1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 SizeSizeInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 113 IntAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 115 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 116 IntPtrTy = llvm::IntegerType::get(LLVMContext, 117 C.getTargetInfo().getMaxPointerWidth()); 118 Int8PtrTy = Int8Ty->getPointerTo(0); 119 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 120 AllocaInt8PtrTy = Int8Ty->getPointerTo( 121 M.getDataLayout().getAllocaAddrSpace()); 122 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 123 124 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 125 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 211 break; 212 } 213 } 214 215 void CodeGenModule::createCUDARuntime() { 216 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 217 } 218 219 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 220 Replacements[Name] = C; 221 } 222 223 void CodeGenModule::applyReplacements() { 224 for (auto &I : Replacements) { 225 StringRef MangledName = I.first(); 226 llvm::Constant *Replacement = I.second; 227 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 228 if (!Entry) 229 continue; 230 auto *OldF = cast<llvm::Function>(Entry); 231 auto *NewF = dyn_cast<llvm::Function>(Replacement); 232 if (!NewF) { 233 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 234 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 235 } else { 236 auto *CE = cast<llvm::ConstantExpr>(Replacement); 237 assert(CE->getOpcode() == llvm::Instruction::BitCast || 238 CE->getOpcode() == llvm::Instruction::GetElementPtr); 239 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 240 } 241 } 242 243 // Replace old with new, but keep the old order. 244 OldF->replaceAllUsesWith(Replacement); 245 if (NewF) { 246 NewF->removeFromParent(); 247 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 248 NewF); 249 } 250 OldF->eraseFromParent(); 251 } 252 } 253 254 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 255 GlobalValReplacements.push_back(std::make_pair(GV, C)); 256 } 257 258 void CodeGenModule::applyGlobalValReplacements() { 259 for (auto &I : GlobalValReplacements) { 260 llvm::GlobalValue *GV = I.first; 261 llvm::Constant *C = I.second; 262 263 GV->replaceAllUsesWith(C); 264 GV->eraseFromParent(); 265 } 266 } 267 268 // This is only used in aliases that we created and we know they have a 269 // linear structure. 270 static const llvm::GlobalObject *getAliasedGlobal( 271 const llvm::GlobalIndirectSymbol &GIS) { 272 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 273 const llvm::Constant *C = &GIS; 274 for (;;) { 275 C = C->stripPointerCasts(); 276 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 277 return GO; 278 // stripPointerCasts will not walk over weak aliases. 279 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 280 if (!GIS2) 281 return nullptr; 282 if (!Visited.insert(GIS2).second) 283 return nullptr; 284 C = GIS2->getIndirectSymbol(); 285 } 286 } 287 288 void CodeGenModule::checkAliases() { 289 // Check if the constructed aliases are well formed. It is really unfortunate 290 // that we have to do this in CodeGen, but we only construct mangled names 291 // and aliases during codegen. 292 bool Error = false; 293 DiagnosticsEngine &Diags = getDiags(); 294 for (const GlobalDecl &GD : Aliases) { 295 const auto *D = cast<ValueDecl>(GD.getDecl()); 296 SourceLocation Location; 297 bool IsIFunc = D->hasAttr<IFuncAttr>(); 298 if (const Attr *A = D->getDefiningAttr()) 299 Location = A->getLocation(); 300 else 301 llvm_unreachable("Not an alias or ifunc?"); 302 StringRef MangledName = getMangledName(GD); 303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 304 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 305 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 306 if (!GV) { 307 Error = true; 308 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 309 } else if (GV->isDeclaration()) { 310 Error = true; 311 Diags.Report(Location, diag::err_alias_to_undefined) 312 << IsIFunc << IsIFunc; 313 } else if (IsIFunc) { 314 // Check resolver function type. 315 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 316 GV->getType()->getPointerElementType()); 317 assert(FTy); 318 if (!FTy->getReturnType()->isPointerTy()) 319 Diags.Report(Location, diag::err_ifunc_resolver_return); 320 if (FTy->getNumParams()) 321 Diags.Report(Location, diag::err_ifunc_resolver_params); 322 } 323 324 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 325 llvm::GlobalValue *AliaseeGV; 326 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 327 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 328 else 329 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 330 331 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 332 StringRef AliasSection = SA->getName(); 333 if (AliasSection != AliaseeGV->getSection()) 334 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 335 << AliasSection << IsIFunc << IsIFunc; 336 } 337 338 // We have to handle alias to weak aliases in here. LLVM itself disallows 339 // this since the object semantics would not match the IL one. For 340 // compatibility with gcc we implement it by just pointing the alias 341 // to its aliasee's aliasee. We also warn, since the user is probably 342 // expecting the link to be weak. 343 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 344 if (GA->isInterposable()) { 345 Diags.Report(Location, diag::warn_alias_to_weak_alias) 346 << GV->getName() << GA->getName() << IsIFunc; 347 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 348 GA->getIndirectSymbol(), Alias->getType()); 349 Alias->setIndirectSymbol(Aliasee); 350 } 351 } 352 } 353 if (!Error) 354 return; 355 356 for (const GlobalDecl &GD : Aliases) { 357 StringRef MangledName = getMangledName(GD); 358 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 359 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 360 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 361 Alias->eraseFromParent(); 362 } 363 } 364 365 void CodeGenModule::clear() { 366 DeferredDeclsToEmit.clear(); 367 if (OpenMPRuntime) 368 OpenMPRuntime->clear(); 369 } 370 371 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 372 StringRef MainFile) { 373 if (!hasDiagnostics()) 374 return; 375 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 376 if (MainFile.empty()) 377 MainFile = "<stdin>"; 378 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 379 } else { 380 if (Mismatched > 0) 381 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 382 383 if (Missing > 0) 384 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 385 } 386 } 387 388 void CodeGenModule::Release() { 389 EmitDeferred(); 390 EmitVTablesOpportunistically(); 391 applyGlobalValReplacements(); 392 applyReplacements(); 393 checkAliases(); 394 EmitCXXGlobalInitFunc(); 395 EmitCXXGlobalDtorFunc(); 396 EmitCXXThreadLocalInitFunc(); 397 if (ObjCRuntime) 398 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 399 AddGlobalCtor(ObjCInitFunction); 400 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 401 CUDARuntime) { 402 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 403 AddGlobalCtor(CudaCtorFunction); 404 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 405 AddGlobalDtor(CudaDtorFunction); 406 } 407 if (OpenMPRuntime) 408 if (llvm::Function *OpenMPRegistrationFunction = 409 OpenMPRuntime->emitRegistrationFunction()) { 410 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 411 OpenMPRegistrationFunction : nullptr; 412 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 413 } 414 if (PGOReader) { 415 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 416 if (PGOStats.hasDiagnostics()) 417 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 418 } 419 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 420 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 421 EmitGlobalAnnotations(); 422 EmitStaticExternCAliases(); 423 EmitDeferredUnusedCoverageMappings(); 424 if (CoverageMapping) 425 CoverageMapping->emit(); 426 if (CodeGenOpts.SanitizeCfiCrossDso) { 427 CodeGenFunction(*this).EmitCfiCheckFail(); 428 CodeGenFunction(*this).EmitCfiCheckStub(); 429 } 430 emitAtAvailableLinkGuard(); 431 emitLLVMUsed(); 432 if (SanStats) 433 SanStats->finish(); 434 435 if (CodeGenOpts.Autolink && 436 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 437 EmitModuleLinkOptions(); 438 } 439 440 // Record mregparm value now so it is visible through rest of codegen. 441 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 442 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 443 CodeGenOpts.NumRegisterParameters); 444 445 if (CodeGenOpts.DwarfVersion) { 446 // We actually want the latest version when there are conflicts. 447 // We can change from Warning to Latest if such mode is supported. 448 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 449 CodeGenOpts.DwarfVersion); 450 } 451 if (CodeGenOpts.EmitCodeView) { 452 // Indicate that we want CodeView in the metadata. 453 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 454 } 455 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 456 // We don't support LTO with 2 with different StrictVTablePointers 457 // FIXME: we could support it by stripping all the information introduced 458 // by StrictVTablePointers. 459 460 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 461 462 llvm::Metadata *Ops[2] = { 463 llvm::MDString::get(VMContext, "StrictVTablePointers"), 464 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 465 llvm::Type::getInt32Ty(VMContext), 1))}; 466 467 getModule().addModuleFlag(llvm::Module::Require, 468 "StrictVTablePointersRequirement", 469 llvm::MDNode::get(VMContext, Ops)); 470 } 471 if (DebugInfo) 472 // We support a single version in the linked module. The LLVM 473 // parser will drop debug info with a different version number 474 // (and warn about it, too). 475 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 476 llvm::DEBUG_METADATA_VERSION); 477 478 // We need to record the widths of enums and wchar_t, so that we can generate 479 // the correct build attributes in the ARM backend. wchar_size is also used by 480 // TargetLibraryInfo. 481 uint64_t WCharWidth = 482 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 483 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 484 485 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 486 if ( Arch == llvm::Triple::arm 487 || Arch == llvm::Triple::armeb 488 || Arch == llvm::Triple::thumb 489 || Arch == llvm::Triple::thumbeb) { 490 // The minimum width of an enum in bytes 491 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 492 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 493 } 494 495 if (CodeGenOpts.SanitizeCfiCrossDso) { 496 // Indicate that we want cross-DSO control flow integrity checks. 497 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 498 } 499 500 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 501 // Indicate whether __nvvm_reflect should be configured to flush denormal 502 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 503 // property.) 504 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 505 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 506 } 507 508 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 509 if (LangOpts.OpenCL) { 510 EmitOpenCLMetadata(); 511 // Emit SPIR version. 512 if (getTriple().getArch() == llvm::Triple::spir || 513 getTriple().getArch() == llvm::Triple::spir64) { 514 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 515 // opencl.spir.version named metadata. 516 llvm::Metadata *SPIRVerElts[] = { 517 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 518 Int32Ty, LangOpts.OpenCLVersion / 100)), 519 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 520 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 521 llvm::NamedMDNode *SPIRVerMD = 522 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 523 llvm::LLVMContext &Ctx = TheModule.getContext(); 524 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 525 } 526 } 527 528 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 529 assert(PLevel < 3 && "Invalid PIC Level"); 530 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 531 if (Context.getLangOpts().PIE) 532 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 533 } 534 535 SimplifyPersonality(); 536 537 if (getCodeGenOpts().EmitDeclMetadata) 538 EmitDeclMetadata(); 539 540 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 541 EmitCoverageFile(); 542 543 if (DebugInfo) 544 DebugInfo->finalize(); 545 546 EmitVersionIdentMetadata(); 547 548 EmitTargetMetadata(); 549 } 550 551 void CodeGenModule::EmitOpenCLMetadata() { 552 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 553 // opencl.ocl.version named metadata node. 554 llvm::Metadata *OCLVerElts[] = { 555 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 556 Int32Ty, LangOpts.OpenCLVersion / 100)), 557 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 558 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 559 llvm::NamedMDNode *OCLVerMD = 560 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 561 llvm::LLVMContext &Ctx = TheModule.getContext(); 562 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 563 } 564 565 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 566 // Make sure that this type is translated. 567 Types.UpdateCompletedType(TD); 568 } 569 570 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 571 // Make sure that this type is translated. 572 Types.RefreshTypeCacheForClass(RD); 573 } 574 575 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 576 if (!TBAA) 577 return nullptr; 578 return TBAA->getTypeInfo(QTy); 579 } 580 581 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 582 // Pointee values may have incomplete types, but they shall never be 583 // dereferenced. 584 if (AccessType->isIncompleteType()) 585 return TBAAAccessInfo::getIncompleteInfo(); 586 587 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 588 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 589 } 590 591 TBAAAccessInfo 592 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 593 if (!TBAA) 594 return TBAAAccessInfo(); 595 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 596 } 597 598 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 599 if (!TBAA) 600 return nullptr; 601 return TBAA->getTBAAStructInfo(QTy); 602 } 603 604 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 605 if (!TBAA) 606 return nullptr; 607 return TBAA->getBaseTypeInfo(QTy); 608 } 609 610 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 611 if (!TBAA) 612 return nullptr; 613 return TBAA->getAccessTagInfo(Info); 614 } 615 616 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 617 TBAAAccessInfo TargetInfo) { 618 if (!TBAA) 619 return TBAAAccessInfo(); 620 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 621 } 622 623 TBAAAccessInfo 624 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 625 TBAAAccessInfo InfoB) { 626 if (!TBAA) 627 return TBAAAccessInfo(); 628 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 629 } 630 631 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 632 TBAAAccessInfo TBAAInfo) { 633 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 634 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 635 } 636 637 void CodeGenModule::DecorateInstructionWithInvariantGroup( 638 llvm::Instruction *I, const CXXRecordDecl *RD) { 639 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 640 llvm::MDNode::get(getLLVMContext(), {})); 641 } 642 643 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 644 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 645 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 646 } 647 648 /// ErrorUnsupported - Print out an error that codegen doesn't support the 649 /// specified stmt yet. 650 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 651 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 652 "cannot compile this %0 yet"); 653 std::string Msg = Type; 654 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 655 << Msg << S->getSourceRange(); 656 } 657 658 /// ErrorUnsupported - Print out an error that codegen doesn't support the 659 /// specified decl yet. 660 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 661 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 662 "cannot compile this %0 yet"); 663 std::string Msg = Type; 664 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 665 } 666 667 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 668 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 669 } 670 671 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 672 const NamedDecl *D, 673 ForDefinition_t IsForDefinition) const { 674 // Internal definitions always have default visibility. 675 if (GV->hasLocalLinkage()) { 676 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 677 return; 678 } 679 680 // Set visibility for definitions. 681 LinkageInfo LV = D->getLinkageAndVisibility(); 682 if (LV.isVisibilityExplicit() || 683 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 684 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 685 } 686 687 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 688 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 689 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 690 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 691 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 692 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 693 } 694 695 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 696 CodeGenOptions::TLSModel M) { 697 switch (M) { 698 case CodeGenOptions::GeneralDynamicTLSModel: 699 return llvm::GlobalVariable::GeneralDynamicTLSModel; 700 case CodeGenOptions::LocalDynamicTLSModel: 701 return llvm::GlobalVariable::LocalDynamicTLSModel; 702 case CodeGenOptions::InitialExecTLSModel: 703 return llvm::GlobalVariable::InitialExecTLSModel; 704 case CodeGenOptions::LocalExecTLSModel: 705 return llvm::GlobalVariable::LocalExecTLSModel; 706 } 707 llvm_unreachable("Invalid TLS model!"); 708 } 709 710 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 711 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 712 713 llvm::GlobalValue::ThreadLocalMode TLM; 714 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 715 716 // Override the TLS model if it is explicitly specified. 717 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 718 TLM = GetLLVMTLSModel(Attr->getModel()); 719 } 720 721 GV->setThreadLocalMode(TLM); 722 } 723 724 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 725 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 726 727 // Some ABIs don't have constructor variants. Make sure that base and 728 // complete constructors get mangled the same. 729 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 730 if (!getTarget().getCXXABI().hasConstructorVariants()) { 731 CXXCtorType OrigCtorType = GD.getCtorType(); 732 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 733 if (OrigCtorType == Ctor_Base) 734 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 735 } 736 } 737 738 auto FoundName = MangledDeclNames.find(CanonicalGD); 739 if (FoundName != MangledDeclNames.end()) 740 return FoundName->second; 741 742 const auto *ND = cast<NamedDecl>(GD.getDecl()); 743 SmallString<256> Buffer; 744 StringRef Str; 745 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 746 llvm::raw_svector_ostream Out(Buffer); 747 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 748 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 749 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 750 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 751 else 752 getCXXABI().getMangleContext().mangleName(ND, Out); 753 Str = Out.str(); 754 } else { 755 IdentifierInfo *II = ND->getIdentifier(); 756 assert(II && "Attempt to mangle unnamed decl."); 757 const auto *FD = dyn_cast<FunctionDecl>(ND); 758 759 if (FD && 760 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 761 llvm::raw_svector_ostream Out(Buffer); 762 Out << "__regcall3__" << II->getName(); 763 Str = Out.str(); 764 } else { 765 Str = II->getName(); 766 } 767 } 768 769 // Keep the first result in the case of a mangling collision. 770 auto Result = Manglings.insert(std::make_pair(Str, GD)); 771 return MangledDeclNames[CanonicalGD] = Result.first->first(); 772 } 773 774 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 775 const BlockDecl *BD) { 776 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 777 const Decl *D = GD.getDecl(); 778 779 SmallString<256> Buffer; 780 llvm::raw_svector_ostream Out(Buffer); 781 if (!D) 782 MangleCtx.mangleGlobalBlock(BD, 783 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 784 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 785 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 786 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 787 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 788 else 789 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 790 791 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 792 return Result.first->first(); 793 } 794 795 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 796 return getModule().getNamedValue(Name); 797 } 798 799 /// AddGlobalCtor - Add a function to the list that will be called before 800 /// main() runs. 801 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 802 llvm::Constant *AssociatedData) { 803 // FIXME: Type coercion of void()* types. 804 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 805 } 806 807 /// AddGlobalDtor - Add a function to the list that will be called 808 /// when the module is unloaded. 809 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 810 // FIXME: Type coercion of void()* types. 811 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 812 } 813 814 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 815 if (Fns.empty()) return; 816 817 // Ctor function type is void()*. 818 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 819 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 820 821 // Get the type of a ctor entry, { i32, void ()*, i8* }. 822 llvm::StructType *CtorStructTy = llvm::StructType::get( 823 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 824 825 // Construct the constructor and destructor arrays. 826 ConstantInitBuilder builder(*this); 827 auto ctors = builder.beginArray(CtorStructTy); 828 for (const auto &I : Fns) { 829 auto ctor = ctors.beginStruct(CtorStructTy); 830 ctor.addInt(Int32Ty, I.Priority); 831 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 832 if (I.AssociatedData) 833 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 834 else 835 ctor.addNullPointer(VoidPtrTy); 836 ctor.finishAndAddTo(ctors); 837 } 838 839 auto list = 840 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 841 /*constant*/ false, 842 llvm::GlobalValue::AppendingLinkage); 843 844 // The LTO linker doesn't seem to like it when we set an alignment 845 // on appending variables. Take it off as a workaround. 846 list->setAlignment(0); 847 848 Fns.clear(); 849 } 850 851 llvm::GlobalValue::LinkageTypes 852 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 853 const auto *D = cast<FunctionDecl>(GD.getDecl()); 854 855 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 856 857 if (isa<CXXDestructorDecl>(D) && 858 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 859 GD.getDtorType())) { 860 // Destructor variants in the Microsoft C++ ABI are always internal or 861 // linkonce_odr thunks emitted on an as-needed basis. 862 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 863 : llvm::GlobalValue::LinkOnceODRLinkage; 864 } 865 866 if (isa<CXXConstructorDecl>(D) && 867 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 868 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 869 // Our approach to inheriting constructors is fundamentally different from 870 // that used by the MS ABI, so keep our inheriting constructor thunks 871 // internal rather than trying to pick an unambiguous mangling for them. 872 return llvm::GlobalValue::InternalLinkage; 873 } 874 875 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 876 } 877 878 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 879 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 880 881 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 882 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 883 // Don't dllexport/import destructor thunks. 884 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 885 return; 886 } 887 } 888 889 if (FD->hasAttr<DLLImportAttr>()) 890 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 891 else if (FD->hasAttr<DLLExportAttr>()) 892 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 893 else 894 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 895 } 896 897 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 898 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 899 if (!MDS) return nullptr; 900 901 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 902 } 903 904 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 905 llvm::Function *F) { 906 setNonAliasAttributes(D, F); 907 } 908 909 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 910 const CGFunctionInfo &Info, 911 llvm::Function *F) { 912 unsigned CallingConv; 913 llvm::AttributeList PAL; 914 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 915 F->setAttributes(PAL); 916 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 917 } 918 919 /// Determines whether the language options require us to model 920 /// unwind exceptions. We treat -fexceptions as mandating this 921 /// except under the fragile ObjC ABI with only ObjC exceptions 922 /// enabled. This means, for example, that C with -fexceptions 923 /// enables this. 924 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 925 // If exceptions are completely disabled, obviously this is false. 926 if (!LangOpts.Exceptions) return false; 927 928 // If C++ exceptions are enabled, this is true. 929 if (LangOpts.CXXExceptions) return true; 930 931 // If ObjC exceptions are enabled, this depends on the ABI. 932 if (LangOpts.ObjCExceptions) { 933 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 934 } 935 936 return true; 937 } 938 939 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 940 llvm::Function *F) { 941 llvm::AttrBuilder B; 942 943 if (CodeGenOpts.UnwindTables) 944 B.addAttribute(llvm::Attribute::UWTable); 945 946 if (!hasUnwindExceptions(LangOpts)) 947 B.addAttribute(llvm::Attribute::NoUnwind); 948 949 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 950 B.addAttribute(llvm::Attribute::StackProtect); 951 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 952 B.addAttribute(llvm::Attribute::StackProtectStrong); 953 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 954 B.addAttribute(llvm::Attribute::StackProtectReq); 955 956 if (!D) { 957 // If we don't have a declaration to control inlining, the function isn't 958 // explicitly marked as alwaysinline for semantic reasons, and inlining is 959 // disabled, mark the function as noinline. 960 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 961 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 962 B.addAttribute(llvm::Attribute::NoInline); 963 964 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 965 return; 966 } 967 968 // Track whether we need to add the optnone LLVM attribute, 969 // starting with the default for this optimization level. 970 bool ShouldAddOptNone = 971 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 972 // We can't add optnone in the following cases, it won't pass the verifier. 973 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 974 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 975 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 976 977 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 978 B.addAttribute(llvm::Attribute::OptimizeNone); 979 980 // OptimizeNone implies noinline; we should not be inlining such functions. 981 B.addAttribute(llvm::Attribute::NoInline); 982 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 983 "OptimizeNone and AlwaysInline on same function!"); 984 985 // We still need to handle naked functions even though optnone subsumes 986 // much of their semantics. 987 if (D->hasAttr<NakedAttr>()) 988 B.addAttribute(llvm::Attribute::Naked); 989 990 // OptimizeNone wins over OptimizeForSize and MinSize. 991 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 992 F->removeFnAttr(llvm::Attribute::MinSize); 993 } else if (D->hasAttr<NakedAttr>()) { 994 // Naked implies noinline: we should not be inlining such functions. 995 B.addAttribute(llvm::Attribute::Naked); 996 B.addAttribute(llvm::Attribute::NoInline); 997 } else if (D->hasAttr<NoDuplicateAttr>()) { 998 B.addAttribute(llvm::Attribute::NoDuplicate); 999 } else if (D->hasAttr<NoInlineAttr>()) { 1000 B.addAttribute(llvm::Attribute::NoInline); 1001 } else if (D->hasAttr<AlwaysInlineAttr>() && 1002 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1003 // (noinline wins over always_inline, and we can't specify both in IR) 1004 B.addAttribute(llvm::Attribute::AlwaysInline); 1005 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1006 // If we're not inlining, then force everything that isn't always_inline to 1007 // carry an explicit noinline attribute. 1008 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1009 B.addAttribute(llvm::Attribute::NoInline); 1010 } else { 1011 // Otherwise, propagate the inline hint attribute and potentially use its 1012 // absence to mark things as noinline. 1013 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1014 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1015 return Redecl->isInlineSpecified(); 1016 })) { 1017 B.addAttribute(llvm::Attribute::InlineHint); 1018 } else if (CodeGenOpts.getInlining() == 1019 CodeGenOptions::OnlyHintInlining && 1020 !FD->isInlined() && 1021 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1022 B.addAttribute(llvm::Attribute::NoInline); 1023 } 1024 } 1025 } 1026 1027 // Add other optimization related attributes if we are optimizing this 1028 // function. 1029 if (!D->hasAttr<OptimizeNoneAttr>()) { 1030 if (D->hasAttr<ColdAttr>()) { 1031 if (!ShouldAddOptNone) 1032 B.addAttribute(llvm::Attribute::OptimizeForSize); 1033 B.addAttribute(llvm::Attribute::Cold); 1034 } 1035 1036 if (D->hasAttr<MinSizeAttr>()) 1037 B.addAttribute(llvm::Attribute::MinSize); 1038 } 1039 1040 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1041 1042 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1043 if (alignment) 1044 F->setAlignment(alignment); 1045 1046 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1047 // reserve a bit for differentiating between virtual and non-virtual member 1048 // functions. If the current target's C++ ABI requires this and this is a 1049 // member function, set its alignment accordingly. 1050 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1051 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1052 F->setAlignment(2); 1053 } 1054 1055 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1056 if (CodeGenOpts.SanitizeCfiCrossDso) 1057 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1058 CreateFunctionTypeMetadata(FD, F); 1059 } 1060 1061 void CodeGenModule::SetCommonAttributes(const Decl *D, 1062 llvm::GlobalValue *GV) { 1063 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1064 setGlobalVisibility(GV, ND, ForDefinition); 1065 else 1066 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1067 1068 if (D && D->hasAttr<UsedAttr>()) 1069 addUsedGlobal(GV); 1070 } 1071 1072 void CodeGenModule::setAliasAttributes(const Decl *D, 1073 llvm::GlobalValue *GV) { 1074 SetCommonAttributes(D, GV); 1075 1076 // Process the dllexport attribute based on whether the original definition 1077 // (not necessarily the aliasee) was exported. 1078 if (D->hasAttr<DLLExportAttr>()) 1079 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1080 } 1081 1082 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1083 llvm::GlobalObject *GO) { 1084 SetCommonAttributes(D, GO); 1085 1086 if (D) { 1087 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1088 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1089 GV->addAttribute("bss-section", SA->getName()); 1090 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1091 GV->addAttribute("data-section", SA->getName()); 1092 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1093 GV->addAttribute("rodata-section", SA->getName()); 1094 } 1095 1096 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1097 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1098 if (!D->getAttr<SectionAttr>()) 1099 F->addFnAttr("implicit-section-name", SA->getName()); 1100 } 1101 1102 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1103 GO->setSection(SA->getName()); 1104 } 1105 1106 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1107 } 1108 1109 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1110 llvm::Function *F, 1111 const CGFunctionInfo &FI) { 1112 SetLLVMFunctionAttributes(D, FI, F); 1113 SetLLVMFunctionAttributesForDefinition(D, F); 1114 1115 F->setLinkage(llvm::Function::InternalLinkage); 1116 1117 setNonAliasAttributes(D, F); 1118 } 1119 1120 static void setLinkageForGV(llvm::GlobalValue *GV, 1121 const NamedDecl *ND) { 1122 // Set linkage and visibility in case we never see a definition. 1123 LinkageInfo LV = ND->getLinkageAndVisibility(); 1124 if (!isExternallyVisible(LV.getLinkage())) { 1125 // Don't set internal linkage on declarations. 1126 } else { 1127 if (ND->hasAttr<DLLImportAttr>()) { 1128 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1129 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1130 } else if (ND->hasAttr<DLLExportAttr>()) { 1131 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1132 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1133 // "extern_weak" is overloaded in LLVM; we probably should have 1134 // separate linkage types for this. 1135 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1136 } 1137 } 1138 } 1139 1140 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1141 llvm::Function *F) { 1142 // Only if we are checking indirect calls. 1143 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1144 return; 1145 1146 // Non-static class methods are handled via vtable pointer checks elsewhere. 1147 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1148 return; 1149 1150 // Additionally, if building with cross-DSO support... 1151 if (CodeGenOpts.SanitizeCfiCrossDso) { 1152 // Skip available_externally functions. They won't be codegen'ed in the 1153 // current module anyway. 1154 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1155 return; 1156 } 1157 1158 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1159 F->addTypeMetadata(0, MD); 1160 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1161 1162 // Emit a hash-based bit set entry for cross-DSO calls. 1163 if (CodeGenOpts.SanitizeCfiCrossDso) 1164 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1165 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1166 } 1167 1168 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1169 bool IsIncompleteFunction, 1170 bool IsThunk, 1171 ForDefinition_t IsForDefinition) { 1172 1173 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1174 // If this is an intrinsic function, set the function's attributes 1175 // to the intrinsic's attributes. 1176 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1177 return; 1178 } 1179 1180 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1181 1182 if (!IsIncompleteFunction) { 1183 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1184 // Setup target-specific attributes. 1185 if (!IsForDefinition) 1186 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1187 NotForDefinition); 1188 } 1189 1190 // Add the Returned attribute for "this", except for iOS 5 and earlier 1191 // where substantial code, including the libstdc++ dylib, was compiled with 1192 // GCC and does not actually return "this". 1193 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1194 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1195 assert(!F->arg_empty() && 1196 F->arg_begin()->getType() 1197 ->canLosslesslyBitCastTo(F->getReturnType()) && 1198 "unexpected this return"); 1199 F->addAttribute(1, llvm::Attribute::Returned); 1200 } 1201 1202 // Only a few attributes are set on declarations; these may later be 1203 // overridden by a definition. 1204 1205 setLinkageForGV(F, FD); 1206 setGlobalVisibility(F, FD, NotForDefinition); 1207 1208 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1209 F->addFnAttr("implicit-section-name"); 1210 } 1211 1212 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1213 F->setSection(SA->getName()); 1214 1215 if (FD->isReplaceableGlobalAllocationFunction()) { 1216 // A replaceable global allocation function does not act like a builtin by 1217 // default, only if it is invoked by a new-expression or delete-expression. 1218 F->addAttribute(llvm::AttributeList::FunctionIndex, 1219 llvm::Attribute::NoBuiltin); 1220 1221 // A sane operator new returns a non-aliasing pointer. 1222 // FIXME: Also add NonNull attribute to the return value 1223 // for the non-nothrow forms? 1224 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1225 if (getCodeGenOpts().AssumeSaneOperatorNew && 1226 (Kind == OO_New || Kind == OO_Array_New)) 1227 F->addAttribute(llvm::AttributeList::ReturnIndex, 1228 llvm::Attribute::NoAlias); 1229 } 1230 1231 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1232 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1233 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1234 if (MD->isVirtual()) 1235 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1236 1237 // Don't emit entries for function declarations in the cross-DSO mode. This 1238 // is handled with better precision by the receiving DSO. 1239 if (!CodeGenOpts.SanitizeCfiCrossDso) 1240 CreateFunctionTypeMetadata(FD, F); 1241 1242 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1243 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1244 } 1245 1246 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1247 assert(!GV->isDeclaration() && 1248 "Only globals with definition can force usage."); 1249 LLVMUsed.emplace_back(GV); 1250 } 1251 1252 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1253 assert(!GV->isDeclaration() && 1254 "Only globals with definition can force usage."); 1255 LLVMCompilerUsed.emplace_back(GV); 1256 } 1257 1258 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1259 std::vector<llvm::WeakTrackingVH> &List) { 1260 // Don't create llvm.used if there is no need. 1261 if (List.empty()) 1262 return; 1263 1264 // Convert List to what ConstantArray needs. 1265 SmallVector<llvm::Constant*, 8> UsedArray; 1266 UsedArray.resize(List.size()); 1267 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1268 UsedArray[i] = 1269 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1270 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1271 } 1272 1273 if (UsedArray.empty()) 1274 return; 1275 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1276 1277 auto *GV = new llvm::GlobalVariable( 1278 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1279 llvm::ConstantArray::get(ATy, UsedArray), Name); 1280 1281 GV->setSection("llvm.metadata"); 1282 } 1283 1284 void CodeGenModule::emitLLVMUsed() { 1285 emitUsed(*this, "llvm.used", LLVMUsed); 1286 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1287 } 1288 1289 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1290 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1291 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1292 } 1293 1294 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1295 llvm::SmallString<32> Opt; 1296 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1297 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1298 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1299 } 1300 1301 void CodeGenModule::AddDependentLib(StringRef Lib) { 1302 llvm::SmallString<24> Opt; 1303 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1304 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1305 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1306 } 1307 1308 /// \brief Add link options implied by the given module, including modules 1309 /// it depends on, using a postorder walk. 1310 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1311 SmallVectorImpl<llvm::MDNode *> &Metadata, 1312 llvm::SmallPtrSet<Module *, 16> &Visited) { 1313 // Import this module's parent. 1314 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1315 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1316 } 1317 1318 // Import this module's dependencies. 1319 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1320 if (Visited.insert(Mod->Imports[I - 1]).second) 1321 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1322 } 1323 1324 // Add linker options to link against the libraries/frameworks 1325 // described by this module. 1326 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1327 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1328 // Link against a framework. Frameworks are currently Darwin only, so we 1329 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1330 if (Mod->LinkLibraries[I-1].IsFramework) { 1331 llvm::Metadata *Args[2] = { 1332 llvm::MDString::get(Context, "-framework"), 1333 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1334 1335 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1336 continue; 1337 } 1338 1339 // Link against a library. 1340 llvm::SmallString<24> Opt; 1341 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1342 Mod->LinkLibraries[I-1].Library, Opt); 1343 auto *OptString = llvm::MDString::get(Context, Opt); 1344 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1345 } 1346 } 1347 1348 void CodeGenModule::EmitModuleLinkOptions() { 1349 // Collect the set of all of the modules we want to visit to emit link 1350 // options, which is essentially the imported modules and all of their 1351 // non-explicit child modules. 1352 llvm::SetVector<clang::Module *> LinkModules; 1353 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1354 SmallVector<clang::Module *, 16> Stack; 1355 1356 // Seed the stack with imported modules. 1357 for (Module *M : ImportedModules) { 1358 // Do not add any link flags when an implementation TU of a module imports 1359 // a header of that same module. 1360 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1361 !getLangOpts().isCompilingModule()) 1362 continue; 1363 if (Visited.insert(M).second) 1364 Stack.push_back(M); 1365 } 1366 1367 // Find all of the modules to import, making a little effort to prune 1368 // non-leaf modules. 1369 while (!Stack.empty()) { 1370 clang::Module *Mod = Stack.pop_back_val(); 1371 1372 bool AnyChildren = false; 1373 1374 // Visit the submodules of this module. 1375 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1376 SubEnd = Mod->submodule_end(); 1377 Sub != SubEnd; ++Sub) { 1378 // Skip explicit children; they need to be explicitly imported to be 1379 // linked against. 1380 if ((*Sub)->IsExplicit) 1381 continue; 1382 1383 if (Visited.insert(*Sub).second) { 1384 Stack.push_back(*Sub); 1385 AnyChildren = true; 1386 } 1387 } 1388 1389 // We didn't find any children, so add this module to the list of 1390 // modules to link against. 1391 if (!AnyChildren) { 1392 LinkModules.insert(Mod); 1393 } 1394 } 1395 1396 // Add link options for all of the imported modules in reverse topological 1397 // order. We don't do anything to try to order import link flags with respect 1398 // to linker options inserted by things like #pragma comment(). 1399 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1400 Visited.clear(); 1401 for (Module *M : LinkModules) 1402 if (Visited.insert(M).second) 1403 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1404 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1405 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1406 1407 // Add the linker options metadata flag. 1408 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1409 for (auto *MD : LinkerOptionsMetadata) 1410 NMD->addOperand(MD); 1411 } 1412 1413 void CodeGenModule::EmitDeferred() { 1414 // Emit code for any potentially referenced deferred decls. Since a 1415 // previously unused static decl may become used during the generation of code 1416 // for a static function, iterate until no changes are made. 1417 1418 if (!DeferredVTables.empty()) { 1419 EmitDeferredVTables(); 1420 1421 // Emitting a vtable doesn't directly cause more vtables to 1422 // become deferred, although it can cause functions to be 1423 // emitted that then need those vtables. 1424 assert(DeferredVTables.empty()); 1425 } 1426 1427 // Stop if we're out of both deferred vtables and deferred declarations. 1428 if (DeferredDeclsToEmit.empty()) 1429 return; 1430 1431 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1432 // work, it will not interfere with this. 1433 std::vector<GlobalDecl> CurDeclsToEmit; 1434 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1435 1436 for (GlobalDecl &D : CurDeclsToEmit) { 1437 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1438 // to get GlobalValue with exactly the type we need, not something that 1439 // might had been created for another decl with the same mangled name but 1440 // different type. 1441 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1442 GetAddrOfGlobal(D, ForDefinition)); 1443 1444 // In case of different address spaces, we may still get a cast, even with 1445 // IsForDefinition equal to true. Query mangled names table to get 1446 // GlobalValue. 1447 if (!GV) 1448 GV = GetGlobalValue(getMangledName(D)); 1449 1450 // Make sure GetGlobalValue returned non-null. 1451 assert(GV); 1452 1453 // Check to see if we've already emitted this. This is necessary 1454 // for a couple of reasons: first, decls can end up in the 1455 // deferred-decls queue multiple times, and second, decls can end 1456 // up with definitions in unusual ways (e.g. by an extern inline 1457 // function acquiring a strong function redefinition). Just 1458 // ignore these cases. 1459 if (!GV->isDeclaration()) 1460 continue; 1461 1462 // Otherwise, emit the definition and move on to the next one. 1463 EmitGlobalDefinition(D, GV); 1464 1465 // If we found out that we need to emit more decls, do that recursively. 1466 // This has the advantage that the decls are emitted in a DFS and related 1467 // ones are close together, which is convenient for testing. 1468 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1469 EmitDeferred(); 1470 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1471 } 1472 } 1473 } 1474 1475 void CodeGenModule::EmitVTablesOpportunistically() { 1476 // Try to emit external vtables as available_externally if they have emitted 1477 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1478 // is not allowed to create new references to things that need to be emitted 1479 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1480 1481 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1482 && "Only emit opportunistic vtables with optimizations"); 1483 1484 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1485 assert(getVTables().isVTableExternal(RD) && 1486 "This queue should only contain external vtables"); 1487 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1488 VTables.GenerateClassData(RD); 1489 } 1490 OpportunisticVTables.clear(); 1491 } 1492 1493 void CodeGenModule::EmitGlobalAnnotations() { 1494 if (Annotations.empty()) 1495 return; 1496 1497 // Create a new global variable for the ConstantStruct in the Module. 1498 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1499 Annotations[0]->getType(), Annotations.size()), Annotations); 1500 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1501 llvm::GlobalValue::AppendingLinkage, 1502 Array, "llvm.global.annotations"); 1503 gv->setSection(AnnotationSection); 1504 } 1505 1506 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1507 llvm::Constant *&AStr = AnnotationStrings[Str]; 1508 if (AStr) 1509 return AStr; 1510 1511 // Not found yet, create a new global. 1512 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1513 auto *gv = 1514 new llvm::GlobalVariable(getModule(), s->getType(), true, 1515 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1516 gv->setSection(AnnotationSection); 1517 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1518 AStr = gv; 1519 return gv; 1520 } 1521 1522 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1523 SourceManager &SM = getContext().getSourceManager(); 1524 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1525 if (PLoc.isValid()) 1526 return EmitAnnotationString(PLoc.getFilename()); 1527 return EmitAnnotationString(SM.getBufferName(Loc)); 1528 } 1529 1530 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1531 SourceManager &SM = getContext().getSourceManager(); 1532 PresumedLoc PLoc = SM.getPresumedLoc(L); 1533 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1534 SM.getExpansionLineNumber(L); 1535 return llvm::ConstantInt::get(Int32Ty, LineNo); 1536 } 1537 1538 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1539 const AnnotateAttr *AA, 1540 SourceLocation L) { 1541 // Get the globals for file name, annotation, and the line number. 1542 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1543 *UnitGV = EmitAnnotationUnit(L), 1544 *LineNoCst = EmitAnnotationLineNo(L); 1545 1546 // Create the ConstantStruct for the global annotation. 1547 llvm::Constant *Fields[4] = { 1548 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1549 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1550 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1551 LineNoCst 1552 }; 1553 return llvm::ConstantStruct::getAnon(Fields); 1554 } 1555 1556 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1557 llvm::GlobalValue *GV) { 1558 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1559 // Get the struct elements for these annotations. 1560 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1561 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1562 } 1563 1564 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1565 llvm::Function *Fn, 1566 SourceLocation Loc) const { 1567 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1568 // Blacklist by function name. 1569 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1570 return true; 1571 // Blacklist by location. 1572 if (Loc.isValid()) 1573 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1574 // If location is unknown, this may be a compiler-generated function. Assume 1575 // it's located in the main file. 1576 auto &SM = Context.getSourceManager(); 1577 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1578 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1579 } 1580 return false; 1581 } 1582 1583 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1584 SourceLocation Loc, QualType Ty, 1585 StringRef Category) const { 1586 // For now globals can be blacklisted only in ASan and KASan. 1587 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1588 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1589 if (!EnabledAsanMask) 1590 return false; 1591 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1592 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1593 return true; 1594 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1595 return true; 1596 // Check global type. 1597 if (!Ty.isNull()) { 1598 // Drill down the array types: if global variable of a fixed type is 1599 // blacklisted, we also don't instrument arrays of them. 1600 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1601 Ty = AT->getElementType(); 1602 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1603 // We allow to blacklist only record types (classes, structs etc.) 1604 if (Ty->isRecordType()) { 1605 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1606 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1607 return true; 1608 } 1609 } 1610 return false; 1611 } 1612 1613 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1614 StringRef Category) const { 1615 if (!LangOpts.XRayInstrument) 1616 return false; 1617 const auto &XRayFilter = getContext().getXRayFilter(); 1618 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1619 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1620 if (Loc.isValid()) 1621 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1622 if (Attr == ImbueAttr::NONE) 1623 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1624 switch (Attr) { 1625 case ImbueAttr::NONE: 1626 return false; 1627 case ImbueAttr::ALWAYS: 1628 Fn->addFnAttr("function-instrument", "xray-always"); 1629 break; 1630 case ImbueAttr::ALWAYS_ARG1: 1631 Fn->addFnAttr("function-instrument", "xray-always"); 1632 Fn->addFnAttr("xray-log-args", "1"); 1633 break; 1634 case ImbueAttr::NEVER: 1635 Fn->addFnAttr("function-instrument", "xray-never"); 1636 break; 1637 } 1638 return true; 1639 } 1640 1641 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1642 // Never defer when EmitAllDecls is specified. 1643 if (LangOpts.EmitAllDecls) 1644 return true; 1645 1646 return getContext().DeclMustBeEmitted(Global); 1647 } 1648 1649 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1650 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1651 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1652 // Implicit template instantiations may change linkage if they are later 1653 // explicitly instantiated, so they should not be emitted eagerly. 1654 return false; 1655 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1656 if (Context.getInlineVariableDefinitionKind(VD) == 1657 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1658 // A definition of an inline constexpr static data member may change 1659 // linkage later if it's redeclared outside the class. 1660 return false; 1661 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1662 // codegen for global variables, because they may be marked as threadprivate. 1663 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1664 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1665 return false; 1666 1667 return true; 1668 } 1669 1670 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1671 const CXXUuidofExpr* E) { 1672 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1673 // well-formed. 1674 StringRef Uuid = E->getUuidStr(); 1675 std::string Name = "_GUID_" + Uuid.lower(); 1676 std::replace(Name.begin(), Name.end(), '-', '_'); 1677 1678 // The UUID descriptor should be pointer aligned. 1679 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1680 1681 // Look for an existing global. 1682 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1683 return ConstantAddress(GV, Alignment); 1684 1685 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1686 assert(Init && "failed to initialize as constant"); 1687 1688 auto *GV = new llvm::GlobalVariable( 1689 getModule(), Init->getType(), 1690 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1691 if (supportsCOMDAT()) 1692 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1693 return ConstantAddress(GV, Alignment); 1694 } 1695 1696 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1697 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1698 assert(AA && "No alias?"); 1699 1700 CharUnits Alignment = getContext().getDeclAlign(VD); 1701 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1702 1703 // See if there is already something with the target's name in the module. 1704 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1705 if (Entry) { 1706 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1707 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1708 return ConstantAddress(Ptr, Alignment); 1709 } 1710 1711 llvm::Constant *Aliasee; 1712 if (isa<llvm::FunctionType>(DeclTy)) 1713 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1714 GlobalDecl(cast<FunctionDecl>(VD)), 1715 /*ForVTable=*/false); 1716 else 1717 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1718 llvm::PointerType::getUnqual(DeclTy), 1719 nullptr); 1720 1721 auto *F = cast<llvm::GlobalValue>(Aliasee); 1722 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1723 WeakRefReferences.insert(F); 1724 1725 return ConstantAddress(Aliasee, Alignment); 1726 } 1727 1728 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1729 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1730 1731 // Weak references don't produce any output by themselves. 1732 if (Global->hasAttr<WeakRefAttr>()) 1733 return; 1734 1735 // If this is an alias definition (which otherwise looks like a declaration) 1736 // emit it now. 1737 if (Global->hasAttr<AliasAttr>()) 1738 return EmitAliasDefinition(GD); 1739 1740 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1741 if (Global->hasAttr<IFuncAttr>()) 1742 return emitIFuncDefinition(GD); 1743 1744 // If this is CUDA, be selective about which declarations we emit. 1745 if (LangOpts.CUDA) { 1746 if (LangOpts.CUDAIsDevice) { 1747 if (!Global->hasAttr<CUDADeviceAttr>() && 1748 !Global->hasAttr<CUDAGlobalAttr>() && 1749 !Global->hasAttr<CUDAConstantAttr>() && 1750 !Global->hasAttr<CUDASharedAttr>()) 1751 return; 1752 } else { 1753 // We need to emit host-side 'shadows' for all global 1754 // device-side variables because the CUDA runtime needs their 1755 // size and host-side address in order to provide access to 1756 // their device-side incarnations. 1757 1758 // So device-only functions are the only things we skip. 1759 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1760 Global->hasAttr<CUDADeviceAttr>()) 1761 return; 1762 1763 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1764 "Expected Variable or Function"); 1765 } 1766 } 1767 1768 if (LangOpts.OpenMP) { 1769 // If this is OpenMP device, check if it is legal to emit this global 1770 // normally. 1771 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1772 return; 1773 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1774 if (MustBeEmitted(Global)) 1775 EmitOMPDeclareReduction(DRD); 1776 return; 1777 } 1778 } 1779 1780 // Ignore declarations, they will be emitted on their first use. 1781 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1782 // Forward declarations are emitted lazily on first use. 1783 if (!FD->doesThisDeclarationHaveABody()) { 1784 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1785 return; 1786 1787 StringRef MangledName = getMangledName(GD); 1788 1789 // Compute the function info and LLVM type. 1790 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1791 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1792 1793 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1794 /*DontDefer=*/false); 1795 return; 1796 } 1797 } else { 1798 const auto *VD = cast<VarDecl>(Global); 1799 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1800 // We need to emit device-side global CUDA variables even if a 1801 // variable does not have a definition -- we still need to define 1802 // host-side shadow for it. 1803 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1804 !VD->hasDefinition() && 1805 (VD->hasAttr<CUDAConstantAttr>() || 1806 VD->hasAttr<CUDADeviceAttr>()); 1807 if (!MustEmitForCuda && 1808 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1809 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1810 // If this declaration may have caused an inline variable definition to 1811 // change linkage, make sure that it's emitted. 1812 if (Context.getInlineVariableDefinitionKind(VD) == 1813 ASTContext::InlineVariableDefinitionKind::Strong) 1814 GetAddrOfGlobalVar(VD); 1815 return; 1816 } 1817 } 1818 1819 // Defer code generation to first use when possible, e.g. if this is an inline 1820 // function. If the global must always be emitted, do it eagerly if possible 1821 // to benefit from cache locality. 1822 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1823 // Emit the definition if it can't be deferred. 1824 EmitGlobalDefinition(GD); 1825 return; 1826 } 1827 1828 // If we're deferring emission of a C++ variable with an 1829 // initializer, remember the order in which it appeared in the file. 1830 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1831 cast<VarDecl>(Global)->hasInit()) { 1832 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1833 CXXGlobalInits.push_back(nullptr); 1834 } 1835 1836 StringRef MangledName = getMangledName(GD); 1837 if (GetGlobalValue(MangledName) != nullptr) { 1838 // The value has already been used and should therefore be emitted. 1839 addDeferredDeclToEmit(GD); 1840 } else if (MustBeEmitted(Global)) { 1841 // The value must be emitted, but cannot be emitted eagerly. 1842 assert(!MayBeEmittedEagerly(Global)); 1843 addDeferredDeclToEmit(GD); 1844 } else { 1845 // Otherwise, remember that we saw a deferred decl with this name. The 1846 // first use of the mangled name will cause it to move into 1847 // DeferredDeclsToEmit. 1848 DeferredDecls[MangledName] = GD; 1849 } 1850 } 1851 1852 // Check if T is a class type with a destructor that's not dllimport. 1853 static bool HasNonDllImportDtor(QualType T) { 1854 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1855 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1856 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1857 return true; 1858 1859 return false; 1860 } 1861 1862 namespace { 1863 struct FunctionIsDirectlyRecursive : 1864 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1865 const StringRef Name; 1866 const Builtin::Context &BI; 1867 bool Result; 1868 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1869 Name(N), BI(C), Result(false) { 1870 } 1871 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1872 1873 bool TraverseCallExpr(CallExpr *E) { 1874 const FunctionDecl *FD = E->getDirectCallee(); 1875 if (!FD) 1876 return true; 1877 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1878 if (Attr && Name == Attr->getLabel()) { 1879 Result = true; 1880 return false; 1881 } 1882 unsigned BuiltinID = FD->getBuiltinID(); 1883 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1884 return true; 1885 StringRef BuiltinName = BI.getName(BuiltinID); 1886 if (BuiltinName.startswith("__builtin_") && 1887 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1888 Result = true; 1889 return false; 1890 } 1891 return true; 1892 } 1893 }; 1894 1895 // Make sure we're not referencing non-imported vars or functions. 1896 struct DLLImportFunctionVisitor 1897 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1898 bool SafeToInline = true; 1899 1900 bool shouldVisitImplicitCode() const { return true; } 1901 1902 bool VisitVarDecl(VarDecl *VD) { 1903 if (VD->getTLSKind()) { 1904 // A thread-local variable cannot be imported. 1905 SafeToInline = false; 1906 return SafeToInline; 1907 } 1908 1909 // A variable definition might imply a destructor call. 1910 if (VD->isThisDeclarationADefinition()) 1911 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1912 1913 return SafeToInline; 1914 } 1915 1916 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1917 if (const auto *D = E->getTemporary()->getDestructor()) 1918 SafeToInline = D->hasAttr<DLLImportAttr>(); 1919 return SafeToInline; 1920 } 1921 1922 bool VisitDeclRefExpr(DeclRefExpr *E) { 1923 ValueDecl *VD = E->getDecl(); 1924 if (isa<FunctionDecl>(VD)) 1925 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1926 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1927 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1928 return SafeToInline; 1929 } 1930 1931 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1932 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1933 return SafeToInline; 1934 } 1935 1936 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1937 CXXMethodDecl *M = E->getMethodDecl(); 1938 if (!M) { 1939 // Call through a pointer to member function. This is safe to inline. 1940 SafeToInline = true; 1941 } else { 1942 SafeToInline = M->hasAttr<DLLImportAttr>(); 1943 } 1944 return SafeToInline; 1945 } 1946 1947 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1948 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1949 return SafeToInline; 1950 } 1951 1952 bool VisitCXXNewExpr(CXXNewExpr *E) { 1953 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1954 return SafeToInline; 1955 } 1956 }; 1957 } 1958 1959 // isTriviallyRecursive - Check if this function calls another 1960 // decl that, because of the asm attribute or the other decl being a builtin, 1961 // ends up pointing to itself. 1962 bool 1963 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1964 StringRef Name; 1965 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1966 // asm labels are a special kind of mangling we have to support. 1967 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1968 if (!Attr) 1969 return false; 1970 Name = Attr->getLabel(); 1971 } else { 1972 Name = FD->getName(); 1973 } 1974 1975 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1976 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1977 return Walker.Result; 1978 } 1979 1980 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1981 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1982 return true; 1983 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1984 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1985 return false; 1986 1987 if (F->hasAttr<DLLImportAttr>()) { 1988 // Check whether it would be safe to inline this dllimport function. 1989 DLLImportFunctionVisitor Visitor; 1990 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1991 if (!Visitor.SafeToInline) 1992 return false; 1993 1994 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1995 // Implicit destructor invocations aren't captured in the AST, so the 1996 // check above can't see them. Check for them manually here. 1997 for (const Decl *Member : Dtor->getParent()->decls()) 1998 if (isa<FieldDecl>(Member)) 1999 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2000 return false; 2001 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2002 if (HasNonDllImportDtor(B.getType())) 2003 return false; 2004 } 2005 } 2006 2007 // PR9614. Avoid cases where the source code is lying to us. An available 2008 // externally function should have an equivalent function somewhere else, 2009 // but a function that calls itself is clearly not equivalent to the real 2010 // implementation. 2011 // This happens in glibc's btowc and in some configure checks. 2012 return !isTriviallyRecursive(F); 2013 } 2014 2015 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2016 return CodeGenOpts.OptimizationLevel > 0; 2017 } 2018 2019 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2020 const auto *D = cast<ValueDecl>(GD.getDecl()); 2021 2022 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2023 Context.getSourceManager(), 2024 "Generating code for declaration"); 2025 2026 if (isa<FunctionDecl>(D)) { 2027 // At -O0, don't generate IR for functions with available_externally 2028 // linkage. 2029 if (!shouldEmitFunction(GD)) 2030 return; 2031 2032 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2033 // Make sure to emit the definition(s) before we emit the thunks. 2034 // This is necessary for the generation of certain thunks. 2035 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2036 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2037 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2038 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2039 else 2040 EmitGlobalFunctionDefinition(GD, GV); 2041 2042 if (Method->isVirtual()) 2043 getVTables().EmitThunks(GD); 2044 2045 return; 2046 } 2047 2048 return EmitGlobalFunctionDefinition(GD, GV); 2049 } 2050 2051 if (const auto *VD = dyn_cast<VarDecl>(D)) 2052 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2053 2054 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2055 } 2056 2057 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2058 llvm::Function *NewFn); 2059 2060 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2061 /// module, create and return an llvm Function with the specified type. If there 2062 /// is something in the module with the specified name, return it potentially 2063 /// bitcasted to the right type. 2064 /// 2065 /// If D is non-null, it specifies a decl that correspond to this. This is used 2066 /// to set the attributes on the function when it is first created. 2067 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2068 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2069 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2070 ForDefinition_t IsForDefinition) { 2071 const Decl *D = GD.getDecl(); 2072 2073 // Lookup the entry, lazily creating it if necessary. 2074 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2075 if (Entry) { 2076 if (WeakRefReferences.erase(Entry)) { 2077 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2078 if (FD && !FD->hasAttr<WeakAttr>()) 2079 Entry->setLinkage(llvm::Function::ExternalLinkage); 2080 } 2081 2082 // Handle dropped DLL attributes. 2083 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2084 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2085 2086 // If there are two attempts to define the same mangled name, issue an 2087 // error. 2088 if (IsForDefinition && !Entry->isDeclaration()) { 2089 GlobalDecl OtherGD; 2090 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2091 // to make sure that we issue an error only once. 2092 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2093 (GD.getCanonicalDecl().getDecl() != 2094 OtherGD.getCanonicalDecl().getDecl()) && 2095 DiagnosedConflictingDefinitions.insert(GD).second) { 2096 getDiags().Report(D->getLocation(), 2097 diag::err_duplicate_mangled_name); 2098 getDiags().Report(OtherGD.getDecl()->getLocation(), 2099 diag::note_previous_definition); 2100 } 2101 } 2102 2103 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2104 (Entry->getType()->getElementType() == Ty)) { 2105 return Entry; 2106 } 2107 2108 // Make sure the result is of the correct type. 2109 // (If function is requested for a definition, we always need to create a new 2110 // function, not just return a bitcast.) 2111 if (!IsForDefinition) 2112 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2113 } 2114 2115 // This function doesn't have a complete type (for example, the return 2116 // type is an incomplete struct). Use a fake type instead, and make 2117 // sure not to try to set attributes. 2118 bool IsIncompleteFunction = false; 2119 2120 llvm::FunctionType *FTy; 2121 if (isa<llvm::FunctionType>(Ty)) { 2122 FTy = cast<llvm::FunctionType>(Ty); 2123 } else { 2124 FTy = llvm::FunctionType::get(VoidTy, false); 2125 IsIncompleteFunction = true; 2126 } 2127 2128 llvm::Function *F = 2129 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2130 Entry ? StringRef() : MangledName, &getModule()); 2131 2132 // If we already created a function with the same mangled name (but different 2133 // type) before, take its name and add it to the list of functions to be 2134 // replaced with F at the end of CodeGen. 2135 // 2136 // This happens if there is a prototype for a function (e.g. "int f()") and 2137 // then a definition of a different type (e.g. "int f(int x)"). 2138 if (Entry) { 2139 F->takeName(Entry); 2140 2141 // This might be an implementation of a function without a prototype, in 2142 // which case, try to do special replacement of calls which match the new 2143 // prototype. The really key thing here is that we also potentially drop 2144 // arguments from the call site so as to make a direct call, which makes the 2145 // inliner happier and suppresses a number of optimizer warnings (!) about 2146 // dropping arguments. 2147 if (!Entry->use_empty()) { 2148 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2149 Entry->removeDeadConstantUsers(); 2150 } 2151 2152 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2153 F, Entry->getType()->getElementType()->getPointerTo()); 2154 addGlobalValReplacement(Entry, BC); 2155 } 2156 2157 assert(F->getName() == MangledName && "name was uniqued!"); 2158 if (D) 2159 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2160 IsForDefinition); 2161 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2162 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2163 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2164 } 2165 2166 if (!DontDefer) { 2167 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2168 // each other bottoming out with the base dtor. Therefore we emit non-base 2169 // dtors on usage, even if there is no dtor definition in the TU. 2170 if (D && isa<CXXDestructorDecl>(D) && 2171 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2172 GD.getDtorType())) 2173 addDeferredDeclToEmit(GD); 2174 2175 // This is the first use or definition of a mangled name. If there is a 2176 // deferred decl with this name, remember that we need to emit it at the end 2177 // of the file. 2178 auto DDI = DeferredDecls.find(MangledName); 2179 if (DDI != DeferredDecls.end()) { 2180 // Move the potentially referenced deferred decl to the 2181 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2182 // don't need it anymore). 2183 addDeferredDeclToEmit(DDI->second); 2184 DeferredDecls.erase(DDI); 2185 2186 // Otherwise, there are cases we have to worry about where we're 2187 // using a declaration for which we must emit a definition but where 2188 // we might not find a top-level definition: 2189 // - member functions defined inline in their classes 2190 // - friend functions defined inline in some class 2191 // - special member functions with implicit definitions 2192 // If we ever change our AST traversal to walk into class methods, 2193 // this will be unnecessary. 2194 // 2195 // We also don't emit a definition for a function if it's going to be an 2196 // entry in a vtable, unless it's already marked as used. 2197 } else if (getLangOpts().CPlusPlus && D) { 2198 // Look for a declaration that's lexically in a record. 2199 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2200 FD = FD->getPreviousDecl()) { 2201 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2202 if (FD->doesThisDeclarationHaveABody()) { 2203 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2204 break; 2205 } 2206 } 2207 } 2208 } 2209 } 2210 2211 // Make sure the result is of the requested type. 2212 if (!IsIncompleteFunction) { 2213 assert(F->getType()->getElementType() == Ty); 2214 return F; 2215 } 2216 2217 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2218 return llvm::ConstantExpr::getBitCast(F, PTy); 2219 } 2220 2221 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2222 /// non-null, then this function will use the specified type if it has to 2223 /// create it (this occurs when we see a definition of the function). 2224 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2225 llvm::Type *Ty, 2226 bool ForVTable, 2227 bool DontDefer, 2228 ForDefinition_t IsForDefinition) { 2229 // If there was no specific requested type, just convert it now. 2230 if (!Ty) { 2231 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2232 auto CanonTy = Context.getCanonicalType(FD->getType()); 2233 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2234 } 2235 2236 StringRef MangledName = getMangledName(GD); 2237 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2238 /*IsThunk=*/false, llvm::AttributeList(), 2239 IsForDefinition); 2240 } 2241 2242 static const FunctionDecl * 2243 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2244 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2245 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2246 2247 IdentifierInfo &CII = C.Idents.get(Name); 2248 for (const auto &Result : DC->lookup(&CII)) 2249 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2250 return FD; 2251 2252 if (!C.getLangOpts().CPlusPlus) 2253 return nullptr; 2254 2255 // Demangle the premangled name from getTerminateFn() 2256 IdentifierInfo &CXXII = 2257 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2258 ? C.Idents.get("terminate") 2259 : C.Idents.get(Name); 2260 2261 for (const auto &N : {"__cxxabiv1", "std"}) { 2262 IdentifierInfo &NS = C.Idents.get(N); 2263 for (const auto &Result : DC->lookup(&NS)) { 2264 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2265 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2266 for (const auto &Result : LSD->lookup(&NS)) 2267 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2268 break; 2269 2270 if (ND) 2271 for (const auto &Result : ND->lookup(&CXXII)) 2272 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2273 return FD; 2274 } 2275 } 2276 2277 return nullptr; 2278 } 2279 2280 /// CreateRuntimeFunction - Create a new runtime function with the specified 2281 /// type and name. 2282 llvm::Constant * 2283 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2284 llvm::AttributeList ExtraAttrs, 2285 bool Local) { 2286 llvm::Constant *C = 2287 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2288 /*DontDefer=*/false, /*IsThunk=*/false, 2289 ExtraAttrs); 2290 2291 if (auto *F = dyn_cast<llvm::Function>(C)) { 2292 if (F->empty()) { 2293 F->setCallingConv(getRuntimeCC()); 2294 2295 if (!Local && getTriple().isOSBinFormatCOFF() && 2296 !getCodeGenOpts().LTOVisibilityPublicStd && 2297 !getTriple().isWindowsGNUEnvironment()) { 2298 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2299 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2300 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2301 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2302 } 2303 } 2304 } 2305 } 2306 2307 return C; 2308 } 2309 2310 /// CreateBuiltinFunction - Create a new builtin function with the specified 2311 /// type and name. 2312 llvm::Constant * 2313 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2314 llvm::AttributeList ExtraAttrs) { 2315 llvm::Constant *C = 2316 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2317 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2318 if (auto *F = dyn_cast<llvm::Function>(C)) 2319 if (F->empty()) 2320 F->setCallingConv(getBuiltinCC()); 2321 return C; 2322 } 2323 2324 /// isTypeConstant - Determine whether an object of this type can be emitted 2325 /// as a constant. 2326 /// 2327 /// If ExcludeCtor is true, the duration when the object's constructor runs 2328 /// will not be considered. The caller will need to verify that the object is 2329 /// not written to during its construction. 2330 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2331 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2332 return false; 2333 2334 if (Context.getLangOpts().CPlusPlus) { 2335 if (const CXXRecordDecl *Record 2336 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2337 return ExcludeCtor && !Record->hasMutableFields() && 2338 Record->hasTrivialDestructor(); 2339 } 2340 2341 return true; 2342 } 2343 2344 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2345 /// create and return an llvm GlobalVariable with the specified type. If there 2346 /// is something in the module with the specified name, return it potentially 2347 /// bitcasted to the right type. 2348 /// 2349 /// If D is non-null, it specifies a decl that correspond to this. This is used 2350 /// to set the attributes on the global when it is first created. 2351 /// 2352 /// If IsForDefinition is true, it is guranteed that an actual global with 2353 /// type Ty will be returned, not conversion of a variable with the same 2354 /// mangled name but some other type. 2355 llvm::Constant * 2356 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2357 llvm::PointerType *Ty, 2358 const VarDecl *D, 2359 ForDefinition_t IsForDefinition) { 2360 // Lookup the entry, lazily creating it if necessary. 2361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2362 if (Entry) { 2363 if (WeakRefReferences.erase(Entry)) { 2364 if (D && !D->hasAttr<WeakAttr>()) 2365 Entry->setLinkage(llvm::Function::ExternalLinkage); 2366 } 2367 2368 // Handle dropped DLL attributes. 2369 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2370 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2371 2372 if (Entry->getType() == Ty) 2373 return Entry; 2374 2375 // If there are two attempts to define the same mangled name, issue an 2376 // error. 2377 if (IsForDefinition && !Entry->isDeclaration()) { 2378 GlobalDecl OtherGD; 2379 const VarDecl *OtherD; 2380 2381 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2382 // to make sure that we issue an error only once. 2383 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2384 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2385 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2386 OtherD->hasInit() && 2387 DiagnosedConflictingDefinitions.insert(D).second) { 2388 getDiags().Report(D->getLocation(), 2389 diag::err_duplicate_mangled_name); 2390 getDiags().Report(OtherGD.getDecl()->getLocation(), 2391 diag::note_previous_definition); 2392 } 2393 } 2394 2395 // Make sure the result is of the correct type. 2396 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2397 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2398 2399 // (If global is requested for a definition, we always need to create a new 2400 // global, not just return a bitcast.) 2401 if (!IsForDefinition) 2402 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2403 } 2404 2405 auto AddrSpace = GetGlobalVarAddressSpace(D); 2406 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2407 2408 auto *GV = new llvm::GlobalVariable( 2409 getModule(), Ty->getElementType(), false, 2410 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2411 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2412 2413 // If we already created a global with the same mangled name (but different 2414 // type) before, take its name and remove it from its parent. 2415 if (Entry) { 2416 GV->takeName(Entry); 2417 2418 if (!Entry->use_empty()) { 2419 llvm::Constant *NewPtrForOldDecl = 2420 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2421 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2422 } 2423 2424 Entry->eraseFromParent(); 2425 } 2426 2427 // This is the first use or definition of a mangled name. If there is a 2428 // deferred decl with this name, remember that we need to emit it at the end 2429 // of the file. 2430 auto DDI = DeferredDecls.find(MangledName); 2431 if (DDI != DeferredDecls.end()) { 2432 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2433 // list, and remove it from DeferredDecls (since we don't need it anymore). 2434 addDeferredDeclToEmit(DDI->second); 2435 DeferredDecls.erase(DDI); 2436 } 2437 2438 // Handle things which are present even on external declarations. 2439 if (D) { 2440 // FIXME: This code is overly simple and should be merged with other global 2441 // handling. 2442 GV->setConstant(isTypeConstant(D->getType(), false)); 2443 2444 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2445 2446 setLinkageForGV(GV, D); 2447 setGlobalVisibility(GV, D, NotForDefinition); 2448 2449 if (D->getTLSKind()) { 2450 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2451 CXXThreadLocals.push_back(D); 2452 setTLSMode(GV, *D); 2453 } 2454 2455 // If required by the ABI, treat declarations of static data members with 2456 // inline initializers as definitions. 2457 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2458 EmitGlobalVarDefinition(D); 2459 } 2460 2461 // Emit section information for extern variables. 2462 if (D->hasExternalStorage()) { 2463 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2464 GV->setSection(SA->getName()); 2465 } 2466 2467 // Handle XCore specific ABI requirements. 2468 if (getTriple().getArch() == llvm::Triple::xcore && 2469 D->getLanguageLinkage() == CLanguageLinkage && 2470 D->getType().isConstant(Context) && 2471 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2472 GV->setSection(".cp.rodata"); 2473 2474 // Check if we a have a const declaration with an initializer, we may be 2475 // able to emit it as available_externally to expose it's value to the 2476 // optimizer. 2477 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2478 D->getType().isConstQualified() && !GV->hasInitializer() && 2479 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2480 const auto *Record = 2481 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2482 bool HasMutableFields = Record && Record->hasMutableFields(); 2483 if (!HasMutableFields) { 2484 const VarDecl *InitDecl; 2485 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2486 if (InitExpr) { 2487 ConstantEmitter emitter(*this); 2488 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2489 if (Init) { 2490 auto *InitType = Init->getType(); 2491 if (GV->getType()->getElementType() != InitType) { 2492 // The type of the initializer does not match the definition. 2493 // This happens when an initializer has a different type from 2494 // the type of the global (because of padding at the end of a 2495 // structure for instance). 2496 GV->setName(StringRef()); 2497 // Make a new global with the correct type, this is now guaranteed 2498 // to work. 2499 auto *NewGV = cast<llvm::GlobalVariable>( 2500 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2501 2502 // Erase the old global, since it is no longer used. 2503 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2504 GV = NewGV; 2505 } else { 2506 GV->setInitializer(Init); 2507 GV->setConstant(true); 2508 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2509 } 2510 emitter.finalize(GV); 2511 } 2512 } 2513 } 2514 } 2515 } 2516 2517 LangAS ExpectedAS = 2518 D ? D->getType().getAddressSpace() 2519 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2520 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2521 Ty->getPointerAddressSpace()); 2522 if (AddrSpace != ExpectedAS) 2523 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2524 ExpectedAS, Ty); 2525 2526 return GV; 2527 } 2528 2529 llvm::Constant * 2530 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2531 ForDefinition_t IsForDefinition) { 2532 const Decl *D = GD.getDecl(); 2533 if (isa<CXXConstructorDecl>(D)) 2534 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2535 getFromCtorType(GD.getCtorType()), 2536 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2537 /*DontDefer=*/false, IsForDefinition); 2538 else if (isa<CXXDestructorDecl>(D)) 2539 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2540 getFromDtorType(GD.getDtorType()), 2541 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2542 /*DontDefer=*/false, IsForDefinition); 2543 else if (isa<CXXMethodDecl>(D)) { 2544 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2545 cast<CXXMethodDecl>(D)); 2546 auto Ty = getTypes().GetFunctionType(*FInfo); 2547 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2548 IsForDefinition); 2549 } else if (isa<FunctionDecl>(D)) { 2550 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2551 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2552 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2553 IsForDefinition); 2554 } else 2555 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2556 IsForDefinition); 2557 } 2558 2559 llvm::GlobalVariable * 2560 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2561 llvm::Type *Ty, 2562 llvm::GlobalValue::LinkageTypes Linkage) { 2563 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2564 llvm::GlobalVariable *OldGV = nullptr; 2565 2566 if (GV) { 2567 // Check if the variable has the right type. 2568 if (GV->getType()->getElementType() == Ty) 2569 return GV; 2570 2571 // Because C++ name mangling, the only way we can end up with an already 2572 // existing global with the same name is if it has been declared extern "C". 2573 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2574 OldGV = GV; 2575 } 2576 2577 // Create a new variable. 2578 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2579 Linkage, nullptr, Name); 2580 2581 if (OldGV) { 2582 // Replace occurrences of the old variable if needed. 2583 GV->takeName(OldGV); 2584 2585 if (!OldGV->use_empty()) { 2586 llvm::Constant *NewPtrForOldDecl = 2587 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2588 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2589 } 2590 2591 OldGV->eraseFromParent(); 2592 } 2593 2594 if (supportsCOMDAT() && GV->isWeakForLinker() && 2595 !GV->hasAvailableExternallyLinkage()) 2596 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2597 2598 return GV; 2599 } 2600 2601 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2602 /// given global variable. If Ty is non-null and if the global doesn't exist, 2603 /// then it will be created with the specified type instead of whatever the 2604 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2605 /// that an actual global with type Ty will be returned, not conversion of a 2606 /// variable with the same mangled name but some other type. 2607 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2608 llvm::Type *Ty, 2609 ForDefinition_t IsForDefinition) { 2610 assert(D->hasGlobalStorage() && "Not a global variable"); 2611 QualType ASTTy = D->getType(); 2612 if (!Ty) 2613 Ty = getTypes().ConvertTypeForMem(ASTTy); 2614 2615 llvm::PointerType *PTy = 2616 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2617 2618 StringRef MangledName = getMangledName(D); 2619 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2620 } 2621 2622 /// CreateRuntimeVariable - Create a new runtime global variable with the 2623 /// specified type and name. 2624 llvm::Constant * 2625 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2626 StringRef Name) { 2627 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2628 } 2629 2630 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2631 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2632 2633 StringRef MangledName = getMangledName(D); 2634 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2635 2636 // We already have a definition, not declaration, with the same mangled name. 2637 // Emitting of declaration is not required (and actually overwrites emitted 2638 // definition). 2639 if (GV && !GV->isDeclaration()) 2640 return; 2641 2642 // If we have not seen a reference to this variable yet, place it into the 2643 // deferred declarations table to be emitted if needed later. 2644 if (!MustBeEmitted(D) && !GV) { 2645 DeferredDecls[MangledName] = D; 2646 return; 2647 } 2648 2649 // The tentative definition is the only definition. 2650 EmitGlobalVarDefinition(D); 2651 } 2652 2653 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2654 return Context.toCharUnitsFromBits( 2655 getDataLayout().getTypeStoreSizeInBits(Ty)); 2656 } 2657 2658 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2659 LangAS AddrSpace = LangAS::Default; 2660 if (LangOpts.OpenCL) { 2661 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2662 assert(AddrSpace == LangAS::opencl_global || 2663 AddrSpace == LangAS::opencl_constant || 2664 AddrSpace == LangAS::opencl_local || 2665 AddrSpace >= LangAS::FirstTargetAddressSpace); 2666 return AddrSpace; 2667 } 2668 2669 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2670 if (D && D->hasAttr<CUDAConstantAttr>()) 2671 return LangAS::cuda_constant; 2672 else if (D && D->hasAttr<CUDASharedAttr>()) 2673 return LangAS::cuda_shared; 2674 else 2675 return LangAS::cuda_device; 2676 } 2677 2678 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2679 } 2680 2681 template<typename SomeDecl> 2682 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2683 llvm::GlobalValue *GV) { 2684 if (!getLangOpts().CPlusPlus) 2685 return; 2686 2687 // Must have 'used' attribute, or else inline assembly can't rely on 2688 // the name existing. 2689 if (!D->template hasAttr<UsedAttr>()) 2690 return; 2691 2692 // Must have internal linkage and an ordinary name. 2693 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2694 return; 2695 2696 // Must be in an extern "C" context. Entities declared directly within 2697 // a record are not extern "C" even if the record is in such a context. 2698 const SomeDecl *First = D->getFirstDecl(); 2699 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2700 return; 2701 2702 // OK, this is an internal linkage entity inside an extern "C" linkage 2703 // specification. Make a note of that so we can give it the "expected" 2704 // mangled name if nothing else is using that name. 2705 std::pair<StaticExternCMap::iterator, bool> R = 2706 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2707 2708 // If we have multiple internal linkage entities with the same name 2709 // in extern "C" regions, none of them gets that name. 2710 if (!R.second) 2711 R.first->second = nullptr; 2712 } 2713 2714 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2715 if (!CGM.supportsCOMDAT()) 2716 return false; 2717 2718 if (D.hasAttr<SelectAnyAttr>()) 2719 return true; 2720 2721 GVALinkage Linkage; 2722 if (auto *VD = dyn_cast<VarDecl>(&D)) 2723 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2724 else 2725 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2726 2727 switch (Linkage) { 2728 case GVA_Internal: 2729 case GVA_AvailableExternally: 2730 case GVA_StrongExternal: 2731 return false; 2732 case GVA_DiscardableODR: 2733 case GVA_StrongODR: 2734 return true; 2735 } 2736 llvm_unreachable("No such linkage"); 2737 } 2738 2739 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2740 llvm::GlobalObject &GO) { 2741 if (!shouldBeInCOMDAT(*this, D)) 2742 return; 2743 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2744 } 2745 2746 /// Pass IsTentative as true if you want to create a tentative definition. 2747 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2748 bool IsTentative) { 2749 // OpenCL global variables of sampler type are translated to function calls, 2750 // therefore no need to be translated. 2751 QualType ASTTy = D->getType(); 2752 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2753 return; 2754 2755 llvm::Constant *Init = nullptr; 2756 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2757 bool NeedsGlobalCtor = false; 2758 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2759 2760 const VarDecl *InitDecl; 2761 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2762 2763 Optional<ConstantEmitter> emitter; 2764 2765 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2766 // as part of their declaration." Sema has already checked for 2767 // error cases, so we just need to set Init to UndefValue. 2768 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2769 D->hasAttr<CUDASharedAttr>()) 2770 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2771 else if (!InitExpr) { 2772 // This is a tentative definition; tentative definitions are 2773 // implicitly initialized with { 0 }. 2774 // 2775 // Note that tentative definitions are only emitted at the end of 2776 // a translation unit, so they should never have incomplete 2777 // type. In addition, EmitTentativeDefinition makes sure that we 2778 // never attempt to emit a tentative definition if a real one 2779 // exists. A use may still exists, however, so we still may need 2780 // to do a RAUW. 2781 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2782 Init = EmitNullConstant(D->getType()); 2783 } else { 2784 initializedGlobalDecl = GlobalDecl(D); 2785 emitter.emplace(*this); 2786 Init = emitter->tryEmitForInitializer(*InitDecl); 2787 2788 if (!Init) { 2789 QualType T = InitExpr->getType(); 2790 if (D->getType()->isReferenceType()) 2791 T = D->getType(); 2792 2793 if (getLangOpts().CPlusPlus) { 2794 Init = EmitNullConstant(T); 2795 NeedsGlobalCtor = true; 2796 } else { 2797 ErrorUnsupported(D, "static initializer"); 2798 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2799 } 2800 } else { 2801 // We don't need an initializer, so remove the entry for the delayed 2802 // initializer position (just in case this entry was delayed) if we 2803 // also don't need to register a destructor. 2804 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2805 DelayedCXXInitPosition.erase(D); 2806 } 2807 } 2808 2809 llvm::Type* InitType = Init->getType(); 2810 llvm::Constant *Entry = 2811 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2812 2813 // Strip off a bitcast if we got one back. 2814 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2815 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2816 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2817 // All zero index gep. 2818 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2819 Entry = CE->getOperand(0); 2820 } 2821 2822 // Entry is now either a Function or GlobalVariable. 2823 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2824 2825 // We have a definition after a declaration with the wrong type. 2826 // We must make a new GlobalVariable* and update everything that used OldGV 2827 // (a declaration or tentative definition) with the new GlobalVariable* 2828 // (which will be a definition). 2829 // 2830 // This happens if there is a prototype for a global (e.g. 2831 // "extern int x[];") and then a definition of a different type (e.g. 2832 // "int x[10];"). This also happens when an initializer has a different type 2833 // from the type of the global (this happens with unions). 2834 if (!GV || GV->getType()->getElementType() != InitType || 2835 GV->getType()->getAddressSpace() != 2836 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2837 2838 // Move the old entry aside so that we'll create a new one. 2839 Entry->setName(StringRef()); 2840 2841 // Make a new global with the correct type, this is now guaranteed to work. 2842 GV = cast<llvm::GlobalVariable>( 2843 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2844 2845 // Replace all uses of the old global with the new global 2846 llvm::Constant *NewPtrForOldDecl = 2847 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2848 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2849 2850 // Erase the old global, since it is no longer used. 2851 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2852 } 2853 2854 MaybeHandleStaticInExternC(D, GV); 2855 2856 if (D->hasAttr<AnnotateAttr>()) 2857 AddGlobalAnnotations(D, GV); 2858 2859 // Set the llvm linkage type as appropriate. 2860 llvm::GlobalValue::LinkageTypes Linkage = 2861 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2862 2863 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2864 // the device. [...]" 2865 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2866 // __device__, declares a variable that: [...] 2867 // Is accessible from all the threads within the grid and from the host 2868 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2869 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2870 if (GV && LangOpts.CUDA) { 2871 if (LangOpts.CUDAIsDevice) { 2872 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2873 GV->setExternallyInitialized(true); 2874 } else { 2875 // Host-side shadows of external declarations of device-side 2876 // global variables become internal definitions. These have to 2877 // be internal in order to prevent name conflicts with global 2878 // host variables with the same name in a different TUs. 2879 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2880 Linkage = llvm::GlobalValue::InternalLinkage; 2881 2882 // Shadow variables and their properties must be registered 2883 // with CUDA runtime. 2884 unsigned Flags = 0; 2885 if (!D->hasDefinition()) 2886 Flags |= CGCUDARuntime::ExternDeviceVar; 2887 if (D->hasAttr<CUDAConstantAttr>()) 2888 Flags |= CGCUDARuntime::ConstantDeviceVar; 2889 getCUDARuntime().registerDeviceVar(*GV, Flags); 2890 } else if (D->hasAttr<CUDASharedAttr>()) 2891 // __shared__ variables are odd. Shadows do get created, but 2892 // they are not registered with the CUDA runtime, so they 2893 // can't really be used to access their device-side 2894 // counterparts. It's not clear yet whether it's nvcc's bug or 2895 // a feature, but we've got to do the same for compatibility. 2896 Linkage = llvm::GlobalValue::InternalLinkage; 2897 } 2898 } 2899 2900 GV->setInitializer(Init); 2901 if (emitter) emitter->finalize(GV); 2902 2903 // If it is safe to mark the global 'constant', do so now. 2904 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2905 isTypeConstant(D->getType(), true)); 2906 2907 // If it is in a read-only section, mark it 'constant'. 2908 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2909 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2910 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2911 GV->setConstant(true); 2912 } 2913 2914 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2915 2916 2917 // On Darwin, if the normal linkage of a C++ thread_local variable is 2918 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2919 // copies within a linkage unit; otherwise, the backing variable has 2920 // internal linkage and all accesses should just be calls to the 2921 // Itanium-specified entry point, which has the normal linkage of the 2922 // variable. This is to preserve the ability to change the implementation 2923 // behind the scenes. 2924 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2925 Context.getTargetInfo().getTriple().isOSDarwin() && 2926 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2927 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2928 Linkage = llvm::GlobalValue::InternalLinkage; 2929 2930 GV->setLinkage(Linkage); 2931 if (D->hasAttr<DLLImportAttr>()) 2932 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2933 else if (D->hasAttr<DLLExportAttr>()) 2934 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2935 else 2936 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2937 2938 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2939 // common vars aren't constant even if declared const. 2940 GV->setConstant(false); 2941 // Tentative definition of global variables may be initialized with 2942 // non-zero null pointers. In this case they should have weak linkage 2943 // since common linkage must have zero initializer and must not have 2944 // explicit section therefore cannot have non-zero initial value. 2945 if (!GV->getInitializer()->isNullValue()) 2946 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2947 } 2948 2949 setNonAliasAttributes(D, GV); 2950 2951 if (D->getTLSKind() && !GV->isThreadLocal()) { 2952 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2953 CXXThreadLocals.push_back(D); 2954 setTLSMode(GV, *D); 2955 } 2956 2957 maybeSetTrivialComdat(*D, *GV); 2958 2959 // Emit the initializer function if necessary. 2960 if (NeedsGlobalCtor || NeedsGlobalDtor) 2961 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2962 2963 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2964 2965 // Emit global variable debug information. 2966 if (CGDebugInfo *DI = getModuleDebugInfo()) 2967 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2968 DI->EmitGlobalVariable(GV, D); 2969 } 2970 2971 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2972 CodeGenModule &CGM, const VarDecl *D, 2973 bool NoCommon) { 2974 // Don't give variables common linkage if -fno-common was specified unless it 2975 // was overridden by a NoCommon attribute. 2976 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2977 return true; 2978 2979 // C11 6.9.2/2: 2980 // A declaration of an identifier for an object that has file scope without 2981 // an initializer, and without a storage-class specifier or with the 2982 // storage-class specifier static, constitutes a tentative definition. 2983 if (D->getInit() || D->hasExternalStorage()) 2984 return true; 2985 2986 // A variable cannot be both common and exist in a section. 2987 if (D->hasAttr<SectionAttr>()) 2988 return true; 2989 2990 // A variable cannot be both common and exist in a section. 2991 // We dont try to determine which is the right section in the front-end. 2992 // If no specialized section name is applicable, it will resort to default. 2993 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2994 D->hasAttr<PragmaClangDataSectionAttr>() || 2995 D->hasAttr<PragmaClangRodataSectionAttr>()) 2996 return true; 2997 2998 // Thread local vars aren't considered common linkage. 2999 if (D->getTLSKind()) 3000 return true; 3001 3002 // Tentative definitions marked with WeakImportAttr are true definitions. 3003 if (D->hasAttr<WeakImportAttr>()) 3004 return true; 3005 3006 // A variable cannot be both common and exist in a comdat. 3007 if (shouldBeInCOMDAT(CGM, *D)) 3008 return true; 3009 3010 // Declarations with a required alignment do not have common linkage in MSVC 3011 // mode. 3012 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3013 if (D->hasAttr<AlignedAttr>()) 3014 return true; 3015 QualType VarType = D->getType(); 3016 if (Context.isAlignmentRequired(VarType)) 3017 return true; 3018 3019 if (const auto *RT = VarType->getAs<RecordType>()) { 3020 const RecordDecl *RD = RT->getDecl(); 3021 for (const FieldDecl *FD : RD->fields()) { 3022 if (FD->isBitField()) 3023 continue; 3024 if (FD->hasAttr<AlignedAttr>()) 3025 return true; 3026 if (Context.isAlignmentRequired(FD->getType())) 3027 return true; 3028 } 3029 } 3030 } 3031 3032 return false; 3033 } 3034 3035 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3036 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3037 if (Linkage == GVA_Internal) 3038 return llvm::Function::InternalLinkage; 3039 3040 if (D->hasAttr<WeakAttr>()) { 3041 if (IsConstantVariable) 3042 return llvm::GlobalVariable::WeakODRLinkage; 3043 else 3044 return llvm::GlobalVariable::WeakAnyLinkage; 3045 } 3046 3047 // We are guaranteed to have a strong definition somewhere else, 3048 // so we can use available_externally linkage. 3049 if (Linkage == GVA_AvailableExternally) 3050 return llvm::GlobalValue::AvailableExternallyLinkage; 3051 3052 // Note that Apple's kernel linker doesn't support symbol 3053 // coalescing, so we need to avoid linkonce and weak linkages there. 3054 // Normally, this means we just map to internal, but for explicit 3055 // instantiations we'll map to external. 3056 3057 // In C++, the compiler has to emit a definition in every translation unit 3058 // that references the function. We should use linkonce_odr because 3059 // a) if all references in this translation unit are optimized away, we 3060 // don't need to codegen it. b) if the function persists, it needs to be 3061 // merged with other definitions. c) C++ has the ODR, so we know the 3062 // definition is dependable. 3063 if (Linkage == GVA_DiscardableODR) 3064 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3065 : llvm::Function::InternalLinkage; 3066 3067 // An explicit instantiation of a template has weak linkage, since 3068 // explicit instantiations can occur in multiple translation units 3069 // and must all be equivalent. However, we are not allowed to 3070 // throw away these explicit instantiations. 3071 // 3072 // We don't currently support CUDA device code spread out across multiple TUs, 3073 // so say that CUDA templates are either external (for kernels) or internal. 3074 // This lets llvm perform aggressive inter-procedural optimizations. 3075 if (Linkage == GVA_StrongODR) { 3076 if (Context.getLangOpts().AppleKext) 3077 return llvm::Function::ExternalLinkage; 3078 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3079 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3080 : llvm::Function::InternalLinkage; 3081 return llvm::Function::WeakODRLinkage; 3082 } 3083 3084 // C++ doesn't have tentative definitions and thus cannot have common 3085 // linkage. 3086 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3087 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3088 CodeGenOpts.NoCommon)) 3089 return llvm::GlobalVariable::CommonLinkage; 3090 3091 // selectany symbols are externally visible, so use weak instead of 3092 // linkonce. MSVC optimizes away references to const selectany globals, so 3093 // all definitions should be the same and ODR linkage should be used. 3094 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3095 if (D->hasAttr<SelectAnyAttr>()) 3096 return llvm::GlobalVariable::WeakODRLinkage; 3097 3098 // Otherwise, we have strong external linkage. 3099 assert(Linkage == GVA_StrongExternal); 3100 return llvm::GlobalVariable::ExternalLinkage; 3101 } 3102 3103 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3104 const VarDecl *VD, bool IsConstant) { 3105 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3106 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3107 } 3108 3109 /// Replace the uses of a function that was declared with a non-proto type. 3110 /// We want to silently drop extra arguments from call sites 3111 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3112 llvm::Function *newFn) { 3113 // Fast path. 3114 if (old->use_empty()) return; 3115 3116 llvm::Type *newRetTy = newFn->getReturnType(); 3117 SmallVector<llvm::Value*, 4> newArgs; 3118 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3119 3120 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3121 ui != ue; ) { 3122 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3123 llvm::User *user = use->getUser(); 3124 3125 // Recognize and replace uses of bitcasts. Most calls to 3126 // unprototyped functions will use bitcasts. 3127 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3128 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3129 replaceUsesOfNonProtoConstant(bitcast, newFn); 3130 continue; 3131 } 3132 3133 // Recognize calls to the function. 3134 llvm::CallSite callSite(user); 3135 if (!callSite) continue; 3136 if (!callSite.isCallee(&*use)) continue; 3137 3138 // If the return types don't match exactly, then we can't 3139 // transform this call unless it's dead. 3140 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3141 continue; 3142 3143 // Get the call site's attribute list. 3144 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3145 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3146 3147 // If the function was passed too few arguments, don't transform. 3148 unsigned newNumArgs = newFn->arg_size(); 3149 if (callSite.arg_size() < newNumArgs) continue; 3150 3151 // If extra arguments were passed, we silently drop them. 3152 // If any of the types mismatch, we don't transform. 3153 unsigned argNo = 0; 3154 bool dontTransform = false; 3155 for (llvm::Argument &A : newFn->args()) { 3156 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3157 dontTransform = true; 3158 break; 3159 } 3160 3161 // Add any parameter attributes. 3162 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3163 argNo++; 3164 } 3165 if (dontTransform) 3166 continue; 3167 3168 // Okay, we can transform this. Create the new call instruction and copy 3169 // over the required information. 3170 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3171 3172 // Copy over any operand bundles. 3173 callSite.getOperandBundlesAsDefs(newBundles); 3174 3175 llvm::CallSite newCall; 3176 if (callSite.isCall()) { 3177 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3178 callSite.getInstruction()); 3179 } else { 3180 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3181 newCall = llvm::InvokeInst::Create(newFn, 3182 oldInvoke->getNormalDest(), 3183 oldInvoke->getUnwindDest(), 3184 newArgs, newBundles, "", 3185 callSite.getInstruction()); 3186 } 3187 newArgs.clear(); // for the next iteration 3188 3189 if (!newCall->getType()->isVoidTy()) 3190 newCall->takeName(callSite.getInstruction()); 3191 newCall.setAttributes(llvm::AttributeList::get( 3192 newFn->getContext(), oldAttrs.getFnAttributes(), 3193 oldAttrs.getRetAttributes(), newArgAttrs)); 3194 newCall.setCallingConv(callSite.getCallingConv()); 3195 3196 // Finally, remove the old call, replacing any uses with the new one. 3197 if (!callSite->use_empty()) 3198 callSite->replaceAllUsesWith(newCall.getInstruction()); 3199 3200 // Copy debug location attached to CI. 3201 if (callSite->getDebugLoc()) 3202 newCall->setDebugLoc(callSite->getDebugLoc()); 3203 3204 callSite->eraseFromParent(); 3205 } 3206 } 3207 3208 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3209 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3210 /// existing call uses of the old function in the module, this adjusts them to 3211 /// call the new function directly. 3212 /// 3213 /// This is not just a cleanup: the always_inline pass requires direct calls to 3214 /// functions to be able to inline them. If there is a bitcast in the way, it 3215 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3216 /// run at -O0. 3217 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3218 llvm::Function *NewFn) { 3219 // If we're redefining a global as a function, don't transform it. 3220 if (!isa<llvm::Function>(Old)) return; 3221 3222 replaceUsesOfNonProtoConstant(Old, NewFn); 3223 } 3224 3225 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3226 auto DK = VD->isThisDeclarationADefinition(); 3227 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3228 return; 3229 3230 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3231 // If we have a definition, this might be a deferred decl. If the 3232 // instantiation is explicit, make sure we emit it at the end. 3233 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3234 GetAddrOfGlobalVar(VD); 3235 3236 EmitTopLevelDecl(VD); 3237 } 3238 3239 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3240 llvm::GlobalValue *GV) { 3241 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3242 3243 // Compute the function info and LLVM type. 3244 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3245 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3246 3247 // Get or create the prototype for the function. 3248 if (!GV || (GV->getType()->getElementType() != Ty)) 3249 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3250 /*DontDefer=*/true, 3251 ForDefinition)); 3252 3253 // Already emitted. 3254 if (!GV->isDeclaration()) 3255 return; 3256 3257 // We need to set linkage and visibility on the function before 3258 // generating code for it because various parts of IR generation 3259 // want to propagate this information down (e.g. to local static 3260 // declarations). 3261 auto *Fn = cast<llvm::Function>(GV); 3262 setFunctionLinkage(GD, Fn); 3263 setFunctionDLLStorageClass(GD, Fn); 3264 3265 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3266 setGlobalVisibility(Fn, D, ForDefinition); 3267 3268 MaybeHandleStaticInExternC(D, Fn); 3269 3270 maybeSetTrivialComdat(*D, *Fn); 3271 3272 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3273 3274 setFunctionDefinitionAttributes(D, Fn); 3275 SetLLVMFunctionAttributesForDefinition(D, Fn); 3276 3277 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3278 AddGlobalCtor(Fn, CA->getPriority()); 3279 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3280 AddGlobalDtor(Fn, DA->getPriority()); 3281 if (D->hasAttr<AnnotateAttr>()) 3282 AddGlobalAnnotations(D, Fn); 3283 } 3284 3285 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3286 const auto *D = cast<ValueDecl>(GD.getDecl()); 3287 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3288 assert(AA && "Not an alias?"); 3289 3290 StringRef MangledName = getMangledName(GD); 3291 3292 if (AA->getAliasee() == MangledName) { 3293 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3294 return; 3295 } 3296 3297 // If there is a definition in the module, then it wins over the alias. 3298 // This is dubious, but allow it to be safe. Just ignore the alias. 3299 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3300 if (Entry && !Entry->isDeclaration()) 3301 return; 3302 3303 Aliases.push_back(GD); 3304 3305 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3306 3307 // Create a reference to the named value. This ensures that it is emitted 3308 // if a deferred decl. 3309 llvm::Constant *Aliasee; 3310 if (isa<llvm::FunctionType>(DeclTy)) 3311 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3312 /*ForVTable=*/false); 3313 else 3314 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3315 llvm::PointerType::getUnqual(DeclTy), 3316 /*D=*/nullptr); 3317 3318 // Create the new alias itself, but don't set a name yet. 3319 auto *GA = llvm::GlobalAlias::create( 3320 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3321 3322 if (Entry) { 3323 if (GA->getAliasee() == Entry) { 3324 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3325 return; 3326 } 3327 3328 assert(Entry->isDeclaration()); 3329 3330 // If there is a declaration in the module, then we had an extern followed 3331 // by the alias, as in: 3332 // extern int test6(); 3333 // ... 3334 // int test6() __attribute__((alias("test7"))); 3335 // 3336 // Remove it and replace uses of it with the alias. 3337 GA->takeName(Entry); 3338 3339 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3340 Entry->getType())); 3341 Entry->eraseFromParent(); 3342 } else { 3343 GA->setName(MangledName); 3344 } 3345 3346 // Set attributes which are particular to an alias; this is a 3347 // specialization of the attributes which may be set on a global 3348 // variable/function. 3349 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3350 D->isWeakImported()) { 3351 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3352 } 3353 3354 if (const auto *VD = dyn_cast<VarDecl>(D)) 3355 if (VD->getTLSKind()) 3356 setTLSMode(GA, *VD); 3357 3358 setAliasAttributes(D, GA); 3359 } 3360 3361 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3362 const auto *D = cast<ValueDecl>(GD.getDecl()); 3363 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3364 assert(IFA && "Not an ifunc?"); 3365 3366 StringRef MangledName = getMangledName(GD); 3367 3368 if (IFA->getResolver() == MangledName) { 3369 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3370 return; 3371 } 3372 3373 // Report an error if some definition overrides ifunc. 3374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3375 if (Entry && !Entry->isDeclaration()) { 3376 GlobalDecl OtherGD; 3377 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3378 DiagnosedConflictingDefinitions.insert(GD).second) { 3379 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3380 Diags.Report(OtherGD.getDecl()->getLocation(), 3381 diag::note_previous_definition); 3382 } 3383 return; 3384 } 3385 3386 Aliases.push_back(GD); 3387 3388 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3389 llvm::Constant *Resolver = 3390 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3391 /*ForVTable=*/false); 3392 llvm::GlobalIFunc *GIF = 3393 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3394 "", Resolver, &getModule()); 3395 if (Entry) { 3396 if (GIF->getResolver() == Entry) { 3397 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3398 return; 3399 } 3400 assert(Entry->isDeclaration()); 3401 3402 // If there is a declaration in the module, then we had an extern followed 3403 // by the ifunc, as in: 3404 // extern int test(); 3405 // ... 3406 // int test() __attribute__((ifunc("resolver"))); 3407 // 3408 // Remove it and replace uses of it with the ifunc. 3409 GIF->takeName(Entry); 3410 3411 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3412 Entry->getType())); 3413 Entry->eraseFromParent(); 3414 } else 3415 GIF->setName(MangledName); 3416 3417 SetCommonAttributes(D, GIF); 3418 } 3419 3420 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3421 ArrayRef<llvm::Type*> Tys) { 3422 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3423 Tys); 3424 } 3425 3426 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3427 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3428 const StringLiteral *Literal, bool TargetIsLSB, 3429 bool &IsUTF16, unsigned &StringLength) { 3430 StringRef String = Literal->getString(); 3431 unsigned NumBytes = String.size(); 3432 3433 // Check for simple case. 3434 if (!Literal->containsNonAsciiOrNull()) { 3435 StringLength = NumBytes; 3436 return *Map.insert(std::make_pair(String, nullptr)).first; 3437 } 3438 3439 // Otherwise, convert the UTF8 literals into a string of shorts. 3440 IsUTF16 = true; 3441 3442 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3443 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3444 llvm::UTF16 *ToPtr = &ToBuf[0]; 3445 3446 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3447 ToPtr + NumBytes, llvm::strictConversion); 3448 3449 // ConvertUTF8toUTF16 returns the length in ToPtr. 3450 StringLength = ToPtr - &ToBuf[0]; 3451 3452 // Add an explicit null. 3453 *ToPtr = 0; 3454 return *Map.insert(std::make_pair( 3455 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3456 (StringLength + 1) * 2), 3457 nullptr)).first; 3458 } 3459 3460 ConstantAddress 3461 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3462 unsigned StringLength = 0; 3463 bool isUTF16 = false; 3464 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3465 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3466 getDataLayout().isLittleEndian(), isUTF16, 3467 StringLength); 3468 3469 if (auto *C = Entry.second) 3470 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3471 3472 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3473 llvm::Constant *Zeros[] = { Zero, Zero }; 3474 3475 // If we don't already have it, get __CFConstantStringClassReference. 3476 if (!CFConstantStringClassRef) { 3477 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3478 Ty = llvm::ArrayType::get(Ty, 0); 3479 llvm::Constant *GV = 3480 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3481 3482 if (getTriple().isOSBinFormatCOFF()) { 3483 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3484 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3485 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3486 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3487 3488 const VarDecl *VD = nullptr; 3489 for (const auto &Result : DC->lookup(&II)) 3490 if ((VD = dyn_cast<VarDecl>(Result))) 3491 break; 3492 3493 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3494 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3495 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3496 } else { 3497 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3498 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3499 } 3500 } 3501 3502 // Decay array -> ptr 3503 CFConstantStringClassRef = 3504 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3505 } 3506 3507 QualType CFTy = getContext().getCFConstantStringType(); 3508 3509 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3510 3511 ConstantInitBuilder Builder(*this); 3512 auto Fields = Builder.beginStruct(STy); 3513 3514 // Class pointer. 3515 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3516 3517 // Flags. 3518 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3519 3520 // String pointer. 3521 llvm::Constant *C = nullptr; 3522 if (isUTF16) { 3523 auto Arr = llvm::makeArrayRef( 3524 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3525 Entry.first().size() / 2); 3526 C = llvm::ConstantDataArray::get(VMContext, Arr); 3527 } else { 3528 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3529 } 3530 3531 // Note: -fwritable-strings doesn't make the backing store strings of 3532 // CFStrings writable. (See <rdar://problem/10657500>) 3533 auto *GV = 3534 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3535 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3536 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3537 // Don't enforce the target's minimum global alignment, since the only use 3538 // of the string is via this class initializer. 3539 CharUnits Align = isUTF16 3540 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3541 : getContext().getTypeAlignInChars(getContext().CharTy); 3542 GV->setAlignment(Align.getQuantity()); 3543 3544 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3545 // Without it LLVM can merge the string with a non unnamed_addr one during 3546 // LTO. Doing that changes the section it ends in, which surprises ld64. 3547 if (getTriple().isOSBinFormatMachO()) 3548 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3549 : "__TEXT,__cstring,cstring_literals"); 3550 3551 // String. 3552 llvm::Constant *Str = 3553 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3554 3555 if (isUTF16) 3556 // Cast the UTF16 string to the correct type. 3557 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3558 Fields.add(Str); 3559 3560 // String length. 3561 auto Ty = getTypes().ConvertType(getContext().LongTy); 3562 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3563 3564 CharUnits Alignment = getPointerAlign(); 3565 3566 // The struct. 3567 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3568 /*isConstant=*/false, 3569 llvm::GlobalVariable::PrivateLinkage); 3570 switch (getTriple().getObjectFormat()) { 3571 case llvm::Triple::UnknownObjectFormat: 3572 llvm_unreachable("unknown file format"); 3573 case llvm::Triple::COFF: 3574 case llvm::Triple::ELF: 3575 case llvm::Triple::Wasm: 3576 GV->setSection("cfstring"); 3577 break; 3578 case llvm::Triple::MachO: 3579 GV->setSection("__DATA,__cfstring"); 3580 break; 3581 } 3582 Entry.second = GV; 3583 3584 return ConstantAddress(GV, Alignment); 3585 } 3586 3587 bool CodeGenModule::getExpressionLocationsEnabled() const { 3588 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3589 } 3590 3591 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3592 if (ObjCFastEnumerationStateType.isNull()) { 3593 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3594 D->startDefinition(); 3595 3596 QualType FieldTypes[] = { 3597 Context.UnsignedLongTy, 3598 Context.getPointerType(Context.getObjCIdType()), 3599 Context.getPointerType(Context.UnsignedLongTy), 3600 Context.getConstantArrayType(Context.UnsignedLongTy, 3601 llvm::APInt(32, 5), ArrayType::Normal, 0) 3602 }; 3603 3604 for (size_t i = 0; i < 4; ++i) { 3605 FieldDecl *Field = FieldDecl::Create(Context, 3606 D, 3607 SourceLocation(), 3608 SourceLocation(), nullptr, 3609 FieldTypes[i], /*TInfo=*/nullptr, 3610 /*BitWidth=*/nullptr, 3611 /*Mutable=*/false, 3612 ICIS_NoInit); 3613 Field->setAccess(AS_public); 3614 D->addDecl(Field); 3615 } 3616 3617 D->completeDefinition(); 3618 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3619 } 3620 3621 return ObjCFastEnumerationStateType; 3622 } 3623 3624 llvm::Constant * 3625 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3626 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3627 3628 // Don't emit it as the address of the string, emit the string data itself 3629 // as an inline array. 3630 if (E->getCharByteWidth() == 1) { 3631 SmallString<64> Str(E->getString()); 3632 3633 // Resize the string to the right size, which is indicated by its type. 3634 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3635 Str.resize(CAT->getSize().getZExtValue()); 3636 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3637 } 3638 3639 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3640 llvm::Type *ElemTy = AType->getElementType(); 3641 unsigned NumElements = AType->getNumElements(); 3642 3643 // Wide strings have either 2-byte or 4-byte elements. 3644 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3645 SmallVector<uint16_t, 32> Elements; 3646 Elements.reserve(NumElements); 3647 3648 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3649 Elements.push_back(E->getCodeUnit(i)); 3650 Elements.resize(NumElements); 3651 return llvm::ConstantDataArray::get(VMContext, Elements); 3652 } 3653 3654 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3655 SmallVector<uint32_t, 32> Elements; 3656 Elements.reserve(NumElements); 3657 3658 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3659 Elements.push_back(E->getCodeUnit(i)); 3660 Elements.resize(NumElements); 3661 return llvm::ConstantDataArray::get(VMContext, Elements); 3662 } 3663 3664 static llvm::GlobalVariable * 3665 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3666 CodeGenModule &CGM, StringRef GlobalName, 3667 CharUnits Alignment) { 3668 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3669 unsigned AddrSpace = 0; 3670 if (CGM.getLangOpts().OpenCL) 3671 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3672 3673 llvm::Module &M = CGM.getModule(); 3674 // Create a global variable for this string 3675 auto *GV = new llvm::GlobalVariable( 3676 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3677 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3678 GV->setAlignment(Alignment.getQuantity()); 3679 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3680 if (GV->isWeakForLinker()) { 3681 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3682 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3683 } 3684 3685 return GV; 3686 } 3687 3688 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3689 /// constant array for the given string literal. 3690 ConstantAddress 3691 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3692 StringRef Name) { 3693 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3694 3695 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3696 llvm::GlobalVariable **Entry = nullptr; 3697 if (!LangOpts.WritableStrings) { 3698 Entry = &ConstantStringMap[C]; 3699 if (auto GV = *Entry) { 3700 if (Alignment.getQuantity() > GV->getAlignment()) 3701 GV->setAlignment(Alignment.getQuantity()); 3702 return ConstantAddress(GV, Alignment); 3703 } 3704 } 3705 3706 SmallString<256> MangledNameBuffer; 3707 StringRef GlobalVariableName; 3708 llvm::GlobalValue::LinkageTypes LT; 3709 3710 // Mangle the string literal if the ABI allows for it. However, we cannot 3711 // do this if we are compiling with ASan or -fwritable-strings because they 3712 // rely on strings having normal linkage. 3713 if (!LangOpts.WritableStrings && 3714 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3715 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3716 llvm::raw_svector_ostream Out(MangledNameBuffer); 3717 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3718 3719 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3720 GlobalVariableName = MangledNameBuffer; 3721 } else { 3722 LT = llvm::GlobalValue::PrivateLinkage; 3723 GlobalVariableName = Name; 3724 } 3725 3726 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3727 if (Entry) 3728 *Entry = GV; 3729 3730 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3731 QualType()); 3732 return ConstantAddress(GV, Alignment); 3733 } 3734 3735 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3736 /// array for the given ObjCEncodeExpr node. 3737 ConstantAddress 3738 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3739 std::string Str; 3740 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3741 3742 return GetAddrOfConstantCString(Str); 3743 } 3744 3745 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3746 /// the literal and a terminating '\0' character. 3747 /// The result has pointer to array type. 3748 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3749 const std::string &Str, const char *GlobalName) { 3750 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3751 CharUnits Alignment = 3752 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3753 3754 llvm::Constant *C = 3755 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3756 3757 // Don't share any string literals if strings aren't constant. 3758 llvm::GlobalVariable **Entry = nullptr; 3759 if (!LangOpts.WritableStrings) { 3760 Entry = &ConstantStringMap[C]; 3761 if (auto GV = *Entry) { 3762 if (Alignment.getQuantity() > GV->getAlignment()) 3763 GV->setAlignment(Alignment.getQuantity()); 3764 return ConstantAddress(GV, Alignment); 3765 } 3766 } 3767 3768 // Get the default prefix if a name wasn't specified. 3769 if (!GlobalName) 3770 GlobalName = ".str"; 3771 // Create a global variable for this. 3772 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3773 GlobalName, Alignment); 3774 if (Entry) 3775 *Entry = GV; 3776 return ConstantAddress(GV, Alignment); 3777 } 3778 3779 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3780 const MaterializeTemporaryExpr *E, const Expr *Init) { 3781 assert((E->getStorageDuration() == SD_Static || 3782 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3783 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3784 3785 // If we're not materializing a subobject of the temporary, keep the 3786 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3787 QualType MaterializedType = Init->getType(); 3788 if (Init == E->GetTemporaryExpr()) 3789 MaterializedType = E->getType(); 3790 3791 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3792 3793 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3794 return ConstantAddress(Slot, Align); 3795 3796 // FIXME: If an externally-visible declaration extends multiple temporaries, 3797 // we need to give each temporary the same name in every translation unit (and 3798 // we also need to make the temporaries externally-visible). 3799 SmallString<256> Name; 3800 llvm::raw_svector_ostream Out(Name); 3801 getCXXABI().getMangleContext().mangleReferenceTemporary( 3802 VD, E->getManglingNumber(), Out); 3803 3804 APValue *Value = nullptr; 3805 if (E->getStorageDuration() == SD_Static) { 3806 // We might have a cached constant initializer for this temporary. Note 3807 // that this might have a different value from the value computed by 3808 // evaluating the initializer if the surrounding constant expression 3809 // modifies the temporary. 3810 Value = getContext().getMaterializedTemporaryValue(E, false); 3811 if (Value && Value->isUninit()) 3812 Value = nullptr; 3813 } 3814 3815 // Try evaluating it now, it might have a constant initializer. 3816 Expr::EvalResult EvalResult; 3817 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3818 !EvalResult.hasSideEffects()) 3819 Value = &EvalResult.Val; 3820 3821 LangAS AddrSpace = 3822 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3823 3824 Optional<ConstantEmitter> emitter; 3825 llvm::Constant *InitialValue = nullptr; 3826 bool Constant = false; 3827 llvm::Type *Type; 3828 if (Value) { 3829 // The temporary has a constant initializer, use it. 3830 emitter.emplace(*this); 3831 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3832 MaterializedType); 3833 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3834 Type = InitialValue->getType(); 3835 } else { 3836 // No initializer, the initialization will be provided when we 3837 // initialize the declaration which performed lifetime extension. 3838 Type = getTypes().ConvertTypeForMem(MaterializedType); 3839 } 3840 3841 // Create a global variable for this lifetime-extended temporary. 3842 llvm::GlobalValue::LinkageTypes Linkage = 3843 getLLVMLinkageVarDefinition(VD, Constant); 3844 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3845 const VarDecl *InitVD; 3846 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3847 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3848 // Temporaries defined inside a class get linkonce_odr linkage because the 3849 // class can be defined in multipe translation units. 3850 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3851 } else { 3852 // There is no need for this temporary to have external linkage if the 3853 // VarDecl has external linkage. 3854 Linkage = llvm::GlobalVariable::InternalLinkage; 3855 } 3856 } 3857 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3858 auto *GV = new llvm::GlobalVariable( 3859 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3860 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3861 if (emitter) emitter->finalize(GV); 3862 setGlobalVisibility(GV, VD, ForDefinition); 3863 GV->setAlignment(Align.getQuantity()); 3864 if (supportsCOMDAT() && GV->isWeakForLinker()) 3865 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3866 if (VD->getTLSKind()) 3867 setTLSMode(GV, *VD); 3868 llvm::Constant *CV = GV; 3869 if (AddrSpace != LangAS::Default) 3870 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3871 *this, GV, AddrSpace, LangAS::Default, 3872 Type->getPointerTo( 3873 getContext().getTargetAddressSpace(LangAS::Default))); 3874 MaterializedGlobalTemporaryMap[E] = CV; 3875 return ConstantAddress(CV, Align); 3876 } 3877 3878 /// EmitObjCPropertyImplementations - Emit information for synthesized 3879 /// properties for an implementation. 3880 void CodeGenModule::EmitObjCPropertyImplementations(const 3881 ObjCImplementationDecl *D) { 3882 for (const auto *PID : D->property_impls()) { 3883 // Dynamic is just for type-checking. 3884 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3885 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3886 3887 // Determine which methods need to be implemented, some may have 3888 // been overridden. Note that ::isPropertyAccessor is not the method 3889 // we want, that just indicates if the decl came from a 3890 // property. What we want to know is if the method is defined in 3891 // this implementation. 3892 if (!D->getInstanceMethod(PD->getGetterName())) 3893 CodeGenFunction(*this).GenerateObjCGetter( 3894 const_cast<ObjCImplementationDecl *>(D), PID); 3895 if (!PD->isReadOnly() && 3896 !D->getInstanceMethod(PD->getSetterName())) 3897 CodeGenFunction(*this).GenerateObjCSetter( 3898 const_cast<ObjCImplementationDecl *>(D), PID); 3899 } 3900 } 3901 } 3902 3903 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3904 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3905 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3906 ivar; ivar = ivar->getNextIvar()) 3907 if (ivar->getType().isDestructedType()) 3908 return true; 3909 3910 return false; 3911 } 3912 3913 static bool AllTrivialInitializers(CodeGenModule &CGM, 3914 ObjCImplementationDecl *D) { 3915 CodeGenFunction CGF(CGM); 3916 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3917 E = D->init_end(); B != E; ++B) { 3918 CXXCtorInitializer *CtorInitExp = *B; 3919 Expr *Init = CtorInitExp->getInit(); 3920 if (!CGF.isTrivialInitializer(Init)) 3921 return false; 3922 } 3923 return true; 3924 } 3925 3926 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3927 /// for an implementation. 3928 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3929 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3930 if (needsDestructMethod(D)) { 3931 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3932 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3933 ObjCMethodDecl *DTORMethod = 3934 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3935 cxxSelector, getContext().VoidTy, nullptr, D, 3936 /*isInstance=*/true, /*isVariadic=*/false, 3937 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3938 /*isDefined=*/false, ObjCMethodDecl::Required); 3939 D->addInstanceMethod(DTORMethod); 3940 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3941 D->setHasDestructors(true); 3942 } 3943 3944 // If the implementation doesn't have any ivar initializers, we don't need 3945 // a .cxx_construct. 3946 if (D->getNumIvarInitializers() == 0 || 3947 AllTrivialInitializers(*this, D)) 3948 return; 3949 3950 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3951 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3952 // The constructor returns 'self'. 3953 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3954 D->getLocation(), 3955 D->getLocation(), 3956 cxxSelector, 3957 getContext().getObjCIdType(), 3958 nullptr, D, /*isInstance=*/true, 3959 /*isVariadic=*/false, 3960 /*isPropertyAccessor=*/true, 3961 /*isImplicitlyDeclared=*/true, 3962 /*isDefined=*/false, 3963 ObjCMethodDecl::Required); 3964 D->addInstanceMethod(CTORMethod); 3965 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3966 D->setHasNonZeroConstructors(true); 3967 } 3968 3969 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3970 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3971 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3972 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3973 ErrorUnsupported(LSD, "linkage spec"); 3974 return; 3975 } 3976 3977 EmitDeclContext(LSD); 3978 } 3979 3980 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3981 for (auto *I : DC->decls()) { 3982 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3983 // are themselves considered "top-level", so EmitTopLevelDecl on an 3984 // ObjCImplDecl does not recursively visit them. We need to do that in 3985 // case they're nested inside another construct (LinkageSpecDecl / 3986 // ExportDecl) that does stop them from being considered "top-level". 3987 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3988 for (auto *M : OID->methods()) 3989 EmitTopLevelDecl(M); 3990 } 3991 3992 EmitTopLevelDecl(I); 3993 } 3994 } 3995 3996 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3997 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3998 // Ignore dependent declarations. 3999 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 4000 return; 4001 4002 switch (D->getKind()) { 4003 case Decl::CXXConversion: 4004 case Decl::CXXMethod: 4005 case Decl::Function: 4006 // Skip function templates 4007 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4008 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4009 return; 4010 4011 EmitGlobal(cast<FunctionDecl>(D)); 4012 // Always provide some coverage mapping 4013 // even for the functions that aren't emitted. 4014 AddDeferredUnusedCoverageMapping(D); 4015 break; 4016 4017 case Decl::CXXDeductionGuide: 4018 // Function-like, but does not result in code emission. 4019 break; 4020 4021 case Decl::Var: 4022 case Decl::Decomposition: 4023 // Skip variable templates 4024 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4025 return; 4026 LLVM_FALLTHROUGH; 4027 case Decl::VarTemplateSpecialization: 4028 EmitGlobal(cast<VarDecl>(D)); 4029 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4030 for (auto *B : DD->bindings()) 4031 if (auto *HD = B->getHoldingVar()) 4032 EmitGlobal(HD); 4033 break; 4034 4035 // Indirect fields from global anonymous structs and unions can be 4036 // ignored; only the actual variable requires IR gen support. 4037 case Decl::IndirectField: 4038 break; 4039 4040 // C++ Decls 4041 case Decl::Namespace: 4042 EmitDeclContext(cast<NamespaceDecl>(D)); 4043 break; 4044 case Decl::ClassTemplateSpecialization: { 4045 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4046 if (DebugInfo && 4047 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4048 Spec->hasDefinition()) 4049 DebugInfo->completeTemplateDefinition(*Spec); 4050 } LLVM_FALLTHROUGH; 4051 case Decl::CXXRecord: 4052 if (DebugInfo) { 4053 if (auto *ES = D->getASTContext().getExternalSource()) 4054 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4055 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4056 } 4057 // Emit any static data members, they may be definitions. 4058 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4059 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4060 EmitTopLevelDecl(I); 4061 break; 4062 // No code generation needed. 4063 case Decl::UsingShadow: 4064 case Decl::ClassTemplate: 4065 case Decl::VarTemplate: 4066 case Decl::VarTemplatePartialSpecialization: 4067 case Decl::FunctionTemplate: 4068 case Decl::TypeAliasTemplate: 4069 case Decl::Block: 4070 case Decl::Empty: 4071 break; 4072 case Decl::Using: // using X; [C++] 4073 if (CGDebugInfo *DI = getModuleDebugInfo()) 4074 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4075 return; 4076 case Decl::NamespaceAlias: 4077 if (CGDebugInfo *DI = getModuleDebugInfo()) 4078 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4079 return; 4080 case Decl::UsingDirective: // using namespace X; [C++] 4081 if (CGDebugInfo *DI = getModuleDebugInfo()) 4082 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4083 return; 4084 case Decl::CXXConstructor: 4085 // Skip function templates 4086 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4087 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4088 return; 4089 4090 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4091 break; 4092 case Decl::CXXDestructor: 4093 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4094 return; 4095 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4096 break; 4097 4098 case Decl::StaticAssert: 4099 // Nothing to do. 4100 break; 4101 4102 // Objective-C Decls 4103 4104 // Forward declarations, no (immediate) code generation. 4105 case Decl::ObjCInterface: 4106 case Decl::ObjCCategory: 4107 break; 4108 4109 case Decl::ObjCProtocol: { 4110 auto *Proto = cast<ObjCProtocolDecl>(D); 4111 if (Proto->isThisDeclarationADefinition()) 4112 ObjCRuntime->GenerateProtocol(Proto); 4113 break; 4114 } 4115 4116 case Decl::ObjCCategoryImpl: 4117 // Categories have properties but don't support synthesize so we 4118 // can ignore them here. 4119 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4120 break; 4121 4122 case Decl::ObjCImplementation: { 4123 auto *OMD = cast<ObjCImplementationDecl>(D); 4124 EmitObjCPropertyImplementations(OMD); 4125 EmitObjCIvarInitializations(OMD); 4126 ObjCRuntime->GenerateClass(OMD); 4127 // Emit global variable debug information. 4128 if (CGDebugInfo *DI = getModuleDebugInfo()) 4129 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4130 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4131 OMD->getClassInterface()), OMD->getLocation()); 4132 break; 4133 } 4134 case Decl::ObjCMethod: { 4135 auto *OMD = cast<ObjCMethodDecl>(D); 4136 // If this is not a prototype, emit the body. 4137 if (OMD->getBody()) 4138 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4139 break; 4140 } 4141 case Decl::ObjCCompatibleAlias: 4142 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4143 break; 4144 4145 case Decl::PragmaComment: { 4146 const auto *PCD = cast<PragmaCommentDecl>(D); 4147 switch (PCD->getCommentKind()) { 4148 case PCK_Unknown: 4149 llvm_unreachable("unexpected pragma comment kind"); 4150 case PCK_Linker: 4151 AppendLinkerOptions(PCD->getArg()); 4152 break; 4153 case PCK_Lib: 4154 AddDependentLib(PCD->getArg()); 4155 break; 4156 case PCK_Compiler: 4157 case PCK_ExeStr: 4158 case PCK_User: 4159 break; // We ignore all of these. 4160 } 4161 break; 4162 } 4163 4164 case Decl::PragmaDetectMismatch: { 4165 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4166 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4167 break; 4168 } 4169 4170 case Decl::LinkageSpec: 4171 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4172 break; 4173 4174 case Decl::FileScopeAsm: { 4175 // File-scope asm is ignored during device-side CUDA compilation. 4176 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4177 break; 4178 // File-scope asm is ignored during device-side OpenMP compilation. 4179 if (LangOpts.OpenMPIsDevice) 4180 break; 4181 auto *AD = cast<FileScopeAsmDecl>(D); 4182 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4183 break; 4184 } 4185 4186 case Decl::Import: { 4187 auto *Import = cast<ImportDecl>(D); 4188 4189 // If we've already imported this module, we're done. 4190 if (!ImportedModules.insert(Import->getImportedModule())) 4191 break; 4192 4193 // Emit debug information for direct imports. 4194 if (!Import->getImportedOwningModule()) { 4195 if (CGDebugInfo *DI = getModuleDebugInfo()) 4196 DI->EmitImportDecl(*Import); 4197 } 4198 4199 // Find all of the submodules and emit the module initializers. 4200 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4201 SmallVector<clang::Module *, 16> Stack; 4202 Visited.insert(Import->getImportedModule()); 4203 Stack.push_back(Import->getImportedModule()); 4204 4205 while (!Stack.empty()) { 4206 clang::Module *Mod = Stack.pop_back_val(); 4207 if (!EmittedModuleInitializers.insert(Mod).second) 4208 continue; 4209 4210 for (auto *D : Context.getModuleInitializers(Mod)) 4211 EmitTopLevelDecl(D); 4212 4213 // Visit the submodules of this module. 4214 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4215 SubEnd = Mod->submodule_end(); 4216 Sub != SubEnd; ++Sub) { 4217 // Skip explicit children; they need to be explicitly imported to emit 4218 // the initializers. 4219 if ((*Sub)->IsExplicit) 4220 continue; 4221 4222 if (Visited.insert(*Sub).second) 4223 Stack.push_back(*Sub); 4224 } 4225 } 4226 break; 4227 } 4228 4229 case Decl::Export: 4230 EmitDeclContext(cast<ExportDecl>(D)); 4231 break; 4232 4233 case Decl::OMPThreadPrivate: 4234 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4235 break; 4236 4237 case Decl::OMPDeclareReduction: 4238 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4239 break; 4240 4241 default: 4242 // Make sure we handled everything we should, every other kind is a 4243 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4244 // function. Need to recode Decl::Kind to do that easily. 4245 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4246 break; 4247 } 4248 } 4249 4250 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4251 // Do we need to generate coverage mapping? 4252 if (!CodeGenOpts.CoverageMapping) 4253 return; 4254 switch (D->getKind()) { 4255 case Decl::CXXConversion: 4256 case Decl::CXXMethod: 4257 case Decl::Function: 4258 case Decl::ObjCMethod: 4259 case Decl::CXXConstructor: 4260 case Decl::CXXDestructor: { 4261 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4262 return; 4263 SourceManager &SM = getContext().getSourceManager(); 4264 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4265 return; 4266 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4267 if (I == DeferredEmptyCoverageMappingDecls.end()) 4268 DeferredEmptyCoverageMappingDecls[D] = true; 4269 break; 4270 } 4271 default: 4272 break; 4273 }; 4274 } 4275 4276 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4277 // Do we need to generate coverage mapping? 4278 if (!CodeGenOpts.CoverageMapping) 4279 return; 4280 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4281 if (Fn->isTemplateInstantiation()) 4282 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4283 } 4284 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4285 if (I == DeferredEmptyCoverageMappingDecls.end()) 4286 DeferredEmptyCoverageMappingDecls[D] = false; 4287 else 4288 I->second = false; 4289 } 4290 4291 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4292 // We call takeVector() here to avoid use-after-free. 4293 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4294 // we deserialize function bodies to emit coverage info for them, and that 4295 // deserializes more declarations. How should we handle that case? 4296 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4297 if (!Entry.second) 4298 continue; 4299 const Decl *D = Entry.first; 4300 switch (D->getKind()) { 4301 case Decl::CXXConversion: 4302 case Decl::CXXMethod: 4303 case Decl::Function: 4304 case Decl::ObjCMethod: { 4305 CodeGenPGO PGO(*this); 4306 GlobalDecl GD(cast<FunctionDecl>(D)); 4307 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4308 getFunctionLinkage(GD)); 4309 break; 4310 } 4311 case Decl::CXXConstructor: { 4312 CodeGenPGO PGO(*this); 4313 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4314 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4315 getFunctionLinkage(GD)); 4316 break; 4317 } 4318 case Decl::CXXDestructor: { 4319 CodeGenPGO PGO(*this); 4320 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4321 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4322 getFunctionLinkage(GD)); 4323 break; 4324 } 4325 default: 4326 break; 4327 }; 4328 } 4329 } 4330 4331 /// Turns the given pointer into a constant. 4332 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4333 const void *Ptr) { 4334 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4335 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4336 return llvm::ConstantInt::get(i64, PtrInt); 4337 } 4338 4339 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4340 llvm::NamedMDNode *&GlobalMetadata, 4341 GlobalDecl D, 4342 llvm::GlobalValue *Addr) { 4343 if (!GlobalMetadata) 4344 GlobalMetadata = 4345 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4346 4347 // TODO: should we report variant information for ctors/dtors? 4348 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4349 llvm::ConstantAsMetadata::get(GetPointerConstant( 4350 CGM.getLLVMContext(), D.getDecl()))}; 4351 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4352 } 4353 4354 /// For each function which is declared within an extern "C" region and marked 4355 /// as 'used', but has internal linkage, create an alias from the unmangled 4356 /// name to the mangled name if possible. People expect to be able to refer 4357 /// to such functions with an unmangled name from inline assembly within the 4358 /// same translation unit. 4359 void CodeGenModule::EmitStaticExternCAliases() { 4360 // Don't do anything if we're generating CUDA device code -- the NVPTX 4361 // assembly target doesn't support aliases. 4362 if (Context.getTargetInfo().getTriple().isNVPTX()) 4363 return; 4364 for (auto &I : StaticExternCValues) { 4365 IdentifierInfo *Name = I.first; 4366 llvm::GlobalValue *Val = I.second; 4367 if (Val && !getModule().getNamedValue(Name->getName())) 4368 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4369 } 4370 } 4371 4372 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4373 GlobalDecl &Result) const { 4374 auto Res = Manglings.find(MangledName); 4375 if (Res == Manglings.end()) 4376 return false; 4377 Result = Res->getValue(); 4378 return true; 4379 } 4380 4381 /// Emits metadata nodes associating all the global values in the 4382 /// current module with the Decls they came from. This is useful for 4383 /// projects using IR gen as a subroutine. 4384 /// 4385 /// Since there's currently no way to associate an MDNode directly 4386 /// with an llvm::GlobalValue, we create a global named metadata 4387 /// with the name 'clang.global.decl.ptrs'. 4388 void CodeGenModule::EmitDeclMetadata() { 4389 llvm::NamedMDNode *GlobalMetadata = nullptr; 4390 4391 for (auto &I : MangledDeclNames) { 4392 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4393 // Some mangled names don't necessarily have an associated GlobalValue 4394 // in this module, e.g. if we mangled it for DebugInfo. 4395 if (Addr) 4396 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4397 } 4398 } 4399 4400 /// Emits metadata nodes for all the local variables in the current 4401 /// function. 4402 void CodeGenFunction::EmitDeclMetadata() { 4403 if (LocalDeclMap.empty()) return; 4404 4405 llvm::LLVMContext &Context = getLLVMContext(); 4406 4407 // Find the unique metadata ID for this name. 4408 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4409 4410 llvm::NamedMDNode *GlobalMetadata = nullptr; 4411 4412 for (auto &I : LocalDeclMap) { 4413 const Decl *D = I.first; 4414 llvm::Value *Addr = I.second.getPointer(); 4415 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4416 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4417 Alloca->setMetadata( 4418 DeclPtrKind, llvm::MDNode::get( 4419 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4420 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4421 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4422 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4423 } 4424 } 4425 } 4426 4427 void CodeGenModule::EmitVersionIdentMetadata() { 4428 llvm::NamedMDNode *IdentMetadata = 4429 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4430 std::string Version = getClangFullVersion(); 4431 llvm::LLVMContext &Ctx = TheModule.getContext(); 4432 4433 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4434 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4435 } 4436 4437 void CodeGenModule::EmitTargetMetadata() { 4438 // Warning, new MangledDeclNames may be appended within this loop. 4439 // We rely on MapVector insertions adding new elements to the end 4440 // of the container. 4441 // FIXME: Move this loop into the one target that needs it, and only 4442 // loop over those declarations for which we couldn't emit the target 4443 // metadata when we emitted the declaration. 4444 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4445 auto Val = *(MangledDeclNames.begin() + I); 4446 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4447 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4448 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4449 } 4450 } 4451 4452 void CodeGenModule::EmitCoverageFile() { 4453 if (getCodeGenOpts().CoverageDataFile.empty() && 4454 getCodeGenOpts().CoverageNotesFile.empty()) 4455 return; 4456 4457 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4458 if (!CUNode) 4459 return; 4460 4461 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4462 llvm::LLVMContext &Ctx = TheModule.getContext(); 4463 auto *CoverageDataFile = 4464 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4465 auto *CoverageNotesFile = 4466 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4467 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4468 llvm::MDNode *CU = CUNode->getOperand(i); 4469 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4470 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4471 } 4472 } 4473 4474 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4475 // Sema has checked that all uuid strings are of the form 4476 // "12345678-1234-1234-1234-1234567890ab". 4477 assert(Uuid.size() == 36); 4478 for (unsigned i = 0; i < 36; ++i) { 4479 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4480 else assert(isHexDigit(Uuid[i])); 4481 } 4482 4483 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4484 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4485 4486 llvm::Constant *Field3[8]; 4487 for (unsigned Idx = 0; Idx < 8; ++Idx) 4488 Field3[Idx] = llvm::ConstantInt::get( 4489 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4490 4491 llvm::Constant *Fields[4] = { 4492 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4493 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4494 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4495 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4496 }; 4497 4498 return llvm::ConstantStruct::getAnon(Fields); 4499 } 4500 4501 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4502 bool ForEH) { 4503 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4504 // FIXME: should we even be calling this method if RTTI is disabled 4505 // and it's not for EH? 4506 if (!ForEH && !getLangOpts().RTTI) 4507 return llvm::Constant::getNullValue(Int8PtrTy); 4508 4509 if (ForEH && Ty->isObjCObjectPointerType() && 4510 LangOpts.ObjCRuntime.isGNUFamily()) 4511 return ObjCRuntime->GetEHType(Ty); 4512 4513 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4514 } 4515 4516 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4517 for (auto RefExpr : D->varlists()) { 4518 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4519 bool PerformInit = 4520 VD->getAnyInitializer() && 4521 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4522 /*ForRef=*/false); 4523 4524 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4525 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4526 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4527 CXXGlobalInits.push_back(InitFunction); 4528 } 4529 } 4530 4531 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4532 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4533 if (InternalId) 4534 return InternalId; 4535 4536 if (isExternallyVisible(T->getLinkage())) { 4537 std::string OutName; 4538 llvm::raw_string_ostream Out(OutName); 4539 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4540 4541 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4542 } else { 4543 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4544 llvm::ArrayRef<llvm::Metadata *>()); 4545 } 4546 4547 return InternalId; 4548 } 4549 4550 // Generalize pointer types to a void pointer with the qualifiers of the 4551 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4552 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4553 // 'void *'. 4554 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4555 if (!Ty->isPointerType()) 4556 return Ty; 4557 4558 return Ctx.getPointerType( 4559 QualType(Ctx.VoidTy).withCVRQualifiers( 4560 Ty->getPointeeType().getCVRQualifiers())); 4561 } 4562 4563 // Apply type generalization to a FunctionType's return and argument types 4564 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4565 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4566 SmallVector<QualType, 8> GeneralizedParams; 4567 for (auto &Param : FnType->param_types()) 4568 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4569 4570 return Ctx.getFunctionType( 4571 GeneralizeType(Ctx, FnType->getReturnType()), 4572 GeneralizedParams, FnType->getExtProtoInfo()); 4573 } 4574 4575 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4576 return Ctx.getFunctionNoProtoType( 4577 GeneralizeType(Ctx, FnType->getReturnType())); 4578 4579 llvm_unreachable("Encountered unknown FunctionType"); 4580 } 4581 4582 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4583 T = GeneralizeFunctionType(getContext(), T); 4584 4585 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4586 if (InternalId) 4587 return InternalId; 4588 4589 if (isExternallyVisible(T->getLinkage())) { 4590 std::string OutName; 4591 llvm::raw_string_ostream Out(OutName); 4592 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4593 Out << ".generalized"; 4594 4595 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4596 } else { 4597 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4598 llvm::ArrayRef<llvm::Metadata *>()); 4599 } 4600 4601 return InternalId; 4602 } 4603 4604 /// Returns whether this module needs the "all-vtables" type identifier. 4605 bool CodeGenModule::NeedAllVtablesTypeId() const { 4606 // Returns true if at least one of vtable-based CFI checkers is enabled and 4607 // is not in the trapping mode. 4608 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4609 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4610 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4611 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4612 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4613 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4614 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4615 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4616 } 4617 4618 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4619 CharUnits Offset, 4620 const CXXRecordDecl *RD) { 4621 llvm::Metadata *MD = 4622 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4623 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4624 4625 if (CodeGenOpts.SanitizeCfiCrossDso) 4626 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4627 VTable->addTypeMetadata(Offset.getQuantity(), 4628 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4629 4630 if (NeedAllVtablesTypeId()) { 4631 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4632 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4633 } 4634 } 4635 4636 // Fills in the supplied string map with the set of target features for the 4637 // passed in function. 4638 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4639 const FunctionDecl *FD) { 4640 StringRef TargetCPU = Target.getTargetOpts().CPU; 4641 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4642 // If we have a TargetAttr build up the feature map based on that. 4643 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4644 4645 ParsedAttr.Features.erase( 4646 llvm::remove_if(ParsedAttr.Features, 4647 [&](const std::string &Feat) { 4648 return !Target.isValidFeatureName( 4649 StringRef{Feat}.substr(1)); 4650 }), 4651 ParsedAttr.Features.end()); 4652 4653 // Make a copy of the features as passed on the command line into the 4654 // beginning of the additional features from the function to override. 4655 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4656 Target.getTargetOpts().FeaturesAsWritten.begin(), 4657 Target.getTargetOpts().FeaturesAsWritten.end()); 4658 4659 if (ParsedAttr.Architecture != "" && 4660 Target.isValidCPUName(ParsedAttr.Architecture)) 4661 TargetCPU = ParsedAttr.Architecture; 4662 4663 // Now populate the feature map, first with the TargetCPU which is either 4664 // the default or a new one from the target attribute string. Then we'll use 4665 // the passed in features (FeaturesAsWritten) along with the new ones from 4666 // the attribute. 4667 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4668 ParsedAttr.Features); 4669 } else { 4670 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4671 Target.getTargetOpts().Features); 4672 } 4673 } 4674 4675 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4676 if (!SanStats) 4677 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4678 4679 return *SanStats; 4680 } 4681 llvm::Value * 4682 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4683 CodeGenFunction &CGF) { 4684 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4685 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4686 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4687 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4688 "__translate_sampler_initializer"), 4689 {C}); 4690 } 4691