1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().Target.getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56 } 57 58 59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0), 74 BlockDescriptorType(0), GenericBlockLiteralType(0) { 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 92 Block.GlobalUniqueCount = 0; 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 98 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 99 PointerWidthInBits = C.Target.getPointerWidth(0); 100 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); 101 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 102 Int8PtrTy = Int8Ty->getPointerTo(0); 103 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 104 } 105 106 CodeGenModule::~CodeGenModule() { 107 delete Runtime; 108 delete &ABI; 109 delete TBAA; 110 delete DebugInfo; 111 } 112 113 void CodeGenModule::createObjCRuntime() { 114 if (!Features.NeXTRuntime) 115 Runtime = CreateGNUObjCRuntime(*this); 116 else if (Features.ObjCNonFragileABI) 117 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 118 else 119 Runtime = CreateMacObjCRuntime(*this); 120 } 121 122 void CodeGenModule::Release() { 123 EmitDeferred(); 124 EmitCXXGlobalInitFunc(); 125 EmitCXXGlobalDtorFunc(); 126 if (Runtime) 127 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 128 AddGlobalCtor(ObjCInitFunction); 129 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 130 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 131 EmitAnnotations(); 132 EmitLLVMUsed(); 133 134 SimplifyPersonality(); 135 136 if (getCodeGenOpts().EmitDeclMetadata) 137 EmitDeclMetadata(); 138 } 139 140 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 141 if (!TBAA) 142 return 0; 143 return TBAA->getTBAAInfo(QTy); 144 } 145 146 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 147 llvm::MDNode *TBAAInfo) { 148 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 149 } 150 151 bool CodeGenModule::isTargetDarwin() const { 152 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified stmt yet. 157 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 165 << Msg << S->getSourceRange(); 166 } 167 168 /// ErrorUnsupported - Print out an error that codegen doesn't support the 169 /// specified decl yet. 170 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 171 bool OmitOnError) { 172 if (OmitOnError && getDiags().hasErrorOccurred()) 173 return; 174 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 175 "cannot compile this %0 yet"); 176 std::string Msg = Type; 177 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 178 } 179 180 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 181 const NamedDecl *D) const { 182 // Internal definitions always have default visibility. 183 if (GV->hasLocalLinkage()) { 184 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 185 return; 186 } 187 188 // Set visibility for definitions. 189 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 190 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 191 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 192 } 193 194 /// Set the symbol visibility of type information (vtable and RTTI) 195 /// associated with the given type. 196 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 197 const CXXRecordDecl *RD, 198 TypeVisibilityKind TVK) const { 199 setGlobalVisibility(GV, RD); 200 201 if (!CodeGenOpts.HiddenWeakVTables) 202 return; 203 204 // We never want to drop the visibility for RTTI names. 205 if (TVK == TVK_ForRTTIName) 206 return; 207 208 // We want to drop the visibility to hidden for weak type symbols. 209 // This isn't possible if there might be unresolved references 210 // elsewhere that rely on this symbol being visible. 211 212 // This should be kept roughly in sync with setThunkVisibility 213 // in CGVTables.cpp. 214 215 // Preconditions. 216 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 217 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 218 return; 219 220 // Don't override an explicit visibility attribute. 221 if (RD->hasAttr<VisibilityAttr>()) 222 return; 223 224 switch (RD->getTemplateSpecializationKind()) { 225 // We have to disable the optimization if this is an EI definition 226 // because there might be EI declarations in other shared objects. 227 case TSK_ExplicitInstantiationDefinition: 228 case TSK_ExplicitInstantiationDeclaration: 229 return; 230 231 // Every use of a non-template class's type information has to emit it. 232 case TSK_Undeclared: 233 break; 234 235 // In theory, implicit instantiations can ignore the possibility of 236 // an explicit instantiation declaration because there necessarily 237 // must be an EI definition somewhere with default visibility. In 238 // practice, it's possible to have an explicit instantiation for 239 // an arbitrary template class, and linkers aren't necessarily able 240 // to deal with mixed-visibility symbols. 241 case TSK_ExplicitSpecialization: 242 case TSK_ImplicitInstantiation: 243 if (!CodeGenOpts.HiddenWeakTemplateVTables) 244 return; 245 break; 246 } 247 248 // If there's a key function, there may be translation units 249 // that don't have the key function's definition. But ignore 250 // this if we're emitting RTTI under -fno-rtti. 251 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 252 if (Context.getKeyFunction(RD)) 253 return; 254 } 255 256 // Otherwise, drop the visibility to hidden. 257 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 258 GV->setUnnamedAddr(true); 259 } 260 261 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 262 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 263 264 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 265 if (!Str.empty()) 266 return Str; 267 268 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 269 IdentifierInfo *II = ND->getIdentifier(); 270 assert(II && "Attempt to mangle unnamed decl."); 271 272 Str = II->getName(); 273 return Str; 274 } 275 276 llvm::SmallString<256> Buffer; 277 llvm::raw_svector_ostream Out(Buffer); 278 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 279 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 280 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 281 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 282 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 283 getCXXABI().getMangleContext().mangleBlock(BD, Out); 284 else 285 getCXXABI().getMangleContext().mangleName(ND, Out); 286 287 // Allocate space for the mangled name. 288 Out.flush(); 289 size_t Length = Buffer.size(); 290 char *Name = MangledNamesAllocator.Allocate<char>(Length); 291 std::copy(Buffer.begin(), Buffer.end(), Name); 292 293 Str = llvm::StringRef(Name, Length); 294 295 return Str; 296 } 297 298 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 299 const BlockDecl *BD) { 300 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 301 const Decl *D = GD.getDecl(); 302 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 303 if (D == 0) 304 MangleCtx.mangleGlobalBlock(BD, Out); 305 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 306 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 307 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 308 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 309 else 310 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 311 } 312 313 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 314 return getModule().getNamedValue(Name); 315 } 316 317 /// AddGlobalCtor - Add a function to the list that will be called before 318 /// main() runs. 319 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 320 // FIXME: Type coercion of void()* types. 321 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 322 } 323 324 /// AddGlobalDtor - Add a function to the list that will be called 325 /// when the module is unloaded. 326 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 327 // FIXME: Type coercion of void()* types. 328 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 329 } 330 331 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 332 // Ctor function type is void()*. 333 llvm::FunctionType* CtorFTy = 334 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 335 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 336 337 // Get the type of a ctor entry, { i32, void ()* }. 338 llvm::StructType* CtorStructTy = 339 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 340 llvm::PointerType::getUnqual(CtorFTy), NULL); 341 342 // Construct the constructor and destructor arrays. 343 std::vector<llvm::Constant*> Ctors; 344 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 345 std::vector<llvm::Constant*> S; 346 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 347 I->second, false)); 348 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 349 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 350 } 351 352 if (!Ctors.empty()) { 353 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 354 new llvm::GlobalVariable(TheModule, AT, false, 355 llvm::GlobalValue::AppendingLinkage, 356 llvm::ConstantArray::get(AT, Ctors), 357 GlobalName); 358 } 359 } 360 361 void CodeGenModule::EmitAnnotations() { 362 if (Annotations.empty()) 363 return; 364 365 // Create a new global variable for the ConstantStruct in the Module. 366 llvm::Constant *Array = 367 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 368 Annotations.size()), 369 Annotations); 370 llvm::GlobalValue *gv = 371 new llvm::GlobalVariable(TheModule, Array->getType(), false, 372 llvm::GlobalValue::AppendingLinkage, Array, 373 "llvm.global.annotations"); 374 gv->setSection("llvm.metadata"); 375 } 376 377 llvm::GlobalValue::LinkageTypes 378 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 379 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 380 381 if (Linkage == GVA_Internal) 382 return llvm::Function::InternalLinkage; 383 384 if (D->hasAttr<DLLExportAttr>()) 385 return llvm::Function::DLLExportLinkage; 386 387 if (D->hasAttr<WeakAttr>()) 388 return llvm::Function::WeakAnyLinkage; 389 390 // In C99 mode, 'inline' functions are guaranteed to have a strong 391 // definition somewhere else, so we can use available_externally linkage. 392 if (Linkage == GVA_C99Inline) 393 return llvm::Function::AvailableExternallyLinkage; 394 395 // In C++, the compiler has to emit a definition in every translation unit 396 // that references the function. We should use linkonce_odr because 397 // a) if all references in this translation unit are optimized away, we 398 // don't need to codegen it. b) if the function persists, it needs to be 399 // merged with other definitions. c) C++ has the ODR, so we know the 400 // definition is dependable. 401 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 402 return !Context.getLangOptions().AppleKext 403 ? llvm::Function::LinkOnceODRLinkage 404 : llvm::Function::InternalLinkage; 405 406 // An explicit instantiation of a template has weak linkage, since 407 // explicit instantiations can occur in multiple translation units 408 // and must all be equivalent. However, we are not allowed to 409 // throw away these explicit instantiations. 410 if (Linkage == GVA_ExplicitTemplateInstantiation) 411 return !Context.getLangOptions().AppleKext 412 ? llvm::Function::WeakODRLinkage 413 : llvm::Function::InternalLinkage; 414 415 // Otherwise, we have strong external linkage. 416 assert(Linkage == GVA_StrongExternal); 417 return llvm::Function::ExternalLinkage; 418 } 419 420 421 /// SetFunctionDefinitionAttributes - Set attributes for a global. 422 /// 423 /// FIXME: This is currently only done for aliases and functions, but not for 424 /// variables (these details are set in EmitGlobalVarDefinition for variables). 425 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 426 llvm::GlobalValue *GV) { 427 SetCommonAttributes(D, GV); 428 } 429 430 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 431 const CGFunctionInfo &Info, 432 llvm::Function *F) { 433 unsigned CallingConv; 434 AttributeListType AttributeList; 435 ConstructAttributeList(Info, D, AttributeList, CallingConv); 436 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 437 AttributeList.size())); 438 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 439 } 440 441 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 442 llvm::Function *F) { 443 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 444 F->addFnAttr(llvm::Attribute::NoUnwind); 445 446 if (D->hasAttr<AlwaysInlineAttr>()) 447 F->addFnAttr(llvm::Attribute::AlwaysInline); 448 449 if (D->hasAttr<NakedAttr>()) 450 F->addFnAttr(llvm::Attribute::Naked); 451 452 if (D->hasAttr<NoInlineAttr>()) 453 F->addFnAttr(llvm::Attribute::NoInline); 454 455 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 456 F->setUnnamedAddr(true); 457 458 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 459 F->addFnAttr(llvm::Attribute::StackProtect); 460 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 461 F->addFnAttr(llvm::Attribute::StackProtectReq); 462 463 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 464 if (alignment) 465 F->setAlignment(alignment); 466 467 // C++ ABI requires 2-byte alignment for member functions. 468 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 469 F->setAlignment(2); 470 } 471 472 void CodeGenModule::SetCommonAttributes(const Decl *D, 473 llvm::GlobalValue *GV) { 474 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 475 setGlobalVisibility(GV, ND); 476 else 477 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 478 479 if (D->hasAttr<UsedAttr>()) 480 AddUsedGlobal(GV); 481 482 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 483 GV->setSection(SA->getName()); 484 485 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 486 } 487 488 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 489 llvm::Function *F, 490 const CGFunctionInfo &FI) { 491 SetLLVMFunctionAttributes(D, FI, F); 492 SetLLVMFunctionAttributesForDefinition(D, F); 493 494 F->setLinkage(llvm::Function::InternalLinkage); 495 496 SetCommonAttributes(D, F); 497 } 498 499 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 500 llvm::Function *F, 501 bool IsIncompleteFunction) { 502 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 503 504 if (!IsIncompleteFunction) 505 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 506 507 // Only a few attributes are set on declarations; these may later be 508 // overridden by a definition. 509 510 if (FD->hasAttr<DLLImportAttr>()) { 511 F->setLinkage(llvm::Function::DLLImportLinkage); 512 } else if (FD->hasAttr<WeakAttr>() || 513 FD->hasAttr<WeakImportAttr>()) { 514 // "extern_weak" is overloaded in LLVM; we probably should have 515 // separate linkage types for this. 516 F->setLinkage(llvm::Function::ExternalWeakLinkage); 517 } else { 518 F->setLinkage(llvm::Function::ExternalLinkage); 519 520 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 521 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 522 F->setVisibility(GetLLVMVisibility(LV.visibility())); 523 } 524 } 525 526 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 527 F->setSection(SA->getName()); 528 } 529 530 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 531 assert(!GV->isDeclaration() && 532 "Only globals with definition can force usage."); 533 LLVMUsed.push_back(GV); 534 } 535 536 void CodeGenModule::EmitLLVMUsed() { 537 // Don't create llvm.used if there is no need. 538 if (LLVMUsed.empty()) 539 return; 540 541 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 542 543 // Convert LLVMUsed to what ConstantArray needs. 544 std::vector<llvm::Constant*> UsedArray; 545 UsedArray.resize(LLVMUsed.size()); 546 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 547 UsedArray[i] = 548 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 549 i8PTy); 550 } 551 552 if (UsedArray.empty()) 553 return; 554 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 555 556 llvm::GlobalVariable *GV = 557 new llvm::GlobalVariable(getModule(), ATy, false, 558 llvm::GlobalValue::AppendingLinkage, 559 llvm::ConstantArray::get(ATy, UsedArray), 560 "llvm.used"); 561 562 GV->setSection("llvm.metadata"); 563 } 564 565 void CodeGenModule::EmitDeferred() { 566 // Emit code for any potentially referenced deferred decls. Since a 567 // previously unused static decl may become used during the generation of code 568 // for a static function, iterate until no changes are made. 569 570 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 571 if (!DeferredVTables.empty()) { 572 const CXXRecordDecl *RD = DeferredVTables.back(); 573 DeferredVTables.pop_back(); 574 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 575 continue; 576 } 577 578 GlobalDecl D = DeferredDeclsToEmit.back(); 579 DeferredDeclsToEmit.pop_back(); 580 581 // Check to see if we've already emitted this. This is necessary 582 // for a couple of reasons: first, decls can end up in the 583 // deferred-decls queue multiple times, and second, decls can end 584 // up with definitions in unusual ways (e.g. by an extern inline 585 // function acquiring a strong function redefinition). Just 586 // ignore these cases. 587 // 588 // TODO: That said, looking this up multiple times is very wasteful. 589 llvm::StringRef Name = getMangledName(D); 590 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 591 assert(CGRef && "Deferred decl wasn't referenced?"); 592 593 if (!CGRef->isDeclaration()) 594 continue; 595 596 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 597 // purposes an alias counts as a definition. 598 if (isa<llvm::GlobalAlias>(CGRef)) 599 continue; 600 601 // Otherwise, emit the definition and move on to the next one. 602 EmitGlobalDefinition(D); 603 } 604 } 605 606 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 607 /// annotation information for a given GlobalValue. The annotation struct is 608 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 609 /// GlobalValue being annotated. The second field is the constant string 610 /// created from the AnnotateAttr's annotation. The third field is a constant 611 /// string containing the name of the translation unit. The fourth field is 612 /// the line number in the file of the annotated value declaration. 613 /// 614 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 615 /// appears to. 616 /// 617 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 618 const AnnotateAttr *AA, 619 unsigned LineNo) { 620 llvm::Module *M = &getModule(); 621 622 // get [N x i8] constants for the annotation string, and the filename string 623 // which are the 2nd and 3rd elements of the global annotation structure. 624 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 625 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 626 AA->getAnnotation(), true); 627 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 628 M->getModuleIdentifier(), 629 true); 630 631 // Get the two global values corresponding to the ConstantArrays we just 632 // created to hold the bytes of the strings. 633 llvm::GlobalValue *annoGV = 634 new llvm::GlobalVariable(*M, anno->getType(), false, 635 llvm::GlobalValue::PrivateLinkage, anno, 636 GV->getName()); 637 // translation unit name string, emitted into the llvm.metadata section. 638 llvm::GlobalValue *unitGV = 639 new llvm::GlobalVariable(*M, unit->getType(), false, 640 llvm::GlobalValue::PrivateLinkage, unit, 641 ".str"); 642 unitGV->setUnnamedAddr(true); 643 644 // Create the ConstantStruct for the global annotation. 645 llvm::Constant *Fields[4] = { 646 llvm::ConstantExpr::getBitCast(GV, SBP), 647 llvm::ConstantExpr::getBitCast(annoGV, SBP), 648 llvm::ConstantExpr::getBitCast(unitGV, SBP), 649 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 650 }; 651 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 652 } 653 654 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 655 // Never defer when EmitAllDecls is specified. 656 if (Features.EmitAllDecls) 657 return false; 658 659 return !getContext().DeclMustBeEmitted(Global); 660 } 661 662 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 663 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 664 assert(AA && "No alias?"); 665 666 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 667 668 // See if there is already something with the target's name in the module. 669 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 670 671 llvm::Constant *Aliasee; 672 if (isa<llvm::FunctionType>(DeclTy)) 673 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 674 /*ForVTable=*/false); 675 else 676 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 677 llvm::PointerType::getUnqual(DeclTy), 0); 678 if (!Entry) { 679 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 680 F->setLinkage(llvm::Function::ExternalWeakLinkage); 681 WeakRefReferences.insert(F); 682 } 683 684 return Aliasee; 685 } 686 687 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 688 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 689 690 // Weak references don't produce any output by themselves. 691 if (Global->hasAttr<WeakRefAttr>()) 692 return; 693 694 // If this is an alias definition (which otherwise looks like a declaration) 695 // emit it now. 696 if (Global->hasAttr<AliasAttr>()) 697 return EmitAliasDefinition(GD); 698 699 // Ignore declarations, they will be emitted on their first use. 700 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 701 if (FD->getIdentifier()) { 702 llvm::StringRef Name = FD->getName(); 703 if (Name == "_Block_object_assign") { 704 BlockObjectAssignDecl = FD; 705 } else if (Name == "_Block_object_dispose") { 706 BlockObjectDisposeDecl = FD; 707 } 708 } 709 710 // Forward declarations are emitted lazily on first use. 711 if (!FD->isThisDeclarationADefinition()) 712 return; 713 } else { 714 const VarDecl *VD = cast<VarDecl>(Global); 715 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 716 717 if (VD->getIdentifier()) { 718 llvm::StringRef Name = VD->getName(); 719 if (Name == "_NSConcreteGlobalBlock") { 720 NSConcreteGlobalBlockDecl = VD; 721 } else if (Name == "_NSConcreteStackBlock") { 722 NSConcreteStackBlockDecl = VD; 723 } 724 } 725 726 727 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 728 return; 729 } 730 731 // Defer code generation when possible if this is a static definition, inline 732 // function etc. These we only want to emit if they are used. 733 if (!MayDeferGeneration(Global)) { 734 // Emit the definition if it can't be deferred. 735 EmitGlobalDefinition(GD); 736 return; 737 } 738 739 // If we're deferring emission of a C++ variable with an 740 // initializer, remember the order in which it appeared in the file. 741 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 742 cast<VarDecl>(Global)->hasInit()) { 743 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 744 CXXGlobalInits.push_back(0); 745 } 746 747 // If the value has already been used, add it directly to the 748 // DeferredDeclsToEmit list. 749 llvm::StringRef MangledName = getMangledName(GD); 750 if (GetGlobalValue(MangledName)) 751 DeferredDeclsToEmit.push_back(GD); 752 else { 753 // Otherwise, remember that we saw a deferred decl with this name. The 754 // first use of the mangled name will cause it to move into 755 // DeferredDeclsToEmit. 756 DeferredDecls[MangledName] = GD; 757 } 758 } 759 760 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 761 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 762 763 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 764 Context.getSourceManager(), 765 "Generating code for declaration"); 766 767 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 768 // At -O0, don't generate IR for functions with available_externally 769 // linkage. 770 if (CodeGenOpts.OptimizationLevel == 0 && 771 !Function->hasAttr<AlwaysInlineAttr>() && 772 getFunctionLinkage(Function) 773 == llvm::Function::AvailableExternallyLinkage) 774 return; 775 776 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 777 if (Method->isVirtual()) 778 getVTables().EmitThunks(GD); 779 780 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 781 return EmitCXXConstructor(CD, GD.getCtorType()); 782 783 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 784 return EmitCXXDestructor(DD, GD.getDtorType()); 785 } 786 787 return EmitGlobalFunctionDefinition(GD); 788 } 789 790 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 791 return EmitGlobalVarDefinition(VD); 792 793 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 794 } 795 796 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 797 /// module, create and return an llvm Function with the specified type. If there 798 /// is something in the module with the specified name, return it potentially 799 /// bitcasted to the right type. 800 /// 801 /// If D is non-null, it specifies a decl that correspond to this. This is used 802 /// to set the attributes on the function when it is first created. 803 llvm::Constant * 804 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 805 const llvm::Type *Ty, 806 GlobalDecl D, bool ForVTable) { 807 // Lookup the entry, lazily creating it if necessary. 808 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 809 if (Entry) { 810 if (WeakRefReferences.count(Entry)) { 811 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 812 if (FD && !FD->hasAttr<WeakAttr>()) 813 Entry->setLinkage(llvm::Function::ExternalLinkage); 814 815 WeakRefReferences.erase(Entry); 816 } 817 818 if (Entry->getType()->getElementType() == Ty) 819 return Entry; 820 821 // Make sure the result is of the correct type. 822 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 823 return llvm::ConstantExpr::getBitCast(Entry, PTy); 824 } 825 826 // This function doesn't have a complete type (for example, the return 827 // type is an incomplete struct). Use a fake type instead, and make 828 // sure not to try to set attributes. 829 bool IsIncompleteFunction = false; 830 831 const llvm::FunctionType *FTy; 832 if (isa<llvm::FunctionType>(Ty)) { 833 FTy = cast<llvm::FunctionType>(Ty); 834 } else { 835 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 836 IsIncompleteFunction = true; 837 } 838 839 llvm::Function *F = llvm::Function::Create(FTy, 840 llvm::Function::ExternalLinkage, 841 MangledName, &getModule()); 842 assert(F->getName() == MangledName && "name was uniqued!"); 843 if (D.getDecl()) 844 SetFunctionAttributes(D, F, IsIncompleteFunction); 845 846 // This is the first use or definition of a mangled name. If there is a 847 // deferred decl with this name, remember that we need to emit it at the end 848 // of the file. 849 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 850 if (DDI != DeferredDecls.end()) { 851 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 852 // list, and remove it from DeferredDecls (since we don't need it anymore). 853 DeferredDeclsToEmit.push_back(DDI->second); 854 DeferredDecls.erase(DDI); 855 856 // Otherwise, there are cases we have to worry about where we're 857 // using a declaration for which we must emit a definition but where 858 // we might not find a top-level definition: 859 // - member functions defined inline in their classes 860 // - friend functions defined inline in some class 861 // - special member functions with implicit definitions 862 // If we ever change our AST traversal to walk into class methods, 863 // this will be unnecessary. 864 // 865 // We also don't emit a definition for a function if it's going to be an entry 866 // in a vtable, unless it's already marked as used. 867 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 868 // Look for a declaration that's lexically in a record. 869 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 870 do { 871 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 872 if (FD->isImplicit() && !ForVTable) { 873 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 874 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 875 break; 876 } else if (FD->isThisDeclarationADefinition()) { 877 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 878 break; 879 } 880 } 881 FD = FD->getPreviousDeclaration(); 882 } while (FD); 883 } 884 885 // Make sure the result is of the requested type. 886 if (!IsIncompleteFunction) { 887 assert(F->getType()->getElementType() == Ty); 888 return F; 889 } 890 891 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 892 return llvm::ConstantExpr::getBitCast(F, PTy); 893 } 894 895 /// GetAddrOfFunction - Return the address of the given function. If Ty is 896 /// non-null, then this function will use the specified type if it has to 897 /// create it (this occurs when we see a definition of the function). 898 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 899 const llvm::Type *Ty, 900 bool ForVTable) { 901 // If there was no specific requested type, just convert it now. 902 if (!Ty) 903 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 904 905 llvm::StringRef MangledName = getMangledName(GD); 906 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 907 } 908 909 /// CreateRuntimeFunction - Create a new runtime function with the specified 910 /// type and name. 911 llvm::Constant * 912 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 913 llvm::StringRef Name) { 914 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false); 915 } 916 917 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 918 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 919 return false; 920 if (Context.getLangOptions().CPlusPlus && 921 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 922 // FIXME: We should do something fancier here! 923 return false; 924 } 925 return true; 926 } 927 928 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 929 /// create and return an llvm GlobalVariable with the specified type. If there 930 /// is something in the module with the specified name, return it potentially 931 /// bitcasted to the right type. 932 /// 933 /// If D is non-null, it specifies a decl that correspond to this. This is used 934 /// to set the attributes on the global when it is first created. 935 llvm::Constant * 936 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 937 const llvm::PointerType *Ty, 938 const VarDecl *D, 939 bool UnnamedAddr) { 940 // Lookup the entry, lazily creating it if necessary. 941 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 942 if (Entry) { 943 if (WeakRefReferences.count(Entry)) { 944 if (D && !D->hasAttr<WeakAttr>()) 945 Entry->setLinkage(llvm::Function::ExternalLinkage); 946 947 WeakRefReferences.erase(Entry); 948 } 949 950 if (UnnamedAddr) 951 Entry->setUnnamedAddr(true); 952 953 if (Entry->getType() == Ty) 954 return Entry; 955 956 // Make sure the result is of the correct type. 957 return llvm::ConstantExpr::getBitCast(Entry, Ty); 958 } 959 960 // This is the first use or definition of a mangled name. If there is a 961 // deferred decl with this name, remember that we need to emit it at the end 962 // of the file. 963 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 964 if (DDI != DeferredDecls.end()) { 965 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 966 // list, and remove it from DeferredDecls (since we don't need it anymore). 967 DeferredDeclsToEmit.push_back(DDI->second); 968 DeferredDecls.erase(DDI); 969 } 970 971 llvm::GlobalVariable *GV = 972 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 973 llvm::GlobalValue::ExternalLinkage, 974 0, MangledName, 0, 975 false, Ty->getAddressSpace()); 976 977 // Handle things which are present even on external declarations. 978 if (D) { 979 // FIXME: This code is overly simple and should be merged with other global 980 // handling. 981 GV->setConstant(DeclIsConstantGlobal(Context, D)); 982 983 // Set linkage and visibility in case we never see a definition. 984 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 985 if (LV.linkage() != ExternalLinkage) { 986 // Don't set internal linkage on declarations. 987 } else { 988 if (D->hasAttr<DLLImportAttr>()) 989 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 990 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 991 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 992 993 // Set visibility on a declaration only if it's explicit. 994 if (LV.visibilityExplicit()) 995 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 996 } 997 998 GV->setThreadLocal(D->isThreadSpecified()); 999 } 1000 1001 return GV; 1002 } 1003 1004 1005 llvm::GlobalVariable * 1006 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 1007 const llvm::Type *Ty, 1008 llvm::GlobalValue::LinkageTypes Linkage) { 1009 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1010 llvm::GlobalVariable *OldGV = 0; 1011 1012 1013 if (GV) { 1014 // Check if the variable has the right type. 1015 if (GV->getType()->getElementType() == Ty) 1016 return GV; 1017 1018 // Because C++ name mangling, the only way we can end up with an already 1019 // existing global with the same name is if it has been declared extern "C". 1020 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1021 OldGV = GV; 1022 } 1023 1024 // Create a new variable. 1025 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1026 Linkage, 0, Name); 1027 1028 if (OldGV) { 1029 // Replace occurrences of the old variable if needed. 1030 GV->takeName(OldGV); 1031 1032 if (!OldGV->use_empty()) { 1033 llvm::Constant *NewPtrForOldDecl = 1034 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1035 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1036 } 1037 1038 OldGV->eraseFromParent(); 1039 } 1040 1041 return GV; 1042 } 1043 1044 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1045 /// given global variable. If Ty is non-null and if the global doesn't exist, 1046 /// then it will be greated with the specified type instead of whatever the 1047 /// normal requested type would be. 1048 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1049 const llvm::Type *Ty) { 1050 assert(D->hasGlobalStorage() && "Not a global variable"); 1051 QualType ASTTy = D->getType(); 1052 if (Ty == 0) 1053 Ty = getTypes().ConvertTypeForMem(ASTTy); 1054 1055 const llvm::PointerType *PTy = 1056 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1057 1058 llvm::StringRef MangledName = getMangledName(D); 1059 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1060 } 1061 1062 /// CreateRuntimeVariable - Create a new runtime global variable with the 1063 /// specified type and name. 1064 llvm::Constant * 1065 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1066 llvm::StringRef Name) { 1067 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1068 true); 1069 } 1070 1071 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1072 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1073 1074 if (MayDeferGeneration(D)) { 1075 // If we have not seen a reference to this variable yet, place it 1076 // into the deferred declarations table to be emitted if needed 1077 // later. 1078 llvm::StringRef MangledName = getMangledName(D); 1079 if (!GetGlobalValue(MangledName)) { 1080 DeferredDecls[MangledName] = D; 1081 return; 1082 } 1083 } 1084 1085 // The tentative definition is the only definition. 1086 EmitGlobalVarDefinition(D); 1087 } 1088 1089 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1090 if (DefinitionRequired) 1091 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1092 } 1093 1094 llvm::GlobalVariable::LinkageTypes 1095 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1096 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1097 return llvm::GlobalVariable::InternalLinkage; 1098 1099 if (const CXXMethodDecl *KeyFunction 1100 = RD->getASTContext().getKeyFunction(RD)) { 1101 // If this class has a key function, use that to determine the linkage of 1102 // the vtable. 1103 const FunctionDecl *Def = 0; 1104 if (KeyFunction->hasBody(Def)) 1105 KeyFunction = cast<CXXMethodDecl>(Def); 1106 1107 switch (KeyFunction->getTemplateSpecializationKind()) { 1108 case TSK_Undeclared: 1109 case TSK_ExplicitSpecialization: 1110 // When compiling with optimizations turned on, we emit all vtables, 1111 // even if the key function is not defined in the current translation 1112 // unit. If this is the case, use available_externally linkage. 1113 if (!Def && CodeGenOpts.OptimizationLevel) 1114 return llvm::GlobalVariable::AvailableExternallyLinkage; 1115 1116 if (KeyFunction->isInlined()) 1117 return !Context.getLangOptions().AppleKext ? 1118 llvm::GlobalVariable::LinkOnceODRLinkage : 1119 llvm::Function::InternalLinkage; 1120 1121 return llvm::GlobalVariable::ExternalLinkage; 1122 1123 case TSK_ImplicitInstantiation: 1124 return !Context.getLangOptions().AppleKext ? 1125 llvm::GlobalVariable::LinkOnceODRLinkage : 1126 llvm::Function::InternalLinkage; 1127 1128 case TSK_ExplicitInstantiationDefinition: 1129 return !Context.getLangOptions().AppleKext ? 1130 llvm::GlobalVariable::WeakODRLinkage : 1131 llvm::Function::InternalLinkage; 1132 1133 case TSK_ExplicitInstantiationDeclaration: 1134 // FIXME: Use available_externally linkage. However, this currently 1135 // breaks LLVM's build due to undefined symbols. 1136 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1137 return !Context.getLangOptions().AppleKext ? 1138 llvm::GlobalVariable::LinkOnceODRLinkage : 1139 llvm::Function::InternalLinkage; 1140 } 1141 } 1142 1143 if (Context.getLangOptions().AppleKext) 1144 return llvm::Function::InternalLinkage; 1145 1146 switch (RD->getTemplateSpecializationKind()) { 1147 case TSK_Undeclared: 1148 case TSK_ExplicitSpecialization: 1149 case TSK_ImplicitInstantiation: 1150 // FIXME: Use available_externally linkage. However, this currently 1151 // breaks LLVM's build due to undefined symbols. 1152 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1153 case TSK_ExplicitInstantiationDeclaration: 1154 return llvm::GlobalVariable::LinkOnceODRLinkage; 1155 1156 case TSK_ExplicitInstantiationDefinition: 1157 return llvm::GlobalVariable::WeakODRLinkage; 1158 } 1159 1160 // Silence GCC warning. 1161 return llvm::GlobalVariable::LinkOnceODRLinkage; 1162 } 1163 1164 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1165 return Context.toCharUnitsFromBits( 1166 TheTargetData.getTypeStoreSizeInBits(Ty)); 1167 } 1168 1169 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1170 llvm::Constant *Init = 0; 1171 QualType ASTTy = D->getType(); 1172 bool NonConstInit = false; 1173 1174 const Expr *InitExpr = D->getAnyInitializer(); 1175 1176 if (!InitExpr) { 1177 // This is a tentative definition; tentative definitions are 1178 // implicitly initialized with { 0 }. 1179 // 1180 // Note that tentative definitions are only emitted at the end of 1181 // a translation unit, so they should never have incomplete 1182 // type. In addition, EmitTentativeDefinition makes sure that we 1183 // never attempt to emit a tentative definition if a real one 1184 // exists. A use may still exists, however, so we still may need 1185 // to do a RAUW. 1186 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1187 Init = EmitNullConstant(D->getType()); 1188 } else { 1189 Init = EmitConstantExpr(InitExpr, D->getType()); 1190 if (!Init) { 1191 QualType T = InitExpr->getType(); 1192 if (D->getType()->isReferenceType()) 1193 T = D->getType(); 1194 1195 if (getLangOptions().CPlusPlus) { 1196 Init = EmitNullConstant(T); 1197 NonConstInit = true; 1198 } else { 1199 ErrorUnsupported(D, "static initializer"); 1200 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1201 } 1202 } else { 1203 // We don't need an initializer, so remove the entry for the delayed 1204 // initializer position (just in case this entry was delayed). 1205 if (getLangOptions().CPlusPlus) 1206 DelayedCXXInitPosition.erase(D); 1207 } 1208 } 1209 1210 const llvm::Type* InitType = Init->getType(); 1211 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1212 1213 // Strip off a bitcast if we got one back. 1214 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1215 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1216 // all zero index gep. 1217 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1218 Entry = CE->getOperand(0); 1219 } 1220 1221 // Entry is now either a Function or GlobalVariable. 1222 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1223 1224 // We have a definition after a declaration with the wrong type. 1225 // We must make a new GlobalVariable* and update everything that used OldGV 1226 // (a declaration or tentative definition) with the new GlobalVariable* 1227 // (which will be a definition). 1228 // 1229 // This happens if there is a prototype for a global (e.g. 1230 // "extern int x[];") and then a definition of a different type (e.g. 1231 // "int x[10];"). This also happens when an initializer has a different type 1232 // from the type of the global (this happens with unions). 1233 if (GV == 0 || 1234 GV->getType()->getElementType() != InitType || 1235 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1236 1237 // Move the old entry aside so that we'll create a new one. 1238 Entry->setName(llvm::StringRef()); 1239 1240 // Make a new global with the correct type, this is now guaranteed to work. 1241 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1242 1243 // Replace all uses of the old global with the new global 1244 llvm::Constant *NewPtrForOldDecl = 1245 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1246 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1247 1248 // Erase the old global, since it is no longer used. 1249 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1250 } 1251 1252 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1253 SourceManager &SM = Context.getSourceManager(); 1254 AddAnnotation(EmitAnnotateAttr(GV, AA, 1255 SM.getInstantiationLineNumber(D->getLocation()))); 1256 } 1257 1258 GV->setInitializer(Init); 1259 1260 // If it is safe to mark the global 'constant', do so now. 1261 GV->setConstant(false); 1262 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1263 GV->setConstant(true); 1264 1265 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1266 1267 // Set the llvm linkage type as appropriate. 1268 llvm::GlobalValue::LinkageTypes Linkage = 1269 GetLLVMLinkageVarDefinition(D, GV); 1270 GV->setLinkage(Linkage); 1271 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1272 // common vars aren't constant even if declared const. 1273 GV->setConstant(false); 1274 1275 SetCommonAttributes(D, GV); 1276 1277 // Emit the initializer function if necessary. 1278 if (NonConstInit) 1279 EmitCXXGlobalVarDeclInitFunc(D, GV); 1280 1281 // Emit global variable debug information. 1282 if (CGDebugInfo *DI = getDebugInfo()) { 1283 DI->setLocation(D->getLocation()); 1284 DI->EmitGlobalVariable(GV, D); 1285 } 1286 } 1287 1288 llvm::GlobalValue::LinkageTypes 1289 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1290 llvm::GlobalVariable *GV) { 1291 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1292 if (Linkage == GVA_Internal) 1293 return llvm::Function::InternalLinkage; 1294 else if (D->hasAttr<DLLImportAttr>()) 1295 return llvm::Function::DLLImportLinkage; 1296 else if (D->hasAttr<DLLExportAttr>()) 1297 return llvm::Function::DLLExportLinkage; 1298 else if (D->hasAttr<WeakAttr>()) { 1299 if (GV->isConstant()) 1300 return llvm::GlobalVariable::WeakODRLinkage; 1301 else 1302 return llvm::GlobalVariable::WeakAnyLinkage; 1303 } else if (Linkage == GVA_TemplateInstantiation || 1304 Linkage == GVA_ExplicitTemplateInstantiation) 1305 // FIXME: It seems like we can provide more specific linkage here 1306 // (LinkOnceODR, WeakODR). 1307 return llvm::GlobalVariable::WeakAnyLinkage; 1308 else if (!getLangOptions().CPlusPlus && 1309 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1310 D->getAttr<CommonAttr>()) && 1311 !D->hasExternalStorage() && !D->getInit() && 1312 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1313 // Thread local vars aren't considered common linkage. 1314 return llvm::GlobalVariable::CommonLinkage; 1315 } 1316 return llvm::GlobalVariable::ExternalLinkage; 1317 } 1318 1319 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1320 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1321 /// existing call uses of the old function in the module, this adjusts them to 1322 /// call the new function directly. 1323 /// 1324 /// This is not just a cleanup: the always_inline pass requires direct calls to 1325 /// functions to be able to inline them. If there is a bitcast in the way, it 1326 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1327 /// run at -O0. 1328 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1329 llvm::Function *NewFn) { 1330 // If we're redefining a global as a function, don't transform it. 1331 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1332 if (OldFn == 0) return; 1333 1334 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1335 llvm::SmallVector<llvm::Value*, 4> ArgList; 1336 1337 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1338 UI != E; ) { 1339 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1340 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1341 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1342 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1343 llvm::CallSite CS(CI); 1344 if (!CI || !CS.isCallee(I)) continue; 1345 1346 // If the return types don't match exactly, and if the call isn't dead, then 1347 // we can't transform this call. 1348 if (CI->getType() != NewRetTy && !CI->use_empty()) 1349 continue; 1350 1351 // If the function was passed too few arguments, don't transform. If extra 1352 // arguments were passed, we silently drop them. If any of the types 1353 // mismatch, we don't transform. 1354 unsigned ArgNo = 0; 1355 bool DontTransform = false; 1356 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1357 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1358 if (CS.arg_size() == ArgNo || 1359 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1360 DontTransform = true; 1361 break; 1362 } 1363 } 1364 if (DontTransform) 1365 continue; 1366 1367 // Okay, we can transform this. Create the new call instruction and copy 1368 // over the required information. 1369 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1370 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1371 ArgList.end(), "", CI); 1372 ArgList.clear(); 1373 if (!NewCall->getType()->isVoidTy()) 1374 NewCall->takeName(CI); 1375 NewCall->setAttributes(CI->getAttributes()); 1376 NewCall->setCallingConv(CI->getCallingConv()); 1377 1378 // Finally, remove the old call, replacing any uses with the new one. 1379 if (!CI->use_empty()) 1380 CI->replaceAllUsesWith(NewCall); 1381 1382 // Copy debug location attached to CI. 1383 if (!CI->getDebugLoc().isUnknown()) 1384 NewCall->setDebugLoc(CI->getDebugLoc()); 1385 CI->eraseFromParent(); 1386 } 1387 } 1388 1389 1390 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1391 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1392 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1393 // Get or create the prototype for the function. 1394 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1395 1396 // Strip off a bitcast if we got one back. 1397 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1398 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1399 Entry = CE->getOperand(0); 1400 } 1401 1402 1403 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1404 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1405 1406 // If the types mismatch then we have to rewrite the definition. 1407 assert(OldFn->isDeclaration() && 1408 "Shouldn't replace non-declaration"); 1409 1410 // F is the Function* for the one with the wrong type, we must make a new 1411 // Function* and update everything that used F (a declaration) with the new 1412 // Function* (which will be a definition). 1413 // 1414 // This happens if there is a prototype for a function 1415 // (e.g. "int f()") and then a definition of a different type 1416 // (e.g. "int f(int x)"). Move the old function aside so that it 1417 // doesn't interfere with GetAddrOfFunction. 1418 OldFn->setName(llvm::StringRef()); 1419 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1420 1421 // If this is an implementation of a function without a prototype, try to 1422 // replace any existing uses of the function (which may be calls) with uses 1423 // of the new function 1424 if (D->getType()->isFunctionNoProtoType()) { 1425 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1426 OldFn->removeDeadConstantUsers(); 1427 } 1428 1429 // Replace uses of F with the Function we will endow with a body. 1430 if (!Entry->use_empty()) { 1431 llvm::Constant *NewPtrForOldDecl = 1432 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1433 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1434 } 1435 1436 // Ok, delete the old function now, which is dead. 1437 OldFn->eraseFromParent(); 1438 1439 Entry = NewFn; 1440 } 1441 1442 // We need to set linkage and visibility on the function before 1443 // generating code for it because various parts of IR generation 1444 // want to propagate this information down (e.g. to local static 1445 // declarations). 1446 llvm::Function *Fn = cast<llvm::Function>(Entry); 1447 setFunctionLinkage(D, Fn); 1448 1449 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1450 setGlobalVisibility(Fn, D); 1451 1452 CodeGenFunction(*this).GenerateCode(D, Fn); 1453 1454 SetFunctionDefinitionAttributes(D, Fn); 1455 SetLLVMFunctionAttributesForDefinition(D, Fn); 1456 1457 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1458 AddGlobalCtor(Fn, CA->getPriority()); 1459 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1460 AddGlobalDtor(Fn, DA->getPriority()); 1461 } 1462 1463 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1464 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1465 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1466 assert(AA && "Not an alias?"); 1467 1468 llvm::StringRef MangledName = getMangledName(GD); 1469 1470 // If there is a definition in the module, then it wins over the alias. 1471 // This is dubious, but allow it to be safe. Just ignore the alias. 1472 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1473 if (Entry && !Entry->isDeclaration()) 1474 return; 1475 1476 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1477 1478 // Create a reference to the named value. This ensures that it is emitted 1479 // if a deferred decl. 1480 llvm::Constant *Aliasee; 1481 if (isa<llvm::FunctionType>(DeclTy)) 1482 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1483 /*ForVTable=*/false); 1484 else 1485 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1486 llvm::PointerType::getUnqual(DeclTy), 0); 1487 1488 // Create the new alias itself, but don't set a name yet. 1489 llvm::GlobalValue *GA = 1490 new llvm::GlobalAlias(Aliasee->getType(), 1491 llvm::Function::ExternalLinkage, 1492 "", Aliasee, &getModule()); 1493 1494 if (Entry) { 1495 assert(Entry->isDeclaration()); 1496 1497 // If there is a declaration in the module, then we had an extern followed 1498 // by the alias, as in: 1499 // extern int test6(); 1500 // ... 1501 // int test6() __attribute__((alias("test7"))); 1502 // 1503 // Remove it and replace uses of it with the alias. 1504 GA->takeName(Entry); 1505 1506 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1507 Entry->getType())); 1508 Entry->eraseFromParent(); 1509 } else { 1510 GA->setName(MangledName); 1511 } 1512 1513 // Set attributes which are particular to an alias; this is a 1514 // specialization of the attributes which may be set on a global 1515 // variable/function. 1516 if (D->hasAttr<DLLExportAttr>()) { 1517 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1518 // The dllexport attribute is ignored for undefined symbols. 1519 if (FD->hasBody()) 1520 GA->setLinkage(llvm::Function::DLLExportLinkage); 1521 } else { 1522 GA->setLinkage(llvm::Function::DLLExportLinkage); 1523 } 1524 } else if (D->hasAttr<WeakAttr>() || 1525 D->hasAttr<WeakRefAttr>() || 1526 D->hasAttr<WeakImportAttr>()) { 1527 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1528 } 1529 1530 SetCommonAttributes(D, GA); 1531 } 1532 1533 /// getBuiltinLibFunction - Given a builtin id for a function like 1534 /// "__builtin_fabsf", return a Function* for "fabsf". 1535 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1536 unsigned BuiltinID) { 1537 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1538 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1539 "isn't a lib fn"); 1540 1541 // Get the name, skip over the __builtin_ prefix (if necessary). 1542 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1543 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1544 Name += 10; 1545 1546 const llvm::FunctionType *Ty = 1547 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1548 1549 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false); 1550 } 1551 1552 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1553 unsigned NumTys) { 1554 return llvm::Intrinsic::getDeclaration(&getModule(), 1555 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1556 } 1557 1558 static llvm::StringMapEntry<llvm::Constant*> & 1559 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1560 const StringLiteral *Literal, 1561 bool TargetIsLSB, 1562 bool &IsUTF16, 1563 unsigned &StringLength) { 1564 llvm::StringRef String = Literal->getString(); 1565 unsigned NumBytes = String.size(); 1566 1567 // Check for simple case. 1568 if (!Literal->containsNonAsciiOrNull()) { 1569 StringLength = NumBytes; 1570 return Map.GetOrCreateValue(String); 1571 } 1572 1573 // Otherwise, convert the UTF8 literals into a byte string. 1574 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1575 const UTF8 *FromPtr = (UTF8 *)String.data(); 1576 UTF16 *ToPtr = &ToBuf[0]; 1577 1578 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1579 &ToPtr, ToPtr + NumBytes, 1580 strictConversion); 1581 1582 // ConvertUTF8toUTF16 returns the length in ToPtr. 1583 StringLength = ToPtr - &ToBuf[0]; 1584 1585 // Render the UTF-16 string into a byte array and convert to the target byte 1586 // order. 1587 // 1588 // FIXME: This isn't something we should need to do here. 1589 llvm::SmallString<128> AsBytes; 1590 AsBytes.reserve(StringLength * 2); 1591 for (unsigned i = 0; i != StringLength; ++i) { 1592 unsigned short Val = ToBuf[i]; 1593 if (TargetIsLSB) { 1594 AsBytes.push_back(Val & 0xFF); 1595 AsBytes.push_back(Val >> 8); 1596 } else { 1597 AsBytes.push_back(Val >> 8); 1598 AsBytes.push_back(Val & 0xFF); 1599 } 1600 } 1601 // Append one extra null character, the second is automatically added by our 1602 // caller. 1603 AsBytes.push_back(0); 1604 1605 IsUTF16 = true; 1606 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1607 } 1608 1609 llvm::Constant * 1610 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1611 unsigned StringLength = 0; 1612 bool isUTF16 = false; 1613 llvm::StringMapEntry<llvm::Constant*> &Entry = 1614 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1615 getTargetData().isLittleEndian(), 1616 isUTF16, StringLength); 1617 1618 if (llvm::Constant *C = Entry.getValue()) 1619 return C; 1620 1621 llvm::Constant *Zero = 1622 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1623 llvm::Constant *Zeros[] = { Zero, Zero }; 1624 1625 // If we don't already have it, get __CFConstantStringClassReference. 1626 if (!CFConstantStringClassRef) { 1627 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1628 Ty = llvm::ArrayType::get(Ty, 0); 1629 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1630 "__CFConstantStringClassReference"); 1631 // Decay array -> ptr 1632 CFConstantStringClassRef = 1633 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1634 } 1635 1636 QualType CFTy = getContext().getCFConstantStringType(); 1637 1638 const llvm::StructType *STy = 1639 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1640 1641 std::vector<llvm::Constant*> Fields(4); 1642 1643 // Class pointer. 1644 Fields[0] = CFConstantStringClassRef; 1645 1646 // Flags. 1647 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1648 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1649 llvm::ConstantInt::get(Ty, 0x07C8); 1650 1651 // String pointer. 1652 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1653 1654 llvm::GlobalValue::LinkageTypes Linkage; 1655 bool isConstant; 1656 if (isUTF16) { 1657 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1658 Linkage = llvm::GlobalValue::InternalLinkage; 1659 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1660 // does make plain ascii ones writable. 1661 isConstant = true; 1662 } else { 1663 Linkage = llvm::GlobalValue::PrivateLinkage; 1664 isConstant = !Features.WritableStrings; 1665 } 1666 1667 llvm::GlobalVariable *GV = 1668 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1669 ".str"); 1670 GV->setUnnamedAddr(true); 1671 if (isUTF16) { 1672 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1673 GV->setAlignment(Align.getQuantity()); 1674 } 1675 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1676 1677 // String length. 1678 Ty = getTypes().ConvertType(getContext().LongTy); 1679 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1680 1681 // The struct. 1682 C = llvm::ConstantStruct::get(STy, Fields); 1683 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1684 llvm::GlobalVariable::PrivateLinkage, C, 1685 "_unnamed_cfstring_"); 1686 if (const char *Sect = getContext().Target.getCFStringSection()) 1687 GV->setSection(Sect); 1688 Entry.setValue(GV); 1689 1690 return GV; 1691 } 1692 1693 llvm::Constant * 1694 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1695 unsigned StringLength = 0; 1696 bool isUTF16 = false; 1697 llvm::StringMapEntry<llvm::Constant*> &Entry = 1698 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1699 getTargetData().isLittleEndian(), 1700 isUTF16, StringLength); 1701 1702 if (llvm::Constant *C = Entry.getValue()) 1703 return C; 1704 1705 llvm::Constant *Zero = 1706 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1707 llvm::Constant *Zeros[] = { Zero, Zero }; 1708 1709 // If we don't already have it, get _NSConstantStringClassReference. 1710 if (!ConstantStringClassRef) { 1711 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1712 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1713 Ty = llvm::ArrayType::get(Ty, 0); 1714 llvm::Constant *GV; 1715 if (StringClass.empty()) 1716 GV = CreateRuntimeVariable(Ty, 1717 Features.ObjCNonFragileABI ? 1718 "OBJC_CLASS_$_NSConstantString" : 1719 "_NSConstantStringClassReference"); 1720 else { 1721 std::string str; 1722 if (Features.ObjCNonFragileABI) 1723 str = "OBJC_CLASS_$_" + StringClass; 1724 else 1725 str = "_" + StringClass + "ClassReference"; 1726 GV = CreateRuntimeVariable(Ty, str); 1727 } 1728 // Decay array -> ptr 1729 ConstantStringClassRef = 1730 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1731 } 1732 1733 QualType NSTy = getContext().getNSConstantStringType(); 1734 1735 const llvm::StructType *STy = 1736 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1737 1738 std::vector<llvm::Constant*> Fields(3); 1739 1740 // Class pointer. 1741 Fields[0] = ConstantStringClassRef; 1742 1743 // String pointer. 1744 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1745 1746 llvm::GlobalValue::LinkageTypes Linkage; 1747 bool isConstant; 1748 if (isUTF16) { 1749 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1750 Linkage = llvm::GlobalValue::InternalLinkage; 1751 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1752 // does make plain ascii ones writable. 1753 isConstant = true; 1754 } else { 1755 Linkage = llvm::GlobalValue::PrivateLinkage; 1756 isConstant = !Features.WritableStrings; 1757 } 1758 1759 llvm::GlobalVariable *GV = 1760 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1761 ".str"); 1762 GV->setUnnamedAddr(true); 1763 if (isUTF16) { 1764 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1765 GV->setAlignment(Align.getQuantity()); 1766 } 1767 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1768 1769 // String length. 1770 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1771 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1772 1773 // The struct. 1774 C = llvm::ConstantStruct::get(STy, Fields); 1775 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1776 llvm::GlobalVariable::PrivateLinkage, C, 1777 "_unnamed_nsstring_"); 1778 // FIXME. Fix section. 1779 if (const char *Sect = 1780 Features.ObjCNonFragileABI 1781 ? getContext().Target.getNSStringNonFragileABISection() 1782 : getContext().Target.getNSStringSection()) 1783 GV->setSection(Sect); 1784 Entry.setValue(GV); 1785 1786 return GV; 1787 } 1788 1789 /// GetStringForStringLiteral - Return the appropriate bytes for a 1790 /// string literal, properly padded to match the literal type. 1791 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1792 const ASTContext &Context = getContext(); 1793 const ConstantArrayType *CAT = 1794 Context.getAsConstantArrayType(E->getType()); 1795 assert(CAT && "String isn't pointer or array!"); 1796 1797 // Resize the string to the right size. 1798 uint64_t RealLen = CAT->getSize().getZExtValue(); 1799 1800 if (E->isWide()) 1801 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1802 1803 std::string Str = E->getString().str(); 1804 Str.resize(RealLen, '\0'); 1805 1806 return Str; 1807 } 1808 1809 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1810 /// constant array for the given string literal. 1811 llvm::Constant * 1812 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1813 // FIXME: This can be more efficient. 1814 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1815 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1816 if (S->isWide()) { 1817 llvm::Type *DestTy = 1818 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1819 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1820 } 1821 return C; 1822 } 1823 1824 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1825 /// array for the given ObjCEncodeExpr node. 1826 llvm::Constant * 1827 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1828 std::string Str; 1829 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1830 1831 return GetAddrOfConstantCString(Str); 1832 } 1833 1834 1835 /// GenerateWritableString -- Creates storage for a string literal. 1836 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1837 bool constant, 1838 CodeGenModule &CGM, 1839 const char *GlobalName) { 1840 // Create Constant for this string literal. Don't add a '\0'. 1841 llvm::Constant *C = 1842 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1843 1844 // Create a global variable for this string 1845 llvm::GlobalVariable *GV = 1846 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1847 llvm::GlobalValue::PrivateLinkage, 1848 C, GlobalName); 1849 GV->setUnnamedAddr(true); 1850 return GV; 1851 } 1852 1853 /// GetAddrOfConstantString - Returns a pointer to a character array 1854 /// containing the literal. This contents are exactly that of the 1855 /// given string, i.e. it will not be null terminated automatically; 1856 /// see GetAddrOfConstantCString. Note that whether the result is 1857 /// actually a pointer to an LLVM constant depends on 1858 /// Feature.WriteableStrings. 1859 /// 1860 /// The result has pointer to array type. 1861 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1862 const char *GlobalName) { 1863 bool IsConstant = !Features.WritableStrings; 1864 1865 // Get the default prefix if a name wasn't specified. 1866 if (!GlobalName) 1867 GlobalName = ".str"; 1868 1869 // Don't share any string literals if strings aren't constant. 1870 if (!IsConstant) 1871 return GenerateStringLiteral(str, false, *this, GlobalName); 1872 1873 llvm::StringMapEntry<llvm::Constant *> &Entry = 1874 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1875 1876 if (Entry.getValue()) 1877 return Entry.getValue(); 1878 1879 // Create a global variable for this. 1880 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1881 Entry.setValue(C); 1882 return C; 1883 } 1884 1885 /// GetAddrOfConstantCString - Returns a pointer to a character 1886 /// array containing the literal and a terminating '\-' 1887 /// character. The result has pointer to array type. 1888 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1889 const char *GlobalName){ 1890 return GetAddrOfConstantString(str + '\0', GlobalName); 1891 } 1892 1893 /// EmitObjCPropertyImplementations - Emit information for synthesized 1894 /// properties for an implementation. 1895 void CodeGenModule::EmitObjCPropertyImplementations(const 1896 ObjCImplementationDecl *D) { 1897 for (ObjCImplementationDecl::propimpl_iterator 1898 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1899 ObjCPropertyImplDecl *PID = *i; 1900 1901 // Dynamic is just for type-checking. 1902 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1903 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1904 1905 // Determine which methods need to be implemented, some may have 1906 // been overridden. Note that ::isSynthesized is not the method 1907 // we want, that just indicates if the decl came from a 1908 // property. What we want to know is if the method is defined in 1909 // this implementation. 1910 if (!D->getInstanceMethod(PD->getGetterName())) 1911 CodeGenFunction(*this).GenerateObjCGetter( 1912 const_cast<ObjCImplementationDecl *>(D), PID); 1913 if (!PD->isReadOnly() && 1914 !D->getInstanceMethod(PD->getSetterName())) 1915 CodeGenFunction(*this).GenerateObjCSetter( 1916 const_cast<ObjCImplementationDecl *>(D), PID); 1917 } 1918 } 1919 } 1920 1921 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1922 /// for an implementation. 1923 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1924 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1925 return; 1926 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1927 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1928 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1929 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1930 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1931 D->getLocation(), 1932 D->getLocation(), cxxSelector, 1933 getContext().VoidTy, 0, 1934 DC, true, false, true, false, 1935 ObjCMethodDecl::Required); 1936 D->addInstanceMethod(DTORMethod); 1937 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1938 1939 II = &getContext().Idents.get(".cxx_construct"); 1940 cxxSelector = getContext().Selectors.getSelector(0, &II); 1941 // The constructor returns 'self'. 1942 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1943 D->getLocation(), 1944 D->getLocation(), cxxSelector, 1945 getContext().getObjCIdType(), 0, 1946 DC, true, false, true, false, 1947 ObjCMethodDecl::Required); 1948 D->addInstanceMethod(CTORMethod); 1949 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1950 1951 1952 } 1953 1954 /// EmitNamespace - Emit all declarations in a namespace. 1955 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1956 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1957 I != E; ++I) 1958 EmitTopLevelDecl(*I); 1959 } 1960 1961 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1962 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1963 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1964 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1965 ErrorUnsupported(LSD, "linkage spec"); 1966 return; 1967 } 1968 1969 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1970 I != E; ++I) 1971 EmitTopLevelDecl(*I); 1972 } 1973 1974 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1975 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1976 // If an error has occurred, stop code generation, but continue 1977 // parsing and semantic analysis (to ensure all warnings and errors 1978 // are emitted). 1979 if (Diags.hasErrorOccurred()) 1980 return; 1981 1982 // Ignore dependent declarations. 1983 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1984 return; 1985 1986 switch (D->getKind()) { 1987 case Decl::CXXConversion: 1988 case Decl::CXXMethod: 1989 case Decl::Function: 1990 // Skip function templates 1991 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1992 return; 1993 1994 EmitGlobal(cast<FunctionDecl>(D)); 1995 break; 1996 1997 case Decl::Var: 1998 EmitGlobal(cast<VarDecl>(D)); 1999 break; 2000 2001 // C++ Decls 2002 case Decl::Namespace: 2003 EmitNamespace(cast<NamespaceDecl>(D)); 2004 break; 2005 // No code generation needed. 2006 case Decl::UsingShadow: 2007 case Decl::Using: 2008 case Decl::UsingDirective: 2009 case Decl::ClassTemplate: 2010 case Decl::FunctionTemplate: 2011 case Decl::NamespaceAlias: 2012 break; 2013 case Decl::CXXConstructor: 2014 // Skip function templates 2015 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2016 return; 2017 2018 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2019 break; 2020 case Decl::CXXDestructor: 2021 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2022 break; 2023 2024 case Decl::StaticAssert: 2025 // Nothing to do. 2026 break; 2027 2028 // Objective-C Decls 2029 2030 // Forward declarations, no (immediate) code generation. 2031 case Decl::ObjCClass: 2032 case Decl::ObjCForwardProtocol: 2033 case Decl::ObjCInterface: 2034 break; 2035 2036 case Decl::ObjCCategory: { 2037 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2038 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2039 Context.ResetObjCLayout(CD->getClassInterface()); 2040 break; 2041 } 2042 2043 2044 case Decl::ObjCProtocol: 2045 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2046 break; 2047 2048 case Decl::ObjCCategoryImpl: 2049 // Categories have properties but don't support synthesize so we 2050 // can ignore them here. 2051 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2052 break; 2053 2054 case Decl::ObjCImplementation: { 2055 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2056 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2057 Context.ResetObjCLayout(OMD->getClassInterface()); 2058 EmitObjCPropertyImplementations(OMD); 2059 EmitObjCIvarInitializations(OMD); 2060 Runtime->GenerateClass(OMD); 2061 break; 2062 } 2063 case Decl::ObjCMethod: { 2064 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2065 // If this is not a prototype, emit the body. 2066 if (OMD->getBody()) 2067 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2068 break; 2069 } 2070 case Decl::ObjCCompatibleAlias: 2071 // compatibility-alias is a directive and has no code gen. 2072 break; 2073 2074 case Decl::LinkageSpec: 2075 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2076 break; 2077 2078 case Decl::FileScopeAsm: { 2079 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2080 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2081 2082 const std::string &S = getModule().getModuleInlineAsm(); 2083 if (S.empty()) 2084 getModule().setModuleInlineAsm(AsmString); 2085 else 2086 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2087 break; 2088 } 2089 2090 default: 2091 // Make sure we handled everything we should, every other kind is a 2092 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2093 // function. Need to recode Decl::Kind to do that easily. 2094 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2095 } 2096 } 2097 2098 /// Turns the given pointer into a constant. 2099 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2100 const void *Ptr) { 2101 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2102 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2103 return llvm::ConstantInt::get(i64, PtrInt); 2104 } 2105 2106 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2107 llvm::NamedMDNode *&GlobalMetadata, 2108 GlobalDecl D, 2109 llvm::GlobalValue *Addr) { 2110 if (!GlobalMetadata) 2111 GlobalMetadata = 2112 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2113 2114 // TODO: should we report variant information for ctors/dtors? 2115 llvm::Value *Ops[] = { 2116 Addr, 2117 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2118 }; 2119 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2120 } 2121 2122 /// Emits metadata nodes associating all the global values in the 2123 /// current module with the Decls they came from. This is useful for 2124 /// projects using IR gen as a subroutine. 2125 /// 2126 /// Since there's currently no way to associate an MDNode directly 2127 /// with an llvm::GlobalValue, we create a global named metadata 2128 /// with the name 'clang.global.decl.ptrs'. 2129 void CodeGenModule::EmitDeclMetadata() { 2130 llvm::NamedMDNode *GlobalMetadata = 0; 2131 2132 // StaticLocalDeclMap 2133 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2134 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2135 I != E; ++I) { 2136 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2137 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2138 } 2139 } 2140 2141 /// Emits metadata nodes for all the local variables in the current 2142 /// function. 2143 void CodeGenFunction::EmitDeclMetadata() { 2144 if (LocalDeclMap.empty()) return; 2145 2146 llvm::LLVMContext &Context = getLLVMContext(); 2147 2148 // Find the unique metadata ID for this name. 2149 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2150 2151 llvm::NamedMDNode *GlobalMetadata = 0; 2152 2153 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2154 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2155 const Decl *D = I->first; 2156 llvm::Value *Addr = I->second; 2157 2158 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2159 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2160 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2161 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2162 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2163 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2164 } 2165 } 2166 } 2167 2168 ///@name Custom Runtime Function Interfaces 2169 ///@{ 2170 // 2171 // FIXME: These can be eliminated once we can have clients just get the required 2172 // AST nodes from the builtin tables. 2173 2174 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2175 if (BlockObjectDispose) 2176 return BlockObjectDispose; 2177 2178 // If we saw an explicit decl, use that. 2179 if (BlockObjectDisposeDecl) { 2180 return BlockObjectDispose = GetAddrOfFunction( 2181 BlockObjectDisposeDecl, 2182 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2183 } 2184 2185 // Otherwise construct the function by hand. 2186 const llvm::FunctionType *FTy; 2187 std::vector<const llvm::Type*> ArgTys; 2188 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2189 ArgTys.push_back(Int8PtrTy); 2190 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2191 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2192 return BlockObjectDispose = 2193 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2194 } 2195 2196 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2197 if (BlockObjectAssign) 2198 return BlockObjectAssign; 2199 2200 // If we saw an explicit decl, use that. 2201 if (BlockObjectAssignDecl) { 2202 return BlockObjectAssign = GetAddrOfFunction( 2203 BlockObjectAssignDecl, 2204 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2205 } 2206 2207 // Otherwise construct the function by hand. 2208 const llvm::FunctionType *FTy; 2209 std::vector<const llvm::Type*> ArgTys; 2210 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2211 ArgTys.push_back(Int8PtrTy); 2212 ArgTys.push_back(Int8PtrTy); 2213 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2214 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2215 return BlockObjectAssign = 2216 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2217 } 2218 2219 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2220 if (NSConcreteGlobalBlock) 2221 return NSConcreteGlobalBlock; 2222 2223 // If we saw an explicit decl, use that. 2224 if (NSConcreteGlobalBlockDecl) { 2225 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2226 NSConcreteGlobalBlockDecl, 2227 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2228 } 2229 2230 // Otherwise construct the variable by hand. 2231 return NSConcreteGlobalBlock = 2232 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2233 } 2234 2235 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2236 if (NSConcreteStackBlock) 2237 return NSConcreteStackBlock; 2238 2239 // If we saw an explicit decl, use that. 2240 if (NSConcreteStackBlockDecl) { 2241 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2242 NSConcreteStackBlockDecl, 2243 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2244 } 2245 2246 // Otherwise construct the variable by hand. 2247 return NSConcreteStackBlock = 2248 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2249 } 2250 2251 ///@} 2252