xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 899ded9cdf53b3d84c8d0e771851cc256296bfd2)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CoverageMappingGen.h"
25 #include "CodeGenTBAA.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericItanium:
68     return CreateItaniumCXXABI(CGM);
69   case TargetCXXABI::Microsoft:
70     return CreateMicrosoftCXXABI(CGM);
71   }
72 
73   llvm_unreachable("invalid C++ ABI kind");
74 }
75 
76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
77                              llvm::Module &M, const llvm::DataLayout &TD,
78                              DiagnosticsEngine &diags,
79                              CoverageSourceInfo *CoverageInfo)
80     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
81       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
82       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
83       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
84       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
85       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
86       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
87       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
88       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
89       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
90       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
91       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
92       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108   Int8PtrTy = Int8Ty->getPointerTo(0);
109   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110 
111   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112 
113   if (LangOpts.ObjC1)
114     createObjCRuntime();
115   if (LangOpts.OpenCL)
116     createOpenCLRuntime();
117   if (LangOpts.OpenMP)
118     createOpenMPRuntime();
119   if (LangOpts.CUDA)
120     createCUDARuntime();
121 
122   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
123   if (LangOpts.Sanitize.Thread ||
124       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
125     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
126                            getCXXABI().getMangleContext());
127 
128   // If debug info or coverage generation is enabled, create the CGDebugInfo
129   // object.
130   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
131       CodeGenOpts.EmitGcovArcs ||
132       CodeGenOpts.EmitGcovNotes)
133     DebugInfo = new CGDebugInfo(*this);
134 
135   Block.GlobalUniqueCount = 0;
136 
137   if (C.getLangOpts().ObjCAutoRefCount)
138     ARCData = new ARCEntrypoints();
139   RRData = new RREntrypoints();
140 
141   if (!CodeGenOpts.InstrProfileInput.empty()) {
142     if (std::error_code EC = llvm::IndexedInstrProfReader::create(
143             CodeGenOpts.InstrProfileInput, PGOReader)) {
144       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
145                                               "Could not read profile: %0");
146       getDiags().Report(DiagID) << EC.message();
147     }
148   }
149 
150   // If coverage mapping generation is enabled, create the
151   // CoverageMappingModuleGen object.
152   if (CodeGenOpts.CoverageMapping)
153     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
154 }
155 
156 CodeGenModule::~CodeGenModule() {
157   delete ObjCRuntime;
158   delete OpenCLRuntime;
159   delete OpenMPRuntime;
160   delete CUDARuntime;
161   delete TheTargetCodeGenInfo;
162   delete TBAA;
163   delete DebugInfo;
164   delete ARCData;
165   delete RRData;
166 }
167 
168 void CodeGenModule::createObjCRuntime() {
169   // This is just isGNUFamily(), but we want to force implementors of
170   // new ABIs to decide how best to do this.
171   switch (LangOpts.ObjCRuntime.getKind()) {
172   case ObjCRuntime::GNUstep:
173   case ObjCRuntime::GCC:
174   case ObjCRuntime::ObjFW:
175     ObjCRuntime = CreateGNUObjCRuntime(*this);
176     return;
177 
178   case ObjCRuntime::FragileMacOSX:
179   case ObjCRuntime::MacOSX:
180   case ObjCRuntime::iOS:
181     ObjCRuntime = CreateMacObjCRuntime(*this);
182     return;
183   }
184   llvm_unreachable("bad runtime kind");
185 }
186 
187 void CodeGenModule::createOpenCLRuntime() {
188   OpenCLRuntime = new CGOpenCLRuntime(*this);
189 }
190 
191 void CodeGenModule::createOpenMPRuntime() {
192   OpenMPRuntime = new CGOpenMPRuntime(*this);
193 }
194 
195 void CodeGenModule::createCUDARuntime() {
196   CUDARuntime = CreateNVCUDARuntime(*this);
197 }
198 
199 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
200   Replacements[Name] = C;
201 }
202 
203 void CodeGenModule::applyReplacements() {
204   for (ReplacementsTy::iterator I = Replacements.begin(),
205                                 E = Replacements.end();
206        I != E; ++I) {
207     StringRef MangledName = I->first();
208     llvm::Constant *Replacement = I->second;
209     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
210     if (!Entry)
211       continue;
212     auto *OldF = cast<llvm::Function>(Entry);
213     auto *NewF = dyn_cast<llvm::Function>(Replacement);
214     if (!NewF) {
215       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
216         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
217       } else {
218         auto *CE = cast<llvm::ConstantExpr>(Replacement);
219         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
220                CE->getOpcode() == llvm::Instruction::GetElementPtr);
221         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
222       }
223     }
224 
225     // Replace old with new, but keep the old order.
226     OldF->replaceAllUsesWith(Replacement);
227     if (NewF) {
228       NewF->removeFromParent();
229       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
230     }
231     OldF->eraseFromParent();
232   }
233 }
234 
235 // This is only used in aliases that we created and we know they have a
236 // linear structure.
237 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
238   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
239   const llvm::Constant *C = &GA;
240   for (;;) {
241     C = C->stripPointerCasts();
242     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
243       return GO;
244     // stripPointerCasts will not walk over weak aliases.
245     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
246     if (!GA2)
247       return nullptr;
248     if (!Visited.insert(GA2))
249       return nullptr;
250     C = GA2->getAliasee();
251   }
252 }
253 
254 void CodeGenModule::checkAliases() {
255   // Check if the constructed aliases are well formed. It is really unfortunate
256   // that we have to do this in CodeGen, but we only construct mangled names
257   // and aliases during codegen.
258   bool Error = false;
259   DiagnosticsEngine &Diags = getDiags();
260   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
261          E = Aliases.end(); I != E; ++I) {
262     const GlobalDecl &GD = *I;
263     const auto *D = cast<ValueDecl>(GD.getDecl());
264     const AliasAttr *AA = D->getAttr<AliasAttr>();
265     StringRef MangledName = getMangledName(GD);
266     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
267     auto *Alias = cast<llvm::GlobalAlias>(Entry);
268     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
269     if (!GV) {
270       Error = true;
271       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
272     } else if (GV->isDeclaration()) {
273       Error = true;
274       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
275     }
276 
277     llvm::Constant *Aliasee = Alias->getAliasee();
278     llvm::GlobalValue *AliaseeGV;
279     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
280       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
281     else
282       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
283 
284     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
285       StringRef AliasSection = SA->getName();
286       if (AliasSection != AliaseeGV->getSection())
287         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
288             << AliasSection;
289     }
290 
291     // We have to handle alias to weak aliases in here. LLVM itself disallows
292     // this since the object semantics would not match the IL one. For
293     // compatibility with gcc we implement it by just pointing the alias
294     // to its aliasee's aliasee. We also warn, since the user is probably
295     // expecting the link to be weak.
296     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
297       if (GA->mayBeOverridden()) {
298         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
299             << GV->getName() << GA->getName();
300         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
301             GA->getAliasee(), Alias->getType());
302         Alias->setAliasee(Aliasee);
303       }
304     }
305   }
306   if (!Error)
307     return;
308 
309   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
310          E = Aliases.end(); I != E; ++I) {
311     const GlobalDecl &GD = *I;
312     StringRef MangledName = getMangledName(GD);
313     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
314     auto *Alias = cast<llvm::GlobalAlias>(Entry);
315     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
316     Alias->eraseFromParent();
317   }
318 }
319 
320 void CodeGenModule::clear() {
321   DeferredDeclsToEmit.clear();
322 }
323 
324 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
325                                        StringRef MainFile) {
326   if (!hasDiagnostics())
327     return;
328   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
329     if (MainFile.empty())
330       MainFile = "<stdin>";
331     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
332   } else
333     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
334                                                       << Mismatched;
335 }
336 
337 void CodeGenModule::Release() {
338   EmitDeferred();
339   applyReplacements();
340   checkAliases();
341   EmitCXXGlobalInitFunc();
342   EmitCXXGlobalDtorFunc();
343   EmitCXXThreadLocalInitFunc();
344   if (ObjCRuntime)
345     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
346       AddGlobalCtor(ObjCInitFunction);
347   if (getCodeGenOpts().ProfileInstrGenerate)
348     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
349       AddGlobalCtor(PGOInit, 0);
350   if (PGOReader && PGOStats.hasDiagnostics())
351     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
352   EmitCtorList(GlobalCtors, "llvm.global_ctors");
353   EmitCtorList(GlobalDtors, "llvm.global_dtors");
354   EmitGlobalAnnotations();
355   EmitStaticExternCAliases();
356   EmitDeferredUnusedCoverageMappings();
357   if (CoverageMapping)
358     CoverageMapping->emit();
359   emitLLVMUsed();
360 
361   if (CodeGenOpts.Autolink &&
362       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
363     EmitModuleLinkOptions();
364   }
365   if (CodeGenOpts.DwarfVersion)
366     // We actually want the latest version when there are conflicts.
367     // We can change from Warning to Latest if such mode is supported.
368     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
369                               CodeGenOpts.DwarfVersion);
370   if (DebugInfo)
371     // We support a single version in the linked module. The LLVM
372     // parser will drop debug info with a different version number
373     // (and warn about it, too).
374     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
375                               llvm::DEBUG_METADATA_VERSION);
376 
377   // We need to record the widths of enums and wchar_t, so that we can generate
378   // the correct build attributes in the ARM backend.
379   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
380   if (   Arch == llvm::Triple::arm
381       || Arch == llvm::Triple::armeb
382       || Arch == llvm::Triple::thumb
383       || Arch == llvm::Triple::thumbeb) {
384     // Width of wchar_t in bytes
385     uint64_t WCharWidth =
386         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
387     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
388 
389     // The minimum width of an enum in bytes
390     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
391     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
392   }
393 
394   SimplifyPersonality();
395 
396   if (getCodeGenOpts().EmitDeclMetadata)
397     EmitDeclMetadata();
398 
399   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
400     EmitCoverageFile();
401 
402   if (DebugInfo)
403     DebugInfo->finalize();
404 
405   EmitVersionIdentMetadata();
406 
407   EmitTargetMetadata();
408 }
409 
410 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
411   // Make sure that this type is translated.
412   Types.UpdateCompletedType(TD);
413 }
414 
415 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
416   if (!TBAA)
417     return nullptr;
418   return TBAA->getTBAAInfo(QTy);
419 }
420 
421 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
422   if (!TBAA)
423     return nullptr;
424   return TBAA->getTBAAInfoForVTablePtr();
425 }
426 
427 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
428   if (!TBAA)
429     return nullptr;
430   return TBAA->getTBAAStructInfo(QTy);
431 }
432 
433 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
434   if (!TBAA)
435     return nullptr;
436   return TBAA->getTBAAStructTypeInfo(QTy);
437 }
438 
439 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
440                                                   llvm::MDNode *AccessN,
441                                                   uint64_t O) {
442   if (!TBAA)
443     return nullptr;
444   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
445 }
446 
447 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
448 /// and struct-path aware TBAA, the tag has the same format:
449 /// base type, access type and offset.
450 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
451 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
452                                         llvm::MDNode *TBAAInfo,
453                                         bool ConvertTypeToTag) {
454   if (ConvertTypeToTag && TBAA)
455     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
456                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
457   else
458     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
459 }
460 
461 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
462   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
463   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
464 }
465 
466 /// ErrorUnsupported - Print out an error that codegen doesn't support the
467 /// specified stmt yet.
468 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
469   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
470                                                "cannot compile this %0 yet");
471   std::string Msg = Type;
472   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
473     << Msg << S->getSourceRange();
474 }
475 
476 /// ErrorUnsupported - Print out an error that codegen doesn't support the
477 /// specified decl yet.
478 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
479   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
480                                                "cannot compile this %0 yet");
481   std::string Msg = Type;
482   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
483 }
484 
485 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
486   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
487 }
488 
489 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
490                                         const NamedDecl *D) const {
491   // Internal definitions always have default visibility.
492   if (GV->hasLocalLinkage()) {
493     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
494     return;
495   }
496 
497   // Set visibility for definitions.
498   LinkageInfo LV = D->getLinkageAndVisibility();
499   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
500     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
501 }
502 
503 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
504   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
505       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
506       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
507       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
508       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
509 }
510 
511 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
512     CodeGenOptions::TLSModel M) {
513   switch (M) {
514   case CodeGenOptions::GeneralDynamicTLSModel:
515     return llvm::GlobalVariable::GeneralDynamicTLSModel;
516   case CodeGenOptions::LocalDynamicTLSModel:
517     return llvm::GlobalVariable::LocalDynamicTLSModel;
518   case CodeGenOptions::InitialExecTLSModel:
519     return llvm::GlobalVariable::InitialExecTLSModel;
520   case CodeGenOptions::LocalExecTLSModel:
521     return llvm::GlobalVariable::LocalExecTLSModel;
522   }
523   llvm_unreachable("Invalid TLS model!");
524 }
525 
526 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
527   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
528 
529   llvm::GlobalValue::ThreadLocalMode TLM;
530   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
531 
532   // Override the TLS model if it is explicitly specified.
533   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
534     TLM = GetLLVMTLSModel(Attr->getModel());
535   }
536 
537   GV->setThreadLocalMode(TLM);
538 }
539 
540 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
541   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
542   if (!FoundStr.empty())
543     return FoundStr;
544 
545   const auto *ND = cast<NamedDecl>(GD.getDecl());
546   SmallString<256> Buffer;
547   StringRef Str;
548   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
549     llvm::raw_svector_ostream Out(Buffer);
550     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
551       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
552     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
553       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
554     else
555       getCXXABI().getMangleContext().mangleName(ND, Out);
556     Str = Out.str();
557   } else {
558     IdentifierInfo *II = ND->getIdentifier();
559     assert(II && "Attempt to mangle unnamed decl.");
560     Str = II->getName();
561   }
562 
563   // Keep the first result in the case of a mangling collision.
564   auto Result = Manglings.insert(std::make_pair(Str, GD));
565   return FoundStr = Result.first->first();
566 }
567 
568 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
569                                              const BlockDecl *BD) {
570   MangleContext &MangleCtx = getCXXABI().getMangleContext();
571   const Decl *D = GD.getDecl();
572 
573   SmallString<256> Buffer;
574   llvm::raw_svector_ostream Out(Buffer);
575   if (!D)
576     MangleCtx.mangleGlobalBlock(BD,
577       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
578   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
579     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
580   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
581     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
582   else
583     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
584 
585   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
586   return Result.first->first();
587 }
588 
589 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
590   return getModule().getNamedValue(Name);
591 }
592 
593 /// AddGlobalCtor - Add a function to the list that will be called before
594 /// main() runs.
595 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
596                                   llvm::Constant *AssociatedData) {
597   // FIXME: Type coercion of void()* types.
598   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
599 }
600 
601 /// AddGlobalDtor - Add a function to the list that will be called
602 /// when the module is unloaded.
603 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
604   // FIXME: Type coercion of void()* types.
605   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
606 }
607 
608 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
609   // Ctor function type is void()*.
610   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
611   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
612 
613   // Get the type of a ctor entry, { i32, void ()*, i8* }.
614   llvm::StructType *CtorStructTy = llvm::StructType::get(
615       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
616 
617   // Construct the constructor and destructor arrays.
618   SmallVector<llvm::Constant*, 8> Ctors;
619   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
620     llvm::Constant *S[] = {
621       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
622       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
623       (I->AssociatedData
624            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
625            : llvm::Constant::getNullValue(VoidPtrTy))
626     };
627     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
628   }
629 
630   if (!Ctors.empty()) {
631     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
632     new llvm::GlobalVariable(TheModule, AT, false,
633                              llvm::GlobalValue::AppendingLinkage,
634                              llvm::ConstantArray::get(AT, Ctors),
635                              GlobalName);
636   }
637 }
638 
639 llvm::GlobalValue::LinkageTypes
640 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
641   const auto *D = cast<FunctionDecl>(GD.getDecl());
642 
643   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
644 
645   if (isa<CXXDestructorDecl>(D) &&
646       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
647                                          GD.getDtorType())) {
648     // Destructor variants in the Microsoft C++ ABI are always internal or
649     // linkonce_odr thunks emitted on an as-needed basis.
650     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
651                                    : llvm::GlobalValue::LinkOnceODRLinkage;
652   }
653 
654   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
655 }
656 
657 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
658                                                     llvm::Function *F) {
659   setNonAliasAttributes(D, F);
660 }
661 
662 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
663                                               const CGFunctionInfo &Info,
664                                               llvm::Function *F) {
665   unsigned CallingConv;
666   AttributeListType AttributeList;
667   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
668   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
669   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
670 }
671 
672 /// Determines whether the language options require us to model
673 /// unwind exceptions.  We treat -fexceptions as mandating this
674 /// except under the fragile ObjC ABI with only ObjC exceptions
675 /// enabled.  This means, for example, that C with -fexceptions
676 /// enables this.
677 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
678   // If exceptions are completely disabled, obviously this is false.
679   if (!LangOpts.Exceptions) return false;
680 
681   // If C++ exceptions are enabled, this is true.
682   if (LangOpts.CXXExceptions) return true;
683 
684   // If ObjC exceptions are enabled, this depends on the ABI.
685   if (LangOpts.ObjCExceptions) {
686     return LangOpts.ObjCRuntime.hasUnwindExceptions();
687   }
688 
689   return true;
690 }
691 
692 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
693                                                            llvm::Function *F) {
694   llvm::AttrBuilder B;
695 
696   if (CodeGenOpts.UnwindTables)
697     B.addAttribute(llvm::Attribute::UWTable);
698 
699   if (!hasUnwindExceptions(LangOpts))
700     B.addAttribute(llvm::Attribute::NoUnwind);
701 
702   if (D->hasAttr<NakedAttr>()) {
703     // Naked implies noinline: we should not be inlining such functions.
704     B.addAttribute(llvm::Attribute::Naked);
705     B.addAttribute(llvm::Attribute::NoInline);
706   } else if (D->hasAttr<OptimizeNoneAttr>()) {
707     // OptimizeNone implies noinline; we should not be inlining such functions.
708     B.addAttribute(llvm::Attribute::OptimizeNone);
709     B.addAttribute(llvm::Attribute::NoInline);
710   } else if (D->hasAttr<NoDuplicateAttr>()) {
711     B.addAttribute(llvm::Attribute::NoDuplicate);
712   } else if (D->hasAttr<NoInlineAttr>()) {
713     B.addAttribute(llvm::Attribute::NoInline);
714   } else if (D->hasAttr<AlwaysInlineAttr>() &&
715              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
716                                               llvm::Attribute::NoInline)) {
717     // (noinline wins over always_inline, and we can't specify both in IR)
718     B.addAttribute(llvm::Attribute::AlwaysInline);
719   }
720 
721   if (D->hasAttr<ColdAttr>()) {
722     B.addAttribute(llvm::Attribute::OptimizeForSize);
723     B.addAttribute(llvm::Attribute::Cold);
724   }
725 
726   if (D->hasAttr<MinSizeAttr>())
727     B.addAttribute(llvm::Attribute::MinSize);
728 
729   if (D->hasAttr<OptimizeNoneAttr>()) {
730     // OptimizeNone wins over OptimizeForSize and MinSize.
731     B.removeAttribute(llvm::Attribute::OptimizeForSize);
732     B.removeAttribute(llvm::Attribute::MinSize);
733   }
734 
735   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
736     B.addAttribute(llvm::Attribute::StackProtect);
737   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
738     B.addAttribute(llvm::Attribute::StackProtectStrong);
739   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
740     B.addAttribute(llvm::Attribute::StackProtectReq);
741 
742   // Add sanitizer attributes if function is not blacklisted.
743   if (!getSanitizerBlacklist().isIn(*F)) {
744     // When AddressSanitizer is enabled, set SanitizeAddress attribute
745     // unless __attribute__((no_sanitize_address)) is used.
746     if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>())
747       B.addAttribute(llvm::Attribute::SanitizeAddress);
748     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
749     if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>())
750       B.addAttribute(llvm::Attribute::SanitizeThread);
751     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
752     if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
753       B.addAttribute(llvm::Attribute::SanitizeMemory);
754   }
755 
756   F->addAttributes(llvm::AttributeSet::FunctionIndex,
757                    llvm::AttributeSet::get(
758                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
759 
760   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
761     F->setUnnamedAddr(true);
762   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
763     if (MD->isVirtual())
764       F->setUnnamedAddr(true);
765 
766   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
767   if (alignment)
768     F->setAlignment(alignment);
769 
770   // C++ ABI requires 2-byte alignment for member functions.
771   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
772     F->setAlignment(2);
773 }
774 
775 void CodeGenModule::SetCommonAttributes(const Decl *D,
776                                         llvm::GlobalValue *GV) {
777   if (const auto *ND = dyn_cast<NamedDecl>(D))
778     setGlobalVisibility(GV, ND);
779   else
780     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
781 
782   if (D->hasAttr<UsedAttr>())
783     addUsedGlobal(GV);
784 }
785 
786 void CodeGenModule::setAliasAttributes(const Decl *D,
787                                        llvm::GlobalValue *GV) {
788   SetCommonAttributes(D, GV);
789 
790   // Process the dllexport attribute based on whether the original definition
791   // (not necessarily the aliasee) was exported.
792   if (D->hasAttr<DLLExportAttr>())
793     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
794 }
795 
796 void CodeGenModule::setNonAliasAttributes(const Decl *D,
797                                           llvm::GlobalObject *GO) {
798   SetCommonAttributes(D, GO);
799 
800   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
801     GO->setSection(SA->getName());
802 
803   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
804 }
805 
806 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
807                                                   llvm::Function *F,
808                                                   const CGFunctionInfo &FI) {
809   SetLLVMFunctionAttributes(D, FI, F);
810   SetLLVMFunctionAttributesForDefinition(D, F);
811 
812   F->setLinkage(llvm::Function::InternalLinkage);
813 
814   setNonAliasAttributes(D, F);
815 }
816 
817 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
818                                          const NamedDecl *ND) {
819   // Set linkage and visibility in case we never see a definition.
820   LinkageInfo LV = ND->getLinkageAndVisibility();
821   if (LV.getLinkage() != ExternalLinkage) {
822     // Don't set internal linkage on declarations.
823   } else {
824     if (ND->hasAttr<DLLImportAttr>()) {
825       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
826       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
827     } else if (ND->hasAttr<DLLExportAttr>()) {
828       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
829       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
830     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
831       // "extern_weak" is overloaded in LLVM; we probably should have
832       // separate linkage types for this.
833       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
834     }
835 
836     // Set visibility on a declaration only if it's explicit.
837     if (LV.isVisibilityExplicit())
838       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
839   }
840 }
841 
842 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
843                                           llvm::Function *F,
844                                           bool IsIncompleteFunction) {
845   if (unsigned IID = F->getIntrinsicID()) {
846     // If this is an intrinsic function, set the function's attributes
847     // to the intrinsic's attributes.
848     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
849                                                     (llvm::Intrinsic::ID)IID));
850     return;
851   }
852 
853   const auto *FD = cast<FunctionDecl>(GD.getDecl());
854 
855   if (!IsIncompleteFunction)
856     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
857 
858   // Add the Returned attribute for "this", except for iOS 5 and earlier
859   // where substantial code, including the libstdc++ dylib, was compiled with
860   // GCC and does not actually return "this".
861   if (getCXXABI().HasThisReturn(GD) &&
862       !(getTarget().getTriple().isiOS() &&
863         getTarget().getTriple().isOSVersionLT(6))) {
864     assert(!F->arg_empty() &&
865            F->arg_begin()->getType()
866              ->canLosslesslyBitCastTo(F->getReturnType()) &&
867            "unexpected this return");
868     F->addAttribute(1, llvm::Attribute::Returned);
869   }
870 
871   // Only a few attributes are set on declarations; these may later be
872   // overridden by a definition.
873 
874   setLinkageAndVisibilityForGV(F, FD);
875 
876   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
877     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
878       // Don't dllexport/import destructor thunks.
879       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
880     }
881   }
882 
883   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
884     F->setSection(SA->getName());
885 
886   // A replaceable global allocation function does not act like a builtin by
887   // default, only if it is invoked by a new-expression or delete-expression.
888   if (FD->isReplaceableGlobalAllocationFunction())
889     F->addAttribute(llvm::AttributeSet::FunctionIndex,
890                     llvm::Attribute::NoBuiltin);
891 }
892 
893 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
894   assert(!GV->isDeclaration() &&
895          "Only globals with definition can force usage.");
896   LLVMUsed.push_back(GV);
897 }
898 
899 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
900   assert(!GV->isDeclaration() &&
901          "Only globals with definition can force usage.");
902   LLVMCompilerUsed.push_back(GV);
903 }
904 
905 static void emitUsed(CodeGenModule &CGM, StringRef Name,
906                      std::vector<llvm::WeakVH> &List) {
907   // Don't create llvm.used if there is no need.
908   if (List.empty())
909     return;
910 
911   // Convert List to what ConstantArray needs.
912   SmallVector<llvm::Constant*, 8> UsedArray;
913   UsedArray.resize(List.size());
914   for (unsigned i = 0, e = List.size(); i != e; ++i) {
915     UsedArray[i] =
916      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
917                                     CGM.Int8PtrTy);
918   }
919 
920   if (UsedArray.empty())
921     return;
922   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
923 
924   auto *GV = new llvm::GlobalVariable(
925       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
926       llvm::ConstantArray::get(ATy, UsedArray), Name);
927 
928   GV->setSection("llvm.metadata");
929 }
930 
931 void CodeGenModule::emitLLVMUsed() {
932   emitUsed(*this, "llvm.used", LLVMUsed);
933   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
934 }
935 
936 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
937   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
938   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
939 }
940 
941 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
942   llvm::SmallString<32> Opt;
943   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
944   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
945   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
946 }
947 
948 void CodeGenModule::AddDependentLib(StringRef Lib) {
949   llvm::SmallString<24> Opt;
950   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
951   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
952   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
953 }
954 
955 /// \brief Add link options implied by the given module, including modules
956 /// it depends on, using a postorder walk.
957 static void addLinkOptionsPostorder(CodeGenModule &CGM,
958                                     Module *Mod,
959                                     SmallVectorImpl<llvm::Value *> &Metadata,
960                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
961   // Import this module's parent.
962   if (Mod->Parent && Visited.insert(Mod->Parent)) {
963     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
964   }
965 
966   // Import this module's dependencies.
967   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
968     if (Visited.insert(Mod->Imports[I-1]))
969       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
970   }
971 
972   // Add linker options to link against the libraries/frameworks
973   // described by this module.
974   llvm::LLVMContext &Context = CGM.getLLVMContext();
975   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
976     // Link against a framework.  Frameworks are currently Darwin only, so we
977     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
978     if (Mod->LinkLibraries[I-1].IsFramework) {
979       llvm::Value *Args[2] = {
980         llvm::MDString::get(Context, "-framework"),
981         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
982       };
983 
984       Metadata.push_back(llvm::MDNode::get(Context, Args));
985       continue;
986     }
987 
988     // Link against a library.
989     llvm::SmallString<24> Opt;
990     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
991       Mod->LinkLibraries[I-1].Library, Opt);
992     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
993     Metadata.push_back(llvm::MDNode::get(Context, OptString));
994   }
995 }
996 
997 void CodeGenModule::EmitModuleLinkOptions() {
998   // Collect the set of all of the modules we want to visit to emit link
999   // options, which is essentially the imported modules and all of their
1000   // non-explicit child modules.
1001   llvm::SetVector<clang::Module *> LinkModules;
1002   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1003   SmallVector<clang::Module *, 16> Stack;
1004 
1005   // Seed the stack with imported modules.
1006   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1007                                                MEnd = ImportedModules.end();
1008        M != MEnd; ++M) {
1009     if (Visited.insert(*M))
1010       Stack.push_back(*M);
1011   }
1012 
1013   // Find all of the modules to import, making a little effort to prune
1014   // non-leaf modules.
1015   while (!Stack.empty()) {
1016     clang::Module *Mod = Stack.pop_back_val();
1017 
1018     bool AnyChildren = false;
1019 
1020     // Visit the submodules of this module.
1021     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1022                                         SubEnd = Mod->submodule_end();
1023          Sub != SubEnd; ++Sub) {
1024       // Skip explicit children; they need to be explicitly imported to be
1025       // linked against.
1026       if ((*Sub)->IsExplicit)
1027         continue;
1028 
1029       if (Visited.insert(*Sub)) {
1030         Stack.push_back(*Sub);
1031         AnyChildren = true;
1032       }
1033     }
1034 
1035     // We didn't find any children, so add this module to the list of
1036     // modules to link against.
1037     if (!AnyChildren) {
1038       LinkModules.insert(Mod);
1039     }
1040   }
1041 
1042   // Add link options for all of the imported modules in reverse topological
1043   // order.  We don't do anything to try to order import link flags with respect
1044   // to linker options inserted by things like #pragma comment().
1045   SmallVector<llvm::Value *, 16> MetadataArgs;
1046   Visited.clear();
1047   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1048                                                MEnd = LinkModules.end();
1049        M != MEnd; ++M) {
1050     if (Visited.insert(*M))
1051       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1052   }
1053   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1054   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1055 
1056   // Add the linker options metadata flag.
1057   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1058                             llvm::MDNode::get(getLLVMContext(),
1059                                               LinkerOptionsMetadata));
1060 }
1061 
1062 void CodeGenModule::EmitDeferred() {
1063   // Emit code for any potentially referenced deferred decls.  Since a
1064   // previously unused static decl may become used during the generation of code
1065   // for a static function, iterate until no changes are made.
1066 
1067   while (true) {
1068     if (!DeferredVTables.empty()) {
1069       EmitDeferredVTables();
1070 
1071       // Emitting a v-table doesn't directly cause more v-tables to
1072       // become deferred, although it can cause functions to be
1073       // emitted that then need those v-tables.
1074       assert(DeferredVTables.empty());
1075     }
1076 
1077     // Stop if we're out of both deferred v-tables and deferred declarations.
1078     if (DeferredDeclsToEmit.empty()) break;
1079 
1080     DeferredGlobal &G = DeferredDeclsToEmit.back();
1081     GlobalDecl D = G.GD;
1082     llvm::GlobalValue *GV = G.GV;
1083     DeferredDeclsToEmit.pop_back();
1084 
1085     assert(GV == GetGlobalValue(getMangledName(D)));
1086     // Check to see if we've already emitted this.  This is necessary
1087     // for a couple of reasons: first, decls can end up in the
1088     // deferred-decls queue multiple times, and second, decls can end
1089     // up with definitions in unusual ways (e.g. by an extern inline
1090     // function acquiring a strong function redefinition).  Just
1091     // ignore these cases.
1092     if(!GV->isDeclaration())
1093       continue;
1094 
1095     // Otherwise, emit the definition and move on to the next one.
1096     EmitGlobalDefinition(D, GV);
1097   }
1098 }
1099 
1100 void CodeGenModule::EmitGlobalAnnotations() {
1101   if (Annotations.empty())
1102     return;
1103 
1104   // Create a new global variable for the ConstantStruct in the Module.
1105   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1106     Annotations[0]->getType(), Annotations.size()), Annotations);
1107   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1108                                       llvm::GlobalValue::AppendingLinkage,
1109                                       Array, "llvm.global.annotations");
1110   gv->setSection(AnnotationSection);
1111 }
1112 
1113 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1114   llvm::Constant *&AStr = AnnotationStrings[Str];
1115   if (AStr)
1116     return AStr;
1117 
1118   // Not found yet, create a new global.
1119   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1120   auto *gv =
1121       new llvm::GlobalVariable(getModule(), s->getType(), true,
1122                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1123   gv->setSection(AnnotationSection);
1124   gv->setUnnamedAddr(true);
1125   AStr = gv;
1126   return gv;
1127 }
1128 
1129 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1130   SourceManager &SM = getContext().getSourceManager();
1131   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1132   if (PLoc.isValid())
1133     return EmitAnnotationString(PLoc.getFilename());
1134   return EmitAnnotationString(SM.getBufferName(Loc));
1135 }
1136 
1137 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1138   SourceManager &SM = getContext().getSourceManager();
1139   PresumedLoc PLoc = SM.getPresumedLoc(L);
1140   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1141     SM.getExpansionLineNumber(L);
1142   return llvm::ConstantInt::get(Int32Ty, LineNo);
1143 }
1144 
1145 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1146                                                 const AnnotateAttr *AA,
1147                                                 SourceLocation L) {
1148   // Get the globals for file name, annotation, and the line number.
1149   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1150                  *UnitGV = EmitAnnotationUnit(L),
1151                  *LineNoCst = EmitAnnotationLineNo(L);
1152 
1153   // Create the ConstantStruct for the global annotation.
1154   llvm::Constant *Fields[4] = {
1155     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1156     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1157     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1158     LineNoCst
1159   };
1160   return llvm::ConstantStruct::getAnon(Fields);
1161 }
1162 
1163 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1164                                          llvm::GlobalValue *GV) {
1165   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1166   // Get the struct elements for these annotations.
1167   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1168     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1169 }
1170 
1171 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1172   // Never defer when EmitAllDecls is specified.
1173   if (LangOpts.EmitAllDecls)
1174     return false;
1175 
1176   return !getContext().DeclMustBeEmitted(Global);
1177 }
1178 
1179 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1180     const CXXUuidofExpr* E) {
1181   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1182   // well-formed.
1183   StringRef Uuid = E->getUuidAsStringRef(Context);
1184   std::string Name = "_GUID_" + Uuid.lower();
1185   std::replace(Name.begin(), Name.end(), '-', '_');
1186 
1187   // Look for an existing global.
1188   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1189     return GV;
1190 
1191   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1192   assert(Init && "failed to initialize as constant");
1193 
1194   auto *GV = new llvm::GlobalVariable(
1195       getModule(), Init->getType(),
1196       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1197   return GV;
1198 }
1199 
1200 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1201   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1202   assert(AA && "No alias?");
1203 
1204   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1205 
1206   // See if there is already something with the target's name in the module.
1207   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1208   if (Entry) {
1209     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1210     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1211   }
1212 
1213   llvm::Constant *Aliasee;
1214   if (isa<llvm::FunctionType>(DeclTy))
1215     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1216                                       GlobalDecl(cast<FunctionDecl>(VD)),
1217                                       /*ForVTable=*/false);
1218   else
1219     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1220                                     llvm::PointerType::getUnqual(DeclTy),
1221                                     nullptr);
1222 
1223   auto *F = cast<llvm::GlobalValue>(Aliasee);
1224   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1225   WeakRefReferences.insert(F);
1226 
1227   return Aliasee;
1228 }
1229 
1230 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1231   const auto *Global = cast<ValueDecl>(GD.getDecl());
1232 
1233   // Weak references don't produce any output by themselves.
1234   if (Global->hasAttr<WeakRefAttr>())
1235     return;
1236 
1237   // If this is an alias definition (which otherwise looks like a declaration)
1238   // emit it now.
1239   if (Global->hasAttr<AliasAttr>())
1240     return EmitAliasDefinition(GD);
1241 
1242   // If this is CUDA, be selective about which declarations we emit.
1243   if (LangOpts.CUDA) {
1244     if (CodeGenOpts.CUDAIsDevice) {
1245       if (!Global->hasAttr<CUDADeviceAttr>() &&
1246           !Global->hasAttr<CUDAGlobalAttr>() &&
1247           !Global->hasAttr<CUDAConstantAttr>() &&
1248           !Global->hasAttr<CUDASharedAttr>())
1249         return;
1250     } else {
1251       if (!Global->hasAttr<CUDAHostAttr>() && (
1252             Global->hasAttr<CUDADeviceAttr>() ||
1253             Global->hasAttr<CUDAConstantAttr>() ||
1254             Global->hasAttr<CUDASharedAttr>()))
1255         return;
1256     }
1257   }
1258 
1259   // Ignore declarations, they will be emitted on their first use.
1260   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1261     // Forward declarations are emitted lazily on first use.
1262     if (!FD->doesThisDeclarationHaveABody()) {
1263       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1264         return;
1265 
1266       StringRef MangledName = getMangledName(GD);
1267 
1268       // Compute the function info and LLVM type.
1269       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1270       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1271 
1272       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1273                               /*DontDefer=*/false);
1274       return;
1275     }
1276   } else {
1277     const auto *VD = cast<VarDecl>(Global);
1278     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1279 
1280     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1281         !Context.isMSStaticDataMemberInlineDefinition(VD))
1282       return;
1283   }
1284 
1285   // Defer code generation when possible if this is a static definition, inline
1286   // function etc.  These we only want to emit if they are used.
1287   if (!MayDeferGeneration(Global)) {
1288     // Emit the definition if it can't be deferred.
1289     EmitGlobalDefinition(GD);
1290     return;
1291   }
1292 
1293   // If we're deferring emission of a C++ variable with an
1294   // initializer, remember the order in which it appeared in the file.
1295   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1296       cast<VarDecl>(Global)->hasInit()) {
1297     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1298     CXXGlobalInits.push_back(nullptr);
1299   }
1300 
1301   // If the value has already been used, add it directly to the
1302   // DeferredDeclsToEmit list.
1303   StringRef MangledName = getMangledName(GD);
1304   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1305     addDeferredDeclToEmit(GV, GD);
1306   else {
1307     // Otherwise, remember that we saw a deferred decl with this name.  The
1308     // first use of the mangled name will cause it to move into
1309     // DeferredDeclsToEmit.
1310     DeferredDecls[MangledName] = GD;
1311   }
1312 }
1313 
1314 namespace {
1315   struct FunctionIsDirectlyRecursive :
1316     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1317     const StringRef Name;
1318     const Builtin::Context &BI;
1319     bool Result;
1320     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1321       Name(N), BI(C), Result(false) {
1322     }
1323     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1324 
1325     bool TraverseCallExpr(CallExpr *E) {
1326       const FunctionDecl *FD = E->getDirectCallee();
1327       if (!FD)
1328         return true;
1329       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1330       if (Attr && Name == Attr->getLabel()) {
1331         Result = true;
1332         return false;
1333       }
1334       unsigned BuiltinID = FD->getBuiltinID();
1335       if (!BuiltinID)
1336         return true;
1337       StringRef BuiltinName = BI.GetName(BuiltinID);
1338       if (BuiltinName.startswith("__builtin_") &&
1339           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1340         Result = true;
1341         return false;
1342       }
1343       return true;
1344     }
1345   };
1346 }
1347 
1348 // isTriviallyRecursive - Check if this function calls another
1349 // decl that, because of the asm attribute or the other decl being a builtin,
1350 // ends up pointing to itself.
1351 bool
1352 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1353   StringRef Name;
1354   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1355     // asm labels are a special kind of mangling we have to support.
1356     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1357     if (!Attr)
1358       return false;
1359     Name = Attr->getLabel();
1360   } else {
1361     Name = FD->getName();
1362   }
1363 
1364   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1365   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1366   return Walker.Result;
1367 }
1368 
1369 bool
1370 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1371   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1372     return true;
1373   const auto *F = cast<FunctionDecl>(GD.getDecl());
1374   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1375     return false;
1376   // PR9614. Avoid cases where the source code is lying to us. An available
1377   // externally function should have an equivalent function somewhere else,
1378   // but a function that calls itself is clearly not equivalent to the real
1379   // implementation.
1380   // This happens in glibc's btowc and in some configure checks.
1381   return !isTriviallyRecursive(F);
1382 }
1383 
1384 /// If the type for the method's class was generated by
1385 /// CGDebugInfo::createContextChain(), the cache contains only a
1386 /// limited DIType without any declarations. Since EmitFunctionStart()
1387 /// needs to find the canonical declaration for each method, we need
1388 /// to construct the complete type prior to emitting the method.
1389 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1390   if (!D->isInstance())
1391     return;
1392 
1393   if (CGDebugInfo *DI = getModuleDebugInfo())
1394     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1395       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1396       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1397     }
1398 }
1399 
1400 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1401   const auto *D = cast<ValueDecl>(GD.getDecl());
1402 
1403   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1404                                  Context.getSourceManager(),
1405                                  "Generating code for declaration");
1406 
1407   if (isa<FunctionDecl>(D)) {
1408     // At -O0, don't generate IR for functions with available_externally
1409     // linkage.
1410     if (!shouldEmitFunction(GD))
1411       return;
1412 
1413     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1414       CompleteDIClassType(Method);
1415       // Make sure to emit the definition(s) before we emit the thunks.
1416       // This is necessary for the generation of certain thunks.
1417       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1418         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1419       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1420         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1421       else
1422         EmitGlobalFunctionDefinition(GD, GV);
1423 
1424       if (Method->isVirtual())
1425         getVTables().EmitThunks(GD);
1426 
1427       return;
1428     }
1429 
1430     return EmitGlobalFunctionDefinition(GD, GV);
1431   }
1432 
1433   if (const auto *VD = dyn_cast<VarDecl>(D))
1434     return EmitGlobalVarDefinition(VD);
1435 
1436   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1437 }
1438 
1439 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1440 /// module, create and return an llvm Function with the specified type. If there
1441 /// is something in the module with the specified name, return it potentially
1442 /// bitcasted to the right type.
1443 ///
1444 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1445 /// to set the attributes on the function when it is first created.
1446 llvm::Constant *
1447 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1448                                        llvm::Type *Ty,
1449                                        GlobalDecl GD, bool ForVTable,
1450                                        bool DontDefer,
1451                                        llvm::AttributeSet ExtraAttrs) {
1452   const Decl *D = GD.getDecl();
1453 
1454   // Lookup the entry, lazily creating it if necessary.
1455   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1456   if (Entry) {
1457     if (WeakRefReferences.erase(Entry)) {
1458       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1459       if (FD && !FD->hasAttr<WeakAttr>())
1460         Entry->setLinkage(llvm::Function::ExternalLinkage);
1461     }
1462 
1463     // Handle dropped DLL attributes.
1464     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1465       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1466 
1467     if (Entry->getType()->getElementType() == Ty)
1468       return Entry;
1469 
1470     // Make sure the result is of the correct type.
1471     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1472   }
1473 
1474   // This function doesn't have a complete type (for example, the return
1475   // type is an incomplete struct). Use a fake type instead, and make
1476   // sure not to try to set attributes.
1477   bool IsIncompleteFunction = false;
1478 
1479   llvm::FunctionType *FTy;
1480   if (isa<llvm::FunctionType>(Ty)) {
1481     FTy = cast<llvm::FunctionType>(Ty);
1482   } else {
1483     FTy = llvm::FunctionType::get(VoidTy, false);
1484     IsIncompleteFunction = true;
1485   }
1486 
1487   llvm::Function *F = llvm::Function::Create(FTy,
1488                                              llvm::Function::ExternalLinkage,
1489                                              MangledName, &getModule());
1490   assert(F->getName() == MangledName && "name was uniqued!");
1491   if (D)
1492     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1493   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1494     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1495     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1496                      llvm::AttributeSet::get(VMContext,
1497                                              llvm::AttributeSet::FunctionIndex,
1498                                              B));
1499   }
1500 
1501   if (!DontDefer) {
1502     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1503     // each other bottoming out with the base dtor.  Therefore we emit non-base
1504     // dtors on usage, even if there is no dtor definition in the TU.
1505     if (D && isa<CXXDestructorDecl>(D) &&
1506         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1507                                            GD.getDtorType()))
1508       addDeferredDeclToEmit(F, GD);
1509 
1510     // This is the first use or definition of a mangled name.  If there is a
1511     // deferred decl with this name, remember that we need to emit it at the end
1512     // of the file.
1513     auto DDI = DeferredDecls.find(MangledName);
1514     if (DDI != DeferredDecls.end()) {
1515       // Move the potentially referenced deferred decl to the
1516       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1517       // don't need it anymore).
1518       addDeferredDeclToEmit(F, DDI->second);
1519       DeferredDecls.erase(DDI);
1520 
1521       // Otherwise, if this is a sized deallocation function, emit a weak
1522       // definition
1523       // for it at the end of the translation unit.
1524     } else if (D && cast<FunctionDecl>(D)
1525                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1526       addDeferredDeclToEmit(F, GD);
1527 
1528       // Otherwise, there are cases we have to worry about where we're
1529       // using a declaration for which we must emit a definition but where
1530       // we might not find a top-level definition:
1531       //   - member functions defined inline in their classes
1532       //   - friend functions defined inline in some class
1533       //   - special member functions with implicit definitions
1534       // If we ever change our AST traversal to walk into class methods,
1535       // this will be unnecessary.
1536       //
1537       // We also don't emit a definition for a function if it's going to be an
1538       // entry in a vtable, unless it's already marked as used.
1539     } else if (getLangOpts().CPlusPlus && D) {
1540       // Look for a declaration that's lexically in a record.
1541       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1542            FD = FD->getPreviousDecl()) {
1543         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1544           if (FD->doesThisDeclarationHaveABody()) {
1545             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1546             break;
1547           }
1548         }
1549       }
1550     }
1551   }
1552 
1553   // Make sure the result is of the requested type.
1554   if (!IsIncompleteFunction) {
1555     assert(F->getType()->getElementType() == Ty);
1556     return F;
1557   }
1558 
1559   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1560   return llvm::ConstantExpr::getBitCast(F, PTy);
1561 }
1562 
1563 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1564 /// non-null, then this function will use the specified type if it has to
1565 /// create it (this occurs when we see a definition of the function).
1566 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1567                                                  llvm::Type *Ty,
1568                                                  bool ForVTable,
1569                                                  bool DontDefer) {
1570   // If there was no specific requested type, just convert it now.
1571   if (!Ty)
1572     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1573 
1574   StringRef MangledName = getMangledName(GD);
1575   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1576 }
1577 
1578 /// CreateRuntimeFunction - Create a new runtime function with the specified
1579 /// type and name.
1580 llvm::Constant *
1581 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1582                                      StringRef Name,
1583                                      llvm::AttributeSet ExtraAttrs) {
1584   llvm::Constant *C =
1585       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1586                               /*DontDefer=*/false, ExtraAttrs);
1587   if (auto *F = dyn_cast<llvm::Function>(C))
1588     if (F->empty())
1589       F->setCallingConv(getRuntimeCC());
1590   return C;
1591 }
1592 
1593 /// isTypeConstant - Determine whether an object of this type can be emitted
1594 /// as a constant.
1595 ///
1596 /// If ExcludeCtor is true, the duration when the object's constructor runs
1597 /// will not be considered. The caller will need to verify that the object is
1598 /// not written to during its construction.
1599 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1600   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1601     return false;
1602 
1603   if (Context.getLangOpts().CPlusPlus) {
1604     if (const CXXRecordDecl *Record
1605           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1606       return ExcludeCtor && !Record->hasMutableFields() &&
1607              Record->hasTrivialDestructor();
1608   }
1609 
1610   return true;
1611 }
1612 
1613 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1614 /// create and return an llvm GlobalVariable with the specified type.  If there
1615 /// is something in the module with the specified name, return it potentially
1616 /// bitcasted to the right type.
1617 ///
1618 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1619 /// to set the attributes on the global when it is first created.
1620 llvm::Constant *
1621 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1622                                      llvm::PointerType *Ty,
1623                                      const VarDecl *D) {
1624   // Lookup the entry, lazily creating it if necessary.
1625   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1626   if (Entry) {
1627     if (WeakRefReferences.erase(Entry)) {
1628       if (D && !D->hasAttr<WeakAttr>())
1629         Entry->setLinkage(llvm::Function::ExternalLinkage);
1630     }
1631 
1632     // Handle dropped DLL attributes.
1633     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1634       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1635 
1636     if (Entry->getType() == Ty)
1637       return Entry;
1638 
1639     // Make sure the result is of the correct type.
1640     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1641       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1642 
1643     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1644   }
1645 
1646   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1647   auto *GV = new llvm::GlobalVariable(
1648       getModule(), Ty->getElementType(), false,
1649       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1650       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1651 
1652   // This is the first use or definition of a mangled name.  If there is a
1653   // deferred decl with this name, remember that we need to emit it at the end
1654   // of the file.
1655   auto DDI = DeferredDecls.find(MangledName);
1656   if (DDI != DeferredDecls.end()) {
1657     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1658     // list, and remove it from DeferredDecls (since we don't need it anymore).
1659     addDeferredDeclToEmit(GV, DDI->second);
1660     DeferredDecls.erase(DDI);
1661   }
1662 
1663   // Handle things which are present even on external declarations.
1664   if (D) {
1665     // FIXME: This code is overly simple and should be merged with other global
1666     // handling.
1667     GV->setConstant(isTypeConstant(D->getType(), false));
1668 
1669     setLinkageAndVisibilityForGV(GV, D);
1670 
1671     if (D->getTLSKind()) {
1672       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1673         CXXThreadLocals.push_back(std::make_pair(D, GV));
1674       setTLSMode(GV, *D);
1675     }
1676 
1677     // If required by the ABI, treat declarations of static data members with
1678     // inline initializers as definitions.
1679     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1680       EmitGlobalVarDefinition(D);
1681     }
1682 
1683     // Handle XCore specific ABI requirements.
1684     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1685         D->getLanguageLinkage() == CLanguageLinkage &&
1686         D->getType().isConstant(Context) &&
1687         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1688       GV->setSection(".cp.rodata");
1689   }
1690 
1691   if (AddrSpace != Ty->getAddressSpace())
1692     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1693 
1694   return GV;
1695 }
1696 
1697 
1698 llvm::GlobalVariable *
1699 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1700                                       llvm::Type *Ty,
1701                                       llvm::GlobalValue::LinkageTypes Linkage) {
1702   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1703   llvm::GlobalVariable *OldGV = nullptr;
1704 
1705   if (GV) {
1706     // Check if the variable has the right type.
1707     if (GV->getType()->getElementType() == Ty)
1708       return GV;
1709 
1710     // Because C++ name mangling, the only way we can end up with an already
1711     // existing global with the same name is if it has been declared extern "C".
1712     assert(GV->isDeclaration() && "Declaration has wrong type!");
1713     OldGV = GV;
1714   }
1715 
1716   // Create a new variable.
1717   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1718                                 Linkage, nullptr, Name);
1719 
1720   if (OldGV) {
1721     // Replace occurrences of the old variable if needed.
1722     GV->takeName(OldGV);
1723 
1724     if (!OldGV->use_empty()) {
1725       llvm::Constant *NewPtrForOldDecl =
1726       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1727       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1728     }
1729 
1730     OldGV->eraseFromParent();
1731   }
1732 
1733   return GV;
1734 }
1735 
1736 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1737 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1738 /// then it will be created with the specified type instead of whatever the
1739 /// normal requested type would be.
1740 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1741                                                   llvm::Type *Ty) {
1742   assert(D->hasGlobalStorage() && "Not a global variable");
1743   QualType ASTTy = D->getType();
1744   if (!Ty)
1745     Ty = getTypes().ConvertTypeForMem(ASTTy);
1746 
1747   llvm::PointerType *PTy =
1748     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1749 
1750   StringRef MangledName = getMangledName(D);
1751   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1752 }
1753 
1754 /// CreateRuntimeVariable - Create a new runtime global variable with the
1755 /// specified type and name.
1756 llvm::Constant *
1757 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1758                                      StringRef Name) {
1759   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1760 }
1761 
1762 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1763   assert(!D->getInit() && "Cannot emit definite definitions here!");
1764 
1765   if (MayDeferGeneration(D)) {
1766     // If we have not seen a reference to this variable yet, place it
1767     // into the deferred declarations table to be emitted if needed
1768     // later.
1769     StringRef MangledName = getMangledName(D);
1770     if (!GetGlobalValue(MangledName)) {
1771       DeferredDecls[MangledName] = D;
1772       return;
1773     }
1774   }
1775 
1776   // The tentative definition is the only definition.
1777   EmitGlobalVarDefinition(D);
1778 }
1779 
1780 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1781     return Context.toCharUnitsFromBits(
1782       TheDataLayout.getTypeStoreSizeInBits(Ty));
1783 }
1784 
1785 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1786                                                  unsigned AddrSpace) {
1787   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1788     if (D->hasAttr<CUDAConstantAttr>())
1789       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1790     else if (D->hasAttr<CUDASharedAttr>())
1791       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1792     else
1793       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1794   }
1795 
1796   return AddrSpace;
1797 }
1798 
1799 template<typename SomeDecl>
1800 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1801                                                llvm::GlobalValue *GV) {
1802   if (!getLangOpts().CPlusPlus)
1803     return;
1804 
1805   // Must have 'used' attribute, or else inline assembly can't rely on
1806   // the name existing.
1807   if (!D->template hasAttr<UsedAttr>())
1808     return;
1809 
1810   // Must have internal linkage and an ordinary name.
1811   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1812     return;
1813 
1814   // Must be in an extern "C" context. Entities declared directly within
1815   // a record are not extern "C" even if the record is in such a context.
1816   const SomeDecl *First = D->getFirstDecl();
1817   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1818     return;
1819 
1820   // OK, this is an internal linkage entity inside an extern "C" linkage
1821   // specification. Make a note of that so we can give it the "expected"
1822   // mangled name if nothing else is using that name.
1823   std::pair<StaticExternCMap::iterator, bool> R =
1824       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1825 
1826   // If we have multiple internal linkage entities with the same name
1827   // in extern "C" regions, none of them gets that name.
1828   if (!R.second)
1829     R.first->second = nullptr;
1830 }
1831 
1832 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1833   llvm::Constant *Init = nullptr;
1834   QualType ASTTy = D->getType();
1835   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1836   bool NeedsGlobalCtor = false;
1837   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1838 
1839   const VarDecl *InitDecl;
1840   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1841 
1842   if (!InitExpr) {
1843     // This is a tentative definition; tentative definitions are
1844     // implicitly initialized with { 0 }.
1845     //
1846     // Note that tentative definitions are only emitted at the end of
1847     // a translation unit, so they should never have incomplete
1848     // type. In addition, EmitTentativeDefinition makes sure that we
1849     // never attempt to emit a tentative definition if a real one
1850     // exists. A use may still exists, however, so we still may need
1851     // to do a RAUW.
1852     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1853     Init = EmitNullConstant(D->getType());
1854   } else {
1855     initializedGlobalDecl = GlobalDecl(D);
1856     Init = EmitConstantInit(*InitDecl);
1857 
1858     if (!Init) {
1859       QualType T = InitExpr->getType();
1860       if (D->getType()->isReferenceType())
1861         T = D->getType();
1862 
1863       if (getLangOpts().CPlusPlus) {
1864         Init = EmitNullConstant(T);
1865         NeedsGlobalCtor = true;
1866       } else {
1867         ErrorUnsupported(D, "static initializer");
1868         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1869       }
1870     } else {
1871       // We don't need an initializer, so remove the entry for the delayed
1872       // initializer position (just in case this entry was delayed) if we
1873       // also don't need to register a destructor.
1874       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1875         DelayedCXXInitPosition.erase(D);
1876     }
1877   }
1878 
1879   llvm::Type* InitType = Init->getType();
1880   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1881 
1882   // Strip off a bitcast if we got one back.
1883   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1884     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1885            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1886            // All zero index gep.
1887            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1888     Entry = CE->getOperand(0);
1889   }
1890 
1891   // Entry is now either a Function or GlobalVariable.
1892   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1893 
1894   // We have a definition after a declaration with the wrong type.
1895   // We must make a new GlobalVariable* and update everything that used OldGV
1896   // (a declaration or tentative definition) with the new GlobalVariable*
1897   // (which will be a definition).
1898   //
1899   // This happens if there is a prototype for a global (e.g.
1900   // "extern int x[];") and then a definition of a different type (e.g.
1901   // "int x[10];"). This also happens when an initializer has a different type
1902   // from the type of the global (this happens with unions).
1903   if (!GV ||
1904       GV->getType()->getElementType() != InitType ||
1905       GV->getType()->getAddressSpace() !=
1906        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1907 
1908     // Move the old entry aside so that we'll create a new one.
1909     Entry->setName(StringRef());
1910 
1911     // Make a new global with the correct type, this is now guaranteed to work.
1912     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1913 
1914     // Replace all uses of the old global with the new global
1915     llvm::Constant *NewPtrForOldDecl =
1916         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1917     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1918 
1919     // Erase the old global, since it is no longer used.
1920     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1921   }
1922 
1923   MaybeHandleStaticInExternC(D, GV);
1924 
1925   if (D->hasAttr<AnnotateAttr>())
1926     AddGlobalAnnotations(D, GV);
1927 
1928   GV->setInitializer(Init);
1929 
1930   // If it is safe to mark the global 'constant', do so now.
1931   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1932                   isTypeConstant(D->getType(), true));
1933 
1934   // If it is in a read-only section, mark it 'constant'.
1935   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
1936     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
1937     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
1938       GV->setConstant(true);
1939   }
1940 
1941   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1942 
1943   // Set the llvm linkage type as appropriate.
1944   llvm::GlobalValue::LinkageTypes Linkage =
1945       getLLVMLinkageVarDefinition(D, GV->isConstant());
1946 
1947   // On Darwin, the backing variable for a C++11 thread_local variable always
1948   // has internal linkage; all accesses should just be calls to the
1949   // Itanium-specified entry point, which has the normal linkage of the
1950   // variable.
1951   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
1952       Context.getTargetInfo().getTriple().isMacOSX())
1953     Linkage = llvm::GlobalValue::InternalLinkage;
1954 
1955   GV->setLinkage(Linkage);
1956   if (D->hasAttr<DLLImportAttr>())
1957     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1958   else if (D->hasAttr<DLLExportAttr>())
1959     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1960 
1961   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1962     // common vars aren't constant even if declared const.
1963     GV->setConstant(false);
1964 
1965   setNonAliasAttributes(D, GV);
1966 
1967   if (D->getTLSKind() && !GV->isThreadLocal()) {
1968     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1969       CXXThreadLocals.push_back(std::make_pair(D, GV));
1970     setTLSMode(GV, *D);
1971   }
1972 
1973   // Emit the initializer function if necessary.
1974   if (NeedsGlobalCtor || NeedsGlobalDtor)
1975     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1976 
1977   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
1978 
1979   // Emit global variable debug information.
1980   if (CGDebugInfo *DI = getModuleDebugInfo())
1981     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1982       DI->EmitGlobalVariable(GV, D);
1983 }
1984 
1985 static bool isVarDeclStrongDefinition(const ASTContext &Context,
1986                                       const VarDecl *D, bool NoCommon) {
1987   // Don't give variables common linkage if -fno-common was specified unless it
1988   // was overridden by a NoCommon attribute.
1989   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1990     return true;
1991 
1992   // C11 6.9.2/2:
1993   //   A declaration of an identifier for an object that has file scope without
1994   //   an initializer, and without a storage-class specifier or with the
1995   //   storage-class specifier static, constitutes a tentative definition.
1996   if (D->getInit() || D->hasExternalStorage())
1997     return true;
1998 
1999   // A variable cannot be both common and exist in a section.
2000   if (D->hasAttr<SectionAttr>())
2001     return true;
2002 
2003   // Thread local vars aren't considered common linkage.
2004   if (D->getTLSKind())
2005     return true;
2006 
2007   // Tentative definitions marked with WeakImportAttr are true definitions.
2008   if (D->hasAttr<WeakImportAttr>())
2009     return true;
2010 
2011   // Declarations with a required alignment do not have common linakge in MSVC
2012   // mode.
2013   if (Context.getLangOpts().MSVCCompat &&
2014       (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>()))
2015     return true;
2016 
2017   return false;
2018 }
2019 
2020 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2021     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2022   if (Linkage == GVA_Internal)
2023     return llvm::Function::InternalLinkage;
2024 
2025   if (D->hasAttr<WeakAttr>()) {
2026     if (IsConstantVariable)
2027       return llvm::GlobalVariable::WeakODRLinkage;
2028     else
2029       return llvm::GlobalVariable::WeakAnyLinkage;
2030   }
2031 
2032   // We are guaranteed to have a strong definition somewhere else,
2033   // so we can use available_externally linkage.
2034   if (Linkage == GVA_AvailableExternally)
2035     return llvm::Function::AvailableExternallyLinkage;
2036 
2037   // Note that Apple's kernel linker doesn't support symbol
2038   // coalescing, so we need to avoid linkonce and weak linkages there.
2039   // Normally, this means we just map to internal, but for explicit
2040   // instantiations we'll map to external.
2041 
2042   // In C++, the compiler has to emit a definition in every translation unit
2043   // that references the function.  We should use linkonce_odr because
2044   // a) if all references in this translation unit are optimized away, we
2045   // don't need to codegen it.  b) if the function persists, it needs to be
2046   // merged with other definitions. c) C++ has the ODR, so we know the
2047   // definition is dependable.
2048   if (Linkage == GVA_DiscardableODR)
2049     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2050                                             : llvm::Function::InternalLinkage;
2051 
2052   // An explicit instantiation of a template has weak linkage, since
2053   // explicit instantiations can occur in multiple translation units
2054   // and must all be equivalent. However, we are not allowed to
2055   // throw away these explicit instantiations.
2056   if (Linkage == GVA_StrongODR)
2057     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2058                                             : llvm::Function::ExternalLinkage;
2059 
2060   // C++ doesn't have tentative definitions and thus cannot have common
2061   // linkage.
2062   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2063       !isVarDeclStrongDefinition(Context, cast<VarDecl>(D),
2064                                  CodeGenOpts.NoCommon))
2065     return llvm::GlobalVariable::CommonLinkage;
2066 
2067   // selectany symbols are externally visible, so use weak instead of
2068   // linkonce.  MSVC optimizes away references to const selectany globals, so
2069   // all definitions should be the same and ODR linkage should be used.
2070   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2071   if (D->hasAttr<SelectAnyAttr>())
2072     return llvm::GlobalVariable::WeakODRLinkage;
2073 
2074   // Otherwise, we have strong external linkage.
2075   assert(Linkage == GVA_StrongExternal);
2076   return llvm::GlobalVariable::ExternalLinkage;
2077 }
2078 
2079 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2080     const VarDecl *VD, bool IsConstant) {
2081   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2082   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2083 }
2084 
2085 /// Replace the uses of a function that was declared with a non-proto type.
2086 /// We want to silently drop extra arguments from call sites
2087 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2088                                           llvm::Function *newFn) {
2089   // Fast path.
2090   if (old->use_empty()) return;
2091 
2092   llvm::Type *newRetTy = newFn->getReturnType();
2093   SmallVector<llvm::Value*, 4> newArgs;
2094 
2095   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2096          ui != ue; ) {
2097     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2098     llvm::User *user = use->getUser();
2099 
2100     // Recognize and replace uses of bitcasts.  Most calls to
2101     // unprototyped functions will use bitcasts.
2102     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2103       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2104         replaceUsesOfNonProtoConstant(bitcast, newFn);
2105       continue;
2106     }
2107 
2108     // Recognize calls to the function.
2109     llvm::CallSite callSite(user);
2110     if (!callSite) continue;
2111     if (!callSite.isCallee(&*use)) continue;
2112 
2113     // If the return types don't match exactly, then we can't
2114     // transform this call unless it's dead.
2115     if (callSite->getType() != newRetTy && !callSite->use_empty())
2116       continue;
2117 
2118     // Get the call site's attribute list.
2119     SmallVector<llvm::AttributeSet, 8> newAttrs;
2120     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2121 
2122     // Collect any return attributes from the call.
2123     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2124       newAttrs.push_back(
2125         llvm::AttributeSet::get(newFn->getContext(),
2126                                 oldAttrs.getRetAttributes()));
2127 
2128     // If the function was passed too few arguments, don't transform.
2129     unsigned newNumArgs = newFn->arg_size();
2130     if (callSite.arg_size() < newNumArgs) continue;
2131 
2132     // If extra arguments were passed, we silently drop them.
2133     // If any of the types mismatch, we don't transform.
2134     unsigned argNo = 0;
2135     bool dontTransform = false;
2136     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2137            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2138       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2139         dontTransform = true;
2140         break;
2141       }
2142 
2143       // Add any parameter attributes.
2144       if (oldAttrs.hasAttributes(argNo + 1))
2145         newAttrs.
2146           push_back(llvm::
2147                     AttributeSet::get(newFn->getContext(),
2148                                       oldAttrs.getParamAttributes(argNo + 1)));
2149     }
2150     if (dontTransform)
2151       continue;
2152 
2153     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2154       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2155                                                  oldAttrs.getFnAttributes()));
2156 
2157     // Okay, we can transform this.  Create the new call instruction and copy
2158     // over the required information.
2159     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2160 
2161     llvm::CallSite newCall;
2162     if (callSite.isCall()) {
2163       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2164                                        callSite.getInstruction());
2165     } else {
2166       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2167       newCall = llvm::InvokeInst::Create(newFn,
2168                                          oldInvoke->getNormalDest(),
2169                                          oldInvoke->getUnwindDest(),
2170                                          newArgs, "",
2171                                          callSite.getInstruction());
2172     }
2173     newArgs.clear(); // for the next iteration
2174 
2175     if (!newCall->getType()->isVoidTy())
2176       newCall->takeName(callSite.getInstruction());
2177     newCall.setAttributes(
2178                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2179     newCall.setCallingConv(callSite.getCallingConv());
2180 
2181     // Finally, remove the old call, replacing any uses with the new one.
2182     if (!callSite->use_empty())
2183       callSite->replaceAllUsesWith(newCall.getInstruction());
2184 
2185     // Copy debug location attached to CI.
2186     if (!callSite->getDebugLoc().isUnknown())
2187       newCall->setDebugLoc(callSite->getDebugLoc());
2188     callSite->eraseFromParent();
2189   }
2190 }
2191 
2192 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2193 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2194 /// existing call uses of the old function in the module, this adjusts them to
2195 /// call the new function directly.
2196 ///
2197 /// This is not just a cleanup: the always_inline pass requires direct calls to
2198 /// functions to be able to inline them.  If there is a bitcast in the way, it
2199 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2200 /// run at -O0.
2201 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2202                                                       llvm::Function *NewFn) {
2203   // If we're redefining a global as a function, don't transform it.
2204   if (!isa<llvm::Function>(Old)) return;
2205 
2206   replaceUsesOfNonProtoConstant(Old, NewFn);
2207 }
2208 
2209 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2210   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2211   // If we have a definition, this might be a deferred decl. If the
2212   // instantiation is explicit, make sure we emit it at the end.
2213   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2214     GetAddrOfGlobalVar(VD);
2215 
2216   EmitTopLevelDecl(VD);
2217 }
2218 
2219 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2220                                                  llvm::GlobalValue *GV) {
2221   const auto *D = cast<FunctionDecl>(GD.getDecl());
2222 
2223   // Compute the function info and LLVM type.
2224   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2225   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2226 
2227   // Get or create the prototype for the function.
2228   if (!GV) {
2229     llvm::Constant *C =
2230         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2231 
2232     // Strip off a bitcast if we got one back.
2233     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2234       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2235       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2236     } else {
2237       GV = cast<llvm::GlobalValue>(C);
2238     }
2239   }
2240 
2241   if (!GV->isDeclaration()) {
2242     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2243     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2244     if (auto *Prev = OldGD.getDecl())
2245       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2246     return;
2247   }
2248 
2249   if (GV->getType()->getElementType() != Ty) {
2250     // If the types mismatch then we have to rewrite the definition.
2251     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2252 
2253     // F is the Function* for the one with the wrong type, we must make a new
2254     // Function* and update everything that used F (a declaration) with the new
2255     // Function* (which will be a definition).
2256     //
2257     // This happens if there is a prototype for a function
2258     // (e.g. "int f()") and then a definition of a different type
2259     // (e.g. "int f(int x)").  Move the old function aside so that it
2260     // doesn't interfere with GetAddrOfFunction.
2261     GV->setName(StringRef());
2262     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2263 
2264     // This might be an implementation of a function without a
2265     // prototype, in which case, try to do special replacement of
2266     // calls which match the new prototype.  The really key thing here
2267     // is that we also potentially drop arguments from the call site
2268     // so as to make a direct call, which makes the inliner happier
2269     // and suppresses a number of optimizer warnings (!) about
2270     // dropping arguments.
2271     if (!GV->use_empty()) {
2272       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2273       GV->removeDeadConstantUsers();
2274     }
2275 
2276     // Replace uses of F with the Function we will endow with a body.
2277     if (!GV->use_empty()) {
2278       llvm::Constant *NewPtrForOldDecl =
2279           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2280       GV->replaceAllUsesWith(NewPtrForOldDecl);
2281     }
2282 
2283     // Ok, delete the old function now, which is dead.
2284     GV->eraseFromParent();
2285 
2286     GV = NewFn;
2287   }
2288 
2289   // We need to set linkage and visibility on the function before
2290   // generating code for it because various parts of IR generation
2291   // want to propagate this information down (e.g. to local static
2292   // declarations).
2293   auto *Fn = cast<llvm::Function>(GV);
2294   setFunctionLinkage(GD, Fn);
2295 
2296   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2297   setGlobalVisibility(Fn, D);
2298 
2299   MaybeHandleStaticInExternC(D, Fn);
2300 
2301   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2302 
2303   setFunctionDefinitionAttributes(D, Fn);
2304   SetLLVMFunctionAttributesForDefinition(D, Fn);
2305 
2306   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2307     AddGlobalCtor(Fn, CA->getPriority());
2308   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2309     AddGlobalDtor(Fn, DA->getPriority());
2310   if (D->hasAttr<AnnotateAttr>())
2311     AddGlobalAnnotations(D, Fn);
2312 }
2313 
2314 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2315   const auto *D = cast<ValueDecl>(GD.getDecl());
2316   const AliasAttr *AA = D->getAttr<AliasAttr>();
2317   assert(AA && "Not an alias?");
2318 
2319   StringRef MangledName = getMangledName(GD);
2320 
2321   // If there is a definition in the module, then it wins over the alias.
2322   // This is dubious, but allow it to be safe.  Just ignore the alias.
2323   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2324   if (Entry && !Entry->isDeclaration())
2325     return;
2326 
2327   Aliases.push_back(GD);
2328 
2329   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2330 
2331   // Create a reference to the named value.  This ensures that it is emitted
2332   // if a deferred decl.
2333   llvm::Constant *Aliasee;
2334   if (isa<llvm::FunctionType>(DeclTy))
2335     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2336                                       /*ForVTable=*/false);
2337   else
2338     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2339                                     llvm::PointerType::getUnqual(DeclTy),
2340                                     /*D=*/nullptr);
2341 
2342   // Create the new alias itself, but don't set a name yet.
2343   auto *GA = llvm::GlobalAlias::create(
2344       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2345       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2346 
2347   if (Entry) {
2348     if (GA->getAliasee() == Entry) {
2349       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2350       return;
2351     }
2352 
2353     assert(Entry->isDeclaration());
2354 
2355     // If there is a declaration in the module, then we had an extern followed
2356     // by the alias, as in:
2357     //   extern int test6();
2358     //   ...
2359     //   int test6() __attribute__((alias("test7")));
2360     //
2361     // Remove it and replace uses of it with the alias.
2362     GA->takeName(Entry);
2363 
2364     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2365                                                           Entry->getType()));
2366     Entry->eraseFromParent();
2367   } else {
2368     GA->setName(MangledName);
2369   }
2370 
2371   // Set attributes which are particular to an alias; this is a
2372   // specialization of the attributes which may be set on a global
2373   // variable/function.
2374   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2375       D->isWeakImported()) {
2376     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2377   }
2378 
2379   if (const auto *VD = dyn_cast<VarDecl>(D))
2380     if (VD->getTLSKind())
2381       setTLSMode(GA, *VD);
2382 
2383   setAliasAttributes(D, GA);
2384 }
2385 
2386 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2387                                             ArrayRef<llvm::Type*> Tys) {
2388   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2389                                          Tys);
2390 }
2391 
2392 static llvm::StringMapEntry<llvm::Constant*> &
2393 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2394                          const StringLiteral *Literal,
2395                          bool TargetIsLSB,
2396                          bool &IsUTF16,
2397                          unsigned &StringLength) {
2398   StringRef String = Literal->getString();
2399   unsigned NumBytes = String.size();
2400 
2401   // Check for simple case.
2402   if (!Literal->containsNonAsciiOrNull()) {
2403     StringLength = NumBytes;
2404     return Map.GetOrCreateValue(String);
2405   }
2406 
2407   // Otherwise, convert the UTF8 literals into a string of shorts.
2408   IsUTF16 = true;
2409 
2410   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2411   const UTF8 *FromPtr = (const UTF8 *)String.data();
2412   UTF16 *ToPtr = &ToBuf[0];
2413 
2414   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2415                            &ToPtr, ToPtr + NumBytes,
2416                            strictConversion);
2417 
2418   // ConvertUTF8toUTF16 returns the length in ToPtr.
2419   StringLength = ToPtr - &ToBuf[0];
2420 
2421   // Add an explicit null.
2422   *ToPtr = 0;
2423   return Map.
2424     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2425                                (StringLength + 1) * 2));
2426 }
2427 
2428 static llvm::StringMapEntry<llvm::Constant*> &
2429 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2430                        const StringLiteral *Literal,
2431                        unsigned &StringLength) {
2432   StringRef String = Literal->getString();
2433   StringLength = String.size();
2434   return Map.GetOrCreateValue(String);
2435 }
2436 
2437 llvm::Constant *
2438 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2439   unsigned StringLength = 0;
2440   bool isUTF16 = false;
2441   llvm::StringMapEntry<llvm::Constant*> &Entry =
2442     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2443                              getDataLayout().isLittleEndian(),
2444                              isUTF16, StringLength);
2445 
2446   if (llvm::Constant *C = Entry.getValue())
2447     return C;
2448 
2449   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2450   llvm::Constant *Zeros[] = { Zero, Zero };
2451   llvm::Value *V;
2452 
2453   // If we don't already have it, get __CFConstantStringClassReference.
2454   if (!CFConstantStringClassRef) {
2455     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2456     Ty = llvm::ArrayType::get(Ty, 0);
2457     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2458                                            "__CFConstantStringClassReference");
2459     // Decay array -> ptr
2460     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2461     CFConstantStringClassRef = V;
2462   }
2463   else
2464     V = CFConstantStringClassRef;
2465 
2466   QualType CFTy = getContext().getCFConstantStringType();
2467 
2468   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2469 
2470   llvm::Constant *Fields[4];
2471 
2472   // Class pointer.
2473   Fields[0] = cast<llvm::ConstantExpr>(V);
2474 
2475   // Flags.
2476   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2477   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2478     llvm::ConstantInt::get(Ty, 0x07C8);
2479 
2480   // String pointer.
2481   llvm::Constant *C = nullptr;
2482   if (isUTF16) {
2483     ArrayRef<uint16_t> Arr =
2484       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2485                                      const_cast<char *>(Entry.getKey().data())),
2486                                    Entry.getKey().size() / 2);
2487     C = llvm::ConstantDataArray::get(VMContext, Arr);
2488   } else {
2489     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2490   }
2491 
2492   // Note: -fwritable-strings doesn't make the backing store strings of
2493   // CFStrings writable. (See <rdar://problem/10657500>)
2494   auto *GV =
2495       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2496                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2497   GV->setUnnamedAddr(true);
2498   // Don't enforce the target's minimum global alignment, since the only use
2499   // of the string is via this class initializer.
2500   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2501   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2502   // that changes the section it ends in, which surprises ld64.
2503   if (isUTF16) {
2504     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2505     GV->setAlignment(Align.getQuantity());
2506     GV->setSection("__TEXT,__ustring");
2507   } else {
2508     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2509     GV->setAlignment(Align.getQuantity());
2510     GV->setSection("__TEXT,__cstring,cstring_literals");
2511   }
2512 
2513   // String.
2514   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2515 
2516   if (isUTF16)
2517     // Cast the UTF16 string to the correct type.
2518     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2519 
2520   // String length.
2521   Ty = getTypes().ConvertType(getContext().LongTy);
2522   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2523 
2524   // The struct.
2525   C = llvm::ConstantStruct::get(STy, Fields);
2526   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2527                                 llvm::GlobalVariable::PrivateLinkage, C,
2528                                 "_unnamed_cfstring_");
2529   GV->setSection("__DATA,__cfstring");
2530   Entry.setValue(GV);
2531 
2532   return GV;
2533 }
2534 
2535 llvm::Constant *
2536 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2537   unsigned StringLength = 0;
2538   llvm::StringMapEntry<llvm::Constant*> &Entry =
2539     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2540 
2541   if (llvm::Constant *C = Entry.getValue())
2542     return C;
2543 
2544   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2545   llvm::Constant *Zeros[] = { Zero, Zero };
2546   llvm::Value *V;
2547   // If we don't already have it, get _NSConstantStringClassReference.
2548   if (!ConstantStringClassRef) {
2549     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2550     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2551     llvm::Constant *GV;
2552     if (LangOpts.ObjCRuntime.isNonFragile()) {
2553       std::string str =
2554         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2555                             : "OBJC_CLASS_$_" + StringClass;
2556       GV = getObjCRuntime().GetClassGlobal(str);
2557       // Make sure the result is of the correct type.
2558       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2559       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2560       ConstantStringClassRef = V;
2561     } else {
2562       std::string str =
2563         StringClass.empty() ? "_NSConstantStringClassReference"
2564                             : "_" + StringClass + "ClassReference";
2565       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2566       GV = CreateRuntimeVariable(PTy, str);
2567       // Decay array -> ptr
2568       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2569       ConstantStringClassRef = V;
2570     }
2571   }
2572   else
2573     V = ConstantStringClassRef;
2574 
2575   if (!NSConstantStringType) {
2576     // Construct the type for a constant NSString.
2577     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2578     D->startDefinition();
2579 
2580     QualType FieldTypes[3];
2581 
2582     // const int *isa;
2583     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2584     // const char *str;
2585     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2586     // unsigned int length;
2587     FieldTypes[2] = Context.UnsignedIntTy;
2588 
2589     // Create fields
2590     for (unsigned i = 0; i < 3; ++i) {
2591       FieldDecl *Field = FieldDecl::Create(Context, D,
2592                                            SourceLocation(),
2593                                            SourceLocation(), nullptr,
2594                                            FieldTypes[i], /*TInfo=*/nullptr,
2595                                            /*BitWidth=*/nullptr,
2596                                            /*Mutable=*/false,
2597                                            ICIS_NoInit);
2598       Field->setAccess(AS_public);
2599       D->addDecl(Field);
2600     }
2601 
2602     D->completeDefinition();
2603     QualType NSTy = Context.getTagDeclType(D);
2604     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2605   }
2606 
2607   llvm::Constant *Fields[3];
2608 
2609   // Class pointer.
2610   Fields[0] = cast<llvm::ConstantExpr>(V);
2611 
2612   // String pointer.
2613   llvm::Constant *C =
2614     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2615 
2616   llvm::GlobalValue::LinkageTypes Linkage;
2617   bool isConstant;
2618   Linkage = llvm::GlobalValue::PrivateLinkage;
2619   isConstant = !LangOpts.WritableStrings;
2620 
2621   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2622                                       Linkage, C, ".str");
2623   GV->setUnnamedAddr(true);
2624   // Don't enforce the target's minimum global alignment, since the only use
2625   // of the string is via this class initializer.
2626   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2627   GV->setAlignment(Align.getQuantity());
2628   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2629 
2630   // String length.
2631   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2632   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2633 
2634   // The struct.
2635   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2636   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2637                                 llvm::GlobalVariable::PrivateLinkage, C,
2638                                 "_unnamed_nsstring_");
2639   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2640   const char *NSStringNonFragileABISection =
2641       "__DATA,__objc_stringobj,regular,no_dead_strip";
2642   // FIXME. Fix section.
2643   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2644                      ? NSStringNonFragileABISection
2645                      : NSStringSection);
2646   Entry.setValue(GV);
2647 
2648   return GV;
2649 }
2650 
2651 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2652   if (ObjCFastEnumerationStateType.isNull()) {
2653     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2654     D->startDefinition();
2655 
2656     QualType FieldTypes[] = {
2657       Context.UnsignedLongTy,
2658       Context.getPointerType(Context.getObjCIdType()),
2659       Context.getPointerType(Context.UnsignedLongTy),
2660       Context.getConstantArrayType(Context.UnsignedLongTy,
2661                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2662     };
2663 
2664     for (size_t i = 0; i < 4; ++i) {
2665       FieldDecl *Field = FieldDecl::Create(Context,
2666                                            D,
2667                                            SourceLocation(),
2668                                            SourceLocation(), nullptr,
2669                                            FieldTypes[i], /*TInfo=*/nullptr,
2670                                            /*BitWidth=*/nullptr,
2671                                            /*Mutable=*/false,
2672                                            ICIS_NoInit);
2673       Field->setAccess(AS_public);
2674       D->addDecl(Field);
2675     }
2676 
2677     D->completeDefinition();
2678     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2679   }
2680 
2681   return ObjCFastEnumerationStateType;
2682 }
2683 
2684 llvm::Constant *
2685 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2686   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2687 
2688   // Don't emit it as the address of the string, emit the string data itself
2689   // as an inline array.
2690   if (E->getCharByteWidth() == 1) {
2691     SmallString<64> Str(E->getString());
2692 
2693     // Resize the string to the right size, which is indicated by its type.
2694     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2695     Str.resize(CAT->getSize().getZExtValue());
2696     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2697   }
2698 
2699   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2700   llvm::Type *ElemTy = AType->getElementType();
2701   unsigned NumElements = AType->getNumElements();
2702 
2703   // Wide strings have either 2-byte or 4-byte elements.
2704   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2705     SmallVector<uint16_t, 32> Elements;
2706     Elements.reserve(NumElements);
2707 
2708     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2709       Elements.push_back(E->getCodeUnit(i));
2710     Elements.resize(NumElements);
2711     return llvm::ConstantDataArray::get(VMContext, Elements);
2712   }
2713 
2714   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2715   SmallVector<uint32_t, 32> Elements;
2716   Elements.reserve(NumElements);
2717 
2718   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2719     Elements.push_back(E->getCodeUnit(i));
2720   Elements.resize(NumElements);
2721   return llvm::ConstantDataArray::get(VMContext, Elements);
2722 }
2723 
2724 static llvm::GlobalVariable *
2725 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2726                       CodeGenModule &CGM, StringRef GlobalName,
2727                       unsigned Alignment) {
2728   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2729   unsigned AddrSpace = 0;
2730   if (CGM.getLangOpts().OpenCL)
2731     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2732 
2733   // Create a global variable for this string
2734   auto *GV = new llvm::GlobalVariable(
2735       CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C,
2736       GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2737   GV->setAlignment(Alignment);
2738   GV->setUnnamedAddr(true);
2739   return GV;
2740 }
2741 
2742 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2743 /// constant array for the given string literal.
2744 llvm::GlobalVariable *
2745 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
2746                                                   StringRef Name) {
2747   auto Alignment =
2748       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2749 
2750   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2751   llvm::GlobalVariable **Entry = nullptr;
2752   if (!LangOpts.WritableStrings) {
2753     Entry = &ConstantStringMap[C];
2754     if (auto GV = *Entry) {
2755       if (Alignment > GV->getAlignment())
2756         GV->setAlignment(Alignment);
2757       return GV;
2758     }
2759   }
2760 
2761   SmallString<256> MangledNameBuffer;
2762   StringRef GlobalVariableName;
2763   llvm::GlobalValue::LinkageTypes LT;
2764 
2765   // Mangle the string literal if the ABI allows for it.  However, we cannot
2766   // do this if  we are compiling with ASan or -fwritable-strings because they
2767   // rely on strings having normal linkage.
2768   if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address &&
2769       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2770     llvm::raw_svector_ostream Out(MangledNameBuffer);
2771     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2772     Out.flush();
2773 
2774     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2775     GlobalVariableName = MangledNameBuffer;
2776   } else {
2777     LT = llvm::GlobalValue::PrivateLinkage;
2778     GlobalVariableName = Name;
2779   }
2780 
2781   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2782   if (Entry)
2783     *Entry = GV;
2784 
2785   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>");
2786   return GV;
2787 }
2788 
2789 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2790 /// array for the given ObjCEncodeExpr node.
2791 llvm::GlobalVariable *
2792 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2793   std::string Str;
2794   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2795 
2796   return GetAddrOfConstantCString(Str);
2797 }
2798 
2799 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2800 /// the literal and a terminating '\0' character.
2801 /// The result has pointer to array type.
2802 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2803     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2804   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2805   if (Alignment == 0) {
2806     Alignment = getContext()
2807                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2808                     .getQuantity();
2809   }
2810 
2811   llvm::Constant *C =
2812       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2813 
2814   // Don't share any string literals if strings aren't constant.
2815   llvm::GlobalVariable **Entry = nullptr;
2816   if (!LangOpts.WritableStrings) {
2817     Entry = &ConstantStringMap[C];
2818     if (auto GV = *Entry) {
2819       if (Alignment > GV->getAlignment())
2820         GV->setAlignment(Alignment);
2821       return GV;
2822     }
2823   }
2824 
2825   // Get the default prefix if a name wasn't specified.
2826   if (!GlobalName)
2827     GlobalName = ".str";
2828   // Create a global variable for this.
2829   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
2830                                   GlobalName, Alignment);
2831   if (Entry)
2832     *Entry = GV;
2833   return GV;
2834 }
2835 
2836 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2837     const MaterializeTemporaryExpr *E, const Expr *Init) {
2838   assert((E->getStorageDuration() == SD_Static ||
2839           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2840   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2841 
2842   // If we're not materializing a subobject of the temporary, keep the
2843   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2844   QualType MaterializedType = Init->getType();
2845   if (Init == E->GetTemporaryExpr())
2846     MaterializedType = E->getType();
2847 
2848   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2849   if (Slot)
2850     return Slot;
2851 
2852   // FIXME: If an externally-visible declaration extends multiple temporaries,
2853   // we need to give each temporary the same name in every translation unit (and
2854   // we also need to make the temporaries externally-visible).
2855   SmallString<256> Name;
2856   llvm::raw_svector_ostream Out(Name);
2857   getCXXABI().getMangleContext().mangleReferenceTemporary(
2858       VD, E->getManglingNumber(), Out);
2859   Out.flush();
2860 
2861   APValue *Value = nullptr;
2862   if (E->getStorageDuration() == SD_Static) {
2863     // We might have a cached constant initializer for this temporary. Note
2864     // that this might have a different value from the value computed by
2865     // evaluating the initializer if the surrounding constant expression
2866     // modifies the temporary.
2867     Value = getContext().getMaterializedTemporaryValue(E, false);
2868     if (Value && Value->isUninit())
2869       Value = nullptr;
2870   }
2871 
2872   // Try evaluating it now, it might have a constant initializer.
2873   Expr::EvalResult EvalResult;
2874   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2875       !EvalResult.hasSideEffects())
2876     Value = &EvalResult.Val;
2877 
2878   llvm::Constant *InitialValue = nullptr;
2879   bool Constant = false;
2880   llvm::Type *Type;
2881   if (Value) {
2882     // The temporary has a constant initializer, use it.
2883     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2884     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2885     Type = InitialValue->getType();
2886   } else {
2887     // No initializer, the initialization will be provided when we
2888     // initialize the declaration which performed lifetime extension.
2889     Type = getTypes().ConvertTypeForMem(MaterializedType);
2890   }
2891 
2892   // Create a global variable for this lifetime-extended temporary.
2893   llvm::GlobalValue::LinkageTypes Linkage =
2894       getLLVMLinkageVarDefinition(VD, Constant);
2895   // There is no need for this temporary to have global linkage if the global
2896   // variable has external linkage.
2897   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2898     Linkage = llvm::GlobalVariable::PrivateLinkage;
2899   unsigned AddrSpace = GetGlobalVarAddressSpace(
2900       VD, getContext().getTargetAddressSpace(MaterializedType));
2901   auto *GV = new llvm::GlobalVariable(
2902       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2903       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2904       AddrSpace);
2905   setGlobalVisibility(GV, VD);
2906   GV->setAlignment(
2907       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2908   if (VD->getTLSKind())
2909     setTLSMode(GV, *VD);
2910   Slot = GV;
2911   return GV;
2912 }
2913 
2914 /// EmitObjCPropertyImplementations - Emit information for synthesized
2915 /// properties for an implementation.
2916 void CodeGenModule::EmitObjCPropertyImplementations(const
2917                                                     ObjCImplementationDecl *D) {
2918   for (const auto *PID : D->property_impls()) {
2919     // Dynamic is just for type-checking.
2920     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2921       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2922 
2923       // Determine which methods need to be implemented, some may have
2924       // been overridden. Note that ::isPropertyAccessor is not the method
2925       // we want, that just indicates if the decl came from a
2926       // property. What we want to know is if the method is defined in
2927       // this implementation.
2928       if (!D->getInstanceMethod(PD->getGetterName()))
2929         CodeGenFunction(*this).GenerateObjCGetter(
2930                                  const_cast<ObjCImplementationDecl *>(D), PID);
2931       if (!PD->isReadOnly() &&
2932           !D->getInstanceMethod(PD->getSetterName()))
2933         CodeGenFunction(*this).GenerateObjCSetter(
2934                                  const_cast<ObjCImplementationDecl *>(D), PID);
2935     }
2936   }
2937 }
2938 
2939 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2940   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2941   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2942        ivar; ivar = ivar->getNextIvar())
2943     if (ivar->getType().isDestructedType())
2944       return true;
2945 
2946   return false;
2947 }
2948 
2949 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2950 /// for an implementation.
2951 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2952   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2953   if (needsDestructMethod(D)) {
2954     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2955     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2956     ObjCMethodDecl *DTORMethod =
2957       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2958                              cxxSelector, getContext().VoidTy, nullptr, D,
2959                              /*isInstance=*/true, /*isVariadic=*/false,
2960                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2961                              /*isDefined=*/false, ObjCMethodDecl::Required);
2962     D->addInstanceMethod(DTORMethod);
2963     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2964     D->setHasDestructors(true);
2965   }
2966 
2967   // If the implementation doesn't have any ivar initializers, we don't need
2968   // a .cxx_construct.
2969   if (D->getNumIvarInitializers() == 0)
2970     return;
2971 
2972   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2973   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2974   // The constructor returns 'self'.
2975   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2976                                                 D->getLocation(),
2977                                                 D->getLocation(),
2978                                                 cxxSelector,
2979                                                 getContext().getObjCIdType(),
2980                                                 nullptr, D, /*isInstance=*/true,
2981                                                 /*isVariadic=*/false,
2982                                                 /*isPropertyAccessor=*/true,
2983                                                 /*isImplicitlyDeclared=*/true,
2984                                                 /*isDefined=*/false,
2985                                                 ObjCMethodDecl::Required);
2986   D->addInstanceMethod(CTORMethod);
2987   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2988   D->setHasNonZeroConstructors(true);
2989 }
2990 
2991 /// EmitNamespace - Emit all declarations in a namespace.
2992 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2993   for (auto *I : ND->decls()) {
2994     if (const auto *VD = dyn_cast<VarDecl>(I))
2995       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2996           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2997         continue;
2998     EmitTopLevelDecl(I);
2999   }
3000 }
3001 
3002 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3003 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3004   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3005       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3006     ErrorUnsupported(LSD, "linkage spec");
3007     return;
3008   }
3009 
3010   for (auto *I : LSD->decls()) {
3011     // Meta-data for ObjC class includes references to implemented methods.
3012     // Generate class's method definitions first.
3013     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3014       for (auto *M : OID->methods())
3015         EmitTopLevelDecl(M);
3016     }
3017     EmitTopLevelDecl(I);
3018   }
3019 }
3020 
3021 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3022 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3023   // Ignore dependent declarations.
3024   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3025     return;
3026 
3027   switch (D->getKind()) {
3028   case Decl::CXXConversion:
3029   case Decl::CXXMethod:
3030   case Decl::Function:
3031     // Skip function templates
3032     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3033         cast<FunctionDecl>(D)->isLateTemplateParsed())
3034       return;
3035 
3036     EmitGlobal(cast<FunctionDecl>(D));
3037     // Always provide some coverage mapping
3038     // even for the functions that aren't emitted.
3039     AddDeferredUnusedCoverageMapping(D);
3040     break;
3041 
3042   case Decl::Var:
3043     // Skip variable templates
3044     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3045       return;
3046   case Decl::VarTemplateSpecialization:
3047     EmitGlobal(cast<VarDecl>(D));
3048     break;
3049 
3050   // Indirect fields from global anonymous structs and unions can be
3051   // ignored; only the actual variable requires IR gen support.
3052   case Decl::IndirectField:
3053     break;
3054 
3055   // C++ Decls
3056   case Decl::Namespace:
3057     EmitNamespace(cast<NamespaceDecl>(D));
3058     break;
3059     // No code generation needed.
3060   case Decl::UsingShadow:
3061   case Decl::ClassTemplate:
3062   case Decl::VarTemplate:
3063   case Decl::VarTemplatePartialSpecialization:
3064   case Decl::FunctionTemplate:
3065   case Decl::TypeAliasTemplate:
3066   case Decl::Block:
3067   case Decl::Empty:
3068     break;
3069   case Decl::Using:          // using X; [C++]
3070     if (CGDebugInfo *DI = getModuleDebugInfo())
3071         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3072     return;
3073   case Decl::NamespaceAlias:
3074     if (CGDebugInfo *DI = getModuleDebugInfo())
3075         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3076     return;
3077   case Decl::UsingDirective: // using namespace X; [C++]
3078     if (CGDebugInfo *DI = getModuleDebugInfo())
3079       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3080     return;
3081   case Decl::CXXConstructor:
3082     // Skip function templates
3083     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3084         cast<FunctionDecl>(D)->isLateTemplateParsed())
3085       return;
3086 
3087     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3088     break;
3089   case Decl::CXXDestructor:
3090     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3091       return;
3092     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3093     break;
3094 
3095   case Decl::StaticAssert:
3096     // Nothing to do.
3097     break;
3098 
3099   // Objective-C Decls
3100 
3101   // Forward declarations, no (immediate) code generation.
3102   case Decl::ObjCInterface:
3103   case Decl::ObjCCategory:
3104     break;
3105 
3106   case Decl::ObjCProtocol: {
3107     auto *Proto = cast<ObjCProtocolDecl>(D);
3108     if (Proto->isThisDeclarationADefinition())
3109       ObjCRuntime->GenerateProtocol(Proto);
3110     break;
3111   }
3112 
3113   case Decl::ObjCCategoryImpl:
3114     // Categories have properties but don't support synthesize so we
3115     // can ignore them here.
3116     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3117     break;
3118 
3119   case Decl::ObjCImplementation: {
3120     auto *OMD = cast<ObjCImplementationDecl>(D);
3121     EmitObjCPropertyImplementations(OMD);
3122     EmitObjCIvarInitializations(OMD);
3123     ObjCRuntime->GenerateClass(OMD);
3124     // Emit global variable debug information.
3125     if (CGDebugInfo *DI = getModuleDebugInfo())
3126       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3127         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3128             OMD->getClassInterface()), OMD->getLocation());
3129     break;
3130   }
3131   case Decl::ObjCMethod: {
3132     auto *OMD = cast<ObjCMethodDecl>(D);
3133     // If this is not a prototype, emit the body.
3134     if (OMD->getBody())
3135       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3136     break;
3137   }
3138   case Decl::ObjCCompatibleAlias:
3139     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3140     break;
3141 
3142   case Decl::LinkageSpec:
3143     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3144     break;
3145 
3146   case Decl::FileScopeAsm: {
3147     auto *AD = cast<FileScopeAsmDecl>(D);
3148     StringRef AsmString = AD->getAsmString()->getString();
3149 
3150     const std::string &S = getModule().getModuleInlineAsm();
3151     if (S.empty())
3152       getModule().setModuleInlineAsm(AsmString);
3153     else if (S.end()[-1] == '\n')
3154       getModule().setModuleInlineAsm(S + AsmString.str());
3155     else
3156       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3157     break;
3158   }
3159 
3160   case Decl::Import: {
3161     auto *Import = cast<ImportDecl>(D);
3162 
3163     // Ignore import declarations that come from imported modules.
3164     if (clang::Module *Owner = Import->getOwningModule()) {
3165       if (getLangOpts().CurrentModule.empty() ||
3166           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3167         break;
3168     }
3169 
3170     ImportedModules.insert(Import->getImportedModule());
3171     break;
3172   }
3173 
3174   case Decl::ClassTemplateSpecialization: {
3175     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3176     if (DebugInfo &&
3177         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3178       DebugInfo->completeTemplateDefinition(*Spec);
3179   }
3180 
3181   default:
3182     // Make sure we handled everything we should, every other kind is a
3183     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3184     // function. Need to recode Decl::Kind to do that easily.
3185     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3186   }
3187 }
3188 
3189 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3190   // Do we need to generate coverage mapping?
3191   if (!CodeGenOpts.CoverageMapping)
3192     return;
3193   switch (D->getKind()) {
3194   case Decl::CXXConversion:
3195   case Decl::CXXMethod:
3196   case Decl::Function:
3197   case Decl::ObjCMethod:
3198   case Decl::CXXConstructor:
3199   case Decl::CXXDestructor: {
3200     if (!cast<FunctionDecl>(D)->hasBody())
3201       return;
3202     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3203     if (I == DeferredEmptyCoverageMappingDecls.end())
3204       DeferredEmptyCoverageMappingDecls[D] = true;
3205     break;
3206   }
3207   default:
3208     break;
3209   };
3210 }
3211 
3212 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3213   // Do we need to generate coverage mapping?
3214   if (!CodeGenOpts.CoverageMapping)
3215     return;
3216   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3217     if (Fn->isTemplateInstantiation())
3218       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3219   }
3220   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3221   if (I == DeferredEmptyCoverageMappingDecls.end())
3222     DeferredEmptyCoverageMappingDecls[D] = false;
3223   else
3224     I->second = false;
3225 }
3226 
3227 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3228   std::vector<const Decl *> DeferredDecls;
3229   for (const auto I : DeferredEmptyCoverageMappingDecls) {
3230     if (!I.second)
3231       continue;
3232     DeferredDecls.push_back(I.first);
3233   }
3234   // Sort the declarations by their location to make sure that the tests get a
3235   // predictable order for the coverage mapping for the unused declarations.
3236   if (CodeGenOpts.DumpCoverageMapping)
3237     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3238               [] (const Decl *LHS, const Decl *RHS) {
3239       return LHS->getLocStart() < RHS->getLocStart();
3240     });
3241   for (const auto *D : DeferredDecls) {
3242     switch (D->getKind()) {
3243     case Decl::CXXConversion:
3244     case Decl::CXXMethod:
3245     case Decl::Function:
3246     case Decl::ObjCMethod: {
3247       CodeGenPGO PGO(*this);
3248       GlobalDecl GD(cast<FunctionDecl>(D));
3249       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3250                                   getFunctionLinkage(GD));
3251       break;
3252     }
3253     case Decl::CXXConstructor: {
3254       CodeGenPGO PGO(*this);
3255       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3256       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3257                                   getFunctionLinkage(GD));
3258       break;
3259     }
3260     case Decl::CXXDestructor: {
3261       CodeGenPGO PGO(*this);
3262       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3263       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3264                                   getFunctionLinkage(GD));
3265       break;
3266     }
3267     default:
3268       break;
3269     };
3270   }
3271 }
3272 
3273 /// Turns the given pointer into a constant.
3274 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3275                                           const void *Ptr) {
3276   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3277   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3278   return llvm::ConstantInt::get(i64, PtrInt);
3279 }
3280 
3281 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3282                                    llvm::NamedMDNode *&GlobalMetadata,
3283                                    GlobalDecl D,
3284                                    llvm::GlobalValue *Addr) {
3285   if (!GlobalMetadata)
3286     GlobalMetadata =
3287       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3288 
3289   // TODO: should we report variant information for ctors/dtors?
3290   llvm::Value *Ops[] = {
3291     Addr,
3292     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3293   };
3294   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3295 }
3296 
3297 /// For each function which is declared within an extern "C" region and marked
3298 /// as 'used', but has internal linkage, create an alias from the unmangled
3299 /// name to the mangled name if possible. People expect to be able to refer
3300 /// to such functions with an unmangled name from inline assembly within the
3301 /// same translation unit.
3302 void CodeGenModule::EmitStaticExternCAliases() {
3303   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3304                                   E = StaticExternCValues.end();
3305        I != E; ++I) {
3306     IdentifierInfo *Name = I->first;
3307     llvm::GlobalValue *Val = I->second;
3308     if (Val && !getModule().getNamedValue(Name->getName()))
3309       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3310   }
3311 }
3312 
3313 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3314                                              GlobalDecl &Result) const {
3315   auto Res = Manglings.find(MangledName);
3316   if (Res == Manglings.end())
3317     return false;
3318   Result = Res->getValue();
3319   return true;
3320 }
3321 
3322 /// Emits metadata nodes associating all the global values in the
3323 /// current module with the Decls they came from.  This is useful for
3324 /// projects using IR gen as a subroutine.
3325 ///
3326 /// Since there's currently no way to associate an MDNode directly
3327 /// with an llvm::GlobalValue, we create a global named metadata
3328 /// with the name 'clang.global.decl.ptrs'.
3329 void CodeGenModule::EmitDeclMetadata() {
3330   llvm::NamedMDNode *GlobalMetadata = nullptr;
3331 
3332   // StaticLocalDeclMap
3333   for (auto &I : MangledDeclNames) {
3334     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3335     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3336   }
3337 }
3338 
3339 /// Emits metadata nodes for all the local variables in the current
3340 /// function.
3341 void CodeGenFunction::EmitDeclMetadata() {
3342   if (LocalDeclMap.empty()) return;
3343 
3344   llvm::LLVMContext &Context = getLLVMContext();
3345 
3346   // Find the unique metadata ID for this name.
3347   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3348 
3349   llvm::NamedMDNode *GlobalMetadata = nullptr;
3350 
3351   for (auto &I : LocalDeclMap) {
3352     const Decl *D = I.first;
3353     llvm::Value *Addr = I.second;
3354     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3355       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3356       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3357     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3358       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3359       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3360     }
3361   }
3362 }
3363 
3364 void CodeGenModule::EmitVersionIdentMetadata() {
3365   llvm::NamedMDNode *IdentMetadata =
3366     TheModule.getOrInsertNamedMetadata("llvm.ident");
3367   std::string Version = getClangFullVersion();
3368   llvm::LLVMContext &Ctx = TheModule.getContext();
3369 
3370   llvm::Value *IdentNode[] = {
3371     llvm::MDString::get(Ctx, Version)
3372   };
3373   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3374 }
3375 
3376 void CodeGenModule::EmitTargetMetadata() {
3377   // Warning, new MangledDeclNames may be appended within this loop.
3378   // We rely on MapVector insertions adding new elements to the end
3379   // of the container.
3380   // FIXME: Move this loop into the one target that needs it, and only
3381   // loop over those declarations for which we couldn't emit the target
3382   // metadata when we emitted the declaration.
3383   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3384     auto Val = *(MangledDeclNames.begin() + I);
3385     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3386     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3387     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3388   }
3389 }
3390 
3391 void CodeGenModule::EmitCoverageFile() {
3392   if (!getCodeGenOpts().CoverageFile.empty()) {
3393     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3394       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3395       llvm::LLVMContext &Ctx = TheModule.getContext();
3396       llvm::MDString *CoverageFile =
3397           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3398       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3399         llvm::MDNode *CU = CUNode->getOperand(i);
3400         llvm::Value *node[] = { CoverageFile, CU };
3401         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3402         GCov->addOperand(N);
3403       }
3404     }
3405   }
3406 }
3407 
3408 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3409   // Sema has checked that all uuid strings are of the form
3410   // "12345678-1234-1234-1234-1234567890ab".
3411   assert(Uuid.size() == 36);
3412   for (unsigned i = 0; i < 36; ++i) {
3413     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3414     else                                         assert(isHexDigit(Uuid[i]));
3415   }
3416 
3417   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3418   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3419 
3420   llvm::Constant *Field3[8];
3421   for (unsigned Idx = 0; Idx < 8; ++Idx)
3422     Field3[Idx] = llvm::ConstantInt::get(
3423         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3424 
3425   llvm::Constant *Fields[4] = {
3426     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3427     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3428     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3429     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3430   };
3431 
3432   return llvm::ConstantStruct::getAnon(Fields);
3433 }
3434 
3435 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3436                                                        bool ForEH) {
3437   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3438   // FIXME: should we even be calling this method if RTTI is disabled
3439   // and it's not for EH?
3440   if (!ForEH && !getLangOpts().RTTI)
3441     return llvm::Constant::getNullValue(Int8PtrTy);
3442 
3443   if (ForEH && Ty->isObjCObjectPointerType() &&
3444       LangOpts.ObjCRuntime.isGNUFamily())
3445     return ObjCRuntime->GetEHType(Ty);
3446 
3447   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3448 }
3449 
3450