1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 SizeSizeInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, 111 C.getTargetInfo().getMaxPointerWidth()); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 115 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 116 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 117 118 if (LangOpts.ObjC1) 119 createObjCRuntime(); 120 if (LangOpts.OpenCL) 121 createOpenCLRuntime(); 122 if (LangOpts.OpenMP) 123 createOpenMPRuntime(); 124 if (LangOpts.CUDA) 125 createCUDARuntime(); 126 127 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 128 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 129 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 130 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 131 getCXXABI().getMangleContext())); 132 133 // If debug info or coverage generation is enabled, create the CGDebugInfo 134 // object. 135 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 136 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 137 DebugInfo.reset(new CGDebugInfo(*this)); 138 139 Block.GlobalUniqueCount = 0; 140 141 if (C.getLangOpts().ObjC1) 142 ObjCData.reset(new ObjCEntrypoints()); 143 144 if (CodeGenOpts.hasProfileClangUse()) { 145 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 146 CodeGenOpts.ProfileInstrumentUsePath); 147 if (auto E = ReaderOrErr.takeError()) { 148 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 149 "Could not read profile %0: %1"); 150 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 151 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 152 << EI.message(); 153 }); 154 } else 155 PGOReader = std::move(ReaderOrErr.get()); 156 } 157 158 // If coverage mapping generation is enabled, create the 159 // CoverageMappingModuleGen object. 160 if (CodeGenOpts.CoverageMapping) 161 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 162 163 // Record mregparm value now so it is visible through rest of codegen. 164 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 165 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 166 CodeGenOpts.NumRegisterParameters); 167 168 } 169 170 CodeGenModule::~CodeGenModule() {} 171 172 void CodeGenModule::createObjCRuntime() { 173 // This is just isGNUFamily(), but we want to force implementors of 174 // new ABIs to decide how best to do this. 175 switch (LangOpts.ObjCRuntime.getKind()) { 176 case ObjCRuntime::GNUstep: 177 case ObjCRuntime::GCC: 178 case ObjCRuntime::ObjFW: 179 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 180 return; 181 182 case ObjCRuntime::FragileMacOSX: 183 case ObjCRuntime::MacOSX: 184 case ObjCRuntime::iOS: 185 case ObjCRuntime::WatchOS: 186 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 187 return; 188 } 189 llvm_unreachable("bad runtime kind"); 190 } 191 192 void CodeGenModule::createOpenCLRuntime() { 193 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 194 } 195 196 void CodeGenModule::createOpenMPRuntime() { 197 // Select a specialized code generation class based on the target, if any. 198 // If it does not exist use the default implementation. 199 switch (getTriple().getArch()) { 200 case llvm::Triple::nvptx: 201 case llvm::Triple::nvptx64: 202 assert(getLangOpts().OpenMPIsDevice && 203 "OpenMP NVPTX is only prepared to deal with device code."); 204 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 205 break; 206 default: 207 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 208 break; 209 } 210 } 211 212 void CodeGenModule::createCUDARuntime() { 213 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 214 } 215 216 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 217 Replacements[Name] = C; 218 } 219 220 void CodeGenModule::applyReplacements() { 221 for (auto &I : Replacements) { 222 StringRef MangledName = I.first(); 223 llvm::Constant *Replacement = I.second; 224 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 225 if (!Entry) 226 continue; 227 auto *OldF = cast<llvm::Function>(Entry); 228 auto *NewF = dyn_cast<llvm::Function>(Replacement); 229 if (!NewF) { 230 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 231 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 232 } else { 233 auto *CE = cast<llvm::ConstantExpr>(Replacement); 234 assert(CE->getOpcode() == llvm::Instruction::BitCast || 235 CE->getOpcode() == llvm::Instruction::GetElementPtr); 236 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 237 } 238 } 239 240 // Replace old with new, but keep the old order. 241 OldF->replaceAllUsesWith(Replacement); 242 if (NewF) { 243 NewF->removeFromParent(); 244 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 245 NewF); 246 } 247 OldF->eraseFromParent(); 248 } 249 } 250 251 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 252 GlobalValReplacements.push_back(std::make_pair(GV, C)); 253 } 254 255 void CodeGenModule::applyGlobalValReplacements() { 256 for (auto &I : GlobalValReplacements) { 257 llvm::GlobalValue *GV = I.first; 258 llvm::Constant *C = I.second; 259 260 GV->replaceAllUsesWith(C); 261 GV->eraseFromParent(); 262 } 263 } 264 265 // This is only used in aliases that we created and we know they have a 266 // linear structure. 267 static const llvm::GlobalObject *getAliasedGlobal( 268 const llvm::GlobalIndirectSymbol &GIS) { 269 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 270 const llvm::Constant *C = &GIS; 271 for (;;) { 272 C = C->stripPointerCasts(); 273 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 274 return GO; 275 // stripPointerCasts will not walk over weak aliases. 276 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 277 if (!GIS2) 278 return nullptr; 279 if (!Visited.insert(GIS2).second) 280 return nullptr; 281 C = GIS2->getIndirectSymbol(); 282 } 283 } 284 285 void CodeGenModule::checkAliases() { 286 // Check if the constructed aliases are well formed. It is really unfortunate 287 // that we have to do this in CodeGen, but we only construct mangled names 288 // and aliases during codegen. 289 bool Error = false; 290 DiagnosticsEngine &Diags = getDiags(); 291 for (const GlobalDecl &GD : Aliases) { 292 const auto *D = cast<ValueDecl>(GD.getDecl()); 293 SourceLocation Location; 294 bool IsIFunc = D->hasAttr<IFuncAttr>(); 295 if (const Attr *A = D->getDefiningAttr()) 296 Location = A->getLocation(); 297 else 298 llvm_unreachable("Not an alias or ifunc?"); 299 StringRef MangledName = getMangledName(GD); 300 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 301 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 302 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 303 if (!GV) { 304 Error = true; 305 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 306 } else if (GV->isDeclaration()) { 307 Error = true; 308 Diags.Report(Location, diag::err_alias_to_undefined) 309 << IsIFunc << IsIFunc; 310 } else if (IsIFunc) { 311 // Check resolver function type. 312 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 313 GV->getType()->getPointerElementType()); 314 assert(FTy); 315 if (!FTy->getReturnType()->isPointerTy()) 316 Diags.Report(Location, diag::err_ifunc_resolver_return); 317 if (FTy->getNumParams()) 318 Diags.Report(Location, diag::err_ifunc_resolver_params); 319 } 320 321 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 322 llvm::GlobalValue *AliaseeGV; 323 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 324 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 325 else 326 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 327 328 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 329 StringRef AliasSection = SA->getName(); 330 if (AliasSection != AliaseeGV->getSection()) 331 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 332 << AliasSection << IsIFunc << IsIFunc; 333 } 334 335 // We have to handle alias to weak aliases in here. LLVM itself disallows 336 // this since the object semantics would not match the IL one. For 337 // compatibility with gcc we implement it by just pointing the alias 338 // to its aliasee's aliasee. We also warn, since the user is probably 339 // expecting the link to be weak. 340 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 341 if (GA->isInterposable()) { 342 Diags.Report(Location, diag::warn_alias_to_weak_alias) 343 << GV->getName() << GA->getName() << IsIFunc; 344 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 345 GA->getIndirectSymbol(), Alias->getType()); 346 Alias->setIndirectSymbol(Aliasee); 347 } 348 } 349 } 350 if (!Error) 351 return; 352 353 for (const GlobalDecl &GD : Aliases) { 354 StringRef MangledName = getMangledName(GD); 355 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 356 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 357 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 358 Alias->eraseFromParent(); 359 } 360 } 361 362 void CodeGenModule::clear() { 363 DeferredDeclsToEmit.clear(); 364 if (OpenMPRuntime) 365 OpenMPRuntime->clear(); 366 } 367 368 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 369 StringRef MainFile) { 370 if (!hasDiagnostics()) 371 return; 372 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 373 if (MainFile.empty()) 374 MainFile = "<stdin>"; 375 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 376 } else 377 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 378 << Mismatched; 379 } 380 381 void CodeGenModule::Release() { 382 EmitDeferred(); 383 applyGlobalValReplacements(); 384 applyReplacements(); 385 checkAliases(); 386 EmitCXXGlobalInitFunc(); 387 EmitCXXGlobalDtorFunc(); 388 EmitCXXThreadLocalInitFunc(); 389 if (ObjCRuntime) 390 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 391 AddGlobalCtor(ObjCInitFunction); 392 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 393 CUDARuntime) { 394 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 395 AddGlobalCtor(CudaCtorFunction); 396 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 397 AddGlobalDtor(CudaDtorFunction); 398 } 399 if (OpenMPRuntime) 400 if (llvm::Function *OpenMPRegistrationFunction = 401 OpenMPRuntime->emitRegistrationFunction()) 402 AddGlobalCtor(OpenMPRegistrationFunction, 0); 403 if (PGOReader) { 404 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 405 if (PGOStats.hasDiagnostics()) 406 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 407 } 408 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 409 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 410 EmitGlobalAnnotations(); 411 EmitStaticExternCAliases(); 412 EmitDeferredUnusedCoverageMappings(); 413 if (CoverageMapping) 414 CoverageMapping->emit(); 415 if (CodeGenOpts.SanitizeCfiCrossDso) 416 CodeGenFunction(*this).EmitCfiCheckFail(); 417 emitLLVMUsed(); 418 if (SanStats) 419 SanStats->finish(); 420 421 if (CodeGenOpts.Autolink && 422 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 423 EmitModuleLinkOptions(); 424 } 425 426 if (CodeGenOpts.DwarfVersion) { 427 // We actually want the latest version when there are conflicts. 428 // We can change from Warning to Latest if such mode is supported. 429 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 430 CodeGenOpts.DwarfVersion); 431 } 432 if (CodeGenOpts.EmitCodeView) { 433 // Indicate that we want CodeView in the metadata. 434 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 435 } 436 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 437 // We don't support LTO with 2 with different StrictVTablePointers 438 // FIXME: we could support it by stripping all the information introduced 439 // by StrictVTablePointers. 440 441 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 442 443 llvm::Metadata *Ops[2] = { 444 llvm::MDString::get(VMContext, "StrictVTablePointers"), 445 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 446 llvm::Type::getInt32Ty(VMContext), 1))}; 447 448 getModule().addModuleFlag(llvm::Module::Require, 449 "StrictVTablePointersRequirement", 450 llvm::MDNode::get(VMContext, Ops)); 451 } 452 if (DebugInfo) 453 // We support a single version in the linked module. The LLVM 454 // parser will drop debug info with a different version number 455 // (and warn about it, too). 456 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 457 llvm::DEBUG_METADATA_VERSION); 458 459 // We need to record the widths of enums and wchar_t, so that we can generate 460 // the correct build attributes in the ARM backend. 461 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 462 if ( Arch == llvm::Triple::arm 463 || Arch == llvm::Triple::armeb 464 || Arch == llvm::Triple::thumb 465 || Arch == llvm::Triple::thumbeb) { 466 // Width of wchar_t in bytes 467 uint64_t WCharWidth = 468 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 469 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 470 471 // The minimum width of an enum in bytes 472 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 473 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 474 } 475 476 if (CodeGenOpts.SanitizeCfiCrossDso) { 477 // Indicate that we want cross-DSO control flow integrity checks. 478 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 479 } 480 481 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 482 // Indicate whether __nvvm_reflect should be configured to flush denormal 483 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 484 // property.) 485 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 486 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 487 } 488 489 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 490 assert(PLevel < 3 && "Invalid PIC Level"); 491 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 492 if (Context.getLangOpts().PIE) 493 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 494 } 495 496 SimplifyPersonality(); 497 498 if (getCodeGenOpts().EmitDeclMetadata) 499 EmitDeclMetadata(); 500 501 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 502 EmitCoverageFile(); 503 504 if (DebugInfo) 505 DebugInfo->finalize(); 506 507 EmitVersionIdentMetadata(); 508 509 EmitTargetMetadata(); 510 } 511 512 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 513 // Make sure that this type is translated. 514 Types.UpdateCompletedType(TD); 515 } 516 517 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 518 // Make sure that this type is translated. 519 Types.RefreshTypeCacheForClass(RD); 520 } 521 522 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 523 if (!TBAA) 524 return nullptr; 525 return TBAA->getTBAAInfo(QTy); 526 } 527 528 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 529 if (!TBAA) 530 return nullptr; 531 return TBAA->getTBAAInfoForVTablePtr(); 532 } 533 534 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 535 if (!TBAA) 536 return nullptr; 537 return TBAA->getTBAAStructInfo(QTy); 538 } 539 540 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 541 llvm::MDNode *AccessN, 542 uint64_t O) { 543 if (!TBAA) 544 return nullptr; 545 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 546 } 547 548 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 549 /// and struct-path aware TBAA, the tag has the same format: 550 /// base type, access type and offset. 551 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 552 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 553 llvm::MDNode *TBAAInfo, 554 bool ConvertTypeToTag) { 555 if (ConvertTypeToTag && TBAA) 556 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 557 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 558 else 559 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 560 } 561 562 void CodeGenModule::DecorateInstructionWithInvariantGroup( 563 llvm::Instruction *I, const CXXRecordDecl *RD) { 564 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 565 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 566 // Check if we have to wrap MDString in MDNode. 567 if (!MetaDataNode) 568 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 569 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 570 } 571 572 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 573 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 574 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 575 } 576 577 /// ErrorUnsupported - Print out an error that codegen doesn't support the 578 /// specified stmt yet. 579 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 580 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 581 "cannot compile this %0 yet"); 582 std::string Msg = Type; 583 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 584 << Msg << S->getSourceRange(); 585 } 586 587 /// ErrorUnsupported - Print out an error that codegen doesn't support the 588 /// specified decl yet. 589 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 590 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 591 "cannot compile this %0 yet"); 592 std::string Msg = Type; 593 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 594 } 595 596 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 597 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 598 } 599 600 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 601 const NamedDecl *D) const { 602 // Internal definitions always have default visibility. 603 if (GV->hasLocalLinkage()) { 604 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 605 return; 606 } 607 608 // Set visibility for definitions. 609 LinkageInfo LV = D->getLinkageAndVisibility(); 610 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 611 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 612 } 613 614 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 615 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 616 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 617 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 618 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 619 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 620 } 621 622 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 623 CodeGenOptions::TLSModel M) { 624 switch (M) { 625 case CodeGenOptions::GeneralDynamicTLSModel: 626 return llvm::GlobalVariable::GeneralDynamicTLSModel; 627 case CodeGenOptions::LocalDynamicTLSModel: 628 return llvm::GlobalVariable::LocalDynamicTLSModel; 629 case CodeGenOptions::InitialExecTLSModel: 630 return llvm::GlobalVariable::InitialExecTLSModel; 631 case CodeGenOptions::LocalExecTLSModel: 632 return llvm::GlobalVariable::LocalExecTLSModel; 633 } 634 llvm_unreachable("Invalid TLS model!"); 635 } 636 637 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 638 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 639 640 llvm::GlobalValue::ThreadLocalMode TLM; 641 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 642 643 // Override the TLS model if it is explicitly specified. 644 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 645 TLM = GetLLVMTLSModel(Attr->getModel()); 646 } 647 648 GV->setThreadLocalMode(TLM); 649 } 650 651 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 652 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 653 654 // Some ABIs don't have constructor variants. Make sure that base and 655 // complete constructors get mangled the same. 656 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 657 if (!getTarget().getCXXABI().hasConstructorVariants()) { 658 CXXCtorType OrigCtorType = GD.getCtorType(); 659 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 660 if (OrigCtorType == Ctor_Base) 661 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 662 } 663 } 664 665 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 666 if (!FoundStr.empty()) 667 return FoundStr; 668 669 const auto *ND = cast<NamedDecl>(GD.getDecl()); 670 SmallString<256> Buffer; 671 StringRef Str; 672 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 673 llvm::raw_svector_ostream Out(Buffer); 674 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 675 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 676 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 677 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 678 else 679 getCXXABI().getMangleContext().mangleName(ND, Out); 680 Str = Out.str(); 681 } else { 682 IdentifierInfo *II = ND->getIdentifier(); 683 assert(II && "Attempt to mangle unnamed decl."); 684 const auto *FD = dyn_cast<FunctionDecl>(ND); 685 686 if (FD && 687 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 688 llvm::raw_svector_ostream Out(Buffer); 689 Out << "__regcall3__" << II->getName(); 690 Str = Out.str(); 691 } else { 692 Str = II->getName(); 693 } 694 } 695 696 // Keep the first result in the case of a mangling collision. 697 auto Result = Manglings.insert(std::make_pair(Str, GD)); 698 return FoundStr = Result.first->first(); 699 } 700 701 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 702 const BlockDecl *BD) { 703 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 704 const Decl *D = GD.getDecl(); 705 706 SmallString<256> Buffer; 707 llvm::raw_svector_ostream Out(Buffer); 708 if (!D) 709 MangleCtx.mangleGlobalBlock(BD, 710 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 711 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 712 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 713 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 714 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 715 else 716 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 717 718 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 719 return Result.first->first(); 720 } 721 722 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 723 return getModule().getNamedValue(Name); 724 } 725 726 /// AddGlobalCtor - Add a function to the list that will be called before 727 /// main() runs. 728 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 729 llvm::Constant *AssociatedData) { 730 // FIXME: Type coercion of void()* types. 731 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 732 } 733 734 /// AddGlobalDtor - Add a function to the list that will be called 735 /// when the module is unloaded. 736 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 737 // FIXME: Type coercion of void()* types. 738 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 739 } 740 741 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 742 if (Fns.empty()) return; 743 744 // Ctor function type is void()*. 745 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 746 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 747 748 // Get the type of a ctor entry, { i32, void ()*, i8* }. 749 llvm::StructType *CtorStructTy = llvm::StructType::get( 750 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 751 752 // Construct the constructor and destructor arrays. 753 ConstantInitBuilder builder(*this); 754 auto ctors = builder.beginArray(CtorStructTy); 755 for (const auto &I : Fns) { 756 auto ctor = ctors.beginStruct(CtorStructTy); 757 ctor.addInt(Int32Ty, I.Priority); 758 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 759 if (I.AssociatedData) 760 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 761 else 762 ctor.addNullPointer(VoidPtrTy); 763 ctor.finishAndAddTo(ctors); 764 } 765 766 auto list = 767 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 768 /*constant*/ false, 769 llvm::GlobalValue::AppendingLinkage); 770 771 // The LTO linker doesn't seem to like it when we set an alignment 772 // on appending variables. Take it off as a workaround. 773 list->setAlignment(0); 774 775 Fns.clear(); 776 } 777 778 llvm::GlobalValue::LinkageTypes 779 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 780 const auto *D = cast<FunctionDecl>(GD.getDecl()); 781 782 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 783 784 if (isa<CXXDestructorDecl>(D) && 785 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 786 GD.getDtorType())) { 787 // Destructor variants in the Microsoft C++ ABI are always internal or 788 // linkonce_odr thunks emitted on an as-needed basis. 789 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 790 : llvm::GlobalValue::LinkOnceODRLinkage; 791 } 792 793 if (isa<CXXConstructorDecl>(D) && 794 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 795 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 796 // Our approach to inheriting constructors is fundamentally different from 797 // that used by the MS ABI, so keep our inheriting constructor thunks 798 // internal rather than trying to pick an unambiguous mangling for them. 799 return llvm::GlobalValue::InternalLinkage; 800 } 801 802 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 803 } 804 805 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 806 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 807 808 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 809 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 810 // Don't dllexport/import destructor thunks. 811 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 812 return; 813 } 814 } 815 816 if (FD->hasAttr<DLLImportAttr>()) 817 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 818 else if (FD->hasAttr<DLLExportAttr>()) 819 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 820 else 821 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 822 } 823 824 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 825 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 826 if (!MDS) return nullptr; 827 828 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 829 } 830 831 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 832 llvm::Function *F) { 833 setNonAliasAttributes(D, F); 834 } 835 836 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 837 const CGFunctionInfo &Info, 838 llvm::Function *F) { 839 unsigned CallingConv; 840 AttributeListType AttributeList; 841 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 842 false); 843 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 844 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 845 } 846 847 /// Determines whether the language options require us to model 848 /// unwind exceptions. We treat -fexceptions as mandating this 849 /// except under the fragile ObjC ABI with only ObjC exceptions 850 /// enabled. This means, for example, that C with -fexceptions 851 /// enables this. 852 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 853 // If exceptions are completely disabled, obviously this is false. 854 if (!LangOpts.Exceptions) return false; 855 856 // If C++ exceptions are enabled, this is true. 857 if (LangOpts.CXXExceptions) return true; 858 859 // If ObjC exceptions are enabled, this depends on the ABI. 860 if (LangOpts.ObjCExceptions) { 861 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 862 } 863 864 return true; 865 } 866 867 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 868 llvm::Function *F) { 869 llvm::AttrBuilder B; 870 871 if (CodeGenOpts.UnwindTables) 872 B.addAttribute(llvm::Attribute::UWTable); 873 874 if (!hasUnwindExceptions(LangOpts)) 875 B.addAttribute(llvm::Attribute::NoUnwind); 876 877 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 878 B.addAttribute(llvm::Attribute::StackProtect); 879 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 880 B.addAttribute(llvm::Attribute::StackProtectStrong); 881 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 882 B.addAttribute(llvm::Attribute::StackProtectReq); 883 884 if (!D) { 885 // If we don't have a declaration to control inlining, the function isn't 886 // explicitly marked as alwaysinline for semantic reasons, and inlining is 887 // disabled, mark the function as noinline. 888 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 889 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 890 B.addAttribute(llvm::Attribute::NoInline); 891 892 F->addAttributes(llvm::AttributeSet::FunctionIndex, 893 llvm::AttributeSet::get( 894 F->getContext(), 895 llvm::AttributeSet::FunctionIndex, B)); 896 return; 897 } 898 899 if (D->hasAttr<OptimizeNoneAttr>()) { 900 B.addAttribute(llvm::Attribute::OptimizeNone); 901 902 // OptimizeNone implies noinline; we should not be inlining such functions. 903 B.addAttribute(llvm::Attribute::NoInline); 904 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 905 "OptimizeNone and AlwaysInline on same function!"); 906 907 // We still need to handle naked functions even though optnone subsumes 908 // much of their semantics. 909 if (D->hasAttr<NakedAttr>()) 910 B.addAttribute(llvm::Attribute::Naked); 911 912 // OptimizeNone wins over OptimizeForSize and MinSize. 913 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 914 F->removeFnAttr(llvm::Attribute::MinSize); 915 } else if (D->hasAttr<NakedAttr>()) { 916 // Naked implies noinline: we should not be inlining such functions. 917 B.addAttribute(llvm::Attribute::Naked); 918 B.addAttribute(llvm::Attribute::NoInline); 919 } else if (D->hasAttr<NoDuplicateAttr>()) { 920 B.addAttribute(llvm::Attribute::NoDuplicate); 921 } else if (D->hasAttr<NoInlineAttr>()) { 922 B.addAttribute(llvm::Attribute::NoInline); 923 } else if (D->hasAttr<AlwaysInlineAttr>() && 924 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 925 // (noinline wins over always_inline, and we can't specify both in IR) 926 B.addAttribute(llvm::Attribute::AlwaysInline); 927 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 928 // If we're not inlining, then force everything that isn't always_inline to 929 // carry an explicit noinline attribute. 930 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 931 B.addAttribute(llvm::Attribute::NoInline); 932 } else { 933 // Otherwise, propagate the inline hint attribute and potentially use its 934 // absence to mark things as noinline. 935 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 936 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 937 return Redecl->isInlineSpecified(); 938 })) { 939 B.addAttribute(llvm::Attribute::InlineHint); 940 } else if (CodeGenOpts.getInlining() == 941 CodeGenOptions::OnlyHintInlining && 942 !FD->isInlined() && 943 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 944 B.addAttribute(llvm::Attribute::NoInline); 945 } 946 } 947 } 948 949 // Add other optimization related attributes if we are optimizing this 950 // function. 951 if (!D->hasAttr<OptimizeNoneAttr>()) { 952 if (D->hasAttr<ColdAttr>()) { 953 B.addAttribute(llvm::Attribute::OptimizeForSize); 954 B.addAttribute(llvm::Attribute::Cold); 955 } 956 957 if (D->hasAttr<MinSizeAttr>()) 958 B.addAttribute(llvm::Attribute::MinSize); 959 } 960 961 F->addAttributes(llvm::AttributeSet::FunctionIndex, 962 llvm::AttributeSet::get( 963 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 964 965 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 966 if (alignment) 967 F->setAlignment(alignment); 968 969 // Some C++ ABIs require 2-byte alignment for member functions, in order to 970 // reserve a bit for differentiating between virtual and non-virtual member 971 // functions. If the current target's C++ ABI requires this and this is a 972 // member function, set its alignment accordingly. 973 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 974 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 975 F->setAlignment(2); 976 } 977 978 // In the cross-dso CFI mode, we want !type attributes on definitions only. 979 if (CodeGenOpts.SanitizeCfiCrossDso) 980 if (auto *FD = dyn_cast<FunctionDecl>(D)) 981 CreateFunctionTypeMetadata(FD, F); 982 } 983 984 void CodeGenModule::SetCommonAttributes(const Decl *D, 985 llvm::GlobalValue *GV) { 986 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 987 setGlobalVisibility(GV, ND); 988 else 989 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 990 991 if (D && D->hasAttr<UsedAttr>()) 992 addUsedGlobal(GV); 993 } 994 995 void CodeGenModule::setAliasAttributes(const Decl *D, 996 llvm::GlobalValue *GV) { 997 SetCommonAttributes(D, GV); 998 999 // Process the dllexport attribute based on whether the original definition 1000 // (not necessarily the aliasee) was exported. 1001 if (D->hasAttr<DLLExportAttr>()) 1002 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1003 } 1004 1005 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1006 llvm::GlobalObject *GO) { 1007 SetCommonAttributes(D, GO); 1008 1009 if (D) 1010 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1011 GO->setSection(SA->getName()); 1012 1013 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1014 } 1015 1016 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1017 llvm::Function *F, 1018 const CGFunctionInfo &FI) { 1019 SetLLVMFunctionAttributes(D, FI, F); 1020 SetLLVMFunctionAttributesForDefinition(D, F); 1021 1022 F->setLinkage(llvm::Function::InternalLinkage); 1023 1024 setNonAliasAttributes(D, F); 1025 } 1026 1027 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1028 const NamedDecl *ND) { 1029 // Set linkage and visibility in case we never see a definition. 1030 LinkageInfo LV = ND->getLinkageAndVisibility(); 1031 if (LV.getLinkage() != ExternalLinkage) { 1032 // Don't set internal linkage on declarations. 1033 } else { 1034 if (ND->hasAttr<DLLImportAttr>()) { 1035 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1036 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1037 } else if (ND->hasAttr<DLLExportAttr>()) { 1038 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1039 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1040 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1041 // "extern_weak" is overloaded in LLVM; we probably should have 1042 // separate linkage types for this. 1043 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1044 } 1045 1046 // Set visibility on a declaration only if it's explicit. 1047 if (LV.isVisibilityExplicit()) 1048 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1049 } 1050 } 1051 1052 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1053 llvm::Function *F) { 1054 // Only if we are checking indirect calls. 1055 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1056 return; 1057 1058 // Non-static class methods are handled via vtable pointer checks elsewhere. 1059 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1060 return; 1061 1062 // Additionally, if building with cross-DSO support... 1063 if (CodeGenOpts.SanitizeCfiCrossDso) { 1064 // Skip available_externally functions. They won't be codegen'ed in the 1065 // current module anyway. 1066 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1067 return; 1068 } 1069 1070 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1071 F->addTypeMetadata(0, MD); 1072 1073 // Emit a hash-based bit set entry for cross-DSO calls. 1074 if (CodeGenOpts.SanitizeCfiCrossDso) 1075 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1076 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1077 } 1078 1079 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1080 bool IsIncompleteFunction, 1081 bool IsThunk) { 1082 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1083 // If this is an intrinsic function, set the function's attributes 1084 // to the intrinsic's attributes. 1085 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1086 return; 1087 } 1088 1089 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1090 1091 if (!IsIncompleteFunction) 1092 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1093 1094 // Add the Returned attribute for "this", except for iOS 5 and earlier 1095 // where substantial code, including the libstdc++ dylib, was compiled with 1096 // GCC and does not actually return "this". 1097 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1098 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1099 assert(!F->arg_empty() && 1100 F->arg_begin()->getType() 1101 ->canLosslesslyBitCastTo(F->getReturnType()) && 1102 "unexpected this return"); 1103 F->addAttribute(1, llvm::Attribute::Returned); 1104 } 1105 1106 // Only a few attributes are set on declarations; these may later be 1107 // overridden by a definition. 1108 1109 setLinkageAndVisibilityForGV(F, FD); 1110 1111 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1112 F->setSection(SA->getName()); 1113 1114 if (FD->isReplaceableGlobalAllocationFunction()) { 1115 // A replaceable global allocation function does not act like a builtin by 1116 // default, only if it is invoked by a new-expression or delete-expression. 1117 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1118 llvm::Attribute::NoBuiltin); 1119 1120 // A sane operator new returns a non-aliasing pointer. 1121 // FIXME: Also add NonNull attribute to the return value 1122 // for the non-nothrow forms? 1123 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1124 if (getCodeGenOpts().AssumeSaneOperatorNew && 1125 (Kind == OO_New || Kind == OO_Array_New)) 1126 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1127 llvm::Attribute::NoAlias); 1128 } 1129 1130 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1131 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1132 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1133 if (MD->isVirtual()) 1134 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1135 1136 // Don't emit entries for function declarations in the cross-DSO mode. This 1137 // is handled with better precision by the receiving DSO. 1138 if (!CodeGenOpts.SanitizeCfiCrossDso) 1139 CreateFunctionTypeMetadata(FD, F); 1140 } 1141 1142 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1143 assert(!GV->isDeclaration() && 1144 "Only globals with definition can force usage."); 1145 LLVMUsed.emplace_back(GV); 1146 } 1147 1148 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1149 assert(!GV->isDeclaration() && 1150 "Only globals with definition can force usage."); 1151 LLVMCompilerUsed.emplace_back(GV); 1152 } 1153 1154 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1155 std::vector<llvm::WeakVH> &List) { 1156 // Don't create llvm.used if there is no need. 1157 if (List.empty()) 1158 return; 1159 1160 // Convert List to what ConstantArray needs. 1161 SmallVector<llvm::Constant*, 8> UsedArray; 1162 UsedArray.resize(List.size()); 1163 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1164 UsedArray[i] = 1165 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1166 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1167 } 1168 1169 if (UsedArray.empty()) 1170 return; 1171 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1172 1173 auto *GV = new llvm::GlobalVariable( 1174 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1175 llvm::ConstantArray::get(ATy, UsedArray), Name); 1176 1177 GV->setSection("llvm.metadata"); 1178 } 1179 1180 void CodeGenModule::emitLLVMUsed() { 1181 emitUsed(*this, "llvm.used", LLVMUsed); 1182 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1183 } 1184 1185 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1186 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1187 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1188 } 1189 1190 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1191 llvm::SmallString<32> Opt; 1192 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1193 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1194 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1195 } 1196 1197 void CodeGenModule::AddDependentLib(StringRef Lib) { 1198 llvm::SmallString<24> Opt; 1199 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1200 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1201 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1202 } 1203 1204 /// \brief Add link options implied by the given module, including modules 1205 /// it depends on, using a postorder walk. 1206 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1207 SmallVectorImpl<llvm::Metadata *> &Metadata, 1208 llvm::SmallPtrSet<Module *, 16> &Visited) { 1209 // Import this module's parent. 1210 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1211 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1212 } 1213 1214 // Import this module's dependencies. 1215 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1216 if (Visited.insert(Mod->Imports[I - 1]).second) 1217 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1218 } 1219 1220 // Add linker options to link against the libraries/frameworks 1221 // described by this module. 1222 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1223 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1224 // Link against a framework. Frameworks are currently Darwin only, so we 1225 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1226 if (Mod->LinkLibraries[I-1].IsFramework) { 1227 llvm::Metadata *Args[2] = { 1228 llvm::MDString::get(Context, "-framework"), 1229 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1230 1231 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1232 continue; 1233 } 1234 1235 // Link against a library. 1236 llvm::SmallString<24> Opt; 1237 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1238 Mod->LinkLibraries[I-1].Library, Opt); 1239 auto *OptString = llvm::MDString::get(Context, Opt); 1240 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1241 } 1242 } 1243 1244 void CodeGenModule::EmitModuleLinkOptions() { 1245 // Collect the set of all of the modules we want to visit to emit link 1246 // options, which is essentially the imported modules and all of their 1247 // non-explicit child modules. 1248 llvm::SetVector<clang::Module *> LinkModules; 1249 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1250 SmallVector<clang::Module *, 16> Stack; 1251 1252 // Seed the stack with imported modules. 1253 for (Module *M : ImportedModules) { 1254 // Do not add any link flags when an implementation TU of a module imports 1255 // a header of that same module. 1256 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1257 !getLangOpts().isCompilingModule()) 1258 continue; 1259 if (Visited.insert(M).second) 1260 Stack.push_back(M); 1261 } 1262 1263 // Find all of the modules to import, making a little effort to prune 1264 // non-leaf modules. 1265 while (!Stack.empty()) { 1266 clang::Module *Mod = Stack.pop_back_val(); 1267 1268 bool AnyChildren = false; 1269 1270 // Visit the submodules of this module. 1271 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1272 SubEnd = Mod->submodule_end(); 1273 Sub != SubEnd; ++Sub) { 1274 // Skip explicit children; they need to be explicitly imported to be 1275 // linked against. 1276 if ((*Sub)->IsExplicit) 1277 continue; 1278 1279 if (Visited.insert(*Sub).second) { 1280 Stack.push_back(*Sub); 1281 AnyChildren = true; 1282 } 1283 } 1284 1285 // We didn't find any children, so add this module to the list of 1286 // modules to link against. 1287 if (!AnyChildren) { 1288 LinkModules.insert(Mod); 1289 } 1290 } 1291 1292 // Add link options for all of the imported modules in reverse topological 1293 // order. We don't do anything to try to order import link flags with respect 1294 // to linker options inserted by things like #pragma comment(). 1295 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1296 Visited.clear(); 1297 for (Module *M : LinkModules) 1298 if (Visited.insert(M).second) 1299 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1300 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1301 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1302 1303 // Add the linker options metadata flag. 1304 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1305 llvm::MDNode::get(getLLVMContext(), 1306 LinkerOptionsMetadata)); 1307 } 1308 1309 void CodeGenModule::EmitDeferred() { 1310 // Emit code for any potentially referenced deferred decls. Since a 1311 // previously unused static decl may become used during the generation of code 1312 // for a static function, iterate until no changes are made. 1313 1314 if (!DeferredVTables.empty()) { 1315 EmitDeferredVTables(); 1316 1317 // Emitting a vtable doesn't directly cause more vtables to 1318 // become deferred, although it can cause functions to be 1319 // emitted that then need those vtables. 1320 assert(DeferredVTables.empty()); 1321 } 1322 1323 // Stop if we're out of both deferred vtables and deferred declarations. 1324 if (DeferredDeclsToEmit.empty()) 1325 return; 1326 1327 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1328 // work, it will not interfere with this. 1329 std::vector<DeferredGlobal> CurDeclsToEmit; 1330 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1331 1332 for (DeferredGlobal &G : CurDeclsToEmit) { 1333 GlobalDecl D = G.GD; 1334 G.GV = nullptr; 1335 1336 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1337 // to get GlobalValue with exactly the type we need, not something that 1338 // might had been created for another decl with the same mangled name but 1339 // different type. 1340 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1341 GetAddrOfGlobal(D, ForDefinition)); 1342 1343 // In case of different address spaces, we may still get a cast, even with 1344 // IsForDefinition equal to true. Query mangled names table to get 1345 // GlobalValue. 1346 if (!GV) 1347 GV = GetGlobalValue(getMangledName(D)); 1348 1349 // Make sure GetGlobalValue returned non-null. 1350 assert(GV); 1351 1352 // Check to see if we've already emitted this. This is necessary 1353 // for a couple of reasons: first, decls can end up in the 1354 // deferred-decls queue multiple times, and second, decls can end 1355 // up with definitions in unusual ways (e.g. by an extern inline 1356 // function acquiring a strong function redefinition). Just 1357 // ignore these cases. 1358 if (!GV->isDeclaration()) 1359 continue; 1360 1361 // Otherwise, emit the definition and move on to the next one. 1362 EmitGlobalDefinition(D, GV); 1363 1364 // If we found out that we need to emit more decls, do that recursively. 1365 // This has the advantage that the decls are emitted in a DFS and related 1366 // ones are close together, which is convenient for testing. 1367 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1368 EmitDeferred(); 1369 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1370 } 1371 } 1372 } 1373 1374 void CodeGenModule::EmitGlobalAnnotations() { 1375 if (Annotations.empty()) 1376 return; 1377 1378 // Create a new global variable for the ConstantStruct in the Module. 1379 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1380 Annotations[0]->getType(), Annotations.size()), Annotations); 1381 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1382 llvm::GlobalValue::AppendingLinkage, 1383 Array, "llvm.global.annotations"); 1384 gv->setSection(AnnotationSection); 1385 } 1386 1387 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1388 llvm::Constant *&AStr = AnnotationStrings[Str]; 1389 if (AStr) 1390 return AStr; 1391 1392 // Not found yet, create a new global. 1393 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1394 auto *gv = 1395 new llvm::GlobalVariable(getModule(), s->getType(), true, 1396 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1397 gv->setSection(AnnotationSection); 1398 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1399 AStr = gv; 1400 return gv; 1401 } 1402 1403 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1404 SourceManager &SM = getContext().getSourceManager(); 1405 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1406 if (PLoc.isValid()) 1407 return EmitAnnotationString(PLoc.getFilename()); 1408 return EmitAnnotationString(SM.getBufferName(Loc)); 1409 } 1410 1411 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1412 SourceManager &SM = getContext().getSourceManager(); 1413 PresumedLoc PLoc = SM.getPresumedLoc(L); 1414 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1415 SM.getExpansionLineNumber(L); 1416 return llvm::ConstantInt::get(Int32Ty, LineNo); 1417 } 1418 1419 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1420 const AnnotateAttr *AA, 1421 SourceLocation L) { 1422 // Get the globals for file name, annotation, and the line number. 1423 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1424 *UnitGV = EmitAnnotationUnit(L), 1425 *LineNoCst = EmitAnnotationLineNo(L); 1426 1427 // Create the ConstantStruct for the global annotation. 1428 llvm::Constant *Fields[4] = { 1429 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1430 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1431 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1432 LineNoCst 1433 }; 1434 return llvm::ConstantStruct::getAnon(Fields); 1435 } 1436 1437 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1438 llvm::GlobalValue *GV) { 1439 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1440 // Get the struct elements for these annotations. 1441 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1442 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1443 } 1444 1445 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1446 SourceLocation Loc) const { 1447 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1448 // Blacklist by function name. 1449 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1450 return true; 1451 // Blacklist by location. 1452 if (Loc.isValid()) 1453 return SanitizerBL.isBlacklistedLocation(Loc); 1454 // If location is unknown, this may be a compiler-generated function. Assume 1455 // it's located in the main file. 1456 auto &SM = Context.getSourceManager(); 1457 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1458 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1459 } 1460 return false; 1461 } 1462 1463 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1464 SourceLocation Loc, QualType Ty, 1465 StringRef Category) const { 1466 // For now globals can be blacklisted only in ASan and KASan. 1467 if (!LangOpts.Sanitize.hasOneOf( 1468 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1469 return false; 1470 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1471 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1472 return true; 1473 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1474 return true; 1475 // Check global type. 1476 if (!Ty.isNull()) { 1477 // Drill down the array types: if global variable of a fixed type is 1478 // blacklisted, we also don't instrument arrays of them. 1479 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1480 Ty = AT->getElementType(); 1481 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1482 // We allow to blacklist only record types (classes, structs etc.) 1483 if (Ty->isRecordType()) { 1484 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1485 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1486 return true; 1487 } 1488 } 1489 return false; 1490 } 1491 1492 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1493 // Never defer when EmitAllDecls is specified. 1494 if (LangOpts.EmitAllDecls) 1495 return true; 1496 1497 return getContext().DeclMustBeEmitted(Global); 1498 } 1499 1500 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1501 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1502 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1503 // Implicit template instantiations may change linkage if they are later 1504 // explicitly instantiated, so they should not be emitted eagerly. 1505 return false; 1506 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1507 if (Context.getInlineVariableDefinitionKind(VD) == 1508 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1509 // A definition of an inline constexpr static data member may change 1510 // linkage later if it's redeclared outside the class. 1511 return false; 1512 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1513 // codegen for global variables, because they may be marked as threadprivate. 1514 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1515 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1516 return false; 1517 1518 return true; 1519 } 1520 1521 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1522 const CXXUuidofExpr* E) { 1523 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1524 // well-formed. 1525 StringRef Uuid = E->getUuidStr(); 1526 std::string Name = "_GUID_" + Uuid.lower(); 1527 std::replace(Name.begin(), Name.end(), '-', '_'); 1528 1529 // The UUID descriptor should be pointer aligned. 1530 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1531 1532 // Look for an existing global. 1533 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1534 return ConstantAddress(GV, Alignment); 1535 1536 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1537 assert(Init && "failed to initialize as constant"); 1538 1539 auto *GV = new llvm::GlobalVariable( 1540 getModule(), Init->getType(), 1541 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1542 if (supportsCOMDAT()) 1543 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1544 return ConstantAddress(GV, Alignment); 1545 } 1546 1547 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1548 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1549 assert(AA && "No alias?"); 1550 1551 CharUnits Alignment = getContext().getDeclAlign(VD); 1552 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1553 1554 // See if there is already something with the target's name in the module. 1555 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1556 if (Entry) { 1557 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1558 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1559 return ConstantAddress(Ptr, Alignment); 1560 } 1561 1562 llvm::Constant *Aliasee; 1563 if (isa<llvm::FunctionType>(DeclTy)) 1564 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1565 GlobalDecl(cast<FunctionDecl>(VD)), 1566 /*ForVTable=*/false); 1567 else 1568 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1569 llvm::PointerType::getUnqual(DeclTy), 1570 nullptr); 1571 1572 auto *F = cast<llvm::GlobalValue>(Aliasee); 1573 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1574 WeakRefReferences.insert(F); 1575 1576 return ConstantAddress(Aliasee, Alignment); 1577 } 1578 1579 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1580 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1581 1582 // Weak references don't produce any output by themselves. 1583 if (Global->hasAttr<WeakRefAttr>()) 1584 return; 1585 1586 // If this is an alias definition (which otherwise looks like a declaration) 1587 // emit it now. 1588 if (Global->hasAttr<AliasAttr>()) 1589 return EmitAliasDefinition(GD); 1590 1591 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1592 if (Global->hasAttr<IFuncAttr>()) 1593 return emitIFuncDefinition(GD); 1594 1595 // If this is CUDA, be selective about which declarations we emit. 1596 if (LangOpts.CUDA) { 1597 if (LangOpts.CUDAIsDevice) { 1598 if (!Global->hasAttr<CUDADeviceAttr>() && 1599 !Global->hasAttr<CUDAGlobalAttr>() && 1600 !Global->hasAttr<CUDAConstantAttr>() && 1601 !Global->hasAttr<CUDASharedAttr>()) 1602 return; 1603 } else { 1604 // We need to emit host-side 'shadows' for all global 1605 // device-side variables because the CUDA runtime needs their 1606 // size and host-side address in order to provide access to 1607 // their device-side incarnations. 1608 1609 // So device-only functions are the only things we skip. 1610 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1611 Global->hasAttr<CUDADeviceAttr>()) 1612 return; 1613 1614 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1615 "Expected Variable or Function"); 1616 } 1617 } 1618 1619 if (LangOpts.OpenMP) { 1620 // If this is OpenMP device, check if it is legal to emit this global 1621 // normally. 1622 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1623 return; 1624 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1625 if (MustBeEmitted(Global)) 1626 EmitOMPDeclareReduction(DRD); 1627 return; 1628 } 1629 } 1630 1631 // Ignore declarations, they will be emitted on their first use. 1632 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1633 // Forward declarations are emitted lazily on first use. 1634 if (!FD->doesThisDeclarationHaveABody()) { 1635 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1636 return; 1637 1638 StringRef MangledName = getMangledName(GD); 1639 1640 // Compute the function info and LLVM type. 1641 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1642 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1643 1644 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1645 /*DontDefer=*/false); 1646 return; 1647 } 1648 } else { 1649 const auto *VD = cast<VarDecl>(Global); 1650 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1651 // We need to emit device-side global CUDA variables even if a 1652 // variable does not have a definition -- we still need to define 1653 // host-side shadow for it. 1654 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1655 !VD->hasDefinition() && 1656 (VD->hasAttr<CUDAConstantAttr>() || 1657 VD->hasAttr<CUDADeviceAttr>()); 1658 if (!MustEmitForCuda && 1659 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1660 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1661 // If this declaration may have caused an inline variable definition to 1662 // change linkage, make sure that it's emitted. 1663 if (Context.getInlineVariableDefinitionKind(VD) == 1664 ASTContext::InlineVariableDefinitionKind::Strong) 1665 GetAddrOfGlobalVar(VD); 1666 return; 1667 } 1668 } 1669 1670 // Defer code generation to first use when possible, e.g. if this is an inline 1671 // function. If the global must always be emitted, do it eagerly if possible 1672 // to benefit from cache locality. 1673 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1674 // Emit the definition if it can't be deferred. 1675 EmitGlobalDefinition(GD); 1676 return; 1677 } 1678 1679 // If we're deferring emission of a C++ variable with an 1680 // initializer, remember the order in which it appeared in the file. 1681 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1682 cast<VarDecl>(Global)->hasInit()) { 1683 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1684 CXXGlobalInits.push_back(nullptr); 1685 } 1686 1687 StringRef MangledName = getMangledName(GD); 1688 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1689 // The value has already been used and should therefore be emitted. 1690 addDeferredDeclToEmit(GV, GD); 1691 } else if (MustBeEmitted(Global)) { 1692 // The value must be emitted, but cannot be emitted eagerly. 1693 assert(!MayBeEmittedEagerly(Global)); 1694 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1695 } else { 1696 // Otherwise, remember that we saw a deferred decl with this name. The 1697 // first use of the mangled name will cause it to move into 1698 // DeferredDeclsToEmit. 1699 DeferredDecls[MangledName] = GD; 1700 } 1701 } 1702 1703 // Check if T is a class type with a destructor that's not dllimport. 1704 static bool HasNonDllImportDtor(QualType T) { 1705 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1706 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1707 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1708 return true; 1709 1710 return false; 1711 } 1712 1713 namespace { 1714 struct FunctionIsDirectlyRecursive : 1715 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1716 const StringRef Name; 1717 const Builtin::Context &BI; 1718 bool Result; 1719 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1720 Name(N), BI(C), Result(false) { 1721 } 1722 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1723 1724 bool TraverseCallExpr(CallExpr *E) { 1725 const FunctionDecl *FD = E->getDirectCallee(); 1726 if (!FD) 1727 return true; 1728 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1729 if (Attr && Name == Attr->getLabel()) { 1730 Result = true; 1731 return false; 1732 } 1733 unsigned BuiltinID = FD->getBuiltinID(); 1734 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1735 return true; 1736 StringRef BuiltinName = BI.getName(BuiltinID); 1737 if (BuiltinName.startswith("__builtin_") && 1738 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1739 Result = true; 1740 return false; 1741 } 1742 return true; 1743 } 1744 }; 1745 1746 // Make sure we're not referencing non-imported vars or functions. 1747 struct DLLImportFunctionVisitor 1748 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1749 bool SafeToInline = true; 1750 1751 bool shouldVisitImplicitCode() const { return true; } 1752 1753 bool VisitVarDecl(VarDecl *VD) { 1754 if (VD->getTLSKind()) { 1755 // A thread-local variable cannot be imported. 1756 SafeToInline = false; 1757 return SafeToInline; 1758 } 1759 1760 // A variable definition might imply a destructor call. 1761 if (VD->isThisDeclarationADefinition()) 1762 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1763 1764 return SafeToInline; 1765 } 1766 1767 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1768 if (const auto *D = E->getTemporary()->getDestructor()) 1769 SafeToInline = D->hasAttr<DLLImportAttr>(); 1770 return SafeToInline; 1771 } 1772 1773 bool VisitDeclRefExpr(DeclRefExpr *E) { 1774 ValueDecl *VD = E->getDecl(); 1775 if (isa<FunctionDecl>(VD)) 1776 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1777 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1778 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1779 return SafeToInline; 1780 } 1781 1782 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1783 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1784 return SafeToInline; 1785 } 1786 1787 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1788 CXXMethodDecl *M = E->getMethodDecl(); 1789 if (!M) { 1790 // Call through a pointer to member function. This is safe to inline. 1791 SafeToInline = true; 1792 } else { 1793 SafeToInline = M->hasAttr<DLLImportAttr>(); 1794 } 1795 return SafeToInline; 1796 } 1797 1798 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1799 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1800 return SafeToInline; 1801 } 1802 1803 bool VisitCXXNewExpr(CXXNewExpr *E) { 1804 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1805 return SafeToInline; 1806 } 1807 }; 1808 } 1809 1810 // isTriviallyRecursive - Check if this function calls another 1811 // decl that, because of the asm attribute or the other decl being a builtin, 1812 // ends up pointing to itself. 1813 bool 1814 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1815 StringRef Name; 1816 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1817 // asm labels are a special kind of mangling we have to support. 1818 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1819 if (!Attr) 1820 return false; 1821 Name = Attr->getLabel(); 1822 } else { 1823 Name = FD->getName(); 1824 } 1825 1826 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1827 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1828 return Walker.Result; 1829 } 1830 1831 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1832 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1833 return true; 1834 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1835 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1836 return false; 1837 1838 if (F->hasAttr<DLLImportAttr>()) { 1839 // Check whether it would be safe to inline this dllimport function. 1840 DLLImportFunctionVisitor Visitor; 1841 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1842 if (!Visitor.SafeToInline) 1843 return false; 1844 1845 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1846 // Implicit destructor invocations aren't captured in the AST, so the 1847 // check above can't see them. Check for them manually here. 1848 for (const Decl *Member : Dtor->getParent()->decls()) 1849 if (isa<FieldDecl>(Member)) 1850 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1851 return false; 1852 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1853 if (HasNonDllImportDtor(B.getType())) 1854 return false; 1855 } 1856 } 1857 1858 // PR9614. Avoid cases where the source code is lying to us. An available 1859 // externally function should have an equivalent function somewhere else, 1860 // but a function that calls itself is clearly not equivalent to the real 1861 // implementation. 1862 // This happens in glibc's btowc and in some configure checks. 1863 return !isTriviallyRecursive(F); 1864 } 1865 1866 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1867 const auto *D = cast<ValueDecl>(GD.getDecl()); 1868 1869 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1870 Context.getSourceManager(), 1871 "Generating code for declaration"); 1872 1873 if (isa<FunctionDecl>(D)) { 1874 // At -O0, don't generate IR for functions with available_externally 1875 // linkage. 1876 if (!shouldEmitFunction(GD)) 1877 return; 1878 1879 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1880 // Make sure to emit the definition(s) before we emit the thunks. 1881 // This is necessary for the generation of certain thunks. 1882 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1883 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1884 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1885 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1886 else 1887 EmitGlobalFunctionDefinition(GD, GV); 1888 1889 if (Method->isVirtual()) 1890 getVTables().EmitThunks(GD); 1891 1892 return; 1893 } 1894 1895 return EmitGlobalFunctionDefinition(GD, GV); 1896 } 1897 1898 if (const auto *VD = dyn_cast<VarDecl>(D)) 1899 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1900 1901 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1902 } 1903 1904 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1905 llvm::Function *NewFn); 1906 1907 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1908 /// module, create and return an llvm Function with the specified type. If there 1909 /// is something in the module with the specified name, return it potentially 1910 /// bitcasted to the right type. 1911 /// 1912 /// If D is non-null, it specifies a decl that correspond to this. This is used 1913 /// to set the attributes on the function when it is first created. 1914 llvm::Constant * 1915 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1916 llvm::Type *Ty, 1917 GlobalDecl GD, bool ForVTable, 1918 bool DontDefer, bool IsThunk, 1919 llvm::AttributeSet ExtraAttrs, 1920 ForDefinition_t IsForDefinition) { 1921 const Decl *D = GD.getDecl(); 1922 1923 // Lookup the entry, lazily creating it if necessary. 1924 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1925 if (Entry) { 1926 if (WeakRefReferences.erase(Entry)) { 1927 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1928 if (FD && !FD->hasAttr<WeakAttr>()) 1929 Entry->setLinkage(llvm::Function::ExternalLinkage); 1930 } 1931 1932 // Handle dropped DLL attributes. 1933 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1934 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1935 1936 // If there are two attempts to define the same mangled name, issue an 1937 // error. 1938 if (IsForDefinition && !Entry->isDeclaration()) { 1939 GlobalDecl OtherGD; 1940 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1941 // to make sure that we issue an error only once. 1942 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1943 (GD.getCanonicalDecl().getDecl() != 1944 OtherGD.getCanonicalDecl().getDecl()) && 1945 DiagnosedConflictingDefinitions.insert(GD).second) { 1946 getDiags().Report(D->getLocation(), 1947 diag::err_duplicate_mangled_name); 1948 getDiags().Report(OtherGD.getDecl()->getLocation(), 1949 diag::note_previous_definition); 1950 } 1951 } 1952 1953 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1954 (Entry->getType()->getElementType() == Ty)) { 1955 return Entry; 1956 } 1957 1958 // Make sure the result is of the correct type. 1959 // (If function is requested for a definition, we always need to create a new 1960 // function, not just return a bitcast.) 1961 if (!IsForDefinition) 1962 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1963 } 1964 1965 // This function doesn't have a complete type (for example, the return 1966 // type is an incomplete struct). Use a fake type instead, and make 1967 // sure not to try to set attributes. 1968 bool IsIncompleteFunction = false; 1969 1970 llvm::FunctionType *FTy; 1971 if (isa<llvm::FunctionType>(Ty)) { 1972 FTy = cast<llvm::FunctionType>(Ty); 1973 } else { 1974 FTy = llvm::FunctionType::get(VoidTy, false); 1975 IsIncompleteFunction = true; 1976 } 1977 1978 llvm::Function *F = 1979 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1980 Entry ? StringRef() : MangledName, &getModule()); 1981 1982 // If we already created a function with the same mangled name (but different 1983 // type) before, take its name and add it to the list of functions to be 1984 // replaced with F at the end of CodeGen. 1985 // 1986 // This happens if there is a prototype for a function (e.g. "int f()") and 1987 // then a definition of a different type (e.g. "int f(int x)"). 1988 if (Entry) { 1989 F->takeName(Entry); 1990 1991 // This might be an implementation of a function without a prototype, in 1992 // which case, try to do special replacement of calls which match the new 1993 // prototype. The really key thing here is that we also potentially drop 1994 // arguments from the call site so as to make a direct call, which makes the 1995 // inliner happier and suppresses a number of optimizer warnings (!) about 1996 // dropping arguments. 1997 if (!Entry->use_empty()) { 1998 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1999 Entry->removeDeadConstantUsers(); 2000 } 2001 2002 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2003 F, Entry->getType()->getElementType()->getPointerTo()); 2004 addGlobalValReplacement(Entry, BC); 2005 } 2006 2007 assert(F->getName() == MangledName && "name was uniqued!"); 2008 if (D) 2009 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2010 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 2011 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 2012 F->addAttributes(llvm::AttributeSet::FunctionIndex, 2013 llvm::AttributeSet::get(VMContext, 2014 llvm::AttributeSet::FunctionIndex, 2015 B)); 2016 } 2017 2018 if (!DontDefer) { 2019 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2020 // each other bottoming out with the base dtor. Therefore we emit non-base 2021 // dtors on usage, even if there is no dtor definition in the TU. 2022 if (D && isa<CXXDestructorDecl>(D) && 2023 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2024 GD.getDtorType())) 2025 addDeferredDeclToEmit(F, GD); 2026 2027 // This is the first use or definition of a mangled name. If there is a 2028 // deferred decl with this name, remember that we need to emit it at the end 2029 // of the file. 2030 auto DDI = DeferredDecls.find(MangledName); 2031 if (DDI != DeferredDecls.end()) { 2032 // Move the potentially referenced deferred decl to the 2033 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2034 // don't need it anymore). 2035 addDeferredDeclToEmit(F, DDI->second); 2036 DeferredDecls.erase(DDI); 2037 2038 // Otherwise, there are cases we have to worry about where we're 2039 // using a declaration for which we must emit a definition but where 2040 // we might not find a top-level definition: 2041 // - member functions defined inline in their classes 2042 // - friend functions defined inline in some class 2043 // - special member functions with implicit definitions 2044 // If we ever change our AST traversal to walk into class methods, 2045 // this will be unnecessary. 2046 // 2047 // We also don't emit a definition for a function if it's going to be an 2048 // entry in a vtable, unless it's already marked as used. 2049 } else if (getLangOpts().CPlusPlus && D) { 2050 // Look for a declaration that's lexically in a record. 2051 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2052 FD = FD->getPreviousDecl()) { 2053 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2054 if (FD->doesThisDeclarationHaveABody()) { 2055 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 2056 break; 2057 } 2058 } 2059 } 2060 } 2061 } 2062 2063 // Make sure the result is of the requested type. 2064 if (!IsIncompleteFunction) { 2065 assert(F->getType()->getElementType() == Ty); 2066 return F; 2067 } 2068 2069 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2070 return llvm::ConstantExpr::getBitCast(F, PTy); 2071 } 2072 2073 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2074 /// non-null, then this function will use the specified type if it has to 2075 /// create it (this occurs when we see a definition of the function). 2076 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2077 llvm::Type *Ty, 2078 bool ForVTable, 2079 bool DontDefer, 2080 ForDefinition_t IsForDefinition) { 2081 // If there was no specific requested type, just convert it now. 2082 if (!Ty) { 2083 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2084 auto CanonTy = Context.getCanonicalType(FD->getType()); 2085 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2086 } 2087 2088 StringRef MangledName = getMangledName(GD); 2089 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2090 /*IsThunk=*/false, llvm::AttributeSet(), 2091 IsForDefinition); 2092 } 2093 2094 static const FunctionDecl * 2095 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2096 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2097 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2098 2099 IdentifierInfo &CII = C.Idents.get(Name); 2100 for (const auto &Result : DC->lookup(&CII)) 2101 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2102 return FD; 2103 2104 if (!C.getLangOpts().CPlusPlus) 2105 return nullptr; 2106 2107 // Demangle the premangled name from getTerminateFn() 2108 IdentifierInfo &CXXII = 2109 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2110 ? C.Idents.get("terminate") 2111 : C.Idents.get(Name); 2112 2113 for (const auto &N : {"__cxxabiv1", "std"}) { 2114 IdentifierInfo &NS = C.Idents.get(N); 2115 for (const auto &Result : DC->lookup(&NS)) { 2116 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2117 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2118 for (const auto &Result : LSD->lookup(&NS)) 2119 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2120 break; 2121 2122 if (ND) 2123 for (const auto &Result : ND->lookup(&CXXII)) 2124 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2125 return FD; 2126 } 2127 } 2128 2129 return nullptr; 2130 } 2131 2132 /// CreateRuntimeFunction - Create a new runtime function with the specified 2133 /// type and name. 2134 llvm::Constant * 2135 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2136 llvm::AttributeSet ExtraAttrs, 2137 bool Local) { 2138 llvm::Constant *C = 2139 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2140 /*DontDefer=*/false, /*IsThunk=*/false, 2141 ExtraAttrs); 2142 2143 if (auto *F = dyn_cast<llvm::Function>(C)) { 2144 if (F->empty()) { 2145 F->setCallingConv(getRuntimeCC()); 2146 2147 if (!Local && getTriple().isOSBinFormatCOFF() && 2148 !getCodeGenOpts().LTOVisibilityPublicStd) { 2149 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2150 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2151 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2152 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2153 } 2154 } 2155 } 2156 } 2157 2158 return C; 2159 } 2160 2161 /// CreateBuiltinFunction - Create a new builtin function with the specified 2162 /// type and name. 2163 llvm::Constant * 2164 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2165 StringRef Name, 2166 llvm::AttributeSet ExtraAttrs) { 2167 llvm::Constant *C = 2168 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2169 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2170 if (auto *F = dyn_cast<llvm::Function>(C)) 2171 if (F->empty()) 2172 F->setCallingConv(getBuiltinCC()); 2173 return C; 2174 } 2175 2176 /// isTypeConstant - Determine whether an object of this type can be emitted 2177 /// as a constant. 2178 /// 2179 /// If ExcludeCtor is true, the duration when the object's constructor runs 2180 /// will not be considered. The caller will need to verify that the object is 2181 /// not written to during its construction. 2182 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2183 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2184 return false; 2185 2186 if (Context.getLangOpts().CPlusPlus) { 2187 if (const CXXRecordDecl *Record 2188 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2189 return ExcludeCtor && !Record->hasMutableFields() && 2190 Record->hasTrivialDestructor(); 2191 } 2192 2193 return true; 2194 } 2195 2196 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2197 /// create and return an llvm GlobalVariable with the specified type. If there 2198 /// is something in the module with the specified name, return it potentially 2199 /// bitcasted to the right type. 2200 /// 2201 /// If D is non-null, it specifies a decl that correspond to this. This is used 2202 /// to set the attributes on the global when it is first created. 2203 /// 2204 /// If IsForDefinition is true, it is guranteed that an actual global with 2205 /// type Ty will be returned, not conversion of a variable with the same 2206 /// mangled name but some other type. 2207 llvm::Constant * 2208 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2209 llvm::PointerType *Ty, 2210 const VarDecl *D, 2211 ForDefinition_t IsForDefinition) { 2212 // Lookup the entry, lazily creating it if necessary. 2213 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2214 if (Entry) { 2215 if (WeakRefReferences.erase(Entry)) { 2216 if (D && !D->hasAttr<WeakAttr>()) 2217 Entry->setLinkage(llvm::Function::ExternalLinkage); 2218 } 2219 2220 // Handle dropped DLL attributes. 2221 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2222 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2223 2224 if (Entry->getType() == Ty) 2225 return Entry; 2226 2227 // If there are two attempts to define the same mangled name, issue an 2228 // error. 2229 if (IsForDefinition && !Entry->isDeclaration()) { 2230 GlobalDecl OtherGD; 2231 const VarDecl *OtherD; 2232 2233 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2234 // to make sure that we issue an error only once. 2235 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2236 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2237 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2238 OtherD->hasInit() && 2239 DiagnosedConflictingDefinitions.insert(D).second) { 2240 getDiags().Report(D->getLocation(), 2241 diag::err_duplicate_mangled_name); 2242 getDiags().Report(OtherGD.getDecl()->getLocation(), 2243 diag::note_previous_definition); 2244 } 2245 } 2246 2247 // Make sure the result is of the correct type. 2248 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2249 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2250 2251 // (If global is requested for a definition, we always need to create a new 2252 // global, not just return a bitcast.) 2253 if (!IsForDefinition) 2254 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2255 } 2256 2257 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2258 auto *GV = new llvm::GlobalVariable( 2259 getModule(), Ty->getElementType(), false, 2260 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2261 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2262 2263 // If we already created a global with the same mangled name (but different 2264 // type) before, take its name and remove it from its parent. 2265 if (Entry) { 2266 GV->takeName(Entry); 2267 2268 if (!Entry->use_empty()) { 2269 llvm::Constant *NewPtrForOldDecl = 2270 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2271 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2272 } 2273 2274 Entry->eraseFromParent(); 2275 } 2276 2277 // This is the first use or definition of a mangled name. If there is a 2278 // deferred decl with this name, remember that we need to emit it at the end 2279 // of the file. 2280 auto DDI = DeferredDecls.find(MangledName); 2281 if (DDI != DeferredDecls.end()) { 2282 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2283 // list, and remove it from DeferredDecls (since we don't need it anymore). 2284 addDeferredDeclToEmit(GV, DDI->second); 2285 DeferredDecls.erase(DDI); 2286 } 2287 2288 // Handle things which are present even on external declarations. 2289 if (D) { 2290 // FIXME: This code is overly simple and should be merged with other global 2291 // handling. 2292 GV->setConstant(isTypeConstant(D->getType(), false)); 2293 2294 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2295 2296 setLinkageAndVisibilityForGV(GV, D); 2297 2298 if (D->getTLSKind()) { 2299 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2300 CXXThreadLocals.push_back(D); 2301 setTLSMode(GV, *D); 2302 } 2303 2304 // If required by the ABI, treat declarations of static data members with 2305 // inline initializers as definitions. 2306 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2307 EmitGlobalVarDefinition(D); 2308 } 2309 2310 // Handle XCore specific ABI requirements. 2311 if (getTriple().getArch() == llvm::Triple::xcore && 2312 D->getLanguageLinkage() == CLanguageLinkage && 2313 D->getType().isConstant(Context) && 2314 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2315 GV->setSection(".cp.rodata"); 2316 } 2317 2318 if (AddrSpace != Ty->getAddressSpace()) 2319 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2320 2321 return GV; 2322 } 2323 2324 llvm::Constant * 2325 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2326 ForDefinition_t IsForDefinition) { 2327 const Decl *D = GD.getDecl(); 2328 if (isa<CXXConstructorDecl>(D)) 2329 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2330 getFromCtorType(GD.getCtorType()), 2331 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2332 /*DontDefer=*/false, IsForDefinition); 2333 else if (isa<CXXDestructorDecl>(D)) 2334 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2335 getFromDtorType(GD.getDtorType()), 2336 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2337 /*DontDefer=*/false, IsForDefinition); 2338 else if (isa<CXXMethodDecl>(D)) { 2339 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2340 cast<CXXMethodDecl>(D)); 2341 auto Ty = getTypes().GetFunctionType(*FInfo); 2342 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2343 IsForDefinition); 2344 } else if (isa<FunctionDecl>(D)) { 2345 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2346 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2347 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2348 IsForDefinition); 2349 } else 2350 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2351 IsForDefinition); 2352 } 2353 2354 llvm::GlobalVariable * 2355 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2356 llvm::Type *Ty, 2357 llvm::GlobalValue::LinkageTypes Linkage) { 2358 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2359 llvm::GlobalVariable *OldGV = nullptr; 2360 2361 if (GV) { 2362 // Check if the variable has the right type. 2363 if (GV->getType()->getElementType() == Ty) 2364 return GV; 2365 2366 // Because C++ name mangling, the only way we can end up with an already 2367 // existing global with the same name is if it has been declared extern "C". 2368 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2369 OldGV = GV; 2370 } 2371 2372 // Create a new variable. 2373 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2374 Linkage, nullptr, Name); 2375 2376 if (OldGV) { 2377 // Replace occurrences of the old variable if needed. 2378 GV->takeName(OldGV); 2379 2380 if (!OldGV->use_empty()) { 2381 llvm::Constant *NewPtrForOldDecl = 2382 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2383 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2384 } 2385 2386 OldGV->eraseFromParent(); 2387 } 2388 2389 if (supportsCOMDAT() && GV->isWeakForLinker() && 2390 !GV->hasAvailableExternallyLinkage()) 2391 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2392 2393 return GV; 2394 } 2395 2396 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2397 /// given global variable. If Ty is non-null and if the global doesn't exist, 2398 /// then it will be created with the specified type instead of whatever the 2399 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2400 /// that an actual global with type Ty will be returned, not conversion of a 2401 /// variable with the same mangled name but some other type. 2402 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2403 llvm::Type *Ty, 2404 ForDefinition_t IsForDefinition) { 2405 assert(D->hasGlobalStorage() && "Not a global variable"); 2406 QualType ASTTy = D->getType(); 2407 if (!Ty) 2408 Ty = getTypes().ConvertTypeForMem(ASTTy); 2409 2410 llvm::PointerType *PTy = 2411 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2412 2413 StringRef MangledName = getMangledName(D); 2414 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2415 } 2416 2417 /// CreateRuntimeVariable - Create a new runtime global variable with the 2418 /// specified type and name. 2419 llvm::Constant * 2420 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2421 StringRef Name) { 2422 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2423 } 2424 2425 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2426 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2427 2428 StringRef MangledName = getMangledName(D); 2429 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2430 2431 // We already have a definition, not declaration, with the same mangled name. 2432 // Emitting of declaration is not required (and actually overwrites emitted 2433 // definition). 2434 if (GV && !GV->isDeclaration()) 2435 return; 2436 2437 // If we have not seen a reference to this variable yet, place it into the 2438 // deferred declarations table to be emitted if needed later. 2439 if (!MustBeEmitted(D) && !GV) { 2440 DeferredDecls[MangledName] = D; 2441 return; 2442 } 2443 2444 // The tentative definition is the only definition. 2445 EmitGlobalVarDefinition(D); 2446 } 2447 2448 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2449 return Context.toCharUnitsFromBits( 2450 getDataLayout().getTypeStoreSizeInBits(Ty)); 2451 } 2452 2453 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2454 unsigned AddrSpace) { 2455 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2456 if (D->hasAttr<CUDAConstantAttr>()) 2457 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2458 else if (D->hasAttr<CUDASharedAttr>()) 2459 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2460 else 2461 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2462 } 2463 2464 return AddrSpace; 2465 } 2466 2467 template<typename SomeDecl> 2468 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2469 llvm::GlobalValue *GV) { 2470 if (!getLangOpts().CPlusPlus) 2471 return; 2472 2473 // Must have 'used' attribute, or else inline assembly can't rely on 2474 // the name existing. 2475 if (!D->template hasAttr<UsedAttr>()) 2476 return; 2477 2478 // Must have internal linkage and an ordinary name. 2479 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2480 return; 2481 2482 // Must be in an extern "C" context. Entities declared directly within 2483 // a record are not extern "C" even if the record is in such a context. 2484 const SomeDecl *First = D->getFirstDecl(); 2485 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2486 return; 2487 2488 // OK, this is an internal linkage entity inside an extern "C" linkage 2489 // specification. Make a note of that so we can give it the "expected" 2490 // mangled name if nothing else is using that name. 2491 std::pair<StaticExternCMap::iterator, bool> R = 2492 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2493 2494 // If we have multiple internal linkage entities with the same name 2495 // in extern "C" regions, none of them gets that name. 2496 if (!R.second) 2497 R.first->second = nullptr; 2498 } 2499 2500 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2501 if (!CGM.supportsCOMDAT()) 2502 return false; 2503 2504 if (D.hasAttr<SelectAnyAttr>()) 2505 return true; 2506 2507 GVALinkage Linkage; 2508 if (auto *VD = dyn_cast<VarDecl>(&D)) 2509 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2510 else 2511 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2512 2513 switch (Linkage) { 2514 case GVA_Internal: 2515 case GVA_AvailableExternally: 2516 case GVA_StrongExternal: 2517 return false; 2518 case GVA_DiscardableODR: 2519 case GVA_StrongODR: 2520 return true; 2521 } 2522 llvm_unreachable("No such linkage"); 2523 } 2524 2525 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2526 llvm::GlobalObject &GO) { 2527 if (!shouldBeInCOMDAT(*this, D)) 2528 return; 2529 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2530 } 2531 2532 /// Pass IsTentative as true if you want to create a tentative definition. 2533 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2534 bool IsTentative) { 2535 // OpenCL global variables of sampler type are translated to function calls, 2536 // therefore no need to be translated. 2537 QualType ASTTy = D->getType(); 2538 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2539 return; 2540 2541 llvm::Constant *Init = nullptr; 2542 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2543 bool NeedsGlobalCtor = false; 2544 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2545 2546 const VarDecl *InitDecl; 2547 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2548 2549 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2550 // as part of their declaration." Sema has already checked for 2551 // error cases, so we just need to set Init to UndefValue. 2552 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2553 D->hasAttr<CUDASharedAttr>()) 2554 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2555 else if (!InitExpr) { 2556 // This is a tentative definition; tentative definitions are 2557 // implicitly initialized with { 0 }. 2558 // 2559 // Note that tentative definitions are only emitted at the end of 2560 // a translation unit, so they should never have incomplete 2561 // type. In addition, EmitTentativeDefinition makes sure that we 2562 // never attempt to emit a tentative definition if a real one 2563 // exists. A use may still exists, however, so we still may need 2564 // to do a RAUW. 2565 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2566 Init = EmitNullConstant(D->getType()); 2567 } else { 2568 initializedGlobalDecl = GlobalDecl(D); 2569 Init = EmitConstantInit(*InitDecl); 2570 2571 if (!Init) { 2572 QualType T = InitExpr->getType(); 2573 if (D->getType()->isReferenceType()) 2574 T = D->getType(); 2575 2576 if (getLangOpts().CPlusPlus) { 2577 Init = EmitNullConstant(T); 2578 NeedsGlobalCtor = true; 2579 } else { 2580 ErrorUnsupported(D, "static initializer"); 2581 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2582 } 2583 } else { 2584 // We don't need an initializer, so remove the entry for the delayed 2585 // initializer position (just in case this entry was delayed) if we 2586 // also don't need to register a destructor. 2587 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2588 DelayedCXXInitPosition.erase(D); 2589 } 2590 } 2591 2592 llvm::Type* InitType = Init->getType(); 2593 llvm::Constant *Entry = 2594 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2595 2596 // Strip off a bitcast if we got one back. 2597 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2598 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2599 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2600 // All zero index gep. 2601 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2602 Entry = CE->getOperand(0); 2603 } 2604 2605 // Entry is now either a Function or GlobalVariable. 2606 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2607 2608 // We have a definition after a declaration with the wrong type. 2609 // We must make a new GlobalVariable* and update everything that used OldGV 2610 // (a declaration or tentative definition) with the new GlobalVariable* 2611 // (which will be a definition). 2612 // 2613 // This happens if there is a prototype for a global (e.g. 2614 // "extern int x[];") and then a definition of a different type (e.g. 2615 // "int x[10];"). This also happens when an initializer has a different type 2616 // from the type of the global (this happens with unions). 2617 if (!GV || 2618 GV->getType()->getElementType() != InitType || 2619 GV->getType()->getAddressSpace() != 2620 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2621 2622 // Move the old entry aside so that we'll create a new one. 2623 Entry->setName(StringRef()); 2624 2625 // Make a new global with the correct type, this is now guaranteed to work. 2626 GV = cast<llvm::GlobalVariable>( 2627 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2628 2629 // Replace all uses of the old global with the new global 2630 llvm::Constant *NewPtrForOldDecl = 2631 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2632 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2633 2634 // Erase the old global, since it is no longer used. 2635 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2636 } 2637 2638 MaybeHandleStaticInExternC(D, GV); 2639 2640 if (D->hasAttr<AnnotateAttr>()) 2641 AddGlobalAnnotations(D, GV); 2642 2643 // Set the llvm linkage type as appropriate. 2644 llvm::GlobalValue::LinkageTypes Linkage = 2645 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2646 2647 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2648 // the device. [...]" 2649 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2650 // __device__, declares a variable that: [...] 2651 // Is accessible from all the threads within the grid and from the host 2652 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2653 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2654 if (GV && LangOpts.CUDA) { 2655 if (LangOpts.CUDAIsDevice) { 2656 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2657 GV->setExternallyInitialized(true); 2658 } else { 2659 // Host-side shadows of external declarations of device-side 2660 // global variables become internal definitions. These have to 2661 // be internal in order to prevent name conflicts with global 2662 // host variables with the same name in a different TUs. 2663 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2664 Linkage = llvm::GlobalValue::InternalLinkage; 2665 2666 // Shadow variables and their properties must be registered 2667 // with CUDA runtime. 2668 unsigned Flags = 0; 2669 if (!D->hasDefinition()) 2670 Flags |= CGCUDARuntime::ExternDeviceVar; 2671 if (D->hasAttr<CUDAConstantAttr>()) 2672 Flags |= CGCUDARuntime::ConstantDeviceVar; 2673 getCUDARuntime().registerDeviceVar(*GV, Flags); 2674 } else if (D->hasAttr<CUDASharedAttr>()) 2675 // __shared__ variables are odd. Shadows do get created, but 2676 // they are not registered with the CUDA runtime, so they 2677 // can't really be used to access their device-side 2678 // counterparts. It's not clear yet whether it's nvcc's bug or 2679 // a feature, but we've got to do the same for compatibility. 2680 Linkage = llvm::GlobalValue::InternalLinkage; 2681 } 2682 } 2683 GV->setInitializer(Init); 2684 2685 // If it is safe to mark the global 'constant', do so now. 2686 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2687 isTypeConstant(D->getType(), true)); 2688 2689 // If it is in a read-only section, mark it 'constant'. 2690 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2691 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2692 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2693 GV->setConstant(true); 2694 } 2695 2696 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2697 2698 2699 // On Darwin, if the normal linkage of a C++ thread_local variable is 2700 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2701 // copies within a linkage unit; otherwise, the backing variable has 2702 // internal linkage and all accesses should just be calls to the 2703 // Itanium-specified entry point, which has the normal linkage of the 2704 // variable. This is to preserve the ability to change the implementation 2705 // behind the scenes. 2706 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2707 Context.getTargetInfo().getTriple().isOSDarwin() && 2708 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2709 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2710 Linkage = llvm::GlobalValue::InternalLinkage; 2711 2712 GV->setLinkage(Linkage); 2713 if (D->hasAttr<DLLImportAttr>()) 2714 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2715 else if (D->hasAttr<DLLExportAttr>()) 2716 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2717 else 2718 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2719 2720 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2721 // common vars aren't constant even if declared const. 2722 GV->setConstant(false); 2723 // Tentative definition of global variables may be initialized with 2724 // non-zero null pointers. In this case they should have weak linkage 2725 // since common linkage must have zero initializer and must not have 2726 // explicit section therefore cannot have non-zero initial value. 2727 if (!GV->getInitializer()->isNullValue()) 2728 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2729 } 2730 2731 setNonAliasAttributes(D, GV); 2732 2733 if (D->getTLSKind() && !GV->isThreadLocal()) { 2734 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2735 CXXThreadLocals.push_back(D); 2736 setTLSMode(GV, *D); 2737 } 2738 2739 maybeSetTrivialComdat(*D, *GV); 2740 2741 // Emit the initializer function if necessary. 2742 if (NeedsGlobalCtor || NeedsGlobalDtor) 2743 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2744 2745 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2746 2747 // Emit global variable debug information. 2748 if (CGDebugInfo *DI = getModuleDebugInfo()) 2749 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2750 DI->EmitGlobalVariable(GV, D); 2751 } 2752 2753 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2754 CodeGenModule &CGM, const VarDecl *D, 2755 bool NoCommon) { 2756 // Don't give variables common linkage if -fno-common was specified unless it 2757 // was overridden by a NoCommon attribute. 2758 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2759 return true; 2760 2761 // C11 6.9.2/2: 2762 // A declaration of an identifier for an object that has file scope without 2763 // an initializer, and without a storage-class specifier or with the 2764 // storage-class specifier static, constitutes a tentative definition. 2765 if (D->getInit() || D->hasExternalStorage()) 2766 return true; 2767 2768 // A variable cannot be both common and exist in a section. 2769 if (D->hasAttr<SectionAttr>()) 2770 return true; 2771 2772 // Thread local vars aren't considered common linkage. 2773 if (D->getTLSKind()) 2774 return true; 2775 2776 // Tentative definitions marked with WeakImportAttr are true definitions. 2777 if (D->hasAttr<WeakImportAttr>()) 2778 return true; 2779 2780 // A variable cannot be both common and exist in a comdat. 2781 if (shouldBeInCOMDAT(CGM, *D)) 2782 return true; 2783 2784 // Declarations with a required alignment do not have common linkage in MSVC 2785 // mode. 2786 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2787 if (D->hasAttr<AlignedAttr>()) 2788 return true; 2789 QualType VarType = D->getType(); 2790 if (Context.isAlignmentRequired(VarType)) 2791 return true; 2792 2793 if (const auto *RT = VarType->getAs<RecordType>()) { 2794 const RecordDecl *RD = RT->getDecl(); 2795 for (const FieldDecl *FD : RD->fields()) { 2796 if (FD->isBitField()) 2797 continue; 2798 if (FD->hasAttr<AlignedAttr>()) 2799 return true; 2800 if (Context.isAlignmentRequired(FD->getType())) 2801 return true; 2802 } 2803 } 2804 } 2805 2806 return false; 2807 } 2808 2809 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2810 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2811 if (Linkage == GVA_Internal) 2812 return llvm::Function::InternalLinkage; 2813 2814 if (D->hasAttr<WeakAttr>()) { 2815 if (IsConstantVariable) 2816 return llvm::GlobalVariable::WeakODRLinkage; 2817 else 2818 return llvm::GlobalVariable::WeakAnyLinkage; 2819 } 2820 2821 // We are guaranteed to have a strong definition somewhere else, 2822 // so we can use available_externally linkage. 2823 if (Linkage == GVA_AvailableExternally) 2824 return llvm::GlobalValue::AvailableExternallyLinkage; 2825 2826 // Note that Apple's kernel linker doesn't support symbol 2827 // coalescing, so we need to avoid linkonce and weak linkages there. 2828 // Normally, this means we just map to internal, but for explicit 2829 // instantiations we'll map to external. 2830 2831 // In C++, the compiler has to emit a definition in every translation unit 2832 // that references the function. We should use linkonce_odr because 2833 // a) if all references in this translation unit are optimized away, we 2834 // don't need to codegen it. b) if the function persists, it needs to be 2835 // merged with other definitions. c) C++ has the ODR, so we know the 2836 // definition is dependable. 2837 if (Linkage == GVA_DiscardableODR) 2838 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2839 : llvm::Function::InternalLinkage; 2840 2841 // An explicit instantiation of a template has weak linkage, since 2842 // explicit instantiations can occur in multiple translation units 2843 // and must all be equivalent. However, we are not allowed to 2844 // throw away these explicit instantiations. 2845 // 2846 // We don't currently support CUDA device code spread out across multiple TUs, 2847 // so say that CUDA templates are either external (for kernels) or internal. 2848 // This lets llvm perform aggressive inter-procedural optimizations. 2849 if (Linkage == GVA_StrongODR) { 2850 if (Context.getLangOpts().AppleKext) 2851 return llvm::Function::ExternalLinkage; 2852 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2853 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2854 : llvm::Function::InternalLinkage; 2855 return llvm::Function::WeakODRLinkage; 2856 } 2857 2858 // C++ doesn't have tentative definitions and thus cannot have common 2859 // linkage. 2860 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2861 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2862 CodeGenOpts.NoCommon)) 2863 return llvm::GlobalVariable::CommonLinkage; 2864 2865 // selectany symbols are externally visible, so use weak instead of 2866 // linkonce. MSVC optimizes away references to const selectany globals, so 2867 // all definitions should be the same and ODR linkage should be used. 2868 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2869 if (D->hasAttr<SelectAnyAttr>()) 2870 return llvm::GlobalVariable::WeakODRLinkage; 2871 2872 // Otherwise, we have strong external linkage. 2873 assert(Linkage == GVA_StrongExternal); 2874 return llvm::GlobalVariable::ExternalLinkage; 2875 } 2876 2877 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2878 const VarDecl *VD, bool IsConstant) { 2879 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2880 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2881 } 2882 2883 /// Replace the uses of a function that was declared with a non-proto type. 2884 /// We want to silently drop extra arguments from call sites 2885 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2886 llvm::Function *newFn) { 2887 // Fast path. 2888 if (old->use_empty()) return; 2889 2890 llvm::Type *newRetTy = newFn->getReturnType(); 2891 SmallVector<llvm::Value*, 4> newArgs; 2892 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2893 2894 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2895 ui != ue; ) { 2896 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2897 llvm::User *user = use->getUser(); 2898 2899 // Recognize and replace uses of bitcasts. Most calls to 2900 // unprototyped functions will use bitcasts. 2901 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2902 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2903 replaceUsesOfNonProtoConstant(bitcast, newFn); 2904 continue; 2905 } 2906 2907 // Recognize calls to the function. 2908 llvm::CallSite callSite(user); 2909 if (!callSite) continue; 2910 if (!callSite.isCallee(&*use)) continue; 2911 2912 // If the return types don't match exactly, then we can't 2913 // transform this call unless it's dead. 2914 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2915 continue; 2916 2917 // Get the call site's attribute list. 2918 SmallVector<llvm::AttributeSet, 8> newAttrs; 2919 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2920 2921 // Collect any return attributes from the call. 2922 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2923 newAttrs.push_back( 2924 llvm::AttributeSet::get(newFn->getContext(), 2925 oldAttrs.getRetAttributes())); 2926 2927 // If the function was passed too few arguments, don't transform. 2928 unsigned newNumArgs = newFn->arg_size(); 2929 if (callSite.arg_size() < newNumArgs) continue; 2930 2931 // If extra arguments were passed, we silently drop them. 2932 // If any of the types mismatch, we don't transform. 2933 unsigned argNo = 0; 2934 bool dontTransform = false; 2935 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2936 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2937 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2938 dontTransform = true; 2939 break; 2940 } 2941 2942 // Add any parameter attributes. 2943 if (oldAttrs.hasAttributes(argNo + 1)) 2944 newAttrs. 2945 push_back(llvm:: 2946 AttributeSet::get(newFn->getContext(), 2947 oldAttrs.getParamAttributes(argNo + 1))); 2948 } 2949 if (dontTransform) 2950 continue; 2951 2952 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2953 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2954 oldAttrs.getFnAttributes())); 2955 2956 // Okay, we can transform this. Create the new call instruction and copy 2957 // over the required information. 2958 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2959 2960 // Copy over any operand bundles. 2961 callSite.getOperandBundlesAsDefs(newBundles); 2962 2963 llvm::CallSite newCall; 2964 if (callSite.isCall()) { 2965 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2966 callSite.getInstruction()); 2967 } else { 2968 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2969 newCall = llvm::InvokeInst::Create(newFn, 2970 oldInvoke->getNormalDest(), 2971 oldInvoke->getUnwindDest(), 2972 newArgs, newBundles, "", 2973 callSite.getInstruction()); 2974 } 2975 newArgs.clear(); // for the next iteration 2976 2977 if (!newCall->getType()->isVoidTy()) 2978 newCall->takeName(callSite.getInstruction()); 2979 newCall.setAttributes( 2980 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2981 newCall.setCallingConv(callSite.getCallingConv()); 2982 2983 // Finally, remove the old call, replacing any uses with the new one. 2984 if (!callSite->use_empty()) 2985 callSite->replaceAllUsesWith(newCall.getInstruction()); 2986 2987 // Copy debug location attached to CI. 2988 if (callSite->getDebugLoc()) 2989 newCall->setDebugLoc(callSite->getDebugLoc()); 2990 2991 callSite->eraseFromParent(); 2992 } 2993 } 2994 2995 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2996 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2997 /// existing call uses of the old function in the module, this adjusts them to 2998 /// call the new function directly. 2999 /// 3000 /// This is not just a cleanup: the always_inline pass requires direct calls to 3001 /// functions to be able to inline them. If there is a bitcast in the way, it 3002 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3003 /// run at -O0. 3004 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3005 llvm::Function *NewFn) { 3006 // If we're redefining a global as a function, don't transform it. 3007 if (!isa<llvm::Function>(Old)) return; 3008 3009 replaceUsesOfNonProtoConstant(Old, NewFn); 3010 } 3011 3012 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3013 auto DK = VD->isThisDeclarationADefinition(); 3014 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3015 return; 3016 3017 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3018 // If we have a definition, this might be a deferred decl. If the 3019 // instantiation is explicit, make sure we emit it at the end. 3020 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3021 GetAddrOfGlobalVar(VD); 3022 3023 EmitTopLevelDecl(VD); 3024 } 3025 3026 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3027 llvm::GlobalValue *GV) { 3028 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3029 3030 // Compute the function info and LLVM type. 3031 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3032 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3033 3034 // Get or create the prototype for the function. 3035 if (!GV || (GV->getType()->getElementType() != Ty)) 3036 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3037 /*DontDefer=*/true, 3038 ForDefinition)); 3039 3040 // Already emitted. 3041 if (!GV->isDeclaration()) 3042 return; 3043 3044 // We need to set linkage and visibility on the function before 3045 // generating code for it because various parts of IR generation 3046 // want to propagate this information down (e.g. to local static 3047 // declarations). 3048 auto *Fn = cast<llvm::Function>(GV); 3049 setFunctionLinkage(GD, Fn); 3050 setFunctionDLLStorageClass(GD, Fn); 3051 3052 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3053 setGlobalVisibility(Fn, D); 3054 3055 MaybeHandleStaticInExternC(D, Fn); 3056 3057 maybeSetTrivialComdat(*D, *Fn); 3058 3059 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3060 3061 setFunctionDefinitionAttributes(D, Fn); 3062 SetLLVMFunctionAttributesForDefinition(D, Fn); 3063 3064 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3065 AddGlobalCtor(Fn, CA->getPriority()); 3066 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3067 AddGlobalDtor(Fn, DA->getPriority()); 3068 if (D->hasAttr<AnnotateAttr>()) 3069 AddGlobalAnnotations(D, Fn); 3070 } 3071 3072 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3073 const auto *D = cast<ValueDecl>(GD.getDecl()); 3074 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3075 assert(AA && "Not an alias?"); 3076 3077 StringRef MangledName = getMangledName(GD); 3078 3079 if (AA->getAliasee() == MangledName) { 3080 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3081 return; 3082 } 3083 3084 // If there is a definition in the module, then it wins over the alias. 3085 // This is dubious, but allow it to be safe. Just ignore the alias. 3086 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3087 if (Entry && !Entry->isDeclaration()) 3088 return; 3089 3090 Aliases.push_back(GD); 3091 3092 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3093 3094 // Create a reference to the named value. This ensures that it is emitted 3095 // if a deferred decl. 3096 llvm::Constant *Aliasee; 3097 if (isa<llvm::FunctionType>(DeclTy)) 3098 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3099 /*ForVTable=*/false); 3100 else 3101 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3102 llvm::PointerType::getUnqual(DeclTy), 3103 /*D=*/nullptr); 3104 3105 // Create the new alias itself, but don't set a name yet. 3106 auto *GA = llvm::GlobalAlias::create( 3107 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3108 3109 if (Entry) { 3110 if (GA->getAliasee() == Entry) { 3111 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3112 return; 3113 } 3114 3115 assert(Entry->isDeclaration()); 3116 3117 // If there is a declaration in the module, then we had an extern followed 3118 // by the alias, as in: 3119 // extern int test6(); 3120 // ... 3121 // int test6() __attribute__((alias("test7"))); 3122 // 3123 // Remove it and replace uses of it with the alias. 3124 GA->takeName(Entry); 3125 3126 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3127 Entry->getType())); 3128 Entry->eraseFromParent(); 3129 } else { 3130 GA->setName(MangledName); 3131 } 3132 3133 // Set attributes which are particular to an alias; this is a 3134 // specialization of the attributes which may be set on a global 3135 // variable/function. 3136 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3137 D->isWeakImported()) { 3138 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3139 } 3140 3141 if (const auto *VD = dyn_cast<VarDecl>(D)) 3142 if (VD->getTLSKind()) 3143 setTLSMode(GA, *VD); 3144 3145 setAliasAttributes(D, GA); 3146 } 3147 3148 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3149 const auto *D = cast<ValueDecl>(GD.getDecl()); 3150 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3151 assert(IFA && "Not an ifunc?"); 3152 3153 StringRef MangledName = getMangledName(GD); 3154 3155 if (IFA->getResolver() == MangledName) { 3156 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3157 return; 3158 } 3159 3160 // Report an error if some definition overrides ifunc. 3161 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3162 if (Entry && !Entry->isDeclaration()) { 3163 GlobalDecl OtherGD; 3164 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3165 DiagnosedConflictingDefinitions.insert(GD).second) { 3166 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3167 Diags.Report(OtherGD.getDecl()->getLocation(), 3168 diag::note_previous_definition); 3169 } 3170 return; 3171 } 3172 3173 Aliases.push_back(GD); 3174 3175 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3176 llvm::Constant *Resolver = 3177 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3178 /*ForVTable=*/false); 3179 llvm::GlobalIFunc *GIF = 3180 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3181 "", Resolver, &getModule()); 3182 if (Entry) { 3183 if (GIF->getResolver() == Entry) { 3184 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3185 return; 3186 } 3187 assert(Entry->isDeclaration()); 3188 3189 // If there is a declaration in the module, then we had an extern followed 3190 // by the ifunc, as in: 3191 // extern int test(); 3192 // ... 3193 // int test() __attribute__((ifunc("resolver"))); 3194 // 3195 // Remove it and replace uses of it with the ifunc. 3196 GIF->takeName(Entry); 3197 3198 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3199 Entry->getType())); 3200 Entry->eraseFromParent(); 3201 } else 3202 GIF->setName(MangledName); 3203 3204 SetCommonAttributes(D, GIF); 3205 } 3206 3207 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3208 ArrayRef<llvm::Type*> Tys) { 3209 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3210 Tys); 3211 } 3212 3213 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3214 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3215 const StringLiteral *Literal, bool TargetIsLSB, 3216 bool &IsUTF16, unsigned &StringLength) { 3217 StringRef String = Literal->getString(); 3218 unsigned NumBytes = String.size(); 3219 3220 // Check for simple case. 3221 if (!Literal->containsNonAsciiOrNull()) { 3222 StringLength = NumBytes; 3223 return *Map.insert(std::make_pair(String, nullptr)).first; 3224 } 3225 3226 // Otherwise, convert the UTF8 literals into a string of shorts. 3227 IsUTF16 = true; 3228 3229 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3230 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3231 llvm::UTF16 *ToPtr = &ToBuf[0]; 3232 3233 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3234 ToPtr + NumBytes, llvm::strictConversion); 3235 3236 // ConvertUTF8toUTF16 returns the length in ToPtr. 3237 StringLength = ToPtr - &ToBuf[0]; 3238 3239 // Add an explicit null. 3240 *ToPtr = 0; 3241 return *Map.insert(std::make_pair( 3242 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3243 (StringLength + 1) * 2), 3244 nullptr)).first; 3245 } 3246 3247 ConstantAddress 3248 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3249 unsigned StringLength = 0; 3250 bool isUTF16 = false; 3251 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3252 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3253 getDataLayout().isLittleEndian(), isUTF16, 3254 StringLength); 3255 3256 if (auto *C = Entry.second) 3257 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3258 3259 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3260 llvm::Constant *Zeros[] = { Zero, Zero }; 3261 3262 // If we don't already have it, get __CFConstantStringClassReference. 3263 if (!CFConstantStringClassRef) { 3264 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3265 Ty = llvm::ArrayType::get(Ty, 0); 3266 llvm::Constant *GV = 3267 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3268 3269 if (getTriple().isOSBinFormatCOFF()) { 3270 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3271 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3272 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3273 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3274 3275 const VarDecl *VD = nullptr; 3276 for (const auto &Result : DC->lookup(&II)) 3277 if ((VD = dyn_cast<VarDecl>(Result))) 3278 break; 3279 3280 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3281 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3282 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3283 } else { 3284 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3285 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3286 } 3287 } 3288 3289 // Decay array -> ptr 3290 CFConstantStringClassRef = 3291 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3292 } 3293 3294 QualType CFTy = getContext().getCFConstantStringType(); 3295 3296 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3297 3298 ConstantInitBuilder Builder(*this); 3299 auto Fields = Builder.beginStruct(STy); 3300 3301 // Class pointer. 3302 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3303 3304 // Flags. 3305 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3306 3307 // String pointer. 3308 llvm::Constant *C = nullptr; 3309 if (isUTF16) { 3310 auto Arr = llvm::makeArrayRef( 3311 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3312 Entry.first().size() / 2); 3313 C = llvm::ConstantDataArray::get(VMContext, Arr); 3314 } else { 3315 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3316 } 3317 3318 // Note: -fwritable-strings doesn't make the backing store strings of 3319 // CFStrings writable. (See <rdar://problem/10657500>) 3320 auto *GV = 3321 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3322 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3323 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3324 // Don't enforce the target's minimum global alignment, since the only use 3325 // of the string is via this class initializer. 3326 CharUnits Align = isUTF16 3327 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3328 : getContext().getTypeAlignInChars(getContext().CharTy); 3329 GV->setAlignment(Align.getQuantity()); 3330 3331 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3332 // Without it LLVM can merge the string with a non unnamed_addr one during 3333 // LTO. Doing that changes the section it ends in, which surprises ld64. 3334 if (getTriple().isOSBinFormatMachO()) 3335 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3336 : "__TEXT,__cstring,cstring_literals"); 3337 3338 // String. 3339 llvm::Constant *Str = 3340 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3341 3342 if (isUTF16) 3343 // Cast the UTF16 string to the correct type. 3344 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3345 Fields.add(Str); 3346 3347 // String length. 3348 auto Ty = getTypes().ConvertType(getContext().LongTy); 3349 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3350 3351 CharUnits Alignment = getPointerAlign(); 3352 3353 // The struct. 3354 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3355 /*isConstant=*/false, 3356 llvm::GlobalVariable::PrivateLinkage); 3357 switch (getTriple().getObjectFormat()) { 3358 case llvm::Triple::UnknownObjectFormat: 3359 llvm_unreachable("unknown file format"); 3360 case llvm::Triple::COFF: 3361 case llvm::Triple::ELF: 3362 case llvm::Triple::Wasm: 3363 GV->setSection("cfstring"); 3364 break; 3365 case llvm::Triple::MachO: 3366 GV->setSection("__DATA,__cfstring"); 3367 break; 3368 } 3369 Entry.second = GV; 3370 3371 return ConstantAddress(GV, Alignment); 3372 } 3373 3374 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3375 if (ObjCFastEnumerationStateType.isNull()) { 3376 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3377 D->startDefinition(); 3378 3379 QualType FieldTypes[] = { 3380 Context.UnsignedLongTy, 3381 Context.getPointerType(Context.getObjCIdType()), 3382 Context.getPointerType(Context.UnsignedLongTy), 3383 Context.getConstantArrayType(Context.UnsignedLongTy, 3384 llvm::APInt(32, 5), ArrayType::Normal, 0) 3385 }; 3386 3387 for (size_t i = 0; i < 4; ++i) { 3388 FieldDecl *Field = FieldDecl::Create(Context, 3389 D, 3390 SourceLocation(), 3391 SourceLocation(), nullptr, 3392 FieldTypes[i], /*TInfo=*/nullptr, 3393 /*BitWidth=*/nullptr, 3394 /*Mutable=*/false, 3395 ICIS_NoInit); 3396 Field->setAccess(AS_public); 3397 D->addDecl(Field); 3398 } 3399 3400 D->completeDefinition(); 3401 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3402 } 3403 3404 return ObjCFastEnumerationStateType; 3405 } 3406 3407 llvm::Constant * 3408 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3409 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3410 3411 // Don't emit it as the address of the string, emit the string data itself 3412 // as an inline array. 3413 if (E->getCharByteWidth() == 1) { 3414 SmallString<64> Str(E->getString()); 3415 3416 // Resize the string to the right size, which is indicated by its type. 3417 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3418 Str.resize(CAT->getSize().getZExtValue()); 3419 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3420 } 3421 3422 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3423 llvm::Type *ElemTy = AType->getElementType(); 3424 unsigned NumElements = AType->getNumElements(); 3425 3426 // Wide strings have either 2-byte or 4-byte elements. 3427 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3428 SmallVector<uint16_t, 32> Elements; 3429 Elements.reserve(NumElements); 3430 3431 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3432 Elements.push_back(E->getCodeUnit(i)); 3433 Elements.resize(NumElements); 3434 return llvm::ConstantDataArray::get(VMContext, Elements); 3435 } 3436 3437 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3438 SmallVector<uint32_t, 32> Elements; 3439 Elements.reserve(NumElements); 3440 3441 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3442 Elements.push_back(E->getCodeUnit(i)); 3443 Elements.resize(NumElements); 3444 return llvm::ConstantDataArray::get(VMContext, Elements); 3445 } 3446 3447 static llvm::GlobalVariable * 3448 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3449 CodeGenModule &CGM, StringRef GlobalName, 3450 CharUnits Alignment) { 3451 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3452 unsigned AddrSpace = 0; 3453 if (CGM.getLangOpts().OpenCL) 3454 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3455 3456 llvm::Module &M = CGM.getModule(); 3457 // Create a global variable for this string 3458 auto *GV = new llvm::GlobalVariable( 3459 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3460 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3461 GV->setAlignment(Alignment.getQuantity()); 3462 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3463 if (GV->isWeakForLinker()) { 3464 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3465 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3466 } 3467 3468 return GV; 3469 } 3470 3471 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3472 /// constant array for the given string literal. 3473 ConstantAddress 3474 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3475 StringRef Name) { 3476 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3477 3478 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3479 llvm::GlobalVariable **Entry = nullptr; 3480 if (!LangOpts.WritableStrings) { 3481 Entry = &ConstantStringMap[C]; 3482 if (auto GV = *Entry) { 3483 if (Alignment.getQuantity() > GV->getAlignment()) 3484 GV->setAlignment(Alignment.getQuantity()); 3485 return ConstantAddress(GV, Alignment); 3486 } 3487 } 3488 3489 SmallString<256> MangledNameBuffer; 3490 StringRef GlobalVariableName; 3491 llvm::GlobalValue::LinkageTypes LT; 3492 3493 // Mangle the string literal if the ABI allows for it. However, we cannot 3494 // do this if we are compiling with ASan or -fwritable-strings because they 3495 // rely on strings having normal linkage. 3496 if (!LangOpts.WritableStrings && 3497 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3498 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3499 llvm::raw_svector_ostream Out(MangledNameBuffer); 3500 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3501 3502 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3503 GlobalVariableName = MangledNameBuffer; 3504 } else { 3505 LT = llvm::GlobalValue::PrivateLinkage; 3506 GlobalVariableName = Name; 3507 } 3508 3509 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3510 if (Entry) 3511 *Entry = GV; 3512 3513 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3514 QualType()); 3515 return ConstantAddress(GV, Alignment); 3516 } 3517 3518 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3519 /// array for the given ObjCEncodeExpr node. 3520 ConstantAddress 3521 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3522 std::string Str; 3523 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3524 3525 return GetAddrOfConstantCString(Str); 3526 } 3527 3528 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3529 /// the literal and a terminating '\0' character. 3530 /// The result has pointer to array type. 3531 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3532 const std::string &Str, const char *GlobalName) { 3533 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3534 CharUnits Alignment = 3535 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3536 3537 llvm::Constant *C = 3538 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3539 3540 // Don't share any string literals if strings aren't constant. 3541 llvm::GlobalVariable **Entry = nullptr; 3542 if (!LangOpts.WritableStrings) { 3543 Entry = &ConstantStringMap[C]; 3544 if (auto GV = *Entry) { 3545 if (Alignment.getQuantity() > GV->getAlignment()) 3546 GV->setAlignment(Alignment.getQuantity()); 3547 return ConstantAddress(GV, Alignment); 3548 } 3549 } 3550 3551 // Get the default prefix if a name wasn't specified. 3552 if (!GlobalName) 3553 GlobalName = ".str"; 3554 // Create a global variable for this. 3555 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3556 GlobalName, Alignment); 3557 if (Entry) 3558 *Entry = GV; 3559 return ConstantAddress(GV, Alignment); 3560 } 3561 3562 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3563 const MaterializeTemporaryExpr *E, const Expr *Init) { 3564 assert((E->getStorageDuration() == SD_Static || 3565 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3566 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3567 3568 // If we're not materializing a subobject of the temporary, keep the 3569 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3570 QualType MaterializedType = Init->getType(); 3571 if (Init == E->GetTemporaryExpr()) 3572 MaterializedType = E->getType(); 3573 3574 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3575 3576 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3577 return ConstantAddress(Slot, Align); 3578 3579 // FIXME: If an externally-visible declaration extends multiple temporaries, 3580 // we need to give each temporary the same name in every translation unit (and 3581 // we also need to make the temporaries externally-visible). 3582 SmallString<256> Name; 3583 llvm::raw_svector_ostream Out(Name); 3584 getCXXABI().getMangleContext().mangleReferenceTemporary( 3585 VD, E->getManglingNumber(), Out); 3586 3587 APValue *Value = nullptr; 3588 if (E->getStorageDuration() == SD_Static) { 3589 // We might have a cached constant initializer for this temporary. Note 3590 // that this might have a different value from the value computed by 3591 // evaluating the initializer if the surrounding constant expression 3592 // modifies the temporary. 3593 Value = getContext().getMaterializedTemporaryValue(E, false); 3594 if (Value && Value->isUninit()) 3595 Value = nullptr; 3596 } 3597 3598 // Try evaluating it now, it might have a constant initializer. 3599 Expr::EvalResult EvalResult; 3600 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3601 !EvalResult.hasSideEffects()) 3602 Value = &EvalResult.Val; 3603 3604 llvm::Constant *InitialValue = nullptr; 3605 bool Constant = false; 3606 llvm::Type *Type; 3607 if (Value) { 3608 // The temporary has a constant initializer, use it. 3609 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3610 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3611 Type = InitialValue->getType(); 3612 } else { 3613 // No initializer, the initialization will be provided when we 3614 // initialize the declaration which performed lifetime extension. 3615 Type = getTypes().ConvertTypeForMem(MaterializedType); 3616 } 3617 3618 // Create a global variable for this lifetime-extended temporary. 3619 llvm::GlobalValue::LinkageTypes Linkage = 3620 getLLVMLinkageVarDefinition(VD, Constant); 3621 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3622 const VarDecl *InitVD; 3623 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3624 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3625 // Temporaries defined inside a class get linkonce_odr linkage because the 3626 // class can be defined in multipe translation units. 3627 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3628 } else { 3629 // There is no need for this temporary to have external linkage if the 3630 // VarDecl has external linkage. 3631 Linkage = llvm::GlobalVariable::InternalLinkage; 3632 } 3633 } 3634 unsigned AddrSpace = GetGlobalVarAddressSpace( 3635 VD, getContext().getTargetAddressSpace(MaterializedType)); 3636 auto *GV = new llvm::GlobalVariable( 3637 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3638 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3639 AddrSpace); 3640 setGlobalVisibility(GV, VD); 3641 GV->setAlignment(Align.getQuantity()); 3642 if (supportsCOMDAT() && GV->isWeakForLinker()) 3643 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3644 if (VD->getTLSKind()) 3645 setTLSMode(GV, *VD); 3646 MaterializedGlobalTemporaryMap[E] = GV; 3647 return ConstantAddress(GV, Align); 3648 } 3649 3650 /// EmitObjCPropertyImplementations - Emit information for synthesized 3651 /// properties for an implementation. 3652 void CodeGenModule::EmitObjCPropertyImplementations(const 3653 ObjCImplementationDecl *D) { 3654 for (const auto *PID : D->property_impls()) { 3655 // Dynamic is just for type-checking. 3656 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3657 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3658 3659 // Determine which methods need to be implemented, some may have 3660 // been overridden. Note that ::isPropertyAccessor is not the method 3661 // we want, that just indicates if the decl came from a 3662 // property. What we want to know is if the method is defined in 3663 // this implementation. 3664 if (!D->getInstanceMethod(PD->getGetterName())) 3665 CodeGenFunction(*this).GenerateObjCGetter( 3666 const_cast<ObjCImplementationDecl *>(D), PID); 3667 if (!PD->isReadOnly() && 3668 !D->getInstanceMethod(PD->getSetterName())) 3669 CodeGenFunction(*this).GenerateObjCSetter( 3670 const_cast<ObjCImplementationDecl *>(D), PID); 3671 } 3672 } 3673 } 3674 3675 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3676 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3677 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3678 ivar; ivar = ivar->getNextIvar()) 3679 if (ivar->getType().isDestructedType()) 3680 return true; 3681 3682 return false; 3683 } 3684 3685 static bool AllTrivialInitializers(CodeGenModule &CGM, 3686 ObjCImplementationDecl *D) { 3687 CodeGenFunction CGF(CGM); 3688 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3689 E = D->init_end(); B != E; ++B) { 3690 CXXCtorInitializer *CtorInitExp = *B; 3691 Expr *Init = CtorInitExp->getInit(); 3692 if (!CGF.isTrivialInitializer(Init)) 3693 return false; 3694 } 3695 return true; 3696 } 3697 3698 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3699 /// for an implementation. 3700 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3701 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3702 if (needsDestructMethod(D)) { 3703 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3704 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3705 ObjCMethodDecl *DTORMethod = 3706 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3707 cxxSelector, getContext().VoidTy, nullptr, D, 3708 /*isInstance=*/true, /*isVariadic=*/false, 3709 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3710 /*isDefined=*/false, ObjCMethodDecl::Required); 3711 D->addInstanceMethod(DTORMethod); 3712 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3713 D->setHasDestructors(true); 3714 } 3715 3716 // If the implementation doesn't have any ivar initializers, we don't need 3717 // a .cxx_construct. 3718 if (D->getNumIvarInitializers() == 0 || 3719 AllTrivialInitializers(*this, D)) 3720 return; 3721 3722 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3723 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3724 // The constructor returns 'self'. 3725 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3726 D->getLocation(), 3727 D->getLocation(), 3728 cxxSelector, 3729 getContext().getObjCIdType(), 3730 nullptr, D, /*isInstance=*/true, 3731 /*isVariadic=*/false, 3732 /*isPropertyAccessor=*/true, 3733 /*isImplicitlyDeclared=*/true, 3734 /*isDefined=*/false, 3735 ObjCMethodDecl::Required); 3736 D->addInstanceMethod(CTORMethod); 3737 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3738 D->setHasNonZeroConstructors(true); 3739 } 3740 3741 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3742 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3743 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3744 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3745 ErrorUnsupported(LSD, "linkage spec"); 3746 return; 3747 } 3748 3749 EmitDeclContext(LSD); 3750 } 3751 3752 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3753 for (auto *I : DC->decls()) { 3754 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3755 // are themselves considered "top-level", so EmitTopLevelDecl on an 3756 // ObjCImplDecl does not recursively visit them. We need to do that in 3757 // case they're nested inside another construct (LinkageSpecDecl / 3758 // ExportDecl) that does stop them from being considered "top-level". 3759 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3760 for (auto *M : OID->methods()) 3761 EmitTopLevelDecl(M); 3762 } 3763 3764 EmitTopLevelDecl(I); 3765 } 3766 } 3767 3768 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3769 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3770 // Ignore dependent declarations. 3771 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3772 return; 3773 3774 switch (D->getKind()) { 3775 case Decl::CXXConversion: 3776 case Decl::CXXMethod: 3777 case Decl::Function: 3778 // Skip function templates 3779 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3780 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3781 return; 3782 3783 EmitGlobal(cast<FunctionDecl>(D)); 3784 // Always provide some coverage mapping 3785 // even for the functions that aren't emitted. 3786 AddDeferredUnusedCoverageMapping(D); 3787 break; 3788 3789 case Decl::Var: 3790 case Decl::Decomposition: 3791 // Skip variable templates 3792 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3793 return; 3794 case Decl::VarTemplateSpecialization: 3795 EmitGlobal(cast<VarDecl>(D)); 3796 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3797 for (auto *B : DD->bindings()) 3798 if (auto *HD = B->getHoldingVar()) 3799 EmitGlobal(HD); 3800 break; 3801 3802 // Indirect fields from global anonymous structs and unions can be 3803 // ignored; only the actual variable requires IR gen support. 3804 case Decl::IndirectField: 3805 break; 3806 3807 // C++ Decls 3808 case Decl::Namespace: 3809 EmitDeclContext(cast<NamespaceDecl>(D)); 3810 break; 3811 case Decl::CXXRecord: 3812 // Emit any static data members, they may be definitions. 3813 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3814 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3815 EmitTopLevelDecl(I); 3816 break; 3817 // No code generation needed. 3818 case Decl::UsingShadow: 3819 case Decl::ClassTemplate: 3820 case Decl::VarTemplate: 3821 case Decl::VarTemplatePartialSpecialization: 3822 case Decl::FunctionTemplate: 3823 case Decl::TypeAliasTemplate: 3824 case Decl::Block: 3825 case Decl::Empty: 3826 break; 3827 case Decl::Using: // using X; [C++] 3828 if (CGDebugInfo *DI = getModuleDebugInfo()) 3829 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3830 return; 3831 case Decl::NamespaceAlias: 3832 if (CGDebugInfo *DI = getModuleDebugInfo()) 3833 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3834 return; 3835 case Decl::UsingDirective: // using namespace X; [C++] 3836 if (CGDebugInfo *DI = getModuleDebugInfo()) 3837 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3838 return; 3839 case Decl::CXXConstructor: 3840 // Skip function templates 3841 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3842 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3843 return; 3844 3845 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3846 break; 3847 case Decl::CXXDestructor: 3848 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3849 return; 3850 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3851 break; 3852 3853 case Decl::StaticAssert: 3854 // Nothing to do. 3855 break; 3856 3857 // Objective-C Decls 3858 3859 // Forward declarations, no (immediate) code generation. 3860 case Decl::ObjCInterface: 3861 case Decl::ObjCCategory: 3862 break; 3863 3864 case Decl::ObjCProtocol: { 3865 auto *Proto = cast<ObjCProtocolDecl>(D); 3866 if (Proto->isThisDeclarationADefinition()) 3867 ObjCRuntime->GenerateProtocol(Proto); 3868 break; 3869 } 3870 3871 case Decl::ObjCCategoryImpl: 3872 // Categories have properties but don't support synthesize so we 3873 // can ignore them here. 3874 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3875 break; 3876 3877 case Decl::ObjCImplementation: { 3878 auto *OMD = cast<ObjCImplementationDecl>(D); 3879 EmitObjCPropertyImplementations(OMD); 3880 EmitObjCIvarInitializations(OMD); 3881 ObjCRuntime->GenerateClass(OMD); 3882 // Emit global variable debug information. 3883 if (CGDebugInfo *DI = getModuleDebugInfo()) 3884 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3885 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3886 OMD->getClassInterface()), OMD->getLocation()); 3887 break; 3888 } 3889 case Decl::ObjCMethod: { 3890 auto *OMD = cast<ObjCMethodDecl>(D); 3891 // If this is not a prototype, emit the body. 3892 if (OMD->getBody()) 3893 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3894 break; 3895 } 3896 case Decl::ObjCCompatibleAlias: 3897 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3898 break; 3899 3900 case Decl::PragmaComment: { 3901 const auto *PCD = cast<PragmaCommentDecl>(D); 3902 switch (PCD->getCommentKind()) { 3903 case PCK_Unknown: 3904 llvm_unreachable("unexpected pragma comment kind"); 3905 case PCK_Linker: 3906 AppendLinkerOptions(PCD->getArg()); 3907 break; 3908 case PCK_Lib: 3909 AddDependentLib(PCD->getArg()); 3910 break; 3911 case PCK_Compiler: 3912 case PCK_ExeStr: 3913 case PCK_User: 3914 break; // We ignore all of these. 3915 } 3916 break; 3917 } 3918 3919 case Decl::PragmaDetectMismatch: { 3920 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3921 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3922 break; 3923 } 3924 3925 case Decl::LinkageSpec: 3926 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3927 break; 3928 3929 case Decl::FileScopeAsm: { 3930 // File-scope asm is ignored during device-side CUDA compilation. 3931 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3932 break; 3933 // File-scope asm is ignored during device-side OpenMP compilation. 3934 if (LangOpts.OpenMPIsDevice) 3935 break; 3936 auto *AD = cast<FileScopeAsmDecl>(D); 3937 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3938 break; 3939 } 3940 3941 case Decl::Import: { 3942 auto *Import = cast<ImportDecl>(D); 3943 3944 // If we've already imported this module, we're done. 3945 if (!ImportedModules.insert(Import->getImportedModule())) 3946 break; 3947 3948 // Emit debug information for direct imports. 3949 if (!Import->getImportedOwningModule()) { 3950 if (CGDebugInfo *DI = getModuleDebugInfo()) 3951 DI->EmitImportDecl(*Import); 3952 } 3953 3954 // Find all of the submodules and emit the module initializers. 3955 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3956 SmallVector<clang::Module *, 16> Stack; 3957 Visited.insert(Import->getImportedModule()); 3958 Stack.push_back(Import->getImportedModule()); 3959 3960 while (!Stack.empty()) { 3961 clang::Module *Mod = Stack.pop_back_val(); 3962 if (!EmittedModuleInitializers.insert(Mod).second) 3963 continue; 3964 3965 for (auto *D : Context.getModuleInitializers(Mod)) 3966 EmitTopLevelDecl(D); 3967 3968 // Visit the submodules of this module. 3969 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3970 SubEnd = Mod->submodule_end(); 3971 Sub != SubEnd; ++Sub) { 3972 // Skip explicit children; they need to be explicitly imported to emit 3973 // the initializers. 3974 if ((*Sub)->IsExplicit) 3975 continue; 3976 3977 if (Visited.insert(*Sub).second) 3978 Stack.push_back(*Sub); 3979 } 3980 } 3981 break; 3982 } 3983 3984 case Decl::Export: 3985 EmitDeclContext(cast<ExportDecl>(D)); 3986 break; 3987 3988 case Decl::OMPThreadPrivate: 3989 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3990 break; 3991 3992 case Decl::ClassTemplateSpecialization: { 3993 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3994 if (DebugInfo && 3995 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3996 Spec->hasDefinition()) 3997 DebugInfo->completeTemplateDefinition(*Spec); 3998 break; 3999 } 4000 4001 case Decl::OMPDeclareReduction: 4002 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4003 break; 4004 4005 default: 4006 // Make sure we handled everything we should, every other kind is a 4007 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4008 // function. Need to recode Decl::Kind to do that easily. 4009 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4010 break; 4011 } 4012 } 4013 4014 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4015 // Do we need to generate coverage mapping? 4016 if (!CodeGenOpts.CoverageMapping) 4017 return; 4018 switch (D->getKind()) { 4019 case Decl::CXXConversion: 4020 case Decl::CXXMethod: 4021 case Decl::Function: 4022 case Decl::ObjCMethod: 4023 case Decl::CXXConstructor: 4024 case Decl::CXXDestructor: { 4025 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4026 return; 4027 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4028 if (I == DeferredEmptyCoverageMappingDecls.end()) 4029 DeferredEmptyCoverageMappingDecls[D] = true; 4030 break; 4031 } 4032 default: 4033 break; 4034 }; 4035 } 4036 4037 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4038 // Do we need to generate coverage mapping? 4039 if (!CodeGenOpts.CoverageMapping) 4040 return; 4041 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4042 if (Fn->isTemplateInstantiation()) 4043 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4044 } 4045 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4046 if (I == DeferredEmptyCoverageMappingDecls.end()) 4047 DeferredEmptyCoverageMappingDecls[D] = false; 4048 else 4049 I->second = false; 4050 } 4051 4052 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4053 std::vector<const Decl *> DeferredDecls; 4054 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4055 if (!I.second) 4056 continue; 4057 DeferredDecls.push_back(I.first); 4058 } 4059 // Sort the declarations by their location to make sure that the tests get a 4060 // predictable order for the coverage mapping for the unused declarations. 4061 if (CodeGenOpts.DumpCoverageMapping) 4062 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4063 [] (const Decl *LHS, const Decl *RHS) { 4064 return LHS->getLocStart() < RHS->getLocStart(); 4065 }); 4066 for (const auto *D : DeferredDecls) { 4067 switch (D->getKind()) { 4068 case Decl::CXXConversion: 4069 case Decl::CXXMethod: 4070 case Decl::Function: 4071 case Decl::ObjCMethod: { 4072 CodeGenPGO PGO(*this); 4073 GlobalDecl GD(cast<FunctionDecl>(D)); 4074 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4075 getFunctionLinkage(GD)); 4076 break; 4077 } 4078 case Decl::CXXConstructor: { 4079 CodeGenPGO PGO(*this); 4080 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4081 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4082 getFunctionLinkage(GD)); 4083 break; 4084 } 4085 case Decl::CXXDestructor: { 4086 CodeGenPGO PGO(*this); 4087 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4088 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4089 getFunctionLinkage(GD)); 4090 break; 4091 } 4092 default: 4093 break; 4094 }; 4095 } 4096 } 4097 4098 /// Turns the given pointer into a constant. 4099 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4100 const void *Ptr) { 4101 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4102 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4103 return llvm::ConstantInt::get(i64, PtrInt); 4104 } 4105 4106 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4107 llvm::NamedMDNode *&GlobalMetadata, 4108 GlobalDecl D, 4109 llvm::GlobalValue *Addr) { 4110 if (!GlobalMetadata) 4111 GlobalMetadata = 4112 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4113 4114 // TODO: should we report variant information for ctors/dtors? 4115 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4116 llvm::ConstantAsMetadata::get(GetPointerConstant( 4117 CGM.getLLVMContext(), D.getDecl()))}; 4118 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4119 } 4120 4121 /// For each function which is declared within an extern "C" region and marked 4122 /// as 'used', but has internal linkage, create an alias from the unmangled 4123 /// name to the mangled name if possible. People expect to be able to refer 4124 /// to such functions with an unmangled name from inline assembly within the 4125 /// same translation unit. 4126 void CodeGenModule::EmitStaticExternCAliases() { 4127 // Don't do anything if we're generating CUDA device code -- the NVPTX 4128 // assembly target doesn't support aliases. 4129 if (Context.getTargetInfo().getTriple().isNVPTX()) 4130 return; 4131 for (auto &I : StaticExternCValues) { 4132 IdentifierInfo *Name = I.first; 4133 llvm::GlobalValue *Val = I.second; 4134 if (Val && !getModule().getNamedValue(Name->getName())) 4135 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4136 } 4137 } 4138 4139 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4140 GlobalDecl &Result) const { 4141 auto Res = Manglings.find(MangledName); 4142 if (Res == Manglings.end()) 4143 return false; 4144 Result = Res->getValue(); 4145 return true; 4146 } 4147 4148 /// Emits metadata nodes associating all the global values in the 4149 /// current module with the Decls they came from. This is useful for 4150 /// projects using IR gen as a subroutine. 4151 /// 4152 /// Since there's currently no way to associate an MDNode directly 4153 /// with an llvm::GlobalValue, we create a global named metadata 4154 /// with the name 'clang.global.decl.ptrs'. 4155 void CodeGenModule::EmitDeclMetadata() { 4156 llvm::NamedMDNode *GlobalMetadata = nullptr; 4157 4158 for (auto &I : MangledDeclNames) { 4159 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4160 // Some mangled names don't necessarily have an associated GlobalValue 4161 // in this module, e.g. if we mangled it for DebugInfo. 4162 if (Addr) 4163 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4164 } 4165 } 4166 4167 /// Emits metadata nodes for all the local variables in the current 4168 /// function. 4169 void CodeGenFunction::EmitDeclMetadata() { 4170 if (LocalDeclMap.empty()) return; 4171 4172 llvm::LLVMContext &Context = getLLVMContext(); 4173 4174 // Find the unique metadata ID for this name. 4175 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4176 4177 llvm::NamedMDNode *GlobalMetadata = nullptr; 4178 4179 for (auto &I : LocalDeclMap) { 4180 const Decl *D = I.first; 4181 llvm::Value *Addr = I.second.getPointer(); 4182 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4183 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4184 Alloca->setMetadata( 4185 DeclPtrKind, llvm::MDNode::get( 4186 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4187 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4188 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4189 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4190 } 4191 } 4192 } 4193 4194 void CodeGenModule::EmitVersionIdentMetadata() { 4195 llvm::NamedMDNode *IdentMetadata = 4196 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4197 std::string Version = getClangFullVersion(); 4198 llvm::LLVMContext &Ctx = TheModule.getContext(); 4199 4200 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4201 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4202 } 4203 4204 void CodeGenModule::EmitTargetMetadata() { 4205 // Warning, new MangledDeclNames may be appended within this loop. 4206 // We rely on MapVector insertions adding new elements to the end 4207 // of the container. 4208 // FIXME: Move this loop into the one target that needs it, and only 4209 // loop over those declarations for which we couldn't emit the target 4210 // metadata when we emitted the declaration. 4211 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4212 auto Val = *(MangledDeclNames.begin() + I); 4213 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4214 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4215 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4216 } 4217 } 4218 4219 void CodeGenModule::EmitCoverageFile() { 4220 if (getCodeGenOpts().CoverageDataFile.empty() && 4221 getCodeGenOpts().CoverageNotesFile.empty()) 4222 return; 4223 4224 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4225 if (!CUNode) 4226 return; 4227 4228 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4229 llvm::LLVMContext &Ctx = TheModule.getContext(); 4230 auto *CoverageDataFile = 4231 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4232 auto *CoverageNotesFile = 4233 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4234 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4235 llvm::MDNode *CU = CUNode->getOperand(i); 4236 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4237 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4238 } 4239 } 4240 4241 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4242 // Sema has checked that all uuid strings are of the form 4243 // "12345678-1234-1234-1234-1234567890ab". 4244 assert(Uuid.size() == 36); 4245 for (unsigned i = 0; i < 36; ++i) { 4246 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4247 else assert(isHexDigit(Uuid[i])); 4248 } 4249 4250 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4251 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4252 4253 llvm::Constant *Field3[8]; 4254 for (unsigned Idx = 0; Idx < 8; ++Idx) 4255 Field3[Idx] = llvm::ConstantInt::get( 4256 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4257 4258 llvm::Constant *Fields[4] = { 4259 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4260 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4261 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4262 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4263 }; 4264 4265 return llvm::ConstantStruct::getAnon(Fields); 4266 } 4267 4268 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4269 bool ForEH) { 4270 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4271 // FIXME: should we even be calling this method if RTTI is disabled 4272 // and it's not for EH? 4273 if (!ForEH && !getLangOpts().RTTI) 4274 return llvm::Constant::getNullValue(Int8PtrTy); 4275 4276 if (ForEH && Ty->isObjCObjectPointerType() && 4277 LangOpts.ObjCRuntime.isGNUFamily()) 4278 return ObjCRuntime->GetEHType(Ty); 4279 4280 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4281 } 4282 4283 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4284 for (auto RefExpr : D->varlists()) { 4285 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4286 bool PerformInit = 4287 VD->getAnyInitializer() && 4288 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4289 /*ForRef=*/false); 4290 4291 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4292 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4293 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4294 CXXGlobalInits.push_back(InitFunction); 4295 } 4296 } 4297 4298 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4299 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4300 if (InternalId) 4301 return InternalId; 4302 4303 if (isExternallyVisible(T->getLinkage())) { 4304 std::string OutName; 4305 llvm::raw_string_ostream Out(OutName); 4306 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4307 4308 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4309 } else { 4310 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4311 llvm::ArrayRef<llvm::Metadata *>()); 4312 } 4313 4314 return InternalId; 4315 } 4316 4317 /// Returns whether this module needs the "all-vtables" type identifier. 4318 bool CodeGenModule::NeedAllVtablesTypeId() const { 4319 // Returns true if at least one of vtable-based CFI checkers is enabled and 4320 // is not in the trapping mode. 4321 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4322 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4323 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4324 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4325 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4326 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4327 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4328 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4329 } 4330 4331 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4332 CharUnits Offset, 4333 const CXXRecordDecl *RD) { 4334 llvm::Metadata *MD = 4335 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4336 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4337 4338 if (CodeGenOpts.SanitizeCfiCrossDso) 4339 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4340 VTable->addTypeMetadata(Offset.getQuantity(), 4341 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4342 4343 if (NeedAllVtablesTypeId()) { 4344 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4345 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4346 } 4347 } 4348 4349 // Fills in the supplied string map with the set of target features for the 4350 // passed in function. 4351 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4352 const FunctionDecl *FD) { 4353 StringRef TargetCPU = Target.getTargetOpts().CPU; 4354 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4355 // If we have a TargetAttr build up the feature map based on that. 4356 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4357 4358 // Make a copy of the features as passed on the command line into the 4359 // beginning of the additional features from the function to override. 4360 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4361 Target.getTargetOpts().FeaturesAsWritten.begin(), 4362 Target.getTargetOpts().FeaturesAsWritten.end()); 4363 4364 if (ParsedAttr.second != "") 4365 TargetCPU = ParsedAttr.second; 4366 4367 // Now populate the feature map, first with the TargetCPU which is either 4368 // the default or a new one from the target attribute string. Then we'll use 4369 // the passed in features (FeaturesAsWritten) along with the new ones from 4370 // the attribute. 4371 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4372 } else { 4373 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4374 Target.getTargetOpts().Features); 4375 } 4376 } 4377 4378 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4379 if (!SanStats) 4380 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4381 4382 return *SanStats; 4383 } 4384 llvm::Value * 4385 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4386 CodeGenFunction &CGF) { 4387 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4388 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4389 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4390 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4391 "__translate_sampler_initializer"), 4392 {C}); 4393 } 4394