1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. 106 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 107 TBAA = new CodeGenTBAA(Context, VMContext, getLangOpts(), 108 ABI.getMangleContext()); 109 110 // If debug info or coverage generation is enabled, create the CGDebugInfo 111 // object. 112 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 113 CodeGenOpts.EmitGcovNotes) 114 DebugInfo = new CGDebugInfo(*this); 115 116 Block.GlobalUniqueCount = 0; 117 118 if (C.getLangOpts().ObjCAutoRefCount) 119 ARCData = new ARCEntrypoints(); 120 RRData = new RREntrypoints(); 121 } 122 123 CodeGenModule::~CodeGenModule() { 124 delete ObjCRuntime; 125 delete OpenCLRuntime; 126 delete CUDARuntime; 127 delete TheTargetCodeGenInfo; 128 delete &ABI; 129 delete TBAA; 130 delete DebugInfo; 131 delete ARCData; 132 delete RRData; 133 } 134 135 void CodeGenModule::createObjCRuntime() { 136 if (!LangOpts.NeXTRuntime) 137 ObjCRuntime = CreateGNUObjCRuntime(*this); 138 else 139 ObjCRuntime = CreateMacObjCRuntime(*this); 140 } 141 142 void CodeGenModule::createOpenCLRuntime() { 143 OpenCLRuntime = new CGOpenCLRuntime(*this); 144 } 145 146 void CodeGenModule::createCUDARuntime() { 147 CUDARuntime = CreateNVCUDARuntime(*this); 148 } 149 150 void CodeGenModule::Release() { 151 EmitDeferred(); 152 EmitCXXGlobalInitFunc(); 153 EmitCXXGlobalDtorFunc(); 154 if (ObjCRuntime) 155 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 156 AddGlobalCtor(ObjCInitFunction); 157 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 158 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 159 EmitGlobalAnnotations(); 160 EmitLLVMUsed(); 161 162 SimplifyPersonality(); 163 164 if (getCodeGenOpts().EmitDeclMetadata) 165 EmitDeclMetadata(); 166 167 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 168 EmitCoverageFile(); 169 170 if (DebugInfo) 171 DebugInfo->finalize(); 172 } 173 174 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 175 // Make sure that this type is translated. 176 Types.UpdateCompletedType(TD); 177 } 178 179 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 180 if (!TBAA) 181 return 0; 182 return TBAA->getTBAAInfo(QTy); 183 } 184 185 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 186 if (!TBAA) 187 return 0; 188 return TBAA->getTBAAInfoForVTablePtr(); 189 } 190 191 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 192 llvm::MDNode *TBAAInfo) { 193 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 194 } 195 196 bool CodeGenModule::isTargetDarwin() const { 197 return getContext().getTargetInfo().getTriple().isOSDarwin(); 198 } 199 200 void CodeGenModule::Error(SourceLocation loc, const Twine &error) { 201 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 202 error.str()); 203 getDiags().Report(Context.getFullLoc(loc), diagID); 204 } 205 206 /// ErrorUnsupported - Print out an error that codegen doesn't support the 207 /// specified stmt yet. 208 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 209 bool OmitOnError) { 210 if (OmitOnError && getDiags().hasErrorOccurred()) 211 return; 212 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 213 "cannot compile this %0 yet"); 214 std::string Msg = Type; 215 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 216 << Msg << S->getSourceRange(); 217 } 218 219 /// ErrorUnsupported - Print out an error that codegen doesn't support the 220 /// specified decl yet. 221 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 222 bool OmitOnError) { 223 if (OmitOnError && getDiags().hasErrorOccurred()) 224 return; 225 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 226 "cannot compile this %0 yet"); 227 std::string Msg = Type; 228 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 229 } 230 231 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 232 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 233 } 234 235 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 236 const NamedDecl *D) const { 237 // Internal definitions always have default visibility. 238 if (GV->hasLocalLinkage()) { 239 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 240 return; 241 } 242 243 // Set visibility for definitions. 244 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 245 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 246 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 247 } 248 249 /// Set the symbol visibility of type information (vtable and RTTI) 250 /// associated with the given type. 251 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 252 const CXXRecordDecl *RD, 253 TypeVisibilityKind TVK) const { 254 setGlobalVisibility(GV, RD); 255 256 if (!CodeGenOpts.HiddenWeakVTables) 257 return; 258 259 // We never want to drop the visibility for RTTI names. 260 if (TVK == TVK_ForRTTIName) 261 return; 262 263 // We want to drop the visibility to hidden for weak type symbols. 264 // This isn't possible if there might be unresolved references 265 // elsewhere that rely on this symbol being visible. 266 267 // This should be kept roughly in sync with setThunkVisibility 268 // in CGVTables.cpp. 269 270 // Preconditions. 271 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 272 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 273 return; 274 275 // Don't override an explicit visibility attribute. 276 if (RD->getExplicitVisibility()) 277 return; 278 279 switch (RD->getTemplateSpecializationKind()) { 280 // We have to disable the optimization if this is an EI definition 281 // because there might be EI declarations in other shared objects. 282 case TSK_ExplicitInstantiationDefinition: 283 case TSK_ExplicitInstantiationDeclaration: 284 return; 285 286 // Every use of a non-template class's type information has to emit it. 287 case TSK_Undeclared: 288 break; 289 290 // In theory, implicit instantiations can ignore the possibility of 291 // an explicit instantiation declaration because there necessarily 292 // must be an EI definition somewhere with default visibility. In 293 // practice, it's possible to have an explicit instantiation for 294 // an arbitrary template class, and linkers aren't necessarily able 295 // to deal with mixed-visibility symbols. 296 case TSK_ExplicitSpecialization: 297 case TSK_ImplicitInstantiation: 298 if (!CodeGenOpts.HiddenWeakTemplateVTables) 299 return; 300 break; 301 } 302 303 // If there's a key function, there may be translation units 304 // that don't have the key function's definition. But ignore 305 // this if we're emitting RTTI under -fno-rtti. 306 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 307 if (Context.getKeyFunction(RD)) 308 return; 309 } 310 311 // Otherwise, drop the visibility to hidden. 312 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 313 GV->setUnnamedAddr(true); 314 } 315 316 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 317 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 318 319 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 320 if (!Str.empty()) 321 return Str; 322 323 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 324 IdentifierInfo *II = ND->getIdentifier(); 325 assert(II && "Attempt to mangle unnamed decl."); 326 327 Str = II->getName(); 328 return Str; 329 } 330 331 SmallString<256> Buffer; 332 llvm::raw_svector_ostream Out(Buffer); 333 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 334 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 335 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 336 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 337 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 338 getCXXABI().getMangleContext().mangleBlock(BD, Out); 339 else 340 getCXXABI().getMangleContext().mangleName(ND, Out); 341 342 // Allocate space for the mangled name. 343 Out.flush(); 344 size_t Length = Buffer.size(); 345 char *Name = MangledNamesAllocator.Allocate<char>(Length); 346 std::copy(Buffer.begin(), Buffer.end(), Name); 347 348 Str = StringRef(Name, Length); 349 350 return Str; 351 } 352 353 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 354 const BlockDecl *BD) { 355 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 356 const Decl *D = GD.getDecl(); 357 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 358 if (D == 0) 359 MangleCtx.mangleGlobalBlock(BD, Out); 360 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 361 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 362 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 363 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 364 else 365 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 366 } 367 368 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 369 return getModule().getNamedValue(Name); 370 } 371 372 /// AddGlobalCtor - Add a function to the list that will be called before 373 /// main() runs. 374 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 375 // FIXME: Type coercion of void()* types. 376 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 377 } 378 379 /// AddGlobalDtor - Add a function to the list that will be called 380 /// when the module is unloaded. 381 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 382 // FIXME: Type coercion of void()* types. 383 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 384 } 385 386 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 387 // Ctor function type is void()*. 388 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 389 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 390 391 // Get the type of a ctor entry, { i32, void ()* }. 392 llvm::StructType *CtorStructTy = 393 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 394 395 // Construct the constructor and destructor arrays. 396 SmallVector<llvm::Constant*, 8> Ctors; 397 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 398 llvm::Constant *S[] = { 399 llvm::ConstantInt::get(Int32Ty, I->second, false), 400 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 401 }; 402 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 403 } 404 405 if (!Ctors.empty()) { 406 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 407 new llvm::GlobalVariable(TheModule, AT, false, 408 llvm::GlobalValue::AppendingLinkage, 409 llvm::ConstantArray::get(AT, Ctors), 410 GlobalName); 411 } 412 } 413 414 llvm::GlobalValue::LinkageTypes 415 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 416 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 417 418 if (Linkage == GVA_Internal) 419 return llvm::Function::InternalLinkage; 420 421 if (D->hasAttr<DLLExportAttr>()) 422 return llvm::Function::DLLExportLinkage; 423 424 if (D->hasAttr<WeakAttr>()) 425 return llvm::Function::WeakAnyLinkage; 426 427 // In C99 mode, 'inline' functions are guaranteed to have a strong 428 // definition somewhere else, so we can use available_externally linkage. 429 if (Linkage == GVA_C99Inline) 430 return llvm::Function::AvailableExternallyLinkage; 431 432 // Note that Apple's kernel linker doesn't support symbol 433 // coalescing, so we need to avoid linkonce and weak linkages there. 434 // Normally, this means we just map to internal, but for explicit 435 // instantiations we'll map to external. 436 437 // In C++, the compiler has to emit a definition in every translation unit 438 // that references the function. We should use linkonce_odr because 439 // a) if all references in this translation unit are optimized away, we 440 // don't need to codegen it. b) if the function persists, it needs to be 441 // merged with other definitions. c) C++ has the ODR, so we know the 442 // definition is dependable. 443 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 444 return !Context.getLangOpts().AppleKext 445 ? llvm::Function::LinkOnceODRLinkage 446 : llvm::Function::InternalLinkage; 447 448 // An explicit instantiation of a template has weak linkage, since 449 // explicit instantiations can occur in multiple translation units 450 // and must all be equivalent. However, we are not allowed to 451 // throw away these explicit instantiations. 452 if (Linkage == GVA_ExplicitTemplateInstantiation) 453 return !Context.getLangOpts().AppleKext 454 ? llvm::Function::WeakODRLinkage 455 : llvm::Function::ExternalLinkage; 456 457 // Otherwise, we have strong external linkage. 458 assert(Linkage == GVA_StrongExternal); 459 return llvm::Function::ExternalLinkage; 460 } 461 462 463 /// SetFunctionDefinitionAttributes - Set attributes for a global. 464 /// 465 /// FIXME: This is currently only done for aliases and functions, but not for 466 /// variables (these details are set in EmitGlobalVarDefinition for variables). 467 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 468 llvm::GlobalValue *GV) { 469 SetCommonAttributes(D, GV); 470 } 471 472 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 473 const CGFunctionInfo &Info, 474 llvm::Function *F) { 475 unsigned CallingConv; 476 AttributeListType AttributeList; 477 ConstructAttributeList(Info, D, AttributeList, CallingConv); 478 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 479 AttributeList.size())); 480 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 481 } 482 483 /// Determines whether the language options require us to model 484 /// unwind exceptions. We treat -fexceptions as mandating this 485 /// except under the fragile ObjC ABI with only ObjC exceptions 486 /// enabled. This means, for example, that C with -fexceptions 487 /// enables this. 488 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 489 // If exceptions are completely disabled, obviously this is false. 490 if (!LangOpts.Exceptions) return false; 491 492 // If C++ exceptions are enabled, this is true. 493 if (LangOpts.CXXExceptions) return true; 494 495 // If ObjC exceptions are enabled, this depends on the ABI. 496 if (LangOpts.ObjCExceptions) { 497 if (!LangOpts.ObjCNonFragileABI) return false; 498 } 499 500 return true; 501 } 502 503 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 504 llvm::Function *F) { 505 if (CodeGenOpts.UnwindTables) 506 F->setHasUWTable(); 507 508 if (!hasUnwindExceptions(LangOpts)) 509 F->addFnAttr(llvm::Attribute::NoUnwind); 510 511 if (D->hasAttr<NakedAttr>()) { 512 // Naked implies noinline: we should not be inlining such functions. 513 F->addFnAttr(llvm::Attribute::Naked); 514 F->addFnAttr(llvm::Attribute::NoInline); 515 } 516 517 if (D->hasAttr<NoInlineAttr>()) 518 F->addFnAttr(llvm::Attribute::NoInline); 519 520 // (noinline wins over always_inline, and we can't specify both in IR) 521 if (D->hasAttr<AlwaysInlineAttr>() && 522 !F->hasFnAttr(llvm::Attribute::NoInline)) 523 F->addFnAttr(llvm::Attribute::AlwaysInline); 524 525 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 526 F->setUnnamedAddr(true); 527 528 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 529 F->addFnAttr(llvm::Attribute::StackProtect); 530 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 531 F->addFnAttr(llvm::Attribute::StackProtectReq); 532 533 if (LangOpts.AddressSanitizer) { 534 // When AddressSanitizer is enabled, set AddressSafety attribute 535 // unless __attribute__((no_address_safety_analysis)) is used. 536 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 537 F->addFnAttr(llvm::Attribute::AddressSafety); 538 } 539 540 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 541 if (alignment) 542 F->setAlignment(alignment); 543 544 // C++ ABI requires 2-byte alignment for member functions. 545 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 546 F->setAlignment(2); 547 } 548 549 void CodeGenModule::SetCommonAttributes(const Decl *D, 550 llvm::GlobalValue *GV) { 551 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 552 setGlobalVisibility(GV, ND); 553 else 554 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 555 556 if (D->hasAttr<UsedAttr>()) 557 AddUsedGlobal(GV); 558 559 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 560 GV->setSection(SA->getName()); 561 562 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 563 } 564 565 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 566 llvm::Function *F, 567 const CGFunctionInfo &FI) { 568 SetLLVMFunctionAttributes(D, FI, F); 569 SetLLVMFunctionAttributesForDefinition(D, F); 570 571 F->setLinkage(llvm::Function::InternalLinkage); 572 573 SetCommonAttributes(D, F); 574 } 575 576 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 577 llvm::Function *F, 578 bool IsIncompleteFunction) { 579 if (unsigned IID = F->getIntrinsicID()) { 580 // If this is an intrinsic function, set the function's attributes 581 // to the intrinsic's attributes. 582 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 583 return; 584 } 585 586 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 587 588 if (!IsIncompleteFunction) 589 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 590 591 // Only a few attributes are set on declarations; these may later be 592 // overridden by a definition. 593 594 if (FD->hasAttr<DLLImportAttr>()) { 595 F->setLinkage(llvm::Function::DLLImportLinkage); 596 } else if (FD->hasAttr<WeakAttr>() || 597 FD->isWeakImported()) { 598 // "extern_weak" is overloaded in LLVM; we probably should have 599 // separate linkage types for this. 600 F->setLinkage(llvm::Function::ExternalWeakLinkage); 601 } else { 602 F->setLinkage(llvm::Function::ExternalLinkage); 603 604 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 605 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 606 F->setVisibility(GetLLVMVisibility(LV.visibility())); 607 } 608 } 609 610 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 611 F->setSection(SA->getName()); 612 } 613 614 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 615 assert(!GV->isDeclaration() && 616 "Only globals with definition can force usage."); 617 LLVMUsed.push_back(GV); 618 } 619 620 void CodeGenModule::EmitLLVMUsed() { 621 // Don't create llvm.used if there is no need. 622 if (LLVMUsed.empty()) 623 return; 624 625 // Convert LLVMUsed to what ConstantArray needs. 626 SmallVector<llvm::Constant*, 8> UsedArray; 627 UsedArray.resize(LLVMUsed.size()); 628 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 629 UsedArray[i] = 630 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 631 Int8PtrTy); 632 } 633 634 if (UsedArray.empty()) 635 return; 636 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 637 638 llvm::GlobalVariable *GV = 639 new llvm::GlobalVariable(getModule(), ATy, false, 640 llvm::GlobalValue::AppendingLinkage, 641 llvm::ConstantArray::get(ATy, UsedArray), 642 "llvm.used"); 643 644 GV->setSection("llvm.metadata"); 645 } 646 647 void CodeGenModule::EmitDeferred() { 648 // Emit code for any potentially referenced deferred decls. Since a 649 // previously unused static decl may become used during the generation of code 650 // for a static function, iterate until no changes are made. 651 652 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 653 if (!DeferredVTables.empty()) { 654 const CXXRecordDecl *RD = DeferredVTables.back(); 655 DeferredVTables.pop_back(); 656 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 657 continue; 658 } 659 660 GlobalDecl D = DeferredDeclsToEmit.back(); 661 DeferredDeclsToEmit.pop_back(); 662 663 // Check to see if we've already emitted this. This is necessary 664 // for a couple of reasons: first, decls can end up in the 665 // deferred-decls queue multiple times, and second, decls can end 666 // up with definitions in unusual ways (e.g. by an extern inline 667 // function acquiring a strong function redefinition). Just 668 // ignore these cases. 669 // 670 // TODO: That said, looking this up multiple times is very wasteful. 671 StringRef Name = getMangledName(D); 672 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 673 assert(CGRef && "Deferred decl wasn't referenced?"); 674 675 if (!CGRef->isDeclaration()) 676 continue; 677 678 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 679 // purposes an alias counts as a definition. 680 if (isa<llvm::GlobalAlias>(CGRef)) 681 continue; 682 683 // Otherwise, emit the definition and move on to the next one. 684 EmitGlobalDefinition(D); 685 } 686 } 687 688 void CodeGenModule::EmitGlobalAnnotations() { 689 if (Annotations.empty()) 690 return; 691 692 // Create a new global variable for the ConstantStruct in the Module. 693 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 694 Annotations[0]->getType(), Annotations.size()), Annotations); 695 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 696 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 697 "llvm.global.annotations"); 698 gv->setSection(AnnotationSection); 699 } 700 701 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 702 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 703 if (i != AnnotationStrings.end()) 704 return i->second; 705 706 // Not found yet, create a new global. 707 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 708 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 709 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 710 gv->setSection(AnnotationSection); 711 gv->setUnnamedAddr(true); 712 AnnotationStrings[Str] = gv; 713 return gv; 714 } 715 716 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 717 SourceManager &SM = getContext().getSourceManager(); 718 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 719 if (PLoc.isValid()) 720 return EmitAnnotationString(PLoc.getFilename()); 721 return EmitAnnotationString(SM.getBufferName(Loc)); 722 } 723 724 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 725 SourceManager &SM = getContext().getSourceManager(); 726 PresumedLoc PLoc = SM.getPresumedLoc(L); 727 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 728 SM.getExpansionLineNumber(L); 729 return llvm::ConstantInt::get(Int32Ty, LineNo); 730 } 731 732 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 733 const AnnotateAttr *AA, 734 SourceLocation L) { 735 // Get the globals for file name, annotation, and the line number. 736 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 737 *UnitGV = EmitAnnotationUnit(L), 738 *LineNoCst = EmitAnnotationLineNo(L); 739 740 // Create the ConstantStruct for the global annotation. 741 llvm::Constant *Fields[4] = { 742 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 743 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 744 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 745 LineNoCst 746 }; 747 return llvm::ConstantStruct::getAnon(Fields); 748 } 749 750 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 751 llvm::GlobalValue *GV) { 752 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 753 // Get the struct elements for these annotations. 754 for (specific_attr_iterator<AnnotateAttr> 755 ai = D->specific_attr_begin<AnnotateAttr>(), 756 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 757 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 758 } 759 760 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 761 // Never defer when EmitAllDecls is specified. 762 if (LangOpts.EmitAllDecls) 763 return false; 764 765 return !getContext().DeclMustBeEmitted(Global); 766 } 767 768 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 769 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 770 assert(AA && "No alias?"); 771 772 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 773 774 // See if there is already something with the target's name in the module. 775 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 776 777 llvm::Constant *Aliasee; 778 if (isa<llvm::FunctionType>(DeclTy)) 779 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 780 /*ForVTable=*/false); 781 else 782 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 783 llvm::PointerType::getUnqual(DeclTy), 0); 784 if (!Entry) { 785 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 786 F->setLinkage(llvm::Function::ExternalWeakLinkage); 787 WeakRefReferences.insert(F); 788 } 789 790 return Aliasee; 791 } 792 793 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 794 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 795 796 // Weak references don't produce any output by themselves. 797 if (Global->hasAttr<WeakRefAttr>()) 798 return; 799 800 // If this is an alias definition (which otherwise looks like a declaration) 801 // emit it now. 802 if (Global->hasAttr<AliasAttr>()) 803 return EmitAliasDefinition(GD); 804 805 // If this is CUDA, be selective about which declarations we emit. 806 if (LangOpts.CUDA) { 807 if (CodeGenOpts.CUDAIsDevice) { 808 if (!Global->hasAttr<CUDADeviceAttr>() && 809 !Global->hasAttr<CUDAGlobalAttr>() && 810 !Global->hasAttr<CUDAConstantAttr>() && 811 !Global->hasAttr<CUDASharedAttr>()) 812 return; 813 } else { 814 if (!Global->hasAttr<CUDAHostAttr>() && ( 815 Global->hasAttr<CUDADeviceAttr>() || 816 Global->hasAttr<CUDAConstantAttr>() || 817 Global->hasAttr<CUDASharedAttr>())) 818 return; 819 } 820 } 821 822 // Ignore declarations, they will be emitted on their first use. 823 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 824 // Forward declarations are emitted lazily on first use. 825 if (!FD->doesThisDeclarationHaveABody()) { 826 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 827 return; 828 829 const FunctionDecl *InlineDefinition = 0; 830 FD->getBody(InlineDefinition); 831 832 StringRef MangledName = getMangledName(GD); 833 DeferredDecls.erase(MangledName); 834 EmitGlobalDefinition(InlineDefinition); 835 return; 836 } 837 } else { 838 const VarDecl *VD = cast<VarDecl>(Global); 839 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 840 841 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 842 return; 843 } 844 845 // Defer code generation when possible if this is a static definition, inline 846 // function etc. These we only want to emit if they are used. 847 if (!MayDeferGeneration(Global)) { 848 // Emit the definition if it can't be deferred. 849 EmitGlobalDefinition(GD); 850 return; 851 } 852 853 // If we're deferring emission of a C++ variable with an 854 // initializer, remember the order in which it appeared in the file. 855 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 856 cast<VarDecl>(Global)->hasInit()) { 857 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 858 CXXGlobalInits.push_back(0); 859 } 860 861 // If the value has already been used, add it directly to the 862 // DeferredDeclsToEmit list. 863 StringRef MangledName = getMangledName(GD); 864 if (GetGlobalValue(MangledName)) 865 DeferredDeclsToEmit.push_back(GD); 866 else { 867 // Otherwise, remember that we saw a deferred decl with this name. The 868 // first use of the mangled name will cause it to move into 869 // DeferredDeclsToEmit. 870 DeferredDecls[MangledName] = GD; 871 } 872 } 873 874 namespace { 875 struct FunctionIsDirectlyRecursive : 876 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 877 const StringRef Name; 878 const Builtin::Context &BI; 879 bool Result; 880 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 881 Name(N), BI(C), Result(false) { 882 } 883 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 884 885 bool TraverseCallExpr(CallExpr *E) { 886 const FunctionDecl *FD = E->getDirectCallee(); 887 if (!FD) 888 return true; 889 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 890 if (Attr && Name == Attr->getLabel()) { 891 Result = true; 892 return false; 893 } 894 unsigned BuiltinID = FD->getBuiltinID(); 895 if (!BuiltinID) 896 return true; 897 StringRef BuiltinName = BI.GetName(BuiltinID); 898 if (BuiltinName.startswith("__builtin_") && 899 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 900 Result = true; 901 return false; 902 } 903 return true; 904 } 905 }; 906 } 907 908 // isTriviallyRecursive - Check if this function calls another 909 // decl that, because of the asm attribute or the other decl being a builtin, 910 // ends up pointing to itself. 911 bool 912 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 913 StringRef Name; 914 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 915 // asm labels are a special kind of mangling we have to support. 916 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 917 if (!Attr) 918 return false; 919 Name = Attr->getLabel(); 920 } else { 921 Name = FD->getName(); 922 } 923 924 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 925 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 926 return Walker.Result; 927 } 928 929 bool 930 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 931 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 932 return true; 933 if (CodeGenOpts.OptimizationLevel == 0 && 934 !F->hasAttr<AlwaysInlineAttr>()) 935 return false; 936 // PR9614. Avoid cases where the source code is lying to us. An available 937 // externally function should have an equivalent function somewhere else, 938 // but a function that calls itself is clearly not equivalent to the real 939 // implementation. 940 // This happens in glibc's btowc and in some configure checks. 941 return !isTriviallyRecursive(F); 942 } 943 944 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 945 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 946 947 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 948 Context.getSourceManager(), 949 "Generating code for declaration"); 950 951 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 952 // At -O0, don't generate IR for functions with available_externally 953 // linkage. 954 if (!shouldEmitFunction(Function)) 955 return; 956 957 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 958 // Make sure to emit the definition(s) before we emit the thunks. 959 // This is necessary for the generation of certain thunks. 960 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 961 EmitCXXConstructor(CD, GD.getCtorType()); 962 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 963 EmitCXXDestructor(DD, GD.getDtorType()); 964 else 965 EmitGlobalFunctionDefinition(GD); 966 967 if (Method->isVirtual()) 968 getVTables().EmitThunks(GD); 969 970 return; 971 } 972 973 return EmitGlobalFunctionDefinition(GD); 974 } 975 976 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 977 return EmitGlobalVarDefinition(VD); 978 979 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 980 } 981 982 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 983 /// module, create and return an llvm Function with the specified type. If there 984 /// is something in the module with the specified name, return it potentially 985 /// bitcasted to the right type. 986 /// 987 /// If D is non-null, it specifies a decl that correspond to this. This is used 988 /// to set the attributes on the function when it is first created. 989 llvm::Constant * 990 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 991 llvm::Type *Ty, 992 GlobalDecl D, bool ForVTable, 993 llvm::Attributes ExtraAttrs) { 994 // Lookup the entry, lazily creating it if necessary. 995 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 996 if (Entry) { 997 if (WeakRefReferences.count(Entry)) { 998 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 999 if (FD && !FD->hasAttr<WeakAttr>()) 1000 Entry->setLinkage(llvm::Function::ExternalLinkage); 1001 1002 WeakRefReferences.erase(Entry); 1003 } 1004 1005 if (Entry->getType()->getElementType() == Ty) 1006 return Entry; 1007 1008 // Make sure the result is of the correct type. 1009 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1010 } 1011 1012 // This function doesn't have a complete type (for example, the return 1013 // type is an incomplete struct). Use a fake type instead, and make 1014 // sure not to try to set attributes. 1015 bool IsIncompleteFunction = false; 1016 1017 llvm::FunctionType *FTy; 1018 if (isa<llvm::FunctionType>(Ty)) { 1019 FTy = cast<llvm::FunctionType>(Ty); 1020 } else { 1021 FTy = llvm::FunctionType::get(VoidTy, false); 1022 IsIncompleteFunction = true; 1023 } 1024 1025 llvm::Function *F = llvm::Function::Create(FTy, 1026 llvm::Function::ExternalLinkage, 1027 MangledName, &getModule()); 1028 assert(F->getName() == MangledName && "name was uniqued!"); 1029 if (D.getDecl()) 1030 SetFunctionAttributes(D, F, IsIncompleteFunction); 1031 if (ExtraAttrs != llvm::Attribute::None) 1032 F->addFnAttr(ExtraAttrs); 1033 1034 // This is the first use or definition of a mangled name. If there is a 1035 // deferred decl with this name, remember that we need to emit it at the end 1036 // of the file. 1037 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1038 if (DDI != DeferredDecls.end()) { 1039 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1040 // list, and remove it from DeferredDecls (since we don't need it anymore). 1041 DeferredDeclsToEmit.push_back(DDI->second); 1042 DeferredDecls.erase(DDI); 1043 1044 // Otherwise, there are cases we have to worry about where we're 1045 // using a declaration for which we must emit a definition but where 1046 // we might not find a top-level definition: 1047 // - member functions defined inline in their classes 1048 // - friend functions defined inline in some class 1049 // - special member functions with implicit definitions 1050 // If we ever change our AST traversal to walk into class methods, 1051 // this will be unnecessary. 1052 // 1053 // We also don't emit a definition for a function if it's going to be an entry 1054 // in a vtable, unless it's already marked as used. 1055 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1056 // Look for a declaration that's lexically in a record. 1057 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1058 do { 1059 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1060 if (FD->isImplicit() && !ForVTable) { 1061 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1062 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1063 break; 1064 } else if (FD->doesThisDeclarationHaveABody()) { 1065 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1066 break; 1067 } 1068 } 1069 FD = FD->getPreviousDecl(); 1070 } while (FD); 1071 } 1072 1073 // Make sure the result is of the requested type. 1074 if (!IsIncompleteFunction) { 1075 assert(F->getType()->getElementType() == Ty); 1076 return F; 1077 } 1078 1079 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1080 return llvm::ConstantExpr::getBitCast(F, PTy); 1081 } 1082 1083 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1084 /// non-null, then this function will use the specified type if it has to 1085 /// create it (this occurs when we see a definition of the function). 1086 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1087 llvm::Type *Ty, 1088 bool ForVTable) { 1089 // If there was no specific requested type, just convert it now. 1090 if (!Ty) 1091 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1092 1093 StringRef MangledName = getMangledName(GD); 1094 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1095 } 1096 1097 /// CreateRuntimeFunction - Create a new runtime function with the specified 1098 /// type and name. 1099 llvm::Constant * 1100 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1101 StringRef Name, 1102 llvm::Attributes ExtraAttrs) { 1103 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1104 ExtraAttrs); 1105 } 1106 1107 /// isTypeConstant - Determine whether an object of this type can be emitted 1108 /// as a constant. 1109 /// 1110 /// If ExcludeCtor is true, the duration when the object's constructor runs 1111 /// will not be considered. The caller will need to verify that the object is 1112 /// not written to during its construction. 1113 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1114 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1115 return false; 1116 1117 if (Context.getLangOpts().CPlusPlus) { 1118 if (const CXXRecordDecl *Record 1119 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1120 return ExcludeCtor && !Record->hasMutableFields() && 1121 Record->hasTrivialDestructor(); 1122 } 1123 1124 return true; 1125 } 1126 1127 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1128 /// create and return an llvm GlobalVariable with the specified type. If there 1129 /// is something in the module with the specified name, return it potentially 1130 /// bitcasted to the right type. 1131 /// 1132 /// If D is non-null, it specifies a decl that correspond to this. This is used 1133 /// to set the attributes on the global when it is first created. 1134 llvm::Constant * 1135 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1136 llvm::PointerType *Ty, 1137 const VarDecl *D, 1138 bool UnnamedAddr) { 1139 // Lookup the entry, lazily creating it if necessary. 1140 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1141 if (Entry) { 1142 if (WeakRefReferences.count(Entry)) { 1143 if (D && !D->hasAttr<WeakAttr>()) 1144 Entry->setLinkage(llvm::Function::ExternalLinkage); 1145 1146 WeakRefReferences.erase(Entry); 1147 } 1148 1149 if (UnnamedAddr) 1150 Entry->setUnnamedAddr(true); 1151 1152 if (Entry->getType() == Ty) 1153 return Entry; 1154 1155 // Make sure the result is of the correct type. 1156 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1157 } 1158 1159 // This is the first use or definition of a mangled name. If there is a 1160 // deferred decl with this name, remember that we need to emit it at the end 1161 // of the file. 1162 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1163 if (DDI != DeferredDecls.end()) { 1164 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1165 // list, and remove it from DeferredDecls (since we don't need it anymore). 1166 DeferredDeclsToEmit.push_back(DDI->second); 1167 DeferredDecls.erase(DDI); 1168 } 1169 1170 llvm::GlobalVariable *GV = 1171 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1172 llvm::GlobalValue::ExternalLinkage, 1173 0, MangledName, 0, 1174 false, Ty->getAddressSpace()); 1175 1176 // Handle things which are present even on external declarations. 1177 if (D) { 1178 // FIXME: This code is overly simple and should be merged with other global 1179 // handling. 1180 GV->setConstant(isTypeConstant(D->getType(), false)); 1181 1182 // Set linkage and visibility in case we never see a definition. 1183 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1184 if (LV.linkage() != ExternalLinkage) { 1185 // Don't set internal linkage on declarations. 1186 } else { 1187 if (D->hasAttr<DLLImportAttr>()) 1188 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1189 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1190 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1191 1192 // Set visibility on a declaration only if it's explicit. 1193 if (LV.visibilityExplicit()) 1194 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1195 } 1196 1197 GV->setThreadLocal(D->isThreadSpecified()); 1198 } 1199 1200 return GV; 1201 } 1202 1203 1204 llvm::GlobalVariable * 1205 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1206 llvm::Type *Ty, 1207 llvm::GlobalValue::LinkageTypes Linkage) { 1208 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1209 llvm::GlobalVariable *OldGV = 0; 1210 1211 1212 if (GV) { 1213 // Check if the variable has the right type. 1214 if (GV->getType()->getElementType() == Ty) 1215 return GV; 1216 1217 // Because C++ name mangling, the only way we can end up with an already 1218 // existing global with the same name is if it has been declared extern "C". 1219 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1220 OldGV = GV; 1221 } 1222 1223 // Create a new variable. 1224 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1225 Linkage, 0, Name); 1226 1227 if (OldGV) { 1228 // Replace occurrences of the old variable if needed. 1229 GV->takeName(OldGV); 1230 1231 if (!OldGV->use_empty()) { 1232 llvm::Constant *NewPtrForOldDecl = 1233 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1234 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1235 } 1236 1237 OldGV->eraseFromParent(); 1238 } 1239 1240 return GV; 1241 } 1242 1243 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1244 /// given global variable. If Ty is non-null and if the global doesn't exist, 1245 /// then it will be greated with the specified type instead of whatever the 1246 /// normal requested type would be. 1247 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1248 llvm::Type *Ty) { 1249 assert(D->hasGlobalStorage() && "Not a global variable"); 1250 QualType ASTTy = D->getType(); 1251 if (Ty == 0) 1252 Ty = getTypes().ConvertTypeForMem(ASTTy); 1253 1254 llvm::PointerType *PTy = 1255 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1256 1257 StringRef MangledName = getMangledName(D); 1258 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1259 } 1260 1261 /// CreateRuntimeVariable - Create a new runtime global variable with the 1262 /// specified type and name. 1263 llvm::Constant * 1264 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1265 StringRef Name) { 1266 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1267 true); 1268 } 1269 1270 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1271 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1272 1273 if (MayDeferGeneration(D)) { 1274 // If we have not seen a reference to this variable yet, place it 1275 // into the deferred declarations table to be emitted if needed 1276 // later. 1277 StringRef MangledName = getMangledName(D); 1278 if (!GetGlobalValue(MangledName)) { 1279 DeferredDecls[MangledName] = D; 1280 return; 1281 } 1282 } 1283 1284 // The tentative definition is the only definition. 1285 EmitGlobalVarDefinition(D); 1286 } 1287 1288 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1289 if (DefinitionRequired) 1290 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1291 } 1292 1293 llvm::GlobalVariable::LinkageTypes 1294 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1295 if (RD->getLinkage() != ExternalLinkage) 1296 return llvm::GlobalVariable::InternalLinkage; 1297 1298 if (const CXXMethodDecl *KeyFunction 1299 = RD->getASTContext().getKeyFunction(RD)) { 1300 // If this class has a key function, use that to determine the linkage of 1301 // the vtable. 1302 const FunctionDecl *Def = 0; 1303 if (KeyFunction->hasBody(Def)) 1304 KeyFunction = cast<CXXMethodDecl>(Def); 1305 1306 switch (KeyFunction->getTemplateSpecializationKind()) { 1307 case TSK_Undeclared: 1308 case TSK_ExplicitSpecialization: 1309 // When compiling with optimizations turned on, we emit all vtables, 1310 // even if the key function is not defined in the current translation 1311 // unit. If this is the case, use available_externally linkage. 1312 if (!Def && CodeGenOpts.OptimizationLevel) 1313 return llvm::GlobalVariable::AvailableExternallyLinkage; 1314 1315 if (KeyFunction->isInlined()) 1316 return !Context.getLangOpts().AppleKext ? 1317 llvm::GlobalVariable::LinkOnceODRLinkage : 1318 llvm::Function::InternalLinkage; 1319 1320 return llvm::GlobalVariable::ExternalLinkage; 1321 1322 case TSK_ImplicitInstantiation: 1323 return !Context.getLangOpts().AppleKext ? 1324 llvm::GlobalVariable::LinkOnceODRLinkage : 1325 llvm::Function::InternalLinkage; 1326 1327 case TSK_ExplicitInstantiationDefinition: 1328 return !Context.getLangOpts().AppleKext ? 1329 llvm::GlobalVariable::WeakODRLinkage : 1330 llvm::Function::InternalLinkage; 1331 1332 case TSK_ExplicitInstantiationDeclaration: 1333 // FIXME: Use available_externally linkage. However, this currently 1334 // breaks LLVM's build due to undefined symbols. 1335 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1336 return !Context.getLangOpts().AppleKext ? 1337 llvm::GlobalVariable::LinkOnceODRLinkage : 1338 llvm::Function::InternalLinkage; 1339 } 1340 } 1341 1342 if (Context.getLangOpts().AppleKext) 1343 return llvm::Function::InternalLinkage; 1344 1345 switch (RD->getTemplateSpecializationKind()) { 1346 case TSK_Undeclared: 1347 case TSK_ExplicitSpecialization: 1348 case TSK_ImplicitInstantiation: 1349 // FIXME: Use available_externally linkage. However, this currently 1350 // breaks LLVM's build due to undefined symbols. 1351 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1352 case TSK_ExplicitInstantiationDeclaration: 1353 return llvm::GlobalVariable::LinkOnceODRLinkage; 1354 1355 case TSK_ExplicitInstantiationDefinition: 1356 return llvm::GlobalVariable::WeakODRLinkage; 1357 } 1358 1359 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1360 } 1361 1362 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1363 return Context.toCharUnitsFromBits( 1364 TheTargetData.getTypeStoreSizeInBits(Ty)); 1365 } 1366 1367 llvm::Constant * 1368 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1369 const Expr *rawInit) { 1370 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1371 if (const ExprWithCleanups *withCleanups = 1372 dyn_cast<ExprWithCleanups>(rawInit)) { 1373 cleanups = withCleanups->getObjects(); 1374 rawInit = withCleanups->getSubExpr(); 1375 } 1376 1377 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1378 if (!init || !init->initializesStdInitializerList() || 1379 init->getNumInits() == 0) 1380 return 0; 1381 1382 ASTContext &ctx = getContext(); 1383 unsigned numInits = init->getNumInits(); 1384 // FIXME: This check is here because we would otherwise silently miscompile 1385 // nested global std::initializer_lists. Better would be to have a real 1386 // implementation. 1387 for (unsigned i = 0; i < numInits; ++i) { 1388 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1389 if (inner && inner->initializesStdInitializerList()) { 1390 ErrorUnsupported(inner, "nested global std::initializer_list"); 1391 return 0; 1392 } 1393 } 1394 1395 // Synthesize a fake VarDecl for the array and initialize that. 1396 QualType elementType = init->getInit(0)->getType(); 1397 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1398 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1399 ArrayType::Normal, 0); 1400 1401 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1402 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1403 arrayType, D->getLocation()); 1404 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1405 D->getDeclContext()), 1406 D->getLocStart(), D->getLocation(), 1407 name, arrayType, sourceInfo, 1408 SC_Static, SC_Static); 1409 1410 // Now clone the InitListExpr to initialize the array instead. 1411 // Incredible hack: we want to use the existing InitListExpr here, so we need 1412 // to tell it that it no longer initializes a std::initializer_list. 1413 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1414 const_cast<InitListExpr*>(init)->getInits(), 1415 init->getNumInits(), 1416 init->getRBraceLoc()); 1417 arrayInit->setType(arrayType); 1418 1419 if (!cleanups.empty()) 1420 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1421 1422 backingArray->setInit(arrayInit); 1423 1424 // Emit the definition of the array. 1425 EmitGlobalVarDefinition(backingArray); 1426 1427 // Inspect the initializer list to validate it and determine its type. 1428 // FIXME: doing this every time is probably inefficient; caching would be nice 1429 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1430 RecordDecl::field_iterator field = record->field_begin(); 1431 if (field == record->field_end()) { 1432 ErrorUnsupported(D, "weird std::initializer_list"); 1433 return 0; 1434 } 1435 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1436 // Start pointer. 1437 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1438 ErrorUnsupported(D, "weird std::initializer_list"); 1439 return 0; 1440 } 1441 ++field; 1442 if (field == record->field_end()) { 1443 ErrorUnsupported(D, "weird std::initializer_list"); 1444 return 0; 1445 } 1446 bool isStartEnd = false; 1447 if (ctx.hasSameType(field->getType(), elementPtr)) { 1448 // End pointer. 1449 isStartEnd = true; 1450 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1451 ErrorUnsupported(D, "weird std::initializer_list"); 1452 return 0; 1453 } 1454 1455 // Now build an APValue representing the std::initializer_list. 1456 APValue initListValue(APValue::UninitStruct(), 0, 2); 1457 APValue &startField = initListValue.getStructField(0); 1458 APValue::LValuePathEntry startOffsetPathEntry; 1459 startOffsetPathEntry.ArrayIndex = 0; 1460 startField = APValue(APValue::LValueBase(backingArray), 1461 CharUnits::fromQuantity(0), 1462 llvm::makeArrayRef(startOffsetPathEntry), 1463 /*IsOnePastTheEnd=*/false, 0); 1464 1465 if (isStartEnd) { 1466 APValue &endField = initListValue.getStructField(1); 1467 APValue::LValuePathEntry endOffsetPathEntry; 1468 endOffsetPathEntry.ArrayIndex = numInits; 1469 endField = APValue(APValue::LValueBase(backingArray), 1470 ctx.getTypeSizeInChars(elementType) * numInits, 1471 llvm::makeArrayRef(endOffsetPathEntry), 1472 /*IsOnePastTheEnd=*/true, 0); 1473 } else { 1474 APValue &sizeField = initListValue.getStructField(1); 1475 sizeField = APValue(llvm::APSInt(numElements)); 1476 } 1477 1478 // Emit the constant for the initializer_list. 1479 llvm::Constant *llvmInit = 1480 EmitConstantValueForMemory(initListValue, D->getType()); 1481 assert(llvmInit && "failed to initialize as constant"); 1482 return llvmInit; 1483 } 1484 1485 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1486 llvm::Constant *Init = 0; 1487 QualType ASTTy = D->getType(); 1488 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1489 bool NeedsGlobalCtor = false; 1490 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1491 1492 const VarDecl *InitDecl; 1493 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1494 1495 if (!InitExpr) { 1496 // This is a tentative definition; tentative definitions are 1497 // implicitly initialized with { 0 }. 1498 // 1499 // Note that tentative definitions are only emitted at the end of 1500 // a translation unit, so they should never have incomplete 1501 // type. In addition, EmitTentativeDefinition makes sure that we 1502 // never attempt to emit a tentative definition if a real one 1503 // exists. A use may still exists, however, so we still may need 1504 // to do a RAUW. 1505 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1506 Init = EmitNullConstant(D->getType()); 1507 } else { 1508 // If this is a std::initializer_list, emit the special initializer. 1509 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1510 // An empty init list will perform zero-initialization, which happens 1511 // to be exactly what we want. 1512 // FIXME: It does so in a global constructor, which is *not* what we 1513 // want. 1514 1515 if (!Init) 1516 Init = EmitConstantInit(*InitDecl); 1517 if (!Init) { 1518 QualType T = InitExpr->getType(); 1519 if (D->getType()->isReferenceType()) 1520 T = D->getType(); 1521 1522 if (getLangOpts().CPlusPlus) { 1523 Init = EmitNullConstant(T); 1524 NeedsGlobalCtor = true; 1525 } else { 1526 ErrorUnsupported(D, "static initializer"); 1527 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1528 } 1529 } else { 1530 // We don't need an initializer, so remove the entry for the delayed 1531 // initializer position (just in case this entry was delayed) if we 1532 // also don't need to register a destructor. 1533 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1534 DelayedCXXInitPosition.erase(D); 1535 } 1536 } 1537 1538 llvm::Type* InitType = Init->getType(); 1539 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1540 1541 // Strip off a bitcast if we got one back. 1542 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1543 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1544 // all zero index gep. 1545 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1546 Entry = CE->getOperand(0); 1547 } 1548 1549 // Entry is now either a Function or GlobalVariable. 1550 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1551 1552 // We have a definition after a declaration with the wrong type. 1553 // We must make a new GlobalVariable* and update everything that used OldGV 1554 // (a declaration or tentative definition) with the new GlobalVariable* 1555 // (which will be a definition). 1556 // 1557 // This happens if there is a prototype for a global (e.g. 1558 // "extern int x[];") and then a definition of a different type (e.g. 1559 // "int x[10];"). This also happens when an initializer has a different type 1560 // from the type of the global (this happens with unions). 1561 if (GV == 0 || 1562 GV->getType()->getElementType() != InitType || 1563 GV->getType()->getAddressSpace() != 1564 getContext().getTargetAddressSpace(ASTTy)) { 1565 1566 // Move the old entry aside so that we'll create a new one. 1567 Entry->setName(StringRef()); 1568 1569 // Make a new global with the correct type, this is now guaranteed to work. 1570 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1571 1572 // Replace all uses of the old global with the new global 1573 llvm::Constant *NewPtrForOldDecl = 1574 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1575 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1576 1577 // Erase the old global, since it is no longer used. 1578 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1579 } 1580 1581 if (D->hasAttr<AnnotateAttr>()) 1582 AddGlobalAnnotations(D, GV); 1583 1584 GV->setInitializer(Init); 1585 1586 // If it is safe to mark the global 'constant', do so now. 1587 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1588 isTypeConstant(D->getType(), true)); 1589 1590 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1591 1592 // Set the llvm linkage type as appropriate. 1593 llvm::GlobalValue::LinkageTypes Linkage = 1594 GetLLVMLinkageVarDefinition(D, GV); 1595 GV->setLinkage(Linkage); 1596 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1597 // common vars aren't constant even if declared const. 1598 GV->setConstant(false); 1599 1600 SetCommonAttributes(D, GV); 1601 1602 // Emit the initializer function if necessary. 1603 if (NeedsGlobalCtor || NeedsGlobalDtor) 1604 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1605 1606 // Emit global variable debug information. 1607 if (CGDebugInfo *DI = getModuleDebugInfo()) 1608 DI->EmitGlobalVariable(GV, D); 1609 } 1610 1611 llvm::GlobalValue::LinkageTypes 1612 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1613 llvm::GlobalVariable *GV) { 1614 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1615 if (Linkage == GVA_Internal) 1616 return llvm::Function::InternalLinkage; 1617 else if (D->hasAttr<DLLImportAttr>()) 1618 return llvm::Function::DLLImportLinkage; 1619 else if (D->hasAttr<DLLExportAttr>()) 1620 return llvm::Function::DLLExportLinkage; 1621 else if (D->hasAttr<WeakAttr>()) { 1622 if (GV->isConstant()) 1623 return llvm::GlobalVariable::WeakODRLinkage; 1624 else 1625 return llvm::GlobalVariable::WeakAnyLinkage; 1626 } else if (Linkage == GVA_TemplateInstantiation || 1627 Linkage == GVA_ExplicitTemplateInstantiation) 1628 return llvm::GlobalVariable::WeakODRLinkage; 1629 else if (!getLangOpts().CPlusPlus && 1630 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1631 D->getAttr<CommonAttr>()) && 1632 !D->hasExternalStorage() && !D->getInit() && 1633 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1634 !D->getAttr<WeakImportAttr>()) { 1635 // Thread local vars aren't considered common linkage. 1636 return llvm::GlobalVariable::CommonLinkage; 1637 } 1638 return llvm::GlobalVariable::ExternalLinkage; 1639 } 1640 1641 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1642 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1643 /// existing call uses of the old function in the module, this adjusts them to 1644 /// call the new function directly. 1645 /// 1646 /// This is not just a cleanup: the always_inline pass requires direct calls to 1647 /// functions to be able to inline them. If there is a bitcast in the way, it 1648 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1649 /// run at -O0. 1650 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1651 llvm::Function *NewFn) { 1652 // If we're redefining a global as a function, don't transform it. 1653 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1654 if (OldFn == 0) return; 1655 1656 llvm::Type *NewRetTy = NewFn->getReturnType(); 1657 SmallVector<llvm::Value*, 4> ArgList; 1658 1659 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1660 UI != E; ) { 1661 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1662 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1663 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1664 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1665 llvm::CallSite CS(CI); 1666 if (!CI || !CS.isCallee(I)) continue; 1667 1668 // If the return types don't match exactly, and if the call isn't dead, then 1669 // we can't transform this call. 1670 if (CI->getType() != NewRetTy && !CI->use_empty()) 1671 continue; 1672 1673 // Get the attribute list. 1674 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1675 llvm::AttrListPtr AttrList = CI->getAttributes(); 1676 1677 // Get any return attributes. 1678 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1679 1680 // Add the return attributes. 1681 if (RAttrs) 1682 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1683 1684 // If the function was passed too few arguments, don't transform. If extra 1685 // arguments were passed, we silently drop them. If any of the types 1686 // mismatch, we don't transform. 1687 unsigned ArgNo = 0; 1688 bool DontTransform = false; 1689 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1690 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1691 if (CS.arg_size() == ArgNo || 1692 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1693 DontTransform = true; 1694 break; 1695 } 1696 1697 // Add any parameter attributes. 1698 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1699 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1700 } 1701 if (DontTransform) 1702 continue; 1703 1704 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1705 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1706 1707 // Okay, we can transform this. Create the new call instruction and copy 1708 // over the required information. 1709 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1710 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1711 ArgList.clear(); 1712 if (!NewCall->getType()->isVoidTy()) 1713 NewCall->takeName(CI); 1714 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1715 AttrVec.end())); 1716 NewCall->setCallingConv(CI->getCallingConv()); 1717 1718 // Finally, remove the old call, replacing any uses with the new one. 1719 if (!CI->use_empty()) 1720 CI->replaceAllUsesWith(NewCall); 1721 1722 // Copy debug location attached to CI. 1723 if (!CI->getDebugLoc().isUnknown()) 1724 NewCall->setDebugLoc(CI->getDebugLoc()); 1725 CI->eraseFromParent(); 1726 } 1727 } 1728 1729 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1730 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1731 // If we have a definition, this might be a deferred decl. If the 1732 // instantiation is explicit, make sure we emit it at the end. 1733 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1734 GetAddrOfGlobalVar(VD); 1735 } 1736 1737 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1738 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1739 1740 // Compute the function info and LLVM type. 1741 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1742 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1743 1744 // Get or create the prototype for the function. 1745 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1746 1747 // Strip off a bitcast if we got one back. 1748 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1749 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1750 Entry = CE->getOperand(0); 1751 } 1752 1753 1754 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1755 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1756 1757 // If the types mismatch then we have to rewrite the definition. 1758 assert(OldFn->isDeclaration() && 1759 "Shouldn't replace non-declaration"); 1760 1761 // F is the Function* for the one with the wrong type, we must make a new 1762 // Function* and update everything that used F (a declaration) with the new 1763 // Function* (which will be a definition). 1764 // 1765 // This happens if there is a prototype for a function 1766 // (e.g. "int f()") and then a definition of a different type 1767 // (e.g. "int f(int x)"). Move the old function aside so that it 1768 // doesn't interfere with GetAddrOfFunction. 1769 OldFn->setName(StringRef()); 1770 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1771 1772 // If this is an implementation of a function without a prototype, try to 1773 // replace any existing uses of the function (which may be calls) with uses 1774 // of the new function 1775 if (D->getType()->isFunctionNoProtoType()) { 1776 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1777 OldFn->removeDeadConstantUsers(); 1778 } 1779 1780 // Replace uses of F with the Function we will endow with a body. 1781 if (!Entry->use_empty()) { 1782 llvm::Constant *NewPtrForOldDecl = 1783 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1784 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1785 } 1786 1787 // Ok, delete the old function now, which is dead. 1788 OldFn->eraseFromParent(); 1789 1790 Entry = NewFn; 1791 } 1792 1793 // We need to set linkage and visibility on the function before 1794 // generating code for it because various parts of IR generation 1795 // want to propagate this information down (e.g. to local static 1796 // declarations). 1797 llvm::Function *Fn = cast<llvm::Function>(Entry); 1798 setFunctionLinkage(D, Fn); 1799 1800 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1801 setGlobalVisibility(Fn, D); 1802 1803 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1804 1805 SetFunctionDefinitionAttributes(D, Fn); 1806 SetLLVMFunctionAttributesForDefinition(D, Fn); 1807 1808 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1809 AddGlobalCtor(Fn, CA->getPriority()); 1810 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1811 AddGlobalDtor(Fn, DA->getPriority()); 1812 if (D->hasAttr<AnnotateAttr>()) 1813 AddGlobalAnnotations(D, Fn); 1814 } 1815 1816 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1817 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1818 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1819 assert(AA && "Not an alias?"); 1820 1821 StringRef MangledName = getMangledName(GD); 1822 1823 // If there is a definition in the module, then it wins over the alias. 1824 // This is dubious, but allow it to be safe. Just ignore the alias. 1825 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1826 if (Entry && !Entry->isDeclaration()) 1827 return; 1828 1829 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1830 1831 // Create a reference to the named value. This ensures that it is emitted 1832 // if a deferred decl. 1833 llvm::Constant *Aliasee; 1834 if (isa<llvm::FunctionType>(DeclTy)) 1835 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1836 /*ForVTable=*/false); 1837 else 1838 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1839 llvm::PointerType::getUnqual(DeclTy), 0); 1840 1841 // Create the new alias itself, but don't set a name yet. 1842 llvm::GlobalValue *GA = 1843 new llvm::GlobalAlias(Aliasee->getType(), 1844 llvm::Function::ExternalLinkage, 1845 "", Aliasee, &getModule()); 1846 1847 if (Entry) { 1848 assert(Entry->isDeclaration()); 1849 1850 // If there is a declaration in the module, then we had an extern followed 1851 // by the alias, as in: 1852 // extern int test6(); 1853 // ... 1854 // int test6() __attribute__((alias("test7"))); 1855 // 1856 // Remove it and replace uses of it with the alias. 1857 GA->takeName(Entry); 1858 1859 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1860 Entry->getType())); 1861 Entry->eraseFromParent(); 1862 } else { 1863 GA->setName(MangledName); 1864 } 1865 1866 // Set attributes which are particular to an alias; this is a 1867 // specialization of the attributes which may be set on a global 1868 // variable/function. 1869 if (D->hasAttr<DLLExportAttr>()) { 1870 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1871 // The dllexport attribute is ignored for undefined symbols. 1872 if (FD->hasBody()) 1873 GA->setLinkage(llvm::Function::DLLExportLinkage); 1874 } else { 1875 GA->setLinkage(llvm::Function::DLLExportLinkage); 1876 } 1877 } else if (D->hasAttr<WeakAttr>() || 1878 D->hasAttr<WeakRefAttr>() || 1879 D->isWeakImported()) { 1880 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1881 } 1882 1883 SetCommonAttributes(D, GA); 1884 } 1885 1886 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1887 ArrayRef<llvm::Type*> Tys) { 1888 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1889 Tys); 1890 } 1891 1892 static llvm::StringMapEntry<llvm::Constant*> & 1893 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1894 const StringLiteral *Literal, 1895 bool TargetIsLSB, 1896 bool &IsUTF16, 1897 unsigned &StringLength) { 1898 StringRef String = Literal->getString(); 1899 unsigned NumBytes = String.size(); 1900 1901 // Check for simple case. 1902 if (!Literal->containsNonAsciiOrNull()) { 1903 StringLength = NumBytes; 1904 return Map.GetOrCreateValue(String); 1905 } 1906 1907 // Otherwise, convert the UTF8 literals into a string of shorts. 1908 IsUTF16 = true; 1909 1910 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 1911 const UTF8 *FromPtr = (UTF8 *)String.data(); 1912 UTF16 *ToPtr = &ToBuf[0]; 1913 1914 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1915 &ToPtr, ToPtr + NumBytes, 1916 strictConversion); 1917 1918 // ConvertUTF8toUTF16 returns the length in ToPtr. 1919 StringLength = ToPtr - &ToBuf[0]; 1920 1921 // Add an explicit null. 1922 *ToPtr = 0; 1923 return Map. 1924 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 1925 (StringLength + 1) * 2)); 1926 } 1927 1928 static llvm::StringMapEntry<llvm::Constant*> & 1929 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1930 const StringLiteral *Literal, 1931 unsigned &StringLength) { 1932 StringRef String = Literal->getString(); 1933 StringLength = String.size(); 1934 return Map.GetOrCreateValue(String); 1935 } 1936 1937 llvm::Constant * 1938 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1939 unsigned StringLength = 0; 1940 bool isUTF16 = false; 1941 llvm::StringMapEntry<llvm::Constant*> &Entry = 1942 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1943 getTargetData().isLittleEndian(), 1944 isUTF16, StringLength); 1945 1946 if (llvm::Constant *C = Entry.getValue()) 1947 return C; 1948 1949 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1950 llvm::Constant *Zeros[] = { Zero, Zero }; 1951 1952 // If we don't already have it, get __CFConstantStringClassReference. 1953 if (!CFConstantStringClassRef) { 1954 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1955 Ty = llvm::ArrayType::get(Ty, 0); 1956 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1957 "__CFConstantStringClassReference"); 1958 // Decay array -> ptr 1959 CFConstantStringClassRef = 1960 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1961 } 1962 1963 QualType CFTy = getContext().getCFConstantStringType(); 1964 1965 llvm::StructType *STy = 1966 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1967 1968 llvm::Constant *Fields[4]; 1969 1970 // Class pointer. 1971 Fields[0] = CFConstantStringClassRef; 1972 1973 // Flags. 1974 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1975 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1976 llvm::ConstantInt::get(Ty, 0x07C8); 1977 1978 // String pointer. 1979 llvm::Constant *C = 0; 1980 if (isUTF16) { 1981 ArrayRef<uint16_t> Arr = 1982 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 1983 Entry.getKey().size() / 2); 1984 C = llvm::ConstantDataArray::get(VMContext, Arr); 1985 } else { 1986 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 1987 } 1988 1989 llvm::GlobalValue::LinkageTypes Linkage; 1990 if (isUTF16) 1991 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1992 Linkage = llvm::GlobalValue::InternalLinkage; 1993 else 1994 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1995 // when using private linkage. It is not clear if this is a bug in ld 1996 // or a reasonable new restriction. 1997 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1998 1999 // Note: -fwritable-strings doesn't make the backing store strings of 2000 // CFStrings writable. (See <rdar://problem/10657500>) 2001 llvm::GlobalVariable *GV = 2002 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2003 Linkage, C, ".str"); 2004 GV->setUnnamedAddr(true); 2005 if (isUTF16) { 2006 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2007 GV->setAlignment(Align.getQuantity()); 2008 } else { 2009 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2010 GV->setAlignment(Align.getQuantity()); 2011 } 2012 2013 // String. 2014 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2015 2016 if (isUTF16) 2017 // Cast the UTF16 string to the correct type. 2018 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2019 2020 // String length. 2021 Ty = getTypes().ConvertType(getContext().LongTy); 2022 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2023 2024 // The struct. 2025 C = llvm::ConstantStruct::get(STy, Fields); 2026 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2027 llvm::GlobalVariable::PrivateLinkage, C, 2028 "_unnamed_cfstring_"); 2029 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2030 GV->setSection(Sect); 2031 Entry.setValue(GV); 2032 2033 return GV; 2034 } 2035 2036 static RecordDecl * 2037 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2038 DeclContext *DC, IdentifierInfo *Id) { 2039 SourceLocation Loc; 2040 if (Ctx.getLangOpts().CPlusPlus) 2041 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2042 else 2043 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2044 } 2045 2046 llvm::Constant * 2047 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2048 unsigned StringLength = 0; 2049 llvm::StringMapEntry<llvm::Constant*> &Entry = 2050 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2051 2052 if (llvm::Constant *C = Entry.getValue()) 2053 return C; 2054 2055 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2056 llvm::Constant *Zeros[] = { Zero, Zero }; 2057 2058 // If we don't already have it, get _NSConstantStringClassReference. 2059 if (!ConstantStringClassRef) { 2060 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2061 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2062 llvm::Constant *GV; 2063 if (LangOpts.ObjCNonFragileABI) { 2064 std::string str = 2065 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2066 : "OBJC_CLASS_$_" + StringClass; 2067 GV = getObjCRuntime().GetClassGlobal(str); 2068 // Make sure the result is of the correct type. 2069 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2070 ConstantStringClassRef = 2071 llvm::ConstantExpr::getBitCast(GV, PTy); 2072 } else { 2073 std::string str = 2074 StringClass.empty() ? "_NSConstantStringClassReference" 2075 : "_" + StringClass + "ClassReference"; 2076 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2077 GV = CreateRuntimeVariable(PTy, str); 2078 // Decay array -> ptr 2079 ConstantStringClassRef = 2080 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2081 } 2082 } 2083 2084 if (!NSConstantStringType) { 2085 // Construct the type for a constant NSString. 2086 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2087 Context.getTranslationUnitDecl(), 2088 &Context.Idents.get("__builtin_NSString")); 2089 D->startDefinition(); 2090 2091 QualType FieldTypes[3]; 2092 2093 // const int *isa; 2094 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2095 // const char *str; 2096 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2097 // unsigned int length; 2098 FieldTypes[2] = Context.UnsignedIntTy; 2099 2100 // Create fields 2101 for (unsigned i = 0; i < 3; ++i) { 2102 FieldDecl *Field = FieldDecl::Create(Context, D, 2103 SourceLocation(), 2104 SourceLocation(), 0, 2105 FieldTypes[i], /*TInfo=*/0, 2106 /*BitWidth=*/0, 2107 /*Mutable=*/false, 2108 /*HasInit=*/false); 2109 Field->setAccess(AS_public); 2110 D->addDecl(Field); 2111 } 2112 2113 D->completeDefinition(); 2114 QualType NSTy = Context.getTagDeclType(D); 2115 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2116 } 2117 2118 llvm::Constant *Fields[3]; 2119 2120 // Class pointer. 2121 Fields[0] = ConstantStringClassRef; 2122 2123 // String pointer. 2124 llvm::Constant *C = 2125 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2126 2127 llvm::GlobalValue::LinkageTypes Linkage; 2128 bool isConstant; 2129 Linkage = llvm::GlobalValue::PrivateLinkage; 2130 isConstant = !LangOpts.WritableStrings; 2131 2132 llvm::GlobalVariable *GV = 2133 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2134 ".str"); 2135 GV->setUnnamedAddr(true); 2136 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2137 GV->setAlignment(Align.getQuantity()); 2138 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2139 2140 // String length. 2141 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2142 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2143 2144 // The struct. 2145 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2146 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2147 llvm::GlobalVariable::PrivateLinkage, C, 2148 "_unnamed_nsstring_"); 2149 // FIXME. Fix section. 2150 if (const char *Sect = 2151 LangOpts.ObjCNonFragileABI 2152 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2153 : getContext().getTargetInfo().getNSStringSection()) 2154 GV->setSection(Sect); 2155 Entry.setValue(GV); 2156 2157 return GV; 2158 } 2159 2160 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2161 if (ObjCFastEnumerationStateType.isNull()) { 2162 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2163 Context.getTranslationUnitDecl(), 2164 &Context.Idents.get("__objcFastEnumerationState")); 2165 D->startDefinition(); 2166 2167 QualType FieldTypes[] = { 2168 Context.UnsignedLongTy, 2169 Context.getPointerType(Context.getObjCIdType()), 2170 Context.getPointerType(Context.UnsignedLongTy), 2171 Context.getConstantArrayType(Context.UnsignedLongTy, 2172 llvm::APInt(32, 5), ArrayType::Normal, 0) 2173 }; 2174 2175 for (size_t i = 0; i < 4; ++i) { 2176 FieldDecl *Field = FieldDecl::Create(Context, 2177 D, 2178 SourceLocation(), 2179 SourceLocation(), 0, 2180 FieldTypes[i], /*TInfo=*/0, 2181 /*BitWidth=*/0, 2182 /*Mutable=*/false, 2183 /*HasInit=*/false); 2184 Field->setAccess(AS_public); 2185 D->addDecl(Field); 2186 } 2187 2188 D->completeDefinition(); 2189 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2190 } 2191 2192 return ObjCFastEnumerationStateType; 2193 } 2194 2195 llvm::Constant * 2196 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2197 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2198 2199 // Don't emit it as the address of the string, emit the string data itself 2200 // as an inline array. 2201 if (E->getCharByteWidth() == 1) { 2202 SmallString<64> Str(E->getString()); 2203 2204 // Resize the string to the right size, which is indicated by its type. 2205 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2206 Str.resize(CAT->getSize().getZExtValue()); 2207 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2208 } 2209 2210 llvm::ArrayType *AType = 2211 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2212 llvm::Type *ElemTy = AType->getElementType(); 2213 unsigned NumElements = AType->getNumElements(); 2214 2215 // Wide strings have either 2-byte or 4-byte elements. 2216 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2217 SmallVector<uint16_t, 32> Elements; 2218 Elements.reserve(NumElements); 2219 2220 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2221 Elements.push_back(E->getCodeUnit(i)); 2222 Elements.resize(NumElements); 2223 return llvm::ConstantDataArray::get(VMContext, Elements); 2224 } 2225 2226 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2227 SmallVector<uint32_t, 32> Elements; 2228 Elements.reserve(NumElements); 2229 2230 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2231 Elements.push_back(E->getCodeUnit(i)); 2232 Elements.resize(NumElements); 2233 return llvm::ConstantDataArray::get(VMContext, Elements); 2234 } 2235 2236 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2237 /// constant array for the given string literal. 2238 llvm::Constant * 2239 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2240 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2241 if (S->isAscii() || S->isUTF8()) { 2242 SmallString<64> Str(S->getString()); 2243 2244 // Resize the string to the right size, which is indicated by its type. 2245 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2246 Str.resize(CAT->getSize().getZExtValue()); 2247 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2248 } 2249 2250 // FIXME: the following does not memoize wide strings. 2251 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2252 llvm::GlobalVariable *GV = 2253 new llvm::GlobalVariable(getModule(),C->getType(), 2254 !LangOpts.WritableStrings, 2255 llvm::GlobalValue::PrivateLinkage, 2256 C,".str"); 2257 2258 GV->setAlignment(Align.getQuantity()); 2259 GV->setUnnamedAddr(true); 2260 return GV; 2261 } 2262 2263 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2264 /// array for the given ObjCEncodeExpr node. 2265 llvm::Constant * 2266 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2267 std::string Str; 2268 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2269 2270 return GetAddrOfConstantCString(Str); 2271 } 2272 2273 2274 /// GenerateWritableString -- Creates storage for a string literal. 2275 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2276 bool constant, 2277 CodeGenModule &CGM, 2278 const char *GlobalName, 2279 unsigned Alignment) { 2280 // Create Constant for this string literal. Don't add a '\0'. 2281 llvm::Constant *C = 2282 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2283 2284 // Create a global variable for this string 2285 llvm::GlobalVariable *GV = 2286 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2287 llvm::GlobalValue::PrivateLinkage, 2288 C, GlobalName); 2289 GV->setAlignment(Alignment); 2290 GV->setUnnamedAddr(true); 2291 return GV; 2292 } 2293 2294 /// GetAddrOfConstantString - Returns a pointer to a character array 2295 /// containing the literal. This contents are exactly that of the 2296 /// given string, i.e. it will not be null terminated automatically; 2297 /// see GetAddrOfConstantCString. Note that whether the result is 2298 /// actually a pointer to an LLVM constant depends on 2299 /// Feature.WriteableStrings. 2300 /// 2301 /// The result has pointer to array type. 2302 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2303 const char *GlobalName, 2304 unsigned Alignment) { 2305 // Get the default prefix if a name wasn't specified. 2306 if (!GlobalName) 2307 GlobalName = ".str"; 2308 2309 // Don't share any string literals if strings aren't constant. 2310 if (LangOpts.WritableStrings) 2311 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2312 2313 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2314 ConstantStringMap.GetOrCreateValue(Str); 2315 2316 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2317 if (Alignment > GV->getAlignment()) { 2318 GV->setAlignment(Alignment); 2319 } 2320 return GV; 2321 } 2322 2323 // Create a global variable for this. 2324 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2325 Alignment); 2326 Entry.setValue(GV); 2327 return GV; 2328 } 2329 2330 /// GetAddrOfConstantCString - Returns a pointer to a character 2331 /// array containing the literal and a terminating '\0' 2332 /// character. The result has pointer to array type. 2333 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2334 const char *GlobalName, 2335 unsigned Alignment) { 2336 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2337 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2338 } 2339 2340 /// EmitObjCPropertyImplementations - Emit information for synthesized 2341 /// properties for an implementation. 2342 void CodeGenModule::EmitObjCPropertyImplementations(const 2343 ObjCImplementationDecl *D) { 2344 for (ObjCImplementationDecl::propimpl_iterator 2345 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2346 ObjCPropertyImplDecl *PID = *i; 2347 2348 // Dynamic is just for type-checking. 2349 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2350 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2351 2352 // Determine which methods need to be implemented, some may have 2353 // been overridden. Note that ::isSynthesized is not the method 2354 // we want, that just indicates if the decl came from a 2355 // property. What we want to know is if the method is defined in 2356 // this implementation. 2357 if (!D->getInstanceMethod(PD->getGetterName())) 2358 CodeGenFunction(*this).GenerateObjCGetter( 2359 const_cast<ObjCImplementationDecl *>(D), PID); 2360 if (!PD->isReadOnly() && 2361 !D->getInstanceMethod(PD->getSetterName())) 2362 CodeGenFunction(*this).GenerateObjCSetter( 2363 const_cast<ObjCImplementationDecl *>(D), PID); 2364 } 2365 } 2366 } 2367 2368 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2369 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2370 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2371 ivar; ivar = ivar->getNextIvar()) 2372 if (ivar->getType().isDestructedType()) 2373 return true; 2374 2375 return false; 2376 } 2377 2378 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2379 /// for an implementation. 2380 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2381 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2382 if (needsDestructMethod(D)) { 2383 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2384 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2385 ObjCMethodDecl *DTORMethod = 2386 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2387 cxxSelector, getContext().VoidTy, 0, D, 2388 /*isInstance=*/true, /*isVariadic=*/false, 2389 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2390 /*isDefined=*/false, ObjCMethodDecl::Required); 2391 D->addInstanceMethod(DTORMethod); 2392 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2393 D->setHasCXXStructors(true); 2394 } 2395 2396 // If the implementation doesn't have any ivar initializers, we don't need 2397 // a .cxx_construct. 2398 if (D->getNumIvarInitializers() == 0) 2399 return; 2400 2401 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2402 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2403 // The constructor returns 'self'. 2404 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2405 D->getLocation(), 2406 D->getLocation(), 2407 cxxSelector, 2408 getContext().getObjCIdType(), 0, 2409 D, /*isInstance=*/true, 2410 /*isVariadic=*/false, 2411 /*isSynthesized=*/true, 2412 /*isImplicitlyDeclared=*/true, 2413 /*isDefined=*/false, 2414 ObjCMethodDecl::Required); 2415 D->addInstanceMethod(CTORMethod); 2416 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2417 D->setHasCXXStructors(true); 2418 } 2419 2420 /// EmitNamespace - Emit all declarations in a namespace. 2421 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2422 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2423 I != E; ++I) 2424 EmitTopLevelDecl(*I); 2425 } 2426 2427 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2428 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2429 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2430 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2431 ErrorUnsupported(LSD, "linkage spec"); 2432 return; 2433 } 2434 2435 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2436 I != E; ++I) 2437 EmitTopLevelDecl(*I); 2438 } 2439 2440 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2441 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2442 // If an error has occurred, stop code generation, but continue 2443 // parsing and semantic analysis (to ensure all warnings and errors 2444 // are emitted). 2445 if (Diags.hasErrorOccurred()) 2446 return; 2447 2448 // Ignore dependent declarations. 2449 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2450 return; 2451 2452 switch (D->getKind()) { 2453 case Decl::CXXConversion: 2454 case Decl::CXXMethod: 2455 case Decl::Function: 2456 // Skip function templates 2457 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2458 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2459 return; 2460 2461 EmitGlobal(cast<FunctionDecl>(D)); 2462 break; 2463 2464 case Decl::Var: 2465 EmitGlobal(cast<VarDecl>(D)); 2466 break; 2467 2468 // Indirect fields from global anonymous structs and unions can be 2469 // ignored; only the actual variable requires IR gen support. 2470 case Decl::IndirectField: 2471 break; 2472 2473 // C++ Decls 2474 case Decl::Namespace: 2475 EmitNamespace(cast<NamespaceDecl>(D)); 2476 break; 2477 // No code generation needed. 2478 case Decl::UsingShadow: 2479 case Decl::Using: 2480 case Decl::UsingDirective: 2481 case Decl::ClassTemplate: 2482 case Decl::FunctionTemplate: 2483 case Decl::TypeAliasTemplate: 2484 case Decl::NamespaceAlias: 2485 case Decl::Block: 2486 case Decl::Import: 2487 break; 2488 case Decl::CXXConstructor: 2489 // Skip function templates 2490 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2491 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2492 return; 2493 2494 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2495 break; 2496 case Decl::CXXDestructor: 2497 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2498 return; 2499 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2500 break; 2501 2502 case Decl::StaticAssert: 2503 // Nothing to do. 2504 break; 2505 2506 // Objective-C Decls 2507 2508 // Forward declarations, no (immediate) code generation. 2509 case Decl::ObjCInterface: 2510 break; 2511 2512 case Decl::ObjCCategory: { 2513 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2514 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2515 Context.ResetObjCLayout(CD->getClassInterface()); 2516 break; 2517 } 2518 2519 case Decl::ObjCProtocol: { 2520 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2521 if (Proto->isThisDeclarationADefinition()) 2522 ObjCRuntime->GenerateProtocol(Proto); 2523 break; 2524 } 2525 2526 case Decl::ObjCCategoryImpl: 2527 // Categories have properties but don't support synthesize so we 2528 // can ignore them here. 2529 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2530 break; 2531 2532 case Decl::ObjCImplementation: { 2533 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2534 if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2535 Context.ResetObjCLayout(OMD->getClassInterface()); 2536 EmitObjCPropertyImplementations(OMD); 2537 EmitObjCIvarInitializations(OMD); 2538 ObjCRuntime->GenerateClass(OMD); 2539 break; 2540 } 2541 case Decl::ObjCMethod: { 2542 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2543 // If this is not a prototype, emit the body. 2544 if (OMD->getBody()) 2545 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2546 break; 2547 } 2548 case Decl::ObjCCompatibleAlias: 2549 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2550 break; 2551 2552 case Decl::LinkageSpec: 2553 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2554 break; 2555 2556 case Decl::FileScopeAsm: { 2557 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2558 StringRef AsmString = AD->getAsmString()->getString(); 2559 2560 const std::string &S = getModule().getModuleInlineAsm(); 2561 if (S.empty()) 2562 getModule().setModuleInlineAsm(AsmString); 2563 else if (*--S.end() == '\n') 2564 getModule().setModuleInlineAsm(S + AsmString.str()); 2565 else 2566 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2567 break; 2568 } 2569 2570 default: 2571 // Make sure we handled everything we should, every other kind is a 2572 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2573 // function. Need to recode Decl::Kind to do that easily. 2574 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2575 } 2576 } 2577 2578 /// Turns the given pointer into a constant. 2579 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2580 const void *Ptr) { 2581 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2582 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2583 return llvm::ConstantInt::get(i64, PtrInt); 2584 } 2585 2586 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2587 llvm::NamedMDNode *&GlobalMetadata, 2588 GlobalDecl D, 2589 llvm::GlobalValue *Addr) { 2590 if (!GlobalMetadata) 2591 GlobalMetadata = 2592 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2593 2594 // TODO: should we report variant information for ctors/dtors? 2595 llvm::Value *Ops[] = { 2596 Addr, 2597 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2598 }; 2599 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2600 } 2601 2602 /// Emits metadata nodes associating all the global values in the 2603 /// current module with the Decls they came from. This is useful for 2604 /// projects using IR gen as a subroutine. 2605 /// 2606 /// Since there's currently no way to associate an MDNode directly 2607 /// with an llvm::GlobalValue, we create a global named metadata 2608 /// with the name 'clang.global.decl.ptrs'. 2609 void CodeGenModule::EmitDeclMetadata() { 2610 llvm::NamedMDNode *GlobalMetadata = 0; 2611 2612 // StaticLocalDeclMap 2613 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2614 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2615 I != E; ++I) { 2616 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2617 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2618 } 2619 } 2620 2621 /// Emits metadata nodes for all the local variables in the current 2622 /// function. 2623 void CodeGenFunction::EmitDeclMetadata() { 2624 if (LocalDeclMap.empty()) return; 2625 2626 llvm::LLVMContext &Context = getLLVMContext(); 2627 2628 // Find the unique metadata ID for this name. 2629 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2630 2631 llvm::NamedMDNode *GlobalMetadata = 0; 2632 2633 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2634 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2635 const Decl *D = I->first; 2636 llvm::Value *Addr = I->second; 2637 2638 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2639 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2640 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2641 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2642 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2643 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2644 } 2645 } 2646 } 2647 2648 void CodeGenModule::EmitCoverageFile() { 2649 if (!getCodeGenOpts().CoverageFile.empty()) { 2650 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2651 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2652 llvm::LLVMContext &Ctx = TheModule.getContext(); 2653 llvm::MDString *CoverageFile = 2654 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2655 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2656 llvm::MDNode *CU = CUNode->getOperand(i); 2657 llvm::Value *node[] = { CoverageFile, CU }; 2658 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2659 GCov->addOperand(N); 2660 } 2661 } 2662 } 2663 } 2664