xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 88c2af80fac423fc338027c007e1499333f05ddb)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CodeGenOptions.h"
42 #include "clang/Basic/Diagnostic.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/BinaryFormat/ELF.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/RISCVISAInfo.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include "llvm/TargetParser/X86TargetParser.h"
74 #include "llvm/Transforms/Utils/BuildLibCalls.h"
75 #include <optional>
76 
77 using namespace clang;
78 using namespace CodeGen;
79 
80 static llvm::cl::opt<bool> LimitedCoverage(
81     "limited-coverage-experimental", llvm::cl::Hidden,
82     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
83 
84 static const char AnnotationSection[] = "llvm.metadata";
85 
86 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
87   switch (CGM.getContext().getCXXABIKind()) {
88   case TargetCXXABI::AppleARM64:
89   case TargetCXXABI::Fuchsia:
90   case TargetCXXABI::GenericAArch64:
91   case TargetCXXABI::GenericARM:
92   case TargetCXXABI::iOS:
93   case TargetCXXABI::WatchOS:
94   case TargetCXXABI::GenericMIPS:
95   case TargetCXXABI::GenericItanium:
96   case TargetCXXABI::WebAssembly:
97   case TargetCXXABI::XL:
98     return CreateItaniumCXXABI(CGM);
99   case TargetCXXABI::Microsoft:
100     return CreateMicrosoftCXXABI(CGM);
101   }
102 
103   llvm_unreachable("invalid C++ ABI kind");
104 }
105 
106 static std::unique_ptr<TargetCodeGenInfo>
107 createTargetCodeGenInfo(CodeGenModule &CGM) {
108   const TargetInfo &Target = CGM.getTarget();
109   const llvm::Triple &Triple = Target.getTriple();
110   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
111 
112   switch (Triple.getArch()) {
113   default:
114     return createDefaultTargetCodeGenInfo(CGM);
115 
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145     else if (Target.getABI() == "aapcs-soft")
146       Kind = AArch64ABIKind::AAPCSSoft;
147     else if (Target.getABI() == "pauthtest")
148       Kind = AArch64ABIKind::PAuthTest;
149 
150     return createAArch64TargetCodeGenInfo(CGM, Kind);
151   }
152 
153   case llvm::Triple::wasm32:
154   case llvm::Triple::wasm64: {
155     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
156     if (Target.getABI() == "experimental-mv")
157       Kind = WebAssemblyABIKind::ExperimentalMV;
158     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
159   }
160 
161   case llvm::Triple::arm:
162   case llvm::Triple::armeb:
163   case llvm::Triple::thumb:
164   case llvm::Triple::thumbeb: {
165     if (Triple.getOS() == llvm::Triple::Win32)
166       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
167 
168     ARMABIKind Kind = ARMABIKind::AAPCS;
169     StringRef ABIStr = Target.getABI();
170     if (ABIStr == "apcs-gnu")
171       Kind = ARMABIKind::APCS;
172     else if (ABIStr == "aapcs16")
173       Kind = ARMABIKind::AAPCS16_VFP;
174     else if (CodeGenOpts.FloatABI == "hard" ||
175              (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
176       Kind = ARMABIKind::AAPCS_VFP;
177 
178     return createARMTargetCodeGenInfo(CGM, Kind);
179   }
180 
181   case llvm::Triple::ppc: {
182     if (Triple.isOSAIX())
183       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
184 
185     bool IsSoftFloat =
186         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
187     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
188   }
189   case llvm::Triple::ppcle: {
190     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
191     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
192   }
193   case llvm::Triple::ppc64:
194     if (Triple.isOSAIX())
195       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
196 
197     if (Triple.isOSBinFormatELF()) {
198       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
199       if (Target.getABI() == "elfv2")
200         Kind = PPC64_SVR4_ABIKind::ELFv2;
201       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
202 
203       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
204     }
205     return createPPC64TargetCodeGenInfo(CGM);
206   case llvm::Triple::ppc64le: {
207     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
208     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
209     if (Target.getABI() == "elfv1")
210       Kind = PPC64_SVR4_ABIKind::ELFv1;
211     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
212 
213     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
214   }
215 
216   case llvm::Triple::nvptx:
217   case llvm::Triple::nvptx64:
218     return createNVPTXTargetCodeGenInfo(CGM);
219 
220   case llvm::Triple::msp430:
221     return createMSP430TargetCodeGenInfo(CGM);
222 
223   case llvm::Triple::riscv32:
224   case llvm::Triple::riscv64: {
225     StringRef ABIStr = Target.getABI();
226     unsigned XLen = Target.getPointerWidth(LangAS::Default);
227     unsigned ABIFLen = 0;
228     if (ABIStr.ends_with("f"))
229       ABIFLen = 32;
230     else if (ABIStr.ends_with("d"))
231       ABIFLen = 64;
232     bool EABI = ABIStr.ends_with("e");
233     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
234   }
235 
236   case llvm::Triple::systemz: {
237     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
238     bool HasVector = !SoftFloat && Target.getABI() == "vector";
239     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
240   }
241 
242   case llvm::Triple::tce:
243   case llvm::Triple::tcele:
244     return createTCETargetCodeGenInfo(CGM);
245 
246   case llvm::Triple::x86: {
247     bool IsDarwinVectorABI = Triple.isOSDarwin();
248     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
249 
250     if (Triple.getOS() == llvm::Triple::Win32) {
251       return createWinX86_32TargetCodeGenInfo(
252           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
253           CodeGenOpts.NumRegisterParameters);
254     }
255     return createX86_32TargetCodeGenInfo(
256         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
257         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
258   }
259 
260   case llvm::Triple::x86_64: {
261     StringRef ABI = Target.getABI();
262     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
263                                : ABI == "avx"  ? X86AVXABILevel::AVX
264                                                : X86AVXABILevel::None);
265 
266     switch (Triple.getOS()) {
267     case llvm::Triple::Win32:
268       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     default:
270       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
271     }
272   }
273   case llvm::Triple::hexagon:
274     return createHexagonTargetCodeGenInfo(CGM);
275   case llvm::Triple::lanai:
276     return createLanaiTargetCodeGenInfo(CGM);
277   case llvm::Triple::r600:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::amdgcn:
280     return createAMDGPUTargetCodeGenInfo(CGM);
281   case llvm::Triple::sparc:
282     return createSparcV8TargetCodeGenInfo(CGM);
283   case llvm::Triple::sparcv9:
284     return createSparcV9TargetCodeGenInfo(CGM);
285   case llvm::Triple::xcore:
286     return createXCoreTargetCodeGenInfo(CGM);
287   case llvm::Triple::arc:
288     return createARCTargetCodeGenInfo(CGM);
289   case llvm::Triple::spir:
290   case llvm::Triple::spir64:
291     return createCommonSPIRTargetCodeGenInfo(CGM);
292   case llvm::Triple::spirv32:
293   case llvm::Triple::spirv64:
294   case llvm::Triple::spirv:
295     return createSPIRVTargetCodeGenInfo(CGM);
296   case llvm::Triple::dxil:
297     return createDirectXTargetCodeGenInfo(CGM);
298   case llvm::Triple::ve:
299     return createVETargetCodeGenInfo(CGM);
300   case llvm::Triple::csky: {
301     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
302     bool hasFP64 =
303         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
304     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
305                                             : hasFP64   ? 64
306                                                         : 32);
307   }
308   case llvm::Triple::bpfeb:
309   case llvm::Triple::bpfel:
310     return createBPFTargetCodeGenInfo(CGM);
311   case llvm::Triple::loongarch32:
312   case llvm::Triple::loongarch64: {
313     StringRef ABIStr = Target.getABI();
314     unsigned ABIFRLen = 0;
315     if (ABIStr.ends_with("f"))
316       ABIFRLen = 32;
317     else if (ABIStr.ends_with("d"))
318       ABIFRLen = 64;
319     return createLoongArchTargetCodeGenInfo(
320         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
321   }
322   }
323 }
324 
325 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
326   if (!TheTargetCodeGenInfo)
327     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
328   return *TheTargetCodeGenInfo;
329 }
330 
331 CodeGenModule::CodeGenModule(ASTContext &C,
332                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
333                              const HeaderSearchOptions &HSO,
334                              const PreprocessorOptions &PPO,
335                              const CodeGenOptions &CGO, llvm::Module &M,
336                              DiagnosticsEngine &diags,
337                              CoverageSourceInfo *CoverageInfo)
338     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
339       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
340       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
341       VMContext(M.getContext()), VTables(*this), StackHandler(diags),
342       SanitizerMD(new SanitizerMetadata(*this)) {
343 
344   // Initialize the type cache.
345   Types.reset(new CodeGenTypes(*this));
346   llvm::LLVMContext &LLVMContext = M.getContext();
347   VoidTy = llvm::Type::getVoidTy(LLVMContext);
348   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
349   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
350   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
351   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
352   HalfTy = llvm::Type::getHalfTy(LLVMContext);
353   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
354   FloatTy = llvm::Type::getFloatTy(LLVMContext);
355   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
356   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
357   PointerAlignInBytes =
358       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
359           .getQuantity();
360   SizeSizeInBytes =
361     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
362   IntAlignInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
364   CharTy =
365     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
366   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
367   IntPtrTy = llvm::IntegerType::get(LLVMContext,
368     C.getTargetInfo().getMaxPointerWidth());
369   Int8PtrTy = llvm::PointerType::get(LLVMContext,
370                                      C.getTargetAddressSpace(LangAS::Default));
371   const llvm::DataLayout &DL = M.getDataLayout();
372   AllocaInt8PtrTy =
373       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
374   GlobalsInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
376   ConstGlobalsPtrTy = llvm::PointerType::get(
377       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
378   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
379 
380   // Build C++20 Module initializers.
381   // TODO: Add Microsoft here once we know the mangling required for the
382   // initializers.
383   CXX20ModuleInits =
384       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
385                                        ItaniumMangleContext::MK_Itanium;
386 
387   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
388 
389   if (LangOpts.ObjC)
390     createObjCRuntime();
391   if (LangOpts.OpenCL)
392     createOpenCLRuntime();
393   if (LangOpts.OpenMP)
394     createOpenMPRuntime();
395   if (LangOpts.CUDA)
396     createCUDARuntime();
397   if (LangOpts.HLSL)
398     createHLSLRuntime();
399 
400   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
401   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
402       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
403     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
404                                getLangOpts()));
405 
406   // If debug info or coverage generation is enabled, create the CGDebugInfo
407   // object.
408   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
409       CodeGenOpts.CoverageNotesFile.size() ||
410       CodeGenOpts.CoverageDataFile.size())
411     DebugInfo.reset(new CGDebugInfo(*this));
412 
413   Block.GlobalUniqueCount = 0;
414 
415   if (C.getLangOpts().ObjC)
416     ObjCData.reset(new ObjCEntrypoints());
417 
418   if (CodeGenOpts.hasProfileClangUse()) {
419     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
420         CodeGenOpts.ProfileInstrumentUsePath, *FS,
421         CodeGenOpts.ProfileRemappingFile);
422     // We're checking for profile read errors in CompilerInvocation, so if
423     // there was an error it should've already been caught. If it hasn't been
424     // somehow, trip an assertion.
425     assert(ReaderOrErr);
426     PGOReader = std::move(ReaderOrErr.get());
427   }
428 
429   // If coverage mapping generation is enabled, create the
430   // CoverageMappingModuleGen object.
431   if (CodeGenOpts.CoverageMapping)
432     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
433 
434   // Generate the module name hash here if needed.
435   if (CodeGenOpts.UniqueInternalLinkageNames &&
436       !getModule().getSourceFileName().empty()) {
437     std::string Path = getModule().getSourceFileName();
438     // Check if a path substitution is needed from the MacroPrefixMap.
439     for (const auto &Entry : LangOpts.MacroPrefixMap)
440       if (Path.rfind(Entry.first, 0) != std::string::npos) {
441         Path = Entry.second + Path.substr(Entry.first.size());
442         break;
443       }
444     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
445   }
446 
447   // Record mregparm value now so it is visible through all of codegen.
448   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450                               CodeGenOpts.NumRegisterParameters);
451 }
452 
453 CodeGenModule::~CodeGenModule() {}
454 
455 void CodeGenModule::createObjCRuntime() {
456   // This is just isGNUFamily(), but we want to force implementors of
457   // new ABIs to decide how best to do this.
458   switch (LangOpts.ObjCRuntime.getKind()) {
459   case ObjCRuntime::GNUstep:
460   case ObjCRuntime::GCC:
461   case ObjCRuntime::ObjFW:
462     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
463     return;
464 
465   case ObjCRuntime::FragileMacOSX:
466   case ObjCRuntime::MacOSX:
467   case ObjCRuntime::iOS:
468   case ObjCRuntime::WatchOS:
469     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
470     return;
471   }
472   llvm_unreachable("bad runtime kind");
473 }
474 
475 void CodeGenModule::createOpenCLRuntime() {
476   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
477 }
478 
479 void CodeGenModule::createOpenMPRuntime() {
480   // Select a specialized code generation class based on the target, if any.
481   // If it does not exist use the default implementation.
482   switch (getTriple().getArch()) {
483   case llvm::Triple::nvptx:
484   case llvm::Triple::nvptx64:
485   case llvm::Triple::amdgcn:
486     assert(getLangOpts().OpenMPIsTargetDevice &&
487            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
488     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
489     break;
490   default:
491     if (LangOpts.OpenMPSimd)
492       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
493     else
494       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
495     break;
496   }
497 }
498 
499 void CodeGenModule::createCUDARuntime() {
500   CUDARuntime.reset(CreateNVCUDARuntime(*this));
501 }
502 
503 void CodeGenModule::createHLSLRuntime() {
504   HLSLRuntime.reset(new CGHLSLRuntime(*this));
505 }
506 
507 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
508   Replacements[Name] = C;
509 }
510 
511 void CodeGenModule::applyReplacements() {
512   for (auto &I : Replacements) {
513     StringRef MangledName = I.first;
514     llvm::Constant *Replacement = I.second;
515     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
516     if (!Entry)
517       continue;
518     auto *OldF = cast<llvm::Function>(Entry);
519     auto *NewF = dyn_cast<llvm::Function>(Replacement);
520     if (!NewF) {
521       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
522         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
523       } else {
524         auto *CE = cast<llvm::ConstantExpr>(Replacement);
525         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
526                CE->getOpcode() == llvm::Instruction::GetElementPtr);
527         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
528       }
529     }
530 
531     // Replace old with new, but keep the old order.
532     OldF->replaceAllUsesWith(Replacement);
533     if (NewF) {
534       NewF->removeFromParent();
535       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
536                                                        NewF);
537     }
538     OldF->eraseFromParent();
539   }
540 }
541 
542 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
543   GlobalValReplacements.push_back(std::make_pair(GV, C));
544 }
545 
546 void CodeGenModule::applyGlobalValReplacements() {
547   for (auto &I : GlobalValReplacements) {
548     llvm::GlobalValue *GV = I.first;
549     llvm::Constant *C = I.second;
550 
551     GV->replaceAllUsesWith(C);
552     GV->eraseFromParent();
553   }
554 }
555 
556 // This is only used in aliases that we created and we know they have a
557 // linear structure.
558 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
559   const llvm::Constant *C;
560   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
561     C = GA->getAliasee();
562   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
563     C = GI->getResolver();
564   else
565     return GV;
566 
567   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
568   if (!AliaseeGV)
569     return nullptr;
570 
571   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
572   if (FinalGV == GV)
573     return nullptr;
574 
575   return FinalGV;
576 }
577 
578 static bool checkAliasedGlobal(
579     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
580     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
581     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
582     SourceRange AliasRange) {
583   GV = getAliasedGlobal(Alias);
584   if (!GV) {
585     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
586     return false;
587   }
588 
589   if (GV->hasCommonLinkage()) {
590     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
591     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
592       Diags.Report(Location, diag::err_alias_to_common);
593       return false;
594     }
595   }
596 
597   if (GV->isDeclaration()) {
598     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
599     Diags.Report(Location, diag::note_alias_requires_mangled_name)
600         << IsIFunc << IsIFunc;
601     // Provide a note if the given function is not found and exists as a
602     // mangled name.
603     for (const auto &[Decl, Name] : MangledDeclNames) {
604       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
605         if (ND->getName() == GV->getName()) {
606           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
607               << Name
608               << FixItHint::CreateReplacement(
609                      AliasRange,
610                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
611                          .str());
612         }
613       }
614     }
615     return false;
616   }
617 
618   if (IsIFunc) {
619     // Check resolver function type.
620     const auto *F = dyn_cast<llvm::Function>(GV);
621     if (!F) {
622       Diags.Report(Location, diag::err_alias_to_undefined)
623           << IsIFunc << IsIFunc;
624       return false;
625     }
626 
627     llvm::FunctionType *FTy = F->getFunctionType();
628     if (!FTy->getReturnType()->isPointerTy()) {
629       Diags.Report(Location, diag::err_ifunc_resolver_return);
630       return false;
631     }
632   }
633 
634   return true;
635 }
636 
637 // Emit a warning if toc-data attribute is requested for global variables that
638 // have aliases and remove the toc-data attribute.
639 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
640                                  const CodeGenOptions &CodeGenOpts,
641                                  DiagnosticsEngine &Diags,
642                                  SourceLocation Location) {
643   if (GVar->hasAttribute("toc-data")) {
644     auto GVId = GVar->getName();
645     // Is this a global variable specified by the user as local?
646     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
647       Diags.Report(Location, diag::warn_toc_unsupported_type)
648           << GVId << "the variable has an alias";
649     }
650     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
651     llvm::AttributeSet NewAttributes =
652         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
653     GVar->setAttributes(NewAttributes);
654   }
655 }
656 
657 void CodeGenModule::checkAliases() {
658   // Check if the constructed aliases are well formed. It is really unfortunate
659   // that we have to do this in CodeGen, but we only construct mangled names
660   // and aliases during codegen.
661   bool Error = false;
662   DiagnosticsEngine &Diags = getDiags();
663   for (const GlobalDecl &GD : Aliases) {
664     const auto *D = cast<ValueDecl>(GD.getDecl());
665     SourceLocation Location;
666     SourceRange Range;
667     bool IsIFunc = D->hasAttr<IFuncAttr>();
668     if (const Attr *A = D->getDefiningAttr()) {
669       Location = A->getLocation();
670       Range = A->getRange();
671     } else
672       llvm_unreachable("Not an alias or ifunc?");
673 
674     StringRef MangledName = getMangledName(GD);
675     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
676     const llvm::GlobalValue *GV = nullptr;
677     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
678                             MangledDeclNames, Range)) {
679       Error = true;
680       continue;
681     }
682 
683     if (getContext().getTargetInfo().getTriple().isOSAIX())
684       if (const llvm::GlobalVariable *GVar =
685               dyn_cast<const llvm::GlobalVariable>(GV))
686         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
687                              getCodeGenOpts(), Diags, Location);
688 
689     llvm::Constant *Aliasee =
690         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
691                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
692 
693     llvm::GlobalValue *AliaseeGV;
694     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
695       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
696     else
697       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
698 
699     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
700       StringRef AliasSection = SA->getName();
701       if (AliasSection != AliaseeGV->getSection())
702         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
703             << AliasSection << IsIFunc << IsIFunc;
704     }
705 
706     // We have to handle alias to weak aliases in here. LLVM itself disallows
707     // this since the object semantics would not match the IL one. For
708     // compatibility with gcc we implement it by just pointing the alias
709     // to its aliasee's aliasee. We also warn, since the user is probably
710     // expecting the link to be weak.
711     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
712       if (GA->isInterposable()) {
713         Diags.Report(Location, diag::warn_alias_to_weak_alias)
714             << GV->getName() << GA->getName() << IsIFunc;
715         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
716             GA->getAliasee(), Alias->getType());
717 
718         if (IsIFunc)
719           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
720         else
721           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
722       }
723     }
724     // ifunc resolvers are usually implemented to run before sanitizer
725     // initialization. Disable instrumentation to prevent the ordering issue.
726     if (IsIFunc)
727       cast<llvm::Function>(Aliasee)->addFnAttr(
728           llvm::Attribute::DisableSanitizerInstrumentation);
729   }
730   if (!Error)
731     return;
732 
733   for (const GlobalDecl &GD : Aliases) {
734     StringRef MangledName = getMangledName(GD);
735     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
736     Alias->replaceAllUsesWith(llvm::PoisonValue::get(Alias->getType()));
737     Alias->eraseFromParent();
738   }
739 }
740 
741 void CodeGenModule::clear() {
742   DeferredDeclsToEmit.clear();
743   EmittedDeferredDecls.clear();
744   DeferredAnnotations.clear();
745   if (OpenMPRuntime)
746     OpenMPRuntime->clear();
747 }
748 
749 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
750                                        StringRef MainFile) {
751   if (!hasDiagnostics())
752     return;
753   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
754     if (MainFile.empty())
755       MainFile = "<stdin>";
756     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
757   } else {
758     if (Mismatched > 0)
759       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
760 
761     if (Missing > 0)
762       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
763   }
764 }
765 
766 static std::optional<llvm::GlobalValue::VisibilityTypes>
767 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
768   // Map to LLVM visibility.
769   switch (K) {
770   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
771     return std::nullopt;
772   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
773     return llvm::GlobalValue::DefaultVisibility;
774   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
775     return llvm::GlobalValue::HiddenVisibility;
776   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
777     return llvm::GlobalValue::ProtectedVisibility;
778   }
779   llvm_unreachable("unknown option value!");
780 }
781 
782 static void
783 setLLVMVisibility(llvm::GlobalValue &GV,
784                   std::optional<llvm::GlobalValue::VisibilityTypes> V) {
785   if (!V)
786     return;
787 
788   // Reset DSO locality before setting the visibility. This removes
789   // any effects that visibility options and annotations may have
790   // had on the DSO locality. Setting the visibility will implicitly set
791   // appropriate globals to DSO Local; however, this will be pessimistic
792   // w.r.t. to the normal compiler IRGen.
793   GV.setDSOLocal(false);
794   GV.setVisibility(*V);
795 }
796 
797 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
798                                              llvm::Module &M) {
799   if (!LO.VisibilityFromDLLStorageClass)
800     return;
801 
802   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
803       getLLVMVisibility(LO.getDLLExportVisibility());
804 
805   std::optional<llvm::GlobalValue::VisibilityTypes>
806       NoDLLStorageClassVisibility =
807           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
808 
809   std::optional<llvm::GlobalValue::VisibilityTypes>
810       ExternDeclDLLImportVisibility =
811           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
812 
813   std::optional<llvm::GlobalValue::VisibilityTypes>
814       ExternDeclNoDLLStorageClassVisibility =
815           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
816 
817   for (llvm::GlobalValue &GV : M.global_values()) {
818     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
819       continue;
820 
821     if (GV.isDeclarationForLinker())
822       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
823                                     llvm::GlobalValue::DLLImportStorageClass
824                                 ? ExternDeclDLLImportVisibility
825                                 : ExternDeclNoDLLStorageClassVisibility);
826     else
827       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
828                                     llvm::GlobalValue::DLLExportStorageClass
829                                 ? DLLExportVisibility
830                                 : NoDLLStorageClassVisibility);
831 
832     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
833   }
834 }
835 
836 static bool isStackProtectorOn(const LangOptions &LangOpts,
837                                const llvm::Triple &Triple,
838                                clang::LangOptions::StackProtectorMode Mode) {
839   if (Triple.isAMDGPU() || Triple.isNVPTX())
840     return false;
841   return LangOpts.getStackProtector() == Mode;
842 }
843 
844 void CodeGenModule::Release() {
845   Module *Primary = getContext().getCurrentNamedModule();
846   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
847     EmitModuleInitializers(Primary);
848   EmitDeferred();
849   DeferredDecls.insert(EmittedDeferredDecls.begin(),
850                        EmittedDeferredDecls.end());
851   EmittedDeferredDecls.clear();
852   EmitVTablesOpportunistically();
853   applyGlobalValReplacements();
854   applyReplacements();
855   emitMultiVersionFunctions();
856 
857   if (Context.getLangOpts().IncrementalExtensions &&
858       GlobalTopLevelStmtBlockInFlight.first) {
859     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
860     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
861     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
862   }
863 
864   // Module implementations are initialized the same way as a regular TU that
865   // imports one or more modules.
866   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
867     EmitCXXModuleInitFunc(Primary);
868   else
869     EmitCXXGlobalInitFunc();
870   EmitCXXGlobalCleanUpFunc();
871   registerGlobalDtorsWithAtExit();
872   EmitCXXThreadLocalInitFunc();
873   if (ObjCRuntime)
874     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
875       AddGlobalCtor(ObjCInitFunction);
876   if (Context.getLangOpts().CUDA && CUDARuntime) {
877     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
878       AddGlobalCtor(CudaCtorFunction);
879   }
880   if (OpenMPRuntime) {
881     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
882     OpenMPRuntime->clear();
883   }
884   if (PGOReader) {
885     getModule().setProfileSummary(
886         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
887         llvm::ProfileSummary::PSK_Instr);
888     if (PGOStats.hasDiagnostics())
889       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
890   }
891   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
892     return L.LexOrder < R.LexOrder;
893   });
894   EmitCtorList(GlobalCtors, "llvm.global_ctors");
895   EmitCtorList(GlobalDtors, "llvm.global_dtors");
896   EmitGlobalAnnotations();
897   EmitStaticExternCAliases();
898   checkAliases();
899   EmitDeferredUnusedCoverageMappings();
900   CodeGenPGO(*this).setValueProfilingFlag(getModule());
901   CodeGenPGO(*this).setProfileVersion(getModule());
902   if (CoverageMapping)
903     CoverageMapping->emit();
904   if (CodeGenOpts.SanitizeCfiCrossDso) {
905     CodeGenFunction(*this).EmitCfiCheckFail();
906     CodeGenFunction(*this).EmitCfiCheckStub();
907   }
908   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
909     finalizeKCFITypes();
910   emitAtAvailableLinkGuard();
911   if (Context.getTargetInfo().getTriple().isWasm())
912     EmitMainVoidAlias();
913 
914   if (getTriple().isAMDGPU() ||
915       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
916     // Emit amdhsa_code_object_version module flag, which is code object version
917     // times 100.
918     if (getTarget().getTargetOpts().CodeObjectVersion !=
919         llvm::CodeObjectVersionKind::COV_None) {
920       getModule().addModuleFlag(llvm::Module::Error,
921                                 "amdhsa_code_object_version",
922                                 getTarget().getTargetOpts().CodeObjectVersion);
923     }
924 
925     // Currently, "-mprintf-kind" option is only supported for HIP
926     if (LangOpts.HIP) {
927       auto *MDStr = llvm::MDString::get(
928           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
929                              TargetOptions::AMDGPUPrintfKind::Hostcall)
930                                 ? "hostcall"
931                                 : "buffered");
932       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
933                                 MDStr);
934     }
935   }
936 
937   // Emit a global array containing all external kernels or device variables
938   // used by host functions and mark it as used for CUDA/HIP. This is necessary
939   // to get kernels or device variables in archives linked in even if these
940   // kernels or device variables are only used in host functions.
941   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
942     SmallVector<llvm::Constant *, 8> UsedArray;
943     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
944       GlobalDecl GD;
945       if (auto *FD = dyn_cast<FunctionDecl>(D))
946         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
947       else
948         GD = GlobalDecl(D);
949       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
950           GetAddrOfGlobal(GD), Int8PtrTy));
951     }
952 
953     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
954 
955     auto *GV = new llvm::GlobalVariable(
956         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
957         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
958     addCompilerUsedGlobal(GV);
959   }
960   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
961     // Emit a unique ID so that host and device binaries from the same
962     // compilation unit can be associated.
963     auto *GV = new llvm::GlobalVariable(
964         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
965         llvm::Constant::getNullValue(Int8Ty),
966         "__hip_cuid_" + getContext().getCUIDHash());
967     addCompilerUsedGlobal(GV);
968   }
969   emitLLVMUsed();
970   if (SanStats)
971     SanStats->finish();
972 
973   if (CodeGenOpts.Autolink &&
974       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
975     EmitModuleLinkOptions();
976   }
977 
978   // On ELF we pass the dependent library specifiers directly to the linker
979   // without manipulating them. This is in contrast to other platforms where
980   // they are mapped to a specific linker option by the compiler. This
981   // difference is a result of the greater variety of ELF linkers and the fact
982   // that ELF linkers tend to handle libraries in a more complicated fashion
983   // than on other platforms. This forces us to defer handling the dependent
984   // libs to the linker.
985   //
986   // CUDA/HIP device and host libraries are different. Currently there is no
987   // way to differentiate dependent libraries for host or device. Existing
988   // usage of #pragma comment(lib, *) is intended for host libraries on
989   // Windows. Therefore emit llvm.dependent-libraries only for host.
990   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
991     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
992     for (auto *MD : ELFDependentLibraries)
993       NMD->addOperand(MD);
994   }
995 
996   if (CodeGenOpts.DwarfVersion) {
997     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
998                               CodeGenOpts.DwarfVersion);
999   }
1000 
1001   if (CodeGenOpts.Dwarf64)
1002     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1003 
1004   if (Context.getLangOpts().SemanticInterposition)
1005     // Require various optimization to respect semantic interposition.
1006     getModule().setSemanticInterposition(true);
1007 
1008   if (CodeGenOpts.EmitCodeView) {
1009     // Indicate that we want CodeView in the metadata.
1010     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1011   }
1012   if (CodeGenOpts.CodeViewGHash) {
1013     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1014   }
1015   if (CodeGenOpts.ControlFlowGuard) {
1016     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1017     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1018   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1019     // Function ID tables for Control Flow Guard (cfguard=1).
1020     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1021   }
1022   if (CodeGenOpts.EHContGuard) {
1023     // Function ID tables for EH Continuation Guard.
1024     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1025   }
1026   if (Context.getLangOpts().Kernel) {
1027     // Note if we are compiling with /kernel.
1028     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1029   }
1030   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1031     // We don't support LTO with 2 with different StrictVTablePointers
1032     // FIXME: we could support it by stripping all the information introduced
1033     // by StrictVTablePointers.
1034 
1035     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1036 
1037     llvm::Metadata *Ops[2] = {
1038               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1039               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1040                   llvm::Type::getInt32Ty(VMContext), 1))};
1041 
1042     getModule().addModuleFlag(llvm::Module::Require,
1043                               "StrictVTablePointersRequirement",
1044                               llvm::MDNode::get(VMContext, Ops));
1045   }
1046   if (getModuleDebugInfo())
1047     // We support a single version in the linked module. The LLVM
1048     // parser will drop debug info with a different version number
1049     // (and warn about it, too).
1050     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1051                               llvm::DEBUG_METADATA_VERSION);
1052 
1053   // We need to record the widths of enums and wchar_t, so that we can generate
1054   // the correct build attributes in the ARM backend. wchar_size is also used by
1055   // TargetLibraryInfo.
1056   uint64_t WCharWidth =
1057       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1058   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1059 
1060   if (getTriple().isOSzOS()) {
1061     getModule().addModuleFlag(llvm::Module::Warning,
1062                               "zos_product_major_version",
1063                               uint32_t(CLANG_VERSION_MAJOR));
1064     getModule().addModuleFlag(llvm::Module::Warning,
1065                               "zos_product_minor_version",
1066                               uint32_t(CLANG_VERSION_MINOR));
1067     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1068                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1069     std::string ProductId = getClangVendor() + "clang";
1070     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1071                               llvm::MDString::get(VMContext, ProductId));
1072 
1073     // Record the language because we need it for the PPA2.
1074     StringRef lang_str = languageToString(
1075         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1076     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1077                               llvm::MDString::get(VMContext, lang_str));
1078 
1079     time_t TT = PreprocessorOpts.SourceDateEpoch
1080                     ? *PreprocessorOpts.SourceDateEpoch
1081                     : std::time(nullptr);
1082     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1083                               static_cast<uint64_t>(TT));
1084 
1085     // Multiple modes will be supported here.
1086     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1087                               llvm::MDString::get(VMContext, "ascii"));
1088   }
1089 
1090   llvm::Triple T = Context.getTargetInfo().getTriple();
1091   if (T.isARM() || T.isThumb()) {
1092     // The minimum width of an enum in bytes
1093     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1094     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1095   }
1096 
1097   if (T.isRISCV()) {
1098     StringRef ABIStr = Target.getABI();
1099     llvm::LLVMContext &Ctx = TheModule.getContext();
1100     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1101                               llvm::MDString::get(Ctx, ABIStr));
1102 
1103     // Add the canonical ISA string as metadata so the backend can set the ELF
1104     // attributes correctly. We use AppendUnique so LTO will keep all of the
1105     // unique ISA strings that were linked together.
1106     const std::vector<std::string> &Features =
1107         getTarget().getTargetOpts().Features;
1108     auto ParseResult =
1109         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1110     if (!errorToBool(ParseResult.takeError()))
1111       getModule().addModuleFlag(
1112           llvm::Module::AppendUnique, "riscv-isa",
1113           llvm::MDNode::get(
1114               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1115   }
1116 
1117   if (CodeGenOpts.SanitizeCfiCrossDso) {
1118     // Indicate that we want cross-DSO control flow integrity checks.
1119     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1120   }
1121 
1122   if (CodeGenOpts.WholeProgramVTables) {
1123     // Indicate whether VFE was enabled for this module, so that the
1124     // vcall_visibility metadata added under whole program vtables is handled
1125     // appropriately in the optimizer.
1126     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1127                               CodeGenOpts.VirtualFunctionElimination);
1128   }
1129 
1130   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1131     getModule().addModuleFlag(llvm::Module::Override,
1132                               "CFI Canonical Jump Tables",
1133                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1134   }
1135 
1136   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1137     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1138                               1);
1139   }
1140 
1141   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1142     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1143     // KCFI assumes patchable-function-prefix is the same for all indirectly
1144     // called functions. Store the expected offset for code generation.
1145     if (CodeGenOpts.PatchableFunctionEntryOffset)
1146       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1147                                 CodeGenOpts.PatchableFunctionEntryOffset);
1148   }
1149 
1150   if (CodeGenOpts.CFProtectionReturn &&
1151       Target.checkCFProtectionReturnSupported(getDiags())) {
1152     // Indicate that we want to instrument return control flow protection.
1153     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1154                               1);
1155   }
1156 
1157   if (CodeGenOpts.CFProtectionBranch &&
1158       Target.checkCFProtectionBranchSupported(getDiags())) {
1159     // Indicate that we want to instrument branch control flow protection.
1160     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1161                               1);
1162 
1163     auto Scheme = CodeGenOpts.getCFBranchLabelScheme();
1164     if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) {
1165       if (Scheme == CFBranchLabelSchemeKind::Default)
1166         Scheme = Target.getDefaultCFBranchLabelScheme();
1167       getModule().addModuleFlag(
1168           llvm::Module::Error, "cf-branch-label-scheme",
1169           llvm::MDString::get(getLLVMContext(),
1170                               getCFBranchLabelSchemeFlagVal(Scheme)));
1171     }
1172   }
1173 
1174   if (CodeGenOpts.FunctionReturnThunks)
1175     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1176 
1177   if (CodeGenOpts.IndirectBranchCSPrefix)
1178     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1179 
1180   // Add module metadata for return address signing (ignoring
1181   // non-leaf/all) and stack tagging. These are actually turned on by function
1182   // attributes, but we use module metadata to emit build attributes. This is
1183   // needed for LTO, where the function attributes are inside bitcode
1184   // serialised into a global variable by the time build attributes are
1185   // emitted, so we can't access them. LTO objects could be compiled with
1186   // different flags therefore module flags are set to "Min" behavior to achieve
1187   // the same end result of the normal build where e.g BTI is off if any object
1188   // doesn't support it.
1189   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1190       LangOpts.getSignReturnAddressScope() !=
1191           LangOptions::SignReturnAddressScopeKind::None)
1192     getModule().addModuleFlag(llvm::Module::Override,
1193                               "sign-return-address-buildattr", 1);
1194   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1195     getModule().addModuleFlag(llvm::Module::Override,
1196                               "tag-stack-memory-buildattr", 1);
1197 
1198   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1199     if (LangOpts.BranchTargetEnforcement)
1200       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1201                                 1);
1202     if (LangOpts.BranchProtectionPAuthLR)
1203       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1204                                 1);
1205     if (LangOpts.GuardedControlStack)
1206       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1207     if (LangOpts.hasSignReturnAddress())
1208       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1209     if (LangOpts.isSignReturnAddressScopeAll())
1210       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1211                                 1);
1212     if (!LangOpts.isSignReturnAddressWithAKey())
1213       getModule().addModuleFlag(llvm::Module::Min,
1214                                 "sign-return-address-with-bkey", 1);
1215 
1216     if (LangOpts.PointerAuthELFGOT)
1217       getModule().addModuleFlag(llvm::Module::Min, "ptrauth-elf-got", 1);
1218 
1219     if (getTriple().isOSLinux()) {
1220       assert(getTriple().isOSBinFormatELF());
1221       using namespace llvm::ELF;
1222       uint64_t PAuthABIVersion =
1223           (LangOpts.PointerAuthIntrinsics
1224            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1225           (LangOpts.PointerAuthCalls
1226            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1227           (LangOpts.PointerAuthReturns
1228            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1229           (LangOpts.PointerAuthAuthTraps
1230            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1231           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1232            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1233           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1234            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1235           (LangOpts.PointerAuthInitFini
1236            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1237           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1238            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1239           (LangOpts.PointerAuthELFGOT
1240            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1241           (LangOpts.PointerAuthIndirectGotos
1242            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1243           (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1244            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1245           (LangOpts.PointerAuthFunctionTypeDiscrimination
1246            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1247       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1248                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1249                     "Update when new enum items are defined");
1250       if (PAuthABIVersion != 0) {
1251         getModule().addModuleFlag(llvm::Module::Error,
1252                                   "aarch64-elf-pauthabi-platform",
1253                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1254         getModule().addModuleFlag(llvm::Module::Error,
1255                                   "aarch64-elf-pauthabi-version",
1256                                   PAuthABIVersion);
1257       }
1258     }
1259   }
1260 
1261   if (CodeGenOpts.StackClashProtector)
1262     getModule().addModuleFlag(
1263         llvm::Module::Override, "probe-stack",
1264         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1265 
1266   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1267     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1268                               CodeGenOpts.StackProbeSize);
1269 
1270   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1271     llvm::LLVMContext &Ctx = TheModule.getContext();
1272     getModule().addModuleFlag(
1273         llvm::Module::Error, "MemProfProfileFilename",
1274         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1275   }
1276 
1277   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1278     // Indicate whether __nvvm_reflect should be configured to flush denormal
1279     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1280     // property.)
1281     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1282                               CodeGenOpts.FP32DenormalMode.Output !=
1283                                   llvm::DenormalMode::IEEE);
1284   }
1285 
1286   if (LangOpts.EHAsynch)
1287     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1288 
1289   // Indicate whether this Module was compiled with -fopenmp
1290   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1291     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1292   if (getLangOpts().OpenMPIsTargetDevice)
1293     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1294                               LangOpts.OpenMP);
1295 
1296   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1297   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1298     EmitOpenCLMetadata();
1299     // Emit SPIR version.
1300     if (getTriple().isSPIR()) {
1301       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1302       // opencl.spir.version named metadata.
1303       // C++ for OpenCL has a distinct mapping for version compatibility with
1304       // OpenCL.
1305       auto Version = LangOpts.getOpenCLCompatibleVersion();
1306       llvm::Metadata *SPIRVerElts[] = {
1307           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1308               Int32Ty, Version / 100)),
1309           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1310               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1311       llvm::NamedMDNode *SPIRVerMD =
1312           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1313       llvm::LLVMContext &Ctx = TheModule.getContext();
1314       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1315     }
1316   }
1317 
1318   // HLSL related end of code gen work items.
1319   if (LangOpts.HLSL)
1320     getHLSLRuntime().finishCodeGen();
1321 
1322   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1323     assert(PLevel < 3 && "Invalid PIC Level");
1324     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1325     if (Context.getLangOpts().PIE)
1326       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1327   }
1328 
1329   if (getCodeGenOpts().CodeModel.size() > 0) {
1330     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1331                   .Case("tiny", llvm::CodeModel::Tiny)
1332                   .Case("small", llvm::CodeModel::Small)
1333                   .Case("kernel", llvm::CodeModel::Kernel)
1334                   .Case("medium", llvm::CodeModel::Medium)
1335                   .Case("large", llvm::CodeModel::Large)
1336                   .Default(~0u);
1337     if (CM != ~0u) {
1338       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1339       getModule().setCodeModel(codeModel);
1340 
1341       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1342           Context.getTargetInfo().getTriple().getArch() ==
1343               llvm::Triple::x86_64) {
1344         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1345       }
1346     }
1347   }
1348 
1349   if (CodeGenOpts.NoPLT)
1350     getModule().setRtLibUseGOT();
1351   if (getTriple().isOSBinFormatELF() &&
1352       CodeGenOpts.DirectAccessExternalData !=
1353           getModule().getDirectAccessExternalData()) {
1354     getModule().setDirectAccessExternalData(
1355         CodeGenOpts.DirectAccessExternalData);
1356   }
1357   if (CodeGenOpts.UnwindTables)
1358     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1359 
1360   switch (CodeGenOpts.getFramePointer()) {
1361   case CodeGenOptions::FramePointerKind::None:
1362     // 0 ("none") is the default.
1363     break;
1364   case CodeGenOptions::FramePointerKind::Reserved:
1365     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1366     break;
1367   case CodeGenOptions::FramePointerKind::NonLeaf:
1368     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1369     break;
1370   case CodeGenOptions::FramePointerKind::All:
1371     getModule().setFramePointer(llvm::FramePointerKind::All);
1372     break;
1373   }
1374 
1375   SimplifyPersonality();
1376 
1377   if (getCodeGenOpts().EmitDeclMetadata)
1378     EmitDeclMetadata();
1379 
1380   if (getCodeGenOpts().CoverageNotesFile.size() ||
1381       getCodeGenOpts().CoverageDataFile.size())
1382     EmitCoverageFile();
1383 
1384   if (CGDebugInfo *DI = getModuleDebugInfo())
1385     DI->finalize();
1386 
1387   if (getCodeGenOpts().EmitVersionIdentMetadata)
1388     EmitVersionIdentMetadata();
1389 
1390   if (!getCodeGenOpts().RecordCommandLine.empty())
1391     EmitCommandLineMetadata();
1392 
1393   if (!getCodeGenOpts().StackProtectorGuard.empty())
1394     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1395   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1396     getModule().setStackProtectorGuardReg(
1397         getCodeGenOpts().StackProtectorGuardReg);
1398   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1399     getModule().setStackProtectorGuardSymbol(
1400         getCodeGenOpts().StackProtectorGuardSymbol);
1401   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1402     getModule().setStackProtectorGuardOffset(
1403         getCodeGenOpts().StackProtectorGuardOffset);
1404   if (getCodeGenOpts().StackAlignment)
1405     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1406   if (getCodeGenOpts().SkipRaxSetup)
1407     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1408   if (getLangOpts().RegCall4)
1409     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1410 
1411   if (getContext().getTargetInfo().getMaxTLSAlign())
1412     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1413                               getContext().getTargetInfo().getMaxTLSAlign());
1414 
1415   getTargetCodeGenInfo().emitTargetGlobals(*this);
1416 
1417   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1418 
1419   EmitBackendOptionsMetadata(getCodeGenOpts());
1420 
1421   // If there is device offloading code embed it in the host now.
1422   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1423 
1424   // Set visibility from DLL storage class
1425   // We do this at the end of LLVM IR generation; after any operation
1426   // that might affect the DLL storage class or the visibility, and
1427   // before anything that might act on these.
1428   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1429 
1430   // Check the tail call symbols are truly undefined.
1431   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1432     for (auto &I : MustTailCallUndefinedGlobals) {
1433       if (!I.first->isDefined())
1434         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1435       else {
1436         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1437         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1438         if (!Entry || Entry->isWeakForLinker() ||
1439             Entry->isDeclarationForLinker())
1440           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1441       }
1442     }
1443   }
1444 }
1445 
1446 void CodeGenModule::EmitOpenCLMetadata() {
1447   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1448   // opencl.ocl.version named metadata node.
1449   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1450   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1451 
1452   auto EmitVersion = [this](StringRef MDName, int Version) {
1453     llvm::Metadata *OCLVerElts[] = {
1454         llvm::ConstantAsMetadata::get(
1455             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1456         llvm::ConstantAsMetadata::get(
1457             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1458     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1459     llvm::LLVMContext &Ctx = TheModule.getContext();
1460     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1461   };
1462 
1463   EmitVersion("opencl.ocl.version", CLVersion);
1464   if (LangOpts.OpenCLCPlusPlus) {
1465     // In addition to the OpenCL compatible version, emit the C++ version.
1466     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1467   }
1468 }
1469 
1470 void CodeGenModule::EmitBackendOptionsMetadata(
1471     const CodeGenOptions &CodeGenOpts) {
1472   if (getTriple().isRISCV()) {
1473     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1474                               CodeGenOpts.SmallDataLimit);
1475   }
1476 }
1477 
1478 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1479   // Make sure that this type is translated.
1480   getTypes().UpdateCompletedType(TD);
1481 }
1482 
1483 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1484   // Make sure that this type is translated.
1485   getTypes().RefreshTypeCacheForClass(RD);
1486 }
1487 
1488 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1489   if (!TBAA)
1490     return nullptr;
1491   return TBAA->getTypeInfo(QTy);
1492 }
1493 
1494 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1495   if (!TBAA)
1496     return TBAAAccessInfo();
1497   if (getLangOpts().CUDAIsDevice) {
1498     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1499     // access info.
1500     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1501       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1502           nullptr)
1503         return TBAAAccessInfo();
1504     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1505       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1506           nullptr)
1507         return TBAAAccessInfo();
1508     }
1509   }
1510   return TBAA->getAccessInfo(AccessType);
1511 }
1512 
1513 TBAAAccessInfo
1514 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1515   if (!TBAA)
1516     return TBAAAccessInfo();
1517   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1518 }
1519 
1520 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1521   if (!TBAA)
1522     return nullptr;
1523   return TBAA->getTBAAStructInfo(QTy);
1524 }
1525 
1526 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1527   if (!TBAA)
1528     return nullptr;
1529   return TBAA->getBaseTypeInfo(QTy);
1530 }
1531 
1532 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1533   if (!TBAA)
1534     return nullptr;
1535   return TBAA->getAccessTagInfo(Info);
1536 }
1537 
1538 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1539                                                    TBAAAccessInfo TargetInfo) {
1540   if (!TBAA)
1541     return TBAAAccessInfo();
1542   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1543 }
1544 
1545 TBAAAccessInfo
1546 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1547                                                    TBAAAccessInfo InfoB) {
1548   if (!TBAA)
1549     return TBAAAccessInfo();
1550   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1551 }
1552 
1553 TBAAAccessInfo
1554 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1555                                               TBAAAccessInfo SrcInfo) {
1556   if (!TBAA)
1557     return TBAAAccessInfo();
1558   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1559 }
1560 
1561 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1562                                                 TBAAAccessInfo TBAAInfo) {
1563   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1564     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1565 }
1566 
1567 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1568     llvm::Instruction *I, const CXXRecordDecl *RD) {
1569   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1570                  llvm::MDNode::get(getLLVMContext(), {}));
1571 }
1572 
1573 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1574   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1575   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1576 }
1577 
1578 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1579 /// specified stmt yet.
1580 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1581   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1582                                                "cannot compile this %0 yet");
1583   std::string Msg = Type;
1584   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1585       << Msg << S->getSourceRange();
1586 }
1587 
1588 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1589 /// specified decl yet.
1590 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1591   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1592                                                "cannot compile this %0 yet");
1593   std::string Msg = Type;
1594   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1595 }
1596 
1597 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc,
1598                                                 llvm::function_ref<void()> Fn) {
1599   StackHandler.runWithSufficientStackSpace(Loc, Fn);
1600 }
1601 
1602 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1603   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1604 }
1605 
1606 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1607                                         const NamedDecl *D) const {
1608   // Internal definitions always have default visibility.
1609   if (GV->hasLocalLinkage()) {
1610     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1611     return;
1612   }
1613   if (!D)
1614     return;
1615 
1616   // Set visibility for definitions, and for declarations if requested globally
1617   // or set explicitly.
1618   LinkageInfo LV = D->getLinkageAndVisibility();
1619 
1620   // OpenMP declare target variables must be visible to the host so they can
1621   // be registered. We require protected visibility unless the variable has
1622   // the DT_nohost modifier and does not need to be registered.
1623   if (Context.getLangOpts().OpenMP &&
1624       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1625       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1626       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1627           OMPDeclareTargetDeclAttr::DT_NoHost &&
1628       LV.getVisibility() == HiddenVisibility) {
1629     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1630     return;
1631   }
1632 
1633   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1634     // Reject incompatible dlllstorage and visibility annotations.
1635     if (!LV.isVisibilityExplicit())
1636       return;
1637     if (GV->hasDLLExportStorageClass()) {
1638       if (LV.getVisibility() == HiddenVisibility)
1639         getDiags().Report(D->getLocation(),
1640                           diag::err_hidden_visibility_dllexport);
1641     } else if (LV.getVisibility() != DefaultVisibility) {
1642       getDiags().Report(D->getLocation(),
1643                         diag::err_non_default_visibility_dllimport);
1644     }
1645     return;
1646   }
1647 
1648   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1649       !GV->isDeclarationForLinker())
1650     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1651 }
1652 
1653 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1654                                  llvm::GlobalValue *GV) {
1655   if (GV->hasLocalLinkage())
1656     return true;
1657 
1658   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1659     return true;
1660 
1661   // DLLImport explicitly marks the GV as external.
1662   if (GV->hasDLLImportStorageClass())
1663     return false;
1664 
1665   const llvm::Triple &TT = CGM.getTriple();
1666   const auto &CGOpts = CGM.getCodeGenOpts();
1667   if (TT.isWindowsGNUEnvironment()) {
1668     // In MinGW, variables without DLLImport can still be automatically
1669     // imported from a DLL by the linker; don't mark variables that
1670     // potentially could come from another DLL as DSO local.
1671 
1672     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1673     // (and this actually happens in the public interface of libstdc++), so
1674     // such variables can't be marked as DSO local. (Native TLS variables
1675     // can't be dllimported at all, though.)
1676     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1677         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1678         CGOpts.AutoImport)
1679       return false;
1680   }
1681 
1682   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1683   // remain unresolved in the link, they can be resolved to zero, which is
1684   // outside the current DSO.
1685   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1686     return false;
1687 
1688   // Every other GV is local on COFF.
1689   // Make an exception for windows OS in the triple: Some firmware builds use
1690   // *-win32-macho triples. This (accidentally?) produced windows relocations
1691   // without GOT tables in older clang versions; Keep this behaviour.
1692   // FIXME: even thread local variables?
1693   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1694     return true;
1695 
1696   // Only handle COFF and ELF for now.
1697   if (!TT.isOSBinFormatELF())
1698     return false;
1699 
1700   // If this is not an executable, don't assume anything is local.
1701   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1702   const auto &LOpts = CGM.getLangOpts();
1703   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1704     // On ELF, if -fno-semantic-interposition is specified and the target
1705     // supports local aliases, there will be neither CC1
1706     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1707     // dso_local on the function if using a local alias is preferable (can avoid
1708     // PLT indirection).
1709     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1710       return false;
1711     return !(CGM.getLangOpts().SemanticInterposition ||
1712              CGM.getLangOpts().HalfNoSemanticInterposition);
1713   }
1714 
1715   // A definition cannot be preempted from an executable.
1716   if (!GV->isDeclarationForLinker())
1717     return true;
1718 
1719   // Most PIC code sequences that assume that a symbol is local cannot produce a
1720   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1721   // depended, it seems worth it to handle it here.
1722   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1723     return false;
1724 
1725   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1726   if (TT.isPPC64())
1727     return false;
1728 
1729   if (CGOpts.DirectAccessExternalData) {
1730     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1731     // for non-thread-local variables. If the symbol is not defined in the
1732     // executable, a copy relocation will be needed at link time. dso_local is
1733     // excluded for thread-local variables because they generally don't support
1734     // copy relocations.
1735     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1736       if (!Var->isThreadLocal())
1737         return true;
1738 
1739     // -fno-pic sets dso_local on a function declaration to allow direct
1740     // accesses when taking its address (similar to a data symbol). If the
1741     // function is not defined in the executable, a canonical PLT entry will be
1742     // needed at link time. -fno-direct-access-external-data can avoid the
1743     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1744     // it could just cause trouble without providing perceptible benefits.
1745     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1746       return true;
1747   }
1748 
1749   // If we can use copy relocations we can assume it is local.
1750 
1751   // Otherwise don't assume it is local.
1752   return false;
1753 }
1754 
1755 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1756   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1757 }
1758 
1759 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1760                                           GlobalDecl GD) const {
1761   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1762   // C++ destructors have a few C++ ABI specific special cases.
1763   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1764     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1765     return;
1766   }
1767   setDLLImportDLLExport(GV, D);
1768 }
1769 
1770 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1771                                           const NamedDecl *D) const {
1772   if (D && D->isExternallyVisible()) {
1773     if (D->hasAttr<DLLImportAttr>())
1774       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1775     else if ((D->hasAttr<DLLExportAttr>() ||
1776               shouldMapVisibilityToDLLExport(D)) &&
1777              !GV->isDeclarationForLinker())
1778       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1779   }
1780 }
1781 
1782 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1783                                     GlobalDecl GD) const {
1784   setDLLImportDLLExport(GV, GD);
1785   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1786 }
1787 
1788 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1789                                     const NamedDecl *D) const {
1790   setDLLImportDLLExport(GV, D);
1791   setGVPropertiesAux(GV, D);
1792 }
1793 
1794 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1795                                        const NamedDecl *D) const {
1796   setGlobalVisibility(GV, D);
1797   setDSOLocal(GV);
1798   GV->setPartition(CodeGenOpts.SymbolPartition);
1799 }
1800 
1801 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1802   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1803       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1804       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1805       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1806       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1807 }
1808 
1809 llvm::GlobalVariable::ThreadLocalMode
1810 CodeGenModule::GetDefaultLLVMTLSModel() const {
1811   switch (CodeGenOpts.getDefaultTLSModel()) {
1812   case CodeGenOptions::GeneralDynamicTLSModel:
1813     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1814   case CodeGenOptions::LocalDynamicTLSModel:
1815     return llvm::GlobalVariable::LocalDynamicTLSModel;
1816   case CodeGenOptions::InitialExecTLSModel:
1817     return llvm::GlobalVariable::InitialExecTLSModel;
1818   case CodeGenOptions::LocalExecTLSModel:
1819     return llvm::GlobalVariable::LocalExecTLSModel;
1820   }
1821   llvm_unreachable("Invalid TLS model!");
1822 }
1823 
1824 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1825   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1826 
1827   llvm::GlobalValue::ThreadLocalMode TLM;
1828   TLM = GetDefaultLLVMTLSModel();
1829 
1830   // Override the TLS model if it is explicitly specified.
1831   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1832     TLM = GetLLVMTLSModel(Attr->getModel());
1833   }
1834 
1835   GV->setThreadLocalMode(TLM);
1836 }
1837 
1838 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1839                                           StringRef Name) {
1840   const TargetInfo &Target = CGM.getTarget();
1841   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1842 }
1843 
1844 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1845                                                  const CPUSpecificAttr *Attr,
1846                                                  unsigned CPUIndex,
1847                                                  raw_ostream &Out) {
1848   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1849   // supported.
1850   if (Attr)
1851     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1852   else if (CGM.getTarget().supportsIFunc())
1853     Out << ".resolver";
1854 }
1855 
1856 // Returns true if GD is a function decl with internal linkage and
1857 // needs a unique suffix after the mangled name.
1858 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1859                                         CodeGenModule &CGM) {
1860   const Decl *D = GD.getDecl();
1861   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1862          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1863 }
1864 
1865 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1866                                       const NamedDecl *ND,
1867                                       bool OmitMultiVersionMangling = false) {
1868   SmallString<256> Buffer;
1869   llvm::raw_svector_ostream Out(Buffer);
1870   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1871   if (!CGM.getModuleNameHash().empty())
1872     MC.needsUniqueInternalLinkageNames();
1873   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1874   if (ShouldMangle)
1875     MC.mangleName(GD.getWithDecl(ND), Out);
1876   else {
1877     IdentifierInfo *II = ND->getIdentifier();
1878     assert(II && "Attempt to mangle unnamed decl.");
1879     const auto *FD = dyn_cast<FunctionDecl>(ND);
1880 
1881     if (FD &&
1882         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1883       if (CGM.getLangOpts().RegCall4)
1884         Out << "__regcall4__" << II->getName();
1885       else
1886         Out << "__regcall3__" << II->getName();
1887     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1888                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1889       Out << "__device_stub__" << II->getName();
1890     } else {
1891       Out << II->getName();
1892     }
1893   }
1894 
1895   // Check if the module name hash should be appended for internal linkage
1896   // symbols.   This should come before multi-version target suffixes are
1897   // appended. This is to keep the name and module hash suffix of the
1898   // internal linkage function together.  The unique suffix should only be
1899   // added when name mangling is done to make sure that the final name can
1900   // be properly demangled.  For example, for C functions without prototypes,
1901   // name mangling is not done and the unique suffix should not be appeneded
1902   // then.
1903   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1904     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1905            "Hash computed when not explicitly requested");
1906     Out << CGM.getModuleNameHash();
1907   }
1908 
1909   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1910     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1911       switch (FD->getMultiVersionKind()) {
1912       case MultiVersionKind::CPUDispatch:
1913       case MultiVersionKind::CPUSpecific:
1914         AppendCPUSpecificCPUDispatchMangling(CGM,
1915                                              FD->getAttr<CPUSpecificAttr>(),
1916                                              GD.getMultiVersionIndex(), Out);
1917         break;
1918       case MultiVersionKind::Target: {
1919         auto *Attr = FD->getAttr<TargetAttr>();
1920         assert(Attr && "Expected TargetAttr to be present "
1921                        "for attribute mangling");
1922         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1923         Info.appendAttributeMangling(Attr, Out);
1924         break;
1925       }
1926       case MultiVersionKind::TargetVersion: {
1927         auto *Attr = FD->getAttr<TargetVersionAttr>();
1928         assert(Attr && "Expected TargetVersionAttr to be present "
1929                        "for attribute mangling");
1930         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1931         Info.appendAttributeMangling(Attr, Out);
1932         break;
1933       }
1934       case MultiVersionKind::TargetClones: {
1935         auto *Attr = FD->getAttr<TargetClonesAttr>();
1936         assert(Attr && "Expected TargetClonesAttr to be present "
1937                        "for attribute mangling");
1938         unsigned Index = GD.getMultiVersionIndex();
1939         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1940         Info.appendAttributeMangling(Attr, Index, Out);
1941         break;
1942       }
1943       case MultiVersionKind::None:
1944         llvm_unreachable("None multiversion type isn't valid here");
1945       }
1946     }
1947 
1948   // Make unique name for device side static file-scope variable for HIP.
1949   if (CGM.getContext().shouldExternalize(ND) &&
1950       CGM.getLangOpts().GPURelocatableDeviceCode &&
1951       CGM.getLangOpts().CUDAIsDevice)
1952     CGM.printPostfixForExternalizedDecl(Out, ND);
1953 
1954   return std::string(Out.str());
1955 }
1956 
1957 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1958                                             const FunctionDecl *FD,
1959                                             StringRef &CurName) {
1960   if (!FD->isMultiVersion())
1961     return;
1962 
1963   // Get the name of what this would be without the 'target' attribute.  This
1964   // allows us to lookup the version that was emitted when this wasn't a
1965   // multiversion function.
1966   std::string NonTargetName =
1967       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1968   GlobalDecl OtherGD;
1969   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1970     assert(OtherGD.getCanonicalDecl()
1971                .getDecl()
1972                ->getAsFunction()
1973                ->isMultiVersion() &&
1974            "Other GD should now be a multiversioned function");
1975     // OtherFD is the version of this function that was mangled BEFORE
1976     // becoming a MultiVersion function.  It potentially needs to be updated.
1977     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1978                                       .getDecl()
1979                                       ->getAsFunction()
1980                                       ->getMostRecentDecl();
1981     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1982     // This is so that if the initial version was already the 'default'
1983     // version, we don't try to update it.
1984     if (OtherName != NonTargetName) {
1985       // Remove instead of erase, since others may have stored the StringRef
1986       // to this.
1987       const auto ExistingRecord = Manglings.find(NonTargetName);
1988       if (ExistingRecord != std::end(Manglings))
1989         Manglings.remove(&(*ExistingRecord));
1990       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1991       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1992           Result.first->first();
1993       // If this is the current decl is being created, make sure we update the name.
1994       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1995         CurName = OtherNameRef;
1996       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1997         Entry->setName(OtherName);
1998     }
1999   }
2000 }
2001 
2002 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
2003   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
2004 
2005   // Some ABIs don't have constructor variants.  Make sure that base and
2006   // complete constructors get mangled the same.
2007   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
2008     if (!getTarget().getCXXABI().hasConstructorVariants()) {
2009       CXXCtorType OrigCtorType = GD.getCtorType();
2010       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
2011       if (OrigCtorType == Ctor_Base)
2012         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
2013     }
2014   }
2015 
2016   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2017   // static device variable depends on whether the variable is referenced by
2018   // a host or device host function. Therefore the mangled name cannot be
2019   // cached.
2020   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2021     auto FoundName = MangledDeclNames.find(CanonicalGD);
2022     if (FoundName != MangledDeclNames.end())
2023       return FoundName->second;
2024   }
2025 
2026   // Keep the first result in the case of a mangling collision.
2027   const auto *ND = cast<NamedDecl>(GD.getDecl());
2028   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2029 
2030   // Ensure either we have different ABIs between host and device compilations,
2031   // says host compilation following MSVC ABI but device compilation follows
2032   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2033   // mangling should be the same after name stubbing. The later checking is
2034   // very important as the device kernel name being mangled in host-compilation
2035   // is used to resolve the device binaries to be executed. Inconsistent naming
2036   // result in undefined behavior. Even though we cannot check that naming
2037   // directly between host- and device-compilations, the host- and
2038   // device-mangling in host compilation could help catching certain ones.
2039   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2040          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2041          (getContext().getAuxTargetInfo() &&
2042           (getContext().getAuxTargetInfo()->getCXXABI() !=
2043            getContext().getTargetInfo().getCXXABI())) ||
2044          getCUDARuntime().getDeviceSideName(ND) ==
2045              getMangledNameImpl(
2046                  *this,
2047                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2048                  ND));
2049 
2050   // This invariant should hold true in the future.
2051   // Prior work:
2052   // https://discourse.llvm.org/t/rfc-clang-diagnostic-for-demangling-failures/82835/8
2053   // https://github.com/llvm/llvm-project/issues/111345
2054   // assert((MangledName.startswith("_Z") || MangledName.startswith("?")) &&
2055   //        !GD->hasAttr<AsmLabelAttr>() &&
2056   //        llvm::demangle(MangledName) != MangledName &&
2057   //        "LLVM demangler must demangle clang-generated names");
2058 
2059   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2060   return MangledDeclNames[CanonicalGD] = Result.first->first();
2061 }
2062 
2063 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2064                                              const BlockDecl *BD) {
2065   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2066   const Decl *D = GD.getDecl();
2067 
2068   SmallString<256> Buffer;
2069   llvm::raw_svector_ostream Out(Buffer);
2070   if (!D)
2071     MangleCtx.mangleGlobalBlock(BD,
2072       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2073   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2074     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2075   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2076     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2077   else
2078     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2079 
2080   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2081   return Result.first->first();
2082 }
2083 
2084 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2085   auto it = MangledDeclNames.begin();
2086   while (it != MangledDeclNames.end()) {
2087     if (it->second == Name)
2088       return it->first;
2089     it++;
2090   }
2091   return GlobalDecl();
2092 }
2093 
2094 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2095   return getModule().getNamedValue(Name);
2096 }
2097 
2098 /// AddGlobalCtor - Add a function to the list that will be called before
2099 /// main() runs.
2100 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2101                                   unsigned LexOrder,
2102                                   llvm::Constant *AssociatedData) {
2103   // FIXME: Type coercion of void()* types.
2104   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2105 }
2106 
2107 /// AddGlobalDtor - Add a function to the list that will be called
2108 /// when the module is unloaded.
2109 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2110                                   bool IsDtorAttrFunc) {
2111   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2112       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2113     DtorsUsingAtExit[Priority].push_back(Dtor);
2114     return;
2115   }
2116 
2117   // FIXME: Type coercion of void()* types.
2118   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2119 }
2120 
2121 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2122   if (Fns.empty()) return;
2123 
2124   const PointerAuthSchema &InitFiniAuthSchema =
2125       getCodeGenOpts().PointerAuth.InitFiniPointers;
2126 
2127   // Ctor function type is ptr.
2128   llvm::PointerType *PtrTy = llvm::PointerType::get(
2129       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2130 
2131   // Get the type of a ctor entry, { i32, ptr, ptr }.
2132   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2133 
2134   // Construct the constructor and destructor arrays.
2135   ConstantInitBuilder Builder(*this);
2136   auto Ctors = Builder.beginArray(CtorStructTy);
2137   for (const auto &I : Fns) {
2138     auto Ctor = Ctors.beginStruct(CtorStructTy);
2139     Ctor.addInt(Int32Ty, I.Priority);
2140     if (InitFiniAuthSchema) {
2141       llvm::Constant *StorageAddress =
2142           (InitFiniAuthSchema.isAddressDiscriminated()
2143                ? llvm::ConstantExpr::getIntToPtr(
2144                      llvm::ConstantInt::get(
2145                          IntPtrTy,
2146                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2147                      PtrTy)
2148                : nullptr);
2149       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2150           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2151           llvm::ConstantInt::get(
2152               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2153       Ctor.add(SignedCtorPtr);
2154     } else {
2155       Ctor.add(I.Initializer);
2156     }
2157     if (I.AssociatedData)
2158       Ctor.add(I.AssociatedData);
2159     else
2160       Ctor.addNullPointer(PtrTy);
2161     Ctor.finishAndAddTo(Ctors);
2162   }
2163 
2164   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2165                                           /*constant*/ false,
2166                                           llvm::GlobalValue::AppendingLinkage);
2167 
2168   // The LTO linker doesn't seem to like it when we set an alignment
2169   // on appending variables.  Take it off as a workaround.
2170   List->setAlignment(std::nullopt);
2171 
2172   Fns.clear();
2173 }
2174 
2175 llvm::GlobalValue::LinkageTypes
2176 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2177   const auto *D = cast<FunctionDecl>(GD.getDecl());
2178 
2179   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2180 
2181   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2182     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2183 
2184   return getLLVMLinkageForDeclarator(D, Linkage);
2185 }
2186 
2187 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2188   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2189   if (!MDS) return nullptr;
2190 
2191   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2192 }
2193 
2194 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2195   if (auto *FnType = T->getAs<FunctionProtoType>())
2196     T = getContext().getFunctionType(
2197         FnType->getReturnType(), FnType->getParamTypes(),
2198         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2199 
2200   std::string OutName;
2201   llvm::raw_string_ostream Out(OutName);
2202   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2203       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2204 
2205   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2206     Out << ".normalized";
2207 
2208   return llvm::ConstantInt::get(Int32Ty,
2209                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2210 }
2211 
2212 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2213                                               const CGFunctionInfo &Info,
2214                                               llvm::Function *F, bool IsThunk) {
2215   unsigned CallingConv;
2216   llvm::AttributeList PAL;
2217   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2218                          /*AttrOnCallSite=*/false, IsThunk);
2219   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2220       getTarget().getTriple().isWindowsArm64EC()) {
2221     SourceLocation Loc;
2222     if (const Decl *D = GD.getDecl())
2223       Loc = D->getLocation();
2224 
2225     Error(Loc, "__vectorcall calling convention is not currently supported");
2226   }
2227   F->setAttributes(PAL);
2228   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2229 }
2230 
2231 static void removeImageAccessQualifier(std::string& TyName) {
2232   std::string ReadOnlyQual("__read_only");
2233   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2234   if (ReadOnlyPos != std::string::npos)
2235     // "+ 1" for the space after access qualifier.
2236     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2237   else {
2238     std::string WriteOnlyQual("__write_only");
2239     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2240     if (WriteOnlyPos != std::string::npos)
2241       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2242     else {
2243       std::string ReadWriteQual("__read_write");
2244       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2245       if (ReadWritePos != std::string::npos)
2246         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2247     }
2248   }
2249 }
2250 
2251 // Returns the address space id that should be produced to the
2252 // kernel_arg_addr_space metadata. This is always fixed to the ids
2253 // as specified in the SPIR 2.0 specification in order to differentiate
2254 // for example in clGetKernelArgInfo() implementation between the address
2255 // spaces with targets without unique mapping to the OpenCL address spaces
2256 // (basically all single AS CPUs).
2257 static unsigned ArgInfoAddressSpace(LangAS AS) {
2258   switch (AS) {
2259   case LangAS::opencl_global:
2260     return 1;
2261   case LangAS::opencl_constant:
2262     return 2;
2263   case LangAS::opencl_local:
2264     return 3;
2265   case LangAS::opencl_generic:
2266     return 4; // Not in SPIR 2.0 specs.
2267   case LangAS::opencl_global_device:
2268     return 5;
2269   case LangAS::opencl_global_host:
2270     return 6;
2271   default:
2272     return 0; // Assume private.
2273   }
2274 }
2275 
2276 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2277                                          const FunctionDecl *FD,
2278                                          CodeGenFunction *CGF) {
2279   assert(((FD && CGF) || (!FD && !CGF)) &&
2280          "Incorrect use - FD and CGF should either be both null or not!");
2281   // Create MDNodes that represent the kernel arg metadata.
2282   // Each MDNode is a list in the form of "key", N number of values which is
2283   // the same number of values as their are kernel arguments.
2284 
2285   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2286 
2287   // MDNode for the kernel argument address space qualifiers.
2288   SmallVector<llvm::Metadata *, 8> addressQuals;
2289 
2290   // MDNode for the kernel argument access qualifiers (images only).
2291   SmallVector<llvm::Metadata *, 8> accessQuals;
2292 
2293   // MDNode for the kernel argument type names.
2294   SmallVector<llvm::Metadata *, 8> argTypeNames;
2295 
2296   // MDNode for the kernel argument base type names.
2297   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2298 
2299   // MDNode for the kernel argument type qualifiers.
2300   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2301 
2302   // MDNode for the kernel argument names.
2303   SmallVector<llvm::Metadata *, 8> argNames;
2304 
2305   if (FD && CGF)
2306     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2307       const ParmVarDecl *parm = FD->getParamDecl(i);
2308       // Get argument name.
2309       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2310 
2311       if (!getLangOpts().OpenCL)
2312         continue;
2313       QualType ty = parm->getType();
2314       std::string typeQuals;
2315 
2316       // Get image and pipe access qualifier:
2317       if (ty->isImageType() || ty->isPipeType()) {
2318         const Decl *PDecl = parm;
2319         if (const auto *TD = ty->getAs<TypedefType>())
2320           PDecl = TD->getDecl();
2321         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2322         if (A && A->isWriteOnly())
2323           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2324         else if (A && A->isReadWrite())
2325           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2326         else
2327           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2328       } else
2329         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2330 
2331       auto getTypeSpelling = [&](QualType Ty) {
2332         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2333 
2334         if (Ty.isCanonical()) {
2335           StringRef typeNameRef = typeName;
2336           // Turn "unsigned type" to "utype"
2337           if (typeNameRef.consume_front("unsigned "))
2338             return std::string("u") + typeNameRef.str();
2339           if (typeNameRef.consume_front("signed "))
2340             return typeNameRef.str();
2341         }
2342 
2343         return typeName;
2344       };
2345 
2346       if (ty->isPointerType()) {
2347         QualType pointeeTy = ty->getPointeeType();
2348 
2349         // Get address qualifier.
2350         addressQuals.push_back(
2351             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2352                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2353 
2354         // Get argument type name.
2355         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2356         std::string baseTypeName =
2357             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2358         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2359         argBaseTypeNames.push_back(
2360             llvm::MDString::get(VMContext, baseTypeName));
2361 
2362         // Get argument type qualifiers:
2363         if (ty.isRestrictQualified())
2364           typeQuals = "restrict";
2365         if (pointeeTy.isConstQualified() ||
2366             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2367           typeQuals += typeQuals.empty() ? "const" : " const";
2368         if (pointeeTy.isVolatileQualified())
2369           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2370       } else {
2371         uint32_t AddrSpc = 0;
2372         bool isPipe = ty->isPipeType();
2373         if (ty->isImageType() || isPipe)
2374           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2375 
2376         addressQuals.push_back(
2377             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2378 
2379         // Get argument type name.
2380         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2381         std::string typeName = getTypeSpelling(ty);
2382         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2383 
2384         // Remove access qualifiers on images
2385         // (as they are inseparable from type in clang implementation,
2386         // but OpenCL spec provides a special query to get access qualifier
2387         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2388         if (ty->isImageType()) {
2389           removeImageAccessQualifier(typeName);
2390           removeImageAccessQualifier(baseTypeName);
2391         }
2392 
2393         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2394         argBaseTypeNames.push_back(
2395             llvm::MDString::get(VMContext, baseTypeName));
2396 
2397         if (isPipe)
2398           typeQuals = "pipe";
2399       }
2400       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2401     }
2402 
2403   if (getLangOpts().OpenCL) {
2404     Fn->setMetadata("kernel_arg_addr_space",
2405                     llvm::MDNode::get(VMContext, addressQuals));
2406     Fn->setMetadata("kernel_arg_access_qual",
2407                     llvm::MDNode::get(VMContext, accessQuals));
2408     Fn->setMetadata("kernel_arg_type",
2409                     llvm::MDNode::get(VMContext, argTypeNames));
2410     Fn->setMetadata("kernel_arg_base_type",
2411                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2412     Fn->setMetadata("kernel_arg_type_qual",
2413                     llvm::MDNode::get(VMContext, argTypeQuals));
2414   }
2415   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2416       getCodeGenOpts().HIPSaveKernelArgName)
2417     Fn->setMetadata("kernel_arg_name",
2418                     llvm::MDNode::get(VMContext, argNames));
2419 }
2420 
2421 /// Determines whether the language options require us to model
2422 /// unwind exceptions.  We treat -fexceptions as mandating this
2423 /// except under the fragile ObjC ABI with only ObjC exceptions
2424 /// enabled.  This means, for example, that C with -fexceptions
2425 /// enables this.
2426 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2427   // If exceptions are completely disabled, obviously this is false.
2428   if (!LangOpts.Exceptions) return false;
2429 
2430   // If C++ exceptions are enabled, this is true.
2431   if (LangOpts.CXXExceptions) return true;
2432 
2433   // If ObjC exceptions are enabled, this depends on the ABI.
2434   if (LangOpts.ObjCExceptions) {
2435     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2436   }
2437 
2438   return true;
2439 }
2440 
2441 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2442                                                       const CXXMethodDecl *MD) {
2443   // Check that the type metadata can ever actually be used by a call.
2444   if (!CGM.getCodeGenOpts().LTOUnit ||
2445       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2446     return false;
2447 
2448   // Only functions whose address can be taken with a member function pointer
2449   // need this sort of type metadata.
2450   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2451          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2452 }
2453 
2454 SmallVector<const CXXRecordDecl *, 0>
2455 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2456   llvm::SetVector<const CXXRecordDecl *> MostBases;
2457 
2458   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2459   CollectMostBases = [&](const CXXRecordDecl *RD) {
2460     if (RD->getNumBases() == 0)
2461       MostBases.insert(RD);
2462     for (const CXXBaseSpecifier &B : RD->bases())
2463       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2464   };
2465   CollectMostBases(RD);
2466   return MostBases.takeVector();
2467 }
2468 
2469 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2470                                                            llvm::Function *F) {
2471   llvm::AttrBuilder B(F->getContext());
2472 
2473   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2474     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2475 
2476   if (CodeGenOpts.StackClashProtector)
2477     B.addAttribute("probe-stack", "inline-asm");
2478 
2479   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2480     B.addAttribute("stack-probe-size",
2481                    std::to_string(CodeGenOpts.StackProbeSize));
2482 
2483   if (!hasUnwindExceptions(LangOpts))
2484     B.addAttribute(llvm::Attribute::NoUnwind);
2485 
2486   if (D && D->hasAttr<NoStackProtectorAttr>())
2487     ; // Do nothing.
2488   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2489            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2490     B.addAttribute(llvm::Attribute::StackProtectStrong);
2491   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2492     B.addAttribute(llvm::Attribute::StackProtect);
2493   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2494     B.addAttribute(llvm::Attribute::StackProtectStrong);
2495   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2496     B.addAttribute(llvm::Attribute::StackProtectReq);
2497 
2498   if (!D) {
2499     // Non-entry HLSL functions must always be inlined.
2500     if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline))
2501       B.addAttribute(llvm::Attribute::AlwaysInline);
2502     // If we don't have a declaration to control inlining, the function isn't
2503     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2504     // disabled, mark the function as noinline.
2505     else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2506              CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2507       B.addAttribute(llvm::Attribute::NoInline);
2508 
2509     F->addFnAttrs(B);
2510     return;
2511   }
2512 
2513   // Handle SME attributes that apply to function definitions,
2514   // rather than to function prototypes.
2515   if (D->hasAttr<ArmLocallyStreamingAttr>())
2516     B.addAttribute("aarch64_pstate_sm_body");
2517 
2518   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2519     if (Attr->isNewZA())
2520       B.addAttribute("aarch64_new_za");
2521     if (Attr->isNewZT0())
2522       B.addAttribute("aarch64_new_zt0");
2523   }
2524 
2525   // Track whether we need to add the optnone LLVM attribute,
2526   // starting with the default for this optimization level.
2527   bool ShouldAddOptNone =
2528       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2529   // We can't add optnone in the following cases, it won't pass the verifier.
2530   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2531   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2532 
2533   // Non-entry HLSL functions must always be inlined.
2534   if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) &&
2535       !D->hasAttr<NoInlineAttr>()) {
2536     B.addAttribute(llvm::Attribute::AlwaysInline);
2537   } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2538              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2539     // Add optnone, but do so only if the function isn't always_inline.
2540     B.addAttribute(llvm::Attribute::OptimizeNone);
2541 
2542     // OptimizeNone implies noinline; we should not be inlining such functions.
2543     B.addAttribute(llvm::Attribute::NoInline);
2544 
2545     // We still need to handle naked functions even though optnone subsumes
2546     // much of their semantics.
2547     if (D->hasAttr<NakedAttr>())
2548       B.addAttribute(llvm::Attribute::Naked);
2549 
2550     // OptimizeNone wins over OptimizeForSize and MinSize.
2551     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2552     F->removeFnAttr(llvm::Attribute::MinSize);
2553   } else if (D->hasAttr<NakedAttr>()) {
2554     // Naked implies noinline: we should not be inlining such functions.
2555     B.addAttribute(llvm::Attribute::Naked);
2556     B.addAttribute(llvm::Attribute::NoInline);
2557   } else if (D->hasAttr<NoDuplicateAttr>()) {
2558     B.addAttribute(llvm::Attribute::NoDuplicate);
2559   } else if (D->hasAttr<NoInlineAttr>() &&
2560              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2561     // Add noinline if the function isn't always_inline.
2562     B.addAttribute(llvm::Attribute::NoInline);
2563   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2564              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2565     // (noinline wins over always_inline, and we can't specify both in IR)
2566     B.addAttribute(llvm::Attribute::AlwaysInline);
2567   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2568     // If we're not inlining, then force everything that isn't always_inline to
2569     // carry an explicit noinline attribute.
2570     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2571       B.addAttribute(llvm::Attribute::NoInline);
2572   } else {
2573     // Otherwise, propagate the inline hint attribute and potentially use its
2574     // absence to mark things as noinline.
2575     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2576       // Search function and template pattern redeclarations for inline.
2577       auto CheckForInline = [](const FunctionDecl *FD) {
2578         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2579           return Redecl->isInlineSpecified();
2580         };
2581         if (any_of(FD->redecls(), CheckRedeclForInline))
2582           return true;
2583         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2584         if (!Pattern)
2585           return false;
2586         return any_of(Pattern->redecls(), CheckRedeclForInline);
2587       };
2588       if (CheckForInline(FD)) {
2589         B.addAttribute(llvm::Attribute::InlineHint);
2590       } else if (CodeGenOpts.getInlining() ==
2591                      CodeGenOptions::OnlyHintInlining &&
2592                  !FD->isInlined() &&
2593                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2594         B.addAttribute(llvm::Attribute::NoInline);
2595       }
2596     }
2597   }
2598 
2599   // Add other optimization related attributes if we are optimizing this
2600   // function.
2601   if (!D->hasAttr<OptimizeNoneAttr>()) {
2602     if (D->hasAttr<ColdAttr>()) {
2603       if (!ShouldAddOptNone)
2604         B.addAttribute(llvm::Attribute::OptimizeForSize);
2605       B.addAttribute(llvm::Attribute::Cold);
2606     }
2607     if (D->hasAttr<HotAttr>())
2608       B.addAttribute(llvm::Attribute::Hot);
2609     if (D->hasAttr<MinSizeAttr>())
2610       B.addAttribute(llvm::Attribute::MinSize);
2611   }
2612 
2613   F->addFnAttrs(B);
2614 
2615   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2616   if (alignment)
2617     F->setAlignment(llvm::Align(alignment));
2618 
2619   if (!D->hasAttr<AlignedAttr>())
2620     if (LangOpts.FunctionAlignment)
2621       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2622 
2623   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2624   // reserve a bit for differentiating between virtual and non-virtual member
2625   // functions. If the current target's C++ ABI requires this and this is a
2626   // member function, set its alignment accordingly.
2627   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2628     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2629       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2630   }
2631 
2632   // In the cross-dso CFI mode with canonical jump tables, we want !type
2633   // attributes on definitions only.
2634   if (CodeGenOpts.SanitizeCfiCrossDso &&
2635       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2636     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2637       // Skip available_externally functions. They won't be codegen'ed in the
2638       // current module anyway.
2639       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2640         CreateFunctionTypeMetadataForIcall(FD, F);
2641     }
2642   }
2643 
2644   // Emit type metadata on member functions for member function pointer checks.
2645   // These are only ever necessary on definitions; we're guaranteed that the
2646   // definition will be present in the LTO unit as a result of LTO visibility.
2647   auto *MD = dyn_cast<CXXMethodDecl>(D);
2648   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2649     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2650       llvm::Metadata *Id =
2651           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2652               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2653       F->addTypeMetadata(0, Id);
2654     }
2655   }
2656 }
2657 
2658 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2659   const Decl *D = GD.getDecl();
2660   if (isa_and_nonnull<NamedDecl>(D))
2661     setGVProperties(GV, GD);
2662   else
2663     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2664 
2665   if (D && D->hasAttr<UsedAttr>())
2666     addUsedOrCompilerUsedGlobal(GV);
2667 
2668   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2669       VD &&
2670       ((CodeGenOpts.KeepPersistentStorageVariables &&
2671         (VD->getStorageDuration() == SD_Static ||
2672          VD->getStorageDuration() == SD_Thread)) ||
2673        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2674         VD->getType().isConstQualified())))
2675     addUsedOrCompilerUsedGlobal(GV);
2676 }
2677 
2678 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2679                                                 llvm::AttrBuilder &Attrs,
2680                                                 bool SetTargetFeatures) {
2681   // Add target-cpu and target-features attributes to functions. If
2682   // we have a decl for the function and it has a target attribute then
2683   // parse that and add it to the feature set.
2684   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2685   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2686   std::vector<std::string> Features;
2687   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2688   FD = FD ? FD->getMostRecentDecl() : FD;
2689   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2690   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2691   assert((!TD || !TV) && "both target_version and target specified");
2692   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2693   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2694   bool AddedAttr = false;
2695   if (TD || TV || SD || TC) {
2696     llvm::StringMap<bool> FeatureMap;
2697     getContext().getFunctionFeatureMap(FeatureMap, GD);
2698 
2699     // Produce the canonical string for this set of features.
2700     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2701       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2702 
2703     // Now add the target-cpu and target-features to the function.
2704     // While we populated the feature map above, we still need to
2705     // get and parse the target attribute so we can get the cpu for
2706     // the function.
2707     if (TD) {
2708       ParsedTargetAttr ParsedAttr =
2709           Target.parseTargetAttr(TD->getFeaturesStr());
2710       if (!ParsedAttr.CPU.empty() &&
2711           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2712         TargetCPU = ParsedAttr.CPU;
2713         TuneCPU = ""; // Clear the tune CPU.
2714       }
2715       if (!ParsedAttr.Tune.empty() &&
2716           getTarget().isValidCPUName(ParsedAttr.Tune))
2717         TuneCPU = ParsedAttr.Tune;
2718     }
2719 
2720     if (SD) {
2721       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2722       // favor this processor.
2723       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2724     }
2725   } else {
2726     // Otherwise just add the existing target cpu and target features to the
2727     // function.
2728     Features = getTarget().getTargetOpts().Features;
2729   }
2730 
2731   if (!TargetCPU.empty()) {
2732     Attrs.addAttribute("target-cpu", TargetCPU);
2733     AddedAttr = true;
2734   }
2735   if (!TuneCPU.empty()) {
2736     Attrs.addAttribute("tune-cpu", TuneCPU);
2737     AddedAttr = true;
2738   }
2739   if (!Features.empty() && SetTargetFeatures) {
2740     llvm::erase_if(Features, [&](const std::string& F) {
2741        return getTarget().isReadOnlyFeature(F.substr(1));
2742     });
2743     llvm::sort(Features);
2744     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2745     AddedAttr = true;
2746   }
2747 
2748   return AddedAttr;
2749 }
2750 
2751 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2752                                           llvm::GlobalObject *GO) {
2753   const Decl *D = GD.getDecl();
2754   SetCommonAttributes(GD, GO);
2755 
2756   if (D) {
2757     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2758       if (D->hasAttr<RetainAttr>())
2759         addUsedGlobal(GV);
2760       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2761         GV->addAttribute("bss-section", SA->getName());
2762       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2763         GV->addAttribute("data-section", SA->getName());
2764       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2765         GV->addAttribute("rodata-section", SA->getName());
2766       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2767         GV->addAttribute("relro-section", SA->getName());
2768     }
2769 
2770     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2771       if (D->hasAttr<RetainAttr>())
2772         addUsedGlobal(F);
2773       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2774         if (!D->getAttr<SectionAttr>())
2775           F->setSection(SA->getName());
2776 
2777       llvm::AttrBuilder Attrs(F->getContext());
2778       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2779         // We know that GetCPUAndFeaturesAttributes will always have the
2780         // newest set, since it has the newest possible FunctionDecl, so the
2781         // new ones should replace the old.
2782         llvm::AttributeMask RemoveAttrs;
2783         RemoveAttrs.addAttribute("target-cpu");
2784         RemoveAttrs.addAttribute("target-features");
2785         RemoveAttrs.addAttribute("tune-cpu");
2786         F->removeFnAttrs(RemoveAttrs);
2787         F->addFnAttrs(Attrs);
2788       }
2789     }
2790 
2791     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2792       GO->setSection(CSA->getName());
2793     else if (const auto *SA = D->getAttr<SectionAttr>())
2794       GO->setSection(SA->getName());
2795   }
2796 
2797   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2798 }
2799 
2800 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2801                                                   llvm::Function *F,
2802                                                   const CGFunctionInfo &FI) {
2803   const Decl *D = GD.getDecl();
2804   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2805   SetLLVMFunctionAttributesForDefinition(D, F);
2806 
2807   F->setLinkage(llvm::Function::InternalLinkage);
2808 
2809   setNonAliasAttributes(GD, F);
2810 }
2811 
2812 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2813   // Set linkage and visibility in case we never see a definition.
2814   LinkageInfo LV = ND->getLinkageAndVisibility();
2815   // Don't set internal linkage on declarations.
2816   // "extern_weak" is overloaded in LLVM; we probably should have
2817   // separate linkage types for this.
2818   if (isExternallyVisible(LV.getLinkage()) &&
2819       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2820     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2821 }
2822 
2823 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2824                                                        llvm::Function *F) {
2825   // Only if we are checking indirect calls.
2826   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2827     return;
2828 
2829   // Non-static class methods are handled via vtable or member function pointer
2830   // checks elsewhere.
2831   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2832     return;
2833 
2834   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2835   F->addTypeMetadata(0, MD);
2836   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2837 
2838   // Emit a hash-based bit set entry for cross-DSO calls.
2839   if (CodeGenOpts.SanitizeCfiCrossDso)
2840     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2841       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2842 }
2843 
2844 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2845   llvm::LLVMContext &Ctx = F->getContext();
2846   llvm::MDBuilder MDB(Ctx);
2847   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2848                  llvm::MDNode::get(
2849                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2850 }
2851 
2852 static bool allowKCFIIdentifier(StringRef Name) {
2853   // KCFI type identifier constants are only necessary for external assembly
2854   // functions, which means it's safe to skip unusual names. Subset of
2855   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2856   return llvm::all_of(Name, [](const char &C) {
2857     return llvm::isAlnum(C) || C == '_' || C == '.';
2858   });
2859 }
2860 
2861 void CodeGenModule::finalizeKCFITypes() {
2862   llvm::Module &M = getModule();
2863   for (auto &F : M.functions()) {
2864     // Remove KCFI type metadata from non-address-taken local functions.
2865     bool AddressTaken = F.hasAddressTaken();
2866     if (!AddressTaken && F.hasLocalLinkage())
2867       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2868 
2869     // Generate a constant with the expected KCFI type identifier for all
2870     // address-taken function declarations to support annotating indirectly
2871     // called assembly functions.
2872     if (!AddressTaken || !F.isDeclaration())
2873       continue;
2874 
2875     const llvm::ConstantInt *Type;
2876     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2877       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2878     else
2879       continue;
2880 
2881     StringRef Name = F.getName();
2882     if (!allowKCFIIdentifier(Name))
2883       continue;
2884 
2885     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2886                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2887                           .str();
2888     M.appendModuleInlineAsm(Asm);
2889   }
2890 }
2891 
2892 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2893                                           bool IsIncompleteFunction,
2894                                           bool IsThunk) {
2895 
2896   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2897     // If this is an intrinsic function, set the function's attributes
2898     // to the intrinsic's attributes.
2899     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2900     return;
2901   }
2902 
2903   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2904 
2905   if (!IsIncompleteFunction)
2906     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2907                               IsThunk);
2908 
2909   // Add the Returned attribute for "this", except for iOS 5 and earlier
2910   // where substantial code, including the libstdc++ dylib, was compiled with
2911   // GCC and does not actually return "this".
2912   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2913       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2914     assert(!F->arg_empty() &&
2915            F->arg_begin()->getType()
2916              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2917            "unexpected this return");
2918     F->addParamAttr(0, llvm::Attribute::Returned);
2919   }
2920 
2921   // Only a few attributes are set on declarations; these may later be
2922   // overridden by a definition.
2923 
2924   setLinkageForGV(F, FD);
2925   setGVProperties(F, FD);
2926 
2927   // Setup target-specific attributes.
2928   if (!IsIncompleteFunction && F->isDeclaration())
2929     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2930 
2931   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2932     F->setSection(CSA->getName());
2933   else if (const auto *SA = FD->getAttr<SectionAttr>())
2934      F->setSection(SA->getName());
2935 
2936   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2937     if (EA->isError())
2938       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2939     else if (EA->isWarning())
2940       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2941   }
2942 
2943   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2944   if (FD->isInlineBuiltinDeclaration()) {
2945     const FunctionDecl *FDBody;
2946     bool HasBody = FD->hasBody(FDBody);
2947     (void)HasBody;
2948     assert(HasBody && "Inline builtin declarations should always have an "
2949                       "available body!");
2950     if (shouldEmitFunction(FDBody))
2951       F->addFnAttr(llvm::Attribute::NoBuiltin);
2952   }
2953 
2954   if (FD->isReplaceableGlobalAllocationFunction()) {
2955     // A replaceable global allocation function does not act like a builtin by
2956     // default, only if it is invoked by a new-expression or delete-expression.
2957     F->addFnAttr(llvm::Attribute::NoBuiltin);
2958   }
2959 
2960   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2961     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2962   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2963     if (MD->isVirtual())
2964       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2965 
2966   // Don't emit entries for function declarations in the cross-DSO mode. This
2967   // is handled with better precision by the receiving DSO. But if jump tables
2968   // are non-canonical then we need type metadata in order to produce the local
2969   // jump table.
2970   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2971       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2972     CreateFunctionTypeMetadataForIcall(FD, F);
2973 
2974   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2975     setKCFIType(FD, F);
2976 
2977   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2978     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2979 
2980   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2981     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2982 
2983   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2984     // Annotate the callback behavior as metadata:
2985     //  - The callback callee (as argument number).
2986     //  - The callback payloads (as argument numbers).
2987     llvm::LLVMContext &Ctx = F->getContext();
2988     llvm::MDBuilder MDB(Ctx);
2989 
2990     // The payload indices are all but the first one in the encoding. The first
2991     // identifies the callback callee.
2992     int CalleeIdx = *CB->encoding_begin();
2993     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2994     F->addMetadata(llvm::LLVMContext::MD_callback,
2995                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2996                                                CalleeIdx, PayloadIndices,
2997                                                /* VarArgsArePassed */ false)}));
2998   }
2999 }
3000 
3001 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
3002   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3003          "Only globals with definition can force usage.");
3004   LLVMUsed.emplace_back(GV);
3005 }
3006 
3007 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
3008   assert(!GV->isDeclaration() &&
3009          "Only globals with definition can force usage.");
3010   LLVMCompilerUsed.emplace_back(GV);
3011 }
3012 
3013 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
3014   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3015          "Only globals with definition can force usage.");
3016   if (getTriple().isOSBinFormatELF())
3017     LLVMCompilerUsed.emplace_back(GV);
3018   else
3019     LLVMUsed.emplace_back(GV);
3020 }
3021 
3022 static void emitUsed(CodeGenModule &CGM, StringRef Name,
3023                      std::vector<llvm::WeakTrackingVH> &List) {
3024   // Don't create llvm.used if there is no need.
3025   if (List.empty())
3026     return;
3027 
3028   // Convert List to what ConstantArray needs.
3029   SmallVector<llvm::Constant*, 8> UsedArray;
3030   UsedArray.resize(List.size());
3031   for (unsigned i = 0, e = List.size(); i != e; ++i) {
3032     UsedArray[i] =
3033         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3034             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3035   }
3036 
3037   if (UsedArray.empty())
3038     return;
3039   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3040 
3041   auto *GV = new llvm::GlobalVariable(
3042       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3043       llvm::ConstantArray::get(ATy, UsedArray), Name);
3044 
3045   GV->setSection("llvm.metadata");
3046 }
3047 
3048 void CodeGenModule::emitLLVMUsed() {
3049   emitUsed(*this, "llvm.used", LLVMUsed);
3050   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3051 }
3052 
3053 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3054   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3055   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3056 }
3057 
3058 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3059   llvm::SmallString<32> Opt;
3060   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3061   if (Opt.empty())
3062     return;
3063   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3064   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3065 }
3066 
3067 void CodeGenModule::AddDependentLib(StringRef Lib) {
3068   auto &C = getLLVMContext();
3069   if (getTarget().getTriple().isOSBinFormatELF()) {
3070       ELFDependentLibraries.push_back(
3071         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3072     return;
3073   }
3074 
3075   llvm::SmallString<24> Opt;
3076   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3077   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3078   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3079 }
3080 
3081 /// Add link options implied by the given module, including modules
3082 /// it depends on, using a postorder walk.
3083 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3084                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3085                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3086   // Import this module's parent.
3087   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3088     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3089   }
3090 
3091   // Import this module's dependencies.
3092   for (Module *Import : llvm::reverse(Mod->Imports)) {
3093     if (Visited.insert(Import).second)
3094       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3095   }
3096 
3097   // Add linker options to link against the libraries/frameworks
3098   // described by this module.
3099   llvm::LLVMContext &Context = CGM.getLLVMContext();
3100   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3101 
3102   // For modules that use export_as for linking, use that module
3103   // name instead.
3104   if (Mod->UseExportAsModuleLinkName)
3105     return;
3106 
3107   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3108     // Link against a framework.  Frameworks are currently Darwin only, so we
3109     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3110     if (LL.IsFramework) {
3111       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3112                                  llvm::MDString::get(Context, LL.Library)};
3113 
3114       Metadata.push_back(llvm::MDNode::get(Context, Args));
3115       continue;
3116     }
3117 
3118     // Link against a library.
3119     if (IsELF) {
3120       llvm::Metadata *Args[2] = {
3121           llvm::MDString::get(Context, "lib"),
3122           llvm::MDString::get(Context, LL.Library),
3123       };
3124       Metadata.push_back(llvm::MDNode::get(Context, Args));
3125     } else {
3126       llvm::SmallString<24> Opt;
3127       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3128       auto *OptString = llvm::MDString::get(Context, Opt);
3129       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3130     }
3131   }
3132 }
3133 
3134 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3135   assert(Primary->isNamedModuleUnit() &&
3136          "We should only emit module initializers for named modules.");
3137 
3138   // Emit the initializers in the order that sub-modules appear in the
3139   // source, first Global Module Fragments, if present.
3140   if (auto GMF = Primary->getGlobalModuleFragment()) {
3141     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3142       if (isa<ImportDecl>(D))
3143         continue;
3144       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3145       EmitTopLevelDecl(D);
3146     }
3147   }
3148   // Second any associated with the module, itself.
3149   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3150     // Skip import decls, the inits for those are called explicitly.
3151     if (isa<ImportDecl>(D))
3152       continue;
3153     EmitTopLevelDecl(D);
3154   }
3155   // Third any associated with the Privat eMOdule Fragment, if present.
3156   if (auto PMF = Primary->getPrivateModuleFragment()) {
3157     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3158       // Skip import decls, the inits for those are called explicitly.
3159       if (isa<ImportDecl>(D))
3160         continue;
3161       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3162       EmitTopLevelDecl(D);
3163     }
3164   }
3165 }
3166 
3167 void CodeGenModule::EmitModuleLinkOptions() {
3168   // Collect the set of all of the modules we want to visit to emit link
3169   // options, which is essentially the imported modules and all of their
3170   // non-explicit child modules.
3171   llvm::SetVector<clang::Module *> LinkModules;
3172   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3173   SmallVector<clang::Module *, 16> Stack;
3174 
3175   // Seed the stack with imported modules.
3176   for (Module *M : ImportedModules) {
3177     // Do not add any link flags when an implementation TU of a module imports
3178     // a header of that same module.
3179     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3180         !getLangOpts().isCompilingModule())
3181       continue;
3182     if (Visited.insert(M).second)
3183       Stack.push_back(M);
3184   }
3185 
3186   // Find all of the modules to import, making a little effort to prune
3187   // non-leaf modules.
3188   while (!Stack.empty()) {
3189     clang::Module *Mod = Stack.pop_back_val();
3190 
3191     bool AnyChildren = false;
3192 
3193     // Visit the submodules of this module.
3194     for (const auto &SM : Mod->submodules()) {
3195       // Skip explicit children; they need to be explicitly imported to be
3196       // linked against.
3197       if (SM->IsExplicit)
3198         continue;
3199 
3200       if (Visited.insert(SM).second) {
3201         Stack.push_back(SM);
3202         AnyChildren = true;
3203       }
3204     }
3205 
3206     // We didn't find any children, so add this module to the list of
3207     // modules to link against.
3208     if (!AnyChildren) {
3209       LinkModules.insert(Mod);
3210     }
3211   }
3212 
3213   // Add link options for all of the imported modules in reverse topological
3214   // order.  We don't do anything to try to order import link flags with respect
3215   // to linker options inserted by things like #pragma comment().
3216   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3217   Visited.clear();
3218   for (Module *M : LinkModules)
3219     if (Visited.insert(M).second)
3220       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3221   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3222   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3223 
3224   // Add the linker options metadata flag.
3225   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3226   for (auto *MD : LinkerOptionsMetadata)
3227     NMD->addOperand(MD);
3228 }
3229 
3230 void CodeGenModule::EmitDeferred() {
3231   // Emit deferred declare target declarations.
3232   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3233     getOpenMPRuntime().emitDeferredTargetDecls();
3234 
3235   // Emit code for any potentially referenced deferred decls.  Since a
3236   // previously unused static decl may become used during the generation of code
3237   // for a static function, iterate until no changes are made.
3238 
3239   if (!DeferredVTables.empty()) {
3240     EmitDeferredVTables();
3241 
3242     // Emitting a vtable doesn't directly cause more vtables to
3243     // become deferred, although it can cause functions to be
3244     // emitted that then need those vtables.
3245     assert(DeferredVTables.empty());
3246   }
3247 
3248   // Emit CUDA/HIP static device variables referenced by host code only.
3249   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3250   // needed for further handling.
3251   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3252     llvm::append_range(DeferredDeclsToEmit,
3253                        getContext().CUDADeviceVarODRUsedByHost);
3254 
3255   // Stop if we're out of both deferred vtables and deferred declarations.
3256   if (DeferredDeclsToEmit.empty())
3257     return;
3258 
3259   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3260   // work, it will not interfere with this.
3261   std::vector<GlobalDecl> CurDeclsToEmit;
3262   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3263 
3264   for (GlobalDecl &D : CurDeclsToEmit) {
3265     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3266     // to get GlobalValue with exactly the type we need, not something that
3267     // might had been created for another decl with the same mangled name but
3268     // different type.
3269     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3270         GetAddrOfGlobal(D, ForDefinition));
3271 
3272     // In case of different address spaces, we may still get a cast, even with
3273     // IsForDefinition equal to true. Query mangled names table to get
3274     // GlobalValue.
3275     if (!GV)
3276       GV = GetGlobalValue(getMangledName(D));
3277 
3278     // Make sure GetGlobalValue returned non-null.
3279     assert(GV);
3280 
3281     // Check to see if we've already emitted this.  This is necessary
3282     // for a couple of reasons: first, decls can end up in the
3283     // deferred-decls queue multiple times, and second, decls can end
3284     // up with definitions in unusual ways (e.g. by an extern inline
3285     // function acquiring a strong function redefinition).  Just
3286     // ignore these cases.
3287     if (!GV->isDeclaration())
3288       continue;
3289 
3290     // If this is OpenMP, check if it is legal to emit this global normally.
3291     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3292       continue;
3293 
3294     // Otherwise, emit the definition and move on to the next one.
3295     EmitGlobalDefinition(D, GV);
3296 
3297     // If we found out that we need to emit more decls, do that recursively.
3298     // This has the advantage that the decls are emitted in a DFS and related
3299     // ones are close together, which is convenient for testing.
3300     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3301       EmitDeferred();
3302       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3303     }
3304   }
3305 }
3306 
3307 void CodeGenModule::EmitVTablesOpportunistically() {
3308   // Try to emit external vtables as available_externally if they have emitted
3309   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3310   // is not allowed to create new references to things that need to be emitted
3311   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3312 
3313   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3314          && "Only emit opportunistic vtables with optimizations");
3315 
3316   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3317     assert(getVTables().isVTableExternal(RD) &&
3318            "This queue should only contain external vtables");
3319     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3320       VTables.GenerateClassData(RD);
3321   }
3322   OpportunisticVTables.clear();
3323 }
3324 
3325 void CodeGenModule::EmitGlobalAnnotations() {
3326   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3327     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3328     if (GV)
3329       AddGlobalAnnotations(VD, GV);
3330   }
3331   DeferredAnnotations.clear();
3332 
3333   if (Annotations.empty())
3334     return;
3335 
3336   // Create a new global variable for the ConstantStruct in the Module.
3337   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3338     Annotations[0]->getType(), Annotations.size()), Annotations);
3339   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3340                                       llvm::GlobalValue::AppendingLinkage,
3341                                       Array, "llvm.global.annotations");
3342   gv->setSection(AnnotationSection);
3343 }
3344 
3345 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3346   llvm::Constant *&AStr = AnnotationStrings[Str];
3347   if (AStr)
3348     return AStr;
3349 
3350   // Not found yet, create a new global.
3351   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3352   auto *gv = new llvm::GlobalVariable(
3353       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3354       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3355       ConstGlobalsPtrTy->getAddressSpace());
3356   gv->setSection(AnnotationSection);
3357   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3358   AStr = gv;
3359   return gv;
3360 }
3361 
3362 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3363   SourceManager &SM = getContext().getSourceManager();
3364   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3365   if (PLoc.isValid())
3366     return EmitAnnotationString(PLoc.getFilename());
3367   return EmitAnnotationString(SM.getBufferName(Loc));
3368 }
3369 
3370 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3371   SourceManager &SM = getContext().getSourceManager();
3372   PresumedLoc PLoc = SM.getPresumedLoc(L);
3373   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3374     SM.getExpansionLineNumber(L);
3375   return llvm::ConstantInt::get(Int32Ty, LineNo);
3376 }
3377 
3378 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3379   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3380   if (Exprs.empty())
3381     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3382 
3383   llvm::FoldingSetNodeID ID;
3384   for (Expr *E : Exprs) {
3385     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3386   }
3387   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3388   if (Lookup)
3389     return Lookup;
3390 
3391   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3392   LLVMArgs.reserve(Exprs.size());
3393   ConstantEmitter ConstEmiter(*this);
3394   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3395     const auto *CE = cast<clang::ConstantExpr>(E);
3396     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3397                                     CE->getType());
3398   });
3399   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3400   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3401                                       llvm::GlobalValue::PrivateLinkage, Struct,
3402                                       ".args");
3403   GV->setSection(AnnotationSection);
3404   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3405 
3406   Lookup = GV;
3407   return GV;
3408 }
3409 
3410 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3411                                                 const AnnotateAttr *AA,
3412                                                 SourceLocation L) {
3413   // Get the globals for file name, annotation, and the line number.
3414   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3415                  *UnitGV = EmitAnnotationUnit(L),
3416                  *LineNoCst = EmitAnnotationLineNo(L),
3417                  *Args = EmitAnnotationArgs(AA);
3418 
3419   llvm::Constant *GVInGlobalsAS = GV;
3420   if (GV->getAddressSpace() !=
3421       getDataLayout().getDefaultGlobalsAddressSpace()) {
3422     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3423         GV,
3424         llvm::PointerType::get(
3425             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3426   }
3427 
3428   // Create the ConstantStruct for the global annotation.
3429   llvm::Constant *Fields[] = {
3430       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3431   };
3432   return llvm::ConstantStruct::getAnon(Fields);
3433 }
3434 
3435 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3436                                          llvm::GlobalValue *GV) {
3437   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3438   // Get the struct elements for these annotations.
3439   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3440     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3441 }
3442 
3443 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3444                                        SourceLocation Loc) const {
3445   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3446   // NoSanitize by function name.
3447   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3448     return true;
3449   // NoSanitize by location. Check "mainfile" prefix.
3450   auto &SM = Context.getSourceManager();
3451   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3452   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3453     return true;
3454 
3455   // Check "src" prefix.
3456   if (Loc.isValid())
3457     return NoSanitizeL.containsLocation(Kind, Loc);
3458   // If location is unknown, this may be a compiler-generated function. Assume
3459   // it's located in the main file.
3460   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3461 }
3462 
3463 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3464                                        llvm::GlobalVariable *GV,
3465                                        SourceLocation Loc, QualType Ty,
3466                                        StringRef Category) const {
3467   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3468   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3469     return true;
3470   auto &SM = Context.getSourceManager();
3471   if (NoSanitizeL.containsMainFile(
3472           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3473           Category))
3474     return true;
3475   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3476     return true;
3477 
3478   // Check global type.
3479   if (!Ty.isNull()) {
3480     // Drill down the array types: if global variable of a fixed type is
3481     // not sanitized, we also don't instrument arrays of them.
3482     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3483       Ty = AT->getElementType();
3484     Ty = Ty.getCanonicalType().getUnqualifiedType();
3485     // Only record types (classes, structs etc.) are ignored.
3486     if (Ty->isRecordType()) {
3487       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3488       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3489         return true;
3490     }
3491   }
3492   return false;
3493 }
3494 
3495 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3496                                    StringRef Category) const {
3497   const auto &XRayFilter = getContext().getXRayFilter();
3498   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3499   auto Attr = ImbueAttr::NONE;
3500   if (Loc.isValid())
3501     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3502   if (Attr == ImbueAttr::NONE)
3503     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3504   switch (Attr) {
3505   case ImbueAttr::NONE:
3506     return false;
3507   case ImbueAttr::ALWAYS:
3508     Fn->addFnAttr("function-instrument", "xray-always");
3509     break;
3510   case ImbueAttr::ALWAYS_ARG1:
3511     Fn->addFnAttr("function-instrument", "xray-always");
3512     Fn->addFnAttr("xray-log-args", "1");
3513     break;
3514   case ImbueAttr::NEVER:
3515     Fn->addFnAttr("function-instrument", "xray-never");
3516     break;
3517   }
3518   return true;
3519 }
3520 
3521 ProfileList::ExclusionType
3522 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3523                                               SourceLocation Loc) const {
3524   const auto &ProfileList = getContext().getProfileList();
3525   // If the profile list is empty, then instrument everything.
3526   if (ProfileList.isEmpty())
3527     return ProfileList::Allow;
3528   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3529   // First, check the function name.
3530   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3531     return *V;
3532   // Next, check the source location.
3533   if (Loc.isValid())
3534     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3535       return *V;
3536   // If location is unknown, this may be a compiler-generated function. Assume
3537   // it's located in the main file.
3538   auto &SM = Context.getSourceManager();
3539   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3540     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3541       return *V;
3542   return ProfileList.getDefault(Kind);
3543 }
3544 
3545 ProfileList::ExclusionType
3546 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3547                                                  SourceLocation Loc) const {
3548   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3549   if (V != ProfileList::Allow)
3550     return V;
3551 
3552   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3553   if (NumGroups > 1) {
3554     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3555     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3556       return ProfileList::Skip;
3557   }
3558   return ProfileList::Allow;
3559 }
3560 
3561 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3562   // Never defer when EmitAllDecls is specified.
3563   if (LangOpts.EmitAllDecls)
3564     return true;
3565 
3566   const auto *VD = dyn_cast<VarDecl>(Global);
3567   if (VD &&
3568       ((CodeGenOpts.KeepPersistentStorageVariables &&
3569         (VD->getStorageDuration() == SD_Static ||
3570          VD->getStorageDuration() == SD_Thread)) ||
3571        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3572         VD->getType().isConstQualified())))
3573     return true;
3574 
3575   return getContext().DeclMustBeEmitted(Global);
3576 }
3577 
3578 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3579   // In OpenMP 5.0 variables and function may be marked as
3580   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3581   // that they must be emitted on the host/device. To be sure we need to have
3582   // seen a declare target with an explicit mentioning of the function, we know
3583   // we have if the level of the declare target attribute is -1. Note that we
3584   // check somewhere else if we should emit this at all.
3585   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3586     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3587         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3588     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3589       return false;
3590   }
3591 
3592   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3593     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3594       // Implicit template instantiations may change linkage if they are later
3595       // explicitly instantiated, so they should not be emitted eagerly.
3596       return false;
3597     // Defer until all versions have been semantically checked.
3598     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3599       return false;
3600   }
3601   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3602     if (Context.getInlineVariableDefinitionKind(VD) ==
3603         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3604       // A definition of an inline constexpr static data member may change
3605       // linkage later if it's redeclared outside the class.
3606       return false;
3607     if (CXX20ModuleInits && VD->getOwningModule() &&
3608         !VD->getOwningModule()->isModuleMapModule()) {
3609       // For CXX20, module-owned initializers need to be deferred, since it is
3610       // not known at this point if they will be run for the current module or
3611       // as part of the initializer for an imported one.
3612       return false;
3613     }
3614   }
3615   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3616   // codegen for global variables, because they may be marked as threadprivate.
3617   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3618       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3619       !Global->getType().isConstantStorage(getContext(), false, false) &&
3620       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3621     return false;
3622 
3623   return true;
3624 }
3625 
3626 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3627   StringRef Name = getMangledName(GD);
3628 
3629   // The UUID descriptor should be pointer aligned.
3630   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3631 
3632   // Look for an existing global.
3633   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3634     return ConstantAddress(GV, GV->getValueType(), Alignment);
3635 
3636   ConstantEmitter Emitter(*this);
3637   llvm::Constant *Init;
3638 
3639   APValue &V = GD->getAsAPValue();
3640   if (!V.isAbsent()) {
3641     // If possible, emit the APValue version of the initializer. In particular,
3642     // this gets the type of the constant right.
3643     Init = Emitter.emitForInitializer(
3644         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3645   } else {
3646     // As a fallback, directly construct the constant.
3647     // FIXME: This may get padding wrong under esoteric struct layout rules.
3648     // MSVC appears to create a complete type 'struct __s_GUID' that it
3649     // presumably uses to represent these constants.
3650     MSGuidDecl::Parts Parts = GD->getParts();
3651     llvm::Constant *Fields[4] = {
3652         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3653         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3654         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3655         llvm::ConstantDataArray::getRaw(
3656             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3657             Int8Ty)};
3658     Init = llvm::ConstantStruct::getAnon(Fields);
3659   }
3660 
3661   auto *GV = new llvm::GlobalVariable(
3662       getModule(), Init->getType(),
3663       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3664   if (supportsCOMDAT())
3665     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3666   setDSOLocal(GV);
3667 
3668   if (!V.isAbsent()) {
3669     Emitter.finalize(GV);
3670     return ConstantAddress(GV, GV->getValueType(), Alignment);
3671   }
3672 
3673   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3674   return ConstantAddress(GV, Ty, Alignment);
3675 }
3676 
3677 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3678     const UnnamedGlobalConstantDecl *GCD) {
3679   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3680 
3681   llvm::GlobalVariable **Entry = nullptr;
3682   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3683   if (*Entry)
3684     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3685 
3686   ConstantEmitter Emitter(*this);
3687   llvm::Constant *Init;
3688 
3689   const APValue &V = GCD->getValue();
3690 
3691   assert(!V.isAbsent());
3692   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3693                                     GCD->getType());
3694 
3695   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3696                                       /*isConstant=*/true,
3697                                       llvm::GlobalValue::PrivateLinkage, Init,
3698                                       ".constant");
3699   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3700   GV->setAlignment(Alignment.getAsAlign());
3701 
3702   Emitter.finalize(GV);
3703 
3704   *Entry = GV;
3705   return ConstantAddress(GV, GV->getValueType(), Alignment);
3706 }
3707 
3708 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3709     const TemplateParamObjectDecl *TPO) {
3710   StringRef Name = getMangledName(TPO);
3711   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3712 
3713   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3714     return ConstantAddress(GV, GV->getValueType(), Alignment);
3715 
3716   ConstantEmitter Emitter(*this);
3717   llvm::Constant *Init = Emitter.emitForInitializer(
3718         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3719 
3720   if (!Init) {
3721     ErrorUnsupported(TPO, "template parameter object");
3722     return ConstantAddress::invalid();
3723   }
3724 
3725   llvm::GlobalValue::LinkageTypes Linkage =
3726       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3727           ? llvm::GlobalValue::LinkOnceODRLinkage
3728           : llvm::GlobalValue::InternalLinkage;
3729   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3730                                       /*isConstant=*/true, Linkage, Init, Name);
3731   setGVProperties(GV, TPO);
3732   if (supportsCOMDAT())
3733     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3734   Emitter.finalize(GV);
3735 
3736     return ConstantAddress(GV, GV->getValueType(), Alignment);
3737 }
3738 
3739 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3740   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3741   assert(AA && "No alias?");
3742 
3743   CharUnits Alignment = getContext().getDeclAlign(VD);
3744   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3745 
3746   // See if there is already something with the target's name in the module.
3747   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3748   if (Entry)
3749     return ConstantAddress(Entry, DeclTy, Alignment);
3750 
3751   llvm::Constant *Aliasee;
3752   if (isa<llvm::FunctionType>(DeclTy))
3753     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3754                                       GlobalDecl(cast<FunctionDecl>(VD)),
3755                                       /*ForVTable=*/false);
3756   else
3757     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3758                                     nullptr);
3759 
3760   auto *F = cast<llvm::GlobalValue>(Aliasee);
3761   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3762   WeakRefReferences.insert(F);
3763 
3764   return ConstantAddress(Aliasee, DeclTy, Alignment);
3765 }
3766 
3767 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3768   if (!D)
3769     return false;
3770   if (auto *A = D->getAttr<AttrT>())
3771     return A->isImplicit();
3772   return D->isImplicit();
3773 }
3774 
3775 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3776   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3777   // We need to emit host-side 'shadows' for all global
3778   // device-side variables because the CUDA runtime needs their
3779   // size and host-side address in order to provide access to
3780   // their device-side incarnations.
3781   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3782          Global->hasAttr<CUDAConstantAttr>() ||
3783          Global->hasAttr<CUDASharedAttr>() ||
3784          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3785          Global->getType()->isCUDADeviceBuiltinTextureType();
3786 }
3787 
3788 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3789   const auto *Global = cast<ValueDecl>(GD.getDecl());
3790 
3791   // Weak references don't produce any output by themselves.
3792   if (Global->hasAttr<WeakRefAttr>())
3793     return;
3794 
3795   // If this is an alias definition (which otherwise looks like a declaration)
3796   // emit it now.
3797   if (Global->hasAttr<AliasAttr>())
3798     return EmitAliasDefinition(GD);
3799 
3800   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3801   if (Global->hasAttr<IFuncAttr>())
3802     return emitIFuncDefinition(GD);
3803 
3804   // If this is a cpu_dispatch multiversion function, emit the resolver.
3805   if (Global->hasAttr<CPUDispatchAttr>())
3806     return emitCPUDispatchDefinition(GD);
3807 
3808   // If this is CUDA, be selective about which declarations we emit.
3809   // Non-constexpr non-lambda implicit host device functions are not emitted
3810   // unless they are used on device side.
3811   if (LangOpts.CUDA) {
3812     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3813            "Expected Variable or Function");
3814     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3815       if (!shouldEmitCUDAGlobalVar(VD))
3816         return;
3817     } else if (LangOpts.CUDAIsDevice) {
3818       const auto *FD = dyn_cast<FunctionDecl>(Global);
3819       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3820            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3821             hasImplicitAttr<CUDAHostAttr>(FD) &&
3822             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3823             !isLambdaCallOperator(FD) &&
3824             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3825           !Global->hasAttr<CUDAGlobalAttr>() &&
3826           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3827             !Global->hasAttr<CUDAHostAttr>()))
3828         return;
3829       // Device-only functions are the only things we skip.
3830     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3831                Global->hasAttr<CUDADeviceAttr>())
3832       return;
3833   }
3834 
3835   if (LangOpts.OpenMP) {
3836     // If this is OpenMP, check if it is legal to emit this global normally.
3837     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3838       return;
3839     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3840       if (MustBeEmitted(Global))
3841         EmitOMPDeclareReduction(DRD);
3842       return;
3843     }
3844     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3845       if (MustBeEmitted(Global))
3846         EmitOMPDeclareMapper(DMD);
3847       return;
3848     }
3849   }
3850 
3851   // Ignore declarations, they will be emitted on their first use.
3852   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3853     // Update deferred annotations with the latest declaration if the function
3854     // function was already used or defined.
3855     if (FD->hasAttr<AnnotateAttr>()) {
3856       StringRef MangledName = getMangledName(GD);
3857       if (GetGlobalValue(MangledName))
3858         DeferredAnnotations[MangledName] = FD;
3859     }
3860 
3861     // Forward declarations are emitted lazily on first use.
3862     if (!FD->doesThisDeclarationHaveABody()) {
3863       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3864           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3865         return;
3866 
3867       StringRef MangledName = getMangledName(GD);
3868 
3869       // Compute the function info and LLVM type.
3870       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3871       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3872 
3873       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3874                               /*DontDefer=*/false);
3875       return;
3876     }
3877   } else {
3878     const auto *VD = cast<VarDecl>(Global);
3879     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3880     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3881         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3882       if (LangOpts.OpenMP) {
3883         // Emit declaration of the must-be-emitted declare target variable.
3884         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3885                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3886 
3887           // If this variable has external storage and doesn't require special
3888           // link handling we defer to its canonical definition.
3889           if (VD->hasExternalStorage() &&
3890               Res != OMPDeclareTargetDeclAttr::MT_Link)
3891             return;
3892 
3893           bool UnifiedMemoryEnabled =
3894               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3895           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3896                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3897               !UnifiedMemoryEnabled) {
3898             (void)GetAddrOfGlobalVar(VD);
3899           } else {
3900             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3901                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3902                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3903                      UnifiedMemoryEnabled)) &&
3904                    "Link clause or to clause with unified memory expected.");
3905             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3906           }
3907 
3908           return;
3909         }
3910       }
3911       // If this declaration may have caused an inline variable definition to
3912       // change linkage, make sure that it's emitted.
3913       if (Context.getInlineVariableDefinitionKind(VD) ==
3914           ASTContext::InlineVariableDefinitionKind::Strong)
3915         GetAddrOfGlobalVar(VD);
3916       return;
3917     }
3918   }
3919 
3920   // Defer code generation to first use when possible, e.g. if this is an inline
3921   // function. If the global must always be emitted, do it eagerly if possible
3922   // to benefit from cache locality.
3923   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3924     // Emit the definition if it can't be deferred.
3925     EmitGlobalDefinition(GD);
3926     addEmittedDeferredDecl(GD);
3927     return;
3928   }
3929 
3930   // If we're deferring emission of a C++ variable with an
3931   // initializer, remember the order in which it appeared in the file.
3932   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3933       cast<VarDecl>(Global)->hasInit()) {
3934     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3935     CXXGlobalInits.push_back(nullptr);
3936   }
3937 
3938   StringRef MangledName = getMangledName(GD);
3939   if (GetGlobalValue(MangledName) != nullptr) {
3940     // The value has already been used and should therefore be emitted.
3941     addDeferredDeclToEmit(GD);
3942   } else if (MustBeEmitted(Global)) {
3943     // The value must be emitted, but cannot be emitted eagerly.
3944     assert(!MayBeEmittedEagerly(Global));
3945     addDeferredDeclToEmit(GD);
3946   } else {
3947     // Otherwise, remember that we saw a deferred decl with this name.  The
3948     // first use of the mangled name will cause it to move into
3949     // DeferredDeclsToEmit.
3950     DeferredDecls[MangledName] = GD;
3951   }
3952 }
3953 
3954 // Check if T is a class type with a destructor that's not dllimport.
3955 static bool HasNonDllImportDtor(QualType T) {
3956   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3957     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3958       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3959         return true;
3960 
3961   return false;
3962 }
3963 
3964 namespace {
3965   struct FunctionIsDirectlyRecursive
3966       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3967     const StringRef Name;
3968     const Builtin::Context &BI;
3969     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3970         : Name(N), BI(C) {}
3971 
3972     bool VisitCallExpr(const CallExpr *E) {
3973       const FunctionDecl *FD = E->getDirectCallee();
3974       if (!FD)
3975         return false;
3976       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3977       if (Attr && Name == Attr->getLabel())
3978         return true;
3979       unsigned BuiltinID = FD->getBuiltinID();
3980       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3981         return false;
3982       StringRef BuiltinName = BI.getName(BuiltinID);
3983       if (BuiltinName.starts_with("__builtin_") &&
3984           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3985         return true;
3986       }
3987       return false;
3988     }
3989 
3990     bool VisitStmt(const Stmt *S) {
3991       for (const Stmt *Child : S->children())
3992         if (Child && this->Visit(Child))
3993           return true;
3994       return false;
3995     }
3996   };
3997 
3998   // Make sure we're not referencing non-imported vars or functions.
3999   struct DLLImportFunctionVisitor
4000       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
4001     bool SafeToInline = true;
4002 
4003     bool shouldVisitImplicitCode() const { return true; }
4004 
4005     bool VisitVarDecl(VarDecl *VD) {
4006       if (VD->getTLSKind()) {
4007         // A thread-local variable cannot be imported.
4008         SafeToInline = false;
4009         return SafeToInline;
4010       }
4011 
4012       // A variable definition might imply a destructor call.
4013       if (VD->isThisDeclarationADefinition())
4014         SafeToInline = !HasNonDllImportDtor(VD->getType());
4015 
4016       return SafeToInline;
4017     }
4018 
4019     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
4020       if (const auto *D = E->getTemporary()->getDestructor())
4021         SafeToInline = D->hasAttr<DLLImportAttr>();
4022       return SafeToInline;
4023     }
4024 
4025     bool VisitDeclRefExpr(DeclRefExpr *E) {
4026       ValueDecl *VD = E->getDecl();
4027       if (isa<FunctionDecl>(VD))
4028         SafeToInline = VD->hasAttr<DLLImportAttr>();
4029       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
4030         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4031       return SafeToInline;
4032     }
4033 
4034     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4035       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4036       return SafeToInline;
4037     }
4038 
4039     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4040       CXXMethodDecl *M = E->getMethodDecl();
4041       if (!M) {
4042         // Call through a pointer to member function. This is safe to inline.
4043         SafeToInline = true;
4044       } else {
4045         SafeToInline = M->hasAttr<DLLImportAttr>();
4046       }
4047       return SafeToInline;
4048     }
4049 
4050     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4051       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4052       return SafeToInline;
4053     }
4054 
4055     bool VisitCXXNewExpr(CXXNewExpr *E) {
4056       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4057       return SafeToInline;
4058     }
4059   };
4060 }
4061 
4062 // isTriviallyRecursive - Check if this function calls another
4063 // decl that, because of the asm attribute or the other decl being a builtin,
4064 // ends up pointing to itself.
4065 bool
4066 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4067   StringRef Name;
4068   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4069     // asm labels are a special kind of mangling we have to support.
4070     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4071     if (!Attr)
4072       return false;
4073     Name = Attr->getLabel();
4074   } else {
4075     Name = FD->getName();
4076   }
4077 
4078   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4079   const Stmt *Body = FD->getBody();
4080   return Body ? Walker.Visit(Body) : false;
4081 }
4082 
4083 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4084   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4085     return true;
4086 
4087   const auto *F = cast<FunctionDecl>(GD.getDecl());
4088   // Inline builtins declaration must be emitted. They often are fortified
4089   // functions.
4090   if (F->isInlineBuiltinDeclaration())
4091     return true;
4092 
4093   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4094     return false;
4095 
4096   // We don't import function bodies from other named module units since that
4097   // behavior may break ABI compatibility of the current unit.
4098   if (const Module *M = F->getOwningModule();
4099       M && M->getTopLevelModule()->isNamedModule() &&
4100       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4101     // There are practices to mark template member function as always-inline
4102     // and mark the template as extern explicit instantiation but not give
4103     // the definition for member function. So we have to emit the function
4104     // from explicitly instantiation with always-inline.
4105     //
4106     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4107     //
4108     // TODO: Maybe it is better to give it a warning if we call a non-inline
4109     // function from other module units which is marked as always-inline.
4110     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4111       return false;
4112     }
4113   }
4114 
4115   if (F->hasAttr<NoInlineAttr>())
4116     return false;
4117 
4118   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4119     // Check whether it would be safe to inline this dllimport function.
4120     DLLImportFunctionVisitor Visitor;
4121     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4122     if (!Visitor.SafeToInline)
4123       return false;
4124 
4125     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4126       // Implicit destructor invocations aren't captured in the AST, so the
4127       // check above can't see them. Check for them manually here.
4128       for (const Decl *Member : Dtor->getParent()->decls())
4129         if (isa<FieldDecl>(Member))
4130           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4131             return false;
4132       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4133         if (HasNonDllImportDtor(B.getType()))
4134           return false;
4135     }
4136   }
4137 
4138   // PR9614. Avoid cases where the source code is lying to us. An available
4139   // externally function should have an equivalent function somewhere else,
4140   // but a function that calls itself through asm label/`__builtin_` trickery is
4141   // clearly not equivalent to the real implementation.
4142   // This happens in glibc's btowc and in some configure checks.
4143   return !isTriviallyRecursive(F);
4144 }
4145 
4146 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4147   return CodeGenOpts.OptimizationLevel > 0;
4148 }
4149 
4150 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4151                                                        llvm::GlobalValue *GV) {
4152   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4153 
4154   if (FD->isCPUSpecificMultiVersion()) {
4155     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4156     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4157       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4158   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4159     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4160       // AArch64 favors the default target version over the clone if any.
4161       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4162           TC->isFirstOfVersion(I))
4163         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4164     // Ensure that the resolver function is also emitted.
4165     GetOrCreateMultiVersionResolver(GD);
4166   } else
4167     EmitGlobalFunctionDefinition(GD, GV);
4168 
4169   // Defer the resolver emission until we can reason whether the TU
4170   // contains a default target version implementation.
4171   if (FD->isTargetVersionMultiVersion())
4172     AddDeferredMultiVersionResolverToEmit(GD);
4173 }
4174 
4175 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4176   const auto *D = cast<ValueDecl>(GD.getDecl());
4177 
4178   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4179                                  Context.getSourceManager(),
4180                                  "Generating code for declaration");
4181 
4182   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4183     // At -O0, don't generate IR for functions with available_externally
4184     // linkage.
4185     if (!shouldEmitFunction(GD))
4186       return;
4187 
4188     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4189       std::string Name;
4190       llvm::raw_string_ostream OS(Name);
4191       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4192                                /*Qualified=*/true);
4193       return Name;
4194     });
4195 
4196     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4197       // Make sure to emit the definition(s) before we emit the thunks.
4198       // This is necessary for the generation of certain thunks.
4199       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4200         ABI->emitCXXStructor(GD);
4201       else if (FD->isMultiVersion())
4202         EmitMultiVersionFunctionDefinition(GD, GV);
4203       else
4204         EmitGlobalFunctionDefinition(GD, GV);
4205 
4206       if (Method->isVirtual())
4207         getVTables().EmitThunks(GD);
4208 
4209       return;
4210     }
4211 
4212     if (FD->isMultiVersion())
4213       return EmitMultiVersionFunctionDefinition(GD, GV);
4214     return EmitGlobalFunctionDefinition(GD, GV);
4215   }
4216 
4217   if (const auto *VD = dyn_cast<VarDecl>(D))
4218     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4219 
4220   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4221 }
4222 
4223 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4224                                                       llvm::Function *NewFn);
4225 
4226 static unsigned getFMVPriority(const TargetInfo &TI,
4227                                const CodeGenFunction::FMVResolverOption &RO) {
4228   llvm::SmallVector<StringRef, 8> Features{RO.Features};
4229   if (RO.Architecture)
4230     Features.push_back(*RO.Architecture);
4231   return TI.getFMVPriority(Features);
4232 }
4233 
4234 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4235 // TU can forward declare the function without causing problems.  Particularly
4236 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4237 // work with internal linkage functions, so that the same function name can be
4238 // used with internal linkage in multiple TUs.
4239 static llvm::GlobalValue::LinkageTypes
4240 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) {
4241   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4242   if (FD->getFormalLinkage() == Linkage::Internal)
4243     return llvm::GlobalValue::InternalLinkage;
4244   return llvm::GlobalValue::WeakODRLinkage;
4245 }
4246 
4247 void CodeGenModule::emitMultiVersionFunctions() {
4248   std::vector<GlobalDecl> MVFuncsToEmit;
4249   MultiVersionFuncs.swap(MVFuncsToEmit);
4250   for (GlobalDecl GD : MVFuncsToEmit) {
4251     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4252     assert(FD && "Expected a FunctionDecl");
4253 
4254     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4255       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4256       StringRef MangledName = getMangledName(CurGD);
4257       llvm::Constant *Func = GetGlobalValue(MangledName);
4258       if (!Func) {
4259         if (Decl->isDefined()) {
4260           EmitGlobalFunctionDefinition(CurGD, nullptr);
4261           Func = GetGlobalValue(MangledName);
4262         } else {
4263           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4264           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4265           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4266                                    /*DontDefer=*/false, ForDefinition);
4267         }
4268         assert(Func && "This should have just been created");
4269       }
4270       return cast<llvm::Function>(Func);
4271     };
4272 
4273     // For AArch64, a resolver is only emitted if a function marked with
4274     // target_version("default")) or target_clones() is present and defined
4275     // in this TU. For other architectures it is always emitted.
4276     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4277     SmallVector<CodeGenFunction::FMVResolverOption, 10> Options;
4278 
4279     getContext().forEachMultiversionedFunctionVersion(
4280         FD, [&](const FunctionDecl *CurFD) {
4281           llvm::SmallVector<StringRef, 8> Feats;
4282           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4283 
4284           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4285             assert(getTarget().getTriple().isX86() && "Unsupported target");
4286             TA->getX86AddedFeatures(Feats);
4287             llvm::Function *Func = createFunction(CurFD);
4288             Options.emplace_back(Func, Feats, TA->getX86Architecture());
4289           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4290             if (TVA->isDefaultVersion() && IsDefined)
4291               ShouldEmitResolver = true;
4292             llvm::Function *Func = createFunction(CurFD);
4293             char Delim = getTarget().getTriple().isAArch64() ? '+' : ',';
4294             TVA->getFeatures(Feats, Delim);
4295             Options.emplace_back(Func, Feats);
4296           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4297             if (IsDefined)
4298               ShouldEmitResolver = true;
4299             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4300               if (!TC->isFirstOfVersion(I))
4301                 continue;
4302 
4303               llvm::Function *Func = createFunction(CurFD, I);
4304               Feats.clear();
4305               if (getTarget().getTriple().isX86()) {
4306                 TC->getX86Feature(Feats, I);
4307                 Options.emplace_back(Func, Feats, TC->getX86Architecture(I));
4308               } else {
4309                 char Delim = getTarget().getTriple().isAArch64() ? '+' : ',';
4310                 TC->getFeatures(Feats, I, Delim);
4311                 Options.emplace_back(Func, Feats);
4312               }
4313             }
4314           } else
4315             llvm_unreachable("unexpected MultiVersionKind");
4316         });
4317 
4318     if (!ShouldEmitResolver)
4319       continue;
4320 
4321     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4322     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4323       ResolverConstant = IFunc->getResolver();
4324       if (FD->isTargetClonesMultiVersion() &&
4325           !getTarget().getTriple().isAArch64()) {
4326         std::string MangledName = getMangledNameImpl(
4327             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4328         if (!GetGlobalValue(MangledName + ".ifunc")) {
4329           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4330           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4331           // In prior versions of Clang, the mangling for ifuncs incorrectly
4332           // included an .ifunc suffix. This alias is generated for backward
4333           // compatibility. It is deprecated, and may be removed in the future.
4334           auto *Alias = llvm::GlobalAlias::create(
4335               DeclTy, 0, getMultiversionLinkage(*this, GD),
4336               MangledName + ".ifunc", IFunc, &getModule());
4337           SetCommonAttributes(FD, Alias);
4338         }
4339       }
4340     }
4341     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4342 
4343     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4344 
4345     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4346       ResolverFunc->setComdat(
4347           getModule().getOrInsertComdat(ResolverFunc->getName()));
4348 
4349     const TargetInfo &TI = getTarget();
4350     llvm::stable_sort(
4351         Options, [&TI](const CodeGenFunction::FMVResolverOption &LHS,
4352                        const CodeGenFunction::FMVResolverOption &RHS) {
4353           return getFMVPriority(TI, LHS) > getFMVPriority(TI, RHS);
4354         });
4355     CodeGenFunction CGF(*this);
4356     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4357   }
4358 
4359   // Ensure that any additions to the deferred decls list caused by emitting a
4360   // variant are emitted.  This can happen when the variant itself is inline and
4361   // calls a function without linkage.
4362   if (!MVFuncsToEmit.empty())
4363     EmitDeferred();
4364 
4365   // Ensure that any additions to the multiversion funcs list from either the
4366   // deferred decls or the multiversion functions themselves are emitted.
4367   if (!MultiVersionFuncs.empty())
4368     emitMultiVersionFunctions();
4369 }
4370 
4371 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4372                                    llvm::Constant *New) {
4373   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4374   New->takeName(Old);
4375   Old->replaceAllUsesWith(New);
4376   Old->eraseFromParent();
4377 }
4378 
4379 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4380   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4381   assert(FD && "Not a FunctionDecl?");
4382   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4383   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4384   assert(DD && "Not a cpu_dispatch Function?");
4385 
4386   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4387   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4388 
4389   StringRef ResolverName = getMangledName(GD);
4390   UpdateMultiVersionNames(GD, FD, ResolverName);
4391 
4392   llvm::Type *ResolverType;
4393   GlobalDecl ResolverGD;
4394   if (getTarget().supportsIFunc()) {
4395     ResolverType = llvm::FunctionType::get(
4396         llvm::PointerType::get(DeclTy,
4397                                getTypes().getTargetAddressSpace(FD->getType())),
4398         false);
4399   }
4400   else {
4401     ResolverType = DeclTy;
4402     ResolverGD = GD;
4403   }
4404 
4405   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4406       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4407   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4408   if (supportsCOMDAT())
4409     ResolverFunc->setComdat(
4410         getModule().getOrInsertComdat(ResolverFunc->getName()));
4411 
4412   SmallVector<CodeGenFunction::FMVResolverOption, 10> Options;
4413   const TargetInfo &Target = getTarget();
4414   unsigned Index = 0;
4415   for (const IdentifierInfo *II : DD->cpus()) {
4416     // Get the name of the target function so we can look it up/create it.
4417     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4418                               getCPUSpecificMangling(*this, II->getName());
4419 
4420     llvm::Constant *Func = GetGlobalValue(MangledName);
4421 
4422     if (!Func) {
4423       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4424       if (ExistingDecl.getDecl() &&
4425           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4426         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4427         Func = GetGlobalValue(MangledName);
4428       } else {
4429         if (!ExistingDecl.getDecl())
4430           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4431 
4432       Func = GetOrCreateLLVMFunction(
4433           MangledName, DeclTy, ExistingDecl,
4434           /*ForVTable=*/false, /*DontDefer=*/true,
4435           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4436       }
4437     }
4438 
4439     llvm::SmallVector<StringRef, 32> Features;
4440     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4441     llvm::transform(Features, Features.begin(),
4442                     [](StringRef Str) { return Str.substr(1); });
4443     llvm::erase_if(Features, [&Target](StringRef Feat) {
4444       return !Target.validateCpuSupports(Feat);
4445     });
4446     Options.emplace_back(cast<llvm::Function>(Func), Features);
4447     ++Index;
4448   }
4449 
4450   llvm::stable_sort(Options, [](const CodeGenFunction::FMVResolverOption &LHS,
4451                                 const CodeGenFunction::FMVResolverOption &RHS) {
4452     return llvm::X86::getCpuSupportsMask(LHS.Features) >
4453            llvm::X86::getCpuSupportsMask(RHS.Features);
4454   });
4455 
4456   // If the list contains multiple 'default' versions, such as when it contains
4457   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4458   // always run on at least a 'pentium'). We do this by deleting the 'least
4459   // advanced' (read, lowest mangling letter).
4460   while (Options.size() > 1 && llvm::all_of(llvm::X86::getCpuSupportsMask(
4461                                                 (Options.end() - 2)->Features),
4462                                             [](auto X) { return X == 0; })) {
4463     StringRef LHSName = (Options.end() - 2)->Function->getName();
4464     StringRef RHSName = (Options.end() - 1)->Function->getName();
4465     if (LHSName.compare(RHSName) < 0)
4466       Options.erase(Options.end() - 2);
4467     else
4468       Options.erase(Options.end() - 1);
4469   }
4470 
4471   CodeGenFunction CGF(*this);
4472   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4473 
4474   if (getTarget().supportsIFunc()) {
4475     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4476     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4477     unsigned AS = IFunc->getType()->getPointerAddressSpace();
4478 
4479     // Fix up function declarations that were created for cpu_specific before
4480     // cpu_dispatch was known
4481     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4482       auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4483                                            ResolverFunc, &getModule());
4484       replaceDeclarationWith(IFunc, GI);
4485       IFunc = GI;
4486     }
4487 
4488     std::string AliasName = getMangledNameImpl(
4489         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4490     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4491     if (!AliasFunc) {
4492       auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4493                                            IFunc, &getModule());
4494       SetCommonAttributes(GD, GA);
4495     }
4496   }
4497 }
4498 
4499 /// Adds a declaration to the list of multi version functions if not present.
4500 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4501   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4502   assert(FD && "Not a FunctionDecl?");
4503 
4504   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4505     std::string MangledName =
4506         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4507     if (!DeferredResolversToEmit.insert(MangledName).second)
4508       return;
4509   }
4510   MultiVersionFuncs.push_back(GD);
4511 }
4512 
4513 /// If a dispatcher for the specified mangled name is not in the module, create
4514 /// and return it. The dispatcher is either an llvm Function with the specified
4515 /// type, or a global ifunc.
4516 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4517   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4518   assert(FD && "Not a FunctionDecl?");
4519 
4520   std::string MangledName =
4521       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4522 
4523   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4524   // a separate resolver).
4525   std::string ResolverName = MangledName;
4526   if (getTarget().supportsIFunc()) {
4527     switch (FD->getMultiVersionKind()) {
4528     case MultiVersionKind::None:
4529       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4530     case MultiVersionKind::Target:
4531     case MultiVersionKind::CPUSpecific:
4532     case MultiVersionKind::CPUDispatch:
4533       ResolverName += ".ifunc";
4534       break;
4535     case MultiVersionKind::TargetClones:
4536     case MultiVersionKind::TargetVersion:
4537       break;
4538     }
4539   } else if (FD->isTargetMultiVersion()) {
4540     ResolverName += ".resolver";
4541   }
4542 
4543   bool ShouldReturnIFunc =
4544       getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion();
4545 
4546   // If the resolver has already been created, just return it. This lookup may
4547   // yield a function declaration instead of a resolver on AArch64. That is
4548   // because we didn't know whether a resolver will be generated when we first
4549   // encountered a use of the symbol named after this resolver. Therefore,
4550   // targets which support ifuncs should not return here unless we actually
4551   // found an ifunc.
4552   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4553   if (ResolverGV && (isa<llvm::GlobalIFunc>(ResolverGV) || !ShouldReturnIFunc))
4554     return ResolverGV;
4555 
4556   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4557   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4558 
4559   // The resolver needs to be created. For target and target_clones, defer
4560   // creation until the end of the TU.
4561   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4562     AddDeferredMultiVersionResolverToEmit(GD);
4563 
4564   // For cpu_specific, don't create an ifunc yet because we don't know if the
4565   // cpu_dispatch will be emitted in this translation unit.
4566   if (ShouldReturnIFunc) {
4567     unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4568     llvm::Type *ResolverType =
4569         llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4570     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4571         MangledName + ".resolver", ResolverType, GlobalDecl{},
4572         /*ForVTable=*/false);
4573     llvm::GlobalIFunc *GIF =
4574         llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4575                                   "", Resolver, &getModule());
4576     GIF->setName(ResolverName);
4577     SetCommonAttributes(FD, GIF);
4578     if (ResolverGV)
4579       replaceDeclarationWith(ResolverGV, GIF);
4580     return GIF;
4581   }
4582 
4583   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4584       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4585   assert(isa<llvm::GlobalValue>(Resolver) && !ResolverGV &&
4586          "Resolver should be created for the first time");
4587   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4588   return Resolver;
4589 }
4590 
4591 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4592                                            const llvm::GlobalValue *GV) const {
4593   auto SC = GV->getDLLStorageClass();
4594   if (SC == llvm::GlobalValue::DefaultStorageClass)
4595     return false;
4596   const Decl *MRD = D->getMostRecentDecl();
4597   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4598             !MRD->hasAttr<DLLImportAttr>()) ||
4599            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4600             !MRD->hasAttr<DLLExportAttr>())) &&
4601           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4602 }
4603 
4604 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4605 /// module, create and return an llvm Function with the specified type. If there
4606 /// is something in the module with the specified name, return it potentially
4607 /// bitcasted to the right type.
4608 ///
4609 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4610 /// to set the attributes on the function when it is first created.
4611 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4612     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4613     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4614     ForDefinition_t IsForDefinition) {
4615   const Decl *D = GD.getDecl();
4616 
4617   std::string NameWithoutMultiVersionMangling;
4618   // Any attempts to use a MultiVersion function should result in retrieving
4619   // the iFunc instead. Name Mangling will handle the rest of the changes.
4620   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4621     // For the device mark the function as one that should be emitted.
4622     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4623         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4624         !DontDefer && !IsForDefinition) {
4625       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4626         GlobalDecl GDDef;
4627         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4628           GDDef = GlobalDecl(CD, GD.getCtorType());
4629         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4630           GDDef = GlobalDecl(DD, GD.getDtorType());
4631         else
4632           GDDef = GlobalDecl(FDDef);
4633         EmitGlobal(GDDef);
4634       }
4635     }
4636 
4637     if (FD->isMultiVersion()) {
4638       UpdateMultiVersionNames(GD, FD, MangledName);
4639       if (!IsForDefinition) {
4640         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4641         // function is used. Instead we defer the emission until we see a
4642         // default definition. In the meantime we just reference the symbol
4643         // without FMV mangling (it may or may not be replaced later).
4644         if (getTarget().getTriple().isAArch64()) {
4645           AddDeferredMultiVersionResolverToEmit(GD);
4646           NameWithoutMultiVersionMangling = getMangledNameImpl(
4647               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4648         } else
4649           return GetOrCreateMultiVersionResolver(GD);
4650       }
4651     }
4652   }
4653 
4654   if (!NameWithoutMultiVersionMangling.empty())
4655     MangledName = NameWithoutMultiVersionMangling;
4656 
4657   // Lookup the entry, lazily creating it if necessary.
4658   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4659   if (Entry) {
4660     if (WeakRefReferences.erase(Entry)) {
4661       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4662       if (FD && !FD->hasAttr<WeakAttr>())
4663         Entry->setLinkage(llvm::Function::ExternalLinkage);
4664     }
4665 
4666     // Handle dropped DLL attributes.
4667     if (D && shouldDropDLLAttribute(D, Entry)) {
4668       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4669       setDSOLocal(Entry);
4670     }
4671 
4672     // If there are two attempts to define the same mangled name, issue an
4673     // error.
4674     if (IsForDefinition && !Entry->isDeclaration()) {
4675       GlobalDecl OtherGD;
4676       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4677       // to make sure that we issue an error only once.
4678       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4679           (GD.getCanonicalDecl().getDecl() !=
4680            OtherGD.getCanonicalDecl().getDecl()) &&
4681           DiagnosedConflictingDefinitions.insert(GD).second) {
4682         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4683             << MangledName;
4684         getDiags().Report(OtherGD.getDecl()->getLocation(),
4685                           diag::note_previous_definition);
4686       }
4687     }
4688 
4689     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4690         (Entry->getValueType() == Ty)) {
4691       return Entry;
4692     }
4693 
4694     // Make sure the result is of the correct type.
4695     // (If function is requested for a definition, we always need to create a new
4696     // function, not just return a bitcast.)
4697     if (!IsForDefinition)
4698       return Entry;
4699   }
4700 
4701   // This function doesn't have a complete type (for example, the return
4702   // type is an incomplete struct). Use a fake type instead, and make
4703   // sure not to try to set attributes.
4704   bool IsIncompleteFunction = false;
4705 
4706   llvm::FunctionType *FTy;
4707   if (isa<llvm::FunctionType>(Ty)) {
4708     FTy = cast<llvm::FunctionType>(Ty);
4709   } else {
4710     FTy = llvm::FunctionType::get(VoidTy, false);
4711     IsIncompleteFunction = true;
4712   }
4713 
4714   llvm::Function *F =
4715       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4716                              Entry ? StringRef() : MangledName, &getModule());
4717 
4718   // Store the declaration associated with this function so it is potentially
4719   // updated by further declarations or definitions and emitted at the end.
4720   if (D && D->hasAttr<AnnotateAttr>())
4721     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4722 
4723   // If we already created a function with the same mangled name (but different
4724   // type) before, take its name and add it to the list of functions to be
4725   // replaced with F at the end of CodeGen.
4726   //
4727   // This happens if there is a prototype for a function (e.g. "int f()") and
4728   // then a definition of a different type (e.g. "int f(int x)").
4729   if (Entry) {
4730     F->takeName(Entry);
4731 
4732     // This might be an implementation of a function without a prototype, in
4733     // which case, try to do special replacement of calls which match the new
4734     // prototype.  The really key thing here is that we also potentially drop
4735     // arguments from the call site so as to make a direct call, which makes the
4736     // inliner happier and suppresses a number of optimizer warnings (!) about
4737     // dropping arguments.
4738     if (!Entry->use_empty()) {
4739       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4740       Entry->removeDeadConstantUsers();
4741     }
4742 
4743     addGlobalValReplacement(Entry, F);
4744   }
4745 
4746   assert(F->getName() == MangledName && "name was uniqued!");
4747   if (D)
4748     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4749   if (ExtraAttrs.hasFnAttrs()) {
4750     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4751     F->addFnAttrs(B);
4752   }
4753 
4754   if (!DontDefer) {
4755     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4756     // each other bottoming out with the base dtor.  Therefore we emit non-base
4757     // dtors on usage, even if there is no dtor definition in the TU.
4758     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4759         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4760                                            GD.getDtorType()))
4761       addDeferredDeclToEmit(GD);
4762 
4763     // This is the first use or definition of a mangled name.  If there is a
4764     // deferred decl with this name, remember that we need to emit it at the end
4765     // of the file.
4766     auto DDI = DeferredDecls.find(MangledName);
4767     if (DDI != DeferredDecls.end()) {
4768       // Move the potentially referenced deferred decl to the
4769       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4770       // don't need it anymore).
4771       addDeferredDeclToEmit(DDI->second);
4772       DeferredDecls.erase(DDI);
4773 
4774       // Otherwise, there are cases we have to worry about where we're
4775       // using a declaration for which we must emit a definition but where
4776       // we might not find a top-level definition:
4777       //   - member functions defined inline in their classes
4778       //   - friend functions defined inline in some class
4779       //   - special member functions with implicit definitions
4780       // If we ever change our AST traversal to walk into class methods,
4781       // this will be unnecessary.
4782       //
4783       // We also don't emit a definition for a function if it's going to be an
4784       // entry in a vtable, unless it's already marked as used.
4785     } else if (getLangOpts().CPlusPlus && D) {
4786       // Look for a declaration that's lexically in a record.
4787       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4788            FD = FD->getPreviousDecl()) {
4789         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4790           if (FD->doesThisDeclarationHaveABody()) {
4791             addDeferredDeclToEmit(GD.getWithDecl(FD));
4792             break;
4793           }
4794         }
4795       }
4796     }
4797   }
4798 
4799   // Make sure the result is of the requested type.
4800   if (!IsIncompleteFunction) {
4801     assert(F->getFunctionType() == Ty);
4802     return F;
4803   }
4804 
4805   return F;
4806 }
4807 
4808 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4809 /// non-null, then this function will use the specified type if it has to
4810 /// create it (this occurs when we see a definition of the function).
4811 llvm::Constant *
4812 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4813                                  bool DontDefer,
4814                                  ForDefinition_t IsForDefinition) {
4815   // If there was no specific requested type, just convert it now.
4816   if (!Ty) {
4817     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4818     Ty = getTypes().ConvertType(FD->getType());
4819   }
4820 
4821   // Devirtualized destructor calls may come through here instead of via
4822   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4823   // of the complete destructor when necessary.
4824   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4825     if (getTarget().getCXXABI().isMicrosoft() &&
4826         GD.getDtorType() == Dtor_Complete &&
4827         DD->getParent()->getNumVBases() == 0)
4828       GD = GlobalDecl(DD, Dtor_Base);
4829   }
4830 
4831   StringRef MangledName = getMangledName(GD);
4832   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4833                                     /*IsThunk=*/false, llvm::AttributeList(),
4834                                     IsForDefinition);
4835   // Returns kernel handle for HIP kernel stub function.
4836   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4837       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4838     auto *Handle = getCUDARuntime().getKernelHandle(
4839         cast<llvm::Function>(F->stripPointerCasts()), GD);
4840     if (IsForDefinition)
4841       return F;
4842     return Handle;
4843   }
4844   return F;
4845 }
4846 
4847 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4848   llvm::GlobalValue *F =
4849       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4850 
4851   return llvm::NoCFIValue::get(F);
4852 }
4853 
4854 static const FunctionDecl *
4855 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4856   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4857   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4858 
4859   IdentifierInfo &CII = C.Idents.get(Name);
4860   for (const auto *Result : DC->lookup(&CII))
4861     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4862       return FD;
4863 
4864   if (!C.getLangOpts().CPlusPlus)
4865     return nullptr;
4866 
4867   // Demangle the premangled name from getTerminateFn()
4868   IdentifierInfo &CXXII =
4869       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4870           ? C.Idents.get("terminate")
4871           : C.Idents.get(Name);
4872 
4873   for (const auto &N : {"__cxxabiv1", "std"}) {
4874     IdentifierInfo &NS = C.Idents.get(N);
4875     for (const auto *Result : DC->lookup(&NS)) {
4876       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4877       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4878         for (const auto *Result : LSD->lookup(&NS))
4879           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4880             break;
4881 
4882       if (ND)
4883         for (const auto *Result : ND->lookup(&CXXII))
4884           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4885             return FD;
4886     }
4887   }
4888 
4889   return nullptr;
4890 }
4891 
4892 static void setWindowsItaniumDLLImport(CodeGenModule &CGM, bool Local,
4893                                        llvm::Function *F, StringRef Name) {
4894   // In Windows Itanium environments, try to mark runtime functions
4895   // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4896   // will link their standard library statically or dynamically. Marking
4897   // functions imported when they are not imported can cause linker errors
4898   // and warnings.
4899   if (!Local && CGM.getTriple().isWindowsItaniumEnvironment() &&
4900       !CGM.getCodeGenOpts().LTOVisibilityPublicStd) {
4901     const FunctionDecl *FD = GetRuntimeFunctionDecl(CGM.getContext(), Name);
4902     if (!FD || FD->hasAttr<DLLImportAttr>()) {
4903       F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4904       F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4905     }
4906   }
4907 }
4908 
4909 llvm::FunctionCallee CodeGenModule::CreateRuntimeFunction(
4910     QualType ReturnTy, ArrayRef<QualType> ArgTys, StringRef Name,
4911     llvm::AttributeList ExtraAttrs, bool Local, bool AssumeConvergent) {
4912   if (AssumeConvergent) {
4913     ExtraAttrs =
4914         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4915   }
4916 
4917   QualType FTy = Context.getFunctionType(ReturnTy, ArgTys,
4918                                          FunctionProtoType::ExtProtoInfo());
4919   const CGFunctionInfo &Info = getTypes().arrangeFreeFunctionType(
4920       Context.getCanonicalType(FTy).castAs<FunctionProtoType>());
4921   auto *ConvTy = getTypes().GetFunctionType(Info);
4922   llvm::Constant *C = GetOrCreateLLVMFunction(
4923       Name, ConvTy, GlobalDecl(), /*ForVTable=*/false,
4924       /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
4925 
4926   if (auto *F = dyn_cast<llvm::Function>(C)) {
4927     if (F->empty()) {
4928       SetLLVMFunctionAttributes(GlobalDecl(), Info, F, /*IsThunk*/ false);
4929       // FIXME: Set calling-conv properly in ExtProtoInfo
4930       F->setCallingConv(getRuntimeCC());
4931       setWindowsItaniumDLLImport(*this, Local, F, Name);
4932       setDSOLocal(F);
4933     }
4934   }
4935   return {ConvTy, C};
4936 }
4937 
4938 /// CreateRuntimeFunction - Create a new runtime function with the specified
4939 /// type and name.
4940 llvm::FunctionCallee
4941 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4942                                      llvm::AttributeList ExtraAttrs, bool Local,
4943                                      bool AssumeConvergent) {
4944   if (AssumeConvergent) {
4945     ExtraAttrs =
4946         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4947   }
4948 
4949   llvm::Constant *C =
4950       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4951                               /*DontDefer=*/false, /*IsThunk=*/false,
4952                               ExtraAttrs);
4953 
4954   if (auto *F = dyn_cast<llvm::Function>(C)) {
4955     if (F->empty()) {
4956       F->setCallingConv(getRuntimeCC());
4957       setWindowsItaniumDLLImport(*this, Local, F, Name);
4958       setDSOLocal(F);
4959       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4960       // of trying to approximate the attributes using the LLVM function
4961       // signature.  The other overload of CreateRuntimeFunction does this; it
4962       // should be used for new code.
4963       markRegisterParameterAttributes(F);
4964     }
4965   }
4966 
4967   return {FTy, C};
4968 }
4969 
4970 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4971 /// create and return an llvm GlobalVariable with the specified type and address
4972 /// space. If there is something in the module with the specified name, return
4973 /// it potentially bitcasted to the right type.
4974 ///
4975 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4976 /// to set the attributes on the global when it is first created.
4977 ///
4978 /// If IsForDefinition is true, it is guaranteed that an actual global with
4979 /// type Ty will be returned, not conversion of a variable with the same
4980 /// mangled name but some other type.
4981 llvm::Constant *
4982 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4983                                      LangAS AddrSpace, const VarDecl *D,
4984                                      ForDefinition_t IsForDefinition) {
4985   // Lookup the entry, lazily creating it if necessary.
4986   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4987   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4988   if (Entry) {
4989     if (WeakRefReferences.erase(Entry)) {
4990       if (D && !D->hasAttr<WeakAttr>())
4991         Entry->setLinkage(llvm::Function::ExternalLinkage);
4992     }
4993 
4994     // Handle dropped DLL attributes.
4995     if (D && shouldDropDLLAttribute(D, Entry))
4996       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4997 
4998     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4999       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
5000 
5001     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
5002       return Entry;
5003 
5004     // If there are two attempts to define the same mangled name, issue an
5005     // error.
5006     if (IsForDefinition && !Entry->isDeclaration()) {
5007       GlobalDecl OtherGD;
5008       const VarDecl *OtherD;
5009 
5010       // Check that D is not yet in DiagnosedConflictingDefinitions is required
5011       // to make sure that we issue an error only once.
5012       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
5013           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
5014           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
5015           OtherD->hasInit() &&
5016           DiagnosedConflictingDefinitions.insert(D).second) {
5017         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
5018             << MangledName;
5019         getDiags().Report(OtherGD.getDecl()->getLocation(),
5020                           diag::note_previous_definition);
5021       }
5022     }
5023 
5024     // Make sure the result is of the correct type.
5025     if (Entry->getType()->getAddressSpace() != TargetAS)
5026       return llvm::ConstantExpr::getAddrSpaceCast(
5027           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
5028 
5029     // (If global is requested for a definition, we always need to create a new
5030     // global, not just return a bitcast.)
5031     if (!IsForDefinition)
5032       return Entry;
5033   }
5034 
5035   auto DAddrSpace = GetGlobalVarAddressSpace(D);
5036 
5037   auto *GV = new llvm::GlobalVariable(
5038       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
5039       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
5040       getContext().getTargetAddressSpace(DAddrSpace));
5041 
5042   // If we already created a global with the same mangled name (but different
5043   // type) before, take its name and remove it from its parent.
5044   if (Entry) {
5045     GV->takeName(Entry);
5046 
5047     if (!Entry->use_empty()) {
5048       Entry->replaceAllUsesWith(GV);
5049     }
5050 
5051     Entry->eraseFromParent();
5052   }
5053 
5054   // This is the first use or definition of a mangled name.  If there is a
5055   // deferred decl with this name, remember that we need to emit it at the end
5056   // of the file.
5057   auto DDI = DeferredDecls.find(MangledName);
5058   if (DDI != DeferredDecls.end()) {
5059     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5060     // list, and remove it from DeferredDecls (since we don't need it anymore).
5061     addDeferredDeclToEmit(DDI->second);
5062     DeferredDecls.erase(DDI);
5063   }
5064 
5065   // Handle things which are present even on external declarations.
5066   if (D) {
5067     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5068       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5069 
5070     // FIXME: This code is overly simple and should be merged with other global
5071     // handling.
5072     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5073 
5074     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5075 
5076     setLinkageForGV(GV, D);
5077 
5078     if (D->getTLSKind()) {
5079       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5080         CXXThreadLocals.push_back(D);
5081       setTLSMode(GV, *D);
5082     }
5083 
5084     setGVProperties(GV, D);
5085 
5086     // If required by the ABI, treat declarations of static data members with
5087     // inline initializers as definitions.
5088     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5089       EmitGlobalVarDefinition(D);
5090     }
5091 
5092     // Emit section information for extern variables.
5093     if (D->hasExternalStorage()) {
5094       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5095         GV->setSection(SA->getName());
5096     }
5097 
5098     // Handle XCore specific ABI requirements.
5099     if (getTriple().getArch() == llvm::Triple::xcore &&
5100         D->getLanguageLinkage() == CLanguageLinkage &&
5101         D->getType().isConstant(Context) &&
5102         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5103       GV->setSection(".cp.rodata");
5104 
5105     // Handle code model attribute
5106     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5107       GV->setCodeModel(CMA->getModel());
5108 
5109     // Check if we a have a const declaration with an initializer, we may be
5110     // able to emit it as available_externally to expose it's value to the
5111     // optimizer.
5112     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5113         D->getType().isConstQualified() && !GV->hasInitializer() &&
5114         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5115       const auto *Record =
5116           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5117       bool HasMutableFields = Record && Record->hasMutableFields();
5118       if (!HasMutableFields) {
5119         const VarDecl *InitDecl;
5120         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5121         if (InitExpr) {
5122           ConstantEmitter emitter(*this);
5123           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5124           if (Init) {
5125             auto *InitType = Init->getType();
5126             if (GV->getValueType() != InitType) {
5127               // The type of the initializer does not match the definition.
5128               // This happens when an initializer has a different type from
5129               // the type of the global (because of padding at the end of a
5130               // structure for instance).
5131               GV->setName(StringRef());
5132               // Make a new global with the correct type, this is now guaranteed
5133               // to work.
5134               auto *NewGV = cast<llvm::GlobalVariable>(
5135                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5136                       ->stripPointerCasts());
5137 
5138               // Erase the old global, since it is no longer used.
5139               GV->eraseFromParent();
5140               GV = NewGV;
5141             } else {
5142               GV->setInitializer(Init);
5143               GV->setConstant(true);
5144               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5145             }
5146             emitter.finalize(GV);
5147           }
5148         }
5149       }
5150     }
5151   }
5152 
5153   if (D &&
5154       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5155     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5156     // External HIP managed variables needed to be recorded for transformation
5157     // in both device and host compilations.
5158     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5159         D->hasExternalStorage())
5160       getCUDARuntime().handleVarRegistration(D, *GV);
5161   }
5162 
5163   if (D)
5164     SanitizerMD->reportGlobal(GV, *D);
5165 
5166   LangAS ExpectedAS =
5167       D ? D->getType().getAddressSpace()
5168         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5169   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5170   if (DAddrSpace != ExpectedAS) {
5171     return getTargetCodeGenInfo().performAddrSpaceCast(
5172         *this, GV, DAddrSpace, ExpectedAS,
5173         llvm::PointerType::get(getLLVMContext(), TargetAS));
5174   }
5175 
5176   return GV;
5177 }
5178 
5179 llvm::Constant *
5180 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5181   const Decl *D = GD.getDecl();
5182 
5183   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5184     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5185                                 /*DontDefer=*/false, IsForDefinition);
5186 
5187   if (isa<CXXMethodDecl>(D)) {
5188     auto FInfo =
5189         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5190     auto Ty = getTypes().GetFunctionType(*FInfo);
5191     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5192                              IsForDefinition);
5193   }
5194 
5195   if (isa<FunctionDecl>(D)) {
5196     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5197     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5198     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5199                              IsForDefinition);
5200   }
5201 
5202   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5203 }
5204 
5205 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5206     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5207     llvm::Align Alignment) {
5208   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5209   llvm::GlobalVariable *OldGV = nullptr;
5210 
5211   if (GV) {
5212     // Check if the variable has the right type.
5213     if (GV->getValueType() == Ty)
5214       return GV;
5215 
5216     // Because C++ name mangling, the only way we can end up with an already
5217     // existing global with the same name is if it has been declared extern "C".
5218     assert(GV->isDeclaration() && "Declaration has wrong type!");
5219     OldGV = GV;
5220   }
5221 
5222   // Create a new variable.
5223   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5224                                 Linkage, nullptr, Name);
5225 
5226   if (OldGV) {
5227     // Replace occurrences of the old variable if needed.
5228     GV->takeName(OldGV);
5229 
5230     if (!OldGV->use_empty()) {
5231       OldGV->replaceAllUsesWith(GV);
5232     }
5233 
5234     OldGV->eraseFromParent();
5235   }
5236 
5237   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5238       !GV->hasAvailableExternallyLinkage())
5239     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5240 
5241   GV->setAlignment(Alignment);
5242 
5243   return GV;
5244 }
5245 
5246 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5247 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5248 /// then it will be created with the specified type instead of whatever the
5249 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5250 /// that an actual global with type Ty will be returned, not conversion of a
5251 /// variable with the same mangled name but some other type.
5252 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5253                                                   llvm::Type *Ty,
5254                                            ForDefinition_t IsForDefinition) {
5255   assert(D->hasGlobalStorage() && "Not a global variable");
5256   QualType ASTTy = D->getType();
5257   if (!Ty)
5258     Ty = getTypes().ConvertTypeForMem(ASTTy);
5259 
5260   StringRef MangledName = getMangledName(D);
5261   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5262                                IsForDefinition);
5263 }
5264 
5265 /// CreateRuntimeVariable - Create a new runtime global variable with the
5266 /// specified type and name.
5267 llvm::Constant *
5268 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5269                                      StringRef Name) {
5270   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5271                                                        : LangAS::Default;
5272   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5273   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5274   return Ret;
5275 }
5276 
5277 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5278   assert(!D->getInit() && "Cannot emit definite definitions here!");
5279 
5280   StringRef MangledName = getMangledName(D);
5281   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5282 
5283   // We already have a definition, not declaration, with the same mangled name.
5284   // Emitting of declaration is not required (and actually overwrites emitted
5285   // definition).
5286   if (GV && !GV->isDeclaration())
5287     return;
5288 
5289   // If we have not seen a reference to this variable yet, place it into the
5290   // deferred declarations table to be emitted if needed later.
5291   if (!MustBeEmitted(D) && !GV) {
5292       DeferredDecls[MangledName] = D;
5293       return;
5294   }
5295 
5296   // The tentative definition is the only definition.
5297   EmitGlobalVarDefinition(D);
5298 }
5299 
5300 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5301   if (auto const *V = dyn_cast<const VarDecl>(D))
5302     EmitExternalVarDeclaration(V);
5303   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5304     EmitExternalFunctionDeclaration(FD);
5305 }
5306 
5307 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5308   return Context.toCharUnitsFromBits(
5309       getDataLayout().getTypeStoreSizeInBits(Ty));
5310 }
5311 
5312 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5313   if (LangOpts.OpenCL) {
5314     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5315     assert(AS == LangAS::opencl_global ||
5316            AS == LangAS::opencl_global_device ||
5317            AS == LangAS::opencl_global_host ||
5318            AS == LangAS::opencl_constant ||
5319            AS == LangAS::opencl_local ||
5320            AS >= LangAS::FirstTargetAddressSpace);
5321     return AS;
5322   }
5323 
5324   if (LangOpts.SYCLIsDevice &&
5325       (!D || D->getType().getAddressSpace() == LangAS::Default))
5326     return LangAS::sycl_global;
5327 
5328   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5329     if (D) {
5330       if (D->hasAttr<CUDAConstantAttr>())
5331         return LangAS::cuda_constant;
5332       if (D->hasAttr<CUDASharedAttr>())
5333         return LangAS::cuda_shared;
5334       if (D->hasAttr<CUDADeviceAttr>())
5335         return LangAS::cuda_device;
5336       if (D->getType().isConstQualified())
5337         return LangAS::cuda_constant;
5338     }
5339     return LangAS::cuda_device;
5340   }
5341 
5342   if (LangOpts.OpenMP) {
5343     LangAS AS;
5344     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5345       return AS;
5346   }
5347   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5348 }
5349 
5350 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5351   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5352   if (LangOpts.OpenCL)
5353     return LangAS::opencl_constant;
5354   if (LangOpts.SYCLIsDevice)
5355     return LangAS::sycl_global;
5356   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5357     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5358     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5359     // with OpVariable instructions with Generic storage class which is not
5360     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5361     // UniformConstant storage class is not viable as pointers to it may not be
5362     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5363     return LangAS::cuda_device;
5364   if (auto AS = getTarget().getConstantAddressSpace())
5365     return *AS;
5366   return LangAS::Default;
5367 }
5368 
5369 // In address space agnostic languages, string literals are in default address
5370 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5371 // emitted in constant address space in LLVM IR. To be consistent with other
5372 // parts of AST, string literal global variables in constant address space
5373 // need to be casted to default address space before being put into address
5374 // map and referenced by other part of CodeGen.
5375 // In OpenCL, string literals are in constant address space in AST, therefore
5376 // they should not be casted to default address space.
5377 static llvm::Constant *
5378 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5379                                        llvm::GlobalVariable *GV) {
5380   llvm::Constant *Cast = GV;
5381   if (!CGM.getLangOpts().OpenCL) {
5382     auto AS = CGM.GetGlobalConstantAddressSpace();
5383     if (AS != LangAS::Default)
5384       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5385           CGM, GV, AS, LangAS::Default,
5386           llvm::PointerType::get(
5387               CGM.getLLVMContext(),
5388               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5389   }
5390   return Cast;
5391 }
5392 
5393 template<typename SomeDecl>
5394 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5395                                                llvm::GlobalValue *GV) {
5396   if (!getLangOpts().CPlusPlus)
5397     return;
5398 
5399   // Must have 'used' attribute, or else inline assembly can't rely on
5400   // the name existing.
5401   if (!D->template hasAttr<UsedAttr>())
5402     return;
5403 
5404   // Must have internal linkage and an ordinary name.
5405   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5406     return;
5407 
5408   // Must be in an extern "C" context. Entities declared directly within
5409   // a record are not extern "C" even if the record is in such a context.
5410   const SomeDecl *First = D->getFirstDecl();
5411   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5412     return;
5413 
5414   // OK, this is an internal linkage entity inside an extern "C" linkage
5415   // specification. Make a note of that so we can give it the "expected"
5416   // mangled name if nothing else is using that name.
5417   std::pair<StaticExternCMap::iterator, bool> R =
5418       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5419 
5420   // If we have multiple internal linkage entities with the same name
5421   // in extern "C" regions, none of them gets that name.
5422   if (!R.second)
5423     R.first->second = nullptr;
5424 }
5425 
5426 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5427   if (!CGM.supportsCOMDAT())
5428     return false;
5429 
5430   if (D.hasAttr<SelectAnyAttr>())
5431     return true;
5432 
5433   GVALinkage Linkage;
5434   if (auto *VD = dyn_cast<VarDecl>(&D))
5435     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5436   else
5437     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5438 
5439   switch (Linkage) {
5440   case GVA_Internal:
5441   case GVA_AvailableExternally:
5442   case GVA_StrongExternal:
5443     return false;
5444   case GVA_DiscardableODR:
5445   case GVA_StrongODR:
5446     return true;
5447   }
5448   llvm_unreachable("No such linkage");
5449 }
5450 
5451 bool CodeGenModule::supportsCOMDAT() const {
5452   return getTriple().supportsCOMDAT();
5453 }
5454 
5455 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5456                                           llvm::GlobalObject &GO) {
5457   if (!shouldBeInCOMDAT(*this, D))
5458     return;
5459   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5460 }
5461 
5462 const ABIInfo &CodeGenModule::getABIInfo() {
5463   return getTargetCodeGenInfo().getABIInfo();
5464 }
5465 
5466 /// Pass IsTentative as true if you want to create a tentative definition.
5467 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5468                                             bool IsTentative) {
5469   // OpenCL global variables of sampler type are translated to function calls,
5470   // therefore no need to be translated.
5471   QualType ASTTy = D->getType();
5472   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5473     return;
5474 
5475   // If this is OpenMP device, check if it is legal to emit this global
5476   // normally.
5477   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5478       OpenMPRuntime->emitTargetGlobalVariable(D))
5479     return;
5480 
5481   llvm::TrackingVH<llvm::Constant> Init;
5482   bool NeedsGlobalCtor = false;
5483   // Whether the definition of the variable is available externally.
5484   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5485   // since this is the job for its original source.
5486   bool IsDefinitionAvailableExternally =
5487       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5488   bool NeedsGlobalDtor =
5489       !IsDefinitionAvailableExternally &&
5490       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5491 
5492   // It is helpless to emit the definition for an available_externally variable
5493   // which can't be marked as const.
5494   // We don't need to check if it needs global ctor or dtor. See the above
5495   // comment for ideas.
5496   if (IsDefinitionAvailableExternally &&
5497       (!D->hasConstantInitialization() ||
5498        // TODO: Update this when we have interface to check constexpr
5499        // destructor.
5500        D->needsDestruction(getContext()) ||
5501        !D->getType().isConstantStorage(getContext(), true, true)))
5502     return;
5503 
5504   const VarDecl *InitDecl;
5505   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5506 
5507   std::optional<ConstantEmitter> emitter;
5508 
5509   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5510   // as part of their declaration."  Sema has already checked for
5511   // error cases, so we just need to set Init to UndefValue.
5512   bool IsCUDASharedVar =
5513       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5514   // Shadows of initialized device-side global variables are also left
5515   // undefined.
5516   // Managed Variables should be initialized on both host side and device side.
5517   bool IsCUDAShadowVar =
5518       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5519       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5520        D->hasAttr<CUDASharedAttr>());
5521   bool IsCUDADeviceShadowVar =
5522       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5523       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5524        D->getType()->isCUDADeviceBuiltinTextureType());
5525   if (getLangOpts().CUDA &&
5526       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5527     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5528   else if (D->hasAttr<LoaderUninitializedAttr>())
5529     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5530   else if (!InitExpr) {
5531     // This is a tentative definition; tentative definitions are
5532     // implicitly initialized with { 0 }.
5533     //
5534     // Note that tentative definitions are only emitted at the end of
5535     // a translation unit, so they should never have incomplete
5536     // type. In addition, EmitTentativeDefinition makes sure that we
5537     // never attempt to emit a tentative definition if a real one
5538     // exists. A use may still exists, however, so we still may need
5539     // to do a RAUW.
5540     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5541     Init = EmitNullConstant(D->getType());
5542   } else {
5543     initializedGlobalDecl = GlobalDecl(D);
5544     emitter.emplace(*this);
5545     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5546     if (!Initializer) {
5547       QualType T = InitExpr->getType();
5548       if (D->getType()->isReferenceType())
5549         T = D->getType();
5550 
5551       if (getLangOpts().CPlusPlus) {
5552         Init = EmitNullConstant(T);
5553         if (!IsDefinitionAvailableExternally)
5554           NeedsGlobalCtor = true;
5555         if (InitDecl->hasFlexibleArrayInit(getContext())) {
5556           ErrorUnsupported(D, "flexible array initializer");
5557           // We cannot create ctor for flexible array initializer
5558           NeedsGlobalCtor = false;
5559         }
5560       } else {
5561         ErrorUnsupported(D, "static initializer");
5562         Init = llvm::PoisonValue::get(getTypes().ConvertType(T));
5563       }
5564     } else {
5565       Init = Initializer;
5566       // We don't need an initializer, so remove the entry for the delayed
5567       // initializer position (just in case this entry was delayed) if we
5568       // also don't need to register a destructor.
5569       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5570         DelayedCXXInitPosition.erase(D);
5571 
5572 #ifndef NDEBUG
5573       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5574                           InitDecl->getFlexibleArrayInitChars(getContext());
5575       CharUnits CstSize = CharUnits::fromQuantity(
5576           getDataLayout().getTypeAllocSize(Init->getType()));
5577       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5578 #endif
5579     }
5580   }
5581 
5582   llvm::Type* InitType = Init->getType();
5583   llvm::Constant *Entry =
5584       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5585 
5586   // Strip off pointer casts if we got them.
5587   Entry = Entry->stripPointerCasts();
5588 
5589   // Entry is now either a Function or GlobalVariable.
5590   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5591 
5592   // We have a definition after a declaration with the wrong type.
5593   // We must make a new GlobalVariable* and update everything that used OldGV
5594   // (a declaration or tentative definition) with the new GlobalVariable*
5595   // (which will be a definition).
5596   //
5597   // This happens if there is a prototype for a global (e.g.
5598   // "extern int x[];") and then a definition of a different type (e.g.
5599   // "int x[10];"). This also happens when an initializer has a different type
5600   // from the type of the global (this happens with unions).
5601   if (!GV || GV->getValueType() != InitType ||
5602       GV->getType()->getAddressSpace() !=
5603           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5604 
5605     // Move the old entry aside so that we'll create a new one.
5606     Entry->setName(StringRef());
5607 
5608     // Make a new global with the correct type, this is now guaranteed to work.
5609     GV = cast<llvm::GlobalVariable>(
5610         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5611             ->stripPointerCasts());
5612 
5613     // Replace all uses of the old global with the new global
5614     llvm::Constant *NewPtrForOldDecl =
5615         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5616                                                              Entry->getType());
5617     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5618 
5619     // Erase the old global, since it is no longer used.
5620     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5621   }
5622 
5623   MaybeHandleStaticInExternC(D, GV);
5624 
5625   if (D->hasAttr<AnnotateAttr>())
5626     AddGlobalAnnotations(D, GV);
5627 
5628   // Set the llvm linkage type as appropriate.
5629   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5630 
5631   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5632   // the device. [...]"
5633   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5634   // __device__, declares a variable that: [...]
5635   // Is accessible from all the threads within the grid and from the host
5636   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5637   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5638   if (LangOpts.CUDA) {
5639     if (LangOpts.CUDAIsDevice) {
5640       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5641           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5642            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5643            D->getType()->isCUDADeviceBuiltinTextureType()))
5644         GV->setExternallyInitialized(true);
5645     } else {
5646       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5647     }
5648     getCUDARuntime().handleVarRegistration(D, *GV);
5649   }
5650 
5651   if (LangOpts.HLSL)
5652     getHLSLRuntime().handleGlobalVarDefinition(D, GV);
5653 
5654   GV->setInitializer(Init);
5655   if (emitter)
5656     emitter->finalize(GV);
5657 
5658   // If it is safe to mark the global 'constant', do so now.
5659   GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) ||
5660                   (!NeedsGlobalCtor && !NeedsGlobalDtor &&
5661                    D->getType().isConstantStorage(getContext(), true, true)));
5662 
5663   // If it is in a read-only section, mark it 'constant'.
5664   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5665     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5666     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5667       GV->setConstant(true);
5668   }
5669 
5670   CharUnits AlignVal = getContext().getDeclAlign(D);
5671   // Check for alignment specifed in an 'omp allocate' directive.
5672   if (std::optional<CharUnits> AlignValFromAllocate =
5673           getOMPAllocateAlignment(D))
5674     AlignVal = *AlignValFromAllocate;
5675   GV->setAlignment(AlignVal.getAsAlign());
5676 
5677   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5678   // function is only defined alongside the variable, not also alongside
5679   // callers. Normally, all accesses to a thread_local go through the
5680   // thread-wrapper in order to ensure initialization has occurred, underlying
5681   // variable will never be used other than the thread-wrapper, so it can be
5682   // converted to internal linkage.
5683   //
5684   // However, if the variable has the 'constinit' attribute, it _can_ be
5685   // referenced directly, without calling the thread-wrapper, so the linkage
5686   // must not be changed.
5687   //
5688   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5689   // weak or linkonce, the de-duplication semantics are important to preserve,
5690   // so we don't change the linkage.
5691   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5692       Linkage == llvm::GlobalValue::ExternalLinkage &&
5693       Context.getTargetInfo().getTriple().isOSDarwin() &&
5694       !D->hasAttr<ConstInitAttr>())
5695     Linkage = llvm::GlobalValue::InternalLinkage;
5696 
5697   GV->setLinkage(Linkage);
5698   if (D->hasAttr<DLLImportAttr>())
5699     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5700   else if (D->hasAttr<DLLExportAttr>())
5701     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5702   else
5703     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5704 
5705   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5706     // common vars aren't constant even if declared const.
5707     GV->setConstant(false);
5708     // Tentative definition of global variables may be initialized with
5709     // non-zero null pointers. In this case they should have weak linkage
5710     // since common linkage must have zero initializer and must not have
5711     // explicit section therefore cannot have non-zero initial value.
5712     if (!GV->getInitializer()->isNullValue())
5713       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5714   }
5715 
5716   setNonAliasAttributes(D, GV);
5717 
5718   if (D->getTLSKind() && !GV->isThreadLocal()) {
5719     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5720       CXXThreadLocals.push_back(D);
5721     setTLSMode(GV, *D);
5722   }
5723 
5724   maybeSetTrivialComdat(*D, *GV);
5725 
5726   // Emit the initializer function if necessary.
5727   if (NeedsGlobalCtor || NeedsGlobalDtor)
5728     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5729 
5730   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5731 
5732   // Emit global variable debug information.
5733   if (CGDebugInfo *DI = getModuleDebugInfo())
5734     if (getCodeGenOpts().hasReducedDebugInfo())
5735       DI->EmitGlobalVariable(GV, D);
5736 }
5737 
5738 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5739   if (CGDebugInfo *DI = getModuleDebugInfo())
5740     if (getCodeGenOpts().hasReducedDebugInfo()) {
5741       QualType ASTTy = D->getType();
5742       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5743       llvm::Constant *GV =
5744           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5745       DI->EmitExternalVariable(
5746           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5747     }
5748 }
5749 
5750 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5751   if (CGDebugInfo *DI = getModuleDebugInfo())
5752     if (getCodeGenOpts().hasReducedDebugInfo()) {
5753       auto *Ty = getTypes().ConvertType(FD->getType());
5754       StringRef MangledName = getMangledName(FD);
5755       auto *Fn = cast<llvm::Function>(
5756           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5757       if (!Fn->getSubprogram())
5758         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5759     }
5760 }
5761 
5762 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5763                                       CodeGenModule &CGM, const VarDecl *D,
5764                                       bool NoCommon) {
5765   // Don't give variables common linkage if -fno-common was specified unless it
5766   // was overridden by a NoCommon attribute.
5767   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5768     return true;
5769 
5770   // C11 6.9.2/2:
5771   //   A declaration of an identifier for an object that has file scope without
5772   //   an initializer, and without a storage-class specifier or with the
5773   //   storage-class specifier static, constitutes a tentative definition.
5774   if (D->getInit() || D->hasExternalStorage())
5775     return true;
5776 
5777   // A variable cannot be both common and exist in a section.
5778   if (D->hasAttr<SectionAttr>())
5779     return true;
5780 
5781   // A variable cannot be both common and exist in a section.
5782   // We don't try to determine which is the right section in the front-end.
5783   // If no specialized section name is applicable, it will resort to default.
5784   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5785       D->hasAttr<PragmaClangDataSectionAttr>() ||
5786       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5787       D->hasAttr<PragmaClangRodataSectionAttr>())
5788     return true;
5789 
5790   // Thread local vars aren't considered common linkage.
5791   if (D->getTLSKind())
5792     return true;
5793 
5794   // Tentative definitions marked with WeakImportAttr are true definitions.
5795   if (D->hasAttr<WeakImportAttr>())
5796     return true;
5797 
5798   // A variable cannot be both common and exist in a comdat.
5799   if (shouldBeInCOMDAT(CGM, *D))
5800     return true;
5801 
5802   // Declarations with a required alignment do not have common linkage in MSVC
5803   // mode.
5804   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5805     if (D->hasAttr<AlignedAttr>())
5806       return true;
5807     QualType VarType = D->getType();
5808     if (Context.isAlignmentRequired(VarType))
5809       return true;
5810 
5811     if (const auto *RT = VarType->getAs<RecordType>()) {
5812       const RecordDecl *RD = RT->getDecl();
5813       for (const FieldDecl *FD : RD->fields()) {
5814         if (FD->isBitField())
5815           continue;
5816         if (FD->hasAttr<AlignedAttr>())
5817           return true;
5818         if (Context.isAlignmentRequired(FD->getType()))
5819           return true;
5820       }
5821     }
5822   }
5823 
5824   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5825   // common symbols, so symbols with greater alignment requirements cannot be
5826   // common.
5827   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5828   // alignments for common symbols via the aligncomm directive, so this
5829   // restriction only applies to MSVC environments.
5830   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5831       Context.getTypeAlignIfKnown(D->getType()) >
5832           Context.toBits(CharUnits::fromQuantity(32)))
5833     return true;
5834 
5835   return false;
5836 }
5837 
5838 llvm::GlobalValue::LinkageTypes
5839 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5840                                            GVALinkage Linkage) {
5841   if (Linkage == GVA_Internal)
5842     return llvm::Function::InternalLinkage;
5843 
5844   if (D->hasAttr<WeakAttr>())
5845     return llvm::GlobalVariable::WeakAnyLinkage;
5846 
5847   if (const auto *FD = D->getAsFunction())
5848     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5849       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5850 
5851   // We are guaranteed to have a strong definition somewhere else,
5852   // so we can use available_externally linkage.
5853   if (Linkage == GVA_AvailableExternally)
5854     return llvm::GlobalValue::AvailableExternallyLinkage;
5855 
5856   // Note that Apple's kernel linker doesn't support symbol
5857   // coalescing, so we need to avoid linkonce and weak linkages there.
5858   // Normally, this means we just map to internal, but for explicit
5859   // instantiations we'll map to external.
5860 
5861   // In C++, the compiler has to emit a definition in every translation unit
5862   // that references the function.  We should use linkonce_odr because
5863   // a) if all references in this translation unit are optimized away, we
5864   // don't need to codegen it.  b) if the function persists, it needs to be
5865   // merged with other definitions. c) C++ has the ODR, so we know the
5866   // definition is dependable.
5867   if (Linkage == GVA_DiscardableODR)
5868     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5869                                             : llvm::Function::InternalLinkage;
5870 
5871   // An explicit instantiation of a template has weak linkage, since
5872   // explicit instantiations can occur in multiple translation units
5873   // and must all be equivalent. However, we are not allowed to
5874   // throw away these explicit instantiations.
5875   //
5876   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5877   // so say that CUDA templates are either external (for kernels) or internal.
5878   // This lets llvm perform aggressive inter-procedural optimizations. For
5879   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5880   // therefore we need to follow the normal linkage paradigm.
5881   if (Linkage == GVA_StrongODR) {
5882     if (getLangOpts().AppleKext)
5883       return llvm::Function::ExternalLinkage;
5884     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5885         !getLangOpts().GPURelocatableDeviceCode)
5886       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5887                                           : llvm::Function::InternalLinkage;
5888     return llvm::Function::WeakODRLinkage;
5889   }
5890 
5891   // C++ doesn't have tentative definitions and thus cannot have common
5892   // linkage.
5893   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5894       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5895                                  CodeGenOpts.NoCommon))
5896     return llvm::GlobalVariable::CommonLinkage;
5897 
5898   // selectany symbols are externally visible, so use weak instead of
5899   // linkonce.  MSVC optimizes away references to const selectany globals, so
5900   // all definitions should be the same and ODR linkage should be used.
5901   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5902   if (D->hasAttr<SelectAnyAttr>())
5903     return llvm::GlobalVariable::WeakODRLinkage;
5904 
5905   // Otherwise, we have strong external linkage.
5906   assert(Linkage == GVA_StrongExternal);
5907   return llvm::GlobalVariable::ExternalLinkage;
5908 }
5909 
5910 llvm::GlobalValue::LinkageTypes
5911 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5912   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5913   return getLLVMLinkageForDeclarator(VD, Linkage);
5914 }
5915 
5916 /// Replace the uses of a function that was declared with a non-proto type.
5917 /// We want to silently drop extra arguments from call sites
5918 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5919                                           llvm::Function *newFn) {
5920   // Fast path.
5921   if (old->use_empty())
5922     return;
5923 
5924   llvm::Type *newRetTy = newFn->getReturnType();
5925   SmallVector<llvm::Value *, 4> newArgs;
5926 
5927   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5928 
5929   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5930        ui != ue; ui++) {
5931     llvm::User *user = ui->getUser();
5932 
5933     // Recognize and replace uses of bitcasts.  Most calls to
5934     // unprototyped functions will use bitcasts.
5935     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5936       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5937         replaceUsesOfNonProtoConstant(bitcast, newFn);
5938       continue;
5939     }
5940 
5941     // Recognize calls to the function.
5942     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5943     if (!callSite)
5944       continue;
5945     if (!callSite->isCallee(&*ui))
5946       continue;
5947 
5948     // If the return types don't match exactly, then we can't
5949     // transform this call unless it's dead.
5950     if (callSite->getType() != newRetTy && !callSite->use_empty())
5951       continue;
5952 
5953     // Get the call site's attribute list.
5954     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5955     llvm::AttributeList oldAttrs = callSite->getAttributes();
5956 
5957     // If the function was passed too few arguments, don't transform.
5958     unsigned newNumArgs = newFn->arg_size();
5959     if (callSite->arg_size() < newNumArgs)
5960       continue;
5961 
5962     // If extra arguments were passed, we silently drop them.
5963     // If any of the types mismatch, we don't transform.
5964     unsigned argNo = 0;
5965     bool dontTransform = false;
5966     for (llvm::Argument &A : newFn->args()) {
5967       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5968         dontTransform = true;
5969         break;
5970       }
5971 
5972       // Add any parameter attributes.
5973       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5974       argNo++;
5975     }
5976     if (dontTransform)
5977       continue;
5978 
5979     // Okay, we can transform this.  Create the new call instruction and copy
5980     // over the required information.
5981     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5982 
5983     // Copy over any operand bundles.
5984     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5985     callSite->getOperandBundlesAsDefs(newBundles);
5986 
5987     llvm::CallBase *newCall;
5988     if (isa<llvm::CallInst>(callSite)) {
5989       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
5990                                        callSite->getIterator());
5991     } else {
5992       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5993       newCall = llvm::InvokeInst::Create(
5994           newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
5995           newArgs, newBundles, "", callSite->getIterator());
5996     }
5997     newArgs.clear(); // for the next iteration
5998 
5999     if (!newCall->getType()->isVoidTy())
6000       newCall->takeName(callSite);
6001     newCall->setAttributes(
6002         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
6003                                  oldAttrs.getRetAttrs(), newArgAttrs));
6004     newCall->setCallingConv(callSite->getCallingConv());
6005 
6006     // Finally, remove the old call, replacing any uses with the new one.
6007     if (!callSite->use_empty())
6008       callSite->replaceAllUsesWith(newCall);
6009 
6010     // Copy debug location attached to CI.
6011     if (callSite->getDebugLoc())
6012       newCall->setDebugLoc(callSite->getDebugLoc());
6013 
6014     callSitesToBeRemovedFromParent.push_back(callSite);
6015   }
6016 
6017   for (auto *callSite : callSitesToBeRemovedFromParent) {
6018     callSite->eraseFromParent();
6019   }
6020 }
6021 
6022 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
6023 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
6024 /// existing call uses of the old function in the module, this adjusts them to
6025 /// call the new function directly.
6026 ///
6027 /// This is not just a cleanup: the always_inline pass requires direct calls to
6028 /// functions to be able to inline them.  If there is a bitcast in the way, it
6029 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
6030 /// run at -O0.
6031 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
6032                                                       llvm::Function *NewFn) {
6033   // If we're redefining a global as a function, don't transform it.
6034   if (!isa<llvm::Function>(Old)) return;
6035 
6036   replaceUsesOfNonProtoConstant(Old, NewFn);
6037 }
6038 
6039 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
6040   auto DK = VD->isThisDeclarationADefinition();
6041   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
6042       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
6043     return;
6044 
6045   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
6046   // If we have a definition, this might be a deferred decl. If the
6047   // instantiation is explicit, make sure we emit it at the end.
6048   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
6049     GetAddrOfGlobalVar(VD);
6050 
6051   EmitTopLevelDecl(VD);
6052 }
6053 
6054 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6055                                                  llvm::GlobalValue *GV) {
6056   const auto *D = cast<FunctionDecl>(GD.getDecl());
6057 
6058   // Compute the function info and LLVM type.
6059   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6060   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6061 
6062   // Get or create the prototype for the function.
6063   if (!GV || (GV->getValueType() != Ty))
6064     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6065                                                    /*DontDefer=*/true,
6066                                                    ForDefinition));
6067 
6068   // Already emitted.
6069   if (!GV->isDeclaration())
6070     return;
6071 
6072   // We need to set linkage and visibility on the function before
6073   // generating code for it because various parts of IR generation
6074   // want to propagate this information down (e.g. to local static
6075   // declarations).
6076   auto *Fn = cast<llvm::Function>(GV);
6077   setFunctionLinkage(GD, Fn);
6078 
6079   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6080   setGVProperties(Fn, GD);
6081 
6082   MaybeHandleStaticInExternC(D, Fn);
6083 
6084   maybeSetTrivialComdat(*D, *Fn);
6085 
6086   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6087 
6088   setNonAliasAttributes(GD, Fn);
6089   SetLLVMFunctionAttributesForDefinition(D, Fn);
6090 
6091   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6092     AddGlobalCtor(Fn, CA->getPriority());
6093   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6094     AddGlobalDtor(Fn, DA->getPriority(), true);
6095   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6096     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6097 }
6098 
6099 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6100   const auto *D = cast<ValueDecl>(GD.getDecl());
6101   const AliasAttr *AA = D->getAttr<AliasAttr>();
6102   assert(AA && "Not an alias?");
6103 
6104   StringRef MangledName = getMangledName(GD);
6105 
6106   if (AA->getAliasee() == MangledName) {
6107     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6108     return;
6109   }
6110 
6111   // If there is a definition in the module, then it wins over the alias.
6112   // This is dubious, but allow it to be safe.  Just ignore the alias.
6113   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6114   if (Entry && !Entry->isDeclaration())
6115     return;
6116 
6117   Aliases.push_back(GD);
6118 
6119   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6120 
6121   // Create a reference to the named value.  This ensures that it is emitted
6122   // if a deferred decl.
6123   llvm::Constant *Aliasee;
6124   llvm::GlobalValue::LinkageTypes LT;
6125   if (isa<llvm::FunctionType>(DeclTy)) {
6126     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6127                                       /*ForVTable=*/false);
6128     LT = getFunctionLinkage(GD);
6129   } else {
6130     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6131                                     /*D=*/nullptr);
6132     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6133       LT = getLLVMLinkageVarDefinition(VD);
6134     else
6135       LT = getFunctionLinkage(GD);
6136   }
6137 
6138   // Create the new alias itself, but don't set a name yet.
6139   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6140   auto *GA =
6141       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6142 
6143   if (Entry) {
6144     if (GA->getAliasee() == Entry) {
6145       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6146       return;
6147     }
6148 
6149     assert(Entry->isDeclaration());
6150 
6151     // If there is a declaration in the module, then we had an extern followed
6152     // by the alias, as in:
6153     //   extern int test6();
6154     //   ...
6155     //   int test6() __attribute__((alias("test7")));
6156     //
6157     // Remove it and replace uses of it with the alias.
6158     GA->takeName(Entry);
6159 
6160     Entry->replaceAllUsesWith(GA);
6161     Entry->eraseFromParent();
6162   } else {
6163     GA->setName(MangledName);
6164   }
6165 
6166   // Set attributes which are particular to an alias; this is a
6167   // specialization of the attributes which may be set on a global
6168   // variable/function.
6169   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6170       D->isWeakImported()) {
6171     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6172   }
6173 
6174   if (const auto *VD = dyn_cast<VarDecl>(D))
6175     if (VD->getTLSKind())
6176       setTLSMode(GA, *VD);
6177 
6178   SetCommonAttributes(GD, GA);
6179 
6180   // Emit global alias debug information.
6181   if (isa<VarDecl>(D))
6182     if (CGDebugInfo *DI = getModuleDebugInfo())
6183       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6184 }
6185 
6186 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6187   const auto *D = cast<ValueDecl>(GD.getDecl());
6188   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6189   assert(IFA && "Not an ifunc?");
6190 
6191   StringRef MangledName = getMangledName(GD);
6192 
6193   if (IFA->getResolver() == MangledName) {
6194     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6195     return;
6196   }
6197 
6198   // Report an error if some definition overrides ifunc.
6199   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6200   if (Entry && !Entry->isDeclaration()) {
6201     GlobalDecl OtherGD;
6202     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6203         DiagnosedConflictingDefinitions.insert(GD).second) {
6204       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6205           << MangledName;
6206       Diags.Report(OtherGD.getDecl()->getLocation(),
6207                    diag::note_previous_definition);
6208     }
6209     return;
6210   }
6211 
6212   Aliases.push_back(GD);
6213 
6214   // The resolver might not be visited yet. Specify a dummy non-function type to
6215   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6216   // was emitted) or the whole function will be replaced (if the resolver has
6217   // not been emitted).
6218   llvm::Constant *Resolver =
6219       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6220                               /*ForVTable=*/false);
6221   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6222   unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6223   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6224       DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6225   if (Entry) {
6226     if (GIF->getResolver() == Entry) {
6227       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6228       return;
6229     }
6230     assert(Entry->isDeclaration());
6231 
6232     // If there is a declaration in the module, then we had an extern followed
6233     // by the ifunc, as in:
6234     //   extern int test();
6235     //   ...
6236     //   int test() __attribute__((ifunc("resolver")));
6237     //
6238     // Remove it and replace uses of it with the ifunc.
6239     GIF->takeName(Entry);
6240 
6241     Entry->replaceAllUsesWith(GIF);
6242     Entry->eraseFromParent();
6243   } else
6244     GIF->setName(MangledName);
6245   SetCommonAttributes(GD, GIF);
6246 }
6247 
6248 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6249                                             ArrayRef<llvm::Type*> Tys) {
6250   return llvm::Intrinsic::getOrInsertDeclaration(&getModule(),
6251                                                  (llvm::Intrinsic::ID)IID, Tys);
6252 }
6253 
6254 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6255 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6256                          const StringLiteral *Literal, bool TargetIsLSB,
6257                          bool &IsUTF16, unsigned &StringLength) {
6258   StringRef String = Literal->getString();
6259   unsigned NumBytes = String.size();
6260 
6261   // Check for simple case.
6262   if (!Literal->containsNonAsciiOrNull()) {
6263     StringLength = NumBytes;
6264     return *Map.insert(std::make_pair(String, nullptr)).first;
6265   }
6266 
6267   // Otherwise, convert the UTF8 literals into a string of shorts.
6268   IsUTF16 = true;
6269 
6270   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6271   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6272   llvm::UTF16 *ToPtr = &ToBuf[0];
6273 
6274   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6275                                  ToPtr + NumBytes, llvm::strictConversion);
6276 
6277   // ConvertUTF8toUTF16 returns the length in ToPtr.
6278   StringLength = ToPtr - &ToBuf[0];
6279 
6280   // Add an explicit null.
6281   *ToPtr = 0;
6282   return *Map.insert(std::make_pair(
6283                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6284                                    (StringLength + 1) * 2),
6285                          nullptr)).first;
6286 }
6287 
6288 ConstantAddress
6289 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6290   unsigned StringLength = 0;
6291   bool isUTF16 = false;
6292   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6293       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6294                                getDataLayout().isLittleEndian(), isUTF16,
6295                                StringLength);
6296 
6297   if (auto *C = Entry.second)
6298     return ConstantAddress(
6299         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6300 
6301   const ASTContext &Context = getContext();
6302   const llvm::Triple &Triple = getTriple();
6303 
6304   const auto CFRuntime = getLangOpts().CFRuntime;
6305   const bool IsSwiftABI =
6306       static_cast<unsigned>(CFRuntime) >=
6307       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6308   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6309 
6310   // If we don't already have it, get __CFConstantStringClassReference.
6311   if (!CFConstantStringClassRef) {
6312     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6313     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6314     Ty = llvm::ArrayType::get(Ty, 0);
6315 
6316     switch (CFRuntime) {
6317     default: break;
6318     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6319     case LangOptions::CoreFoundationABI::Swift5_0:
6320       CFConstantStringClassName =
6321           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6322                               : "$s10Foundation19_NSCFConstantStringCN";
6323       Ty = IntPtrTy;
6324       break;
6325     case LangOptions::CoreFoundationABI::Swift4_2:
6326       CFConstantStringClassName =
6327           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6328                               : "$S10Foundation19_NSCFConstantStringCN";
6329       Ty = IntPtrTy;
6330       break;
6331     case LangOptions::CoreFoundationABI::Swift4_1:
6332       CFConstantStringClassName =
6333           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6334                               : "__T010Foundation19_NSCFConstantStringCN";
6335       Ty = IntPtrTy;
6336       break;
6337     }
6338 
6339     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6340 
6341     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6342       llvm::GlobalValue *GV = nullptr;
6343 
6344       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6345         IdentifierInfo &II = Context.Idents.get(GV->getName());
6346         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6347         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6348 
6349         const VarDecl *VD = nullptr;
6350         for (const auto *Result : DC->lookup(&II))
6351           if ((VD = dyn_cast<VarDecl>(Result)))
6352             break;
6353 
6354         if (Triple.isOSBinFormatELF()) {
6355           if (!VD)
6356             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6357         } else {
6358           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6359           if (!VD || !VD->hasAttr<DLLExportAttr>())
6360             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6361           else
6362             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6363         }
6364 
6365         setDSOLocal(GV);
6366       }
6367     }
6368 
6369     // Decay array -> ptr
6370     CFConstantStringClassRef =
6371         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6372   }
6373 
6374   QualType CFTy = Context.getCFConstantStringType();
6375 
6376   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6377 
6378   ConstantInitBuilder Builder(*this);
6379   auto Fields = Builder.beginStruct(STy);
6380 
6381   // Class pointer.
6382   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6383 
6384   // Flags.
6385   if (IsSwiftABI) {
6386     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6387     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6388   } else {
6389     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6390   }
6391 
6392   // String pointer.
6393   llvm::Constant *C = nullptr;
6394   if (isUTF16) {
6395     auto Arr = llvm::ArrayRef(
6396         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6397         Entry.first().size() / 2);
6398     C = llvm::ConstantDataArray::get(VMContext, Arr);
6399   } else {
6400     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6401   }
6402 
6403   // Note: -fwritable-strings doesn't make the backing store strings of
6404   // CFStrings writable.
6405   auto *GV =
6406       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6407                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6408   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6409   // Don't enforce the target's minimum global alignment, since the only use
6410   // of the string is via this class initializer.
6411   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6412                             : Context.getTypeAlignInChars(Context.CharTy);
6413   GV->setAlignment(Align.getAsAlign());
6414 
6415   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6416   // Without it LLVM can merge the string with a non unnamed_addr one during
6417   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6418   if (Triple.isOSBinFormatMachO())
6419     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6420                            : "__TEXT,__cstring,cstring_literals");
6421   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6422   // the static linker to adjust permissions to read-only later on.
6423   else if (Triple.isOSBinFormatELF())
6424     GV->setSection(".rodata");
6425 
6426   // String.
6427   Fields.add(GV);
6428 
6429   // String length.
6430   llvm::IntegerType *LengthTy =
6431       llvm::IntegerType::get(getModule().getContext(),
6432                              Context.getTargetInfo().getLongWidth());
6433   if (IsSwiftABI) {
6434     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6435         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6436       LengthTy = Int32Ty;
6437     else
6438       LengthTy = IntPtrTy;
6439   }
6440   Fields.addInt(LengthTy, StringLength);
6441 
6442   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6443   // properly aligned on 32-bit platforms.
6444   CharUnits Alignment =
6445       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6446 
6447   // The struct.
6448   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6449                                     /*isConstant=*/false,
6450                                     llvm::GlobalVariable::PrivateLinkage);
6451   GV->addAttribute("objc_arc_inert");
6452   switch (Triple.getObjectFormat()) {
6453   case llvm::Triple::UnknownObjectFormat:
6454     llvm_unreachable("unknown file format");
6455   case llvm::Triple::DXContainer:
6456   case llvm::Triple::GOFF:
6457   case llvm::Triple::SPIRV:
6458   case llvm::Triple::XCOFF:
6459     llvm_unreachable("unimplemented");
6460   case llvm::Triple::COFF:
6461   case llvm::Triple::ELF:
6462   case llvm::Triple::Wasm:
6463     GV->setSection("cfstring");
6464     break;
6465   case llvm::Triple::MachO:
6466     GV->setSection("__DATA,__cfstring");
6467     break;
6468   }
6469   Entry.second = GV;
6470 
6471   return ConstantAddress(GV, GV->getValueType(), Alignment);
6472 }
6473 
6474 bool CodeGenModule::getExpressionLocationsEnabled() const {
6475   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6476 }
6477 
6478 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6479   if (ObjCFastEnumerationStateType.isNull()) {
6480     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6481     D->startDefinition();
6482 
6483     QualType FieldTypes[] = {
6484         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6485         Context.getPointerType(Context.UnsignedLongTy),
6486         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6487                                      nullptr, ArraySizeModifier::Normal, 0)};
6488 
6489     for (size_t i = 0; i < 4; ++i) {
6490       FieldDecl *Field = FieldDecl::Create(Context,
6491                                            D,
6492                                            SourceLocation(),
6493                                            SourceLocation(), nullptr,
6494                                            FieldTypes[i], /*TInfo=*/nullptr,
6495                                            /*BitWidth=*/nullptr,
6496                                            /*Mutable=*/false,
6497                                            ICIS_NoInit);
6498       Field->setAccess(AS_public);
6499       D->addDecl(Field);
6500     }
6501 
6502     D->completeDefinition();
6503     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6504   }
6505 
6506   return ObjCFastEnumerationStateType;
6507 }
6508 
6509 llvm::Constant *
6510 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6511   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6512 
6513   // Don't emit it as the address of the string, emit the string data itself
6514   // as an inline array.
6515   if (E->getCharByteWidth() == 1) {
6516     SmallString<64> Str(E->getString());
6517 
6518     // Resize the string to the right size, which is indicated by its type.
6519     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6520     assert(CAT && "String literal not of constant array type!");
6521     Str.resize(CAT->getZExtSize());
6522     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6523   }
6524 
6525   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6526   llvm::Type *ElemTy = AType->getElementType();
6527   unsigned NumElements = AType->getNumElements();
6528 
6529   // Wide strings have either 2-byte or 4-byte elements.
6530   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6531     SmallVector<uint16_t, 32> Elements;
6532     Elements.reserve(NumElements);
6533 
6534     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6535       Elements.push_back(E->getCodeUnit(i));
6536     Elements.resize(NumElements);
6537     return llvm::ConstantDataArray::get(VMContext, Elements);
6538   }
6539 
6540   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6541   SmallVector<uint32_t, 32> Elements;
6542   Elements.reserve(NumElements);
6543 
6544   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6545     Elements.push_back(E->getCodeUnit(i));
6546   Elements.resize(NumElements);
6547   return llvm::ConstantDataArray::get(VMContext, Elements);
6548 }
6549 
6550 static llvm::GlobalVariable *
6551 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6552                       CodeGenModule &CGM, StringRef GlobalName,
6553                       CharUnits Alignment) {
6554   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6555       CGM.GetGlobalConstantAddressSpace());
6556 
6557   llvm::Module &M = CGM.getModule();
6558   // Create a global variable for this string
6559   auto *GV = new llvm::GlobalVariable(
6560       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6561       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6562   GV->setAlignment(Alignment.getAsAlign());
6563   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6564   if (GV->isWeakForLinker()) {
6565     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6566     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6567   }
6568   CGM.setDSOLocal(GV);
6569 
6570   return GV;
6571 }
6572 
6573 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6574 /// constant array for the given string literal.
6575 ConstantAddress
6576 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6577                                                   StringRef Name) {
6578   CharUnits Alignment =
6579       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6580 
6581   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6582   llvm::GlobalVariable **Entry = nullptr;
6583   if (!LangOpts.WritableStrings) {
6584     Entry = &ConstantStringMap[C];
6585     if (auto GV = *Entry) {
6586       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6587         GV->setAlignment(Alignment.getAsAlign());
6588       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6589                              GV->getValueType(), Alignment);
6590     }
6591   }
6592 
6593   SmallString<256> MangledNameBuffer;
6594   StringRef GlobalVariableName;
6595   llvm::GlobalValue::LinkageTypes LT;
6596 
6597   // Mangle the string literal if that's how the ABI merges duplicate strings.
6598   // Don't do it if they are writable, since we don't want writes in one TU to
6599   // affect strings in another.
6600   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6601       !LangOpts.WritableStrings) {
6602     llvm::raw_svector_ostream Out(MangledNameBuffer);
6603     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6604     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6605     GlobalVariableName = MangledNameBuffer;
6606   } else {
6607     LT = llvm::GlobalValue::PrivateLinkage;
6608     GlobalVariableName = Name;
6609   }
6610 
6611   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6612 
6613   CGDebugInfo *DI = getModuleDebugInfo();
6614   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6615     DI->AddStringLiteralDebugInfo(GV, S);
6616 
6617   if (Entry)
6618     *Entry = GV;
6619 
6620   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6621 
6622   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6623                          GV->getValueType(), Alignment);
6624 }
6625 
6626 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6627 /// array for the given ObjCEncodeExpr node.
6628 ConstantAddress
6629 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6630   std::string Str;
6631   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6632 
6633   return GetAddrOfConstantCString(Str);
6634 }
6635 
6636 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6637 /// the literal and a terminating '\0' character.
6638 /// The result has pointer to array type.
6639 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6640     const std::string &Str, const char *GlobalName) {
6641   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6642   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6643       getContext().CharTy, /*VD=*/nullptr);
6644 
6645   llvm::Constant *C =
6646       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6647 
6648   // Don't share any string literals if strings aren't constant.
6649   llvm::GlobalVariable **Entry = nullptr;
6650   if (!LangOpts.WritableStrings) {
6651     Entry = &ConstantStringMap[C];
6652     if (auto GV = *Entry) {
6653       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6654         GV->setAlignment(Alignment.getAsAlign());
6655       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6656                              GV->getValueType(), Alignment);
6657     }
6658   }
6659 
6660   // Get the default prefix if a name wasn't specified.
6661   if (!GlobalName)
6662     GlobalName = ".str";
6663   // Create a global variable for this.
6664   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6665                                   GlobalName, Alignment);
6666   if (Entry)
6667     *Entry = GV;
6668 
6669   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6670                          GV->getValueType(), Alignment);
6671 }
6672 
6673 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6674     const MaterializeTemporaryExpr *E, const Expr *Init) {
6675   assert((E->getStorageDuration() == SD_Static ||
6676           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6677   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6678 
6679   // If we're not materializing a subobject of the temporary, keep the
6680   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6681   QualType MaterializedType = Init->getType();
6682   if (Init == E->getSubExpr())
6683     MaterializedType = E->getType();
6684 
6685   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6686 
6687   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6688   if (!InsertResult.second) {
6689     // We've seen this before: either we already created it or we're in the
6690     // process of doing so.
6691     if (!InsertResult.first->second) {
6692       // We recursively re-entered this function, probably during emission of
6693       // the initializer. Create a placeholder. We'll clean this up in the
6694       // outer call, at the end of this function.
6695       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6696       InsertResult.first->second = new llvm::GlobalVariable(
6697           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6698           nullptr);
6699     }
6700     return ConstantAddress(InsertResult.first->second,
6701                            llvm::cast<llvm::GlobalVariable>(
6702                                InsertResult.first->second->stripPointerCasts())
6703                                ->getValueType(),
6704                            Align);
6705   }
6706 
6707   // FIXME: If an externally-visible declaration extends multiple temporaries,
6708   // we need to give each temporary the same name in every translation unit (and
6709   // we also need to make the temporaries externally-visible).
6710   SmallString<256> Name;
6711   llvm::raw_svector_ostream Out(Name);
6712   getCXXABI().getMangleContext().mangleReferenceTemporary(
6713       VD, E->getManglingNumber(), Out);
6714 
6715   APValue *Value = nullptr;
6716   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6717     // If the initializer of the extending declaration is a constant
6718     // initializer, we should have a cached constant initializer for this
6719     // temporary. Note that this might have a different value from the value
6720     // computed by evaluating the initializer if the surrounding constant
6721     // expression modifies the temporary.
6722     Value = E->getOrCreateValue(false);
6723   }
6724 
6725   // Try evaluating it now, it might have a constant initializer.
6726   Expr::EvalResult EvalResult;
6727   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6728       !EvalResult.hasSideEffects())
6729     Value = &EvalResult.Val;
6730 
6731   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6732 
6733   std::optional<ConstantEmitter> emitter;
6734   llvm::Constant *InitialValue = nullptr;
6735   bool Constant = false;
6736   llvm::Type *Type;
6737   if (Value) {
6738     // The temporary has a constant initializer, use it.
6739     emitter.emplace(*this);
6740     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6741                                                MaterializedType);
6742     Constant =
6743         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6744                                            /*ExcludeDtor*/ false);
6745     Type = InitialValue->getType();
6746   } else {
6747     // No initializer, the initialization will be provided when we
6748     // initialize the declaration which performed lifetime extension.
6749     Type = getTypes().ConvertTypeForMem(MaterializedType);
6750   }
6751 
6752   // Create a global variable for this lifetime-extended temporary.
6753   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6754   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6755     const VarDecl *InitVD;
6756     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6757         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6758       // Temporaries defined inside a class get linkonce_odr linkage because the
6759       // class can be defined in multiple translation units.
6760       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6761     } else {
6762       // There is no need for this temporary to have external linkage if the
6763       // VarDecl has external linkage.
6764       Linkage = llvm::GlobalVariable::InternalLinkage;
6765     }
6766   }
6767   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6768   auto *GV = new llvm::GlobalVariable(
6769       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6770       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6771   if (emitter) emitter->finalize(GV);
6772   // Don't assign dllimport or dllexport to local linkage globals.
6773   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6774     setGVProperties(GV, VD);
6775     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6776       // The reference temporary should never be dllexport.
6777       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6778   }
6779   GV->setAlignment(Align.getAsAlign());
6780   if (supportsCOMDAT() && GV->isWeakForLinker())
6781     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6782   if (VD->getTLSKind())
6783     setTLSMode(GV, *VD);
6784   llvm::Constant *CV = GV;
6785   if (AddrSpace != LangAS::Default)
6786     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6787         *this, GV, AddrSpace, LangAS::Default,
6788         llvm::PointerType::get(
6789             getLLVMContext(),
6790             getContext().getTargetAddressSpace(LangAS::Default)));
6791 
6792   // Update the map with the new temporary. If we created a placeholder above,
6793   // replace it with the new global now.
6794   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6795   if (Entry) {
6796     Entry->replaceAllUsesWith(CV);
6797     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6798   }
6799   Entry = CV;
6800 
6801   return ConstantAddress(CV, Type, Align);
6802 }
6803 
6804 /// EmitObjCPropertyImplementations - Emit information for synthesized
6805 /// properties for an implementation.
6806 void CodeGenModule::EmitObjCPropertyImplementations(const
6807                                                     ObjCImplementationDecl *D) {
6808   for (const auto *PID : D->property_impls()) {
6809     // Dynamic is just for type-checking.
6810     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6811       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6812 
6813       // Determine which methods need to be implemented, some may have
6814       // been overridden. Note that ::isPropertyAccessor is not the method
6815       // we want, that just indicates if the decl came from a
6816       // property. What we want to know is if the method is defined in
6817       // this implementation.
6818       auto *Getter = PID->getGetterMethodDecl();
6819       if (!Getter || Getter->isSynthesizedAccessorStub())
6820         CodeGenFunction(*this).GenerateObjCGetter(
6821             const_cast<ObjCImplementationDecl *>(D), PID);
6822       auto *Setter = PID->getSetterMethodDecl();
6823       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6824         CodeGenFunction(*this).GenerateObjCSetter(
6825                                  const_cast<ObjCImplementationDecl *>(D), PID);
6826     }
6827   }
6828 }
6829 
6830 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6831   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6832   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6833        ivar; ivar = ivar->getNextIvar())
6834     if (ivar->getType().isDestructedType())
6835       return true;
6836 
6837   return false;
6838 }
6839 
6840 static bool AllTrivialInitializers(CodeGenModule &CGM,
6841                                    ObjCImplementationDecl *D) {
6842   CodeGenFunction CGF(CGM);
6843   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6844        E = D->init_end(); B != E; ++B) {
6845     CXXCtorInitializer *CtorInitExp = *B;
6846     Expr *Init = CtorInitExp->getInit();
6847     if (!CGF.isTrivialInitializer(Init))
6848       return false;
6849   }
6850   return true;
6851 }
6852 
6853 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6854 /// for an implementation.
6855 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6856   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6857   if (needsDestructMethod(D)) {
6858     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6859     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6860     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6861         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6862         getContext().VoidTy, nullptr, D,
6863         /*isInstance=*/true, /*isVariadic=*/false,
6864         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6865         /*isImplicitlyDeclared=*/true,
6866         /*isDefined=*/false, ObjCImplementationControl::Required);
6867     D->addInstanceMethod(DTORMethod);
6868     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6869     D->setHasDestructors(true);
6870   }
6871 
6872   // If the implementation doesn't have any ivar initializers, we don't need
6873   // a .cxx_construct.
6874   if (D->getNumIvarInitializers() == 0 ||
6875       AllTrivialInitializers(*this, D))
6876     return;
6877 
6878   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6879   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6880   // The constructor returns 'self'.
6881   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6882       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6883       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6884       /*isVariadic=*/false,
6885       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6886       /*isImplicitlyDeclared=*/true,
6887       /*isDefined=*/false, ObjCImplementationControl::Required);
6888   D->addInstanceMethod(CTORMethod);
6889   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6890   D->setHasNonZeroConstructors(true);
6891 }
6892 
6893 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6894 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6895   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6896       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6897     ErrorUnsupported(LSD, "linkage spec");
6898     return;
6899   }
6900 
6901   EmitDeclContext(LSD);
6902 }
6903 
6904 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6905   // Device code should not be at top level.
6906   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6907     return;
6908 
6909   std::unique_ptr<CodeGenFunction> &CurCGF =
6910       GlobalTopLevelStmtBlockInFlight.first;
6911 
6912   // We emitted a top-level stmt but after it there is initialization.
6913   // Stop squashing the top-level stmts into a single function.
6914   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6915     CurCGF->FinishFunction(D->getEndLoc());
6916     CurCGF = nullptr;
6917   }
6918 
6919   if (!CurCGF) {
6920     // void __stmts__N(void)
6921     // FIXME: Ask the ABI name mangler to pick a name.
6922     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6923     FunctionArgList Args;
6924     QualType RetTy = getContext().VoidTy;
6925     const CGFunctionInfo &FnInfo =
6926         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6927     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6928     llvm::Function *Fn = llvm::Function::Create(
6929         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6930 
6931     CurCGF.reset(new CodeGenFunction(*this));
6932     GlobalTopLevelStmtBlockInFlight.second = D;
6933     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6934                           D->getBeginLoc(), D->getBeginLoc());
6935     CXXGlobalInits.push_back(Fn);
6936   }
6937 
6938   CurCGF->EmitStmt(D->getStmt());
6939 }
6940 
6941 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6942   for (auto *I : DC->decls()) {
6943     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6944     // are themselves considered "top-level", so EmitTopLevelDecl on an
6945     // ObjCImplDecl does not recursively visit them. We need to do that in
6946     // case they're nested inside another construct (LinkageSpecDecl /
6947     // ExportDecl) that does stop them from being considered "top-level".
6948     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6949       for (auto *M : OID->methods())
6950         EmitTopLevelDecl(M);
6951     }
6952 
6953     EmitTopLevelDecl(I);
6954   }
6955 }
6956 
6957 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6958 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6959   // Ignore dependent declarations.
6960   if (D->isTemplated())
6961     return;
6962 
6963   // Consteval function shouldn't be emitted.
6964   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6965     return;
6966 
6967   switch (D->getKind()) {
6968   case Decl::CXXConversion:
6969   case Decl::CXXMethod:
6970   case Decl::Function:
6971     EmitGlobal(cast<FunctionDecl>(D));
6972     // Always provide some coverage mapping
6973     // even for the functions that aren't emitted.
6974     AddDeferredUnusedCoverageMapping(D);
6975     break;
6976 
6977   case Decl::CXXDeductionGuide:
6978     // Function-like, but does not result in code emission.
6979     break;
6980 
6981   case Decl::Var:
6982   case Decl::Decomposition:
6983   case Decl::VarTemplateSpecialization:
6984     EmitGlobal(cast<VarDecl>(D));
6985     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6986       for (auto *B : DD->bindings())
6987         if (auto *HD = B->getHoldingVar())
6988           EmitGlobal(HD);
6989     break;
6990 
6991   // Indirect fields from global anonymous structs and unions can be
6992   // ignored; only the actual variable requires IR gen support.
6993   case Decl::IndirectField:
6994     break;
6995 
6996   // C++ Decls
6997   case Decl::Namespace:
6998     EmitDeclContext(cast<NamespaceDecl>(D));
6999     break;
7000   case Decl::ClassTemplateSpecialization: {
7001     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
7002     if (CGDebugInfo *DI = getModuleDebugInfo())
7003       if (Spec->getSpecializationKind() ==
7004               TSK_ExplicitInstantiationDefinition &&
7005           Spec->hasDefinition())
7006         DI->completeTemplateDefinition(*Spec);
7007   } [[fallthrough]];
7008   case Decl::CXXRecord: {
7009     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
7010     if (CGDebugInfo *DI = getModuleDebugInfo()) {
7011       if (CRD->hasDefinition())
7012         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7013       if (auto *ES = D->getASTContext().getExternalSource())
7014         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
7015           DI->completeUnusedClass(*CRD);
7016     }
7017     // Emit any static data members, they may be definitions.
7018     for (auto *I : CRD->decls())
7019       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
7020         EmitTopLevelDecl(I);
7021     break;
7022   }
7023     // No code generation needed.
7024   case Decl::UsingShadow:
7025   case Decl::ClassTemplate:
7026   case Decl::VarTemplate:
7027   case Decl::Concept:
7028   case Decl::VarTemplatePartialSpecialization:
7029   case Decl::FunctionTemplate:
7030   case Decl::TypeAliasTemplate:
7031   case Decl::Block:
7032   case Decl::Empty:
7033   case Decl::Binding:
7034     break;
7035   case Decl::Using:          // using X; [C++]
7036     if (CGDebugInfo *DI = getModuleDebugInfo())
7037         DI->EmitUsingDecl(cast<UsingDecl>(*D));
7038     break;
7039   case Decl::UsingEnum: // using enum X; [C++]
7040     if (CGDebugInfo *DI = getModuleDebugInfo())
7041       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
7042     break;
7043   case Decl::NamespaceAlias:
7044     if (CGDebugInfo *DI = getModuleDebugInfo())
7045         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
7046     break;
7047   case Decl::UsingDirective: // using namespace X; [C++]
7048     if (CGDebugInfo *DI = getModuleDebugInfo())
7049       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
7050     break;
7051   case Decl::CXXConstructor:
7052     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
7053     break;
7054   case Decl::CXXDestructor:
7055     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7056     break;
7057 
7058   case Decl::StaticAssert:
7059     // Nothing to do.
7060     break;
7061 
7062   // Objective-C Decls
7063 
7064   // Forward declarations, no (immediate) code generation.
7065   case Decl::ObjCInterface:
7066   case Decl::ObjCCategory:
7067     break;
7068 
7069   case Decl::ObjCProtocol: {
7070     auto *Proto = cast<ObjCProtocolDecl>(D);
7071     if (Proto->isThisDeclarationADefinition())
7072       ObjCRuntime->GenerateProtocol(Proto);
7073     break;
7074   }
7075 
7076   case Decl::ObjCCategoryImpl:
7077     // Categories have properties but don't support synthesize so we
7078     // can ignore them here.
7079     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7080     break;
7081 
7082   case Decl::ObjCImplementation: {
7083     auto *OMD = cast<ObjCImplementationDecl>(D);
7084     EmitObjCPropertyImplementations(OMD);
7085     EmitObjCIvarInitializations(OMD);
7086     ObjCRuntime->GenerateClass(OMD);
7087     // Emit global variable debug information.
7088     if (CGDebugInfo *DI = getModuleDebugInfo())
7089       if (getCodeGenOpts().hasReducedDebugInfo())
7090         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7091             OMD->getClassInterface()), OMD->getLocation());
7092     break;
7093   }
7094   case Decl::ObjCMethod: {
7095     auto *OMD = cast<ObjCMethodDecl>(D);
7096     // If this is not a prototype, emit the body.
7097     if (OMD->getBody())
7098       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7099     break;
7100   }
7101   case Decl::ObjCCompatibleAlias:
7102     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7103     break;
7104 
7105   case Decl::PragmaComment: {
7106     const auto *PCD = cast<PragmaCommentDecl>(D);
7107     switch (PCD->getCommentKind()) {
7108     case PCK_Unknown:
7109       llvm_unreachable("unexpected pragma comment kind");
7110     case PCK_Linker:
7111       AppendLinkerOptions(PCD->getArg());
7112       break;
7113     case PCK_Lib:
7114         AddDependentLib(PCD->getArg());
7115       break;
7116     case PCK_Compiler:
7117     case PCK_ExeStr:
7118     case PCK_User:
7119       break; // We ignore all of these.
7120     }
7121     break;
7122   }
7123 
7124   case Decl::PragmaDetectMismatch: {
7125     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7126     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7127     break;
7128   }
7129 
7130   case Decl::LinkageSpec:
7131     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7132     break;
7133 
7134   case Decl::FileScopeAsm: {
7135     // File-scope asm is ignored during device-side CUDA compilation.
7136     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7137       break;
7138     // File-scope asm is ignored during device-side OpenMP compilation.
7139     if (LangOpts.OpenMPIsTargetDevice)
7140       break;
7141     // File-scope asm is ignored during device-side SYCL compilation.
7142     if (LangOpts.SYCLIsDevice)
7143       break;
7144     auto *AD = cast<FileScopeAsmDecl>(D);
7145     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7146     break;
7147   }
7148 
7149   case Decl::TopLevelStmt:
7150     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7151     break;
7152 
7153   case Decl::Import: {
7154     auto *Import = cast<ImportDecl>(D);
7155 
7156     // If we've already imported this module, we're done.
7157     if (!ImportedModules.insert(Import->getImportedModule()))
7158       break;
7159 
7160     // Emit debug information for direct imports.
7161     if (!Import->getImportedOwningModule()) {
7162       if (CGDebugInfo *DI = getModuleDebugInfo())
7163         DI->EmitImportDecl(*Import);
7164     }
7165 
7166     // For C++ standard modules we are done - we will call the module
7167     // initializer for imported modules, and that will likewise call those for
7168     // any imports it has.
7169     if (CXX20ModuleInits && Import->getImportedModule() &&
7170         Import->getImportedModule()->isNamedModule())
7171       break;
7172 
7173     // For clang C++ module map modules the initializers for sub-modules are
7174     // emitted here.
7175 
7176     // Find all of the submodules and emit the module initializers.
7177     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7178     SmallVector<clang::Module *, 16> Stack;
7179     Visited.insert(Import->getImportedModule());
7180     Stack.push_back(Import->getImportedModule());
7181 
7182     while (!Stack.empty()) {
7183       clang::Module *Mod = Stack.pop_back_val();
7184       if (!EmittedModuleInitializers.insert(Mod).second)
7185         continue;
7186 
7187       for (auto *D : Context.getModuleInitializers(Mod))
7188         EmitTopLevelDecl(D);
7189 
7190       // Visit the submodules of this module.
7191       for (auto *Submodule : Mod->submodules()) {
7192         // Skip explicit children; they need to be explicitly imported to emit
7193         // the initializers.
7194         if (Submodule->IsExplicit)
7195           continue;
7196 
7197         if (Visited.insert(Submodule).second)
7198           Stack.push_back(Submodule);
7199       }
7200     }
7201     break;
7202   }
7203 
7204   case Decl::Export:
7205     EmitDeclContext(cast<ExportDecl>(D));
7206     break;
7207 
7208   case Decl::OMPThreadPrivate:
7209     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7210     break;
7211 
7212   case Decl::OMPAllocate:
7213     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7214     break;
7215 
7216   case Decl::OMPDeclareReduction:
7217     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7218     break;
7219 
7220   case Decl::OMPDeclareMapper:
7221     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7222     break;
7223 
7224   case Decl::OMPRequires:
7225     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7226     break;
7227 
7228   case Decl::Typedef:
7229   case Decl::TypeAlias: // using foo = bar; [C++11]
7230     if (CGDebugInfo *DI = getModuleDebugInfo())
7231       DI->EmitAndRetainType(
7232           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7233     break;
7234 
7235   case Decl::Record:
7236     if (CGDebugInfo *DI = getModuleDebugInfo())
7237       if (cast<RecordDecl>(D)->getDefinition())
7238         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7239     break;
7240 
7241   case Decl::Enum:
7242     if (CGDebugInfo *DI = getModuleDebugInfo())
7243       if (cast<EnumDecl>(D)->getDefinition())
7244         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7245     break;
7246 
7247   case Decl::HLSLBuffer:
7248     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7249     break;
7250 
7251   default:
7252     // Make sure we handled everything we should, every other kind is a
7253     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7254     // function. Need to recode Decl::Kind to do that easily.
7255     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7256     break;
7257   }
7258 }
7259 
7260 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7261   // Do we need to generate coverage mapping?
7262   if (!CodeGenOpts.CoverageMapping)
7263     return;
7264   switch (D->getKind()) {
7265   case Decl::CXXConversion:
7266   case Decl::CXXMethod:
7267   case Decl::Function:
7268   case Decl::ObjCMethod:
7269   case Decl::CXXConstructor:
7270   case Decl::CXXDestructor: {
7271     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7272       break;
7273     SourceManager &SM = getContext().getSourceManager();
7274     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7275       break;
7276     if (!llvm::coverage::SystemHeadersCoverage &&
7277         SM.isInSystemHeader(D->getBeginLoc()))
7278       break;
7279     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7280     break;
7281   }
7282   default:
7283     break;
7284   };
7285 }
7286 
7287 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7288   // Do we need to generate coverage mapping?
7289   if (!CodeGenOpts.CoverageMapping)
7290     return;
7291   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7292     if (Fn->isTemplateInstantiation())
7293       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7294   }
7295   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7296 }
7297 
7298 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7299   // We call takeVector() here to avoid use-after-free.
7300   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7301   // we deserialize function bodies to emit coverage info for them, and that
7302   // deserializes more declarations. How should we handle that case?
7303   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7304     if (!Entry.second)
7305       continue;
7306     const Decl *D = Entry.first;
7307     switch (D->getKind()) {
7308     case Decl::CXXConversion:
7309     case Decl::CXXMethod:
7310     case Decl::Function:
7311     case Decl::ObjCMethod: {
7312       CodeGenPGO PGO(*this);
7313       GlobalDecl GD(cast<FunctionDecl>(D));
7314       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7315                                   getFunctionLinkage(GD));
7316       break;
7317     }
7318     case Decl::CXXConstructor: {
7319       CodeGenPGO PGO(*this);
7320       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7321       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7322                                   getFunctionLinkage(GD));
7323       break;
7324     }
7325     case Decl::CXXDestructor: {
7326       CodeGenPGO PGO(*this);
7327       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7328       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7329                                   getFunctionLinkage(GD));
7330       break;
7331     }
7332     default:
7333       break;
7334     };
7335   }
7336 }
7337 
7338 void CodeGenModule::EmitMainVoidAlias() {
7339   // In order to transition away from "__original_main" gracefully, emit an
7340   // alias for "main" in the no-argument case so that libc can detect when
7341   // new-style no-argument main is in used.
7342   if (llvm::Function *F = getModule().getFunction("main")) {
7343     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7344         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7345       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7346       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7347     }
7348   }
7349 }
7350 
7351 /// Turns the given pointer into a constant.
7352 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7353                                           const void *Ptr) {
7354   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7355   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7356   return llvm::ConstantInt::get(i64, PtrInt);
7357 }
7358 
7359 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7360                                    llvm::NamedMDNode *&GlobalMetadata,
7361                                    GlobalDecl D,
7362                                    llvm::GlobalValue *Addr) {
7363   if (!GlobalMetadata)
7364     GlobalMetadata =
7365       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7366 
7367   // TODO: should we report variant information for ctors/dtors?
7368   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7369                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7370                                CGM.getLLVMContext(), D.getDecl()))};
7371   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7372 }
7373 
7374 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7375                                                  llvm::GlobalValue *CppFunc) {
7376   // Store the list of ifuncs we need to replace uses in.
7377   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7378   // List of ConstantExprs that we should be able to delete when we're done
7379   // here.
7380   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7381 
7382   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7383   if (Elem == CppFunc)
7384     return false;
7385 
7386   // First make sure that all users of this are ifuncs (or ifuncs via a
7387   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7388   // later.
7389   for (llvm::User *User : Elem->users()) {
7390     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7391     // ifunc directly. In any other case, just give up, as we don't know what we
7392     // could break by changing those.
7393     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7394       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7395         return false;
7396 
7397       for (llvm::User *CEUser : ConstExpr->users()) {
7398         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7399           IFuncs.push_back(IFunc);
7400         } else {
7401           return false;
7402         }
7403       }
7404       CEs.push_back(ConstExpr);
7405     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7406       IFuncs.push_back(IFunc);
7407     } else {
7408       // This user is one we don't know how to handle, so fail redirection. This
7409       // will result in an ifunc retaining a resolver name that will ultimately
7410       // fail to be resolved to a defined function.
7411       return false;
7412     }
7413   }
7414 
7415   // Now we know this is a valid case where we can do this alias replacement, we
7416   // need to remove all of the references to Elem (and the bitcasts!) so we can
7417   // delete it.
7418   for (llvm::GlobalIFunc *IFunc : IFuncs)
7419     IFunc->setResolver(nullptr);
7420   for (llvm::ConstantExpr *ConstExpr : CEs)
7421     ConstExpr->destroyConstant();
7422 
7423   // We should now be out of uses for the 'old' version of this function, so we
7424   // can erase it as well.
7425   Elem->eraseFromParent();
7426 
7427   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7428     // The type of the resolver is always just a function-type that returns the
7429     // type of the IFunc, so create that here. If the type of the actual
7430     // resolver doesn't match, it just gets bitcast to the right thing.
7431     auto *ResolverTy =
7432         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7433     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7434         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7435     IFunc->setResolver(Resolver);
7436   }
7437   return true;
7438 }
7439 
7440 /// For each function which is declared within an extern "C" region and marked
7441 /// as 'used', but has internal linkage, create an alias from the unmangled
7442 /// name to the mangled name if possible. People expect to be able to refer
7443 /// to such functions with an unmangled name from inline assembly within the
7444 /// same translation unit.
7445 void CodeGenModule::EmitStaticExternCAliases() {
7446   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7447     return;
7448   for (auto &I : StaticExternCValues) {
7449     const IdentifierInfo *Name = I.first;
7450     llvm::GlobalValue *Val = I.second;
7451 
7452     // If Val is null, that implies there were multiple declarations that each
7453     // had a claim to the unmangled name. In this case, generation of the alias
7454     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7455     if (!Val)
7456       break;
7457 
7458     llvm::GlobalValue *ExistingElem =
7459         getModule().getNamedValue(Name->getName());
7460 
7461     // If there is either not something already by this name, or we were able to
7462     // replace all uses from IFuncs, create the alias.
7463     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7464       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7465   }
7466 }
7467 
7468 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7469                                              GlobalDecl &Result) const {
7470   auto Res = Manglings.find(MangledName);
7471   if (Res == Manglings.end())
7472     return false;
7473   Result = Res->getValue();
7474   return true;
7475 }
7476 
7477 /// Emits metadata nodes associating all the global values in the
7478 /// current module with the Decls they came from.  This is useful for
7479 /// projects using IR gen as a subroutine.
7480 ///
7481 /// Since there's currently no way to associate an MDNode directly
7482 /// with an llvm::GlobalValue, we create a global named metadata
7483 /// with the name 'clang.global.decl.ptrs'.
7484 void CodeGenModule::EmitDeclMetadata() {
7485   llvm::NamedMDNode *GlobalMetadata = nullptr;
7486 
7487   for (auto &I : MangledDeclNames) {
7488     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7489     // Some mangled names don't necessarily have an associated GlobalValue
7490     // in this module, e.g. if we mangled it for DebugInfo.
7491     if (Addr)
7492       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7493   }
7494 }
7495 
7496 /// Emits metadata nodes for all the local variables in the current
7497 /// function.
7498 void CodeGenFunction::EmitDeclMetadata() {
7499   if (LocalDeclMap.empty()) return;
7500 
7501   llvm::LLVMContext &Context = getLLVMContext();
7502 
7503   // Find the unique metadata ID for this name.
7504   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7505 
7506   llvm::NamedMDNode *GlobalMetadata = nullptr;
7507 
7508   for (auto &I : LocalDeclMap) {
7509     const Decl *D = I.first;
7510     llvm::Value *Addr = I.second.emitRawPointer(*this);
7511     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7512       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7513       Alloca->setMetadata(
7514           DeclPtrKind, llvm::MDNode::get(
7515                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7516     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7517       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7518       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7519     }
7520   }
7521 }
7522 
7523 void CodeGenModule::EmitVersionIdentMetadata() {
7524   llvm::NamedMDNode *IdentMetadata =
7525     TheModule.getOrInsertNamedMetadata("llvm.ident");
7526   std::string Version = getClangFullVersion();
7527   llvm::LLVMContext &Ctx = TheModule.getContext();
7528 
7529   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7530   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7531 }
7532 
7533 void CodeGenModule::EmitCommandLineMetadata() {
7534   llvm::NamedMDNode *CommandLineMetadata =
7535     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7536   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7537   llvm::LLVMContext &Ctx = TheModule.getContext();
7538 
7539   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7540   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7541 }
7542 
7543 void CodeGenModule::EmitCoverageFile() {
7544   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7545   if (!CUNode)
7546     return;
7547 
7548   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7549   llvm::LLVMContext &Ctx = TheModule.getContext();
7550   auto *CoverageDataFile =
7551       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7552   auto *CoverageNotesFile =
7553       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7554   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7555     llvm::MDNode *CU = CUNode->getOperand(i);
7556     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7557     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7558   }
7559 }
7560 
7561 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7562                                                        bool ForEH) {
7563   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7564   // FIXME: should we even be calling this method if RTTI is disabled
7565   // and it's not for EH?
7566   if (!shouldEmitRTTI(ForEH))
7567     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7568 
7569   if (ForEH && Ty->isObjCObjectPointerType() &&
7570       LangOpts.ObjCRuntime.isGNUFamily())
7571     return ObjCRuntime->GetEHType(Ty);
7572 
7573   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7574 }
7575 
7576 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7577   // Do not emit threadprivates in simd-only mode.
7578   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7579     return;
7580   for (auto RefExpr : D->varlist()) {
7581     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7582     bool PerformInit =
7583         VD->getAnyInitializer() &&
7584         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7585                                                         /*ForRef=*/false);
7586 
7587     Address Addr(GetAddrOfGlobalVar(VD),
7588                  getTypes().ConvertTypeForMem(VD->getType()),
7589                  getContext().getDeclAlign(VD));
7590     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7591             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7592       CXXGlobalInits.push_back(InitFunction);
7593   }
7594 }
7595 
7596 llvm::Metadata *
7597 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7598                                             StringRef Suffix) {
7599   if (auto *FnType = T->getAs<FunctionProtoType>())
7600     T = getContext().getFunctionType(
7601         FnType->getReturnType(), FnType->getParamTypes(),
7602         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7603 
7604   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7605   if (InternalId)
7606     return InternalId;
7607 
7608   if (isExternallyVisible(T->getLinkage())) {
7609     std::string OutName;
7610     llvm::raw_string_ostream Out(OutName);
7611     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7612         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7613 
7614     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7615       Out << ".normalized";
7616 
7617     Out << Suffix;
7618 
7619     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7620   } else {
7621     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7622                                            llvm::ArrayRef<llvm::Metadata *>());
7623   }
7624 
7625   return InternalId;
7626 }
7627 
7628 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7629   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7630 }
7631 
7632 llvm::Metadata *
7633 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7634   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7635 }
7636 
7637 // Generalize pointer types to a void pointer with the qualifiers of the
7638 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7639 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7640 // 'void *'.
7641 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7642   if (!Ty->isPointerType())
7643     return Ty;
7644 
7645   return Ctx.getPointerType(
7646       QualType(Ctx.VoidTy).withCVRQualifiers(
7647           Ty->getPointeeType().getCVRQualifiers()));
7648 }
7649 
7650 // Apply type generalization to a FunctionType's return and argument types
7651 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7652   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7653     SmallVector<QualType, 8> GeneralizedParams;
7654     for (auto &Param : FnType->param_types())
7655       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7656 
7657     return Ctx.getFunctionType(
7658         GeneralizeType(Ctx, FnType->getReturnType()),
7659         GeneralizedParams, FnType->getExtProtoInfo());
7660   }
7661 
7662   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7663     return Ctx.getFunctionNoProtoType(
7664         GeneralizeType(Ctx, FnType->getReturnType()));
7665 
7666   llvm_unreachable("Encountered unknown FunctionType");
7667 }
7668 
7669 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7670   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7671                                       GeneralizedMetadataIdMap, ".generalized");
7672 }
7673 
7674 /// Returns whether this module needs the "all-vtables" type identifier.
7675 bool CodeGenModule::NeedAllVtablesTypeId() const {
7676   // Returns true if at least one of vtable-based CFI checkers is enabled and
7677   // is not in the trapping mode.
7678   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7679            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7680           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7681            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7682           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7683            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7684           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7685            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7686 }
7687 
7688 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7689                                           CharUnits Offset,
7690                                           const CXXRecordDecl *RD) {
7691   llvm::Metadata *MD =
7692       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7693   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7694 
7695   if (CodeGenOpts.SanitizeCfiCrossDso)
7696     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7697       VTable->addTypeMetadata(Offset.getQuantity(),
7698                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7699 
7700   if (NeedAllVtablesTypeId()) {
7701     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7702     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7703   }
7704 }
7705 
7706 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7707   if (!SanStats)
7708     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7709 
7710   return *SanStats;
7711 }
7712 
7713 llvm::Value *
7714 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7715                                                   CodeGenFunction &CGF) {
7716   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7717   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7718   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7719   auto *Call = CGF.EmitRuntimeCall(
7720       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7721   return Call;
7722 }
7723 
7724 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7725     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7726   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7727                                  /* forPointeeType= */ true);
7728 }
7729 
7730 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7731                                                  LValueBaseInfo *BaseInfo,
7732                                                  TBAAAccessInfo *TBAAInfo,
7733                                                  bool forPointeeType) {
7734   if (TBAAInfo)
7735     *TBAAInfo = getTBAAAccessInfo(T);
7736 
7737   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7738   // that doesn't return the information we need to compute BaseInfo.
7739 
7740   // Honor alignment typedef attributes even on incomplete types.
7741   // We also honor them straight for C++ class types, even as pointees;
7742   // there's an expressivity gap here.
7743   if (auto TT = T->getAs<TypedefType>()) {
7744     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7745       if (BaseInfo)
7746         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7747       return getContext().toCharUnitsFromBits(Align);
7748     }
7749   }
7750 
7751   bool AlignForArray = T->isArrayType();
7752 
7753   // Analyze the base element type, so we don't get confused by incomplete
7754   // array types.
7755   T = getContext().getBaseElementType(T);
7756 
7757   if (T->isIncompleteType()) {
7758     // We could try to replicate the logic from
7759     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7760     // type is incomplete, so it's impossible to test. We could try to reuse
7761     // getTypeAlignIfKnown, but that doesn't return the information we need
7762     // to set BaseInfo.  So just ignore the possibility that the alignment is
7763     // greater than one.
7764     if (BaseInfo)
7765       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7766     return CharUnits::One();
7767   }
7768 
7769   if (BaseInfo)
7770     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7771 
7772   CharUnits Alignment;
7773   const CXXRecordDecl *RD;
7774   if (T.getQualifiers().hasUnaligned()) {
7775     Alignment = CharUnits::One();
7776   } else if (forPointeeType && !AlignForArray &&
7777              (RD = T->getAsCXXRecordDecl())) {
7778     // For C++ class pointees, we don't know whether we're pointing at a
7779     // base or a complete object, so we generally need to use the
7780     // non-virtual alignment.
7781     Alignment = getClassPointerAlignment(RD);
7782   } else {
7783     Alignment = getContext().getTypeAlignInChars(T);
7784   }
7785 
7786   // Cap to the global maximum type alignment unless the alignment
7787   // was somehow explicit on the type.
7788   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7789     if (Alignment.getQuantity() > MaxAlign &&
7790         !getContext().isAlignmentRequired(T))
7791       Alignment = CharUnits::fromQuantity(MaxAlign);
7792   }
7793   return Alignment;
7794 }
7795 
7796 bool CodeGenModule::stopAutoInit() {
7797   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7798   if (StopAfter) {
7799     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7800     // used
7801     if (NumAutoVarInit >= StopAfter) {
7802       return true;
7803     }
7804     if (!NumAutoVarInit) {
7805       unsigned DiagID = getDiags().getCustomDiagID(
7806           DiagnosticsEngine::Warning,
7807           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7808           "number of times ftrivial-auto-var-init=%1 gets applied.");
7809       getDiags().Report(DiagID)
7810           << StopAfter
7811           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7812                       LangOptions::TrivialAutoVarInitKind::Zero
7813                   ? "zero"
7814                   : "pattern");
7815     }
7816     ++NumAutoVarInit;
7817   }
7818   return false;
7819 }
7820 
7821 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7822                                                     const Decl *D) const {
7823   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7824   // postfix beginning with '.' since the symbol name can be demangled.
7825   if (LangOpts.HIP)
7826     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7827   else
7828     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7829 
7830   // If the CUID is not specified we try to generate a unique postfix.
7831   if (getLangOpts().CUID.empty()) {
7832     SourceManager &SM = getContext().getSourceManager();
7833     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7834     assert(PLoc.isValid() && "Source location is expected to be valid.");
7835 
7836     // Get the hash of the user defined macros.
7837     llvm::MD5 Hash;
7838     llvm::MD5::MD5Result Result;
7839     for (const auto &Arg : PreprocessorOpts.Macros)
7840       Hash.update(Arg.first);
7841     Hash.final(Result);
7842 
7843     // Get the UniqueID for the file containing the decl.
7844     llvm::sys::fs::UniqueID ID;
7845     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7846       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7847       assert(PLoc.isValid() && "Source location is expected to be valid.");
7848       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7849         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7850             << PLoc.getFilename() << EC.message();
7851     }
7852     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7853        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7854   } else {
7855     OS << getContext().getCUIDHash();
7856   }
7857 }
7858 
7859 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7860   assert(DeferredDeclsToEmit.empty() &&
7861          "Should have emitted all decls deferred to emit.");
7862   assert(NewBuilder->DeferredDecls.empty() &&
7863          "Newly created module should not have deferred decls");
7864   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7865   assert(EmittedDeferredDecls.empty() &&
7866          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7867 
7868   assert(NewBuilder->DeferredVTables.empty() &&
7869          "Newly created module should not have deferred vtables");
7870   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7871 
7872   assert(NewBuilder->MangledDeclNames.empty() &&
7873          "Newly created module should not have mangled decl names");
7874   assert(NewBuilder->Manglings.empty() &&
7875          "Newly created module should not have manglings");
7876   NewBuilder->Manglings = std::move(Manglings);
7877 
7878   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7879 
7880   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7881 }
7882