xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 837a6f6f79fc44bf6467ac874f4e3c411a62bedf)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/CallingConv.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/ProfileData/InstrProfReader.h"
51 #include "llvm/Support/ConvertUTF.h"
52 #include "llvm/Support/ErrorHandling.h"
53 
54 using namespace clang;
55 using namespace CodeGen;
56 
57 static const char AnnotationSection[] = "llvm.metadata";
58 
59 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
60   switch (CGM.getTarget().getCXXABI().getKind()) {
61   case TargetCXXABI::GenericAArch64:
62   case TargetCXXABI::GenericARM:
63   case TargetCXXABI::iOS:
64   case TargetCXXABI::iOS64:
65   case TargetCXXABI::GenericItanium:
66     return CreateItaniumCXXABI(CGM);
67   case TargetCXXABI::Microsoft:
68     return CreateMicrosoftCXXABI(CGM);
69   }
70 
71   llvm_unreachable("invalid C++ ABI kind");
72 }
73 
74 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
75                              llvm::Module &M, const llvm::DataLayout &TD,
76                              DiagnosticsEngine &diags)
77     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
78       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
79       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
80       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
81       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
82       NoObjCARCExceptionsMetadata(0), RRData(0), PGOReader(nullptr),
83       CFConstantStringClassRef(0),
84       ConstantStringClassRef(0), NSConstantStringType(0),
85       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
86       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
87       LifetimeStartFn(0), LifetimeEndFn(0),
88       SanitizerBlacklist(
89           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
90       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
91                                           : LangOpts.Sanitize) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
106   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
107   Int8PtrTy = Int8Ty->getPointerTo(0);
108   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
109 
110   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
111 
112   if (LangOpts.ObjC1)
113     createObjCRuntime();
114   if (LangOpts.OpenCL)
115     createOpenCLRuntime();
116   if (LangOpts.CUDA)
117     createCUDARuntime();
118 
119   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
120   if (SanOpts.Thread ||
121       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
122     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
123                            getCXXABI().getMangleContext());
124 
125   // If debug info or coverage generation is enabled, create the CGDebugInfo
126   // object.
127   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
128       CodeGenOpts.EmitGcovArcs ||
129       CodeGenOpts.EmitGcovNotes)
130     DebugInfo = new CGDebugInfo(*this);
131 
132   Block.GlobalUniqueCount = 0;
133 
134   if (C.getLangOpts().ObjCAutoRefCount)
135     ARCData = new ARCEntrypoints();
136   RRData = new RREntrypoints();
137 
138   if (!CodeGenOpts.InstrProfileInput.empty()) {
139     if (llvm::error_code EC = llvm::IndexedInstrProfReader::create(
140             CodeGenOpts.InstrProfileInput, PGOReader)) {
141       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
142                                               "Could not read profile: %0");
143       getDiags().Report(DiagID) << EC.message();
144     }
145   }
146 }
147 
148 CodeGenModule::~CodeGenModule() {
149   delete ObjCRuntime;
150   delete OpenCLRuntime;
151   delete CUDARuntime;
152   delete TheTargetCodeGenInfo;
153   delete TBAA;
154   delete DebugInfo;
155   delete ARCData;
156   delete RRData;
157 }
158 
159 void CodeGenModule::createObjCRuntime() {
160   // This is just isGNUFamily(), but we want to force implementors of
161   // new ABIs to decide how best to do this.
162   switch (LangOpts.ObjCRuntime.getKind()) {
163   case ObjCRuntime::GNUstep:
164   case ObjCRuntime::GCC:
165   case ObjCRuntime::ObjFW:
166     ObjCRuntime = CreateGNUObjCRuntime(*this);
167     return;
168 
169   case ObjCRuntime::FragileMacOSX:
170   case ObjCRuntime::MacOSX:
171   case ObjCRuntime::iOS:
172     ObjCRuntime = CreateMacObjCRuntime(*this);
173     return;
174   }
175   llvm_unreachable("bad runtime kind");
176 }
177 
178 void CodeGenModule::createOpenCLRuntime() {
179   OpenCLRuntime = new CGOpenCLRuntime(*this);
180 }
181 
182 void CodeGenModule::createCUDARuntime() {
183   CUDARuntime = CreateNVCUDARuntime(*this);
184 }
185 
186 void CodeGenModule::applyReplacements() {
187   for (ReplacementsTy::iterator I = Replacements.begin(),
188                                 E = Replacements.end();
189        I != E; ++I) {
190     StringRef MangledName = I->first();
191     llvm::Constant *Replacement = I->second;
192     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
193     if (!Entry)
194       continue;
195     llvm::Function *OldF = cast<llvm::Function>(Entry);
196     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
197     if (!NewF) {
198       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
199         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
200       } else {
201         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
202         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
203                CE->getOpcode() == llvm::Instruction::GetElementPtr);
204         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
205       }
206     }
207 
208     // Replace old with new, but keep the old order.
209     OldF->replaceAllUsesWith(Replacement);
210     if (NewF) {
211       NewF->removeFromParent();
212       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
213     }
214     OldF->eraseFromParent();
215   }
216 }
217 
218 void CodeGenModule::checkAliases() {
219   // Check if the constructed aliases are well formed. It is really unfortunate
220   // that we have to do this in CodeGen, but we only construct mangled names
221   // and aliases during codegen.
222   bool Error = false;
223   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
224          E = Aliases.end(); I != E; ++I) {
225     const GlobalDecl &GD = *I;
226     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
227     const AliasAttr *AA = D->getAttr<AliasAttr>();
228     StringRef MangledName = getMangledName(GD);
229     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
230     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
231     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
232     if (!GV) {
233       Error = true;
234       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
235     } else if (GV->isDeclaration()) {
236       Error = true;
237       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
238     }
239 
240     // We have to handle alias to weak aliases in here. LLVM itself disallows
241     // this since the object semantics would not match the IL one. For
242     // compatibility with gcc we implement it by just pointing the alias
243     // to its aliasee's aliasee. We also warn, since the user is probably
244     // expecting the link to be weak.
245     llvm::Constant *Aliasee = Alias->getAliasee();
246     llvm::GlobalValue *AliaseeGV;
247     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) {
248       assert((CE->getOpcode() == llvm::Instruction::BitCast ||
249               CE->getOpcode() == llvm::Instruction::AddrSpaceCast) &&
250              "Unsupported aliasee");
251       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
252     } else {
253       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
254     }
255     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
256       if (GA->mayBeOverridden()) {
257         getDiags().Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
258           << GA->getAliasedGlobal()->getName() << GA->getName();
259         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
260             GA->getAliasee(), Alias->getType());
261         Alias->setAliasee(Aliasee);
262       }
263     }
264   }
265   if (!Error)
266     return;
267 
268   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
269          E = Aliases.end(); I != E; ++I) {
270     const GlobalDecl &GD = *I;
271     StringRef MangledName = getMangledName(GD);
272     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
273     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
274     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
275     Alias->eraseFromParent();
276   }
277 }
278 
279 void CodeGenModule::clear() {
280   DeferredDeclsToEmit.clear();
281 }
282 
283 void CodeGenModule::Release() {
284   EmitDeferred();
285   applyReplacements();
286   checkAliases();
287   EmitCXXGlobalInitFunc();
288   EmitCXXGlobalDtorFunc();
289   EmitCXXThreadLocalInitFunc();
290   if (ObjCRuntime)
291     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
292       AddGlobalCtor(ObjCInitFunction);
293   if (getCodeGenOpts().ProfileInstrGenerate)
294     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
295       AddGlobalCtor(PGOInit, 0);
296   if (PGOReader && PGOStats.isOutOfDate())
297     getDiags().Report(diag::warn_profile_data_out_of_date)
298         << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched;
299   EmitCtorList(GlobalCtors, "llvm.global_ctors");
300   EmitCtorList(GlobalDtors, "llvm.global_dtors");
301   EmitGlobalAnnotations();
302   EmitStaticExternCAliases();
303   emitLLVMUsed();
304 
305   if (CodeGenOpts.Autolink &&
306       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
307     EmitModuleLinkOptions();
308   }
309   if (CodeGenOpts.DwarfVersion)
310     // We actually want the latest version when there are conflicts.
311     // We can change from Warning to Latest if such mode is supported.
312     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
313                               CodeGenOpts.DwarfVersion);
314   if (DebugInfo)
315     // We support a single version in the linked module: error out when
316     // modules do not have the same version. We are going to implement dropping
317     // debug info when the version number is not up-to-date. Once that is
318     // done, the bitcode linker is not going to see modules with different
319     // version numbers.
320     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
321                               llvm::DEBUG_METADATA_VERSION);
322 
323   SimplifyPersonality();
324 
325   if (getCodeGenOpts().EmitDeclMetadata)
326     EmitDeclMetadata();
327 
328   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
329     EmitCoverageFile();
330 
331   if (DebugInfo)
332     DebugInfo->finalize();
333 
334   EmitVersionIdentMetadata();
335 }
336 
337 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
338   // Make sure that this type is translated.
339   Types.UpdateCompletedType(TD);
340 }
341 
342 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
343   if (!TBAA)
344     return 0;
345   return TBAA->getTBAAInfo(QTy);
346 }
347 
348 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
349   if (!TBAA)
350     return 0;
351   return TBAA->getTBAAInfoForVTablePtr();
352 }
353 
354 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
355   if (!TBAA)
356     return 0;
357   return TBAA->getTBAAStructInfo(QTy);
358 }
359 
360 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
361   if (!TBAA)
362     return 0;
363   return TBAA->getTBAAStructTypeInfo(QTy);
364 }
365 
366 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
367                                                   llvm::MDNode *AccessN,
368                                                   uint64_t O) {
369   if (!TBAA)
370     return 0;
371   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
372 }
373 
374 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
375 /// and struct-path aware TBAA, the tag has the same format:
376 /// base type, access type and offset.
377 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
378 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
379                                         llvm::MDNode *TBAAInfo,
380                                         bool ConvertTypeToTag) {
381   if (ConvertTypeToTag && TBAA)
382     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
383                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
384   else
385     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
386 }
387 
388 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
389   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
390   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
391 }
392 
393 /// ErrorUnsupported - Print out an error that codegen doesn't support the
394 /// specified stmt yet.
395 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
396   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
397                                                "cannot compile this %0 yet");
398   std::string Msg = Type;
399   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
400     << Msg << S->getSourceRange();
401 }
402 
403 /// ErrorUnsupported - Print out an error that codegen doesn't support the
404 /// specified decl yet.
405 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
406   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
407                                                "cannot compile this %0 yet");
408   std::string Msg = Type;
409   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
410 }
411 
412 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
413   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
414 }
415 
416 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
417                                         const NamedDecl *D) const {
418   // Internal definitions always have default visibility.
419   if (GV->hasLocalLinkage()) {
420     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
421     return;
422   }
423 
424   // Set visibility for definitions.
425   LinkageInfo LV = D->getLinkageAndVisibility();
426   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
427     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
428 }
429 
430 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
431   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
432       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
433       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
434       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
435       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
436 }
437 
438 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
439     CodeGenOptions::TLSModel M) {
440   switch (M) {
441   case CodeGenOptions::GeneralDynamicTLSModel:
442     return llvm::GlobalVariable::GeneralDynamicTLSModel;
443   case CodeGenOptions::LocalDynamicTLSModel:
444     return llvm::GlobalVariable::LocalDynamicTLSModel;
445   case CodeGenOptions::InitialExecTLSModel:
446     return llvm::GlobalVariable::InitialExecTLSModel;
447   case CodeGenOptions::LocalExecTLSModel:
448     return llvm::GlobalVariable::LocalExecTLSModel;
449   }
450   llvm_unreachable("Invalid TLS model!");
451 }
452 
453 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
454                                const VarDecl &D) const {
455   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
456 
457   llvm::GlobalVariable::ThreadLocalMode TLM;
458   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
459 
460   // Override the TLS model if it is explicitly specified.
461   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
462     TLM = GetLLVMTLSModel(Attr->getModel());
463   }
464 
465   GV->setThreadLocalMode(TLM);
466 }
467 
468 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
469   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
470 
471   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
472   if (!Str.empty())
473     return Str;
474 
475   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
476     IdentifierInfo *II = ND->getIdentifier();
477     assert(II && "Attempt to mangle unnamed decl.");
478 
479     Str = II->getName();
480     return Str;
481   }
482 
483   SmallString<256> Buffer;
484   llvm::raw_svector_ostream Out(Buffer);
485   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
486     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
487   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
488     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
489   else
490     getCXXABI().getMangleContext().mangleName(ND, Out);
491 
492   // Allocate space for the mangled name.
493   Out.flush();
494   size_t Length = Buffer.size();
495   char *Name = MangledNamesAllocator.Allocate<char>(Length);
496   std::copy(Buffer.begin(), Buffer.end(), Name);
497 
498   Str = StringRef(Name, Length);
499 
500   return Str;
501 }
502 
503 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
504                                         const BlockDecl *BD) {
505   MangleContext &MangleCtx = getCXXABI().getMangleContext();
506   const Decl *D = GD.getDecl();
507   llvm::raw_svector_ostream Out(Buffer.getBuffer());
508   if (D == 0)
509     MangleCtx.mangleGlobalBlock(BD,
510       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
511   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
512     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
513   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
514     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
515   else
516     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
517 }
518 
519 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
520   return getModule().getNamedValue(Name);
521 }
522 
523 /// AddGlobalCtor - Add a function to the list that will be called before
524 /// main() runs.
525 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
526   // FIXME: Type coercion of void()* types.
527   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
528 }
529 
530 /// AddGlobalDtor - Add a function to the list that will be called
531 /// when the module is unloaded.
532 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
533   // FIXME: Type coercion of void()* types.
534   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
535 }
536 
537 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
538   // Ctor function type is void()*.
539   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
540   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
541 
542   // Get the type of a ctor entry, { i32, void ()* }.
543   llvm::StructType *CtorStructTy =
544     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
545 
546   // Construct the constructor and destructor arrays.
547   SmallVector<llvm::Constant*, 8> Ctors;
548   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
549     llvm::Constant *S[] = {
550       llvm::ConstantInt::get(Int32Ty, I->second, false),
551       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
552     };
553     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
554   }
555 
556   if (!Ctors.empty()) {
557     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
558     new llvm::GlobalVariable(TheModule, AT, false,
559                              llvm::GlobalValue::AppendingLinkage,
560                              llvm::ConstantArray::get(AT, Ctors),
561                              GlobalName);
562   }
563 }
564 
565 llvm::GlobalValue::LinkageTypes
566 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
567   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
568 
569   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
570 
571   if (Linkage == GVA_Internal)
572     return llvm::Function::InternalLinkage;
573 
574   if (D->hasAttr<DLLExportAttr>())
575     return llvm::Function::ExternalLinkage;
576 
577   if (D->hasAttr<WeakAttr>())
578     return llvm::Function::WeakAnyLinkage;
579 
580   // In C99 mode, 'inline' functions are guaranteed to have a strong
581   // definition somewhere else, so we can use available_externally linkage.
582   if (Linkage == GVA_C99Inline)
583     return llvm::Function::AvailableExternallyLinkage;
584 
585   // Note that Apple's kernel linker doesn't support symbol
586   // coalescing, so we need to avoid linkonce and weak linkages there.
587   // Normally, this means we just map to internal, but for explicit
588   // instantiations we'll map to external.
589 
590   // In C++, the compiler has to emit a definition in every translation unit
591   // that references the function.  We should use linkonce_odr because
592   // a) if all references in this translation unit are optimized away, we
593   // don't need to codegen it.  b) if the function persists, it needs to be
594   // merged with other definitions. c) C++ has the ODR, so we know the
595   // definition is dependable.
596   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
597     return !Context.getLangOpts().AppleKext
598              ? llvm::Function::LinkOnceODRLinkage
599              : llvm::Function::InternalLinkage;
600 
601   // An explicit instantiation of a template has weak linkage, since
602   // explicit instantiations can occur in multiple translation units
603   // and must all be equivalent. However, we are not allowed to
604   // throw away these explicit instantiations.
605   if (Linkage == GVA_StrongODR)
606     return !Context.getLangOpts().AppleKext
607              ? llvm::Function::WeakODRLinkage
608              : llvm::Function::ExternalLinkage;
609 
610   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
611   // emitted on an as-needed basis.
612   if (isa<CXXDestructorDecl>(D) &&
613       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
614                                          GD.getDtorType()))
615     return llvm::Function::LinkOnceODRLinkage;
616 
617   // Otherwise, we have strong external linkage.
618   assert(Linkage == GVA_StrongExternal);
619   return llvm::Function::ExternalLinkage;
620 }
621 
622 
623 /// SetFunctionDefinitionAttributes - Set attributes for a global.
624 ///
625 /// FIXME: This is currently only done for aliases and functions, but not for
626 /// variables (these details are set in EmitGlobalVarDefinition for variables).
627 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
628                                                     llvm::GlobalValue *GV) {
629   SetCommonAttributes(D, GV);
630 }
631 
632 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
633                                               const CGFunctionInfo &Info,
634                                               llvm::Function *F) {
635   unsigned CallingConv;
636   AttributeListType AttributeList;
637   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
638   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
639   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
640 }
641 
642 /// Determines whether the language options require us to model
643 /// unwind exceptions.  We treat -fexceptions as mandating this
644 /// except under the fragile ObjC ABI with only ObjC exceptions
645 /// enabled.  This means, for example, that C with -fexceptions
646 /// enables this.
647 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
648   // If exceptions are completely disabled, obviously this is false.
649   if (!LangOpts.Exceptions) return false;
650 
651   // If C++ exceptions are enabled, this is true.
652   if (LangOpts.CXXExceptions) return true;
653 
654   // If ObjC exceptions are enabled, this depends on the ABI.
655   if (LangOpts.ObjCExceptions) {
656     return LangOpts.ObjCRuntime.hasUnwindExceptions();
657   }
658 
659   return true;
660 }
661 
662 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
663                                                            llvm::Function *F) {
664   llvm::AttrBuilder B;
665 
666   if (CodeGenOpts.UnwindTables)
667     B.addAttribute(llvm::Attribute::UWTable);
668 
669   if (!hasUnwindExceptions(LangOpts))
670     B.addAttribute(llvm::Attribute::NoUnwind);
671 
672   if (D->hasAttr<NakedAttr>()) {
673     // Naked implies noinline: we should not be inlining such functions.
674     B.addAttribute(llvm::Attribute::Naked);
675     B.addAttribute(llvm::Attribute::NoInline);
676   } else if (D->hasAttr<OptimizeNoneAttr>()) {
677     // OptimizeNone implies noinline; we should not be inlining such functions.
678     B.addAttribute(llvm::Attribute::OptimizeNone);
679     B.addAttribute(llvm::Attribute::NoInline);
680   } else if (D->hasAttr<NoDuplicateAttr>()) {
681     B.addAttribute(llvm::Attribute::NoDuplicate);
682   } else if (D->hasAttr<NoInlineAttr>()) {
683     B.addAttribute(llvm::Attribute::NoInline);
684   } else if (D->hasAttr<AlwaysInlineAttr>() &&
685              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
686                                               llvm::Attribute::NoInline)) {
687     // (noinline wins over always_inline, and we can't specify both in IR)
688     B.addAttribute(llvm::Attribute::AlwaysInline);
689   }
690 
691   if (D->hasAttr<ColdAttr>()) {
692     B.addAttribute(llvm::Attribute::OptimizeForSize);
693     B.addAttribute(llvm::Attribute::Cold);
694   }
695 
696   if (D->hasAttr<MinSizeAttr>())
697     B.addAttribute(llvm::Attribute::MinSize);
698 
699   if (D->hasAttr<OptimizeNoneAttr>()) {
700     // OptimizeNone wins over OptimizeForSize and MinSize.
701     B.removeAttribute(llvm::Attribute::OptimizeForSize);
702     B.removeAttribute(llvm::Attribute::MinSize);
703   }
704 
705   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
706     B.addAttribute(llvm::Attribute::StackProtect);
707   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
708     B.addAttribute(llvm::Attribute::StackProtectStrong);
709   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
710     B.addAttribute(llvm::Attribute::StackProtectReq);
711 
712   // Add sanitizer attributes if function is not blacklisted.
713   if (!SanitizerBlacklist->isIn(*F)) {
714     // When AddressSanitizer is enabled, set SanitizeAddress attribute
715     // unless __attribute__((no_sanitize_address)) is used.
716     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
717       B.addAttribute(llvm::Attribute::SanitizeAddress);
718     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
719     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
720       B.addAttribute(llvm::Attribute::SanitizeThread);
721     }
722     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
723     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
724       B.addAttribute(llvm::Attribute::SanitizeMemory);
725   }
726 
727   F->addAttributes(llvm::AttributeSet::FunctionIndex,
728                    llvm::AttributeSet::get(
729                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
730 
731   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
732     F->setUnnamedAddr(true);
733   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
734     if (MD->isVirtual())
735       F->setUnnamedAddr(true);
736 
737   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
738   if (alignment)
739     F->setAlignment(alignment);
740 
741   // C++ ABI requires 2-byte alignment for member functions.
742   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
743     F->setAlignment(2);
744 }
745 
746 void CodeGenModule::SetCommonAttributes(const Decl *D,
747                                         llvm::GlobalValue *GV) {
748   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
749     setGlobalVisibility(GV, ND);
750   else
751     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
752 
753   if (D->hasAttr<UsedAttr>())
754     addUsedGlobal(GV);
755 
756   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
757     GV->setSection(SA->getName());
758 
759   // Alias cannot have attributes. Filter them here.
760   if (!isa<llvm::GlobalAlias>(GV))
761     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
762 }
763 
764 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
765                                                   llvm::Function *F,
766                                                   const CGFunctionInfo &FI) {
767   SetLLVMFunctionAttributes(D, FI, F);
768   SetLLVMFunctionAttributesForDefinition(D, F);
769 
770   F->setLinkage(llvm::Function::InternalLinkage);
771 
772   SetCommonAttributes(D, F);
773 }
774 
775 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
776                                           llvm::Function *F,
777                                           bool IsIncompleteFunction) {
778   if (unsigned IID = F->getIntrinsicID()) {
779     // If this is an intrinsic function, set the function's attributes
780     // to the intrinsic's attributes.
781     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
782                                                     (llvm::Intrinsic::ID)IID));
783     return;
784   }
785 
786   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
787 
788   if (!IsIncompleteFunction)
789     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
790 
791   // Add the Returned attribute for "this", except for iOS 5 and earlier
792   // where substantial code, including the libstdc++ dylib, was compiled with
793   // GCC and does not actually return "this".
794   if (getCXXABI().HasThisReturn(GD) &&
795       !(getTarget().getTriple().isiOS() &&
796         getTarget().getTriple().isOSVersionLT(6))) {
797     assert(!F->arg_empty() &&
798            F->arg_begin()->getType()
799              ->canLosslesslyBitCastTo(F->getReturnType()) &&
800            "unexpected this return");
801     F->addAttribute(1, llvm::Attribute::Returned);
802   }
803 
804   // Only a few attributes are set on declarations; these may later be
805   // overridden by a definition.
806 
807   if (FD->hasAttr<DLLImportAttr>()) {
808     F->setLinkage(llvm::Function::ExternalLinkage);
809     F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
810   } else if (FD->hasAttr<WeakAttr>() ||
811              FD->isWeakImported()) {
812     // "extern_weak" is overloaded in LLVM; we probably should have
813     // separate linkage types for this.
814     F->setLinkage(llvm::Function::ExternalWeakLinkage);
815   } else {
816     F->setLinkage(llvm::Function::ExternalLinkage);
817     if (FD->hasAttr<DLLExportAttr>())
818       F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
819 
820     LinkageInfo LV = FD->getLinkageAndVisibility();
821     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
822       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
823     }
824   }
825 
826   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
827     F->setSection(SA->getName());
828 
829   // A replaceable global allocation function does not act like a builtin by
830   // default, only if it is invoked by a new-expression or delete-expression.
831   if (FD->isReplaceableGlobalAllocationFunction())
832     F->addAttribute(llvm::AttributeSet::FunctionIndex,
833                     llvm::Attribute::NoBuiltin);
834 }
835 
836 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
837   assert(!GV->isDeclaration() &&
838          "Only globals with definition can force usage.");
839   LLVMUsed.push_back(GV);
840 }
841 
842 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
843   assert(!GV->isDeclaration() &&
844          "Only globals with definition can force usage.");
845   LLVMCompilerUsed.push_back(GV);
846 }
847 
848 static void emitUsed(CodeGenModule &CGM, StringRef Name,
849                      std::vector<llvm::WeakVH> &List) {
850   // Don't create llvm.used if there is no need.
851   if (List.empty())
852     return;
853 
854   // Convert List to what ConstantArray needs.
855   SmallVector<llvm::Constant*, 8> UsedArray;
856   UsedArray.resize(List.size());
857   for (unsigned i = 0, e = List.size(); i != e; ++i) {
858     UsedArray[i] =
859      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
860                                     CGM.Int8PtrTy);
861   }
862 
863   if (UsedArray.empty())
864     return;
865   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
866 
867   llvm::GlobalVariable *GV =
868     new llvm::GlobalVariable(CGM.getModule(), ATy, false,
869                              llvm::GlobalValue::AppendingLinkage,
870                              llvm::ConstantArray::get(ATy, UsedArray),
871                              Name);
872 
873   GV->setSection("llvm.metadata");
874 }
875 
876 void CodeGenModule::emitLLVMUsed() {
877   emitUsed(*this, "llvm.used", LLVMUsed);
878   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
879 }
880 
881 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
882   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
883   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
884 }
885 
886 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
887   llvm::SmallString<32> Opt;
888   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
889   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
890   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
891 }
892 
893 void CodeGenModule::AddDependentLib(StringRef Lib) {
894   llvm::SmallString<24> Opt;
895   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
896   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
897   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
898 }
899 
900 /// \brief Add link options implied by the given module, including modules
901 /// it depends on, using a postorder walk.
902 static void addLinkOptionsPostorder(CodeGenModule &CGM,
903                                     Module *Mod,
904                                     SmallVectorImpl<llvm::Value *> &Metadata,
905                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
906   // Import this module's parent.
907   if (Mod->Parent && Visited.insert(Mod->Parent)) {
908     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
909   }
910 
911   // Import this module's dependencies.
912   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
913     if (Visited.insert(Mod->Imports[I-1]))
914       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
915   }
916 
917   // Add linker options to link against the libraries/frameworks
918   // described by this module.
919   llvm::LLVMContext &Context = CGM.getLLVMContext();
920   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
921     // Link against a framework.  Frameworks are currently Darwin only, so we
922     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
923     if (Mod->LinkLibraries[I-1].IsFramework) {
924       llvm::Value *Args[2] = {
925         llvm::MDString::get(Context, "-framework"),
926         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
927       };
928 
929       Metadata.push_back(llvm::MDNode::get(Context, Args));
930       continue;
931     }
932 
933     // Link against a library.
934     llvm::SmallString<24> Opt;
935     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
936       Mod->LinkLibraries[I-1].Library, Opt);
937     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
938     Metadata.push_back(llvm::MDNode::get(Context, OptString));
939   }
940 }
941 
942 void CodeGenModule::EmitModuleLinkOptions() {
943   // Collect the set of all of the modules we want to visit to emit link
944   // options, which is essentially the imported modules and all of their
945   // non-explicit child modules.
946   llvm::SetVector<clang::Module *> LinkModules;
947   llvm::SmallPtrSet<clang::Module *, 16> Visited;
948   SmallVector<clang::Module *, 16> Stack;
949 
950   // Seed the stack with imported modules.
951   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
952                                                MEnd = ImportedModules.end();
953        M != MEnd; ++M) {
954     if (Visited.insert(*M))
955       Stack.push_back(*M);
956   }
957 
958   // Find all of the modules to import, making a little effort to prune
959   // non-leaf modules.
960   while (!Stack.empty()) {
961     clang::Module *Mod = Stack.pop_back_val();
962 
963     bool AnyChildren = false;
964 
965     // Visit the submodules of this module.
966     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
967                                         SubEnd = Mod->submodule_end();
968          Sub != SubEnd; ++Sub) {
969       // Skip explicit children; they need to be explicitly imported to be
970       // linked against.
971       if ((*Sub)->IsExplicit)
972         continue;
973 
974       if (Visited.insert(*Sub)) {
975         Stack.push_back(*Sub);
976         AnyChildren = true;
977       }
978     }
979 
980     // We didn't find any children, so add this module to the list of
981     // modules to link against.
982     if (!AnyChildren) {
983       LinkModules.insert(Mod);
984     }
985   }
986 
987   // Add link options for all of the imported modules in reverse topological
988   // order.  We don't do anything to try to order import link flags with respect
989   // to linker options inserted by things like #pragma comment().
990   SmallVector<llvm::Value *, 16> MetadataArgs;
991   Visited.clear();
992   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
993                                                MEnd = LinkModules.end();
994        M != MEnd; ++M) {
995     if (Visited.insert(*M))
996       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
997   }
998   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
999   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1000 
1001   // Add the linker options metadata flag.
1002   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1003                             llvm::MDNode::get(getLLVMContext(),
1004                                               LinkerOptionsMetadata));
1005 }
1006 
1007 void CodeGenModule::EmitDeferred() {
1008   // Emit code for any potentially referenced deferred decls.  Since a
1009   // previously unused static decl may become used during the generation of code
1010   // for a static function, iterate until no changes are made.
1011 
1012   while (true) {
1013     if (!DeferredVTables.empty()) {
1014       EmitDeferredVTables();
1015 
1016       // Emitting a v-table doesn't directly cause more v-tables to
1017       // become deferred, although it can cause functions to be
1018       // emitted that then need those v-tables.
1019       assert(DeferredVTables.empty());
1020     }
1021 
1022     // Stop if we're out of both deferred v-tables and deferred declarations.
1023     if (DeferredDeclsToEmit.empty()) break;
1024 
1025     DeferredGlobal &G = DeferredDeclsToEmit.back();
1026     GlobalDecl D = G.GD;
1027     llvm::GlobalValue *GV = G.GV;
1028     DeferredDeclsToEmit.pop_back();
1029 
1030     assert(GV == GetGlobalValue(getMangledName(D)));
1031     // Check to see if we've already emitted this.  This is necessary
1032     // for a couple of reasons: first, decls can end up in the
1033     // deferred-decls queue multiple times, and second, decls can end
1034     // up with definitions in unusual ways (e.g. by an extern inline
1035     // function acquiring a strong function redefinition).  Just
1036     // ignore these cases.
1037     if(!GV->isDeclaration())
1038       continue;
1039 
1040     // Otherwise, emit the definition and move on to the next one.
1041     EmitGlobalDefinition(D, GV);
1042   }
1043 }
1044 
1045 void CodeGenModule::EmitGlobalAnnotations() {
1046   if (Annotations.empty())
1047     return;
1048 
1049   // Create a new global variable for the ConstantStruct in the Module.
1050   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1051     Annotations[0]->getType(), Annotations.size()), Annotations);
1052   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1053     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1054     "llvm.global.annotations");
1055   gv->setSection(AnnotationSection);
1056 }
1057 
1058 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1059   llvm::Constant *&AStr = AnnotationStrings[Str];
1060   if (AStr)
1061     return AStr;
1062 
1063   // Not found yet, create a new global.
1064   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1065   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1066     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1067   gv->setSection(AnnotationSection);
1068   gv->setUnnamedAddr(true);
1069   AStr = gv;
1070   return gv;
1071 }
1072 
1073 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1074   SourceManager &SM = getContext().getSourceManager();
1075   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1076   if (PLoc.isValid())
1077     return EmitAnnotationString(PLoc.getFilename());
1078   return EmitAnnotationString(SM.getBufferName(Loc));
1079 }
1080 
1081 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1082   SourceManager &SM = getContext().getSourceManager();
1083   PresumedLoc PLoc = SM.getPresumedLoc(L);
1084   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1085     SM.getExpansionLineNumber(L);
1086   return llvm::ConstantInt::get(Int32Ty, LineNo);
1087 }
1088 
1089 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1090                                                 const AnnotateAttr *AA,
1091                                                 SourceLocation L) {
1092   // Get the globals for file name, annotation, and the line number.
1093   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1094                  *UnitGV = EmitAnnotationUnit(L),
1095                  *LineNoCst = EmitAnnotationLineNo(L);
1096 
1097   // Create the ConstantStruct for the global annotation.
1098   llvm::Constant *Fields[4] = {
1099     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1100     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1101     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1102     LineNoCst
1103   };
1104   return llvm::ConstantStruct::getAnon(Fields);
1105 }
1106 
1107 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1108                                          llvm::GlobalValue *GV) {
1109   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1110   // Get the struct elements for these annotations.
1111   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1112     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1113 }
1114 
1115 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1116   // Never defer when EmitAllDecls is specified.
1117   if (LangOpts.EmitAllDecls)
1118     return false;
1119 
1120   return !getContext().DeclMustBeEmitted(Global);
1121 }
1122 
1123 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1124     const CXXUuidofExpr* E) {
1125   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1126   // well-formed.
1127   StringRef Uuid = E->getUuidAsStringRef(Context);
1128   std::string Name = "_GUID_" + Uuid.lower();
1129   std::replace(Name.begin(), Name.end(), '-', '_');
1130 
1131   // Look for an existing global.
1132   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1133     return GV;
1134 
1135   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1136   assert(Init && "failed to initialize as constant");
1137 
1138   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1139       getModule(), Init->getType(),
1140       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1141   return GV;
1142 }
1143 
1144 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1145   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1146   assert(AA && "No alias?");
1147 
1148   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1149 
1150   // See if there is already something with the target's name in the module.
1151   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1152   if (Entry) {
1153     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1154     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1155   }
1156 
1157   llvm::Constant *Aliasee;
1158   if (isa<llvm::FunctionType>(DeclTy))
1159     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1160                                       GlobalDecl(cast<FunctionDecl>(VD)),
1161                                       /*ForVTable=*/false);
1162   else
1163     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1164                                     llvm::PointerType::getUnqual(DeclTy), 0);
1165 
1166   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1167   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1168   WeakRefReferences.insert(F);
1169 
1170   return Aliasee;
1171 }
1172 
1173 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1174   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1175 
1176   // Weak references don't produce any output by themselves.
1177   if (Global->hasAttr<WeakRefAttr>())
1178     return;
1179 
1180   // If this is an alias definition (which otherwise looks like a declaration)
1181   // emit it now.
1182   if (Global->hasAttr<AliasAttr>())
1183     return EmitAliasDefinition(GD);
1184 
1185   // If this is CUDA, be selective about which declarations we emit.
1186   if (LangOpts.CUDA) {
1187     if (CodeGenOpts.CUDAIsDevice) {
1188       if (!Global->hasAttr<CUDADeviceAttr>() &&
1189           !Global->hasAttr<CUDAGlobalAttr>() &&
1190           !Global->hasAttr<CUDAConstantAttr>() &&
1191           !Global->hasAttr<CUDASharedAttr>())
1192         return;
1193     } else {
1194       if (!Global->hasAttr<CUDAHostAttr>() && (
1195             Global->hasAttr<CUDADeviceAttr>() ||
1196             Global->hasAttr<CUDAConstantAttr>() ||
1197             Global->hasAttr<CUDASharedAttr>()))
1198         return;
1199     }
1200   }
1201 
1202   // Ignore declarations, they will be emitted on their first use.
1203   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1204     // Forward declarations are emitted lazily on first use.
1205     if (!FD->doesThisDeclarationHaveABody()) {
1206       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1207         return;
1208 
1209       StringRef MangledName = getMangledName(GD);
1210 
1211       // Compute the function info and LLVM type.
1212       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1213       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1214 
1215       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1216                               /*DontDefer=*/false);
1217       return;
1218     }
1219   } else {
1220     const VarDecl *VD = cast<VarDecl>(Global);
1221     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1222 
1223     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1224       return;
1225   }
1226 
1227   // Defer code generation when possible if this is a static definition, inline
1228   // function etc.  These we only want to emit if they are used.
1229   if (!MayDeferGeneration(Global)) {
1230     // Emit the definition if it can't be deferred.
1231     EmitGlobalDefinition(GD);
1232     return;
1233   }
1234 
1235   // If we're deferring emission of a C++ variable with an
1236   // initializer, remember the order in which it appeared in the file.
1237   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1238       cast<VarDecl>(Global)->hasInit()) {
1239     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1240     CXXGlobalInits.push_back(0);
1241   }
1242 
1243   // If the value has already been used, add it directly to the
1244   // DeferredDeclsToEmit list.
1245   StringRef MangledName = getMangledName(GD);
1246   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1247     addDeferredDeclToEmit(GV, GD);
1248   else {
1249     // Otherwise, remember that we saw a deferred decl with this name.  The
1250     // first use of the mangled name will cause it to move into
1251     // DeferredDeclsToEmit.
1252     DeferredDecls[MangledName] = GD;
1253   }
1254 }
1255 
1256 namespace {
1257   struct FunctionIsDirectlyRecursive :
1258     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1259     const StringRef Name;
1260     const Builtin::Context &BI;
1261     bool Result;
1262     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1263       Name(N), BI(C), Result(false) {
1264     }
1265     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1266 
1267     bool TraverseCallExpr(CallExpr *E) {
1268       const FunctionDecl *FD = E->getDirectCallee();
1269       if (!FD)
1270         return true;
1271       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1272       if (Attr && Name == Attr->getLabel()) {
1273         Result = true;
1274         return false;
1275       }
1276       unsigned BuiltinID = FD->getBuiltinID();
1277       if (!BuiltinID)
1278         return true;
1279       StringRef BuiltinName = BI.GetName(BuiltinID);
1280       if (BuiltinName.startswith("__builtin_") &&
1281           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1282         Result = true;
1283         return false;
1284       }
1285       return true;
1286     }
1287   };
1288 }
1289 
1290 // isTriviallyRecursive - Check if this function calls another
1291 // decl that, because of the asm attribute or the other decl being a builtin,
1292 // ends up pointing to itself.
1293 bool
1294 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1295   StringRef Name;
1296   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1297     // asm labels are a special kind of mangling we have to support.
1298     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1299     if (!Attr)
1300       return false;
1301     Name = Attr->getLabel();
1302   } else {
1303     Name = FD->getName();
1304   }
1305 
1306   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1307   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1308   return Walker.Result;
1309 }
1310 
1311 bool
1312 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1313   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1314     return true;
1315   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1316   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1317     return false;
1318   // PR9614. Avoid cases where the source code is lying to us. An available
1319   // externally function should have an equivalent function somewhere else,
1320   // but a function that calls itself is clearly not equivalent to the real
1321   // implementation.
1322   // This happens in glibc's btowc and in some configure checks.
1323   return !isTriviallyRecursive(F);
1324 }
1325 
1326 /// If the type for the method's class was generated by
1327 /// CGDebugInfo::createContextChain(), the cache contains only a
1328 /// limited DIType without any declarations. Since EmitFunctionStart()
1329 /// needs to find the canonical declaration for each method, we need
1330 /// to construct the complete type prior to emitting the method.
1331 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1332   if (!D->isInstance())
1333     return;
1334 
1335   if (CGDebugInfo *DI = getModuleDebugInfo())
1336     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1337       const PointerType *ThisPtr =
1338         cast<PointerType>(D->getThisType(getContext()));
1339       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1340     }
1341 }
1342 
1343 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1344   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1345 
1346   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1347                                  Context.getSourceManager(),
1348                                  "Generating code for declaration");
1349 
1350   if (isa<FunctionDecl>(D)) {
1351     // At -O0, don't generate IR for functions with available_externally
1352     // linkage.
1353     if (!shouldEmitFunction(GD))
1354       return;
1355 
1356     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1357       CompleteDIClassType(Method);
1358       // Make sure to emit the definition(s) before we emit the thunks.
1359       // This is necessary for the generation of certain thunks.
1360       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1361         EmitCXXConstructor(CD, GD.getCtorType());
1362       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1363         EmitCXXDestructor(DD, GD.getDtorType());
1364       else
1365         EmitGlobalFunctionDefinition(GD, GV);
1366 
1367       if (Method->isVirtual())
1368         getVTables().EmitThunks(GD);
1369 
1370       return;
1371     }
1372 
1373     return EmitGlobalFunctionDefinition(GD, GV);
1374   }
1375 
1376   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1377     return EmitGlobalVarDefinition(VD);
1378 
1379   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1380 }
1381 
1382 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1383 /// module, create and return an llvm Function with the specified type. If there
1384 /// is something in the module with the specified name, return it potentially
1385 /// bitcasted to the right type.
1386 ///
1387 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1388 /// to set the attributes on the function when it is first created.
1389 llvm::Constant *
1390 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1391                                        llvm::Type *Ty,
1392                                        GlobalDecl GD, bool ForVTable,
1393                                        bool DontDefer,
1394                                        llvm::AttributeSet ExtraAttrs) {
1395   const Decl *D = GD.getDecl();
1396 
1397   // Lookup the entry, lazily creating it if necessary.
1398   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1399   if (Entry) {
1400     if (WeakRefReferences.erase(Entry)) {
1401       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1402       if (FD && !FD->hasAttr<WeakAttr>())
1403         Entry->setLinkage(llvm::Function::ExternalLinkage);
1404     }
1405 
1406     if (Entry->getType()->getElementType() == Ty)
1407       return Entry;
1408 
1409     // Make sure the result is of the correct type.
1410     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1411   }
1412 
1413   // This function doesn't have a complete type (for example, the return
1414   // type is an incomplete struct). Use a fake type instead, and make
1415   // sure not to try to set attributes.
1416   bool IsIncompleteFunction = false;
1417 
1418   llvm::FunctionType *FTy;
1419   if (isa<llvm::FunctionType>(Ty)) {
1420     FTy = cast<llvm::FunctionType>(Ty);
1421   } else {
1422     FTy = llvm::FunctionType::get(VoidTy, false);
1423     IsIncompleteFunction = true;
1424   }
1425 
1426   llvm::Function *F = llvm::Function::Create(FTy,
1427                                              llvm::Function::ExternalLinkage,
1428                                              MangledName, &getModule());
1429   assert(F->getName() == MangledName && "name was uniqued!");
1430   if (D)
1431     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1432   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1433     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1434     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1435                      llvm::AttributeSet::get(VMContext,
1436                                              llvm::AttributeSet::FunctionIndex,
1437                                              B));
1438   }
1439 
1440   if (!DontDefer) {
1441     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1442     // each other bottoming out with the base dtor.  Therefore we emit non-base
1443     // dtors on usage, even if there is no dtor definition in the TU.
1444     if (D && isa<CXXDestructorDecl>(D) &&
1445         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1446                                            GD.getDtorType()))
1447       addDeferredDeclToEmit(F, GD);
1448 
1449     // This is the first use or definition of a mangled name.  If there is a
1450     // deferred decl with this name, remember that we need to emit it at the end
1451     // of the file.
1452     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1453     if (DDI != DeferredDecls.end()) {
1454       // Move the potentially referenced deferred decl to the
1455       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1456       // don't need it anymore).
1457       addDeferredDeclToEmit(F, DDI->second);
1458       DeferredDecls.erase(DDI);
1459 
1460       // Otherwise, if this is a sized deallocation function, emit a weak
1461       // definition
1462       // for it at the end of the translation unit.
1463     } else if (D && cast<FunctionDecl>(D)
1464                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1465       addDeferredDeclToEmit(F, GD);
1466 
1467       // Otherwise, there are cases we have to worry about where we're
1468       // using a declaration for which we must emit a definition but where
1469       // we might not find a top-level definition:
1470       //   - member functions defined inline in their classes
1471       //   - friend functions defined inline in some class
1472       //   - special member functions with implicit definitions
1473       // If we ever change our AST traversal to walk into class methods,
1474       // this will be unnecessary.
1475       //
1476       // We also don't emit a definition for a function if it's going to be an
1477       // entry
1478       // in a vtable, unless it's already marked as used.
1479     } else if (getLangOpts().CPlusPlus && D) {
1480       // Look for a declaration that's lexically in a record.
1481       const FunctionDecl *FD = cast<FunctionDecl>(D);
1482       FD = FD->getMostRecentDecl();
1483       do {
1484         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1485           if (FD->isImplicit() && !ForVTable) {
1486             assert(FD->isUsed() &&
1487                    "Sema didn't mark implicit function as used!");
1488             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1489             break;
1490           } else if (FD->doesThisDeclarationHaveABody()) {
1491             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1492             break;
1493           }
1494         }
1495         FD = FD->getPreviousDecl();
1496       } while (FD);
1497     }
1498   }
1499 
1500   // Make sure the result is of the requested type.
1501   if (!IsIncompleteFunction) {
1502     assert(F->getType()->getElementType() == Ty);
1503     return F;
1504   }
1505 
1506   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1507   return llvm::ConstantExpr::getBitCast(F, PTy);
1508 }
1509 
1510 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1511 /// non-null, then this function will use the specified type if it has to
1512 /// create it (this occurs when we see a definition of the function).
1513 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1514                                                  llvm::Type *Ty,
1515                                                  bool ForVTable,
1516                                                  bool DontDefer) {
1517   // If there was no specific requested type, just convert it now.
1518   if (!Ty)
1519     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1520 
1521   StringRef MangledName = getMangledName(GD);
1522   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1523 }
1524 
1525 /// CreateRuntimeFunction - Create a new runtime function with the specified
1526 /// type and name.
1527 llvm::Constant *
1528 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1529                                      StringRef Name,
1530                                      llvm::AttributeSet ExtraAttrs) {
1531   llvm::Constant *C =
1532       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1533                               /*DontDefer=*/false, ExtraAttrs);
1534   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1535     if (F->empty())
1536       F->setCallingConv(getRuntimeCC());
1537   return C;
1538 }
1539 
1540 /// isTypeConstant - Determine whether an object of this type can be emitted
1541 /// as a constant.
1542 ///
1543 /// If ExcludeCtor is true, the duration when the object's constructor runs
1544 /// will not be considered. The caller will need to verify that the object is
1545 /// not written to during its construction.
1546 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1547   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1548     return false;
1549 
1550   if (Context.getLangOpts().CPlusPlus) {
1551     if (const CXXRecordDecl *Record
1552           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1553       return ExcludeCtor && !Record->hasMutableFields() &&
1554              Record->hasTrivialDestructor();
1555   }
1556 
1557   return true;
1558 }
1559 
1560 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1561 /// create and return an llvm GlobalVariable with the specified type.  If there
1562 /// is something in the module with the specified name, return it potentially
1563 /// bitcasted to the right type.
1564 ///
1565 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1566 /// to set the attributes on the global when it is first created.
1567 llvm::Constant *
1568 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1569                                      llvm::PointerType *Ty,
1570                                      const VarDecl *D,
1571                                      bool UnnamedAddr) {
1572   // Lookup the entry, lazily creating it if necessary.
1573   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1574   if (Entry) {
1575     if (WeakRefReferences.erase(Entry)) {
1576       if (D && !D->hasAttr<WeakAttr>())
1577         Entry->setLinkage(llvm::Function::ExternalLinkage);
1578     }
1579 
1580     if (UnnamedAddr)
1581       Entry->setUnnamedAddr(true);
1582 
1583     if (Entry->getType() == Ty)
1584       return Entry;
1585 
1586     // Make sure the result is of the correct type.
1587     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1588       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1589 
1590     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1591   }
1592 
1593   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1594   llvm::GlobalVariable *GV =
1595     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1596                              llvm::GlobalValue::ExternalLinkage,
1597                              0, MangledName, 0,
1598                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1599 
1600   // This is the first use or definition of a mangled name.  If there is a
1601   // deferred decl with this name, remember that we need to emit it at the end
1602   // of the file.
1603   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1604   if (DDI != DeferredDecls.end()) {
1605     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1606     // list, and remove it from DeferredDecls (since we don't need it anymore).
1607     addDeferredDeclToEmit(GV, DDI->second);
1608     DeferredDecls.erase(DDI);
1609   }
1610 
1611   // Handle things which are present even on external declarations.
1612   if (D) {
1613     // FIXME: This code is overly simple and should be merged with other global
1614     // handling.
1615     GV->setConstant(isTypeConstant(D->getType(), false));
1616 
1617     // Set linkage and visibility in case we never see a definition.
1618     LinkageInfo LV = D->getLinkageAndVisibility();
1619     if (LV.getLinkage() != ExternalLinkage) {
1620       // Don't set internal linkage on declarations.
1621     } else {
1622       if (D->hasAttr<DLLImportAttr>()) {
1623         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1624         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1625       } else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1626         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1627 
1628       // Set visibility on a declaration only if it's explicit.
1629       if (LV.isVisibilityExplicit())
1630         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1631     }
1632 
1633     if (D->getTLSKind()) {
1634       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1635         CXXThreadLocals.push_back(std::make_pair(D, GV));
1636       setTLSMode(GV, *D);
1637     }
1638 
1639     // If required by the ABI, treat declarations of static data members with
1640     // inline initializers as definitions.
1641     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1642         D->isStaticDataMember() && D->hasInit() &&
1643         !D->isThisDeclarationADefinition())
1644       EmitGlobalVarDefinition(D);
1645   }
1646 
1647   if (AddrSpace != Ty->getAddressSpace())
1648     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1649 
1650   if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1651       D->getLanguageLinkage() == CLanguageLinkage &&
1652       D->getType().isConstant(Context) &&
1653       isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1654     GV->setSection(".cp.rodata");
1655 
1656   return GV;
1657 }
1658 
1659 
1660 llvm::GlobalVariable *
1661 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1662                                       llvm::Type *Ty,
1663                                       llvm::GlobalValue::LinkageTypes Linkage) {
1664   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1665   llvm::GlobalVariable *OldGV = 0;
1666 
1667 
1668   if (GV) {
1669     // Check if the variable has the right type.
1670     if (GV->getType()->getElementType() == Ty)
1671       return GV;
1672 
1673     // Because C++ name mangling, the only way we can end up with an already
1674     // existing global with the same name is if it has been declared extern "C".
1675     assert(GV->isDeclaration() && "Declaration has wrong type!");
1676     OldGV = GV;
1677   }
1678 
1679   // Create a new variable.
1680   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1681                                 Linkage, 0, Name);
1682 
1683   if (OldGV) {
1684     // Replace occurrences of the old variable if needed.
1685     GV->takeName(OldGV);
1686 
1687     if (!OldGV->use_empty()) {
1688       llvm::Constant *NewPtrForOldDecl =
1689       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1690       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1691     }
1692 
1693     OldGV->eraseFromParent();
1694   }
1695 
1696   return GV;
1697 }
1698 
1699 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1700 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1701 /// then it will be created with the specified type instead of whatever the
1702 /// normal requested type would be.
1703 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1704                                                   llvm::Type *Ty) {
1705   assert(D->hasGlobalStorage() && "Not a global variable");
1706   QualType ASTTy = D->getType();
1707   if (Ty == 0)
1708     Ty = getTypes().ConvertTypeForMem(ASTTy);
1709 
1710   llvm::PointerType *PTy =
1711     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1712 
1713   StringRef MangledName = getMangledName(D);
1714   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1715 }
1716 
1717 /// CreateRuntimeVariable - Create a new runtime global variable with the
1718 /// specified type and name.
1719 llvm::Constant *
1720 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1721                                      StringRef Name) {
1722   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1723                                true);
1724 }
1725 
1726 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1727   assert(!D->getInit() && "Cannot emit definite definitions here!");
1728 
1729   if (MayDeferGeneration(D)) {
1730     // If we have not seen a reference to this variable yet, place it
1731     // into the deferred declarations table to be emitted if needed
1732     // later.
1733     StringRef MangledName = getMangledName(D);
1734     if (!GetGlobalValue(MangledName)) {
1735       DeferredDecls[MangledName] = D;
1736       return;
1737     }
1738   }
1739 
1740   // The tentative definition is the only definition.
1741   EmitGlobalVarDefinition(D);
1742 }
1743 
1744 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1745     return Context.toCharUnitsFromBits(
1746       TheDataLayout.getTypeStoreSizeInBits(Ty));
1747 }
1748 
1749 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1750                                                  unsigned AddrSpace) {
1751   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1752     if (D->hasAttr<CUDAConstantAttr>())
1753       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1754     else if (D->hasAttr<CUDASharedAttr>())
1755       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1756     else
1757       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1758   }
1759 
1760   return AddrSpace;
1761 }
1762 
1763 template<typename SomeDecl>
1764 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1765                                                llvm::GlobalValue *GV) {
1766   if (!getLangOpts().CPlusPlus)
1767     return;
1768 
1769   // Must have 'used' attribute, or else inline assembly can't rely on
1770   // the name existing.
1771   if (!D->template hasAttr<UsedAttr>())
1772     return;
1773 
1774   // Must have internal linkage and an ordinary name.
1775   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1776     return;
1777 
1778   // Must be in an extern "C" context. Entities declared directly within
1779   // a record are not extern "C" even if the record is in such a context.
1780   const SomeDecl *First = D->getFirstDecl();
1781   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1782     return;
1783 
1784   // OK, this is an internal linkage entity inside an extern "C" linkage
1785   // specification. Make a note of that so we can give it the "expected"
1786   // mangled name if nothing else is using that name.
1787   std::pair<StaticExternCMap::iterator, bool> R =
1788       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1789 
1790   // If we have multiple internal linkage entities with the same name
1791   // in extern "C" regions, none of them gets that name.
1792   if (!R.second)
1793     R.first->second = 0;
1794 }
1795 
1796 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1797   llvm::Constant *Init = 0;
1798   QualType ASTTy = D->getType();
1799   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1800   bool NeedsGlobalCtor = false;
1801   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1802 
1803   const VarDecl *InitDecl;
1804   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1805 
1806   if (!InitExpr) {
1807     // This is a tentative definition; tentative definitions are
1808     // implicitly initialized with { 0 }.
1809     //
1810     // Note that tentative definitions are only emitted at the end of
1811     // a translation unit, so they should never have incomplete
1812     // type. In addition, EmitTentativeDefinition makes sure that we
1813     // never attempt to emit a tentative definition if a real one
1814     // exists. A use may still exists, however, so we still may need
1815     // to do a RAUW.
1816     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1817     Init = EmitNullConstant(D->getType());
1818   } else {
1819     initializedGlobalDecl = GlobalDecl(D);
1820     Init = EmitConstantInit(*InitDecl);
1821 
1822     if (!Init) {
1823       QualType T = InitExpr->getType();
1824       if (D->getType()->isReferenceType())
1825         T = D->getType();
1826 
1827       if (getLangOpts().CPlusPlus) {
1828         Init = EmitNullConstant(T);
1829         NeedsGlobalCtor = true;
1830       } else {
1831         ErrorUnsupported(D, "static initializer");
1832         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1833       }
1834     } else {
1835       // We don't need an initializer, so remove the entry for the delayed
1836       // initializer position (just in case this entry was delayed) if we
1837       // also don't need to register a destructor.
1838       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1839         DelayedCXXInitPosition.erase(D);
1840     }
1841   }
1842 
1843   llvm::Type* InitType = Init->getType();
1844   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1845 
1846   // Strip off a bitcast if we got one back.
1847   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1848     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1849            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1850            // All zero index gep.
1851            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1852     Entry = CE->getOperand(0);
1853   }
1854 
1855   // Entry is now either a Function or GlobalVariable.
1856   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1857 
1858   // We have a definition after a declaration with the wrong type.
1859   // We must make a new GlobalVariable* and update everything that used OldGV
1860   // (a declaration or tentative definition) with the new GlobalVariable*
1861   // (which will be a definition).
1862   //
1863   // This happens if there is a prototype for a global (e.g.
1864   // "extern int x[];") and then a definition of a different type (e.g.
1865   // "int x[10];"). This also happens when an initializer has a different type
1866   // from the type of the global (this happens with unions).
1867   if (GV == 0 ||
1868       GV->getType()->getElementType() != InitType ||
1869       GV->getType()->getAddressSpace() !=
1870        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1871 
1872     // Move the old entry aside so that we'll create a new one.
1873     Entry->setName(StringRef());
1874 
1875     // Make a new global with the correct type, this is now guaranteed to work.
1876     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1877 
1878     // Replace all uses of the old global with the new global
1879     llvm::Constant *NewPtrForOldDecl =
1880         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1881     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1882 
1883     // Erase the old global, since it is no longer used.
1884     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1885   }
1886 
1887   MaybeHandleStaticInExternC(D, GV);
1888 
1889   if (D->hasAttr<AnnotateAttr>())
1890     AddGlobalAnnotations(D, GV);
1891 
1892   GV->setInitializer(Init);
1893 
1894   // If it is safe to mark the global 'constant', do so now.
1895   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1896                   isTypeConstant(D->getType(), true));
1897 
1898   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1899 
1900   // Set the llvm linkage type as appropriate.
1901   llvm::GlobalValue::LinkageTypes Linkage =
1902     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1903   GV->setLinkage(Linkage);
1904   if (D->hasAttr<DLLImportAttr>())
1905     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1906   else if (D->hasAttr<DLLExportAttr>())
1907     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1908 
1909   // If required by the ABI, give definitions of static data members with inline
1910   // initializers linkonce_odr linkage.
1911   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1912       D->isStaticDataMember() && InitExpr &&
1913       !InitDecl->isThisDeclarationADefinition())
1914     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1915 
1916   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1917     // common vars aren't constant even if declared const.
1918     GV->setConstant(false);
1919 
1920   SetCommonAttributes(D, GV);
1921 
1922   // Emit the initializer function if necessary.
1923   if (NeedsGlobalCtor || NeedsGlobalDtor)
1924     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1925 
1926   // If we are compiling with ASan, add metadata indicating dynamically
1927   // initialized globals.
1928   if (SanOpts.Address && NeedsGlobalCtor) {
1929     llvm::Module &M = getModule();
1930 
1931     llvm::NamedMDNode *DynamicInitializers =
1932         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1933     llvm::Value *GlobalToAdd[] = { GV };
1934     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1935     DynamicInitializers->addOperand(ThisGlobal);
1936   }
1937 
1938   // Emit global variable debug information.
1939   if (CGDebugInfo *DI = getModuleDebugInfo())
1940     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1941       DI->EmitGlobalVariable(GV, D);
1942 }
1943 
1944 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1945   // Don't give variables common linkage if -fno-common was specified unless it
1946   // was overridden by a NoCommon attribute.
1947   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1948     return true;
1949 
1950   // C11 6.9.2/2:
1951   //   A declaration of an identifier for an object that has file scope without
1952   //   an initializer, and without a storage-class specifier or with the
1953   //   storage-class specifier static, constitutes a tentative definition.
1954   if (D->getInit() || D->hasExternalStorage())
1955     return true;
1956 
1957   // A variable cannot be both common and exist in a section.
1958   if (D->hasAttr<SectionAttr>())
1959     return true;
1960 
1961   // Thread local vars aren't considered common linkage.
1962   if (D->getTLSKind())
1963     return true;
1964 
1965   // Tentative definitions marked with WeakImportAttr are true definitions.
1966   if (D->hasAttr<WeakImportAttr>())
1967     return true;
1968 
1969   return false;
1970 }
1971 
1972 llvm::GlobalValue::LinkageTypes
1973 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1974   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1975   if (Linkage == GVA_Internal)
1976     return llvm::Function::InternalLinkage;
1977   else if (D->hasAttr<DLLImportAttr>())
1978     return llvm::Function::ExternalLinkage;
1979   else if (D->hasAttr<DLLExportAttr>())
1980     return llvm::Function::ExternalLinkage;
1981   else if (D->hasAttr<SelectAnyAttr>()) {
1982     // selectany symbols are externally visible, so use weak instead of
1983     // linkonce.  MSVC optimizes away references to const selectany globals, so
1984     // all definitions should be the same and ODR linkage should be used.
1985     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1986     return llvm::GlobalVariable::WeakODRLinkage;
1987   } else if (D->hasAttr<WeakAttr>()) {
1988     if (isConstant)
1989       return llvm::GlobalVariable::WeakODRLinkage;
1990     else
1991       return llvm::GlobalVariable::WeakAnyLinkage;
1992   } else if (Linkage == GVA_TemplateInstantiation || Linkage == GVA_StrongODR)
1993     return llvm::GlobalVariable::WeakODRLinkage;
1994   else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1995            getTarget().getTriple().isMacOSX())
1996     // On Darwin, the backing variable for a C++11 thread_local variable always
1997     // has internal linkage; all accesses should just be calls to the
1998     // Itanium-specified entry point, which has the normal linkage of the
1999     // variable.
2000     return llvm::GlobalValue::InternalLinkage;
2001   // C++ doesn't have tentative definitions and thus cannot have common linkage.
2002   else if (!getLangOpts().CPlusPlus &&
2003            !isVarDeclStrongDefinition(D, CodeGenOpts.NoCommon))
2004     return llvm::GlobalVariable::CommonLinkage;
2005 
2006   return llvm::GlobalVariable::ExternalLinkage;
2007 }
2008 
2009 /// Replace the uses of a function that was declared with a non-proto type.
2010 /// We want to silently drop extra arguments from call sites
2011 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2012                                           llvm::Function *newFn) {
2013   // Fast path.
2014   if (old->use_empty()) return;
2015 
2016   llvm::Type *newRetTy = newFn->getReturnType();
2017   SmallVector<llvm::Value*, 4> newArgs;
2018 
2019   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2020          ui != ue; ) {
2021     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2022     llvm::User *user = use->getUser();
2023 
2024     // Recognize and replace uses of bitcasts.  Most calls to
2025     // unprototyped functions will use bitcasts.
2026     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2027       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2028         replaceUsesOfNonProtoConstant(bitcast, newFn);
2029       continue;
2030     }
2031 
2032     // Recognize calls to the function.
2033     llvm::CallSite callSite(user);
2034     if (!callSite) continue;
2035     if (!callSite.isCallee(&*use)) continue;
2036 
2037     // If the return types don't match exactly, then we can't
2038     // transform this call unless it's dead.
2039     if (callSite->getType() != newRetTy && !callSite->use_empty())
2040       continue;
2041 
2042     // Get the call site's attribute list.
2043     SmallVector<llvm::AttributeSet, 8> newAttrs;
2044     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2045 
2046     // Collect any return attributes from the call.
2047     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2048       newAttrs.push_back(
2049         llvm::AttributeSet::get(newFn->getContext(),
2050                                 oldAttrs.getRetAttributes()));
2051 
2052     // If the function was passed too few arguments, don't transform.
2053     unsigned newNumArgs = newFn->arg_size();
2054     if (callSite.arg_size() < newNumArgs) continue;
2055 
2056     // If extra arguments were passed, we silently drop them.
2057     // If any of the types mismatch, we don't transform.
2058     unsigned argNo = 0;
2059     bool dontTransform = false;
2060     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2061            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2062       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2063         dontTransform = true;
2064         break;
2065       }
2066 
2067       // Add any parameter attributes.
2068       if (oldAttrs.hasAttributes(argNo + 1))
2069         newAttrs.
2070           push_back(llvm::
2071                     AttributeSet::get(newFn->getContext(),
2072                                       oldAttrs.getParamAttributes(argNo + 1)));
2073     }
2074     if (dontTransform)
2075       continue;
2076 
2077     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2078       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2079                                                  oldAttrs.getFnAttributes()));
2080 
2081     // Okay, we can transform this.  Create the new call instruction and copy
2082     // over the required information.
2083     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2084 
2085     llvm::CallSite newCall;
2086     if (callSite.isCall()) {
2087       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2088                                        callSite.getInstruction());
2089     } else {
2090       llvm::InvokeInst *oldInvoke =
2091         cast<llvm::InvokeInst>(callSite.getInstruction());
2092       newCall = llvm::InvokeInst::Create(newFn,
2093                                          oldInvoke->getNormalDest(),
2094                                          oldInvoke->getUnwindDest(),
2095                                          newArgs, "",
2096                                          callSite.getInstruction());
2097     }
2098     newArgs.clear(); // for the next iteration
2099 
2100     if (!newCall->getType()->isVoidTy())
2101       newCall->takeName(callSite.getInstruction());
2102     newCall.setAttributes(
2103                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2104     newCall.setCallingConv(callSite.getCallingConv());
2105 
2106     // Finally, remove the old call, replacing any uses with the new one.
2107     if (!callSite->use_empty())
2108       callSite->replaceAllUsesWith(newCall.getInstruction());
2109 
2110     // Copy debug location attached to CI.
2111     if (!callSite->getDebugLoc().isUnknown())
2112       newCall->setDebugLoc(callSite->getDebugLoc());
2113     callSite->eraseFromParent();
2114   }
2115 }
2116 
2117 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2118 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2119 /// existing call uses of the old function in the module, this adjusts them to
2120 /// call the new function directly.
2121 ///
2122 /// This is not just a cleanup: the always_inline pass requires direct calls to
2123 /// functions to be able to inline them.  If there is a bitcast in the way, it
2124 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2125 /// run at -O0.
2126 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2127                                                       llvm::Function *NewFn) {
2128   // If we're redefining a global as a function, don't transform it.
2129   if (!isa<llvm::Function>(Old)) return;
2130 
2131   replaceUsesOfNonProtoConstant(Old, NewFn);
2132 }
2133 
2134 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2135   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2136   // If we have a definition, this might be a deferred decl. If the
2137   // instantiation is explicit, make sure we emit it at the end.
2138   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2139     GetAddrOfGlobalVar(VD);
2140 
2141   EmitTopLevelDecl(VD);
2142 }
2143 
2144 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2145                                                  llvm::GlobalValue *GV) {
2146   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2147 
2148   // Compute the function info and LLVM type.
2149   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2150   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2151 
2152   // Get or create the prototype for the function.
2153   llvm::Constant *Entry =
2154       GV ? GV
2155          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2156 
2157   // Strip off a bitcast if we got one back.
2158   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2159     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2160     Entry = CE->getOperand(0);
2161   }
2162 
2163   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2164     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2165     return;
2166   }
2167 
2168   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2169     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2170 
2171     // If the types mismatch then we have to rewrite the definition.
2172     assert(OldFn->isDeclaration() &&
2173            "Shouldn't replace non-declaration");
2174 
2175     // F is the Function* for the one with the wrong type, we must make a new
2176     // Function* and update everything that used F (a declaration) with the new
2177     // Function* (which will be a definition).
2178     //
2179     // This happens if there is a prototype for a function
2180     // (e.g. "int f()") and then a definition of a different type
2181     // (e.g. "int f(int x)").  Move the old function aside so that it
2182     // doesn't interfere with GetAddrOfFunction.
2183     OldFn->setName(StringRef());
2184     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2185 
2186     // This might be an implementation of a function without a
2187     // prototype, in which case, try to do special replacement of
2188     // calls which match the new prototype.  The really key thing here
2189     // is that we also potentially drop arguments from the call site
2190     // so as to make a direct call, which makes the inliner happier
2191     // and suppresses a number of optimizer warnings (!) about
2192     // dropping arguments.
2193     if (!OldFn->use_empty()) {
2194       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2195       OldFn->removeDeadConstantUsers();
2196     }
2197 
2198     // Replace uses of F with the Function we will endow with a body.
2199     if (!Entry->use_empty()) {
2200       llvm::Constant *NewPtrForOldDecl =
2201         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2202       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2203     }
2204 
2205     // Ok, delete the old function now, which is dead.
2206     OldFn->eraseFromParent();
2207 
2208     Entry = NewFn;
2209   }
2210 
2211   // We need to set linkage and visibility on the function before
2212   // generating code for it because various parts of IR generation
2213   // want to propagate this information down (e.g. to local static
2214   // declarations).
2215   llvm::Function *Fn = cast<llvm::Function>(Entry);
2216   setFunctionLinkage(GD, Fn);
2217 
2218   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2219   setGlobalVisibility(Fn, D);
2220 
2221   MaybeHandleStaticInExternC(D, Fn);
2222 
2223   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2224 
2225   SetFunctionDefinitionAttributes(D, Fn);
2226   SetLLVMFunctionAttributesForDefinition(D, Fn);
2227 
2228   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2229     AddGlobalCtor(Fn, CA->getPriority());
2230   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2231     AddGlobalDtor(Fn, DA->getPriority());
2232   if (D->hasAttr<AnnotateAttr>())
2233     AddGlobalAnnotations(D, Fn);
2234 }
2235 
2236 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2237   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2238   const AliasAttr *AA = D->getAttr<AliasAttr>();
2239   assert(AA && "Not an alias?");
2240 
2241   StringRef MangledName = getMangledName(GD);
2242 
2243   // If there is a definition in the module, then it wins over the alias.
2244   // This is dubious, but allow it to be safe.  Just ignore the alias.
2245   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2246   if (Entry && !Entry->isDeclaration())
2247     return;
2248 
2249   Aliases.push_back(GD);
2250 
2251   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2252 
2253   // Create a reference to the named value.  This ensures that it is emitted
2254   // if a deferred decl.
2255   llvm::Constant *Aliasee;
2256   if (isa<llvm::FunctionType>(DeclTy))
2257     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2258                                       /*ForVTable=*/false);
2259   else
2260     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2261                                     llvm::PointerType::getUnqual(DeclTy), 0);
2262 
2263   // Create the new alias itself, but don't set a name yet.
2264   llvm::GlobalValue *GA =
2265     new llvm::GlobalAlias(Aliasee->getType(),
2266                           llvm::Function::ExternalLinkage,
2267                           "", Aliasee, &getModule());
2268 
2269   if (Entry) {
2270     assert(Entry->isDeclaration());
2271 
2272     // If there is a declaration in the module, then we had an extern followed
2273     // by the alias, as in:
2274     //   extern int test6();
2275     //   ...
2276     //   int test6() __attribute__((alias("test7")));
2277     //
2278     // Remove it and replace uses of it with the alias.
2279     GA->takeName(Entry);
2280 
2281     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2282                                                           Entry->getType()));
2283     Entry->eraseFromParent();
2284   } else {
2285     GA->setName(MangledName);
2286   }
2287 
2288   // Set attributes which are particular to an alias; this is a
2289   // specialization of the attributes which may be set on a global
2290   // variable/function.
2291   if (D->hasAttr<DLLExportAttr>()) {
2292     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2293       // The dllexport attribute is ignored for undefined symbols.
2294       if (FD->hasBody())
2295         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2296     } else {
2297       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2298     }
2299   } else if (D->hasAttr<WeakAttr>() ||
2300              D->hasAttr<WeakRefAttr>() ||
2301              D->isWeakImported()) {
2302     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2303   }
2304 
2305   SetCommonAttributes(D, GA);
2306 }
2307 
2308 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2309                                             ArrayRef<llvm::Type*> Tys) {
2310   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2311                                          Tys);
2312 }
2313 
2314 static llvm::StringMapEntry<llvm::Constant*> &
2315 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2316                          const StringLiteral *Literal,
2317                          bool TargetIsLSB,
2318                          bool &IsUTF16,
2319                          unsigned &StringLength) {
2320   StringRef String = Literal->getString();
2321   unsigned NumBytes = String.size();
2322 
2323   // Check for simple case.
2324   if (!Literal->containsNonAsciiOrNull()) {
2325     StringLength = NumBytes;
2326     return Map.GetOrCreateValue(String);
2327   }
2328 
2329   // Otherwise, convert the UTF8 literals into a string of shorts.
2330   IsUTF16 = true;
2331 
2332   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2333   const UTF8 *FromPtr = (const UTF8 *)String.data();
2334   UTF16 *ToPtr = &ToBuf[0];
2335 
2336   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2337                            &ToPtr, ToPtr + NumBytes,
2338                            strictConversion);
2339 
2340   // ConvertUTF8toUTF16 returns the length in ToPtr.
2341   StringLength = ToPtr - &ToBuf[0];
2342 
2343   // Add an explicit null.
2344   *ToPtr = 0;
2345   return Map.
2346     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2347                                (StringLength + 1) * 2));
2348 }
2349 
2350 static llvm::StringMapEntry<llvm::Constant*> &
2351 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2352                        const StringLiteral *Literal,
2353                        unsigned &StringLength) {
2354   StringRef String = Literal->getString();
2355   StringLength = String.size();
2356   return Map.GetOrCreateValue(String);
2357 }
2358 
2359 llvm::Constant *
2360 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2361   unsigned StringLength = 0;
2362   bool isUTF16 = false;
2363   llvm::StringMapEntry<llvm::Constant*> &Entry =
2364     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2365                              getDataLayout().isLittleEndian(),
2366                              isUTF16, StringLength);
2367 
2368   if (llvm::Constant *C = Entry.getValue())
2369     return C;
2370 
2371   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2372   llvm::Constant *Zeros[] = { Zero, Zero };
2373   llvm::Value *V;
2374 
2375   // If we don't already have it, get __CFConstantStringClassReference.
2376   if (!CFConstantStringClassRef) {
2377     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2378     Ty = llvm::ArrayType::get(Ty, 0);
2379     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2380                                            "__CFConstantStringClassReference");
2381     // Decay array -> ptr
2382     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2383     CFConstantStringClassRef = V;
2384   }
2385   else
2386     V = CFConstantStringClassRef;
2387 
2388   QualType CFTy = getContext().getCFConstantStringType();
2389 
2390   llvm::StructType *STy =
2391     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2392 
2393   llvm::Constant *Fields[4];
2394 
2395   // Class pointer.
2396   Fields[0] = cast<llvm::ConstantExpr>(V);
2397 
2398   // Flags.
2399   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2400   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2401     llvm::ConstantInt::get(Ty, 0x07C8);
2402 
2403   // String pointer.
2404   llvm::Constant *C = 0;
2405   if (isUTF16) {
2406     ArrayRef<uint16_t> Arr =
2407       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2408                                      const_cast<char *>(Entry.getKey().data())),
2409                                    Entry.getKey().size() / 2);
2410     C = llvm::ConstantDataArray::get(VMContext, Arr);
2411   } else {
2412     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2413   }
2414 
2415   // Note: -fwritable-strings doesn't make the backing store strings of
2416   // CFStrings writable. (See <rdar://problem/10657500>)
2417   llvm::GlobalVariable *GV =
2418       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2419                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2420   GV->setUnnamedAddr(true);
2421   // Don't enforce the target's minimum global alignment, since the only use
2422   // of the string is via this class initializer.
2423   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2424   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2425   // that changes the section it ends in, which surprises ld64.
2426   if (isUTF16) {
2427     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2428     GV->setAlignment(Align.getQuantity());
2429     GV->setSection("__TEXT,__ustring");
2430   } else {
2431     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2432     GV->setAlignment(Align.getQuantity());
2433     GV->setSection("__TEXT,__cstring,cstring_literals");
2434   }
2435 
2436   // String.
2437   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2438 
2439   if (isUTF16)
2440     // Cast the UTF16 string to the correct type.
2441     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2442 
2443   // String length.
2444   Ty = getTypes().ConvertType(getContext().LongTy);
2445   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2446 
2447   // The struct.
2448   C = llvm::ConstantStruct::get(STy, Fields);
2449   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2450                                 llvm::GlobalVariable::PrivateLinkage, C,
2451                                 "_unnamed_cfstring_");
2452   GV->setSection("__DATA,__cfstring");
2453   Entry.setValue(GV);
2454 
2455   return GV;
2456 }
2457 
2458 llvm::Constant *
2459 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2460   unsigned StringLength = 0;
2461   llvm::StringMapEntry<llvm::Constant*> &Entry =
2462     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2463 
2464   if (llvm::Constant *C = Entry.getValue())
2465     return C;
2466 
2467   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2468   llvm::Constant *Zeros[] = { Zero, Zero };
2469   llvm::Value *V;
2470   // If we don't already have it, get _NSConstantStringClassReference.
2471   if (!ConstantStringClassRef) {
2472     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2473     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2474     llvm::Constant *GV;
2475     if (LangOpts.ObjCRuntime.isNonFragile()) {
2476       std::string str =
2477         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2478                             : "OBJC_CLASS_$_" + StringClass;
2479       GV = getObjCRuntime().GetClassGlobal(str);
2480       // Make sure the result is of the correct type.
2481       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2482       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2483       ConstantStringClassRef = V;
2484     } else {
2485       std::string str =
2486         StringClass.empty() ? "_NSConstantStringClassReference"
2487                             : "_" + StringClass + "ClassReference";
2488       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2489       GV = CreateRuntimeVariable(PTy, str);
2490       // Decay array -> ptr
2491       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2492       ConstantStringClassRef = V;
2493     }
2494   }
2495   else
2496     V = ConstantStringClassRef;
2497 
2498   if (!NSConstantStringType) {
2499     // Construct the type for a constant NSString.
2500     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2501     D->startDefinition();
2502 
2503     QualType FieldTypes[3];
2504 
2505     // const int *isa;
2506     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2507     // const char *str;
2508     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2509     // unsigned int length;
2510     FieldTypes[2] = Context.UnsignedIntTy;
2511 
2512     // Create fields
2513     for (unsigned i = 0; i < 3; ++i) {
2514       FieldDecl *Field = FieldDecl::Create(Context, D,
2515                                            SourceLocation(),
2516                                            SourceLocation(), 0,
2517                                            FieldTypes[i], /*TInfo=*/0,
2518                                            /*BitWidth=*/0,
2519                                            /*Mutable=*/false,
2520                                            ICIS_NoInit);
2521       Field->setAccess(AS_public);
2522       D->addDecl(Field);
2523     }
2524 
2525     D->completeDefinition();
2526     QualType NSTy = Context.getTagDeclType(D);
2527     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2528   }
2529 
2530   llvm::Constant *Fields[3];
2531 
2532   // Class pointer.
2533   Fields[0] = cast<llvm::ConstantExpr>(V);
2534 
2535   // String pointer.
2536   llvm::Constant *C =
2537     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2538 
2539   llvm::GlobalValue::LinkageTypes Linkage;
2540   bool isConstant;
2541   Linkage = llvm::GlobalValue::PrivateLinkage;
2542   isConstant = !LangOpts.WritableStrings;
2543 
2544   llvm::GlobalVariable *GV =
2545   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2546                            ".str");
2547   GV->setUnnamedAddr(true);
2548   // Don't enforce the target's minimum global alignment, since the only use
2549   // of the string is via this class initializer.
2550   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2551   GV->setAlignment(Align.getQuantity());
2552   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2553 
2554   // String length.
2555   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2556   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2557 
2558   // The struct.
2559   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2560   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2561                                 llvm::GlobalVariable::PrivateLinkage, C,
2562                                 "_unnamed_nsstring_");
2563   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2564   const char *NSStringNonFragileABISection =
2565       "__DATA,__objc_stringobj,regular,no_dead_strip";
2566   // FIXME. Fix section.
2567   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2568                      ? NSStringNonFragileABISection
2569                      : NSStringSection);
2570   Entry.setValue(GV);
2571 
2572   return GV;
2573 }
2574 
2575 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2576   if (ObjCFastEnumerationStateType.isNull()) {
2577     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2578     D->startDefinition();
2579 
2580     QualType FieldTypes[] = {
2581       Context.UnsignedLongTy,
2582       Context.getPointerType(Context.getObjCIdType()),
2583       Context.getPointerType(Context.UnsignedLongTy),
2584       Context.getConstantArrayType(Context.UnsignedLongTy,
2585                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2586     };
2587 
2588     for (size_t i = 0; i < 4; ++i) {
2589       FieldDecl *Field = FieldDecl::Create(Context,
2590                                            D,
2591                                            SourceLocation(),
2592                                            SourceLocation(), 0,
2593                                            FieldTypes[i], /*TInfo=*/0,
2594                                            /*BitWidth=*/0,
2595                                            /*Mutable=*/false,
2596                                            ICIS_NoInit);
2597       Field->setAccess(AS_public);
2598       D->addDecl(Field);
2599     }
2600 
2601     D->completeDefinition();
2602     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2603   }
2604 
2605   return ObjCFastEnumerationStateType;
2606 }
2607 
2608 llvm::Constant *
2609 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2610   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2611 
2612   // Don't emit it as the address of the string, emit the string data itself
2613   // as an inline array.
2614   if (E->getCharByteWidth() == 1) {
2615     SmallString<64> Str(E->getString());
2616 
2617     // Resize the string to the right size, which is indicated by its type.
2618     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2619     Str.resize(CAT->getSize().getZExtValue());
2620     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2621   }
2622 
2623   llvm::ArrayType *AType =
2624     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2625   llvm::Type *ElemTy = AType->getElementType();
2626   unsigned NumElements = AType->getNumElements();
2627 
2628   // Wide strings have either 2-byte or 4-byte elements.
2629   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2630     SmallVector<uint16_t, 32> Elements;
2631     Elements.reserve(NumElements);
2632 
2633     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2634       Elements.push_back(E->getCodeUnit(i));
2635     Elements.resize(NumElements);
2636     return llvm::ConstantDataArray::get(VMContext, Elements);
2637   }
2638 
2639   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2640   SmallVector<uint32_t, 32> Elements;
2641   Elements.reserve(NumElements);
2642 
2643   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2644     Elements.push_back(E->getCodeUnit(i));
2645   Elements.resize(NumElements);
2646   return llvm::ConstantDataArray::get(VMContext, Elements);
2647 }
2648 
2649 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2650 /// constant array for the given string literal.
2651 llvm::Constant *
2652 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2653   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2654 
2655   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2656   llvm::GlobalVariable *GV = nullptr;
2657   if (!LangOpts.WritableStrings) {
2658     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2659     switch (S->getCharByteWidth()) {
2660     case 1:
2661       ConstantStringMap = &Constant1ByteStringMap;
2662       break;
2663     case 2:
2664       ConstantStringMap = &Constant2ByteStringMap;
2665       break;
2666     case 4:
2667       ConstantStringMap = &Constant4ByteStringMap;
2668       break;
2669     default:
2670       llvm_unreachable("unhandled byte width!");
2671     }
2672     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2673     GV = Entry->getValue();
2674   }
2675 
2676   if (!GV) {
2677     SmallString<256> MangledNameBuffer;
2678     StringRef GlobalVariableName;
2679     llvm::GlobalValue::LinkageTypes LT;
2680 
2681     // Mangle the string literal if the ABI allows for it.  However, we cannot
2682     // do this if  we are compiling with ASan or -fwritable-strings because they
2683     // rely on strings having normal linkage.
2684     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2685         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2686       llvm::raw_svector_ostream Out(MangledNameBuffer);
2687       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2688       Out.flush();
2689 
2690       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2691       GlobalVariableName = MangledNameBuffer;
2692     } else {
2693       LT = llvm::GlobalValue::PrivateLinkage;;
2694       GlobalVariableName = ".str";
2695     }
2696 
2697     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2698     unsigned AddrSpace = 0;
2699     if (getLangOpts().OpenCL)
2700       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2701 
2702     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2703     GV = new llvm::GlobalVariable(
2704         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2705         GlobalVariableName, /*InsertBefore=*/nullptr,
2706         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2707     GV->setUnnamedAddr(true);
2708     if (Entry)
2709       Entry->setValue(GV);
2710   }
2711 
2712   if (Align.getQuantity() > GV->getAlignment())
2713     GV->setAlignment(Align.getQuantity());
2714 
2715   return GV;
2716 }
2717 
2718 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2719 /// array for the given ObjCEncodeExpr node.
2720 llvm::Constant *
2721 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2722   std::string Str;
2723   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2724 
2725   return GetAddrOfConstantCString(Str);
2726 }
2727 
2728 
2729 /// GenerateWritableString -- Creates storage for a string literal.
2730 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2731                                              bool constant,
2732                                              CodeGenModule &CGM,
2733                                              const char *GlobalName,
2734                                              unsigned Alignment) {
2735   // Create Constant for this string literal. Don't add a '\0'.
2736   llvm::Constant *C =
2737       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2738 
2739   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2740   unsigned AddrSpace = 0;
2741   if (CGM.getLangOpts().OpenCL)
2742     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2743 
2744   // Create a global variable for this string
2745   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2746       CGM.getModule(), C->getType(), constant,
2747       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2748       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2749   GV->setAlignment(Alignment);
2750   GV->setUnnamedAddr(true);
2751   return GV;
2752 }
2753 
2754 /// GetAddrOfConstantString - Returns a pointer to a character array
2755 /// containing the literal. This contents are exactly that of the
2756 /// given string, i.e. it will not be null terminated automatically;
2757 /// see GetAddrOfConstantCString. Note that whether the result is
2758 /// actually a pointer to an LLVM constant depends on
2759 /// Feature.WriteableStrings.
2760 ///
2761 /// The result has pointer to array type.
2762 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2763                                                        const char *GlobalName,
2764                                                        unsigned Alignment) {
2765   // Get the default prefix if a name wasn't specified.
2766   if (!GlobalName)
2767     GlobalName = ".str";
2768 
2769   if (Alignment == 0)
2770     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2771       .getQuantity();
2772 
2773   // Don't share any string literals if strings aren't constant.
2774   if (LangOpts.WritableStrings)
2775     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2776 
2777   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2778     Constant1ByteStringMap.GetOrCreateValue(Str);
2779 
2780   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2781     if (Alignment > GV->getAlignment()) {
2782       GV->setAlignment(Alignment);
2783     }
2784     return GV;
2785   }
2786 
2787   // Create a global variable for this.
2788   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2789                                                    Alignment);
2790   Entry.setValue(GV);
2791   return GV;
2792 }
2793 
2794 /// GetAddrOfConstantCString - Returns a pointer to a character
2795 /// array containing the literal and a terminating '\0'
2796 /// character. The result has pointer to array type.
2797 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2798                                                         const char *GlobalName,
2799                                                         unsigned Alignment) {
2800   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2801   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2802 }
2803 
2804 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2805     const MaterializeTemporaryExpr *E, const Expr *Init) {
2806   assert((E->getStorageDuration() == SD_Static ||
2807           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2808   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2809 
2810   // If we're not materializing a subobject of the temporary, keep the
2811   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2812   QualType MaterializedType = Init->getType();
2813   if (Init == E->GetTemporaryExpr())
2814     MaterializedType = E->getType();
2815 
2816   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2817   if (Slot)
2818     return Slot;
2819 
2820   // FIXME: If an externally-visible declaration extends multiple temporaries,
2821   // we need to give each temporary the same name in every translation unit (and
2822   // we also need to make the temporaries externally-visible).
2823   SmallString<256> Name;
2824   llvm::raw_svector_ostream Out(Name);
2825   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2826   Out.flush();
2827 
2828   APValue *Value = 0;
2829   if (E->getStorageDuration() == SD_Static) {
2830     // We might have a cached constant initializer for this temporary. Note
2831     // that this might have a different value from the value computed by
2832     // evaluating the initializer if the surrounding constant expression
2833     // modifies the temporary.
2834     Value = getContext().getMaterializedTemporaryValue(E, false);
2835     if (Value && Value->isUninit())
2836       Value = 0;
2837   }
2838 
2839   // Try evaluating it now, it might have a constant initializer.
2840   Expr::EvalResult EvalResult;
2841   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2842       !EvalResult.hasSideEffects())
2843     Value = &EvalResult.Val;
2844 
2845   llvm::Constant *InitialValue = 0;
2846   bool Constant = false;
2847   llvm::Type *Type;
2848   if (Value) {
2849     // The temporary has a constant initializer, use it.
2850     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2851     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2852     Type = InitialValue->getType();
2853   } else {
2854     // No initializer, the initialization will be provided when we
2855     // initialize the declaration which performed lifetime extension.
2856     Type = getTypes().ConvertTypeForMem(MaterializedType);
2857   }
2858 
2859   // Create a global variable for this lifetime-extended temporary.
2860   llvm::GlobalVariable *GV =
2861     new llvm::GlobalVariable(getModule(), Type, Constant,
2862                              llvm::GlobalValue::PrivateLinkage,
2863                              InitialValue, Name.c_str());
2864   GV->setAlignment(
2865       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2866   if (VD->getTLSKind())
2867     setTLSMode(GV, *VD);
2868   Slot = GV;
2869   return GV;
2870 }
2871 
2872 /// EmitObjCPropertyImplementations - Emit information for synthesized
2873 /// properties for an implementation.
2874 void CodeGenModule::EmitObjCPropertyImplementations(const
2875                                                     ObjCImplementationDecl *D) {
2876   for (const auto *PID : D->property_impls()) {
2877     // Dynamic is just for type-checking.
2878     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2879       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2880 
2881       // Determine which methods need to be implemented, some may have
2882       // been overridden. Note that ::isPropertyAccessor is not the method
2883       // we want, that just indicates if the decl came from a
2884       // property. What we want to know is if the method is defined in
2885       // this implementation.
2886       if (!D->getInstanceMethod(PD->getGetterName()))
2887         CodeGenFunction(*this).GenerateObjCGetter(
2888                                  const_cast<ObjCImplementationDecl *>(D), PID);
2889       if (!PD->isReadOnly() &&
2890           !D->getInstanceMethod(PD->getSetterName()))
2891         CodeGenFunction(*this).GenerateObjCSetter(
2892                                  const_cast<ObjCImplementationDecl *>(D), PID);
2893     }
2894   }
2895 }
2896 
2897 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2898   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2899   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2900        ivar; ivar = ivar->getNextIvar())
2901     if (ivar->getType().isDestructedType())
2902       return true;
2903 
2904   return false;
2905 }
2906 
2907 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2908 /// for an implementation.
2909 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2910   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2911   if (needsDestructMethod(D)) {
2912     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2913     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2914     ObjCMethodDecl *DTORMethod =
2915       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2916                              cxxSelector, getContext().VoidTy, 0, D,
2917                              /*isInstance=*/true, /*isVariadic=*/false,
2918                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2919                              /*isDefined=*/false, ObjCMethodDecl::Required);
2920     D->addInstanceMethod(DTORMethod);
2921     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2922     D->setHasDestructors(true);
2923   }
2924 
2925   // If the implementation doesn't have any ivar initializers, we don't need
2926   // a .cxx_construct.
2927   if (D->getNumIvarInitializers() == 0)
2928     return;
2929 
2930   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2931   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2932   // The constructor returns 'self'.
2933   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2934                                                 D->getLocation(),
2935                                                 D->getLocation(),
2936                                                 cxxSelector,
2937                                                 getContext().getObjCIdType(), 0,
2938                                                 D, /*isInstance=*/true,
2939                                                 /*isVariadic=*/false,
2940                                                 /*isPropertyAccessor=*/true,
2941                                                 /*isImplicitlyDeclared=*/true,
2942                                                 /*isDefined=*/false,
2943                                                 ObjCMethodDecl::Required);
2944   D->addInstanceMethod(CTORMethod);
2945   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2946   D->setHasNonZeroConstructors(true);
2947 }
2948 
2949 /// EmitNamespace - Emit all declarations in a namespace.
2950 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2951   for (auto *I : ND->decls()) {
2952     if (const auto *VD = dyn_cast<VarDecl>(I))
2953       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2954           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2955         continue;
2956     EmitTopLevelDecl(I);
2957   }
2958 }
2959 
2960 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2961 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2962   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2963       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2964     ErrorUnsupported(LSD, "linkage spec");
2965     return;
2966   }
2967 
2968   for (auto *I : LSD->decls()) {
2969     // Meta-data for ObjC class includes references to implemented methods.
2970     // Generate class's method definitions first.
2971     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2972       for (auto *M : OID->methods())
2973         EmitTopLevelDecl(M);
2974     }
2975     EmitTopLevelDecl(I);
2976   }
2977 }
2978 
2979 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2980 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2981   // Ignore dependent declarations.
2982   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2983     return;
2984 
2985   switch (D->getKind()) {
2986   case Decl::CXXConversion:
2987   case Decl::CXXMethod:
2988   case Decl::Function:
2989     // Skip function templates
2990     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2991         cast<FunctionDecl>(D)->isLateTemplateParsed())
2992       return;
2993 
2994     EmitGlobal(cast<FunctionDecl>(D));
2995     break;
2996 
2997   case Decl::Var:
2998     // Skip variable templates
2999     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3000       return;
3001   case Decl::VarTemplateSpecialization:
3002     EmitGlobal(cast<VarDecl>(D));
3003     break;
3004 
3005   // Indirect fields from global anonymous structs and unions can be
3006   // ignored; only the actual variable requires IR gen support.
3007   case Decl::IndirectField:
3008     break;
3009 
3010   // C++ Decls
3011   case Decl::Namespace:
3012     EmitNamespace(cast<NamespaceDecl>(D));
3013     break;
3014     // No code generation needed.
3015   case Decl::UsingShadow:
3016   case Decl::ClassTemplate:
3017   case Decl::VarTemplate:
3018   case Decl::VarTemplatePartialSpecialization:
3019   case Decl::FunctionTemplate:
3020   case Decl::TypeAliasTemplate:
3021   case Decl::Block:
3022   case Decl::Empty:
3023     break;
3024   case Decl::Using:          // using X; [C++]
3025     if (CGDebugInfo *DI = getModuleDebugInfo())
3026         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3027     return;
3028   case Decl::NamespaceAlias:
3029     if (CGDebugInfo *DI = getModuleDebugInfo())
3030         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3031     return;
3032   case Decl::UsingDirective: // using namespace X; [C++]
3033     if (CGDebugInfo *DI = getModuleDebugInfo())
3034       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3035     return;
3036   case Decl::CXXConstructor:
3037     // Skip function templates
3038     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3039         cast<FunctionDecl>(D)->isLateTemplateParsed())
3040       return;
3041 
3042     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3043     break;
3044   case Decl::CXXDestructor:
3045     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3046       return;
3047     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3048     break;
3049 
3050   case Decl::StaticAssert:
3051     // Nothing to do.
3052     break;
3053 
3054   // Objective-C Decls
3055 
3056   // Forward declarations, no (immediate) code generation.
3057   case Decl::ObjCInterface:
3058   case Decl::ObjCCategory:
3059     break;
3060 
3061   case Decl::ObjCProtocol: {
3062     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
3063     if (Proto->isThisDeclarationADefinition())
3064       ObjCRuntime->GenerateProtocol(Proto);
3065     break;
3066   }
3067 
3068   case Decl::ObjCCategoryImpl:
3069     // Categories have properties but don't support synthesize so we
3070     // can ignore them here.
3071     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3072     break;
3073 
3074   case Decl::ObjCImplementation: {
3075     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
3076     EmitObjCPropertyImplementations(OMD);
3077     EmitObjCIvarInitializations(OMD);
3078     ObjCRuntime->GenerateClass(OMD);
3079     // Emit global variable debug information.
3080     if (CGDebugInfo *DI = getModuleDebugInfo())
3081       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3082         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3083             OMD->getClassInterface()), OMD->getLocation());
3084     break;
3085   }
3086   case Decl::ObjCMethod: {
3087     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3088     // If this is not a prototype, emit the body.
3089     if (OMD->getBody())
3090       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3091     break;
3092   }
3093   case Decl::ObjCCompatibleAlias:
3094     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3095     break;
3096 
3097   case Decl::LinkageSpec:
3098     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3099     break;
3100 
3101   case Decl::FileScopeAsm: {
3102     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3103     StringRef AsmString = AD->getAsmString()->getString();
3104 
3105     const std::string &S = getModule().getModuleInlineAsm();
3106     if (S.empty())
3107       getModule().setModuleInlineAsm(AsmString);
3108     else if (S.end()[-1] == '\n')
3109       getModule().setModuleInlineAsm(S + AsmString.str());
3110     else
3111       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3112     break;
3113   }
3114 
3115   case Decl::Import: {
3116     ImportDecl *Import = cast<ImportDecl>(D);
3117 
3118     // Ignore import declarations that come from imported modules.
3119     if (clang::Module *Owner = Import->getOwningModule()) {
3120       if (getLangOpts().CurrentModule.empty() ||
3121           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3122         break;
3123     }
3124 
3125     ImportedModules.insert(Import->getImportedModule());
3126     break;
3127   }
3128 
3129   case Decl::ClassTemplateSpecialization: {
3130     const ClassTemplateSpecializationDecl *Spec =
3131         cast<ClassTemplateSpecializationDecl>(D);
3132     if (DebugInfo &&
3133         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3134       DebugInfo->completeTemplateDefinition(*Spec);
3135   }
3136 
3137   default:
3138     // Make sure we handled everything we should, every other kind is a
3139     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3140     // function. Need to recode Decl::Kind to do that easily.
3141     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3142   }
3143 }
3144 
3145 /// Turns the given pointer into a constant.
3146 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3147                                           const void *Ptr) {
3148   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3149   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3150   return llvm::ConstantInt::get(i64, PtrInt);
3151 }
3152 
3153 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3154                                    llvm::NamedMDNode *&GlobalMetadata,
3155                                    GlobalDecl D,
3156                                    llvm::GlobalValue *Addr) {
3157   if (!GlobalMetadata)
3158     GlobalMetadata =
3159       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3160 
3161   // TODO: should we report variant information for ctors/dtors?
3162   llvm::Value *Ops[] = {
3163     Addr,
3164     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3165   };
3166   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3167 }
3168 
3169 /// For each function which is declared within an extern "C" region and marked
3170 /// as 'used', but has internal linkage, create an alias from the unmangled
3171 /// name to the mangled name if possible. People expect to be able to refer
3172 /// to such functions with an unmangled name from inline assembly within the
3173 /// same translation unit.
3174 void CodeGenModule::EmitStaticExternCAliases() {
3175   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3176                                   E = StaticExternCValues.end();
3177        I != E; ++I) {
3178     IdentifierInfo *Name = I->first;
3179     llvm::GlobalValue *Val = I->second;
3180     if (Val && !getModule().getNamedValue(Name->getName()))
3181       addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3182                                           Name->getName(), Val, &getModule()));
3183   }
3184 }
3185 
3186 /// Emits metadata nodes associating all the global values in the
3187 /// current module with the Decls they came from.  This is useful for
3188 /// projects using IR gen as a subroutine.
3189 ///
3190 /// Since there's currently no way to associate an MDNode directly
3191 /// with an llvm::GlobalValue, we create a global named metadata
3192 /// with the name 'clang.global.decl.ptrs'.
3193 void CodeGenModule::EmitDeclMetadata() {
3194   llvm::NamedMDNode *GlobalMetadata = 0;
3195 
3196   // StaticLocalDeclMap
3197   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3198          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3199        I != E; ++I) {
3200     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3201     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3202   }
3203 }
3204 
3205 /// Emits metadata nodes for all the local variables in the current
3206 /// function.
3207 void CodeGenFunction::EmitDeclMetadata() {
3208   if (LocalDeclMap.empty()) return;
3209 
3210   llvm::LLVMContext &Context = getLLVMContext();
3211 
3212   // Find the unique metadata ID for this name.
3213   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3214 
3215   llvm::NamedMDNode *GlobalMetadata = 0;
3216 
3217   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3218          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3219     const Decl *D = I->first;
3220     llvm::Value *Addr = I->second;
3221 
3222     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3223       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3224       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3225     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3226       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3227       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3228     }
3229   }
3230 }
3231 
3232 void CodeGenModule::EmitVersionIdentMetadata() {
3233   llvm::NamedMDNode *IdentMetadata =
3234     TheModule.getOrInsertNamedMetadata("llvm.ident");
3235   std::string Version = getClangFullVersion();
3236   llvm::LLVMContext &Ctx = TheModule.getContext();
3237 
3238   llvm::Value *IdentNode[] = {
3239     llvm::MDString::get(Ctx, Version)
3240   };
3241   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3242 }
3243 
3244 void CodeGenModule::EmitCoverageFile() {
3245   if (!getCodeGenOpts().CoverageFile.empty()) {
3246     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3247       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3248       llvm::LLVMContext &Ctx = TheModule.getContext();
3249       llvm::MDString *CoverageFile =
3250           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3251       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3252         llvm::MDNode *CU = CUNode->getOperand(i);
3253         llvm::Value *node[] = { CoverageFile, CU };
3254         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3255         GCov->addOperand(N);
3256       }
3257     }
3258   }
3259 }
3260 
3261 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3262                                                      QualType GuidType) {
3263   // Sema has checked that all uuid strings are of the form
3264   // "12345678-1234-1234-1234-1234567890ab".
3265   assert(Uuid.size() == 36);
3266   for (unsigned i = 0; i < 36; ++i) {
3267     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3268     else                                         assert(isHexDigit(Uuid[i]));
3269   }
3270 
3271   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3272 
3273   llvm::Constant *Field3[8];
3274   for (unsigned Idx = 0; Idx < 8; ++Idx)
3275     Field3[Idx] = llvm::ConstantInt::get(
3276         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3277 
3278   llvm::Constant *Fields[4] = {
3279     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3280     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3281     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3282     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3283   };
3284 
3285   return llvm::ConstantStruct::getAnon(Fields);
3286 }
3287