } 2225 2226 SetCommonAttributes(D, GA); 2227 } 2228 2229 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2230 ArrayRef<llvm::Type*> Tys) { 2231 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2232 Tys); 2233 } 2234 2235 static llvm::StringMapEntry<llvm::Constant*> & 2236 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2237 const StringLiteral *Literal, 2238 bool TargetIsLSB, 2239 bool &IsUTF16, 2240 unsigned &StringLength) { 2241 StringRef String = Literal->getString(); 2242 unsigned NumBytes = String.size(); 2243 2244 // Check for simple case. 2245 if (!Literal->containsNonAsciiOrNull()) { 2246 StringLength = NumBytes; 2247 return Map.GetOrCreateValue(String); 2248 } 2249 2250 // Otherwise, convert the UTF8 literals into a string of shorts. 2251 IsUTF16 = true; 2252 2253 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2254 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2255 UTF16 *ToPtr = &ToBuf[0]; 2256 2257 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2258 &ToPtr, ToPtr + NumBytes, 2259 strictConversion); 2260 2261 // ConvertUTF8toUTF16 returns the length in ToPtr. 2262 StringLength = ToPtr - &ToBuf[0]; 2263 2264 // Add an explicit null. 2265 *ToPtr = 0; 2266 return Map. 2267 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2268 (StringLength + 1) * 2)); 2269 } 2270 2271 static llvm::StringMapEntry<llvm::Constant*> & 2272 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2273 const StringLiteral *Literal, 2274 unsigned &StringLength) { 2275 StringRef String = Literal->getString(); 2276 StringLength = String.size(); 2277 return Map.GetOrCreateValue(String); 2278 } 2279 2280 llvm::Constant * 2281 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2282 unsigned StringLength = 0; 2283 bool isUTF16 = false; 2284 llvm::StringMapEntry<llvm::Constant*> &Entry = 2285 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2286 getDataLayout().isLittleEndian(), 2287 isUTF16, StringLength); 2288 2289 if (llvm::Constant *C = Entry.getValue()) 2290 return C; 2291 2292 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2293 llvm::Constant *Zeros[] = { Zero, Zero }; 2294 llvm::Value *V; 2295 2296 // If we don't already have it, get __CFConstantStringClassReference. 2297 if (!CFConstantStringClassRef) { 2298 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2299 Ty = llvm::ArrayType::get(Ty, 0); 2300 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2301 "__CFConstantStringClassReference"); 2302 // Decay array -> ptr 2303 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2304 CFConstantStringClassRef = V; 2305 } 2306 else 2307 V = CFConstantStringClassRef; 2308 2309 QualType CFTy = getContext().getCFConstantStringType(); 2310 2311 llvm::StructType *STy = 2312 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2313 2314 llvm::Constant *Fields[4]; 2315 2316 // Class pointer. 2317 Fields[0] = cast<llvm::ConstantExpr>(V); 2318 2319 // Flags. 2320 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2321 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2322 llvm::ConstantInt::get(Ty, 0x07C8); 2323 2324 // String pointer. 2325 llvm::Constant *C = 0; 2326 if (isUTF16) { 2327 ArrayRef<uint16_t> Arr = 2328 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2329 const_cast<char *>(Entry.getKey().data())), 2330 Entry.getKey().size() / 2); 2331 C = llvm::ConstantDataArray::get(VMContext, Arr); 2332 } else { 2333 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2334 } 2335 2336 // Note: -fwritable-strings doesn't make the backing store strings of 2337 // CFStrings writable. (See <rdar://problem/10657500>) 2338 llvm::GlobalVariable *GV = 2339 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2340 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2341 GV->setUnnamedAddr(true); 2342 // Don't enforce the target's minimum global alignment, since the only use 2343 // of the string is via this class initializer. 2344 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2345 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2346 // that changes the section it ends in, which surprises ld64. 2347 if (isUTF16) { 2348 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2349 GV->setAlignment(Align.getQuantity()); 2350 GV->setSection("__TEXT,__ustring"); 2351 } else { 2352 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2353 GV->setAlignment(Align.getQuantity()); 2354 GV->setSection("__TEXT,__cstring,cstring_literals"); 2355 } 2356 2357 // String. 2358 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2359 2360 if (isUTF16) 2361 // Cast the UTF16 string to the correct type. 2362 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2363 2364 // String length. 2365 Ty = getTypes().ConvertType(getContext().LongTy); 2366 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2367 2368 // The struct. 2369 C = llvm::ConstantStruct::get(STy, Fields); 2370 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2371 llvm::GlobalVariable::PrivateLinkage, C, 2372 "_unnamed_cfstring_"); 2373 GV->setSection("__DATA,__cfstring"); 2374 Entry.setValue(GV); 2375 2376 return GV; 2377 } 2378 2379 llvm::Constant * 2380 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2381 unsigned StringLength = 0; 2382 llvm::StringMapEntry<llvm::Constant*> &Entry = 2383 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2384 2385 if (llvm::Constant *C = Entry.getValue()) 2386 return C; 2387 2388 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2389 llvm::Constant *Zeros[] = { Zero, Zero }; 2390 llvm::Value *V; 2391 // If we don't already have it, get _NSConstantStringClassReference. 2392 if (!ConstantStringClassRef) { 2393 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2394 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2395 llvm::Constant *GV; 2396 if (LangOpts.ObjCRuntime.isNonFragile()) { 2397 std::string str = 2398 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2399 : "OBJC_CLASS_$_" + StringClass; 2400 GV = getObjCRuntime().GetClassGlobal(str); 2401 // Make sure the result is of the correct type. 2402 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2403 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2404 ConstantStringClassRef = V; 2405 } else { 2406 std::string str = 2407 StringClass.empty() ? "_NSConstantStringClassReference" 2408 : "_" + StringClass + "ClassReference"; 2409 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2410 GV = CreateRuntimeVariable(PTy, str); 2411 // Decay array -> ptr 2412 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2413 ConstantStringClassRef = V; 2414 } 2415 } 2416 else 2417 V = ConstantStringClassRef; 2418 2419 if (!NSConstantStringType) { 2420 // Construct the type for a constant NSString. 2421 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2422 D->startDefinition(); 2423 2424 QualType FieldTypes[3]; 2425 2426 // const int *isa; 2427 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2428 // const char *str; 2429 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2430 // unsigned int length; 2431 FieldTypes[2] = Context.UnsignedIntTy; 2432 2433 // Create fields 2434 for (unsigned i = 0; i < 3; ++i) { 2435 FieldDecl *Field = FieldDecl::Create(Context, D, 2436 SourceLocation(), 2437 SourceLocation(), 0, 2438 FieldTypes[i], /*TInfo=*/0, 2439 /*BitWidth=*/0, 2440 /*Mutable=*/false, 2441 ICIS_NoInit); 2442 Field->setAccess(AS_public); 2443 D->addDecl(Field); 2444 } 2445 2446 D->completeDefinition(); 2447 QualType NSTy = Context.getTagDeclType(D); 2448 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2449 } 2450 2451 llvm::Constant *Fields[3]; 2452 2453 // Class pointer. 2454 Fields[0] = cast<llvm::ConstantExpr>(V); 2455 2456 // String pointer. 2457 llvm::Constant *C = 2458 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2459 2460 llvm::GlobalValue::LinkageTypes Linkage; 2461 bool isConstant; 2462 Linkage = llvm::GlobalValue::PrivateLinkage; 2463 isConstant = !LangOpts.WritableStrings; 2464 2465 llvm::GlobalVariable *GV = 2466 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2467 ".str"); 2468 GV->setUnnamedAddr(true); 2469 // Don't enforce the target's minimum global alignment, since the only use 2470 // of the string is via this class initializer. 2471 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2472 GV->setAlignment(Align.getQuantity()); 2473 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2474 2475 // String length. 2476 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2477 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2478 2479 // The struct. 2480 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2481 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2482 llvm::GlobalVariable::PrivateLinkage, C, 2483 "_unnamed_nsstring_"); 2484 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2485 const char *NSStringNonFragileABISection = 2486 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2487 // FIXME. Fix section. 2488 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2489 ? NSStringNonFragileABISection 2490 : NSStringSection); 2491 Entry.setValue(GV); 2492 2493 return GV; 2494 } 2495 2496 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2497 if (ObjCFastEnumerationStateType.isNull()) { 2498 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2499 D->startDefinition(); 2500 2501 QualType FieldTypes[] = { 2502 Context.UnsignedLongTy, 2503 Context.getPointerType(Context.getObjCIdType()), 2504 Context.getPointerType(Context.UnsignedLongTy), 2505 Context.getConstantArrayType(Context.UnsignedLongTy, 2506 llvm::APInt(32, 5), ArrayType::Normal, 0) 2507 }; 2508 2509 for (size_t i = 0; i < 4; ++i) { 2510 FieldDecl *Field = FieldDecl::Create(Context, 2511 D, 2512 SourceLocation(), 2513 SourceLocation(), 0, 2514 FieldTypes[i], /*TInfo=*/0, 2515 /*BitWidth=*/0, 2516 /*Mutable=*/false, 2517 ICIS_NoInit); 2518 Field->setAccess(AS_public); 2519 D->addDecl(Field); 2520 } 2521 2522 D->completeDefinition(); 2523 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2524 } 2525 2526 return ObjCFastEnumerationStateType; 2527 } 2528 2529 llvm::Constant * 2530 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2531 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2532 2533 // Don't emit it as the address of the string, emit the string data itself 2534 // as an inline array. 2535 if (E->getCharByteWidth() == 1) { 2536 SmallString<64> Str(E->getString()); 2537 2538 // Resize the string to the right size, which is indicated by its type. 2539 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2540 Str.resize(CAT->getSize().getZExtValue()); 2541 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2542 } 2543 2544 llvm::ArrayType *AType = 2545 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2546 llvm::Type *ElemTy = AType->getElementType(); 2547 unsigned NumElements = AType->getNumElements(); 2548 2549 // Wide strings have either 2-byte or 4-byte elements. 2550 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2551 SmallVector<uint16_t, 32> Elements; 2552 Elements.reserve(NumElements); 2553 2554 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2555 Elements.push_back(E->getCodeUnit(i)); 2556 Elements.resize(NumElements); 2557 return llvm::ConstantDataArray::get(VMContext, Elements); 2558 } 2559 2560 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2561 SmallVector<uint32_t, 32> Elements; 2562 Elements.reserve(NumElements); 2563 2564 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2565 Elements.push_back(E->getCodeUnit(i)); 2566 Elements.resize(NumElements); 2567 return llvm::ConstantDataArray::get(VMContext, Elements); 2568 } 2569 2570 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2571 /// constant array for the given string literal. 2572 llvm::Constant * 2573 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2574 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2575 if (S->isAscii() || S->isUTF8()) { 2576 SmallString<64> Str(S->getString()); 2577 2578 // Resize the string to the right size, which is indicated by its type. 2579 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2580 Str.resize(CAT->getSize().getZExtValue()); 2581 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2582 } 2583 2584 // FIXME: the following does not memoize wide strings. 2585 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2586 llvm::GlobalVariable *GV = 2587 new llvm::GlobalVariable(getModule(),C->getType(), 2588 !LangOpts.WritableStrings, 2589 llvm::GlobalValue::PrivateLinkage, 2590 C,".str"); 2591 2592 GV->setAlignment(Align.getQuantity()); 2593 GV->setUnnamedAddr(true); 2594 return GV; 2595 } 2596 2597 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2598 /// array for the given ObjCEncodeExpr node. 2599 llvm::Constant * 2600 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2601 std::string Str; 2602 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2603 2604 return GetAddrOfConstantCString(Str); 2605 } 2606 2607 2608 /// GenerateWritableString -- Creates storage for a string literal. 2609 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2610 bool constant, 2611 CodeGenModule &CGM, 2612 const char *GlobalName, 2613 unsigned Alignment) { 2614 // Create Constant for this string literal. Don't add a '\0'. 2615 llvm::Constant *C = 2616 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2617 2618 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. 2619 unsigned AddrSpace = 0; 2620 if (CGM.getLangOpts().OpenCL) 2621 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2622 2623 // Create a global variable for this string 2624 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2625 CGM.getModule(), C->getType(), constant, 2626 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2627 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2628 GV->setAlignment(Alignment); 2629 GV->setUnnamedAddr(true); 2630 return GV; 2631 } 2632 2633 /// GetAddrOfConstantString - Returns a pointer to a character array 2634 /// containing the literal. This contents are exactly that of the 2635 /// given string, i.e. it will not be null terminated automatically; 2636 /// see GetAddrOfConstantCString. Note that whether the result is 2637 /// actually a pointer to an LLVM constant depends on 2638 /// Feature.WriteableStrings. 2639 /// 2640 /// The result has pointer to array type. 2641 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2642 const char *GlobalName, 2643 unsigned Alignment) { 2644 // Get the default prefix if a name wasn't specified. 2645 if (!GlobalName) 2646 GlobalName = ".str"; 2647 2648 if (Alignment == 0) 2649 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2650 .getQuantity(); 2651 2652 // Don't share any string literals if strings aren't constant. 2653 if (LangOpts.WritableStrings) 2654 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2655 2656 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2657 ConstantStringMap.GetOrCreateValue(Str); 2658 2659 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2660 if (Alignment > GV->getAlignment()) { 2661 GV->setAlignment(Alignment); 2662 } 2663 return GV; 2664 } 2665 2666 // Create a global variable for this. 2667 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2668 Alignment); 2669 Entry.setValue(GV); 2670 return GV; 2671 } 2672 2673 /// GetAddrOfConstantCString - Returns a pointer to a character 2674 /// array containing the literal and a terminating '\0' 2675 /// character. The result has pointer to array type. 2676 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2677 const char *GlobalName, 2678 unsigned Alignment) { 2679 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2680 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2681 } 2682 2683 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2684 const MaterializeTemporaryExpr *E, const Expr *Init) { 2685 assert((E->getStorageDuration() == SD_Static || 2686 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2687 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2688 2689 // If we're not materializing a subobject of the temporary, keep the 2690 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2691 QualType MaterializedType = Init->getType(); 2692 if (Init == E->GetTemporaryExpr()) 2693 MaterializedType = E->getType(); 2694 2695 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2696 if (Slot) 2697 return Slot; 2698 2699 // FIXME: If an externally-visible declaration extends multiple temporaries, 2700 // we need to give each temporary the same name in every translation unit (and 2701 // we also need to make the temporaries externally-visible). 2702 SmallString<256> Name; 2703 llvm::raw_svector_ostream Out(Name); 2704 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2705 Out.flush(); 2706 2707 APValue *Value = 0; 2708 if (E->getStorageDuration() == SD_Static) { 2709 // We might have a cached constant initializer for this temporary. Note 2710 // that this might have a different value from the value computed by 2711 // evaluating the initializer if the surrounding constant expression 2712 // modifies the temporary. 2713 Value = getContext().getMaterializedTemporaryValue(E, false); 2714 if (Value && Value->isUninit()) 2715 Value = 0; 2716 } 2717 2718 // Try evaluating it now, it might have a constant initializer. 2719 Expr::EvalResult EvalResult; 2720 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2721 !EvalResult.hasSideEffects()) 2722 Value = &EvalResult.Val; 2723 2724 llvm::Constant *InitialValue = 0; 2725 bool Constant = false; 2726 llvm::Type *Type; 2727 if (Value) { 2728 // The temporary has a constant initializer, use it. 2729 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2730 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2731 Type = InitialValue->getType(); 2732 } else { 2733 // No initializer, the initialization will be provided when we 2734 // initialize the declaration which performed lifetime extension. 2735 Type = getTypes().ConvertTypeForMem(MaterializedType); 2736 } 2737 2738 // Create a global variable for this lifetime-extended temporary. 2739 llvm::GlobalVariable *GV = 2740 new llvm::GlobalVariable(getModule(), Type, Constant, 2741 llvm::GlobalValue::PrivateLinkage, 2742 InitialValue, Name.c_str()); 2743 GV->setAlignment( 2744 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2745 if (VD->getTLSKind()) 2746 setTLSMode(GV, *VD); 2747 Slot = GV; 2748 return GV; 2749 } 2750 2751 /// EmitObjCPropertyImplementations - Emit information for synthesized 2752 /// properties for an implementation. 2753 void CodeGenModule::EmitObjCPropertyImplementations(const 2754 ObjCImplementationDecl *D) { 2755 for (const auto *PID : D->property_impls()) { 2756 // Dynamic is just for type-checking. 2757 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2758 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2759 2760 // Determine which methods need to be implemented, some may have 2761 // been overridden. Note that ::isPropertyAccessor is not the method 2762 // we want, that just indicates if the decl came from a 2763 // property. What we want to know is if the method is defined in 2764 // this implementation. 2765 if (!D->getInstanceMethod(PD->getGetterName())) 2766 CodeGenFunction(*this).GenerateObjCGetter( 2767 const_cast<ObjCImplementationDecl *>(D), PID); 2768 if (!PD->isReadOnly() && 2769 !D->getInstanceMethod(PD->getSetterName())) 2770 CodeGenFunction(*this).GenerateObjCSetter( 2771 const_cast<ObjCImplementationDecl *>(D), PID); 2772 } 2773 } 2774 } 2775 2776 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2777 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2778 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2779 ivar; ivar = ivar->getNextIvar()) 2780 if (ivar->getType().isDestructedType()) 2781 return true; 2782 2783 return false; 2784 } 2785 2786 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2787 /// for an implementation. 2788 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2789 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2790 if (needsDestructMethod(D)) { 2791 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2792 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2793 ObjCMethodDecl *DTORMethod = 2794 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2795 cxxSelector, getContext().VoidTy, 0, D, 2796 /*isInstance=*/true, /*isVariadic=*/false, 2797 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2798 /*isDefined=*/false, ObjCMethodDecl::Required); 2799 D->addInstanceMethod(DTORMethod); 2800 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2801 D->setHasDestructors(true); 2802 } 2803 2804 // If the implementation doesn't have any ivar initializers, we don't need 2805 // a .cxx_construct. 2806 if (D->getNumIvarInitializers() == 0) 2807 return; 2808 2809 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2810 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2811 // The constructor returns 'self'. 2812 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2813 D->getLocation(), 2814 D->getLocation(), 2815 cxxSelector, 2816 getContext().getObjCIdType(), 0, 2817 D, /*isInstance=*/true, 2818 /*isVariadic=*/false, 2819 /*isPropertyAccessor=*/true, 2820 /*isImplicitlyDeclared=*/true, 2821 /*isDefined=*/false, 2822 ObjCMethodDecl::Required); 2823 D->addInstanceMethod(CTORMethod); 2824 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2825 D->setHasNonZeroConstructors(true); 2826 } 2827 2828 /// EmitNamespace - Emit all declarations in a namespace. 2829 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2830 for (auto *I : ND->decls()) { 2831 if (const auto *VD = dyn_cast<VarDecl>(I)) 2832 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2833 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2834 continue; 2835 EmitTopLevelDecl(I); 2836 } 2837 } 2838 2839 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2840 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2841 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2842 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2843 ErrorUnsupported(LSD, "linkage spec"); 2844 return; 2845 } 2846 2847 for (auto *I : LSD->decls()) { 2848 // Meta-data for ObjC class includes references to implemented methods. 2849 // Generate class's method definitions first. 2850 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 2851 for (auto *M : OID->methods()) 2852 EmitTopLevelDecl(M); 2853 } 2854 EmitTopLevelDecl(I); 2855 } 2856 } 2857 2858 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2859 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2860 // Ignore dependent declarations. 2861 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2862 return; 2863 2864 switch (D->getKind()) { 2865 case Decl::CXXConversion: 2866 case Decl::CXXMethod: 2867 case Decl::Function: 2868 // Skip function templates 2869 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2870 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2871 return; 2872 2873 EmitGlobal(cast<FunctionDecl>(D)); 2874 break; 2875 2876 case Decl::Var: 2877 // Skip variable templates 2878 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2879 return; 2880 case Decl::VarTemplateSpecialization: 2881 EmitGlobal(cast<VarDecl>(D)); 2882 break; 2883 2884 // Indirect fields from global anonymous structs and unions can be 2885 // ignored; only the actual variable requires IR gen support. 2886 case Decl::IndirectField: 2887 break; 2888 2889 // C++ Decls 2890 case Decl::Namespace: 2891 EmitNamespace(cast<NamespaceDecl>(D)); 2892 break; 2893 // No code generation needed. 2894 case Decl::UsingShadow: 2895 case Decl::ClassTemplate: 2896 case Decl::VarTemplate: 2897 case Decl::VarTemplatePartialSpecialization: 2898 case Decl::FunctionTemplate: 2899 case Decl::TypeAliasTemplate: 2900 case Decl::Block: 2901 case Decl::Empty: 2902 break; 2903 case Decl::Using: // using X; [C++] 2904 if (CGDebugInfo *DI = getModuleDebugInfo()) 2905 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 2906 return; 2907 case Decl::NamespaceAlias: 2908 if (CGDebugInfo *DI = getModuleDebugInfo()) 2909 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2910 return; 2911 case Decl::UsingDirective: // using namespace X; [C++] 2912 if (CGDebugInfo *DI = getModuleDebugInfo()) 2913 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2914 return; 2915 case Decl::CXXConstructor: 2916 // Skip function templates 2917 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2918 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2919 return; 2920 2921 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2922 break; 2923 case Decl::CXXDestructor: 2924 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2925 return; 2926 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2927 break; 2928 2929 case Decl::StaticAssert: 2930 // Nothing to do. 2931 break; 2932 2933 // Objective-C Decls 2934 2935 // Forward declarations, no (immediate) code generation. 2936 case Decl::ObjCInterface: 2937 case Decl::ObjCCategory: 2938 break; 2939 2940 case Decl::ObjCProtocol: { 2941 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2942 if (Proto->isThisDeclarationADefinition()) 2943 ObjCRuntime->GenerateProtocol(Proto); 2944 break; 2945 } 2946 2947 case Decl::ObjCCategoryImpl: 2948 // Categories have properties but don't support synthesize so we 2949 // can ignore them here. 2950 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2951 break; 2952 2953 case Decl::ObjCImplementation: { 2954 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2955 EmitObjCPropertyImplementations(OMD); 2956 EmitObjCIvarInitializations(OMD); 2957 ObjCRuntime->GenerateClass(OMD); 2958 // Emit global variable debug information. 2959 if (CGDebugInfo *DI = getModuleDebugInfo()) 2960 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2961 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2962 OMD->getClassInterface()), OMD->getLocation()); 2963 break; 2964 } 2965 case Decl::ObjCMethod: { 2966 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2967 // If this is not a prototype, emit the body. 2968 if (OMD->getBody()) 2969 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2970 break; 2971 } 2972 case Decl::ObjCCompatibleAlias: 2973 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2974 break; 2975 2976 case Decl::LinkageSpec: 2977 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2978 break; 2979 2980 case Decl::FileScopeAsm: { 2981 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2982 StringRef AsmString = AD->getAsmString()->getString(); 2983 2984 const std::string &S = getModule().getModuleInlineAsm(); 2985 if (S.empty()) 2986 getModule().setModuleInlineAsm(AsmString); 2987 else if (S.end()[-1] == '\n') 2988 getModule().setModuleInlineAsm(S + AsmString.str()); 2989 else 2990 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2991 break; 2992 } 2993 2994 case Decl::Import: { 2995 ImportDecl *Import = cast<ImportDecl>(D); 2996 2997 // Ignore import declarations that come from imported modules. 2998 if (clang::Module *Owner = Import->getOwningModule()) { 2999 if (getLangOpts().CurrentModule.empty() || 3000 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3001 break; 3002 } 3003 3004 ImportedModules.insert(Import->getImportedModule()); 3005 break; 3006 } 3007 3008 case Decl::ClassTemplateSpecialization: { 3009 const ClassTemplateSpecializationDecl *Spec = 3010 cast<ClassTemplateSpecializationDecl>(D); 3011 if (DebugInfo && 3012 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3013 DebugInfo->completeTemplateDefinition(*Spec); 3014 } 3015 3016 default: 3017 // Make sure we handled everything we should, every other kind is a 3018 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3019 // function. Need to recode Decl::Kind to do that easily. 3020 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3021 } 3022 } 3023 3024 /// Turns the given pointer into a constant. 3025 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3026 const void *Ptr) { 3027 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3028 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3029 return llvm::ConstantInt::get(i64, PtrInt); 3030 } 3031 3032 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3033 llvm::NamedMDNode *&GlobalMetadata, 3034 GlobalDecl D, 3035 llvm::GlobalValue *Addr) { 3036 if (!GlobalMetadata) 3037 GlobalMetadata = 3038 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3039 3040 // TODO: should we report variant information for ctors/dtors? 3041 llvm::Value *Ops[] = { 3042 Addr, 3043 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3044 }; 3045 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3046 } 3047 3048 /// For each function which is declared within an extern "C" region and marked 3049 /// as 'used', but has internal linkage, create an alias from the unmangled 3050 /// name to the mangled name if possible. People expect to be able to refer 3051 /// to such functions with an unmangled name from inline assembly within the 3052 /// same translation unit. 3053 void CodeGenModule::EmitStaticExternCAliases() { 3054 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3055 E = StaticExternCValues.end(); 3056 I != E; ++I) { 3057 IdentifierInfo *Name = I->first; 3058 llvm::GlobalValue *Val = I->second; 3059 if (Val && !getModule().getNamedValue(Name->getName())) 3060 addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3061 Name->getName(), Val, &getModule())); 3062 } 3063 } 3064 3065 /// Emits metadata nodes associating all the global values in the 3066 /// current module with the Decls they came from. This is useful for 3067 /// projects using IR gen as a subroutine. 3068 /// 3069 /// Since there's currently no way to associate an MDNode directly 3070 /// with an llvm::GlobalValue, we create a global named metadata 3071 /// with the name 'clang.global.decl.ptrs'. 3072 void CodeGenModule::EmitDeclMetadata() { 3073 llvm::NamedMDNode *GlobalMetadata = 0; 3074 3075 // StaticLocalDeclMap 3076 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3077 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3078 I != E; ++I) { 3079 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3080 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3081 } 3082 } 3083 3084 /// Emits metadata nodes for all the local variables in the current 3085 /// function. 3086 void CodeGenFunction::EmitDeclMetadata() { 3087 if (LocalDeclMap.empty()) return; 3088 3089 llvm::LLVMContext &Context = getLLVMContext(); 3090 3091 // Find the unique metadata ID for this name. 3092 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3093 3094 llvm::NamedMDNode *GlobalMetadata = 0; 3095 3096 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3097 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3098 const Decl *D = I->first; 3099 llvm::Value *Addr = I->second; 3100 3101 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3102 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3103 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3104 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3105 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3106 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3107 } 3108 } 3109 } 3110 3111 void CodeGenModule::EmitVersionIdentMetadata() { 3112 llvm::NamedMDNode *IdentMetadata = 3113 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3114 std::string Version = getClangFullVersion(); 3115 llvm::LLVMContext &Ctx = TheModule.getContext(); 3116 3117 llvm::Value *IdentNode[] = { 3118 llvm::MDString::get(Ctx, Version) 3119 }; 3120 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3121 } 3122 3123 void CodeGenModule::EmitCoverageFile() { 3124 if (!getCodeGenOpts().CoverageFile.empty()) { 3125 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3126 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3127 llvm::LLVMContext &Ctx = TheModule.getContext(); 3128 llvm::MDString *CoverageFile = 3129 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3130 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3131 llvm::MDNode *CU = CUNode->getOperand(i); 3132 llvm::Value *node[] = { CoverageFile, CU }; 3133 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3134 GCov->addOperand(N); 3135 } 3136 } 3137 } 3138 } 3139 3140 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3141 QualType GuidType) { 3142 // Sema has checked that all uuid strings are of the form 3143 // "12345678-1234-1234-1234-1234567890ab". 3144 assert(Uuid.size() == 36); 3145 for (unsigned i = 0; i < 36; ++i) { 3146 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3147 else assert(isHexDigit(Uuid[i])); 3148 } 3149 3150 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3151 3152 llvm::Constant *Field3[8]; 3153 for (unsigned Idx = 0; Idx < 8; ++Idx) 3154 Field3[Idx] = llvm::ConstantInt::get( 3155 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3156 3157 llvm::Constant *Fields[4] = { 3158 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3159 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3160 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3161 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3162 }; 3163 3164 return llvm::ConstantStruct::getAnon(Fields); 3165 } 3166