1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericMIPS: 68 case TargetCXXABI::GenericItanium: 69 return CreateItaniumCXXABI(CGM); 70 case TargetCXXABI::Microsoft: 71 return CreateMicrosoftCXXABI(CGM); 72 } 73 74 llvm_unreachable("invalid C++ ABI kind"); 75 } 76 77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 78 llvm::Module &M, const llvm::DataLayout &TD, 79 DiagnosticsEngine &diags, 80 CoverageSourceInfo *CoverageInfo) 81 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 82 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 83 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 84 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 85 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 86 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 87 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 88 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 89 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 90 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 91 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 92 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 93 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 FloatTy = llvm::Type::getFloatTy(LLVMContext); 103 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 104 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 105 PointerAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 109 Int8PtrTy = Int8Ty->getPointerTo(0); 110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 111 112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext()); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || 134 CodeGenOpts.EmitGcovNotes) 135 DebugInfo = new CGDebugInfo(*this); 136 137 Block.GlobalUniqueCount = 0; 138 139 if (C.getLangOpts().ObjCAutoRefCount) 140 ARCData = new ARCEntrypoints(); 141 RRData = new RREntrypoints(); 142 143 if (!CodeGenOpts.InstrProfileInput.empty()) { 144 auto ReaderOrErr = 145 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 146 if (std::error_code EC = ReaderOrErr.getError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile: %0"); 149 getDiags().Report(DiagID) << EC.message(); 150 } else 151 PGOReader = std::move(ReaderOrErr.get()); 152 } 153 154 // If coverage mapping generation is enabled, create the 155 // CoverageMappingModuleGen object. 156 if (CodeGenOpts.CoverageMapping) 157 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 158 } 159 160 CodeGenModule::~CodeGenModule() { 161 delete ObjCRuntime; 162 delete OpenCLRuntime; 163 delete OpenMPRuntime; 164 delete CUDARuntime; 165 delete TheTargetCodeGenInfo; 166 delete TBAA; 167 delete DebugInfo; 168 delete ARCData; 169 delete RRData; 170 } 171 172 void CodeGenModule::createObjCRuntime() { 173 // This is just isGNUFamily(), but we want to force implementors of 174 // new ABIs to decide how best to do this. 175 switch (LangOpts.ObjCRuntime.getKind()) { 176 case ObjCRuntime::GNUstep: 177 case ObjCRuntime::GCC: 178 case ObjCRuntime::ObjFW: 179 ObjCRuntime = CreateGNUObjCRuntime(*this); 180 return; 181 182 case ObjCRuntime::FragileMacOSX: 183 case ObjCRuntime::MacOSX: 184 case ObjCRuntime::iOS: 185 ObjCRuntime = CreateMacObjCRuntime(*this); 186 return; 187 } 188 llvm_unreachable("bad runtime kind"); 189 } 190 191 void CodeGenModule::createOpenCLRuntime() { 192 OpenCLRuntime = new CGOpenCLRuntime(*this); 193 } 194 195 void CodeGenModule::createOpenMPRuntime() { 196 OpenMPRuntime = new CGOpenMPRuntime(*this); 197 } 198 199 void CodeGenModule::createCUDARuntime() { 200 CUDARuntime = CreateNVCUDARuntime(*this); 201 } 202 203 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 204 Replacements[Name] = C; 205 } 206 207 void CodeGenModule::applyReplacements() { 208 for (auto &I : Replacements) { 209 StringRef MangledName = I.first(); 210 llvm::Constant *Replacement = I.second; 211 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 212 if (!Entry) 213 continue; 214 auto *OldF = cast<llvm::Function>(Entry); 215 auto *NewF = dyn_cast<llvm::Function>(Replacement); 216 if (!NewF) { 217 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 218 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 219 } else { 220 auto *CE = cast<llvm::ConstantExpr>(Replacement); 221 assert(CE->getOpcode() == llvm::Instruction::BitCast || 222 CE->getOpcode() == llvm::Instruction::GetElementPtr); 223 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 224 } 225 } 226 227 // Replace old with new, but keep the old order. 228 OldF->replaceAllUsesWith(Replacement); 229 if (NewF) { 230 NewF->removeFromParent(); 231 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 232 } 233 OldF->eraseFromParent(); 234 } 235 } 236 237 // This is only used in aliases that we created and we know they have a 238 // linear structure. 239 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 240 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 241 const llvm::Constant *C = &GA; 242 for (;;) { 243 C = C->stripPointerCasts(); 244 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 245 return GO; 246 // stripPointerCasts will not walk over weak aliases. 247 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 248 if (!GA2) 249 return nullptr; 250 if (!Visited.insert(GA2).second) 251 return nullptr; 252 C = GA2->getAliasee(); 253 } 254 } 255 256 void CodeGenModule::checkAliases() { 257 // Check if the constructed aliases are well formed. It is really unfortunate 258 // that we have to do this in CodeGen, but we only construct mangled names 259 // and aliases during codegen. 260 bool Error = false; 261 DiagnosticsEngine &Diags = getDiags(); 262 for (const GlobalDecl &GD : Aliases) { 263 const auto *D = cast<ValueDecl>(GD.getDecl()); 264 const AliasAttr *AA = D->getAttr<AliasAttr>(); 265 StringRef MangledName = getMangledName(GD); 266 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 267 auto *Alias = cast<llvm::GlobalAlias>(Entry); 268 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 269 if (!GV) { 270 Error = true; 271 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 272 } else if (GV->isDeclaration()) { 273 Error = true; 274 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 275 } 276 277 llvm::Constant *Aliasee = Alias->getAliasee(); 278 llvm::GlobalValue *AliaseeGV; 279 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 280 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 281 else 282 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 283 284 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 285 StringRef AliasSection = SA->getName(); 286 if (AliasSection != AliaseeGV->getSection()) 287 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 288 << AliasSection; 289 } 290 291 // We have to handle alias to weak aliases in here. LLVM itself disallows 292 // this since the object semantics would not match the IL one. For 293 // compatibility with gcc we implement it by just pointing the alias 294 // to its aliasee's aliasee. We also warn, since the user is probably 295 // expecting the link to be weak. 296 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 297 if (GA->mayBeOverridden()) { 298 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 299 << GV->getName() << GA->getName(); 300 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 301 GA->getAliasee(), Alias->getType()); 302 Alias->setAliasee(Aliasee); 303 } 304 } 305 } 306 if (!Error) 307 return; 308 309 for (const GlobalDecl &GD : Aliases) { 310 StringRef MangledName = getMangledName(GD); 311 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 312 auto *Alias = cast<llvm::GlobalAlias>(Entry); 313 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 314 Alias->eraseFromParent(); 315 } 316 } 317 318 void CodeGenModule::clear() { 319 DeferredDeclsToEmit.clear(); 320 if (OpenMPRuntime) 321 OpenMPRuntime->clear(); 322 } 323 324 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 325 StringRef MainFile) { 326 if (!hasDiagnostics()) 327 return; 328 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 329 if (MainFile.empty()) 330 MainFile = "<stdin>"; 331 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 332 } else 333 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 334 << Mismatched; 335 } 336 337 void CodeGenModule::Release() { 338 EmitDeferred(); 339 applyReplacements(); 340 checkAliases(); 341 EmitCXXGlobalInitFunc(); 342 EmitCXXGlobalDtorFunc(); 343 EmitCXXThreadLocalInitFunc(); 344 if (ObjCRuntime) 345 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 346 AddGlobalCtor(ObjCInitFunction); 347 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 348 CUDARuntime) { 349 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 350 AddGlobalCtor(CudaCtorFunction); 351 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 352 AddGlobalDtor(CudaDtorFunction); 353 } 354 if (PGOReader && PGOStats.hasDiagnostics()) 355 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 356 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 357 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 358 EmitGlobalAnnotations(); 359 EmitStaticExternCAliases(); 360 EmitDeferredUnusedCoverageMappings(); 361 if (CoverageMapping) 362 CoverageMapping->emit(); 363 emitLLVMUsed(); 364 365 if (CodeGenOpts.Autolink && 366 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 367 EmitModuleLinkOptions(); 368 } 369 if (CodeGenOpts.DwarfVersion) 370 // We actually want the latest version when there are conflicts. 371 // We can change from Warning to Latest if such mode is supported. 372 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 373 CodeGenOpts.DwarfVersion); 374 if (DebugInfo) 375 // We support a single version in the linked module. The LLVM 376 // parser will drop debug info with a different version number 377 // (and warn about it, too). 378 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 379 llvm::DEBUG_METADATA_VERSION); 380 381 // We need to record the widths of enums and wchar_t, so that we can generate 382 // the correct build attributes in the ARM backend. 383 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 384 if ( Arch == llvm::Triple::arm 385 || Arch == llvm::Triple::armeb 386 || Arch == llvm::Triple::thumb 387 || Arch == llvm::Triple::thumbeb) { 388 // Width of wchar_t in bytes 389 uint64_t WCharWidth = 390 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 391 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 392 393 // The minimum width of an enum in bytes 394 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 395 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 396 } 397 398 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 399 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 400 switch (PLevel) { 401 case 0: break; 402 case 1: PL = llvm::PICLevel::Small; break; 403 case 2: PL = llvm::PICLevel::Large; break; 404 default: llvm_unreachable("Invalid PIC Level"); 405 } 406 407 getModule().setPICLevel(PL); 408 } 409 410 SimplifyPersonality(); 411 412 if (getCodeGenOpts().EmitDeclMetadata) 413 EmitDeclMetadata(); 414 415 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 416 EmitCoverageFile(); 417 418 if (DebugInfo) 419 DebugInfo->finalize(); 420 421 EmitVersionIdentMetadata(); 422 423 EmitTargetMetadata(); 424 } 425 426 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 427 // Make sure that this type is translated. 428 Types.UpdateCompletedType(TD); 429 } 430 431 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 432 if (!TBAA) 433 return nullptr; 434 return TBAA->getTBAAInfo(QTy); 435 } 436 437 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 438 if (!TBAA) 439 return nullptr; 440 return TBAA->getTBAAInfoForVTablePtr(); 441 } 442 443 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 444 if (!TBAA) 445 return nullptr; 446 return TBAA->getTBAAStructInfo(QTy); 447 } 448 449 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 450 if (!TBAA) 451 return nullptr; 452 return TBAA->getTBAAStructTypeInfo(QTy); 453 } 454 455 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 456 llvm::MDNode *AccessN, 457 uint64_t O) { 458 if (!TBAA) 459 return nullptr; 460 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 461 } 462 463 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 464 /// and struct-path aware TBAA, the tag has the same format: 465 /// base type, access type and offset. 466 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 467 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 468 llvm::MDNode *TBAAInfo, 469 bool ConvertTypeToTag) { 470 if (ConvertTypeToTag && TBAA) 471 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 472 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 473 else 474 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 475 } 476 477 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 478 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 479 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 480 } 481 482 /// ErrorUnsupported - Print out an error that codegen doesn't support the 483 /// specified stmt yet. 484 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 485 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 486 "cannot compile this %0 yet"); 487 std::string Msg = Type; 488 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 489 << Msg << S->getSourceRange(); 490 } 491 492 /// ErrorUnsupported - Print out an error that codegen doesn't support the 493 /// specified decl yet. 494 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 495 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 496 "cannot compile this %0 yet"); 497 std::string Msg = Type; 498 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 499 } 500 501 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 502 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 503 } 504 505 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 506 const NamedDecl *D) const { 507 // Internal definitions always have default visibility. 508 if (GV->hasLocalLinkage()) { 509 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 510 return; 511 } 512 513 // Set visibility for definitions. 514 LinkageInfo LV = D->getLinkageAndVisibility(); 515 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 516 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 517 } 518 519 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 520 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 521 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 522 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 523 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 524 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 525 } 526 527 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 528 CodeGenOptions::TLSModel M) { 529 switch (M) { 530 case CodeGenOptions::GeneralDynamicTLSModel: 531 return llvm::GlobalVariable::GeneralDynamicTLSModel; 532 case CodeGenOptions::LocalDynamicTLSModel: 533 return llvm::GlobalVariable::LocalDynamicTLSModel; 534 case CodeGenOptions::InitialExecTLSModel: 535 return llvm::GlobalVariable::InitialExecTLSModel; 536 case CodeGenOptions::LocalExecTLSModel: 537 return llvm::GlobalVariable::LocalExecTLSModel; 538 } 539 llvm_unreachable("Invalid TLS model!"); 540 } 541 542 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 543 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 544 545 llvm::GlobalValue::ThreadLocalMode TLM; 546 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 547 548 // Override the TLS model if it is explicitly specified. 549 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 550 TLM = GetLLVMTLSModel(Attr->getModel()); 551 } 552 553 GV->setThreadLocalMode(TLM); 554 } 555 556 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 557 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 558 if (!FoundStr.empty()) 559 return FoundStr; 560 561 const auto *ND = cast<NamedDecl>(GD.getDecl()); 562 SmallString<256> Buffer; 563 StringRef Str; 564 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 565 llvm::raw_svector_ostream Out(Buffer); 566 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 567 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 568 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 569 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 570 else 571 getCXXABI().getMangleContext().mangleName(ND, Out); 572 Str = Out.str(); 573 } else { 574 IdentifierInfo *II = ND->getIdentifier(); 575 assert(II && "Attempt to mangle unnamed decl."); 576 Str = II->getName(); 577 } 578 579 // Keep the first result in the case of a mangling collision. 580 auto Result = Manglings.insert(std::make_pair(Str, GD)); 581 return FoundStr = Result.first->first(); 582 } 583 584 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 585 const BlockDecl *BD) { 586 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 587 const Decl *D = GD.getDecl(); 588 589 SmallString<256> Buffer; 590 llvm::raw_svector_ostream Out(Buffer); 591 if (!D) 592 MangleCtx.mangleGlobalBlock(BD, 593 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 594 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 595 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 596 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 597 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 598 else 599 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 600 601 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 602 return Result.first->first(); 603 } 604 605 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 606 return getModule().getNamedValue(Name); 607 } 608 609 /// AddGlobalCtor - Add a function to the list that will be called before 610 /// main() runs. 611 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 612 llvm::Constant *AssociatedData) { 613 // FIXME: Type coercion of void()* types. 614 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 615 } 616 617 /// AddGlobalDtor - Add a function to the list that will be called 618 /// when the module is unloaded. 619 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 620 // FIXME: Type coercion of void()* types. 621 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 622 } 623 624 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 625 // Ctor function type is void()*. 626 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 627 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 628 629 // Get the type of a ctor entry, { i32, void ()*, i8* }. 630 llvm::StructType *CtorStructTy = llvm::StructType::get( 631 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 632 633 // Construct the constructor and destructor arrays. 634 SmallVector<llvm::Constant *, 8> Ctors; 635 for (const auto &I : Fns) { 636 llvm::Constant *S[] = { 637 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 638 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 639 (I.AssociatedData 640 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 641 : llvm::Constant::getNullValue(VoidPtrTy))}; 642 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 643 } 644 645 if (!Ctors.empty()) { 646 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 647 new llvm::GlobalVariable(TheModule, AT, false, 648 llvm::GlobalValue::AppendingLinkage, 649 llvm::ConstantArray::get(AT, Ctors), 650 GlobalName); 651 } 652 } 653 654 llvm::GlobalValue::LinkageTypes 655 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 656 const auto *D = cast<FunctionDecl>(GD.getDecl()); 657 658 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 659 660 if (isa<CXXDestructorDecl>(D) && 661 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 662 GD.getDtorType())) { 663 // Destructor variants in the Microsoft C++ ABI are always internal or 664 // linkonce_odr thunks emitted on an as-needed basis. 665 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 666 : llvm::GlobalValue::LinkOnceODRLinkage; 667 } 668 669 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 670 } 671 672 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 673 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 674 675 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 676 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 677 // Don't dllexport/import destructor thunks. 678 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 679 return; 680 } 681 } 682 683 if (FD->hasAttr<DLLImportAttr>()) 684 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 685 else if (FD->hasAttr<DLLExportAttr>()) 686 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 687 else 688 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 689 } 690 691 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 692 llvm::Function *F) { 693 setNonAliasAttributes(D, F); 694 } 695 696 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 697 const CGFunctionInfo &Info, 698 llvm::Function *F) { 699 unsigned CallingConv; 700 AttributeListType AttributeList; 701 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 702 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 703 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 704 } 705 706 /// Determines whether the language options require us to model 707 /// unwind exceptions. We treat -fexceptions as mandating this 708 /// except under the fragile ObjC ABI with only ObjC exceptions 709 /// enabled. This means, for example, that C with -fexceptions 710 /// enables this. 711 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 712 // If exceptions are completely disabled, obviously this is false. 713 if (!LangOpts.Exceptions) return false; 714 715 // If C++ exceptions are enabled, this is true. 716 if (LangOpts.CXXExceptions) return true; 717 718 // If ObjC exceptions are enabled, this depends on the ABI. 719 if (LangOpts.ObjCExceptions) { 720 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 721 } 722 723 return true; 724 } 725 726 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 727 llvm::Function *F) { 728 llvm::AttrBuilder B; 729 730 if (CodeGenOpts.UnwindTables) 731 B.addAttribute(llvm::Attribute::UWTable); 732 733 if (!hasUnwindExceptions(LangOpts)) 734 B.addAttribute(llvm::Attribute::NoUnwind); 735 736 if (D->hasAttr<NakedAttr>()) { 737 // Naked implies noinline: we should not be inlining such functions. 738 B.addAttribute(llvm::Attribute::Naked); 739 B.addAttribute(llvm::Attribute::NoInline); 740 } else if (D->hasAttr<NoDuplicateAttr>()) { 741 B.addAttribute(llvm::Attribute::NoDuplicate); 742 } else if (D->hasAttr<NoInlineAttr>()) { 743 B.addAttribute(llvm::Attribute::NoInline); 744 } else if (D->hasAttr<AlwaysInlineAttr>() && 745 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 746 llvm::Attribute::NoInline)) { 747 // (noinline wins over always_inline, and we can't specify both in IR) 748 B.addAttribute(llvm::Attribute::AlwaysInline); 749 } 750 751 if (D->hasAttr<ColdAttr>()) { 752 if (!D->hasAttr<OptimizeNoneAttr>()) 753 B.addAttribute(llvm::Attribute::OptimizeForSize); 754 B.addAttribute(llvm::Attribute::Cold); 755 } 756 757 if (D->hasAttr<MinSizeAttr>()) 758 B.addAttribute(llvm::Attribute::MinSize); 759 760 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 761 B.addAttribute(llvm::Attribute::StackProtect); 762 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 763 B.addAttribute(llvm::Attribute::StackProtectStrong); 764 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 765 B.addAttribute(llvm::Attribute::StackProtectReq); 766 767 F->addAttributes(llvm::AttributeSet::FunctionIndex, 768 llvm::AttributeSet::get( 769 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 770 771 if (D->hasAttr<OptimizeNoneAttr>()) { 772 // OptimizeNone implies noinline; we should not be inlining such functions. 773 F->addFnAttr(llvm::Attribute::OptimizeNone); 774 F->addFnAttr(llvm::Attribute::NoInline); 775 776 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 777 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 778 "OptimizeNone and OptimizeForSize on same function!"); 779 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 780 "OptimizeNone and MinSize on same function!"); 781 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 782 "OptimizeNone and AlwaysInline on same function!"); 783 784 // Attribute 'inlinehint' has no effect on 'optnone' functions. 785 // Explicitly remove it from the set of function attributes. 786 F->removeFnAttr(llvm::Attribute::InlineHint); 787 } 788 789 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 790 F->setUnnamedAddr(true); 791 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 792 if (MD->isVirtual()) 793 F->setUnnamedAddr(true); 794 795 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 796 if (alignment) 797 F->setAlignment(alignment); 798 799 // C++ ABI requires 2-byte alignment for member functions. 800 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 801 F->setAlignment(2); 802 } 803 804 void CodeGenModule::SetCommonAttributes(const Decl *D, 805 llvm::GlobalValue *GV) { 806 if (const auto *ND = dyn_cast<NamedDecl>(D)) 807 setGlobalVisibility(GV, ND); 808 else 809 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 810 811 if (D->hasAttr<UsedAttr>()) 812 addUsedGlobal(GV); 813 } 814 815 void CodeGenModule::setAliasAttributes(const Decl *D, 816 llvm::GlobalValue *GV) { 817 SetCommonAttributes(D, GV); 818 819 // Process the dllexport attribute based on whether the original definition 820 // (not necessarily the aliasee) was exported. 821 if (D->hasAttr<DLLExportAttr>()) 822 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 823 } 824 825 void CodeGenModule::setNonAliasAttributes(const Decl *D, 826 llvm::GlobalObject *GO) { 827 SetCommonAttributes(D, GO); 828 829 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 830 GO->setSection(SA->getName()); 831 832 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 833 } 834 835 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 836 llvm::Function *F, 837 const CGFunctionInfo &FI) { 838 SetLLVMFunctionAttributes(D, FI, F); 839 SetLLVMFunctionAttributesForDefinition(D, F); 840 841 F->setLinkage(llvm::Function::InternalLinkage); 842 843 setNonAliasAttributes(D, F); 844 } 845 846 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 847 const NamedDecl *ND) { 848 // Set linkage and visibility in case we never see a definition. 849 LinkageInfo LV = ND->getLinkageAndVisibility(); 850 if (LV.getLinkage() != ExternalLinkage) { 851 // Don't set internal linkage on declarations. 852 } else { 853 if (ND->hasAttr<DLLImportAttr>()) { 854 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 855 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 856 } else if (ND->hasAttr<DLLExportAttr>()) { 857 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 858 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 859 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 860 // "extern_weak" is overloaded in LLVM; we probably should have 861 // separate linkage types for this. 862 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 863 } 864 865 // Set visibility on a declaration only if it's explicit. 866 if (LV.isVisibilityExplicit()) 867 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 868 } 869 } 870 871 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 872 bool IsIncompleteFunction, 873 bool IsThunk) { 874 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 875 // If this is an intrinsic function, set the function's attributes 876 // to the intrinsic's attributes. 877 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 878 return; 879 } 880 881 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 882 883 if (!IsIncompleteFunction) 884 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 885 886 // Add the Returned attribute for "this", except for iOS 5 and earlier 887 // where substantial code, including the libstdc++ dylib, was compiled with 888 // GCC and does not actually return "this". 889 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 890 !(getTarget().getTriple().isiOS() && 891 getTarget().getTriple().isOSVersionLT(6))) { 892 assert(!F->arg_empty() && 893 F->arg_begin()->getType() 894 ->canLosslesslyBitCastTo(F->getReturnType()) && 895 "unexpected this return"); 896 F->addAttribute(1, llvm::Attribute::Returned); 897 } 898 899 // Only a few attributes are set on declarations; these may later be 900 // overridden by a definition. 901 902 setLinkageAndVisibilityForGV(F, FD); 903 904 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 905 F->setSection(SA->getName()); 906 907 // A replaceable global allocation function does not act like a builtin by 908 // default, only if it is invoked by a new-expression or delete-expression. 909 if (FD->isReplaceableGlobalAllocationFunction()) 910 F->addAttribute(llvm::AttributeSet::FunctionIndex, 911 llvm::Attribute::NoBuiltin); 912 } 913 914 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 915 assert(!GV->isDeclaration() && 916 "Only globals with definition can force usage."); 917 LLVMUsed.emplace_back(GV); 918 } 919 920 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 921 assert(!GV->isDeclaration() && 922 "Only globals with definition can force usage."); 923 LLVMCompilerUsed.emplace_back(GV); 924 } 925 926 static void emitUsed(CodeGenModule &CGM, StringRef Name, 927 std::vector<llvm::WeakVH> &List) { 928 // Don't create llvm.used if there is no need. 929 if (List.empty()) 930 return; 931 932 // Convert List to what ConstantArray needs. 933 SmallVector<llvm::Constant*, 8> UsedArray; 934 UsedArray.resize(List.size()); 935 for (unsigned i = 0, e = List.size(); i != e; ++i) { 936 UsedArray[i] = 937 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 938 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 939 } 940 941 if (UsedArray.empty()) 942 return; 943 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 944 945 auto *GV = new llvm::GlobalVariable( 946 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 947 llvm::ConstantArray::get(ATy, UsedArray), Name); 948 949 GV->setSection("llvm.metadata"); 950 } 951 952 void CodeGenModule::emitLLVMUsed() { 953 emitUsed(*this, "llvm.used", LLVMUsed); 954 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 955 } 956 957 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 958 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 959 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 960 } 961 962 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 963 llvm::SmallString<32> Opt; 964 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 965 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 966 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 967 } 968 969 void CodeGenModule::AddDependentLib(StringRef Lib) { 970 llvm::SmallString<24> Opt; 971 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 972 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 973 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 974 } 975 976 /// \brief Add link options implied by the given module, including modules 977 /// it depends on, using a postorder walk. 978 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 979 SmallVectorImpl<llvm::Metadata *> &Metadata, 980 llvm::SmallPtrSet<Module *, 16> &Visited) { 981 // Import this module's parent. 982 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 983 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 984 } 985 986 // Import this module's dependencies. 987 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 988 if (Visited.insert(Mod->Imports[I - 1]).second) 989 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 990 } 991 992 // Add linker options to link against the libraries/frameworks 993 // described by this module. 994 llvm::LLVMContext &Context = CGM.getLLVMContext(); 995 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 996 // Link against a framework. Frameworks are currently Darwin only, so we 997 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 998 if (Mod->LinkLibraries[I-1].IsFramework) { 999 llvm::Metadata *Args[2] = { 1000 llvm::MDString::get(Context, "-framework"), 1001 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1002 1003 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1004 continue; 1005 } 1006 1007 // Link against a library. 1008 llvm::SmallString<24> Opt; 1009 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1010 Mod->LinkLibraries[I-1].Library, Opt); 1011 auto *OptString = llvm::MDString::get(Context, Opt); 1012 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1013 } 1014 } 1015 1016 void CodeGenModule::EmitModuleLinkOptions() { 1017 // Collect the set of all of the modules we want to visit to emit link 1018 // options, which is essentially the imported modules and all of their 1019 // non-explicit child modules. 1020 llvm::SetVector<clang::Module *> LinkModules; 1021 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1022 SmallVector<clang::Module *, 16> Stack; 1023 1024 // Seed the stack with imported modules. 1025 for (Module *M : ImportedModules) 1026 if (Visited.insert(M).second) 1027 Stack.push_back(M); 1028 1029 // Find all of the modules to import, making a little effort to prune 1030 // non-leaf modules. 1031 while (!Stack.empty()) { 1032 clang::Module *Mod = Stack.pop_back_val(); 1033 1034 bool AnyChildren = false; 1035 1036 // Visit the submodules of this module. 1037 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1038 SubEnd = Mod->submodule_end(); 1039 Sub != SubEnd; ++Sub) { 1040 // Skip explicit children; they need to be explicitly imported to be 1041 // linked against. 1042 if ((*Sub)->IsExplicit) 1043 continue; 1044 1045 if (Visited.insert(*Sub).second) { 1046 Stack.push_back(*Sub); 1047 AnyChildren = true; 1048 } 1049 } 1050 1051 // We didn't find any children, so add this module to the list of 1052 // modules to link against. 1053 if (!AnyChildren) { 1054 LinkModules.insert(Mod); 1055 } 1056 } 1057 1058 // Add link options for all of the imported modules in reverse topological 1059 // order. We don't do anything to try to order import link flags with respect 1060 // to linker options inserted by things like #pragma comment(). 1061 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1062 Visited.clear(); 1063 for (Module *M : LinkModules) 1064 if (Visited.insert(M).second) 1065 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1066 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1067 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1068 1069 // Add the linker options metadata flag. 1070 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1071 llvm::MDNode::get(getLLVMContext(), 1072 LinkerOptionsMetadata)); 1073 } 1074 1075 void CodeGenModule::EmitDeferred() { 1076 // Emit code for any potentially referenced deferred decls. Since a 1077 // previously unused static decl may become used during the generation of code 1078 // for a static function, iterate until no changes are made. 1079 1080 if (!DeferredVTables.empty()) { 1081 EmitDeferredVTables(); 1082 1083 // Emitting a v-table doesn't directly cause more v-tables to 1084 // become deferred, although it can cause functions to be 1085 // emitted that then need those v-tables. 1086 assert(DeferredVTables.empty()); 1087 } 1088 1089 // Stop if we're out of both deferred v-tables and deferred declarations. 1090 if (DeferredDeclsToEmit.empty()) 1091 return; 1092 1093 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1094 // work, it will not interfere with this. 1095 std::vector<DeferredGlobal> CurDeclsToEmit; 1096 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1097 1098 for (DeferredGlobal &G : CurDeclsToEmit) { 1099 GlobalDecl D = G.GD; 1100 llvm::GlobalValue *GV = G.GV; 1101 G.GV = nullptr; 1102 1103 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1104 if (!GV) 1105 GV = GetGlobalValue(getMangledName(D)); 1106 1107 // Check to see if we've already emitted this. This is necessary 1108 // for a couple of reasons: first, decls can end up in the 1109 // deferred-decls queue multiple times, and second, decls can end 1110 // up with definitions in unusual ways (e.g. by an extern inline 1111 // function acquiring a strong function redefinition). Just 1112 // ignore these cases. 1113 if (GV && !GV->isDeclaration()) 1114 continue; 1115 1116 // Otherwise, emit the definition and move on to the next one. 1117 EmitGlobalDefinition(D, GV); 1118 1119 // If we found out that we need to emit more decls, do that recursively. 1120 // This has the advantage that the decls are emitted in a DFS and related 1121 // ones are close together, which is convenient for testing. 1122 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1123 EmitDeferred(); 1124 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1125 } 1126 } 1127 } 1128 1129 void CodeGenModule::EmitGlobalAnnotations() { 1130 if (Annotations.empty()) 1131 return; 1132 1133 // Create a new global variable for the ConstantStruct in the Module. 1134 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1135 Annotations[0]->getType(), Annotations.size()), Annotations); 1136 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1137 llvm::GlobalValue::AppendingLinkage, 1138 Array, "llvm.global.annotations"); 1139 gv->setSection(AnnotationSection); 1140 } 1141 1142 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1143 llvm::Constant *&AStr = AnnotationStrings[Str]; 1144 if (AStr) 1145 return AStr; 1146 1147 // Not found yet, create a new global. 1148 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1149 auto *gv = 1150 new llvm::GlobalVariable(getModule(), s->getType(), true, 1151 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1152 gv->setSection(AnnotationSection); 1153 gv->setUnnamedAddr(true); 1154 AStr = gv; 1155 return gv; 1156 } 1157 1158 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1159 SourceManager &SM = getContext().getSourceManager(); 1160 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1161 if (PLoc.isValid()) 1162 return EmitAnnotationString(PLoc.getFilename()); 1163 return EmitAnnotationString(SM.getBufferName(Loc)); 1164 } 1165 1166 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1167 SourceManager &SM = getContext().getSourceManager(); 1168 PresumedLoc PLoc = SM.getPresumedLoc(L); 1169 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1170 SM.getExpansionLineNumber(L); 1171 return llvm::ConstantInt::get(Int32Ty, LineNo); 1172 } 1173 1174 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1175 const AnnotateAttr *AA, 1176 SourceLocation L) { 1177 // Get the globals for file name, annotation, and the line number. 1178 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1179 *UnitGV = EmitAnnotationUnit(L), 1180 *LineNoCst = EmitAnnotationLineNo(L); 1181 1182 // Create the ConstantStruct for the global annotation. 1183 llvm::Constant *Fields[4] = { 1184 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1185 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1186 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1187 LineNoCst 1188 }; 1189 return llvm::ConstantStruct::getAnon(Fields); 1190 } 1191 1192 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1193 llvm::GlobalValue *GV) { 1194 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1195 // Get the struct elements for these annotations. 1196 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1197 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1198 } 1199 1200 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1201 SourceLocation Loc) const { 1202 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1203 // Blacklist by function name. 1204 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1205 return true; 1206 // Blacklist by location. 1207 if (!Loc.isInvalid()) 1208 return SanitizerBL.isBlacklistedLocation(Loc); 1209 // If location is unknown, this may be a compiler-generated function. Assume 1210 // it's located in the main file. 1211 auto &SM = Context.getSourceManager(); 1212 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1213 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1214 } 1215 return false; 1216 } 1217 1218 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1219 SourceLocation Loc, QualType Ty, 1220 StringRef Category) const { 1221 // For now globals can be blacklisted only in ASan. 1222 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1223 return false; 1224 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1225 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1226 return true; 1227 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1228 return true; 1229 // Check global type. 1230 if (!Ty.isNull()) { 1231 // Drill down the array types: if global variable of a fixed type is 1232 // blacklisted, we also don't instrument arrays of them. 1233 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1234 Ty = AT->getElementType(); 1235 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1236 // We allow to blacklist only record types (classes, structs etc.) 1237 if (Ty->isRecordType()) { 1238 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1239 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1240 return true; 1241 } 1242 } 1243 return false; 1244 } 1245 1246 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1247 // Never defer when EmitAllDecls is specified. 1248 if (LangOpts.EmitAllDecls) 1249 return true; 1250 1251 return getContext().DeclMustBeEmitted(Global); 1252 } 1253 1254 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1255 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1256 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1257 // Implicit template instantiations may change linkage if they are later 1258 // explicitly instantiated, so they should not be emitted eagerly. 1259 return false; 1260 1261 return true; 1262 } 1263 1264 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1265 const CXXUuidofExpr* E) { 1266 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1267 // well-formed. 1268 StringRef Uuid = E->getUuidAsStringRef(Context); 1269 std::string Name = "_GUID_" + Uuid.lower(); 1270 std::replace(Name.begin(), Name.end(), '-', '_'); 1271 1272 // Look for an existing global. 1273 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1274 return GV; 1275 1276 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1277 assert(Init && "failed to initialize as constant"); 1278 1279 auto *GV = new llvm::GlobalVariable( 1280 getModule(), Init->getType(), 1281 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1282 if (supportsCOMDAT()) 1283 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1284 return GV; 1285 } 1286 1287 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1288 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1289 assert(AA && "No alias?"); 1290 1291 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1292 1293 // See if there is already something with the target's name in the module. 1294 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1295 if (Entry) { 1296 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1297 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1298 } 1299 1300 llvm::Constant *Aliasee; 1301 if (isa<llvm::FunctionType>(DeclTy)) 1302 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1303 GlobalDecl(cast<FunctionDecl>(VD)), 1304 /*ForVTable=*/false); 1305 else 1306 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1307 llvm::PointerType::getUnqual(DeclTy), 1308 nullptr); 1309 1310 auto *F = cast<llvm::GlobalValue>(Aliasee); 1311 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1312 WeakRefReferences.insert(F); 1313 1314 return Aliasee; 1315 } 1316 1317 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1318 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1319 1320 // Weak references don't produce any output by themselves. 1321 if (Global->hasAttr<WeakRefAttr>()) 1322 return; 1323 1324 // If this is an alias definition (which otherwise looks like a declaration) 1325 // emit it now. 1326 if (Global->hasAttr<AliasAttr>()) 1327 return EmitAliasDefinition(GD); 1328 1329 // If this is CUDA, be selective about which declarations we emit. 1330 if (LangOpts.CUDA) { 1331 if (LangOpts.CUDAIsDevice) { 1332 if (!Global->hasAttr<CUDADeviceAttr>() && 1333 !Global->hasAttr<CUDAGlobalAttr>() && 1334 !Global->hasAttr<CUDAConstantAttr>() && 1335 !Global->hasAttr<CUDASharedAttr>()) 1336 return; 1337 } else { 1338 if (!Global->hasAttr<CUDAHostAttr>() && ( 1339 Global->hasAttr<CUDADeviceAttr>() || 1340 Global->hasAttr<CUDAConstantAttr>() || 1341 Global->hasAttr<CUDASharedAttr>())) 1342 return; 1343 } 1344 } 1345 1346 // Ignore declarations, they will be emitted on their first use. 1347 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1348 // Forward declarations are emitted lazily on first use. 1349 if (!FD->doesThisDeclarationHaveABody()) { 1350 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1351 return; 1352 1353 StringRef MangledName = getMangledName(GD); 1354 1355 // Compute the function info and LLVM type. 1356 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1357 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1358 1359 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1360 /*DontDefer=*/false); 1361 return; 1362 } 1363 } else { 1364 const auto *VD = cast<VarDecl>(Global); 1365 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1366 1367 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1368 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1369 return; 1370 } 1371 1372 // Defer code generation to first use when possible, e.g. if this is an inline 1373 // function. If the global must always be emitted, do it eagerly if possible 1374 // to benefit from cache locality. 1375 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1376 // Emit the definition if it can't be deferred. 1377 EmitGlobalDefinition(GD); 1378 return; 1379 } 1380 1381 // If we're deferring emission of a C++ variable with an 1382 // initializer, remember the order in which it appeared in the file. 1383 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1384 cast<VarDecl>(Global)->hasInit()) { 1385 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1386 CXXGlobalInits.push_back(nullptr); 1387 } 1388 1389 StringRef MangledName = getMangledName(GD); 1390 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1391 // The value has already been used and should therefore be emitted. 1392 addDeferredDeclToEmit(GV, GD); 1393 } else if (MustBeEmitted(Global)) { 1394 // The value must be emitted, but cannot be emitted eagerly. 1395 assert(!MayBeEmittedEagerly(Global)); 1396 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1397 } else { 1398 // Otherwise, remember that we saw a deferred decl with this name. The 1399 // first use of the mangled name will cause it to move into 1400 // DeferredDeclsToEmit. 1401 DeferredDecls[MangledName] = GD; 1402 } 1403 } 1404 1405 namespace { 1406 struct FunctionIsDirectlyRecursive : 1407 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1408 const StringRef Name; 1409 const Builtin::Context &BI; 1410 bool Result; 1411 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1412 Name(N), BI(C), Result(false) { 1413 } 1414 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1415 1416 bool TraverseCallExpr(CallExpr *E) { 1417 const FunctionDecl *FD = E->getDirectCallee(); 1418 if (!FD) 1419 return true; 1420 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1421 if (Attr && Name == Attr->getLabel()) { 1422 Result = true; 1423 return false; 1424 } 1425 unsigned BuiltinID = FD->getBuiltinID(); 1426 if (!BuiltinID) 1427 return true; 1428 StringRef BuiltinName = BI.GetName(BuiltinID); 1429 if (BuiltinName.startswith("__builtin_") && 1430 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1431 Result = true; 1432 return false; 1433 } 1434 return true; 1435 } 1436 }; 1437 } 1438 1439 // isTriviallyRecursive - Check if this function calls another 1440 // decl that, because of the asm attribute or the other decl being a builtin, 1441 // ends up pointing to itself. 1442 bool 1443 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1444 StringRef Name; 1445 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1446 // asm labels are a special kind of mangling we have to support. 1447 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1448 if (!Attr) 1449 return false; 1450 Name = Attr->getLabel(); 1451 } else { 1452 Name = FD->getName(); 1453 } 1454 1455 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1456 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1457 return Walker.Result; 1458 } 1459 1460 bool 1461 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1462 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1463 return true; 1464 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1465 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1466 return false; 1467 // PR9614. Avoid cases where the source code is lying to us. An available 1468 // externally function should have an equivalent function somewhere else, 1469 // but a function that calls itself is clearly not equivalent to the real 1470 // implementation. 1471 // This happens in glibc's btowc and in some configure checks. 1472 return !isTriviallyRecursive(F); 1473 } 1474 1475 /// If the type for the method's class was generated by 1476 /// CGDebugInfo::createContextChain(), the cache contains only a 1477 /// limited DIType without any declarations. Since EmitFunctionStart() 1478 /// needs to find the canonical declaration for each method, we need 1479 /// to construct the complete type prior to emitting the method. 1480 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1481 if (!D->isInstance()) 1482 return; 1483 1484 if (CGDebugInfo *DI = getModuleDebugInfo()) 1485 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1486 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1487 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1488 } 1489 } 1490 1491 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1492 const auto *D = cast<ValueDecl>(GD.getDecl()); 1493 1494 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1495 Context.getSourceManager(), 1496 "Generating code for declaration"); 1497 1498 if (isa<FunctionDecl>(D)) { 1499 // At -O0, don't generate IR for functions with available_externally 1500 // linkage. 1501 if (!shouldEmitFunction(GD)) 1502 return; 1503 1504 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1505 CompleteDIClassType(Method); 1506 // Make sure to emit the definition(s) before we emit the thunks. 1507 // This is necessary for the generation of certain thunks. 1508 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1509 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1510 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1511 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1512 else 1513 EmitGlobalFunctionDefinition(GD, GV); 1514 1515 if (Method->isVirtual()) 1516 getVTables().EmitThunks(GD); 1517 1518 return; 1519 } 1520 1521 return EmitGlobalFunctionDefinition(GD, GV); 1522 } 1523 1524 if (const auto *VD = dyn_cast<VarDecl>(D)) 1525 return EmitGlobalVarDefinition(VD); 1526 1527 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1528 } 1529 1530 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1531 /// module, create and return an llvm Function with the specified type. If there 1532 /// is something in the module with the specified name, return it potentially 1533 /// bitcasted to the right type. 1534 /// 1535 /// If D is non-null, it specifies a decl that correspond to this. This is used 1536 /// to set the attributes on the function when it is first created. 1537 llvm::Constant * 1538 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1539 llvm::Type *Ty, 1540 GlobalDecl GD, bool ForVTable, 1541 bool DontDefer, bool IsThunk, 1542 llvm::AttributeSet ExtraAttrs) { 1543 const Decl *D = GD.getDecl(); 1544 1545 // Lookup the entry, lazily creating it if necessary. 1546 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1547 if (Entry) { 1548 if (WeakRefReferences.erase(Entry)) { 1549 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1550 if (FD && !FD->hasAttr<WeakAttr>()) 1551 Entry->setLinkage(llvm::Function::ExternalLinkage); 1552 } 1553 1554 // Handle dropped DLL attributes. 1555 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1556 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1557 1558 if (Entry->getType()->getElementType() == Ty) 1559 return Entry; 1560 1561 // Make sure the result is of the correct type. 1562 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1563 } 1564 1565 // This function doesn't have a complete type (for example, the return 1566 // type is an incomplete struct). Use a fake type instead, and make 1567 // sure not to try to set attributes. 1568 bool IsIncompleteFunction = false; 1569 1570 llvm::FunctionType *FTy; 1571 if (isa<llvm::FunctionType>(Ty)) { 1572 FTy = cast<llvm::FunctionType>(Ty); 1573 } else { 1574 FTy = llvm::FunctionType::get(VoidTy, false); 1575 IsIncompleteFunction = true; 1576 } 1577 1578 llvm::Function *F = llvm::Function::Create(FTy, 1579 llvm::Function::ExternalLinkage, 1580 MangledName, &getModule()); 1581 assert(F->getName() == MangledName && "name was uniqued!"); 1582 if (D) 1583 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1584 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1585 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1586 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1587 llvm::AttributeSet::get(VMContext, 1588 llvm::AttributeSet::FunctionIndex, 1589 B)); 1590 } 1591 1592 if (!DontDefer) { 1593 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1594 // each other bottoming out with the base dtor. Therefore we emit non-base 1595 // dtors on usage, even if there is no dtor definition in the TU. 1596 if (D && isa<CXXDestructorDecl>(D) && 1597 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1598 GD.getDtorType())) 1599 addDeferredDeclToEmit(F, GD); 1600 1601 // This is the first use or definition of a mangled name. If there is a 1602 // deferred decl with this name, remember that we need to emit it at the end 1603 // of the file. 1604 auto DDI = DeferredDecls.find(MangledName); 1605 if (DDI != DeferredDecls.end()) { 1606 // Move the potentially referenced deferred decl to the 1607 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1608 // don't need it anymore). 1609 addDeferredDeclToEmit(F, DDI->second); 1610 DeferredDecls.erase(DDI); 1611 1612 // Otherwise, there are cases we have to worry about where we're 1613 // using a declaration for which we must emit a definition but where 1614 // we might not find a top-level definition: 1615 // - member functions defined inline in their classes 1616 // - friend functions defined inline in some class 1617 // - special member functions with implicit definitions 1618 // If we ever change our AST traversal to walk into class methods, 1619 // this will be unnecessary. 1620 // 1621 // We also don't emit a definition for a function if it's going to be an 1622 // entry in a vtable, unless it's already marked as used. 1623 } else if (getLangOpts().CPlusPlus && D) { 1624 // Look for a declaration that's lexically in a record. 1625 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1626 FD = FD->getPreviousDecl()) { 1627 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1628 if (FD->doesThisDeclarationHaveABody()) { 1629 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1630 break; 1631 } 1632 } 1633 } 1634 } 1635 } 1636 1637 // Make sure the result is of the requested type. 1638 if (!IsIncompleteFunction) { 1639 assert(F->getType()->getElementType() == Ty); 1640 return F; 1641 } 1642 1643 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1644 return llvm::ConstantExpr::getBitCast(F, PTy); 1645 } 1646 1647 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1648 /// non-null, then this function will use the specified type if it has to 1649 /// create it (this occurs when we see a definition of the function). 1650 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1651 llvm::Type *Ty, 1652 bool ForVTable, 1653 bool DontDefer) { 1654 // If there was no specific requested type, just convert it now. 1655 if (!Ty) 1656 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1657 1658 StringRef MangledName = getMangledName(GD); 1659 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1660 } 1661 1662 /// CreateRuntimeFunction - Create a new runtime function with the specified 1663 /// type and name. 1664 llvm::Constant * 1665 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1666 StringRef Name, 1667 llvm::AttributeSet ExtraAttrs) { 1668 llvm::Constant *C = 1669 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1670 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1671 if (auto *F = dyn_cast<llvm::Function>(C)) 1672 if (F->empty()) 1673 F->setCallingConv(getRuntimeCC()); 1674 return C; 1675 } 1676 1677 /// CreateBuiltinFunction - Create a new builtin function with the specified 1678 /// type and name. 1679 llvm::Constant * 1680 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1681 StringRef Name, 1682 llvm::AttributeSet ExtraAttrs) { 1683 llvm::Constant *C = 1684 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1685 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1686 if (auto *F = dyn_cast<llvm::Function>(C)) 1687 if (F->empty()) 1688 F->setCallingConv(getBuiltinCC()); 1689 return C; 1690 } 1691 1692 /// isTypeConstant - Determine whether an object of this type can be emitted 1693 /// as a constant. 1694 /// 1695 /// If ExcludeCtor is true, the duration when the object's constructor runs 1696 /// will not be considered. The caller will need to verify that the object is 1697 /// not written to during its construction. 1698 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1699 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1700 return false; 1701 1702 if (Context.getLangOpts().CPlusPlus) { 1703 if (const CXXRecordDecl *Record 1704 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1705 return ExcludeCtor && !Record->hasMutableFields() && 1706 Record->hasTrivialDestructor(); 1707 } 1708 1709 return true; 1710 } 1711 1712 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1713 /// create and return an llvm GlobalVariable with the specified type. If there 1714 /// is something in the module with the specified name, return it potentially 1715 /// bitcasted to the right type. 1716 /// 1717 /// If D is non-null, it specifies a decl that correspond to this. This is used 1718 /// to set the attributes on the global when it is first created. 1719 llvm::Constant * 1720 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1721 llvm::PointerType *Ty, 1722 const VarDecl *D) { 1723 // Lookup the entry, lazily creating it if necessary. 1724 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1725 if (Entry) { 1726 if (WeakRefReferences.erase(Entry)) { 1727 if (D && !D->hasAttr<WeakAttr>()) 1728 Entry->setLinkage(llvm::Function::ExternalLinkage); 1729 } 1730 1731 // Handle dropped DLL attributes. 1732 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1733 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1734 1735 if (Entry->getType() == Ty) 1736 return Entry; 1737 1738 // Make sure the result is of the correct type. 1739 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1740 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1741 1742 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1743 } 1744 1745 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1746 auto *GV = new llvm::GlobalVariable( 1747 getModule(), Ty->getElementType(), false, 1748 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1749 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1750 1751 // This is the first use or definition of a mangled name. If there is a 1752 // deferred decl with this name, remember that we need to emit it at the end 1753 // of the file. 1754 auto DDI = DeferredDecls.find(MangledName); 1755 if (DDI != DeferredDecls.end()) { 1756 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1757 // list, and remove it from DeferredDecls (since we don't need it anymore). 1758 addDeferredDeclToEmit(GV, DDI->second); 1759 DeferredDecls.erase(DDI); 1760 } 1761 1762 // Handle things which are present even on external declarations. 1763 if (D) { 1764 // FIXME: This code is overly simple and should be merged with other global 1765 // handling. 1766 GV->setConstant(isTypeConstant(D->getType(), false)); 1767 1768 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1769 1770 setLinkageAndVisibilityForGV(GV, D); 1771 1772 if (D->getTLSKind()) { 1773 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1774 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1775 setTLSMode(GV, *D); 1776 } 1777 1778 // If required by the ABI, treat declarations of static data members with 1779 // inline initializers as definitions. 1780 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1781 EmitGlobalVarDefinition(D); 1782 } 1783 1784 // Handle XCore specific ABI requirements. 1785 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1786 D->getLanguageLinkage() == CLanguageLinkage && 1787 D->getType().isConstant(Context) && 1788 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1789 GV->setSection(".cp.rodata"); 1790 } 1791 1792 if (AddrSpace != Ty->getAddressSpace()) 1793 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1794 1795 return GV; 1796 } 1797 1798 1799 llvm::GlobalVariable * 1800 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1801 llvm::Type *Ty, 1802 llvm::GlobalValue::LinkageTypes Linkage) { 1803 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1804 llvm::GlobalVariable *OldGV = nullptr; 1805 1806 if (GV) { 1807 // Check if the variable has the right type. 1808 if (GV->getType()->getElementType() == Ty) 1809 return GV; 1810 1811 // Because C++ name mangling, the only way we can end up with an already 1812 // existing global with the same name is if it has been declared extern "C". 1813 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1814 OldGV = GV; 1815 } 1816 1817 // Create a new variable. 1818 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1819 Linkage, nullptr, Name); 1820 1821 if (OldGV) { 1822 // Replace occurrences of the old variable if needed. 1823 GV->takeName(OldGV); 1824 1825 if (!OldGV->use_empty()) { 1826 llvm::Constant *NewPtrForOldDecl = 1827 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1828 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1829 } 1830 1831 OldGV->eraseFromParent(); 1832 } 1833 1834 if (supportsCOMDAT() && GV->isWeakForLinker() && 1835 !GV->hasAvailableExternallyLinkage()) 1836 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1837 1838 return GV; 1839 } 1840 1841 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1842 /// given global variable. If Ty is non-null and if the global doesn't exist, 1843 /// then it will be created with the specified type instead of whatever the 1844 /// normal requested type would be. 1845 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1846 llvm::Type *Ty) { 1847 assert(D->hasGlobalStorage() && "Not a global variable"); 1848 QualType ASTTy = D->getType(); 1849 if (!Ty) 1850 Ty = getTypes().ConvertTypeForMem(ASTTy); 1851 1852 llvm::PointerType *PTy = 1853 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1854 1855 StringRef MangledName = getMangledName(D); 1856 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1857 } 1858 1859 /// CreateRuntimeVariable - Create a new runtime global variable with the 1860 /// specified type and name. 1861 llvm::Constant * 1862 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1863 StringRef Name) { 1864 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1865 } 1866 1867 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1868 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1869 1870 if (!MustBeEmitted(D)) { 1871 // If we have not seen a reference to this variable yet, place it 1872 // into the deferred declarations table to be emitted if needed 1873 // later. 1874 StringRef MangledName = getMangledName(D); 1875 if (!GetGlobalValue(MangledName)) { 1876 DeferredDecls[MangledName] = D; 1877 return; 1878 } 1879 } 1880 1881 // The tentative definition is the only definition. 1882 EmitGlobalVarDefinition(D); 1883 } 1884 1885 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1886 return Context.toCharUnitsFromBits( 1887 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1888 } 1889 1890 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1891 unsigned AddrSpace) { 1892 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 1893 if (D->hasAttr<CUDAConstantAttr>()) 1894 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1895 else if (D->hasAttr<CUDASharedAttr>()) 1896 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1897 else 1898 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1899 } 1900 1901 return AddrSpace; 1902 } 1903 1904 template<typename SomeDecl> 1905 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1906 llvm::GlobalValue *GV) { 1907 if (!getLangOpts().CPlusPlus) 1908 return; 1909 1910 // Must have 'used' attribute, or else inline assembly can't rely on 1911 // the name existing. 1912 if (!D->template hasAttr<UsedAttr>()) 1913 return; 1914 1915 // Must have internal linkage and an ordinary name. 1916 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1917 return; 1918 1919 // Must be in an extern "C" context. Entities declared directly within 1920 // a record are not extern "C" even if the record is in such a context. 1921 const SomeDecl *First = D->getFirstDecl(); 1922 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1923 return; 1924 1925 // OK, this is an internal linkage entity inside an extern "C" linkage 1926 // specification. Make a note of that so we can give it the "expected" 1927 // mangled name if nothing else is using that name. 1928 std::pair<StaticExternCMap::iterator, bool> R = 1929 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1930 1931 // If we have multiple internal linkage entities with the same name 1932 // in extern "C" regions, none of them gets that name. 1933 if (!R.second) 1934 R.first->second = nullptr; 1935 } 1936 1937 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 1938 if (!CGM.supportsCOMDAT()) 1939 return false; 1940 1941 if (D.hasAttr<SelectAnyAttr>()) 1942 return true; 1943 1944 GVALinkage Linkage; 1945 if (auto *VD = dyn_cast<VarDecl>(&D)) 1946 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 1947 else 1948 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 1949 1950 switch (Linkage) { 1951 case GVA_Internal: 1952 case GVA_AvailableExternally: 1953 case GVA_StrongExternal: 1954 return false; 1955 case GVA_DiscardableODR: 1956 case GVA_StrongODR: 1957 return true; 1958 } 1959 llvm_unreachable("No such linkage"); 1960 } 1961 1962 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 1963 llvm::GlobalObject &GO) { 1964 if (!shouldBeInCOMDAT(*this, D)) 1965 return; 1966 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 1967 } 1968 1969 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1970 llvm::Constant *Init = nullptr; 1971 QualType ASTTy = D->getType(); 1972 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1973 bool NeedsGlobalCtor = false; 1974 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1975 1976 const VarDecl *InitDecl; 1977 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1978 1979 if (!InitExpr) { 1980 // This is a tentative definition; tentative definitions are 1981 // implicitly initialized with { 0 }. 1982 // 1983 // Note that tentative definitions are only emitted at the end of 1984 // a translation unit, so they should never have incomplete 1985 // type. In addition, EmitTentativeDefinition makes sure that we 1986 // never attempt to emit a tentative definition if a real one 1987 // exists. A use may still exists, however, so we still may need 1988 // to do a RAUW. 1989 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1990 Init = EmitNullConstant(D->getType()); 1991 } else { 1992 initializedGlobalDecl = GlobalDecl(D); 1993 Init = EmitConstantInit(*InitDecl); 1994 1995 if (!Init) { 1996 QualType T = InitExpr->getType(); 1997 if (D->getType()->isReferenceType()) 1998 T = D->getType(); 1999 2000 if (getLangOpts().CPlusPlus) { 2001 Init = EmitNullConstant(T); 2002 NeedsGlobalCtor = true; 2003 } else { 2004 ErrorUnsupported(D, "static initializer"); 2005 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2006 } 2007 } else { 2008 // We don't need an initializer, so remove the entry for the delayed 2009 // initializer position (just in case this entry was delayed) if we 2010 // also don't need to register a destructor. 2011 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2012 DelayedCXXInitPosition.erase(D); 2013 } 2014 } 2015 2016 llvm::Type* InitType = Init->getType(); 2017 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2018 2019 // Strip off a bitcast if we got one back. 2020 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2021 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2022 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2023 // All zero index gep. 2024 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2025 Entry = CE->getOperand(0); 2026 } 2027 2028 // Entry is now either a Function or GlobalVariable. 2029 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2030 2031 // We have a definition after a declaration with the wrong type. 2032 // We must make a new GlobalVariable* and update everything that used OldGV 2033 // (a declaration or tentative definition) with the new GlobalVariable* 2034 // (which will be a definition). 2035 // 2036 // This happens if there is a prototype for a global (e.g. 2037 // "extern int x[];") and then a definition of a different type (e.g. 2038 // "int x[10];"). This also happens when an initializer has a different type 2039 // from the type of the global (this happens with unions). 2040 if (!GV || 2041 GV->getType()->getElementType() != InitType || 2042 GV->getType()->getAddressSpace() != 2043 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2044 2045 // Move the old entry aside so that we'll create a new one. 2046 Entry->setName(StringRef()); 2047 2048 // Make a new global with the correct type, this is now guaranteed to work. 2049 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2050 2051 // Replace all uses of the old global with the new global 2052 llvm::Constant *NewPtrForOldDecl = 2053 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2054 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2055 2056 // Erase the old global, since it is no longer used. 2057 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2058 } 2059 2060 MaybeHandleStaticInExternC(D, GV); 2061 2062 if (D->hasAttr<AnnotateAttr>()) 2063 AddGlobalAnnotations(D, GV); 2064 2065 GV->setInitializer(Init); 2066 2067 // If it is safe to mark the global 'constant', do so now. 2068 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2069 isTypeConstant(D->getType(), true)); 2070 2071 // If it is in a read-only section, mark it 'constant'. 2072 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2073 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2074 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2075 GV->setConstant(true); 2076 } 2077 2078 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2079 2080 // Set the llvm linkage type as appropriate. 2081 llvm::GlobalValue::LinkageTypes Linkage = 2082 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2083 2084 // On Darwin, the backing variable for a C++11 thread_local variable always 2085 // has internal linkage; all accesses should just be calls to the 2086 // Itanium-specified entry point, which has the normal linkage of the 2087 // variable. 2088 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2089 Context.getTargetInfo().getTriple().isMacOSX()) 2090 Linkage = llvm::GlobalValue::InternalLinkage; 2091 2092 GV->setLinkage(Linkage); 2093 if (D->hasAttr<DLLImportAttr>()) 2094 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2095 else if (D->hasAttr<DLLExportAttr>()) 2096 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2097 else 2098 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2099 2100 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2101 // common vars aren't constant even if declared const. 2102 GV->setConstant(false); 2103 2104 setNonAliasAttributes(D, GV); 2105 2106 if (D->getTLSKind() && !GV->isThreadLocal()) { 2107 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2108 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2109 setTLSMode(GV, *D); 2110 } 2111 2112 maybeSetTrivialComdat(*D, *GV); 2113 2114 // Emit the initializer function if necessary. 2115 if (NeedsGlobalCtor || NeedsGlobalDtor) 2116 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2117 2118 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2119 2120 // Emit global variable debug information. 2121 if (CGDebugInfo *DI = getModuleDebugInfo()) 2122 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2123 DI->EmitGlobalVariable(GV, D); 2124 } 2125 2126 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2127 CodeGenModule &CGM, const VarDecl *D, 2128 bool NoCommon) { 2129 // Don't give variables common linkage if -fno-common was specified unless it 2130 // was overridden by a NoCommon attribute. 2131 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2132 return true; 2133 2134 // C11 6.9.2/2: 2135 // A declaration of an identifier for an object that has file scope without 2136 // an initializer, and without a storage-class specifier or with the 2137 // storage-class specifier static, constitutes a tentative definition. 2138 if (D->getInit() || D->hasExternalStorage()) 2139 return true; 2140 2141 // A variable cannot be both common and exist in a section. 2142 if (D->hasAttr<SectionAttr>()) 2143 return true; 2144 2145 // Thread local vars aren't considered common linkage. 2146 if (D->getTLSKind()) 2147 return true; 2148 2149 // Tentative definitions marked with WeakImportAttr are true definitions. 2150 if (D->hasAttr<WeakImportAttr>()) 2151 return true; 2152 2153 // A variable cannot be both common and exist in a comdat. 2154 if (shouldBeInCOMDAT(CGM, *D)) 2155 return true; 2156 2157 // Declarations with a required alignment do not have common linakge in MSVC 2158 // mode. 2159 if (Context.getLangOpts().MSVCCompat) { 2160 if (D->hasAttr<AlignedAttr>()) 2161 return true; 2162 QualType VarType = D->getType(); 2163 if (Context.isAlignmentRequired(VarType)) 2164 return true; 2165 2166 if (const auto *RT = VarType->getAs<RecordType>()) { 2167 const RecordDecl *RD = RT->getDecl(); 2168 for (const FieldDecl *FD : RD->fields()) { 2169 if (FD->isBitField()) 2170 continue; 2171 if (FD->hasAttr<AlignedAttr>()) 2172 return true; 2173 if (Context.isAlignmentRequired(FD->getType())) 2174 return true; 2175 } 2176 } 2177 } 2178 2179 return false; 2180 } 2181 2182 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2183 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2184 if (Linkage == GVA_Internal) 2185 return llvm::Function::InternalLinkage; 2186 2187 if (D->hasAttr<WeakAttr>()) { 2188 if (IsConstantVariable) 2189 return llvm::GlobalVariable::WeakODRLinkage; 2190 else 2191 return llvm::GlobalVariable::WeakAnyLinkage; 2192 } 2193 2194 // We are guaranteed to have a strong definition somewhere else, 2195 // so we can use available_externally linkage. 2196 if (Linkage == GVA_AvailableExternally) 2197 return llvm::Function::AvailableExternallyLinkage; 2198 2199 // Note that Apple's kernel linker doesn't support symbol 2200 // coalescing, so we need to avoid linkonce and weak linkages there. 2201 // Normally, this means we just map to internal, but for explicit 2202 // instantiations we'll map to external. 2203 2204 // In C++, the compiler has to emit a definition in every translation unit 2205 // that references the function. We should use linkonce_odr because 2206 // a) if all references in this translation unit are optimized away, we 2207 // don't need to codegen it. b) if the function persists, it needs to be 2208 // merged with other definitions. c) C++ has the ODR, so we know the 2209 // definition is dependable. 2210 if (Linkage == GVA_DiscardableODR) 2211 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2212 : llvm::Function::InternalLinkage; 2213 2214 // An explicit instantiation of a template has weak linkage, since 2215 // explicit instantiations can occur in multiple translation units 2216 // and must all be equivalent. However, we are not allowed to 2217 // throw away these explicit instantiations. 2218 if (Linkage == GVA_StrongODR) 2219 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2220 : llvm::Function::ExternalLinkage; 2221 2222 // C++ doesn't have tentative definitions and thus cannot have common 2223 // linkage. 2224 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2225 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2226 CodeGenOpts.NoCommon)) 2227 return llvm::GlobalVariable::CommonLinkage; 2228 2229 // selectany symbols are externally visible, so use weak instead of 2230 // linkonce. MSVC optimizes away references to const selectany globals, so 2231 // all definitions should be the same and ODR linkage should be used. 2232 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2233 if (D->hasAttr<SelectAnyAttr>()) 2234 return llvm::GlobalVariable::WeakODRLinkage; 2235 2236 // Otherwise, we have strong external linkage. 2237 assert(Linkage == GVA_StrongExternal); 2238 return llvm::GlobalVariable::ExternalLinkage; 2239 } 2240 2241 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2242 const VarDecl *VD, bool IsConstant) { 2243 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2244 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2245 } 2246 2247 /// Replace the uses of a function that was declared with a non-proto type. 2248 /// We want to silently drop extra arguments from call sites 2249 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2250 llvm::Function *newFn) { 2251 // Fast path. 2252 if (old->use_empty()) return; 2253 2254 llvm::Type *newRetTy = newFn->getReturnType(); 2255 SmallVector<llvm::Value*, 4> newArgs; 2256 2257 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2258 ui != ue; ) { 2259 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2260 llvm::User *user = use->getUser(); 2261 2262 // Recognize and replace uses of bitcasts. Most calls to 2263 // unprototyped functions will use bitcasts. 2264 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2265 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2266 replaceUsesOfNonProtoConstant(bitcast, newFn); 2267 continue; 2268 } 2269 2270 // Recognize calls to the function. 2271 llvm::CallSite callSite(user); 2272 if (!callSite) continue; 2273 if (!callSite.isCallee(&*use)) continue; 2274 2275 // If the return types don't match exactly, then we can't 2276 // transform this call unless it's dead. 2277 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2278 continue; 2279 2280 // Get the call site's attribute list. 2281 SmallVector<llvm::AttributeSet, 8> newAttrs; 2282 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2283 2284 // Collect any return attributes from the call. 2285 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2286 newAttrs.push_back( 2287 llvm::AttributeSet::get(newFn->getContext(), 2288 oldAttrs.getRetAttributes())); 2289 2290 // If the function was passed too few arguments, don't transform. 2291 unsigned newNumArgs = newFn->arg_size(); 2292 if (callSite.arg_size() < newNumArgs) continue; 2293 2294 // If extra arguments were passed, we silently drop them. 2295 // If any of the types mismatch, we don't transform. 2296 unsigned argNo = 0; 2297 bool dontTransform = false; 2298 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2299 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2300 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2301 dontTransform = true; 2302 break; 2303 } 2304 2305 // Add any parameter attributes. 2306 if (oldAttrs.hasAttributes(argNo + 1)) 2307 newAttrs. 2308 push_back(llvm:: 2309 AttributeSet::get(newFn->getContext(), 2310 oldAttrs.getParamAttributes(argNo + 1))); 2311 } 2312 if (dontTransform) 2313 continue; 2314 2315 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2316 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2317 oldAttrs.getFnAttributes())); 2318 2319 // Okay, we can transform this. Create the new call instruction and copy 2320 // over the required information. 2321 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2322 2323 llvm::CallSite newCall; 2324 if (callSite.isCall()) { 2325 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2326 callSite.getInstruction()); 2327 } else { 2328 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2329 newCall = llvm::InvokeInst::Create(newFn, 2330 oldInvoke->getNormalDest(), 2331 oldInvoke->getUnwindDest(), 2332 newArgs, "", 2333 callSite.getInstruction()); 2334 } 2335 newArgs.clear(); // for the next iteration 2336 2337 if (!newCall->getType()->isVoidTy()) 2338 newCall->takeName(callSite.getInstruction()); 2339 newCall.setAttributes( 2340 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2341 newCall.setCallingConv(callSite.getCallingConv()); 2342 2343 // Finally, remove the old call, replacing any uses with the new one. 2344 if (!callSite->use_empty()) 2345 callSite->replaceAllUsesWith(newCall.getInstruction()); 2346 2347 // Copy debug location attached to CI. 2348 if (callSite->getDebugLoc()) 2349 newCall->setDebugLoc(callSite->getDebugLoc()); 2350 callSite->eraseFromParent(); 2351 } 2352 } 2353 2354 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2355 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2356 /// existing call uses of the old function in the module, this adjusts them to 2357 /// call the new function directly. 2358 /// 2359 /// This is not just a cleanup: the always_inline pass requires direct calls to 2360 /// functions to be able to inline them. If there is a bitcast in the way, it 2361 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2362 /// run at -O0. 2363 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2364 llvm::Function *NewFn) { 2365 // If we're redefining a global as a function, don't transform it. 2366 if (!isa<llvm::Function>(Old)) return; 2367 2368 replaceUsesOfNonProtoConstant(Old, NewFn); 2369 } 2370 2371 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2372 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2373 // If we have a definition, this might be a deferred decl. If the 2374 // instantiation is explicit, make sure we emit it at the end. 2375 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2376 GetAddrOfGlobalVar(VD); 2377 2378 EmitTopLevelDecl(VD); 2379 } 2380 2381 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2382 llvm::GlobalValue *GV) { 2383 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2384 2385 // Compute the function info and LLVM type. 2386 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2387 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2388 2389 // Get or create the prototype for the function. 2390 if (!GV) { 2391 llvm::Constant *C = 2392 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2393 2394 // Strip off a bitcast if we got one back. 2395 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2396 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2397 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2398 } else { 2399 GV = cast<llvm::GlobalValue>(C); 2400 } 2401 } 2402 2403 if (!GV->isDeclaration()) { 2404 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2405 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2406 if (auto *Prev = OldGD.getDecl()) 2407 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2408 return; 2409 } 2410 2411 if (GV->getType()->getElementType() != Ty) { 2412 // If the types mismatch then we have to rewrite the definition. 2413 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2414 2415 // F is the Function* for the one with the wrong type, we must make a new 2416 // Function* and update everything that used F (a declaration) with the new 2417 // Function* (which will be a definition). 2418 // 2419 // This happens if there is a prototype for a function 2420 // (e.g. "int f()") and then a definition of a different type 2421 // (e.g. "int f(int x)"). Move the old function aside so that it 2422 // doesn't interfere with GetAddrOfFunction. 2423 GV->setName(StringRef()); 2424 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2425 2426 // This might be an implementation of a function without a 2427 // prototype, in which case, try to do special replacement of 2428 // calls which match the new prototype. The really key thing here 2429 // is that we also potentially drop arguments from the call site 2430 // so as to make a direct call, which makes the inliner happier 2431 // and suppresses a number of optimizer warnings (!) about 2432 // dropping arguments. 2433 if (!GV->use_empty()) { 2434 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2435 GV->removeDeadConstantUsers(); 2436 } 2437 2438 // Replace uses of F with the Function we will endow with a body. 2439 if (!GV->use_empty()) { 2440 llvm::Constant *NewPtrForOldDecl = 2441 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2442 GV->replaceAllUsesWith(NewPtrForOldDecl); 2443 } 2444 2445 // Ok, delete the old function now, which is dead. 2446 GV->eraseFromParent(); 2447 2448 GV = NewFn; 2449 } 2450 2451 // We need to set linkage and visibility on the function before 2452 // generating code for it because various parts of IR generation 2453 // want to propagate this information down (e.g. to local static 2454 // declarations). 2455 auto *Fn = cast<llvm::Function>(GV); 2456 setFunctionLinkage(GD, Fn); 2457 setFunctionDLLStorageClass(GD, Fn); 2458 2459 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2460 setGlobalVisibility(Fn, D); 2461 2462 MaybeHandleStaticInExternC(D, Fn); 2463 2464 maybeSetTrivialComdat(*D, *Fn); 2465 2466 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2467 2468 setFunctionDefinitionAttributes(D, Fn); 2469 SetLLVMFunctionAttributesForDefinition(D, Fn); 2470 2471 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2472 AddGlobalCtor(Fn, CA->getPriority()); 2473 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2474 AddGlobalDtor(Fn, DA->getPriority()); 2475 if (D->hasAttr<AnnotateAttr>()) 2476 AddGlobalAnnotations(D, Fn); 2477 } 2478 2479 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2480 const auto *D = cast<ValueDecl>(GD.getDecl()); 2481 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2482 assert(AA && "Not an alias?"); 2483 2484 StringRef MangledName = getMangledName(GD); 2485 2486 // If there is a definition in the module, then it wins over the alias. 2487 // This is dubious, but allow it to be safe. Just ignore the alias. 2488 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2489 if (Entry && !Entry->isDeclaration()) 2490 return; 2491 2492 Aliases.push_back(GD); 2493 2494 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2495 2496 // Create a reference to the named value. This ensures that it is emitted 2497 // if a deferred decl. 2498 llvm::Constant *Aliasee; 2499 if (isa<llvm::FunctionType>(DeclTy)) 2500 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2501 /*ForVTable=*/false); 2502 else 2503 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2504 llvm::PointerType::getUnqual(DeclTy), 2505 /*D=*/nullptr); 2506 2507 // Create the new alias itself, but don't set a name yet. 2508 auto *GA = llvm::GlobalAlias::create( 2509 cast<llvm::PointerType>(Aliasee->getType()), 2510 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2511 2512 if (Entry) { 2513 if (GA->getAliasee() == Entry) { 2514 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2515 return; 2516 } 2517 2518 assert(Entry->isDeclaration()); 2519 2520 // If there is a declaration in the module, then we had an extern followed 2521 // by the alias, as in: 2522 // extern int test6(); 2523 // ... 2524 // int test6() __attribute__((alias("test7"))); 2525 // 2526 // Remove it and replace uses of it with the alias. 2527 GA->takeName(Entry); 2528 2529 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2530 Entry->getType())); 2531 Entry->eraseFromParent(); 2532 } else { 2533 GA->setName(MangledName); 2534 } 2535 2536 // Set attributes which are particular to an alias; this is a 2537 // specialization of the attributes which may be set on a global 2538 // variable/function. 2539 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2540 D->isWeakImported()) { 2541 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2542 } 2543 2544 if (const auto *VD = dyn_cast<VarDecl>(D)) 2545 if (VD->getTLSKind()) 2546 setTLSMode(GA, *VD); 2547 2548 setAliasAttributes(D, GA); 2549 } 2550 2551 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2552 ArrayRef<llvm::Type*> Tys) { 2553 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2554 Tys); 2555 } 2556 2557 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2558 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2559 const StringLiteral *Literal, bool TargetIsLSB, 2560 bool &IsUTF16, unsigned &StringLength) { 2561 StringRef String = Literal->getString(); 2562 unsigned NumBytes = String.size(); 2563 2564 // Check for simple case. 2565 if (!Literal->containsNonAsciiOrNull()) { 2566 StringLength = NumBytes; 2567 return *Map.insert(std::make_pair(String, nullptr)).first; 2568 } 2569 2570 // Otherwise, convert the UTF8 literals into a string of shorts. 2571 IsUTF16 = true; 2572 2573 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2574 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2575 UTF16 *ToPtr = &ToBuf[0]; 2576 2577 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2578 &ToPtr, ToPtr + NumBytes, 2579 strictConversion); 2580 2581 // ConvertUTF8toUTF16 returns the length in ToPtr. 2582 StringLength = ToPtr - &ToBuf[0]; 2583 2584 // Add an explicit null. 2585 *ToPtr = 0; 2586 return *Map.insert(std::make_pair( 2587 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2588 (StringLength + 1) * 2), 2589 nullptr)).first; 2590 } 2591 2592 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2593 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2594 const StringLiteral *Literal, unsigned &StringLength) { 2595 StringRef String = Literal->getString(); 2596 StringLength = String.size(); 2597 return *Map.insert(std::make_pair(String, nullptr)).first; 2598 } 2599 2600 llvm::Constant * 2601 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2602 unsigned StringLength = 0; 2603 bool isUTF16 = false; 2604 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2605 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2606 getDataLayout().isLittleEndian(), isUTF16, 2607 StringLength); 2608 2609 if (auto *C = Entry.second) 2610 return C; 2611 2612 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2613 llvm::Constant *Zeros[] = { Zero, Zero }; 2614 llvm::Value *V; 2615 2616 // If we don't already have it, get __CFConstantStringClassReference. 2617 if (!CFConstantStringClassRef) { 2618 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2619 Ty = llvm::ArrayType::get(Ty, 0); 2620 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2621 "__CFConstantStringClassReference"); 2622 // Decay array -> ptr 2623 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2624 CFConstantStringClassRef = V; 2625 } 2626 else 2627 V = CFConstantStringClassRef; 2628 2629 QualType CFTy = getContext().getCFConstantStringType(); 2630 2631 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2632 2633 llvm::Constant *Fields[4]; 2634 2635 // Class pointer. 2636 Fields[0] = cast<llvm::ConstantExpr>(V); 2637 2638 // Flags. 2639 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2640 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2641 llvm::ConstantInt::get(Ty, 0x07C8); 2642 2643 // String pointer. 2644 llvm::Constant *C = nullptr; 2645 if (isUTF16) { 2646 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2647 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2648 Entry.first().size() / 2); 2649 C = llvm::ConstantDataArray::get(VMContext, Arr); 2650 } else { 2651 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2652 } 2653 2654 // Note: -fwritable-strings doesn't make the backing store strings of 2655 // CFStrings writable. (See <rdar://problem/10657500>) 2656 auto *GV = 2657 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2658 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2659 GV->setUnnamedAddr(true); 2660 // Don't enforce the target's minimum global alignment, since the only use 2661 // of the string is via this class initializer. 2662 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2663 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2664 // that changes the section it ends in, which surprises ld64. 2665 if (isUTF16) { 2666 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2667 GV->setAlignment(Align.getQuantity()); 2668 GV->setSection("__TEXT,__ustring"); 2669 } else { 2670 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2671 GV->setAlignment(Align.getQuantity()); 2672 GV->setSection("__TEXT,__cstring,cstring_literals"); 2673 } 2674 2675 // String. 2676 Fields[2] = 2677 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2678 2679 if (isUTF16) 2680 // Cast the UTF16 string to the correct type. 2681 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2682 2683 // String length. 2684 Ty = getTypes().ConvertType(getContext().LongTy); 2685 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2686 2687 // The struct. 2688 C = llvm::ConstantStruct::get(STy, Fields); 2689 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2690 llvm::GlobalVariable::PrivateLinkage, C, 2691 "_unnamed_cfstring_"); 2692 GV->setSection("__DATA,__cfstring"); 2693 Entry.second = GV; 2694 2695 return GV; 2696 } 2697 2698 llvm::GlobalVariable * 2699 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2700 unsigned StringLength = 0; 2701 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2702 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2703 2704 if (auto *C = Entry.second) 2705 return C; 2706 2707 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2708 llvm::Constant *Zeros[] = { Zero, Zero }; 2709 llvm::Value *V; 2710 // If we don't already have it, get _NSConstantStringClassReference. 2711 if (!ConstantStringClassRef) { 2712 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2713 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2714 llvm::Constant *GV; 2715 if (LangOpts.ObjCRuntime.isNonFragile()) { 2716 std::string str = 2717 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2718 : "OBJC_CLASS_$_" + StringClass; 2719 GV = getObjCRuntime().GetClassGlobal(str); 2720 // Make sure the result is of the correct type. 2721 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2722 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2723 ConstantStringClassRef = V; 2724 } else { 2725 std::string str = 2726 StringClass.empty() ? "_NSConstantStringClassReference" 2727 : "_" + StringClass + "ClassReference"; 2728 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2729 GV = CreateRuntimeVariable(PTy, str); 2730 // Decay array -> ptr 2731 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2732 ConstantStringClassRef = V; 2733 } 2734 } else 2735 V = ConstantStringClassRef; 2736 2737 if (!NSConstantStringType) { 2738 // Construct the type for a constant NSString. 2739 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2740 D->startDefinition(); 2741 2742 QualType FieldTypes[3]; 2743 2744 // const int *isa; 2745 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2746 // const char *str; 2747 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2748 // unsigned int length; 2749 FieldTypes[2] = Context.UnsignedIntTy; 2750 2751 // Create fields 2752 for (unsigned i = 0; i < 3; ++i) { 2753 FieldDecl *Field = FieldDecl::Create(Context, D, 2754 SourceLocation(), 2755 SourceLocation(), nullptr, 2756 FieldTypes[i], /*TInfo=*/nullptr, 2757 /*BitWidth=*/nullptr, 2758 /*Mutable=*/false, 2759 ICIS_NoInit); 2760 Field->setAccess(AS_public); 2761 D->addDecl(Field); 2762 } 2763 2764 D->completeDefinition(); 2765 QualType NSTy = Context.getTagDeclType(D); 2766 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2767 } 2768 2769 llvm::Constant *Fields[3]; 2770 2771 // Class pointer. 2772 Fields[0] = cast<llvm::ConstantExpr>(V); 2773 2774 // String pointer. 2775 llvm::Constant *C = 2776 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2777 2778 llvm::GlobalValue::LinkageTypes Linkage; 2779 bool isConstant; 2780 Linkage = llvm::GlobalValue::PrivateLinkage; 2781 isConstant = !LangOpts.WritableStrings; 2782 2783 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2784 Linkage, C, ".str"); 2785 GV->setUnnamedAddr(true); 2786 // Don't enforce the target's minimum global alignment, since the only use 2787 // of the string is via this class initializer. 2788 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2789 GV->setAlignment(Align.getQuantity()); 2790 Fields[1] = 2791 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2792 2793 // String length. 2794 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2795 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2796 2797 // The struct. 2798 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2799 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2800 llvm::GlobalVariable::PrivateLinkage, C, 2801 "_unnamed_nsstring_"); 2802 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2803 const char *NSStringNonFragileABISection = 2804 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2805 // FIXME. Fix section. 2806 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2807 ? NSStringNonFragileABISection 2808 : NSStringSection); 2809 Entry.second = GV; 2810 2811 return GV; 2812 } 2813 2814 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2815 if (ObjCFastEnumerationStateType.isNull()) { 2816 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2817 D->startDefinition(); 2818 2819 QualType FieldTypes[] = { 2820 Context.UnsignedLongTy, 2821 Context.getPointerType(Context.getObjCIdType()), 2822 Context.getPointerType(Context.UnsignedLongTy), 2823 Context.getConstantArrayType(Context.UnsignedLongTy, 2824 llvm::APInt(32, 5), ArrayType::Normal, 0) 2825 }; 2826 2827 for (size_t i = 0; i < 4; ++i) { 2828 FieldDecl *Field = FieldDecl::Create(Context, 2829 D, 2830 SourceLocation(), 2831 SourceLocation(), nullptr, 2832 FieldTypes[i], /*TInfo=*/nullptr, 2833 /*BitWidth=*/nullptr, 2834 /*Mutable=*/false, 2835 ICIS_NoInit); 2836 Field->setAccess(AS_public); 2837 D->addDecl(Field); 2838 } 2839 2840 D->completeDefinition(); 2841 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2842 } 2843 2844 return ObjCFastEnumerationStateType; 2845 } 2846 2847 llvm::Constant * 2848 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2849 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2850 2851 // Don't emit it as the address of the string, emit the string data itself 2852 // as an inline array. 2853 if (E->getCharByteWidth() == 1) { 2854 SmallString<64> Str(E->getString()); 2855 2856 // Resize the string to the right size, which is indicated by its type. 2857 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2858 Str.resize(CAT->getSize().getZExtValue()); 2859 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2860 } 2861 2862 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2863 llvm::Type *ElemTy = AType->getElementType(); 2864 unsigned NumElements = AType->getNumElements(); 2865 2866 // Wide strings have either 2-byte or 4-byte elements. 2867 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2868 SmallVector<uint16_t, 32> Elements; 2869 Elements.reserve(NumElements); 2870 2871 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2872 Elements.push_back(E->getCodeUnit(i)); 2873 Elements.resize(NumElements); 2874 return llvm::ConstantDataArray::get(VMContext, Elements); 2875 } 2876 2877 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2878 SmallVector<uint32_t, 32> Elements; 2879 Elements.reserve(NumElements); 2880 2881 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2882 Elements.push_back(E->getCodeUnit(i)); 2883 Elements.resize(NumElements); 2884 return llvm::ConstantDataArray::get(VMContext, Elements); 2885 } 2886 2887 static llvm::GlobalVariable * 2888 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2889 CodeGenModule &CGM, StringRef GlobalName, 2890 unsigned Alignment) { 2891 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2892 unsigned AddrSpace = 0; 2893 if (CGM.getLangOpts().OpenCL) 2894 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2895 2896 llvm::Module &M = CGM.getModule(); 2897 // Create a global variable for this string 2898 auto *GV = new llvm::GlobalVariable( 2899 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 2900 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2901 GV->setAlignment(Alignment); 2902 GV->setUnnamedAddr(true); 2903 if (GV->isWeakForLinker()) { 2904 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 2905 GV->setComdat(M.getOrInsertComdat(GV->getName())); 2906 } 2907 2908 return GV; 2909 } 2910 2911 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2912 /// constant array for the given string literal. 2913 llvm::GlobalVariable * 2914 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2915 StringRef Name) { 2916 auto Alignment = 2917 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2918 2919 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2920 llvm::GlobalVariable **Entry = nullptr; 2921 if (!LangOpts.WritableStrings) { 2922 Entry = &ConstantStringMap[C]; 2923 if (auto GV = *Entry) { 2924 if (Alignment > GV->getAlignment()) 2925 GV->setAlignment(Alignment); 2926 return GV; 2927 } 2928 } 2929 2930 SmallString<256> MangledNameBuffer; 2931 StringRef GlobalVariableName; 2932 llvm::GlobalValue::LinkageTypes LT; 2933 2934 // Mangle the string literal if the ABI allows for it. However, we cannot 2935 // do this if we are compiling with ASan or -fwritable-strings because they 2936 // rely on strings having normal linkage. 2937 if (!LangOpts.WritableStrings && 2938 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2939 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2940 llvm::raw_svector_ostream Out(MangledNameBuffer); 2941 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2942 Out.flush(); 2943 2944 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2945 GlobalVariableName = MangledNameBuffer; 2946 } else { 2947 LT = llvm::GlobalValue::PrivateLinkage; 2948 GlobalVariableName = Name; 2949 } 2950 2951 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2952 if (Entry) 2953 *Entry = GV; 2954 2955 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2956 QualType()); 2957 return GV; 2958 } 2959 2960 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2961 /// array for the given ObjCEncodeExpr node. 2962 llvm::GlobalVariable * 2963 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2964 std::string Str; 2965 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2966 2967 return GetAddrOfConstantCString(Str); 2968 } 2969 2970 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2971 /// the literal and a terminating '\0' character. 2972 /// The result has pointer to array type. 2973 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2974 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2975 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2976 if (Alignment == 0) { 2977 Alignment = getContext() 2978 .getAlignOfGlobalVarInChars(getContext().CharTy) 2979 .getQuantity(); 2980 } 2981 2982 llvm::Constant *C = 2983 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2984 2985 // Don't share any string literals if strings aren't constant. 2986 llvm::GlobalVariable **Entry = nullptr; 2987 if (!LangOpts.WritableStrings) { 2988 Entry = &ConstantStringMap[C]; 2989 if (auto GV = *Entry) { 2990 if (Alignment > GV->getAlignment()) 2991 GV->setAlignment(Alignment); 2992 return GV; 2993 } 2994 } 2995 2996 // Get the default prefix if a name wasn't specified. 2997 if (!GlobalName) 2998 GlobalName = ".str"; 2999 // Create a global variable for this. 3000 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3001 GlobalName, Alignment); 3002 if (Entry) 3003 *Entry = GV; 3004 return GV; 3005 } 3006 3007 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 3008 const MaterializeTemporaryExpr *E, const Expr *Init) { 3009 assert((E->getStorageDuration() == SD_Static || 3010 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3011 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3012 3013 // If we're not materializing a subobject of the temporary, keep the 3014 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3015 QualType MaterializedType = Init->getType(); 3016 if (Init == E->GetTemporaryExpr()) 3017 MaterializedType = E->getType(); 3018 3019 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 3020 if (Slot) 3021 return Slot; 3022 3023 // FIXME: If an externally-visible declaration extends multiple temporaries, 3024 // we need to give each temporary the same name in every translation unit (and 3025 // we also need to make the temporaries externally-visible). 3026 SmallString<256> Name; 3027 llvm::raw_svector_ostream Out(Name); 3028 getCXXABI().getMangleContext().mangleReferenceTemporary( 3029 VD, E->getManglingNumber(), Out); 3030 Out.flush(); 3031 3032 APValue *Value = nullptr; 3033 if (E->getStorageDuration() == SD_Static) { 3034 // We might have a cached constant initializer for this temporary. Note 3035 // that this might have a different value from the value computed by 3036 // evaluating the initializer if the surrounding constant expression 3037 // modifies the temporary. 3038 Value = getContext().getMaterializedTemporaryValue(E, false); 3039 if (Value && Value->isUninit()) 3040 Value = nullptr; 3041 } 3042 3043 // Try evaluating it now, it might have a constant initializer. 3044 Expr::EvalResult EvalResult; 3045 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3046 !EvalResult.hasSideEffects()) 3047 Value = &EvalResult.Val; 3048 3049 llvm::Constant *InitialValue = nullptr; 3050 bool Constant = false; 3051 llvm::Type *Type; 3052 if (Value) { 3053 // The temporary has a constant initializer, use it. 3054 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3055 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3056 Type = InitialValue->getType(); 3057 } else { 3058 // No initializer, the initialization will be provided when we 3059 // initialize the declaration which performed lifetime extension. 3060 Type = getTypes().ConvertTypeForMem(MaterializedType); 3061 } 3062 3063 // Create a global variable for this lifetime-extended temporary. 3064 llvm::GlobalValue::LinkageTypes Linkage = 3065 getLLVMLinkageVarDefinition(VD, Constant); 3066 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3067 const VarDecl *InitVD; 3068 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3069 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3070 // Temporaries defined inside a class get linkonce_odr linkage because the 3071 // class can be defined in multipe translation units. 3072 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3073 } else { 3074 // There is no need for this temporary to have external linkage if the 3075 // VarDecl has external linkage. 3076 Linkage = llvm::GlobalVariable::InternalLinkage; 3077 } 3078 } 3079 unsigned AddrSpace = GetGlobalVarAddressSpace( 3080 VD, getContext().getTargetAddressSpace(MaterializedType)); 3081 auto *GV = new llvm::GlobalVariable( 3082 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3083 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3084 AddrSpace); 3085 setGlobalVisibility(GV, VD); 3086 GV->setAlignment( 3087 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3088 if (supportsCOMDAT() && GV->isWeakForLinker()) 3089 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3090 if (VD->getTLSKind()) 3091 setTLSMode(GV, *VD); 3092 Slot = GV; 3093 return GV; 3094 } 3095 3096 /// EmitObjCPropertyImplementations - Emit information for synthesized 3097 /// properties for an implementation. 3098 void CodeGenModule::EmitObjCPropertyImplementations(const 3099 ObjCImplementationDecl *D) { 3100 for (const auto *PID : D->property_impls()) { 3101 // Dynamic is just for type-checking. 3102 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3103 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3104 3105 // Determine which methods need to be implemented, some may have 3106 // been overridden. Note that ::isPropertyAccessor is not the method 3107 // we want, that just indicates if the decl came from a 3108 // property. What we want to know is if the method is defined in 3109 // this implementation. 3110 if (!D->getInstanceMethod(PD->getGetterName())) 3111 CodeGenFunction(*this).GenerateObjCGetter( 3112 const_cast<ObjCImplementationDecl *>(D), PID); 3113 if (!PD->isReadOnly() && 3114 !D->getInstanceMethod(PD->getSetterName())) 3115 CodeGenFunction(*this).GenerateObjCSetter( 3116 const_cast<ObjCImplementationDecl *>(D), PID); 3117 } 3118 } 3119 } 3120 3121 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3122 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3123 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3124 ivar; ivar = ivar->getNextIvar()) 3125 if (ivar->getType().isDestructedType()) 3126 return true; 3127 3128 return false; 3129 } 3130 3131 static bool AllTrivialInitializers(CodeGenModule &CGM, 3132 ObjCImplementationDecl *D) { 3133 CodeGenFunction CGF(CGM); 3134 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3135 E = D->init_end(); B != E; ++B) { 3136 CXXCtorInitializer *CtorInitExp = *B; 3137 Expr *Init = CtorInitExp->getInit(); 3138 if (!CGF.isTrivialInitializer(Init)) 3139 return false; 3140 } 3141 return true; 3142 } 3143 3144 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3145 /// for an implementation. 3146 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3147 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3148 if (needsDestructMethod(D)) { 3149 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3150 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3151 ObjCMethodDecl *DTORMethod = 3152 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3153 cxxSelector, getContext().VoidTy, nullptr, D, 3154 /*isInstance=*/true, /*isVariadic=*/false, 3155 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3156 /*isDefined=*/false, ObjCMethodDecl::Required); 3157 D->addInstanceMethod(DTORMethod); 3158 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3159 D->setHasDestructors(true); 3160 } 3161 3162 // If the implementation doesn't have any ivar initializers, we don't need 3163 // a .cxx_construct. 3164 if (D->getNumIvarInitializers() == 0 || 3165 AllTrivialInitializers(*this, D)) 3166 return; 3167 3168 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3169 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3170 // The constructor returns 'self'. 3171 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3172 D->getLocation(), 3173 D->getLocation(), 3174 cxxSelector, 3175 getContext().getObjCIdType(), 3176 nullptr, D, /*isInstance=*/true, 3177 /*isVariadic=*/false, 3178 /*isPropertyAccessor=*/true, 3179 /*isImplicitlyDeclared=*/true, 3180 /*isDefined=*/false, 3181 ObjCMethodDecl::Required); 3182 D->addInstanceMethod(CTORMethod); 3183 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3184 D->setHasNonZeroConstructors(true); 3185 } 3186 3187 /// EmitNamespace - Emit all declarations in a namespace. 3188 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3189 for (auto *I : ND->decls()) { 3190 if (const auto *VD = dyn_cast<VarDecl>(I)) 3191 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3192 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3193 continue; 3194 EmitTopLevelDecl(I); 3195 } 3196 } 3197 3198 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3199 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3200 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3201 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3202 ErrorUnsupported(LSD, "linkage spec"); 3203 return; 3204 } 3205 3206 for (auto *I : LSD->decls()) { 3207 // Meta-data for ObjC class includes references to implemented methods. 3208 // Generate class's method definitions first. 3209 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3210 for (auto *M : OID->methods()) 3211 EmitTopLevelDecl(M); 3212 } 3213 EmitTopLevelDecl(I); 3214 } 3215 } 3216 3217 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3218 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3219 // Ignore dependent declarations. 3220 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3221 return; 3222 3223 switch (D->getKind()) { 3224 case Decl::CXXConversion: 3225 case Decl::CXXMethod: 3226 case Decl::Function: 3227 // Skip function templates 3228 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3229 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3230 return; 3231 3232 EmitGlobal(cast<FunctionDecl>(D)); 3233 // Always provide some coverage mapping 3234 // even for the functions that aren't emitted. 3235 AddDeferredUnusedCoverageMapping(D); 3236 break; 3237 3238 case Decl::Var: 3239 // Skip variable templates 3240 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3241 return; 3242 case Decl::VarTemplateSpecialization: 3243 EmitGlobal(cast<VarDecl>(D)); 3244 break; 3245 3246 // Indirect fields from global anonymous structs and unions can be 3247 // ignored; only the actual variable requires IR gen support. 3248 case Decl::IndirectField: 3249 break; 3250 3251 // C++ Decls 3252 case Decl::Namespace: 3253 EmitNamespace(cast<NamespaceDecl>(D)); 3254 break; 3255 // No code generation needed. 3256 case Decl::UsingShadow: 3257 case Decl::ClassTemplate: 3258 case Decl::VarTemplate: 3259 case Decl::VarTemplatePartialSpecialization: 3260 case Decl::FunctionTemplate: 3261 case Decl::TypeAliasTemplate: 3262 case Decl::Block: 3263 case Decl::Empty: 3264 break; 3265 case Decl::Using: // using X; [C++] 3266 if (CGDebugInfo *DI = getModuleDebugInfo()) 3267 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3268 return; 3269 case Decl::NamespaceAlias: 3270 if (CGDebugInfo *DI = getModuleDebugInfo()) 3271 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3272 return; 3273 case Decl::UsingDirective: // using namespace X; [C++] 3274 if (CGDebugInfo *DI = getModuleDebugInfo()) 3275 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3276 return; 3277 case Decl::CXXConstructor: 3278 // Skip function templates 3279 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3280 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3281 return; 3282 3283 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3284 break; 3285 case Decl::CXXDestructor: 3286 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3287 return; 3288 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3289 break; 3290 3291 case Decl::StaticAssert: 3292 // Nothing to do. 3293 break; 3294 3295 // Objective-C Decls 3296 3297 // Forward declarations, no (immediate) code generation. 3298 case Decl::ObjCInterface: 3299 case Decl::ObjCCategory: 3300 break; 3301 3302 case Decl::ObjCProtocol: { 3303 auto *Proto = cast<ObjCProtocolDecl>(D); 3304 if (Proto->isThisDeclarationADefinition()) 3305 ObjCRuntime->GenerateProtocol(Proto); 3306 break; 3307 } 3308 3309 case Decl::ObjCCategoryImpl: 3310 // Categories have properties but don't support synthesize so we 3311 // can ignore them here. 3312 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3313 break; 3314 3315 case Decl::ObjCImplementation: { 3316 auto *OMD = cast<ObjCImplementationDecl>(D); 3317 EmitObjCPropertyImplementations(OMD); 3318 EmitObjCIvarInitializations(OMD); 3319 ObjCRuntime->GenerateClass(OMD); 3320 // Emit global variable debug information. 3321 if (CGDebugInfo *DI = getModuleDebugInfo()) 3322 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3323 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3324 OMD->getClassInterface()), OMD->getLocation()); 3325 break; 3326 } 3327 case Decl::ObjCMethod: { 3328 auto *OMD = cast<ObjCMethodDecl>(D); 3329 // If this is not a prototype, emit the body. 3330 if (OMD->getBody()) 3331 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3332 break; 3333 } 3334 case Decl::ObjCCompatibleAlias: 3335 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3336 break; 3337 3338 case Decl::LinkageSpec: 3339 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3340 break; 3341 3342 case Decl::FileScopeAsm: { 3343 // File-scope asm is ignored during device-side CUDA compilation. 3344 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3345 break; 3346 auto *AD = cast<FileScopeAsmDecl>(D); 3347 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3348 break; 3349 } 3350 3351 case Decl::Import: { 3352 auto *Import = cast<ImportDecl>(D); 3353 3354 // Ignore import declarations that come from imported modules. 3355 if (clang::Module *Owner = Import->getImportedOwningModule()) { 3356 if (getLangOpts().CurrentModule.empty() || 3357 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3358 break; 3359 } 3360 3361 ImportedModules.insert(Import->getImportedModule()); 3362 break; 3363 } 3364 3365 case Decl::OMPThreadPrivate: 3366 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3367 break; 3368 3369 case Decl::ClassTemplateSpecialization: { 3370 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3371 if (DebugInfo && 3372 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3373 Spec->hasDefinition()) 3374 DebugInfo->completeTemplateDefinition(*Spec); 3375 break; 3376 } 3377 3378 default: 3379 // Make sure we handled everything we should, every other kind is a 3380 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3381 // function. Need to recode Decl::Kind to do that easily. 3382 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3383 break; 3384 } 3385 } 3386 3387 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3388 // Do we need to generate coverage mapping? 3389 if (!CodeGenOpts.CoverageMapping) 3390 return; 3391 switch (D->getKind()) { 3392 case Decl::CXXConversion: 3393 case Decl::CXXMethod: 3394 case Decl::Function: 3395 case Decl::ObjCMethod: 3396 case Decl::CXXConstructor: 3397 case Decl::CXXDestructor: { 3398 if (!cast<FunctionDecl>(D)->hasBody()) 3399 return; 3400 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3401 if (I == DeferredEmptyCoverageMappingDecls.end()) 3402 DeferredEmptyCoverageMappingDecls[D] = true; 3403 break; 3404 } 3405 default: 3406 break; 3407 }; 3408 } 3409 3410 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3411 // Do we need to generate coverage mapping? 3412 if (!CodeGenOpts.CoverageMapping) 3413 return; 3414 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3415 if (Fn->isTemplateInstantiation()) 3416 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3417 } 3418 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3419 if (I == DeferredEmptyCoverageMappingDecls.end()) 3420 DeferredEmptyCoverageMappingDecls[D] = false; 3421 else 3422 I->second = false; 3423 } 3424 3425 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3426 std::vector<const Decl *> DeferredDecls; 3427 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3428 if (!I.second) 3429 continue; 3430 DeferredDecls.push_back(I.first); 3431 } 3432 // Sort the declarations by their location to make sure that the tests get a 3433 // predictable order for the coverage mapping for the unused declarations. 3434 if (CodeGenOpts.DumpCoverageMapping) 3435 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3436 [] (const Decl *LHS, const Decl *RHS) { 3437 return LHS->getLocStart() < RHS->getLocStart(); 3438 }); 3439 for (const auto *D : DeferredDecls) { 3440 switch (D->getKind()) { 3441 case Decl::CXXConversion: 3442 case Decl::CXXMethod: 3443 case Decl::Function: 3444 case Decl::ObjCMethod: { 3445 CodeGenPGO PGO(*this); 3446 GlobalDecl GD(cast<FunctionDecl>(D)); 3447 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3448 getFunctionLinkage(GD)); 3449 break; 3450 } 3451 case Decl::CXXConstructor: { 3452 CodeGenPGO PGO(*this); 3453 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3454 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3455 getFunctionLinkage(GD)); 3456 break; 3457 } 3458 case Decl::CXXDestructor: { 3459 CodeGenPGO PGO(*this); 3460 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3461 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3462 getFunctionLinkage(GD)); 3463 break; 3464 } 3465 default: 3466 break; 3467 }; 3468 } 3469 } 3470 3471 /// Turns the given pointer into a constant. 3472 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3473 const void *Ptr) { 3474 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3475 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3476 return llvm::ConstantInt::get(i64, PtrInt); 3477 } 3478 3479 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3480 llvm::NamedMDNode *&GlobalMetadata, 3481 GlobalDecl D, 3482 llvm::GlobalValue *Addr) { 3483 if (!GlobalMetadata) 3484 GlobalMetadata = 3485 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3486 3487 // TODO: should we report variant information for ctors/dtors? 3488 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3489 llvm::ConstantAsMetadata::get(GetPointerConstant( 3490 CGM.getLLVMContext(), D.getDecl()))}; 3491 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3492 } 3493 3494 /// For each function which is declared within an extern "C" region and marked 3495 /// as 'used', but has internal linkage, create an alias from the unmangled 3496 /// name to the mangled name if possible. People expect to be able to refer 3497 /// to such functions with an unmangled name from inline assembly within the 3498 /// same translation unit. 3499 void CodeGenModule::EmitStaticExternCAliases() { 3500 for (auto &I : StaticExternCValues) { 3501 IdentifierInfo *Name = I.first; 3502 llvm::GlobalValue *Val = I.second; 3503 if (Val && !getModule().getNamedValue(Name->getName())) 3504 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3505 } 3506 } 3507 3508 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3509 GlobalDecl &Result) const { 3510 auto Res = Manglings.find(MangledName); 3511 if (Res == Manglings.end()) 3512 return false; 3513 Result = Res->getValue(); 3514 return true; 3515 } 3516 3517 /// Emits metadata nodes associating all the global values in the 3518 /// current module with the Decls they came from. This is useful for 3519 /// projects using IR gen as a subroutine. 3520 /// 3521 /// Since there's currently no way to associate an MDNode directly 3522 /// with an llvm::GlobalValue, we create a global named metadata 3523 /// with the name 'clang.global.decl.ptrs'. 3524 void CodeGenModule::EmitDeclMetadata() { 3525 llvm::NamedMDNode *GlobalMetadata = nullptr; 3526 3527 // StaticLocalDeclMap 3528 for (auto &I : MangledDeclNames) { 3529 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3530 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3531 } 3532 } 3533 3534 /// Emits metadata nodes for all the local variables in the current 3535 /// function. 3536 void CodeGenFunction::EmitDeclMetadata() { 3537 if (LocalDeclMap.empty()) return; 3538 3539 llvm::LLVMContext &Context = getLLVMContext(); 3540 3541 // Find the unique metadata ID for this name. 3542 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3543 3544 llvm::NamedMDNode *GlobalMetadata = nullptr; 3545 3546 for (auto &I : LocalDeclMap) { 3547 const Decl *D = I.first; 3548 llvm::Value *Addr = I.second; 3549 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3550 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3551 Alloca->setMetadata( 3552 DeclPtrKind, llvm::MDNode::get( 3553 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3554 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3555 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3556 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3557 } 3558 } 3559 } 3560 3561 void CodeGenModule::EmitVersionIdentMetadata() { 3562 llvm::NamedMDNode *IdentMetadata = 3563 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3564 std::string Version = getClangFullVersion(); 3565 llvm::LLVMContext &Ctx = TheModule.getContext(); 3566 3567 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3568 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3569 } 3570 3571 void CodeGenModule::EmitTargetMetadata() { 3572 // Warning, new MangledDeclNames may be appended within this loop. 3573 // We rely on MapVector insertions adding new elements to the end 3574 // of the container. 3575 // FIXME: Move this loop into the one target that needs it, and only 3576 // loop over those declarations for which we couldn't emit the target 3577 // metadata when we emitted the declaration. 3578 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3579 auto Val = *(MangledDeclNames.begin() + I); 3580 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3581 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3582 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3583 } 3584 } 3585 3586 void CodeGenModule::EmitCoverageFile() { 3587 if (!getCodeGenOpts().CoverageFile.empty()) { 3588 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3589 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3590 llvm::LLVMContext &Ctx = TheModule.getContext(); 3591 llvm::MDString *CoverageFile = 3592 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3593 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3594 llvm::MDNode *CU = CUNode->getOperand(i); 3595 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3596 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3597 } 3598 } 3599 } 3600 } 3601 3602 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3603 // Sema has checked that all uuid strings are of the form 3604 // "12345678-1234-1234-1234-1234567890ab". 3605 assert(Uuid.size() == 36); 3606 for (unsigned i = 0; i < 36; ++i) { 3607 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3608 else assert(isHexDigit(Uuid[i])); 3609 } 3610 3611 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3612 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3613 3614 llvm::Constant *Field3[8]; 3615 for (unsigned Idx = 0; Idx < 8; ++Idx) 3616 Field3[Idx] = llvm::ConstantInt::get( 3617 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3618 3619 llvm::Constant *Fields[4] = { 3620 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3621 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3622 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3623 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3624 }; 3625 3626 return llvm::ConstantStruct::getAnon(Fields); 3627 } 3628 3629 llvm::Constant * 3630 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3631 QualType CatchHandlerType) { 3632 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3633 } 3634 3635 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3636 bool ForEH) { 3637 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3638 // FIXME: should we even be calling this method if RTTI is disabled 3639 // and it's not for EH? 3640 if (!ForEH && !getLangOpts().RTTI) 3641 return llvm::Constant::getNullValue(Int8PtrTy); 3642 3643 if (ForEH && Ty->isObjCObjectPointerType() && 3644 LangOpts.ObjCRuntime.isGNUFamily()) 3645 return ObjCRuntime->GetEHType(Ty); 3646 3647 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3648 } 3649 3650 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3651 for (auto RefExpr : D->varlists()) { 3652 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3653 bool PerformInit = 3654 VD->getAnyInitializer() && 3655 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3656 /*ForRef=*/false); 3657 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3658 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit)) 3659 CXXGlobalInits.push_back(InitFunction); 3660 } 3661 } 3662 3663 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3664 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3665 std::string OutName; 3666 llvm::raw_string_ostream Out(OutName); 3667 getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out); 3668 3669 llvm::Metadata *BitsetOps[] = { 3670 llvm::MDString::get(getLLVMContext(), Out.str()), 3671 llvm::ConstantAsMetadata::get(VTable), 3672 llvm::ConstantAsMetadata::get( 3673 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3674 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3675 } 3676