1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CharInfo.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/Module.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Basic/TargetOptions.h" 39 #include "clang/Frontend/CodeGenOptions.h" 40 #include "llvm/ADT/APSInt.h" 41 #include "llvm/ADT/Triple.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/CallSite.h" 48 #include "llvm/Support/ConvertUTF.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Target/Mangler.h" 51 52 using namespace clang; 53 using namespace CodeGen; 54 55 static const char AnnotationSection[] = "llvm.metadata"; 56 57 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 58 switch (CGM.getContext().getTargetInfo().getCXXABI().getKind()) { 59 case TargetCXXABI::GenericAArch64: 60 case TargetCXXABI::GenericARM: 61 case TargetCXXABI::iOS: 62 case TargetCXXABI::GenericItanium: 63 return *CreateItaniumCXXABI(CGM); 64 case TargetCXXABI::Microsoft: 65 return *CreateMicrosoftCXXABI(CGM); 66 } 67 68 llvm_unreachable("invalid C++ ABI kind"); 69 } 70 71 72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 73 const TargetOptions &TO, llvm::Module &M, 74 const llvm::DataLayout &TD, 75 DiagnosticsEngine &diags) 76 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TargetOpts(TO), 77 TheModule(M), TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags), 78 ABI(createCXXABI(*this)), 79 Types(*this), 80 TBAA(0), 81 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 82 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 83 RRData(0), CFConstantStringClassRef(0), 84 ConstantStringClassRef(0), NSConstantStringType(0), 85 VMContext(M.getContext()), 86 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 87 BlockObjectAssign(0), BlockObjectDispose(0), 88 BlockDescriptorType(0), GenericBlockLiteralType(0), 89 SanitizerBlacklist(CGO.SanitizerBlacklistFile), 90 SanOpts(SanitizerBlacklist.isIn(M) ? 91 SanitizerOptions::Disabled : LangOpts.Sanitize) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 106 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 107 Int8PtrTy = Int8Ty->getPointerTo(0); 108 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 109 110 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 111 112 if (LangOpts.ObjC1) 113 createObjCRuntime(); 114 if (LangOpts.OpenCL) 115 createOpenCLRuntime(); 116 if (LangOpts.CUDA) 117 createCUDARuntime(); 118 119 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 120 if (SanOpts.Thread || 121 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 122 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 123 ABI.getMangleContext()); 124 125 // If debug info or coverage generation is enabled, create the CGDebugInfo 126 // object. 127 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 128 CodeGenOpts.EmitGcovArcs || 129 CodeGenOpts.EmitGcovNotes) 130 DebugInfo = new CGDebugInfo(*this); 131 132 Block.GlobalUniqueCount = 0; 133 134 if (C.getLangOpts().ObjCAutoRefCount) 135 ARCData = new ARCEntrypoints(); 136 RRData = new RREntrypoints(); 137 } 138 139 CodeGenModule::~CodeGenModule() { 140 delete ObjCRuntime; 141 delete OpenCLRuntime; 142 delete CUDARuntime; 143 delete TheTargetCodeGenInfo; 144 delete &ABI; 145 delete TBAA; 146 delete DebugInfo; 147 delete ARCData; 148 delete RRData; 149 } 150 151 void CodeGenModule::createObjCRuntime() { 152 // This is just isGNUFamily(), but we want to force implementors of 153 // new ABIs to decide how best to do this. 154 switch (LangOpts.ObjCRuntime.getKind()) { 155 case ObjCRuntime::GNUstep: 156 case ObjCRuntime::GCC: 157 case ObjCRuntime::ObjFW: 158 ObjCRuntime = CreateGNUObjCRuntime(*this); 159 return; 160 161 case ObjCRuntime::FragileMacOSX: 162 case ObjCRuntime::MacOSX: 163 case ObjCRuntime::iOS: 164 ObjCRuntime = CreateMacObjCRuntime(*this); 165 return; 166 } 167 llvm_unreachable("bad runtime kind"); 168 } 169 170 void CodeGenModule::createOpenCLRuntime() { 171 OpenCLRuntime = new CGOpenCLRuntime(*this); 172 } 173 174 void CodeGenModule::createCUDARuntime() { 175 CUDARuntime = CreateNVCUDARuntime(*this); 176 } 177 178 void CodeGenModule::Release() { 179 EmitDeferred(); 180 EmitCXXGlobalInitFunc(); 181 EmitCXXGlobalDtorFunc(); 182 if (ObjCRuntime) 183 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 184 AddGlobalCtor(ObjCInitFunction); 185 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 186 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 187 EmitGlobalAnnotations(); 188 EmitLLVMUsed(); 189 190 if (CodeGenOpts.ModulesAutolink) { 191 EmitModuleLinkOptions(); 192 } 193 194 SimplifyPersonality(); 195 196 if (getCodeGenOpts().EmitDeclMetadata) 197 EmitDeclMetadata(); 198 199 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 200 EmitCoverageFile(); 201 202 if (DebugInfo) 203 DebugInfo->finalize(); 204 } 205 206 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 207 // Make sure that this type is translated. 208 Types.UpdateCompletedType(TD); 209 } 210 211 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 212 if (!TBAA) 213 return 0; 214 return TBAA->getTBAAInfo(QTy); 215 } 216 217 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 218 if (!TBAA) 219 return 0; 220 return TBAA->getTBAAInfoForVTablePtr(); 221 } 222 223 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 224 if (!TBAA) 225 return 0; 226 return TBAA->getTBAAStructInfo(QTy); 227 } 228 229 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 230 llvm::MDNode *TBAAInfo) { 231 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 232 } 233 234 bool CodeGenModule::isTargetDarwin() const { 235 return getContext().getTargetInfo().getTriple().isOSDarwin(); 236 } 237 238 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 239 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 240 getDiags().Report(Context.getFullLoc(loc), diagID); 241 } 242 243 /// ErrorUnsupported - Print out an error that codegen doesn't support the 244 /// specified stmt yet. 245 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 246 bool OmitOnError) { 247 if (OmitOnError && getDiags().hasErrorOccurred()) 248 return; 249 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 250 "cannot compile this %0 yet"); 251 std::string Msg = Type; 252 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 253 << Msg << S->getSourceRange(); 254 } 255 256 /// ErrorUnsupported - Print out an error that codegen doesn't support the 257 /// specified decl yet. 258 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 259 bool OmitOnError) { 260 if (OmitOnError && getDiags().hasErrorOccurred()) 261 return; 262 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 263 "cannot compile this %0 yet"); 264 std::string Msg = Type; 265 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 266 } 267 268 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 269 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 270 } 271 272 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 273 const NamedDecl *D) const { 274 // Internal definitions always have default visibility. 275 if (GV->hasLocalLinkage()) { 276 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 277 return; 278 } 279 280 // Set visibility for definitions. 281 LinkageInfo LV = D->getLinkageAndVisibility(); 282 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 283 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 284 } 285 286 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 287 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 288 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 289 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 290 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 291 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 292 } 293 294 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 295 CodeGenOptions::TLSModel M) { 296 switch (M) { 297 case CodeGenOptions::GeneralDynamicTLSModel: 298 return llvm::GlobalVariable::GeneralDynamicTLSModel; 299 case CodeGenOptions::LocalDynamicTLSModel: 300 return llvm::GlobalVariable::LocalDynamicTLSModel; 301 case CodeGenOptions::InitialExecTLSModel: 302 return llvm::GlobalVariable::InitialExecTLSModel; 303 case CodeGenOptions::LocalExecTLSModel: 304 return llvm::GlobalVariable::LocalExecTLSModel; 305 } 306 llvm_unreachable("Invalid TLS model!"); 307 } 308 309 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 310 const VarDecl &D) const { 311 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!"); 312 313 llvm::GlobalVariable::ThreadLocalMode TLM; 314 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 315 316 // Override the TLS model if it is explicitly specified. 317 if (D.hasAttr<TLSModelAttr>()) { 318 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 319 TLM = GetLLVMTLSModel(Attr->getModel()); 320 } 321 322 GV->setThreadLocalMode(TLM); 323 } 324 325 /// Set the symbol visibility of type information (vtable and RTTI) 326 /// associated with the given type. 327 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 328 const CXXRecordDecl *RD, 329 TypeVisibilityKind TVK) const { 330 setGlobalVisibility(GV, RD); 331 332 if (!CodeGenOpts.HiddenWeakVTables) 333 return; 334 335 // We never want to drop the visibility for RTTI names. 336 if (TVK == TVK_ForRTTIName) 337 return; 338 339 // We want to drop the visibility to hidden for weak type symbols. 340 // This isn't possible if there might be unresolved references 341 // elsewhere that rely on this symbol being visible. 342 343 // This should be kept roughly in sync with setThunkVisibility 344 // in CGVTables.cpp. 345 346 // Preconditions. 347 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 348 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 349 return; 350 351 // Don't override an explicit visibility attribute. 352 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType)) 353 return; 354 355 switch (RD->getTemplateSpecializationKind()) { 356 // We have to disable the optimization if this is an EI definition 357 // because there might be EI declarations in other shared objects. 358 case TSK_ExplicitInstantiationDefinition: 359 case TSK_ExplicitInstantiationDeclaration: 360 return; 361 362 // Every use of a non-template class's type information has to emit it. 363 case TSK_Undeclared: 364 break; 365 366 // In theory, implicit instantiations can ignore the possibility of 367 // an explicit instantiation declaration because there necessarily 368 // must be an EI definition somewhere with default visibility. In 369 // practice, it's possible to have an explicit instantiation for 370 // an arbitrary template class, and linkers aren't necessarily able 371 // to deal with mixed-visibility symbols. 372 case TSK_ExplicitSpecialization: 373 case TSK_ImplicitInstantiation: 374 return; 375 } 376 377 // If there's a key function, there may be translation units 378 // that don't have the key function's definition. But ignore 379 // this if we're emitting RTTI under -fno-rtti. 380 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 381 // FIXME: what should we do if we "lose" the key function during 382 // the emission of the file? 383 if (Context.getCurrentKeyFunction(RD)) 384 return; 385 } 386 387 // Otherwise, drop the visibility to hidden. 388 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 389 GV->setUnnamedAddr(true); 390 } 391 392 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 393 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 394 395 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 396 if (!Str.empty()) 397 return Str; 398 399 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 400 IdentifierInfo *II = ND->getIdentifier(); 401 assert(II && "Attempt to mangle unnamed decl."); 402 403 Str = II->getName(); 404 return Str; 405 } 406 407 SmallString<256> Buffer; 408 llvm::raw_svector_ostream Out(Buffer); 409 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 410 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 411 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 412 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 413 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 414 getCXXABI().getMangleContext().mangleBlock(BD, Out, 415 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl())); 416 else 417 getCXXABI().getMangleContext().mangleName(ND, Out); 418 419 // Allocate space for the mangled name. 420 Out.flush(); 421 size_t Length = Buffer.size(); 422 char *Name = MangledNamesAllocator.Allocate<char>(Length); 423 std::copy(Buffer.begin(), Buffer.end(), Name); 424 425 Str = StringRef(Name, Length); 426 427 return Str; 428 } 429 430 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 431 const BlockDecl *BD) { 432 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 433 const Decl *D = GD.getDecl(); 434 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 435 if (D == 0) 436 MangleCtx.mangleGlobalBlock(BD, 437 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 438 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 439 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 440 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 441 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 442 else 443 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 444 } 445 446 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 447 return getModule().getNamedValue(Name); 448 } 449 450 /// AddGlobalCtor - Add a function to the list that will be called before 451 /// main() runs. 452 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 453 // FIXME: Type coercion of void()* types. 454 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 455 } 456 457 /// AddGlobalDtor - Add a function to the list that will be called 458 /// when the module is unloaded. 459 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 460 // FIXME: Type coercion of void()* types. 461 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 462 } 463 464 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 465 // Ctor function type is void()*. 466 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 467 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 468 469 // Get the type of a ctor entry, { i32, void ()* }. 470 llvm::StructType *CtorStructTy = 471 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 472 473 // Construct the constructor and destructor arrays. 474 SmallVector<llvm::Constant*, 8> Ctors; 475 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 476 llvm::Constant *S[] = { 477 llvm::ConstantInt::get(Int32Ty, I->second, false), 478 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 479 }; 480 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 481 } 482 483 if (!Ctors.empty()) { 484 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 485 new llvm::GlobalVariable(TheModule, AT, false, 486 llvm::GlobalValue::AppendingLinkage, 487 llvm::ConstantArray::get(AT, Ctors), 488 GlobalName); 489 } 490 } 491 492 llvm::GlobalValue::LinkageTypes 493 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 494 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 495 496 if (Linkage == GVA_Internal) 497 return llvm::Function::InternalLinkage; 498 499 if (D->hasAttr<DLLExportAttr>()) 500 return llvm::Function::DLLExportLinkage; 501 502 if (D->hasAttr<WeakAttr>()) 503 return llvm::Function::WeakAnyLinkage; 504 505 // In C99 mode, 'inline' functions are guaranteed to have a strong 506 // definition somewhere else, so we can use available_externally linkage. 507 if (Linkage == GVA_C99Inline) 508 return llvm::Function::AvailableExternallyLinkage; 509 510 // Note that Apple's kernel linker doesn't support symbol 511 // coalescing, so we need to avoid linkonce and weak linkages there. 512 // Normally, this means we just map to internal, but for explicit 513 // instantiations we'll map to external. 514 515 // In C++, the compiler has to emit a definition in every translation unit 516 // that references the function. We should use linkonce_odr because 517 // a) if all references in this translation unit are optimized away, we 518 // don't need to codegen it. b) if the function persists, it needs to be 519 // merged with other definitions. c) C++ has the ODR, so we know the 520 // definition is dependable. 521 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 522 return !Context.getLangOpts().AppleKext 523 ? llvm::Function::LinkOnceODRLinkage 524 : llvm::Function::InternalLinkage; 525 526 // An explicit instantiation of a template has weak linkage, since 527 // explicit instantiations can occur in multiple translation units 528 // and must all be equivalent. However, we are not allowed to 529 // throw away these explicit instantiations. 530 if (Linkage == GVA_ExplicitTemplateInstantiation) 531 return !Context.getLangOpts().AppleKext 532 ? llvm::Function::WeakODRLinkage 533 : llvm::Function::ExternalLinkage; 534 535 // Otherwise, we have strong external linkage. 536 assert(Linkage == GVA_StrongExternal); 537 return llvm::Function::ExternalLinkage; 538 } 539 540 541 /// SetFunctionDefinitionAttributes - Set attributes for a global. 542 /// 543 /// FIXME: This is currently only done for aliases and functions, but not for 544 /// variables (these details are set in EmitGlobalVarDefinition for variables). 545 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 546 llvm::GlobalValue *GV) { 547 SetCommonAttributes(D, GV); 548 } 549 550 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 551 const CGFunctionInfo &Info, 552 llvm::Function *F) { 553 unsigned CallingConv; 554 AttributeListType AttributeList; 555 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 556 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 557 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 558 } 559 560 /// Determines whether the language options require us to model 561 /// unwind exceptions. We treat -fexceptions as mandating this 562 /// except under the fragile ObjC ABI with only ObjC exceptions 563 /// enabled. This means, for example, that C with -fexceptions 564 /// enables this. 565 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 566 // If exceptions are completely disabled, obviously this is false. 567 if (!LangOpts.Exceptions) return false; 568 569 // If C++ exceptions are enabled, this is true. 570 if (LangOpts.CXXExceptions) return true; 571 572 // If ObjC exceptions are enabled, this depends on the ABI. 573 if (LangOpts.ObjCExceptions) { 574 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 575 } 576 577 return true; 578 } 579 580 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 581 llvm::Function *F) { 582 if (CodeGenOpts.UnwindTables) 583 F->setHasUWTable(); 584 585 if (!hasUnwindExceptions(LangOpts)) 586 F->addFnAttr(llvm::Attribute::NoUnwind); 587 588 if (D->hasAttr<NakedAttr>()) { 589 // Naked implies noinline: we should not be inlining such functions. 590 F->addFnAttr(llvm::Attribute::Naked); 591 F->addFnAttr(llvm::Attribute::NoInline); 592 } 593 594 if (D->hasAttr<NoInlineAttr>()) 595 F->addFnAttr(llvm::Attribute::NoInline); 596 597 // (noinline wins over always_inline, and we can't specify both in IR) 598 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 599 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 600 llvm::Attribute::NoInline)) 601 F->addFnAttr(llvm::Attribute::AlwaysInline); 602 603 // FIXME: Communicate hot and cold attributes to LLVM more directly. 604 if (D->hasAttr<ColdAttr>()) 605 F->addFnAttr(llvm::Attribute::OptimizeForSize); 606 607 if (D->hasAttr<MinSizeAttr>()) 608 F->addFnAttr(llvm::Attribute::MinSize); 609 610 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 611 F->setUnnamedAddr(true); 612 613 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 614 if (MD->isVirtual()) 615 F->setUnnamedAddr(true); 616 617 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 618 F->addFnAttr(llvm::Attribute::StackProtect); 619 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 620 F->addFnAttr(llvm::Attribute::StackProtectReq); 621 622 // When AddressSanitizer is enabled, set SanitizeAddress attribute 623 // unless __attribute__((no_sanitize_address)) is used. 624 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 625 F->addFnAttr(llvm::Attribute::SanitizeAddress); 626 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 627 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) 628 F->addFnAttr(llvm::Attribute::SanitizeThread); 629 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 630 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 631 F->addFnAttr(llvm::Attribute::SanitizeMemory); 632 633 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 634 if (alignment) 635 F->setAlignment(alignment); 636 637 // C++ ABI requires 2-byte alignment for member functions. 638 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 639 F->setAlignment(2); 640 } 641 642 void CodeGenModule::SetCommonAttributes(const Decl *D, 643 llvm::GlobalValue *GV) { 644 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 645 setGlobalVisibility(GV, ND); 646 else 647 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 648 649 if (D->hasAttr<UsedAttr>()) 650 AddUsedGlobal(GV); 651 652 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 653 GV->setSection(SA->getName()); 654 655 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 656 } 657 658 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 659 llvm::Function *F, 660 const CGFunctionInfo &FI) { 661 SetLLVMFunctionAttributes(D, FI, F); 662 SetLLVMFunctionAttributesForDefinition(D, F); 663 664 F->setLinkage(llvm::Function::InternalLinkage); 665 666 SetCommonAttributes(D, F); 667 } 668 669 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 670 llvm::Function *F, 671 bool IsIncompleteFunction) { 672 if (unsigned IID = F->getIntrinsicID()) { 673 // If this is an intrinsic function, set the function's attributes 674 // to the intrinsic's attributes. 675 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 676 (llvm::Intrinsic::ID)IID)); 677 return; 678 } 679 680 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 681 682 if (!IsIncompleteFunction) 683 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 684 685 // Only a few attributes are set on declarations; these may later be 686 // overridden by a definition. 687 688 if (FD->hasAttr<DLLImportAttr>()) { 689 F->setLinkage(llvm::Function::DLLImportLinkage); 690 } else if (FD->hasAttr<WeakAttr>() || 691 FD->isWeakImported()) { 692 // "extern_weak" is overloaded in LLVM; we probably should have 693 // separate linkage types for this. 694 F->setLinkage(llvm::Function::ExternalWeakLinkage); 695 } else { 696 F->setLinkage(llvm::Function::ExternalLinkage); 697 698 LinkageInfo LV = FD->getLinkageAndVisibility(); 699 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 700 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 701 } 702 } 703 704 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 705 F->setSection(SA->getName()); 706 } 707 708 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 709 assert(!GV->isDeclaration() && 710 "Only globals with definition can force usage."); 711 LLVMUsed.push_back(GV); 712 } 713 714 void CodeGenModule::EmitLLVMUsed() { 715 // Don't create llvm.used if there is no need. 716 if (LLVMUsed.empty()) 717 return; 718 719 // Convert LLVMUsed to what ConstantArray needs. 720 SmallVector<llvm::Constant*, 8> UsedArray; 721 UsedArray.resize(LLVMUsed.size()); 722 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 723 UsedArray[i] = 724 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 725 Int8PtrTy); 726 } 727 728 if (UsedArray.empty()) 729 return; 730 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 731 732 llvm::GlobalVariable *GV = 733 new llvm::GlobalVariable(getModule(), ATy, false, 734 llvm::GlobalValue::AppendingLinkage, 735 llvm::ConstantArray::get(ATy, UsedArray), 736 "llvm.used"); 737 738 GV->setSection("llvm.metadata"); 739 } 740 741 /// \brief Add link options implied by the given module, including modules 742 /// it depends on, using a postorder walk. 743 static void addLinkOptionsPostorder(llvm::LLVMContext &Context, 744 Module *Mod, 745 SmallVectorImpl<llvm::Value *> &Metadata, 746 llvm::SmallPtrSet<Module *, 16> &Visited) { 747 // Import this module's parent. 748 if (Mod->Parent && Visited.insert(Mod->Parent)) { 749 addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited); 750 } 751 752 // Import this module's dependencies. 753 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 754 if (Visited.insert(Mod->Imports[I-1])) 755 addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited); 756 } 757 758 // Add linker options to link against the libraries/frameworks 759 // described by this module. 760 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 761 // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric. 762 // We need to know more about the linker to know how to encode these 763 // options propertly. 764 765 // Link against a framework. 766 if (Mod->LinkLibraries[I-1].IsFramework) { 767 llvm::Value *Args[2] = { 768 llvm::MDString::get(Context, "-framework"), 769 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 770 }; 771 772 Metadata.push_back(llvm::MDNode::get(Context, Args)); 773 continue; 774 } 775 776 // Link against a library. 777 llvm::Value *OptString 778 = llvm::MDString::get(Context, 779 "-l" + Mod->LinkLibraries[I-1].Library); 780 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 781 } 782 } 783 784 void CodeGenModule::EmitModuleLinkOptions() { 785 // Collect the set of all of the modules we want to visit to emit link 786 // options, which is essentially the imported modules and all of their 787 // non-explicit child modules. 788 llvm::SetVector<clang::Module *> LinkModules; 789 llvm::SmallPtrSet<clang::Module *, 16> Visited; 790 SmallVector<clang::Module *, 16> Stack; 791 792 // Seed the stack with imported modules. 793 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 794 MEnd = ImportedModules.end(); 795 M != MEnd; ++M) { 796 if (Visited.insert(*M)) 797 Stack.push_back(*M); 798 } 799 800 // Find all of the modules to import, making a little effort to prune 801 // non-leaf modules. 802 while (!Stack.empty()) { 803 clang::Module *Mod = Stack.back(); 804 Stack.pop_back(); 805 806 bool AnyChildren = false; 807 808 // Visit the submodules of this module. 809 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 810 SubEnd = Mod->submodule_end(); 811 Sub != SubEnd; ++Sub) { 812 // Skip explicit children; they need to be explicitly imported to be 813 // linked against. 814 if ((*Sub)->IsExplicit) 815 continue; 816 817 if (Visited.insert(*Sub)) { 818 Stack.push_back(*Sub); 819 AnyChildren = true; 820 } 821 } 822 823 // We didn't find any children, so add this module to the list of 824 // modules to link against. 825 if (!AnyChildren) { 826 LinkModules.insert(Mod); 827 } 828 } 829 830 // Add link options for all of the imported modules in reverse topological 831 // order. 832 SmallVector<llvm::Value *, 16> MetadataArgs; 833 Visited.clear(); 834 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 835 MEnd = LinkModules.end(); 836 M != MEnd; ++M) { 837 if (Visited.insert(*M)) 838 addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited); 839 } 840 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 841 842 // Add the linker options metadata flag. 843 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 844 llvm::MDNode::get(getLLVMContext(), MetadataArgs)); 845 } 846 847 void CodeGenModule::EmitDeferred() { 848 // Emit code for any potentially referenced deferred decls. Since a 849 // previously unused static decl may become used during the generation of code 850 // for a static function, iterate until no changes are made. 851 852 while (true) { 853 if (!DeferredVTables.empty()) { 854 EmitDeferredVTables(); 855 856 // Emitting a v-table doesn't directly cause more v-tables to 857 // become deferred, although it can cause functions to be 858 // emitted that then need those v-tables. 859 assert(DeferredVTables.empty()); 860 } 861 862 // Stop if we're out of both deferred v-tables and deferred declarations. 863 if (DeferredDeclsToEmit.empty()) break; 864 865 GlobalDecl D = DeferredDeclsToEmit.back(); 866 DeferredDeclsToEmit.pop_back(); 867 868 // Check to see if we've already emitted this. This is necessary 869 // for a couple of reasons: first, decls can end up in the 870 // deferred-decls queue multiple times, and second, decls can end 871 // up with definitions in unusual ways (e.g. by an extern inline 872 // function acquiring a strong function redefinition). Just 873 // ignore these cases. 874 // 875 // TODO: That said, looking this up multiple times is very wasteful. 876 StringRef Name = getMangledName(D); 877 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 878 assert(CGRef && "Deferred decl wasn't referenced?"); 879 880 if (!CGRef->isDeclaration()) 881 continue; 882 883 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 884 // purposes an alias counts as a definition. 885 if (isa<llvm::GlobalAlias>(CGRef)) 886 continue; 887 888 // Otherwise, emit the definition and move on to the next one. 889 EmitGlobalDefinition(D); 890 } 891 } 892 893 void CodeGenModule::EmitGlobalAnnotations() { 894 if (Annotations.empty()) 895 return; 896 897 // Create a new global variable for the ConstantStruct in the Module. 898 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 899 Annotations[0]->getType(), Annotations.size()), Annotations); 900 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 901 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 902 "llvm.global.annotations"); 903 gv->setSection(AnnotationSection); 904 } 905 906 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 907 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 908 if (i != AnnotationStrings.end()) 909 return i->second; 910 911 // Not found yet, create a new global. 912 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 913 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 914 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 915 gv->setSection(AnnotationSection); 916 gv->setUnnamedAddr(true); 917 AnnotationStrings[Str] = gv; 918 return gv; 919 } 920 921 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 922 SourceManager &SM = getContext().getSourceManager(); 923 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 924 if (PLoc.isValid()) 925 return EmitAnnotationString(PLoc.getFilename()); 926 return EmitAnnotationString(SM.getBufferName(Loc)); 927 } 928 929 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 930 SourceManager &SM = getContext().getSourceManager(); 931 PresumedLoc PLoc = SM.getPresumedLoc(L); 932 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 933 SM.getExpansionLineNumber(L); 934 return llvm::ConstantInt::get(Int32Ty, LineNo); 935 } 936 937 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 938 const AnnotateAttr *AA, 939 SourceLocation L) { 940 // Get the globals for file name, annotation, and the line number. 941 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 942 *UnitGV = EmitAnnotationUnit(L), 943 *LineNoCst = EmitAnnotationLineNo(L); 944 945 // Create the ConstantStruct for the global annotation. 946 llvm::Constant *Fields[4] = { 947 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 948 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 949 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 950 LineNoCst 951 }; 952 return llvm::ConstantStruct::getAnon(Fields); 953 } 954 955 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 956 llvm::GlobalValue *GV) { 957 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 958 // Get the struct elements for these annotations. 959 for (specific_attr_iterator<AnnotateAttr> 960 ai = D->specific_attr_begin<AnnotateAttr>(), 961 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 962 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 963 } 964 965 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 966 // Never defer when EmitAllDecls is specified. 967 if (LangOpts.EmitAllDecls) 968 return false; 969 970 return !getContext().DeclMustBeEmitted(Global); 971 } 972 973 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 974 const CXXUuidofExpr* E) { 975 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 976 // well-formed. 977 StringRef Uuid; 978 if (E->isTypeOperand()) 979 Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid(); 980 else { 981 // Special case: __uuidof(0) means an all-zero GUID. 982 Expr *Op = E->getExprOperand(); 983 if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 984 Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid(); 985 else 986 Uuid = "00000000-0000-0000-0000-000000000000"; 987 } 988 std::string Name = "__uuid_" + Uuid.str(); 989 990 // Look for an existing global. 991 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 992 return GV; 993 994 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 995 assert(Init && "failed to initialize as constant"); 996 997 // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the 998 // first field is declared as "long", which for many targets is 8 bytes. 999 // Those architectures are not supported. (With the MS abi, long is always 4 1000 // bytes.) 1001 llvm::Type *GuidType = getTypes().ConvertType(E->getType()); 1002 if (Init->getType() != GuidType) { 1003 DiagnosticsEngine &Diags = getDiags(); 1004 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1005 "__uuidof codegen is not supported on this architecture"); 1006 Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange(); 1007 Init = llvm::UndefValue::get(GuidType); 1008 } 1009 1010 llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType, 1011 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name); 1012 GV->setUnnamedAddr(true); 1013 return GV; 1014 } 1015 1016 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1017 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1018 assert(AA && "No alias?"); 1019 1020 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1021 1022 // See if there is already something with the target's name in the module. 1023 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1024 if (Entry) { 1025 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1026 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1027 } 1028 1029 llvm::Constant *Aliasee; 1030 if (isa<llvm::FunctionType>(DeclTy)) 1031 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1032 GlobalDecl(cast<FunctionDecl>(VD)), 1033 /*ForVTable=*/false); 1034 else 1035 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1036 llvm::PointerType::getUnqual(DeclTy), 0); 1037 1038 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1039 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1040 WeakRefReferences.insert(F); 1041 1042 return Aliasee; 1043 } 1044 1045 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1046 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1047 1048 // Weak references don't produce any output by themselves. 1049 if (Global->hasAttr<WeakRefAttr>()) 1050 return; 1051 1052 // If this is an alias definition (which otherwise looks like a declaration) 1053 // emit it now. 1054 if (Global->hasAttr<AliasAttr>()) 1055 return EmitAliasDefinition(GD); 1056 1057 // If this is CUDA, be selective about which declarations we emit. 1058 if (LangOpts.CUDA) { 1059 if (CodeGenOpts.CUDAIsDevice) { 1060 if (!Global->hasAttr<CUDADeviceAttr>() && 1061 !Global->hasAttr<CUDAGlobalAttr>() && 1062 !Global->hasAttr<CUDAConstantAttr>() && 1063 !Global->hasAttr<CUDASharedAttr>()) 1064 return; 1065 } else { 1066 if (!Global->hasAttr<CUDAHostAttr>() && ( 1067 Global->hasAttr<CUDADeviceAttr>() || 1068 Global->hasAttr<CUDAConstantAttr>() || 1069 Global->hasAttr<CUDASharedAttr>())) 1070 return; 1071 } 1072 } 1073 1074 // Ignore declarations, they will be emitted on their first use. 1075 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1076 // Forward declarations are emitted lazily on first use. 1077 if (!FD->doesThisDeclarationHaveABody()) { 1078 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1079 return; 1080 1081 const FunctionDecl *InlineDefinition = 0; 1082 FD->getBody(InlineDefinition); 1083 1084 StringRef MangledName = getMangledName(GD); 1085 DeferredDecls.erase(MangledName); 1086 EmitGlobalDefinition(InlineDefinition); 1087 return; 1088 } 1089 } else { 1090 const VarDecl *VD = cast<VarDecl>(Global); 1091 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1092 1093 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1094 return; 1095 } 1096 1097 // Defer code generation when possible if this is a static definition, inline 1098 // function etc. These we only want to emit if they are used. 1099 if (!MayDeferGeneration(Global)) { 1100 // Emit the definition if it can't be deferred. 1101 EmitGlobalDefinition(GD); 1102 return; 1103 } 1104 1105 // If we're deferring emission of a C++ variable with an 1106 // initializer, remember the order in which it appeared in the file. 1107 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1108 cast<VarDecl>(Global)->hasInit()) { 1109 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1110 CXXGlobalInits.push_back(0); 1111 } 1112 1113 // If the value has already been used, add it directly to the 1114 // DeferredDeclsToEmit list. 1115 StringRef MangledName = getMangledName(GD); 1116 if (GetGlobalValue(MangledName)) 1117 DeferredDeclsToEmit.push_back(GD); 1118 else { 1119 // Otherwise, remember that we saw a deferred decl with this name. The 1120 // first use of the mangled name will cause it to move into 1121 // DeferredDeclsToEmit. 1122 DeferredDecls[MangledName] = GD; 1123 } 1124 } 1125 1126 namespace { 1127 struct FunctionIsDirectlyRecursive : 1128 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1129 const StringRef Name; 1130 const Builtin::Context &BI; 1131 bool Result; 1132 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1133 Name(N), BI(C), Result(false) { 1134 } 1135 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1136 1137 bool TraverseCallExpr(CallExpr *E) { 1138 const FunctionDecl *FD = E->getDirectCallee(); 1139 if (!FD) 1140 return true; 1141 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1142 if (Attr && Name == Attr->getLabel()) { 1143 Result = true; 1144 return false; 1145 } 1146 unsigned BuiltinID = FD->getBuiltinID(); 1147 if (!BuiltinID) 1148 return true; 1149 StringRef BuiltinName = BI.GetName(BuiltinID); 1150 if (BuiltinName.startswith("__builtin_") && 1151 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1152 Result = true; 1153 return false; 1154 } 1155 return true; 1156 } 1157 }; 1158 } 1159 1160 // isTriviallyRecursive - Check if this function calls another 1161 // decl that, because of the asm attribute or the other decl being a builtin, 1162 // ends up pointing to itself. 1163 bool 1164 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1165 StringRef Name; 1166 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1167 // asm labels are a special kind of mangling we have to support. 1168 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1169 if (!Attr) 1170 return false; 1171 Name = Attr->getLabel(); 1172 } else { 1173 Name = FD->getName(); 1174 } 1175 1176 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1177 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1178 return Walker.Result; 1179 } 1180 1181 bool 1182 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 1183 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 1184 return true; 1185 if (CodeGenOpts.OptimizationLevel == 0 && 1186 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1187 return false; 1188 // PR9614. Avoid cases where the source code is lying to us. An available 1189 // externally function should have an equivalent function somewhere else, 1190 // but a function that calls itself is clearly not equivalent to the real 1191 // implementation. 1192 // This happens in glibc's btowc and in some configure checks. 1193 return !isTriviallyRecursive(F); 1194 } 1195 1196 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1197 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1198 1199 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1200 Context.getSourceManager(), 1201 "Generating code for declaration"); 1202 1203 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1204 // At -O0, don't generate IR for functions with available_externally 1205 // linkage. 1206 if (!shouldEmitFunction(Function)) 1207 return; 1208 1209 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1210 // Make sure to emit the definition(s) before we emit the thunks. 1211 // This is necessary for the generation of certain thunks. 1212 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1213 EmitCXXConstructor(CD, GD.getCtorType()); 1214 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1215 EmitCXXDestructor(DD, GD.getDtorType()); 1216 else 1217 EmitGlobalFunctionDefinition(GD); 1218 1219 if (Method->isVirtual()) 1220 getVTables().EmitThunks(GD); 1221 1222 return; 1223 } 1224 1225 return EmitGlobalFunctionDefinition(GD); 1226 } 1227 1228 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1229 return EmitGlobalVarDefinition(VD); 1230 1231 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1232 } 1233 1234 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1235 /// module, create and return an llvm Function with the specified type. If there 1236 /// is something in the module with the specified name, return it potentially 1237 /// bitcasted to the right type. 1238 /// 1239 /// If D is non-null, it specifies a decl that correspond to this. This is used 1240 /// to set the attributes on the function when it is first created. 1241 llvm::Constant * 1242 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1243 llvm::Type *Ty, 1244 GlobalDecl D, bool ForVTable, 1245 llvm::AttributeSet ExtraAttrs) { 1246 // Lookup the entry, lazily creating it if necessary. 1247 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1248 if (Entry) { 1249 if (WeakRefReferences.erase(Entry)) { 1250 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1251 if (FD && !FD->hasAttr<WeakAttr>()) 1252 Entry->setLinkage(llvm::Function::ExternalLinkage); 1253 } 1254 1255 if (Entry->getType()->getElementType() == Ty) 1256 return Entry; 1257 1258 // Make sure the result is of the correct type. 1259 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1260 } 1261 1262 // This function doesn't have a complete type (for example, the return 1263 // type is an incomplete struct). Use a fake type instead, and make 1264 // sure not to try to set attributes. 1265 bool IsIncompleteFunction = false; 1266 1267 llvm::FunctionType *FTy; 1268 if (isa<llvm::FunctionType>(Ty)) { 1269 FTy = cast<llvm::FunctionType>(Ty); 1270 } else { 1271 FTy = llvm::FunctionType::get(VoidTy, false); 1272 IsIncompleteFunction = true; 1273 } 1274 1275 llvm::Function *F = llvm::Function::Create(FTy, 1276 llvm::Function::ExternalLinkage, 1277 MangledName, &getModule()); 1278 assert(F->getName() == MangledName && "name was uniqued!"); 1279 if (D.getDecl()) 1280 SetFunctionAttributes(D, F, IsIncompleteFunction); 1281 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1282 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1283 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1284 llvm::AttributeSet::get(VMContext, 1285 llvm::AttributeSet::FunctionIndex, 1286 B)); 1287 } 1288 1289 // This is the first use or definition of a mangled name. If there is a 1290 // deferred decl with this name, remember that we need to emit it at the end 1291 // of the file. 1292 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1293 if (DDI != DeferredDecls.end()) { 1294 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1295 // list, and remove it from DeferredDecls (since we don't need it anymore). 1296 DeferredDeclsToEmit.push_back(DDI->second); 1297 DeferredDecls.erase(DDI); 1298 1299 // Otherwise, there are cases we have to worry about where we're 1300 // using a declaration for which we must emit a definition but where 1301 // we might not find a top-level definition: 1302 // - member functions defined inline in their classes 1303 // - friend functions defined inline in some class 1304 // - special member functions with implicit definitions 1305 // If we ever change our AST traversal to walk into class methods, 1306 // this will be unnecessary. 1307 // 1308 // We also don't emit a definition for a function if it's going to be an entry 1309 // in a vtable, unless it's already marked as used. 1310 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1311 // Look for a declaration that's lexically in a record. 1312 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1313 FD = FD->getMostRecentDecl(); 1314 do { 1315 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1316 if (FD->isImplicit() && !ForVTable) { 1317 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1318 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1319 break; 1320 } else if (FD->doesThisDeclarationHaveABody()) { 1321 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1322 break; 1323 } 1324 } 1325 FD = FD->getPreviousDecl(); 1326 } while (FD); 1327 } 1328 1329 // Make sure the result is of the requested type. 1330 if (!IsIncompleteFunction) { 1331 assert(F->getType()->getElementType() == Ty); 1332 return F; 1333 } 1334 1335 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1336 return llvm::ConstantExpr::getBitCast(F, PTy); 1337 } 1338 1339 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1340 /// non-null, then this function will use the specified type if it has to 1341 /// create it (this occurs when we see a definition of the function). 1342 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1343 llvm::Type *Ty, 1344 bool ForVTable) { 1345 // If there was no specific requested type, just convert it now. 1346 if (!Ty) 1347 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1348 1349 StringRef MangledName = getMangledName(GD); 1350 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1351 } 1352 1353 /// CreateRuntimeFunction - Create a new runtime function with the specified 1354 /// type and name. 1355 llvm::Constant * 1356 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1357 StringRef Name, 1358 llvm::AttributeSet ExtraAttrs) { 1359 llvm::Constant *C 1360 = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1361 ExtraAttrs); 1362 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1363 if (F->empty()) 1364 F->setCallingConv(getRuntimeCC()); 1365 return C; 1366 } 1367 1368 /// isTypeConstant - Determine whether an object of this type can be emitted 1369 /// as a constant. 1370 /// 1371 /// If ExcludeCtor is true, the duration when the object's constructor runs 1372 /// will not be considered. The caller will need to verify that the object is 1373 /// not written to during its construction. 1374 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1375 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1376 return false; 1377 1378 if (Context.getLangOpts().CPlusPlus) { 1379 if (const CXXRecordDecl *Record 1380 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1381 return ExcludeCtor && !Record->hasMutableFields() && 1382 Record->hasTrivialDestructor(); 1383 } 1384 1385 return true; 1386 } 1387 1388 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1389 /// create and return an llvm GlobalVariable with the specified type. If there 1390 /// is something in the module with the specified name, return it potentially 1391 /// bitcasted to the right type. 1392 /// 1393 /// If D is non-null, it specifies a decl that correspond to this. This is used 1394 /// to set the attributes on the global when it is first created. 1395 llvm::Constant * 1396 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1397 llvm::PointerType *Ty, 1398 const VarDecl *D, 1399 bool UnnamedAddr) { 1400 // Lookup the entry, lazily creating it if necessary. 1401 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1402 if (Entry) { 1403 if (WeakRefReferences.erase(Entry)) { 1404 if (D && !D->hasAttr<WeakAttr>()) 1405 Entry->setLinkage(llvm::Function::ExternalLinkage); 1406 } 1407 1408 if (UnnamedAddr) 1409 Entry->setUnnamedAddr(true); 1410 1411 if (Entry->getType() == Ty) 1412 return Entry; 1413 1414 // Make sure the result is of the correct type. 1415 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1416 } 1417 1418 // This is the first use or definition of a mangled name. If there is a 1419 // deferred decl with this name, remember that we need to emit it at the end 1420 // of the file. 1421 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1422 if (DDI != DeferredDecls.end()) { 1423 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1424 // list, and remove it from DeferredDecls (since we don't need it anymore). 1425 DeferredDeclsToEmit.push_back(DDI->second); 1426 DeferredDecls.erase(DDI); 1427 } 1428 1429 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1430 llvm::GlobalVariable *GV = 1431 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1432 llvm::GlobalValue::ExternalLinkage, 1433 0, MangledName, 0, 1434 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1435 1436 // Handle things which are present even on external declarations. 1437 if (D) { 1438 // FIXME: This code is overly simple and should be merged with other global 1439 // handling. 1440 GV->setConstant(isTypeConstant(D->getType(), false)); 1441 1442 // Set linkage and visibility in case we never see a definition. 1443 LinkageInfo LV = D->getLinkageAndVisibility(); 1444 if (LV.getLinkage() != ExternalLinkage) { 1445 // Don't set internal linkage on declarations. 1446 } else { 1447 if (D->hasAttr<DLLImportAttr>()) 1448 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1449 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1450 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1451 1452 // Set visibility on a declaration only if it's explicit. 1453 if (LV.isVisibilityExplicit()) 1454 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1455 } 1456 1457 if (D->isThreadSpecified()) 1458 setTLSMode(GV, *D); 1459 } 1460 1461 if (AddrSpace != Ty->getAddressSpace()) 1462 return llvm::ConstantExpr::getBitCast(GV, Ty); 1463 else 1464 return GV; 1465 } 1466 1467 1468 llvm::GlobalVariable * 1469 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1470 llvm::Type *Ty, 1471 llvm::GlobalValue::LinkageTypes Linkage) { 1472 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1473 llvm::GlobalVariable *OldGV = 0; 1474 1475 1476 if (GV) { 1477 // Check if the variable has the right type. 1478 if (GV->getType()->getElementType() == Ty) 1479 return GV; 1480 1481 // Because C++ name mangling, the only way we can end up with an already 1482 // existing global with the same name is if it has been declared extern "C". 1483 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1484 OldGV = GV; 1485 } 1486 1487 // Create a new variable. 1488 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1489 Linkage, 0, Name); 1490 1491 if (OldGV) { 1492 // Replace occurrences of the old variable if needed. 1493 GV->takeName(OldGV); 1494 1495 if (!OldGV->use_empty()) { 1496 llvm::Constant *NewPtrForOldDecl = 1497 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1498 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1499 } 1500 1501 OldGV->eraseFromParent(); 1502 } 1503 1504 return GV; 1505 } 1506 1507 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1508 /// given global variable. If Ty is non-null and if the global doesn't exist, 1509 /// then it will be created with the specified type instead of whatever the 1510 /// normal requested type would be. 1511 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1512 llvm::Type *Ty) { 1513 assert(D->hasGlobalStorage() && "Not a global variable"); 1514 QualType ASTTy = D->getType(); 1515 if (Ty == 0) 1516 Ty = getTypes().ConvertTypeForMem(ASTTy); 1517 1518 llvm::PointerType *PTy = 1519 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1520 1521 StringRef MangledName = getMangledName(D); 1522 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1523 } 1524 1525 /// CreateRuntimeVariable - Create a new runtime global variable with the 1526 /// specified type and name. 1527 llvm::Constant * 1528 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1529 StringRef Name) { 1530 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1531 true); 1532 } 1533 1534 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1535 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1536 1537 if (MayDeferGeneration(D)) { 1538 // If we have not seen a reference to this variable yet, place it 1539 // into the deferred declarations table to be emitted if needed 1540 // later. 1541 StringRef MangledName = getMangledName(D); 1542 if (!GetGlobalValue(MangledName)) { 1543 DeferredDecls[MangledName] = D; 1544 return; 1545 } 1546 } 1547 1548 // The tentative definition is the only definition. 1549 EmitGlobalVarDefinition(D); 1550 } 1551 1552 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1553 return Context.toCharUnitsFromBits( 1554 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1555 } 1556 1557 llvm::Constant * 1558 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1559 const Expr *rawInit) { 1560 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1561 if (const ExprWithCleanups *withCleanups = 1562 dyn_cast<ExprWithCleanups>(rawInit)) { 1563 cleanups = withCleanups->getObjects(); 1564 rawInit = withCleanups->getSubExpr(); 1565 } 1566 1567 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1568 if (!init || !init->initializesStdInitializerList() || 1569 init->getNumInits() == 0) 1570 return 0; 1571 1572 ASTContext &ctx = getContext(); 1573 unsigned numInits = init->getNumInits(); 1574 // FIXME: This check is here because we would otherwise silently miscompile 1575 // nested global std::initializer_lists. Better would be to have a real 1576 // implementation. 1577 for (unsigned i = 0; i < numInits; ++i) { 1578 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1579 if (inner && inner->initializesStdInitializerList()) { 1580 ErrorUnsupported(inner, "nested global std::initializer_list"); 1581 return 0; 1582 } 1583 } 1584 1585 // Synthesize a fake VarDecl for the array and initialize that. 1586 QualType elementType = init->getInit(0)->getType(); 1587 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1588 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1589 ArrayType::Normal, 0); 1590 1591 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1592 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1593 arrayType, D->getLocation()); 1594 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1595 D->getDeclContext()), 1596 D->getLocStart(), D->getLocation(), 1597 name, arrayType, sourceInfo, 1598 SC_Static, SC_Static); 1599 1600 // Now clone the InitListExpr to initialize the array instead. 1601 // Incredible hack: we want to use the existing InitListExpr here, so we need 1602 // to tell it that it no longer initializes a std::initializer_list. 1603 ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(), 1604 init->getNumInits()); 1605 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits, 1606 init->getRBraceLoc()); 1607 arrayInit->setType(arrayType); 1608 1609 if (!cleanups.empty()) 1610 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1611 1612 backingArray->setInit(arrayInit); 1613 1614 // Emit the definition of the array. 1615 EmitGlobalVarDefinition(backingArray); 1616 1617 // Inspect the initializer list to validate it and determine its type. 1618 // FIXME: doing this every time is probably inefficient; caching would be nice 1619 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1620 RecordDecl::field_iterator field = record->field_begin(); 1621 if (field == record->field_end()) { 1622 ErrorUnsupported(D, "weird std::initializer_list"); 1623 return 0; 1624 } 1625 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1626 // Start pointer. 1627 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1628 ErrorUnsupported(D, "weird std::initializer_list"); 1629 return 0; 1630 } 1631 ++field; 1632 if (field == record->field_end()) { 1633 ErrorUnsupported(D, "weird std::initializer_list"); 1634 return 0; 1635 } 1636 bool isStartEnd = false; 1637 if (ctx.hasSameType(field->getType(), elementPtr)) { 1638 // End pointer. 1639 isStartEnd = true; 1640 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1641 ErrorUnsupported(D, "weird std::initializer_list"); 1642 return 0; 1643 } 1644 1645 // Now build an APValue representing the std::initializer_list. 1646 APValue initListValue(APValue::UninitStruct(), 0, 2); 1647 APValue &startField = initListValue.getStructField(0); 1648 APValue::LValuePathEntry startOffsetPathEntry; 1649 startOffsetPathEntry.ArrayIndex = 0; 1650 startField = APValue(APValue::LValueBase(backingArray), 1651 CharUnits::fromQuantity(0), 1652 llvm::makeArrayRef(startOffsetPathEntry), 1653 /*IsOnePastTheEnd=*/false, 0); 1654 1655 if (isStartEnd) { 1656 APValue &endField = initListValue.getStructField(1); 1657 APValue::LValuePathEntry endOffsetPathEntry; 1658 endOffsetPathEntry.ArrayIndex = numInits; 1659 endField = APValue(APValue::LValueBase(backingArray), 1660 ctx.getTypeSizeInChars(elementType) * numInits, 1661 llvm::makeArrayRef(endOffsetPathEntry), 1662 /*IsOnePastTheEnd=*/true, 0); 1663 } else { 1664 APValue &sizeField = initListValue.getStructField(1); 1665 sizeField = APValue(llvm::APSInt(numElements)); 1666 } 1667 1668 // Emit the constant for the initializer_list. 1669 llvm::Constant *llvmInit = 1670 EmitConstantValueForMemory(initListValue, D->getType()); 1671 assert(llvmInit && "failed to initialize as constant"); 1672 return llvmInit; 1673 } 1674 1675 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1676 unsigned AddrSpace) { 1677 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1678 if (D->hasAttr<CUDAConstantAttr>()) 1679 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1680 else if (D->hasAttr<CUDASharedAttr>()) 1681 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1682 else 1683 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1684 } 1685 1686 return AddrSpace; 1687 } 1688 1689 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1690 llvm::Constant *Init = 0; 1691 QualType ASTTy = D->getType(); 1692 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1693 bool NeedsGlobalCtor = false; 1694 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1695 1696 const VarDecl *InitDecl; 1697 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1698 1699 if (!InitExpr) { 1700 // This is a tentative definition; tentative definitions are 1701 // implicitly initialized with { 0 }. 1702 // 1703 // Note that tentative definitions are only emitted at the end of 1704 // a translation unit, so they should never have incomplete 1705 // type. In addition, EmitTentativeDefinition makes sure that we 1706 // never attempt to emit a tentative definition if a real one 1707 // exists. A use may still exists, however, so we still may need 1708 // to do a RAUW. 1709 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1710 Init = EmitNullConstant(D->getType()); 1711 } else { 1712 // If this is a std::initializer_list, emit the special initializer. 1713 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1714 // An empty init list will perform zero-initialization, which happens 1715 // to be exactly what we want. 1716 // FIXME: It does so in a global constructor, which is *not* what we 1717 // want. 1718 1719 if (!Init) { 1720 initializedGlobalDecl = GlobalDecl(D); 1721 Init = EmitConstantInit(*InitDecl); 1722 } 1723 if (!Init) { 1724 QualType T = InitExpr->getType(); 1725 if (D->getType()->isReferenceType()) 1726 T = D->getType(); 1727 1728 if (getLangOpts().CPlusPlus) { 1729 Init = EmitNullConstant(T); 1730 NeedsGlobalCtor = true; 1731 } else { 1732 ErrorUnsupported(D, "static initializer"); 1733 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1734 } 1735 } else { 1736 // We don't need an initializer, so remove the entry for the delayed 1737 // initializer position (just in case this entry was delayed) if we 1738 // also don't need to register a destructor. 1739 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1740 DelayedCXXInitPosition.erase(D); 1741 } 1742 } 1743 1744 llvm::Type* InitType = Init->getType(); 1745 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1746 1747 // Strip off a bitcast if we got one back. 1748 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1749 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1750 // all zero index gep. 1751 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1752 Entry = CE->getOperand(0); 1753 } 1754 1755 // Entry is now either a Function or GlobalVariable. 1756 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1757 1758 // We have a definition after a declaration with the wrong type. 1759 // We must make a new GlobalVariable* and update everything that used OldGV 1760 // (a declaration or tentative definition) with the new GlobalVariable* 1761 // (which will be a definition). 1762 // 1763 // This happens if there is a prototype for a global (e.g. 1764 // "extern int x[];") and then a definition of a different type (e.g. 1765 // "int x[10];"). This also happens when an initializer has a different type 1766 // from the type of the global (this happens with unions). 1767 if (GV == 0 || 1768 GV->getType()->getElementType() != InitType || 1769 GV->getType()->getAddressSpace() != 1770 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1771 1772 // Move the old entry aside so that we'll create a new one. 1773 Entry->setName(StringRef()); 1774 1775 // Make a new global with the correct type, this is now guaranteed to work. 1776 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1777 1778 // Replace all uses of the old global with the new global 1779 llvm::Constant *NewPtrForOldDecl = 1780 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1781 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1782 1783 // Erase the old global, since it is no longer used. 1784 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1785 } 1786 1787 if (D->hasAttr<AnnotateAttr>()) 1788 AddGlobalAnnotations(D, GV); 1789 1790 GV->setInitializer(Init); 1791 1792 // If it is safe to mark the global 'constant', do so now. 1793 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1794 isTypeConstant(D->getType(), true)); 1795 1796 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1797 1798 // Set the llvm linkage type as appropriate. 1799 llvm::GlobalValue::LinkageTypes Linkage = 1800 GetLLVMLinkageVarDefinition(D, GV); 1801 GV->setLinkage(Linkage); 1802 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1803 // common vars aren't constant even if declared const. 1804 GV->setConstant(false); 1805 1806 SetCommonAttributes(D, GV); 1807 1808 // Emit the initializer function if necessary. 1809 if (NeedsGlobalCtor || NeedsGlobalDtor) 1810 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1811 1812 // If we are compiling with ASan, add metadata indicating dynamically 1813 // initialized globals. 1814 if (SanOpts.Address && NeedsGlobalCtor) { 1815 llvm::Module &M = getModule(); 1816 1817 llvm::NamedMDNode *DynamicInitializers = 1818 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1819 llvm::Value *GlobalToAdd[] = { GV }; 1820 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1821 DynamicInitializers->addOperand(ThisGlobal); 1822 } 1823 1824 // Emit global variable debug information. 1825 if (CGDebugInfo *DI = getModuleDebugInfo()) 1826 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1827 DI->EmitGlobalVariable(GV, D); 1828 } 1829 1830 llvm::GlobalValue::LinkageTypes 1831 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1832 llvm::GlobalVariable *GV) { 1833 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1834 if (Linkage == GVA_Internal) 1835 return llvm::Function::InternalLinkage; 1836 else if (D->hasAttr<DLLImportAttr>()) 1837 return llvm::Function::DLLImportLinkage; 1838 else if (D->hasAttr<DLLExportAttr>()) 1839 return llvm::Function::DLLExportLinkage; 1840 else if (D->hasAttr<WeakAttr>()) { 1841 if (GV->isConstant()) 1842 return llvm::GlobalVariable::WeakODRLinkage; 1843 else 1844 return llvm::GlobalVariable::WeakAnyLinkage; 1845 } else if (Linkage == GVA_TemplateInstantiation || 1846 Linkage == GVA_ExplicitTemplateInstantiation) 1847 return llvm::GlobalVariable::WeakODRLinkage; 1848 else if (!getLangOpts().CPlusPlus && 1849 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1850 D->getAttr<CommonAttr>()) && 1851 !D->hasExternalStorage() && !D->getInit() && 1852 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1853 !D->getAttr<WeakImportAttr>()) { 1854 // Thread local vars aren't considered common linkage. 1855 return llvm::GlobalVariable::CommonLinkage; 1856 } 1857 return llvm::GlobalVariable::ExternalLinkage; 1858 } 1859 1860 /// Replace the uses of a function that was declared with a non-proto type. 1861 /// We want to silently drop extra arguments from call sites 1862 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1863 llvm::Function *newFn) { 1864 // Fast path. 1865 if (old->use_empty()) return; 1866 1867 llvm::Type *newRetTy = newFn->getReturnType(); 1868 SmallVector<llvm::Value*, 4> newArgs; 1869 1870 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1871 ui != ue; ) { 1872 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1873 llvm::User *user = *use; 1874 1875 // Recognize and replace uses of bitcasts. Most calls to 1876 // unprototyped functions will use bitcasts. 1877 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1878 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1879 replaceUsesOfNonProtoConstant(bitcast, newFn); 1880 continue; 1881 } 1882 1883 // Recognize calls to the function. 1884 llvm::CallSite callSite(user); 1885 if (!callSite) continue; 1886 if (!callSite.isCallee(use)) continue; 1887 1888 // If the return types don't match exactly, then we can't 1889 // transform this call unless it's dead. 1890 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1891 continue; 1892 1893 // Get the call site's attribute list. 1894 SmallVector<llvm::AttributeSet, 8> newAttrs; 1895 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1896 1897 // Collect any return attributes from the call. 1898 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1899 newAttrs.push_back( 1900 llvm::AttributeSet::get(newFn->getContext(), 1901 oldAttrs.getRetAttributes())); 1902 1903 // If the function was passed too few arguments, don't transform. 1904 unsigned newNumArgs = newFn->arg_size(); 1905 if (callSite.arg_size() < newNumArgs) continue; 1906 1907 // If extra arguments were passed, we silently drop them. 1908 // If any of the types mismatch, we don't transform. 1909 unsigned argNo = 0; 1910 bool dontTransform = false; 1911 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1912 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1913 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1914 dontTransform = true; 1915 break; 1916 } 1917 1918 // Add any parameter attributes. 1919 if (oldAttrs.hasAttributes(argNo + 1)) 1920 newAttrs. 1921 push_back(llvm:: 1922 AttributeSet::get(newFn->getContext(), 1923 oldAttrs.getParamAttributes(argNo + 1))); 1924 } 1925 if (dontTransform) 1926 continue; 1927 1928 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 1929 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 1930 oldAttrs.getFnAttributes())); 1931 1932 // Okay, we can transform this. Create the new call instruction and copy 1933 // over the required information. 1934 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1935 1936 llvm::CallSite newCall; 1937 if (callSite.isCall()) { 1938 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1939 callSite.getInstruction()); 1940 } else { 1941 llvm::InvokeInst *oldInvoke = 1942 cast<llvm::InvokeInst>(callSite.getInstruction()); 1943 newCall = llvm::InvokeInst::Create(newFn, 1944 oldInvoke->getNormalDest(), 1945 oldInvoke->getUnwindDest(), 1946 newArgs, "", 1947 callSite.getInstruction()); 1948 } 1949 newArgs.clear(); // for the next iteration 1950 1951 if (!newCall->getType()->isVoidTy()) 1952 newCall->takeName(callSite.getInstruction()); 1953 newCall.setAttributes( 1954 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 1955 newCall.setCallingConv(callSite.getCallingConv()); 1956 1957 // Finally, remove the old call, replacing any uses with the new one. 1958 if (!callSite->use_empty()) 1959 callSite->replaceAllUsesWith(newCall.getInstruction()); 1960 1961 // Copy debug location attached to CI. 1962 if (!callSite->getDebugLoc().isUnknown()) 1963 newCall->setDebugLoc(callSite->getDebugLoc()); 1964 callSite->eraseFromParent(); 1965 } 1966 } 1967 1968 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1969 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1970 /// existing call uses of the old function in the module, this adjusts them to 1971 /// call the new function directly. 1972 /// 1973 /// This is not just a cleanup: the always_inline pass requires direct calls to 1974 /// functions to be able to inline them. If there is a bitcast in the way, it 1975 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1976 /// run at -O0. 1977 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1978 llvm::Function *NewFn) { 1979 // If we're redefining a global as a function, don't transform it. 1980 if (!isa<llvm::Function>(Old)) return; 1981 1982 replaceUsesOfNonProtoConstant(Old, NewFn); 1983 } 1984 1985 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1986 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1987 // If we have a definition, this might be a deferred decl. If the 1988 // instantiation is explicit, make sure we emit it at the end. 1989 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1990 GetAddrOfGlobalVar(VD); 1991 1992 EmitTopLevelDecl(VD); 1993 } 1994 1995 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1996 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1997 1998 // Compute the function info and LLVM type. 1999 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2000 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2001 2002 // Get or create the prototype for the function. 2003 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 2004 2005 // Strip off a bitcast if we got one back. 2006 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2007 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2008 Entry = CE->getOperand(0); 2009 } 2010 2011 2012 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2013 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2014 2015 // If the types mismatch then we have to rewrite the definition. 2016 assert(OldFn->isDeclaration() && 2017 "Shouldn't replace non-declaration"); 2018 2019 // F is the Function* for the one with the wrong type, we must make a new 2020 // Function* and update everything that used F (a declaration) with the new 2021 // Function* (which will be a definition). 2022 // 2023 // This happens if there is a prototype for a function 2024 // (e.g. "int f()") and then a definition of a different type 2025 // (e.g. "int f(int x)"). Move the old function aside so that it 2026 // doesn't interfere with GetAddrOfFunction. 2027 OldFn->setName(StringRef()); 2028 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2029 2030 // This might be an implementation of a function without a 2031 // prototype, in which case, try to do special replacement of 2032 // calls which match the new prototype. The really key thing here 2033 // is that we also potentially drop arguments from the call site 2034 // so as to make a direct call, which makes the inliner happier 2035 // and suppresses a number of optimizer warnings (!) about 2036 // dropping arguments. 2037 if (!OldFn->use_empty()) { 2038 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2039 OldFn->removeDeadConstantUsers(); 2040 } 2041 2042 // Replace uses of F with the Function we will endow with a body. 2043 if (!Entry->use_empty()) { 2044 llvm::Constant *NewPtrForOldDecl = 2045 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2046 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2047 } 2048 2049 // Ok, delete the old function now, which is dead. 2050 OldFn->eraseFromParent(); 2051 2052 Entry = NewFn; 2053 } 2054 2055 // We need to set linkage and visibility on the function before 2056 // generating code for it because various parts of IR generation 2057 // want to propagate this information down (e.g. to local static 2058 // declarations). 2059 llvm::Function *Fn = cast<llvm::Function>(Entry); 2060 setFunctionLinkage(D, Fn); 2061 2062 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2063 setGlobalVisibility(Fn, D); 2064 2065 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2066 2067 SetFunctionDefinitionAttributes(D, Fn); 2068 SetLLVMFunctionAttributesForDefinition(D, Fn); 2069 2070 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2071 AddGlobalCtor(Fn, CA->getPriority()); 2072 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2073 AddGlobalDtor(Fn, DA->getPriority()); 2074 if (D->hasAttr<AnnotateAttr>()) 2075 AddGlobalAnnotations(D, Fn); 2076 } 2077 2078 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2079 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2080 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2081 assert(AA && "Not an alias?"); 2082 2083 StringRef MangledName = getMangledName(GD); 2084 2085 // If there is a definition in the module, then it wins over the alias. 2086 // This is dubious, but allow it to be safe. Just ignore the alias. 2087 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2088 if (Entry && !Entry->isDeclaration()) 2089 return; 2090 2091 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2092 2093 // Create a reference to the named value. This ensures that it is emitted 2094 // if a deferred decl. 2095 llvm::Constant *Aliasee; 2096 if (isa<llvm::FunctionType>(DeclTy)) 2097 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2098 /*ForVTable=*/false); 2099 else 2100 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2101 llvm::PointerType::getUnqual(DeclTy), 0); 2102 2103 // Create the new alias itself, but don't set a name yet. 2104 llvm::GlobalValue *GA = 2105 new llvm::GlobalAlias(Aliasee->getType(), 2106 llvm::Function::ExternalLinkage, 2107 "", Aliasee, &getModule()); 2108 2109 if (Entry) { 2110 assert(Entry->isDeclaration()); 2111 2112 // If there is a declaration in the module, then we had an extern followed 2113 // by the alias, as in: 2114 // extern int test6(); 2115 // ... 2116 // int test6() __attribute__((alias("test7"))); 2117 // 2118 // Remove it and replace uses of it with the alias. 2119 GA->takeName(Entry); 2120 2121 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2122 Entry->getType())); 2123 Entry->eraseFromParent(); 2124 } else { 2125 GA->setName(MangledName); 2126 } 2127 2128 // Set attributes which are particular to an alias; this is a 2129 // specialization of the attributes which may be set on a global 2130 // variable/function. 2131 if (D->hasAttr<DLLExportAttr>()) { 2132 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2133 // The dllexport attribute is ignored for undefined symbols. 2134 if (FD->hasBody()) 2135 GA->setLinkage(llvm::Function::DLLExportLinkage); 2136 } else { 2137 GA->setLinkage(llvm::Function::DLLExportLinkage); 2138 } 2139 } else if (D->hasAttr<WeakAttr>() || 2140 D->hasAttr<WeakRefAttr>() || 2141 D->isWeakImported()) { 2142 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2143 } 2144 2145 SetCommonAttributes(D, GA); 2146 } 2147 2148 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2149 ArrayRef<llvm::Type*> Tys) { 2150 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2151 Tys); 2152 } 2153 2154 static llvm::StringMapEntry<llvm::Constant*> & 2155 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2156 const StringLiteral *Literal, 2157 bool TargetIsLSB, 2158 bool &IsUTF16, 2159 unsigned &StringLength) { 2160 StringRef String = Literal->getString(); 2161 unsigned NumBytes = String.size(); 2162 2163 // Check for simple case. 2164 if (!Literal->containsNonAsciiOrNull()) { 2165 StringLength = NumBytes; 2166 return Map.GetOrCreateValue(String); 2167 } 2168 2169 // Otherwise, convert the UTF8 literals into a string of shorts. 2170 IsUTF16 = true; 2171 2172 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2173 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2174 UTF16 *ToPtr = &ToBuf[0]; 2175 2176 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2177 &ToPtr, ToPtr + NumBytes, 2178 strictConversion); 2179 2180 // ConvertUTF8toUTF16 returns the length in ToPtr. 2181 StringLength = ToPtr - &ToBuf[0]; 2182 2183 // Add an explicit null. 2184 *ToPtr = 0; 2185 return Map. 2186 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2187 (StringLength + 1) * 2)); 2188 } 2189 2190 static llvm::StringMapEntry<llvm::Constant*> & 2191 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2192 const StringLiteral *Literal, 2193 unsigned &StringLength) { 2194 StringRef String = Literal->getString(); 2195 StringLength = String.size(); 2196 return Map.GetOrCreateValue(String); 2197 } 2198 2199 llvm::Constant * 2200 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2201 unsigned StringLength = 0; 2202 bool isUTF16 = false; 2203 llvm::StringMapEntry<llvm::Constant*> &Entry = 2204 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2205 getDataLayout().isLittleEndian(), 2206 isUTF16, StringLength); 2207 2208 if (llvm::Constant *C = Entry.getValue()) 2209 return C; 2210 2211 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2212 llvm::Constant *Zeros[] = { Zero, Zero }; 2213 2214 // If we don't already have it, get __CFConstantStringClassReference. 2215 if (!CFConstantStringClassRef) { 2216 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2217 Ty = llvm::ArrayType::get(Ty, 0); 2218 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2219 "__CFConstantStringClassReference"); 2220 // Decay array -> ptr 2221 CFConstantStringClassRef = 2222 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2223 } 2224 2225 QualType CFTy = getContext().getCFConstantStringType(); 2226 2227 llvm::StructType *STy = 2228 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2229 2230 llvm::Constant *Fields[4]; 2231 2232 // Class pointer. 2233 Fields[0] = CFConstantStringClassRef; 2234 2235 // Flags. 2236 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2237 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2238 llvm::ConstantInt::get(Ty, 0x07C8); 2239 2240 // String pointer. 2241 llvm::Constant *C = 0; 2242 if (isUTF16) { 2243 ArrayRef<uint16_t> Arr = 2244 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2245 const_cast<char *>(Entry.getKey().data())), 2246 Entry.getKey().size() / 2); 2247 C = llvm::ConstantDataArray::get(VMContext, Arr); 2248 } else { 2249 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2250 } 2251 2252 llvm::GlobalValue::LinkageTypes Linkage; 2253 if (isUTF16) 2254 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2255 Linkage = llvm::GlobalValue::InternalLinkage; 2256 else 2257 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2258 // when using private linkage. It is not clear if this is a bug in ld 2259 // or a reasonable new restriction. 2260 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2261 2262 // Note: -fwritable-strings doesn't make the backing store strings of 2263 // CFStrings writable. (See <rdar://problem/10657500>) 2264 llvm::GlobalVariable *GV = 2265 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2266 Linkage, C, ".str"); 2267 GV->setUnnamedAddr(true); 2268 if (isUTF16) { 2269 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2270 GV->setAlignment(Align.getQuantity()); 2271 } else { 2272 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2273 GV->setAlignment(Align.getQuantity()); 2274 } 2275 2276 // String. 2277 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2278 2279 if (isUTF16) 2280 // Cast the UTF16 string to the correct type. 2281 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2282 2283 // String length. 2284 Ty = getTypes().ConvertType(getContext().LongTy); 2285 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2286 2287 // The struct. 2288 C = llvm::ConstantStruct::get(STy, Fields); 2289 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2290 llvm::GlobalVariable::PrivateLinkage, C, 2291 "_unnamed_cfstring_"); 2292 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2293 GV->setSection(Sect); 2294 Entry.setValue(GV); 2295 2296 return GV; 2297 } 2298 2299 static RecordDecl * 2300 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2301 DeclContext *DC, IdentifierInfo *Id) { 2302 SourceLocation Loc; 2303 if (Ctx.getLangOpts().CPlusPlus) 2304 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2305 else 2306 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2307 } 2308 2309 llvm::Constant * 2310 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2311 unsigned StringLength = 0; 2312 llvm::StringMapEntry<llvm::Constant*> &Entry = 2313 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2314 2315 if (llvm::Constant *C = Entry.getValue()) 2316 return C; 2317 2318 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2319 llvm::Constant *Zeros[] = { Zero, Zero }; 2320 2321 // If we don't already have it, get _NSConstantStringClassReference. 2322 if (!ConstantStringClassRef) { 2323 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2324 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2325 llvm::Constant *GV; 2326 if (LangOpts.ObjCRuntime.isNonFragile()) { 2327 std::string str = 2328 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2329 : "OBJC_CLASS_$_" + StringClass; 2330 GV = getObjCRuntime().GetClassGlobal(str); 2331 // Make sure the result is of the correct type. 2332 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2333 ConstantStringClassRef = 2334 llvm::ConstantExpr::getBitCast(GV, PTy); 2335 } else { 2336 std::string str = 2337 StringClass.empty() ? "_NSConstantStringClassReference" 2338 : "_" + StringClass + "ClassReference"; 2339 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2340 GV = CreateRuntimeVariable(PTy, str); 2341 // Decay array -> ptr 2342 ConstantStringClassRef = 2343 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2344 } 2345 } 2346 2347 if (!NSConstantStringType) { 2348 // Construct the type for a constant NSString. 2349 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2350 Context.getTranslationUnitDecl(), 2351 &Context.Idents.get("__builtin_NSString")); 2352 D->startDefinition(); 2353 2354 QualType FieldTypes[3]; 2355 2356 // const int *isa; 2357 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2358 // const char *str; 2359 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2360 // unsigned int length; 2361 FieldTypes[2] = Context.UnsignedIntTy; 2362 2363 // Create fields 2364 for (unsigned i = 0; i < 3; ++i) { 2365 FieldDecl *Field = FieldDecl::Create(Context, D, 2366 SourceLocation(), 2367 SourceLocation(), 0, 2368 FieldTypes[i], /*TInfo=*/0, 2369 /*BitWidth=*/0, 2370 /*Mutable=*/false, 2371 ICIS_NoInit); 2372 Field->setAccess(AS_public); 2373 D->addDecl(Field); 2374 } 2375 2376 D->completeDefinition(); 2377 QualType NSTy = Context.getTagDeclType(D); 2378 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2379 } 2380 2381 llvm::Constant *Fields[3]; 2382 2383 // Class pointer. 2384 Fields[0] = ConstantStringClassRef; 2385 2386 // String pointer. 2387 llvm::Constant *C = 2388 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2389 2390 llvm::GlobalValue::LinkageTypes Linkage; 2391 bool isConstant; 2392 Linkage = llvm::GlobalValue::PrivateLinkage; 2393 isConstant = !LangOpts.WritableStrings; 2394 2395 llvm::GlobalVariable *GV = 2396 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2397 ".str"); 2398 GV->setUnnamedAddr(true); 2399 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2400 GV->setAlignment(Align.getQuantity()); 2401 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2402 2403 // String length. 2404 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2405 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2406 2407 // The struct. 2408 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2409 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2410 llvm::GlobalVariable::PrivateLinkage, C, 2411 "_unnamed_nsstring_"); 2412 // FIXME. Fix section. 2413 if (const char *Sect = 2414 LangOpts.ObjCRuntime.isNonFragile() 2415 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2416 : getContext().getTargetInfo().getNSStringSection()) 2417 GV->setSection(Sect); 2418 Entry.setValue(GV); 2419 2420 return GV; 2421 } 2422 2423 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2424 if (ObjCFastEnumerationStateType.isNull()) { 2425 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2426 Context.getTranslationUnitDecl(), 2427 &Context.Idents.get("__objcFastEnumerationState")); 2428 D->startDefinition(); 2429 2430 QualType FieldTypes[] = { 2431 Context.UnsignedLongTy, 2432 Context.getPointerType(Context.getObjCIdType()), 2433 Context.getPointerType(Context.UnsignedLongTy), 2434 Context.getConstantArrayType(Context.UnsignedLongTy, 2435 llvm::APInt(32, 5), ArrayType::Normal, 0) 2436 }; 2437 2438 for (size_t i = 0; i < 4; ++i) { 2439 FieldDecl *Field = FieldDecl::Create(Context, 2440 D, 2441 SourceLocation(), 2442 SourceLocation(), 0, 2443 FieldTypes[i], /*TInfo=*/0, 2444 /*BitWidth=*/0, 2445 /*Mutable=*/false, 2446 ICIS_NoInit); 2447 Field->setAccess(AS_public); 2448 D->addDecl(Field); 2449 } 2450 2451 D->completeDefinition(); 2452 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2453 } 2454 2455 return ObjCFastEnumerationStateType; 2456 } 2457 2458 llvm::Constant * 2459 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2460 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2461 2462 // Don't emit it as the address of the string, emit the string data itself 2463 // as an inline array. 2464 if (E->getCharByteWidth() == 1) { 2465 SmallString<64> Str(E->getString()); 2466 2467 // Resize the string to the right size, which is indicated by its type. 2468 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2469 Str.resize(CAT->getSize().getZExtValue()); 2470 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2471 } 2472 2473 llvm::ArrayType *AType = 2474 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2475 llvm::Type *ElemTy = AType->getElementType(); 2476 unsigned NumElements = AType->getNumElements(); 2477 2478 // Wide strings have either 2-byte or 4-byte elements. 2479 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2480 SmallVector<uint16_t, 32> Elements; 2481 Elements.reserve(NumElements); 2482 2483 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2484 Elements.push_back(E->getCodeUnit(i)); 2485 Elements.resize(NumElements); 2486 return llvm::ConstantDataArray::get(VMContext, Elements); 2487 } 2488 2489 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2490 SmallVector<uint32_t, 32> Elements; 2491 Elements.reserve(NumElements); 2492 2493 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2494 Elements.push_back(E->getCodeUnit(i)); 2495 Elements.resize(NumElements); 2496 return llvm::ConstantDataArray::get(VMContext, Elements); 2497 } 2498 2499 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2500 /// constant array for the given string literal. 2501 llvm::Constant * 2502 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2503 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2504 if (S->isAscii() || S->isUTF8()) { 2505 SmallString<64> Str(S->getString()); 2506 2507 // Resize the string to the right size, which is indicated by its type. 2508 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2509 Str.resize(CAT->getSize().getZExtValue()); 2510 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2511 } 2512 2513 // FIXME: the following does not memoize wide strings. 2514 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2515 llvm::GlobalVariable *GV = 2516 new llvm::GlobalVariable(getModule(),C->getType(), 2517 !LangOpts.WritableStrings, 2518 llvm::GlobalValue::PrivateLinkage, 2519 C,".str"); 2520 2521 GV->setAlignment(Align.getQuantity()); 2522 GV->setUnnamedAddr(true); 2523 return GV; 2524 } 2525 2526 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2527 /// array for the given ObjCEncodeExpr node. 2528 llvm::Constant * 2529 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2530 std::string Str; 2531 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2532 2533 return GetAddrOfConstantCString(Str); 2534 } 2535 2536 2537 /// GenerateWritableString -- Creates storage for a string literal. 2538 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2539 bool constant, 2540 CodeGenModule &CGM, 2541 const char *GlobalName, 2542 unsigned Alignment) { 2543 // Create Constant for this string literal. Don't add a '\0'. 2544 llvm::Constant *C = 2545 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2546 2547 // Create a global variable for this string 2548 llvm::GlobalVariable *GV = 2549 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2550 llvm::GlobalValue::PrivateLinkage, 2551 C, GlobalName); 2552 GV->setAlignment(Alignment); 2553 GV->setUnnamedAddr(true); 2554 return GV; 2555 } 2556 2557 /// GetAddrOfConstantString - Returns a pointer to a character array 2558 /// containing the literal. This contents are exactly that of the 2559 /// given string, i.e. it will not be null terminated automatically; 2560 /// see GetAddrOfConstantCString. Note that whether the result is 2561 /// actually a pointer to an LLVM constant depends on 2562 /// Feature.WriteableStrings. 2563 /// 2564 /// The result has pointer to array type. 2565 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2566 const char *GlobalName, 2567 unsigned Alignment) { 2568 // Get the default prefix if a name wasn't specified. 2569 if (!GlobalName) 2570 GlobalName = ".str"; 2571 2572 // Don't share any string literals if strings aren't constant. 2573 if (LangOpts.WritableStrings) 2574 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2575 2576 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2577 ConstantStringMap.GetOrCreateValue(Str); 2578 2579 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2580 if (Alignment > GV->getAlignment()) { 2581 GV->setAlignment(Alignment); 2582 } 2583 return GV; 2584 } 2585 2586 // Create a global variable for this. 2587 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2588 Alignment); 2589 Entry.setValue(GV); 2590 return GV; 2591 } 2592 2593 /// GetAddrOfConstantCString - Returns a pointer to a character 2594 /// array containing the literal and a terminating '\0' 2595 /// character. The result has pointer to array type. 2596 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2597 const char *GlobalName, 2598 unsigned Alignment) { 2599 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2600 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2601 } 2602 2603 /// EmitObjCPropertyImplementations - Emit information for synthesized 2604 /// properties for an implementation. 2605 void CodeGenModule::EmitObjCPropertyImplementations(const 2606 ObjCImplementationDecl *D) { 2607 for (ObjCImplementationDecl::propimpl_iterator 2608 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2609 ObjCPropertyImplDecl *PID = *i; 2610 2611 // Dynamic is just for type-checking. 2612 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2613 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2614 2615 // Determine which methods need to be implemented, some may have 2616 // been overridden. Note that ::isPropertyAccessor is not the method 2617 // we want, that just indicates if the decl came from a 2618 // property. What we want to know is if the method is defined in 2619 // this implementation. 2620 if (!D->getInstanceMethod(PD->getGetterName())) 2621 CodeGenFunction(*this).GenerateObjCGetter( 2622 const_cast<ObjCImplementationDecl *>(D), PID); 2623 if (!PD->isReadOnly() && 2624 !D->getInstanceMethod(PD->getSetterName())) 2625 CodeGenFunction(*this).GenerateObjCSetter( 2626 const_cast<ObjCImplementationDecl *>(D), PID); 2627 } 2628 } 2629 } 2630 2631 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2632 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2633 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2634 ivar; ivar = ivar->getNextIvar()) 2635 if (ivar->getType().isDestructedType()) 2636 return true; 2637 2638 return false; 2639 } 2640 2641 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2642 /// for an implementation. 2643 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2644 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2645 if (needsDestructMethod(D)) { 2646 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2647 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2648 ObjCMethodDecl *DTORMethod = 2649 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2650 cxxSelector, getContext().VoidTy, 0, D, 2651 /*isInstance=*/true, /*isVariadic=*/false, 2652 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2653 /*isDefined=*/false, ObjCMethodDecl::Required); 2654 D->addInstanceMethod(DTORMethod); 2655 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2656 D->setHasDestructors(true); 2657 } 2658 2659 // If the implementation doesn't have any ivar initializers, we don't need 2660 // a .cxx_construct. 2661 if (D->getNumIvarInitializers() == 0) 2662 return; 2663 2664 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2665 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2666 // The constructor returns 'self'. 2667 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2668 D->getLocation(), 2669 D->getLocation(), 2670 cxxSelector, 2671 getContext().getObjCIdType(), 0, 2672 D, /*isInstance=*/true, 2673 /*isVariadic=*/false, 2674 /*isPropertyAccessor=*/true, 2675 /*isImplicitlyDeclared=*/true, 2676 /*isDefined=*/false, 2677 ObjCMethodDecl::Required); 2678 D->addInstanceMethod(CTORMethod); 2679 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2680 D->setHasNonZeroConstructors(true); 2681 } 2682 2683 /// EmitNamespace - Emit all declarations in a namespace. 2684 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2685 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2686 I != E; ++I) 2687 EmitTopLevelDecl(*I); 2688 } 2689 2690 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2691 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2692 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2693 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2694 ErrorUnsupported(LSD, "linkage spec"); 2695 return; 2696 } 2697 2698 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2699 I != E; ++I) { 2700 // Meta-data for ObjC class includes references to implemented methods. 2701 // Generate class's method definitions first. 2702 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2703 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2704 MEnd = OID->meth_end(); 2705 M != MEnd; ++M) 2706 EmitTopLevelDecl(*M); 2707 } 2708 EmitTopLevelDecl(*I); 2709 } 2710 } 2711 2712 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2713 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2714 // If an error has occurred, stop code generation, but continue 2715 // parsing and semantic analysis (to ensure all warnings and errors 2716 // are emitted). 2717 if (Diags.hasErrorOccurred()) 2718 return; 2719 2720 // Ignore dependent declarations. 2721 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2722 return; 2723 2724 switch (D->getKind()) { 2725 case Decl::CXXConversion: 2726 case Decl::CXXMethod: 2727 case Decl::Function: 2728 // Skip function templates 2729 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2730 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2731 return; 2732 2733 EmitGlobal(cast<FunctionDecl>(D)); 2734 break; 2735 2736 case Decl::Var: 2737 EmitGlobal(cast<VarDecl>(D)); 2738 break; 2739 2740 // Indirect fields from global anonymous structs and unions can be 2741 // ignored; only the actual variable requires IR gen support. 2742 case Decl::IndirectField: 2743 break; 2744 2745 // C++ Decls 2746 case Decl::Namespace: 2747 EmitNamespace(cast<NamespaceDecl>(D)); 2748 break; 2749 // No code generation needed. 2750 case Decl::UsingShadow: 2751 case Decl::Using: 2752 case Decl::UsingDirective: 2753 case Decl::ClassTemplate: 2754 case Decl::FunctionTemplate: 2755 case Decl::TypeAliasTemplate: 2756 case Decl::NamespaceAlias: 2757 case Decl::Block: 2758 case Decl::Empty: 2759 break; 2760 case Decl::CXXConstructor: 2761 // Skip function templates 2762 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2763 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2764 return; 2765 2766 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2767 break; 2768 case Decl::CXXDestructor: 2769 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2770 return; 2771 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2772 break; 2773 2774 case Decl::StaticAssert: 2775 // Nothing to do. 2776 break; 2777 2778 // Objective-C Decls 2779 2780 // Forward declarations, no (immediate) code generation. 2781 case Decl::ObjCInterface: 2782 case Decl::ObjCCategory: 2783 break; 2784 2785 case Decl::ObjCProtocol: { 2786 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2787 if (Proto->isThisDeclarationADefinition()) 2788 ObjCRuntime->GenerateProtocol(Proto); 2789 break; 2790 } 2791 2792 case Decl::ObjCCategoryImpl: 2793 // Categories have properties but don't support synthesize so we 2794 // can ignore them here. 2795 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2796 break; 2797 2798 case Decl::ObjCImplementation: { 2799 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2800 EmitObjCPropertyImplementations(OMD); 2801 EmitObjCIvarInitializations(OMD); 2802 ObjCRuntime->GenerateClass(OMD); 2803 // Emit global variable debug information. 2804 if (CGDebugInfo *DI = getModuleDebugInfo()) 2805 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2806 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2807 OMD->getClassInterface()), OMD->getLocation()); 2808 break; 2809 } 2810 case Decl::ObjCMethod: { 2811 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2812 // If this is not a prototype, emit the body. 2813 if (OMD->getBody()) 2814 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2815 break; 2816 } 2817 case Decl::ObjCCompatibleAlias: 2818 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2819 break; 2820 2821 case Decl::LinkageSpec: 2822 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2823 break; 2824 2825 case Decl::FileScopeAsm: { 2826 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2827 StringRef AsmString = AD->getAsmString()->getString(); 2828 2829 const std::string &S = getModule().getModuleInlineAsm(); 2830 if (S.empty()) 2831 getModule().setModuleInlineAsm(AsmString); 2832 else if (S.end()[-1] == '\n') 2833 getModule().setModuleInlineAsm(S + AsmString.str()); 2834 else 2835 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2836 break; 2837 } 2838 2839 case Decl::Import: { 2840 ImportDecl *Import = cast<ImportDecl>(D); 2841 2842 // Ignore import declarations that come from imported modules. 2843 if (clang::Module *Owner = Import->getOwningModule()) { 2844 if (getLangOpts().CurrentModule.empty() || 2845 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 2846 break; 2847 } 2848 2849 ImportedModules.insert(Import->getImportedModule()); 2850 break; 2851 } 2852 2853 default: 2854 // Make sure we handled everything we should, every other kind is a 2855 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2856 // function. Need to recode Decl::Kind to do that easily. 2857 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2858 } 2859 } 2860 2861 /// Turns the given pointer into a constant. 2862 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2863 const void *Ptr) { 2864 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2865 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2866 return llvm::ConstantInt::get(i64, PtrInt); 2867 } 2868 2869 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2870 llvm::NamedMDNode *&GlobalMetadata, 2871 GlobalDecl D, 2872 llvm::GlobalValue *Addr) { 2873 if (!GlobalMetadata) 2874 GlobalMetadata = 2875 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2876 2877 // TODO: should we report variant information for ctors/dtors? 2878 llvm::Value *Ops[] = { 2879 Addr, 2880 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2881 }; 2882 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2883 } 2884 2885 /// Emits metadata nodes associating all the global values in the 2886 /// current module with the Decls they came from. This is useful for 2887 /// projects using IR gen as a subroutine. 2888 /// 2889 /// Since there's currently no way to associate an MDNode directly 2890 /// with an llvm::GlobalValue, we create a global named metadata 2891 /// with the name 'clang.global.decl.ptrs'. 2892 void CodeGenModule::EmitDeclMetadata() { 2893 llvm::NamedMDNode *GlobalMetadata = 0; 2894 2895 // StaticLocalDeclMap 2896 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2897 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2898 I != E; ++I) { 2899 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2900 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2901 } 2902 } 2903 2904 /// Emits metadata nodes for all the local variables in the current 2905 /// function. 2906 void CodeGenFunction::EmitDeclMetadata() { 2907 if (LocalDeclMap.empty()) return; 2908 2909 llvm::LLVMContext &Context = getLLVMContext(); 2910 2911 // Find the unique metadata ID for this name. 2912 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2913 2914 llvm::NamedMDNode *GlobalMetadata = 0; 2915 2916 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2917 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2918 const Decl *D = I->first; 2919 llvm::Value *Addr = I->second; 2920 2921 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2922 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2923 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2924 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2925 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2926 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2927 } 2928 } 2929 } 2930 2931 void CodeGenModule::EmitCoverageFile() { 2932 if (!getCodeGenOpts().CoverageFile.empty()) { 2933 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2934 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2935 llvm::LLVMContext &Ctx = TheModule.getContext(); 2936 llvm::MDString *CoverageFile = 2937 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2938 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2939 llvm::MDNode *CU = CUNode->getOperand(i); 2940 llvm::Value *node[] = { CoverageFile, CU }; 2941 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2942 GCov->addOperand(N); 2943 } 2944 } 2945 } 2946 } 2947 2948 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 2949 QualType GuidType) { 2950 // Sema has checked that all uuid strings are of the form 2951 // "12345678-1234-1234-1234-1234567890ab". 2952 assert(Uuid.size() == 36); 2953 const char *Uuidstr = Uuid.data(); 2954 for (int i = 0; i < 36; ++i) { 2955 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-'); 2956 else assert(isHexDigit(Uuidstr[i])); 2957 } 2958 2959 llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16); 2960 llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16); 2961 llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16); 2962 static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 2963 2964 APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4); 2965 InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0)); 2966 InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1)); 2967 InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2)); 2968 APValue& Arr = InitStruct.getStructField(3); 2969 Arr = APValue(APValue::UninitArray(), 8, 8); 2970 for (int t = 0; t < 8; ++t) 2971 Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt( 2972 llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16))); 2973 2974 return EmitConstantValue(InitStruct, GuidType); 2975 } 2976