1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeGPU.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/ConstantInitBuilder.h" 47 #include "clang/Frontend/FrontendDiagnostic.h" 48 #include "llvm/ADT/StringSwitch.h" 49 #include "llvm/ADT/Triple.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 52 #include "llvm/IR/CallingConv.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ProfileSummary.h" 58 #include "llvm/ProfileData/InstrProfReader.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ConvertUTF.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MD5.h" 64 #include "llvm/Support/TimeProfiler.h" 65 #include "llvm/Support/X86TargetParser.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getContext().getCXXABIKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 const llvm::DataLayout &DL = M.getDataLayout(); 134 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 135 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 136 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 137 138 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 139 140 if (LangOpts.ObjC) 141 createObjCRuntime(); 142 if (LangOpts.OpenCL) 143 createOpenCLRuntime(); 144 if (LangOpts.OpenMP) 145 createOpenMPRuntime(); 146 if (LangOpts.CUDA) 147 createCUDARuntime(); 148 149 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 150 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 151 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 152 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 153 getCXXABI().getMangleContext())); 154 155 // If debug info or coverage generation is enabled, create the CGDebugInfo 156 // object. 157 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 158 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 159 DebugInfo.reset(new CGDebugInfo(*this)); 160 161 Block.GlobalUniqueCount = 0; 162 163 if (C.getLangOpts().ObjC) 164 ObjCData.reset(new ObjCEntrypoints()); 165 166 if (CodeGenOpts.hasProfileClangUse()) { 167 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 168 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 169 if (auto E = ReaderOrErr.takeError()) { 170 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 171 "Could not read profile %0: %1"); 172 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 173 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 174 << EI.message(); 175 }); 176 } else 177 PGOReader = std::move(ReaderOrErr.get()); 178 } 179 180 // If coverage mapping generation is enabled, create the 181 // CoverageMappingModuleGen object. 182 if (CodeGenOpts.CoverageMapping) 183 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 184 185 // Generate the module name hash here if needed. 186 if (CodeGenOpts.UniqueInternalLinkageNames && 187 !getModule().getSourceFileName().empty()) { 188 std::string Path = getModule().getSourceFileName(); 189 // Check if a path substitution is needed from the MacroPrefixMap. 190 for (const auto &Entry : LangOpts.MacroPrefixMap) 191 if (Path.rfind(Entry.first, 0) != std::string::npos) { 192 Path = Entry.second + Path.substr(Entry.first.size()); 193 break; 194 } 195 llvm::MD5 Md5; 196 Md5.update(Path); 197 llvm::MD5::MD5Result R; 198 Md5.final(R); 199 SmallString<32> Str; 200 llvm::MD5::stringifyResult(R, Str); 201 // Convert MD5hash to Decimal. Demangler suffixes can either contain 202 // numbers or characters but not both. 203 llvm::APInt IntHash(128, Str.str(), 16); 204 // Prepend "__uniq" before the hash for tools like profilers to understand 205 // that this symbol is of internal linkage type. The "__uniq" is the 206 // pre-determined prefix that is used to tell tools that this symbol was 207 // created with -funique-internal-linakge-symbols and the tools can strip or 208 // keep the prefix as needed. 209 ModuleNameHash = (Twine(".__uniq.") + 210 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 211 } 212 } 213 214 CodeGenModule::~CodeGenModule() {} 215 216 void CodeGenModule::createObjCRuntime() { 217 // This is just isGNUFamily(), but we want to force implementors of 218 // new ABIs to decide how best to do this. 219 switch (LangOpts.ObjCRuntime.getKind()) { 220 case ObjCRuntime::GNUstep: 221 case ObjCRuntime::GCC: 222 case ObjCRuntime::ObjFW: 223 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 224 return; 225 226 case ObjCRuntime::FragileMacOSX: 227 case ObjCRuntime::MacOSX: 228 case ObjCRuntime::iOS: 229 case ObjCRuntime::WatchOS: 230 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 231 return; 232 } 233 llvm_unreachable("bad runtime kind"); 234 } 235 236 void CodeGenModule::createOpenCLRuntime() { 237 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 238 } 239 240 void CodeGenModule::createOpenMPRuntime() { 241 // Select a specialized code generation class based on the target, if any. 242 // If it does not exist use the default implementation. 243 switch (getTriple().getArch()) { 244 case llvm::Triple::nvptx: 245 case llvm::Triple::nvptx64: 246 case llvm::Triple::amdgcn: 247 assert(getLangOpts().OpenMPIsDevice && 248 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 249 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 250 break; 251 default: 252 if (LangOpts.OpenMPSimd) 253 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 254 else 255 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 256 break; 257 } 258 } 259 260 void CodeGenModule::createCUDARuntime() { 261 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 262 } 263 264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 265 Replacements[Name] = C; 266 } 267 268 void CodeGenModule::applyReplacements() { 269 for (auto &I : Replacements) { 270 StringRef MangledName = I.first(); 271 llvm::Constant *Replacement = I.second; 272 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 273 if (!Entry) 274 continue; 275 auto *OldF = cast<llvm::Function>(Entry); 276 auto *NewF = dyn_cast<llvm::Function>(Replacement); 277 if (!NewF) { 278 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 279 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 280 } else { 281 auto *CE = cast<llvm::ConstantExpr>(Replacement); 282 assert(CE->getOpcode() == llvm::Instruction::BitCast || 283 CE->getOpcode() == llvm::Instruction::GetElementPtr); 284 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 285 } 286 } 287 288 // Replace old with new, but keep the old order. 289 OldF->replaceAllUsesWith(Replacement); 290 if (NewF) { 291 NewF->removeFromParent(); 292 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 293 NewF); 294 } 295 OldF->eraseFromParent(); 296 } 297 } 298 299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 300 GlobalValReplacements.push_back(std::make_pair(GV, C)); 301 } 302 303 void CodeGenModule::applyGlobalValReplacements() { 304 for (auto &I : GlobalValReplacements) { 305 llvm::GlobalValue *GV = I.first; 306 llvm::Constant *C = I.second; 307 308 GV->replaceAllUsesWith(C); 309 GV->eraseFromParent(); 310 } 311 } 312 313 // This is only used in aliases that we created and we know they have a 314 // linear structure. 315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 316 llvm::SmallPtrSet<const llvm::GlobalValue *, 4> Visited; 317 for (;;) { 318 if (!GV || !Visited.insert(GV).second) 319 return nullptr; 320 321 const llvm::Constant *C; 322 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 323 C = GA->getAliasee(); 324 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 325 C = GI->getResolver(); 326 else 327 return GV; 328 329 GV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 330 } 331 } 332 333 void CodeGenModule::checkAliases() { 334 // Check if the constructed aliases are well formed. It is really unfortunate 335 // that we have to do this in CodeGen, but we only construct mangled names 336 // and aliases during codegen. 337 bool Error = false; 338 DiagnosticsEngine &Diags = getDiags(); 339 for (const GlobalDecl &GD : Aliases) { 340 const auto *D = cast<ValueDecl>(GD.getDecl()); 341 SourceLocation Location; 342 bool IsIFunc = D->hasAttr<IFuncAttr>(); 343 if (const Attr *A = D->getDefiningAttr()) 344 Location = A->getLocation(); 345 else 346 llvm_unreachable("Not an alias or ifunc?"); 347 StringRef MangledName = getMangledName(GD); 348 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 349 const llvm::GlobalValue *GV = getAliasedGlobal(Alias); 350 if (!GV) { 351 Error = true; 352 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 353 } else if (GV->isDeclaration()) { 354 Error = true; 355 Diags.Report(Location, diag::err_alias_to_undefined) 356 << IsIFunc << IsIFunc; 357 } else if (IsIFunc) { 358 // Check resolver function type. 359 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 360 GV->getType()->getPointerElementType()); 361 assert(FTy); 362 if (!FTy->getReturnType()->isPointerTy()) 363 Diags.Report(Location, diag::err_ifunc_resolver_return); 364 } 365 366 llvm::Constant *Aliasee = 367 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 368 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 369 370 llvm::GlobalValue *AliaseeGV; 371 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 372 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 373 else 374 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 375 376 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 377 StringRef AliasSection = SA->getName(); 378 if (AliasSection != AliaseeGV->getSection()) 379 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 380 << AliasSection << IsIFunc << IsIFunc; 381 } 382 383 // We have to handle alias to weak aliases in here. LLVM itself disallows 384 // this since the object semantics would not match the IL one. For 385 // compatibility with gcc we implement it by just pointing the alias 386 // to its aliasee's aliasee. We also warn, since the user is probably 387 // expecting the link to be weak. 388 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 389 if (GA->isInterposable()) { 390 Diags.Report(Location, diag::warn_alias_to_weak_alias) 391 << GV->getName() << GA->getName() << IsIFunc; 392 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 393 GA->getAliasee(), Alias->getType()); 394 395 if (IsIFunc) 396 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 397 else 398 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 399 } 400 } 401 } 402 if (!Error) 403 return; 404 405 for (const GlobalDecl &GD : Aliases) { 406 StringRef MangledName = getMangledName(GD); 407 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 408 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 409 Alias->eraseFromParent(); 410 } 411 } 412 413 void CodeGenModule::clear() { 414 DeferredDeclsToEmit.clear(); 415 if (OpenMPRuntime) 416 OpenMPRuntime->clear(); 417 } 418 419 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 420 StringRef MainFile) { 421 if (!hasDiagnostics()) 422 return; 423 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 424 if (MainFile.empty()) 425 MainFile = "<stdin>"; 426 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 427 } else { 428 if (Mismatched > 0) 429 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 430 431 if (Missing > 0) 432 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 433 } 434 } 435 436 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 437 llvm::Module &M) { 438 if (!LO.VisibilityFromDLLStorageClass) 439 return; 440 441 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 442 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 443 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 444 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 445 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 446 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 447 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 448 CodeGenModule::GetLLVMVisibility( 449 LO.getExternDeclNoDLLStorageClassVisibility()); 450 451 for (llvm::GlobalValue &GV : M.global_values()) { 452 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 453 continue; 454 455 // Reset DSO locality before setting the visibility. This removes 456 // any effects that visibility options and annotations may have 457 // had on the DSO locality. Setting the visibility will implicitly set 458 // appropriate globals to DSO Local; however, this will be pessimistic 459 // w.r.t. to the normal compiler IRGen. 460 GV.setDSOLocal(false); 461 462 if (GV.isDeclarationForLinker()) { 463 GV.setVisibility(GV.getDLLStorageClass() == 464 llvm::GlobalValue::DLLImportStorageClass 465 ? ExternDeclDLLImportVisibility 466 : ExternDeclNoDLLStorageClassVisibility); 467 } else { 468 GV.setVisibility(GV.getDLLStorageClass() == 469 llvm::GlobalValue::DLLExportStorageClass 470 ? DLLExportVisibility 471 : NoDLLStorageClassVisibility); 472 } 473 474 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 475 } 476 } 477 478 void CodeGenModule::Release() { 479 EmitDeferred(); 480 EmitVTablesOpportunistically(); 481 applyGlobalValReplacements(); 482 applyReplacements(); 483 checkAliases(); 484 emitMultiVersionFunctions(); 485 EmitCXXGlobalInitFunc(); 486 EmitCXXGlobalCleanUpFunc(); 487 registerGlobalDtorsWithAtExit(); 488 EmitCXXThreadLocalInitFunc(); 489 if (ObjCRuntime) 490 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 491 AddGlobalCtor(ObjCInitFunction); 492 if (Context.getLangOpts().CUDA && CUDARuntime) { 493 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 494 AddGlobalCtor(CudaCtorFunction); 495 } 496 if (OpenMPRuntime) { 497 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 498 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 499 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 500 } 501 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 502 OpenMPRuntime->clear(); 503 } 504 if (PGOReader) { 505 getModule().setProfileSummary( 506 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 507 llvm::ProfileSummary::PSK_Instr); 508 if (PGOStats.hasDiagnostics()) 509 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 510 } 511 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 512 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 513 EmitGlobalAnnotations(); 514 EmitStaticExternCAliases(); 515 EmitDeferredUnusedCoverageMappings(); 516 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 517 if (CoverageMapping) 518 CoverageMapping->emit(); 519 if (CodeGenOpts.SanitizeCfiCrossDso) { 520 CodeGenFunction(*this).EmitCfiCheckFail(); 521 CodeGenFunction(*this).EmitCfiCheckStub(); 522 } 523 emitAtAvailableLinkGuard(); 524 if (Context.getTargetInfo().getTriple().isWasm() && 525 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 526 EmitMainVoidAlias(); 527 } 528 529 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 530 // preserve ASAN functions in bitcode libraries. 531 if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) { 532 auto *FT = llvm::FunctionType::get(VoidTy, {}); 533 auto *F = llvm::Function::Create( 534 FT, llvm::GlobalValue::ExternalLinkage, 535 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 536 auto *Var = new llvm::GlobalVariable( 537 getModule(), FT->getPointerTo(), 538 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 539 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 540 llvm::GlobalVariable::NotThreadLocal); 541 addCompilerUsedGlobal(Var); 542 } 543 544 emitLLVMUsed(); 545 if (SanStats) 546 SanStats->finish(); 547 548 if (CodeGenOpts.Autolink && 549 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 550 EmitModuleLinkOptions(); 551 } 552 553 // On ELF we pass the dependent library specifiers directly to the linker 554 // without manipulating them. This is in contrast to other platforms where 555 // they are mapped to a specific linker option by the compiler. This 556 // difference is a result of the greater variety of ELF linkers and the fact 557 // that ELF linkers tend to handle libraries in a more complicated fashion 558 // than on other platforms. This forces us to defer handling the dependent 559 // libs to the linker. 560 // 561 // CUDA/HIP device and host libraries are different. Currently there is no 562 // way to differentiate dependent libraries for host or device. Existing 563 // usage of #pragma comment(lib, *) is intended for host libraries on 564 // Windows. Therefore emit llvm.dependent-libraries only for host. 565 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 566 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 567 for (auto *MD : ELFDependentLibraries) 568 NMD->addOperand(MD); 569 } 570 571 // Record mregparm value now so it is visible through rest of codegen. 572 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 573 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 574 CodeGenOpts.NumRegisterParameters); 575 576 if (CodeGenOpts.DwarfVersion) { 577 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 578 CodeGenOpts.DwarfVersion); 579 } 580 581 if (CodeGenOpts.Dwarf64) 582 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 583 584 if (Context.getLangOpts().SemanticInterposition) 585 // Require various optimization to respect semantic interposition. 586 getModule().setSemanticInterposition(1); 587 588 if (CodeGenOpts.EmitCodeView) { 589 // Indicate that we want CodeView in the metadata. 590 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 591 } 592 if (CodeGenOpts.CodeViewGHash) { 593 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 594 } 595 if (CodeGenOpts.ControlFlowGuard) { 596 // Function ID tables and checks for Control Flow Guard (cfguard=2). 597 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 598 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 599 // Function ID tables for Control Flow Guard (cfguard=1). 600 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 601 } 602 if (CodeGenOpts.EHContGuard) { 603 // Function ID tables for EH Continuation Guard. 604 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 605 } 606 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 607 // We don't support LTO with 2 with different StrictVTablePointers 608 // FIXME: we could support it by stripping all the information introduced 609 // by StrictVTablePointers. 610 611 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 612 613 llvm::Metadata *Ops[2] = { 614 llvm::MDString::get(VMContext, "StrictVTablePointers"), 615 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 616 llvm::Type::getInt32Ty(VMContext), 1))}; 617 618 getModule().addModuleFlag(llvm::Module::Require, 619 "StrictVTablePointersRequirement", 620 llvm::MDNode::get(VMContext, Ops)); 621 } 622 if (getModuleDebugInfo()) 623 // We support a single version in the linked module. The LLVM 624 // parser will drop debug info with a different version number 625 // (and warn about it, too). 626 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 627 llvm::DEBUG_METADATA_VERSION); 628 629 // We need to record the widths of enums and wchar_t, so that we can generate 630 // the correct build attributes in the ARM backend. wchar_size is also used by 631 // TargetLibraryInfo. 632 uint64_t WCharWidth = 633 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 634 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 635 636 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 637 if ( Arch == llvm::Triple::arm 638 || Arch == llvm::Triple::armeb 639 || Arch == llvm::Triple::thumb 640 || Arch == llvm::Triple::thumbeb) { 641 // The minimum width of an enum in bytes 642 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 643 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 644 } 645 646 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 647 StringRef ABIStr = Target.getABI(); 648 llvm::LLVMContext &Ctx = TheModule.getContext(); 649 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 650 llvm::MDString::get(Ctx, ABIStr)); 651 } 652 653 if (CodeGenOpts.SanitizeCfiCrossDso) { 654 // Indicate that we want cross-DSO control flow integrity checks. 655 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 656 } 657 658 if (CodeGenOpts.WholeProgramVTables) { 659 // Indicate whether VFE was enabled for this module, so that the 660 // vcall_visibility metadata added under whole program vtables is handled 661 // appropriately in the optimizer. 662 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 663 CodeGenOpts.VirtualFunctionElimination); 664 } 665 666 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 667 getModule().addModuleFlag(llvm::Module::Override, 668 "CFI Canonical Jump Tables", 669 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 670 } 671 672 if (CodeGenOpts.CFProtectionReturn && 673 Target.checkCFProtectionReturnSupported(getDiags())) { 674 // Indicate that we want to instrument return control flow protection. 675 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 676 1); 677 } 678 679 if (CodeGenOpts.CFProtectionBranch && 680 Target.checkCFProtectionBranchSupported(getDiags())) { 681 // Indicate that we want to instrument branch control flow protection. 682 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 683 1); 684 } 685 686 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 687 Arch == llvm::Triple::aarch64_be) { 688 getModule().addModuleFlag(llvm::Module::Error, 689 "branch-target-enforcement", 690 LangOpts.BranchTargetEnforcement); 691 692 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 693 LangOpts.hasSignReturnAddress()); 694 695 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 696 LangOpts.isSignReturnAddressScopeAll()); 697 698 getModule().addModuleFlag(llvm::Module::Error, 699 "sign-return-address-with-bkey", 700 !LangOpts.isSignReturnAddressWithAKey()); 701 } 702 703 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 704 llvm::LLVMContext &Ctx = TheModule.getContext(); 705 getModule().addModuleFlag( 706 llvm::Module::Error, "MemProfProfileFilename", 707 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 708 } 709 710 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 711 // Indicate whether __nvvm_reflect should be configured to flush denormal 712 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 713 // property.) 714 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 715 CodeGenOpts.FP32DenormalMode.Output != 716 llvm::DenormalMode::IEEE); 717 } 718 719 if (LangOpts.EHAsynch) 720 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 721 722 // Indicate whether this Module was compiled with -fopenmp 723 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 724 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 725 if (getLangOpts().OpenMPIsDevice) 726 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 727 LangOpts.OpenMP); 728 729 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 730 if (LangOpts.OpenCL) { 731 EmitOpenCLMetadata(); 732 // Emit SPIR version. 733 if (getTriple().isSPIR()) { 734 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 735 // opencl.spir.version named metadata. 736 // C++ for OpenCL has a distinct mapping for version compatibility with 737 // OpenCL. 738 auto Version = LangOpts.getOpenCLCompatibleVersion(); 739 llvm::Metadata *SPIRVerElts[] = { 740 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 741 Int32Ty, Version / 100)), 742 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 743 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 744 llvm::NamedMDNode *SPIRVerMD = 745 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 746 llvm::LLVMContext &Ctx = TheModule.getContext(); 747 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 748 } 749 } 750 751 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 752 assert(PLevel < 3 && "Invalid PIC Level"); 753 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 754 if (Context.getLangOpts().PIE) 755 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 756 } 757 758 if (getCodeGenOpts().CodeModel.size() > 0) { 759 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 760 .Case("tiny", llvm::CodeModel::Tiny) 761 .Case("small", llvm::CodeModel::Small) 762 .Case("kernel", llvm::CodeModel::Kernel) 763 .Case("medium", llvm::CodeModel::Medium) 764 .Case("large", llvm::CodeModel::Large) 765 .Default(~0u); 766 if (CM != ~0u) { 767 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 768 getModule().setCodeModel(codeModel); 769 } 770 } 771 772 if (CodeGenOpts.NoPLT) 773 getModule().setRtLibUseGOT(); 774 if (CodeGenOpts.UnwindTables) 775 getModule().setUwtable(); 776 777 switch (CodeGenOpts.getFramePointer()) { 778 case CodeGenOptions::FramePointerKind::None: 779 // 0 ("none") is the default. 780 break; 781 case CodeGenOptions::FramePointerKind::NonLeaf: 782 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 783 break; 784 case CodeGenOptions::FramePointerKind::All: 785 getModule().setFramePointer(llvm::FramePointerKind::All); 786 break; 787 } 788 789 SimplifyPersonality(); 790 791 if (getCodeGenOpts().EmitDeclMetadata) 792 EmitDeclMetadata(); 793 794 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 795 EmitCoverageFile(); 796 797 if (CGDebugInfo *DI = getModuleDebugInfo()) 798 DI->finalize(); 799 800 if (getCodeGenOpts().EmitVersionIdentMetadata) 801 EmitVersionIdentMetadata(); 802 803 if (!getCodeGenOpts().RecordCommandLine.empty()) 804 EmitCommandLineMetadata(); 805 806 if (!getCodeGenOpts().StackProtectorGuard.empty()) 807 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 808 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 809 getModule().setStackProtectorGuardReg( 810 getCodeGenOpts().StackProtectorGuardReg); 811 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 812 getModule().setStackProtectorGuardOffset( 813 getCodeGenOpts().StackProtectorGuardOffset); 814 if (getCodeGenOpts().StackAlignment) 815 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 816 817 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 818 819 EmitBackendOptionsMetadata(getCodeGenOpts()); 820 821 // Set visibility from DLL storage class 822 // We do this at the end of LLVM IR generation; after any operation 823 // that might affect the DLL storage class or the visibility, and 824 // before anything that might act on these. 825 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 826 } 827 828 void CodeGenModule::EmitOpenCLMetadata() { 829 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 830 // opencl.ocl.version named metadata node. 831 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 832 auto Version = LangOpts.getOpenCLCompatibleVersion(); 833 llvm::Metadata *OCLVerElts[] = { 834 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 835 Int32Ty, Version / 100)), 836 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 837 Int32Ty, (Version % 100) / 10))}; 838 llvm::NamedMDNode *OCLVerMD = 839 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 840 llvm::LLVMContext &Ctx = TheModule.getContext(); 841 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 842 } 843 844 void CodeGenModule::EmitBackendOptionsMetadata( 845 const CodeGenOptions CodeGenOpts) { 846 switch (getTriple().getArch()) { 847 default: 848 break; 849 case llvm::Triple::riscv32: 850 case llvm::Triple::riscv64: 851 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 852 CodeGenOpts.SmallDataLimit); 853 break; 854 } 855 } 856 857 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 858 // Make sure that this type is translated. 859 Types.UpdateCompletedType(TD); 860 } 861 862 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 863 // Make sure that this type is translated. 864 Types.RefreshTypeCacheForClass(RD); 865 } 866 867 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 868 if (!TBAA) 869 return nullptr; 870 return TBAA->getTypeInfo(QTy); 871 } 872 873 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 874 if (!TBAA) 875 return TBAAAccessInfo(); 876 if (getLangOpts().CUDAIsDevice) { 877 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 878 // access info. 879 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 880 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 881 nullptr) 882 return TBAAAccessInfo(); 883 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 884 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 885 nullptr) 886 return TBAAAccessInfo(); 887 } 888 } 889 return TBAA->getAccessInfo(AccessType); 890 } 891 892 TBAAAccessInfo 893 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 894 if (!TBAA) 895 return TBAAAccessInfo(); 896 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 897 } 898 899 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 900 if (!TBAA) 901 return nullptr; 902 return TBAA->getTBAAStructInfo(QTy); 903 } 904 905 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 906 if (!TBAA) 907 return nullptr; 908 return TBAA->getBaseTypeInfo(QTy); 909 } 910 911 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 912 if (!TBAA) 913 return nullptr; 914 return TBAA->getAccessTagInfo(Info); 915 } 916 917 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 918 TBAAAccessInfo TargetInfo) { 919 if (!TBAA) 920 return TBAAAccessInfo(); 921 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 922 } 923 924 TBAAAccessInfo 925 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 926 TBAAAccessInfo InfoB) { 927 if (!TBAA) 928 return TBAAAccessInfo(); 929 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 930 } 931 932 TBAAAccessInfo 933 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 934 TBAAAccessInfo SrcInfo) { 935 if (!TBAA) 936 return TBAAAccessInfo(); 937 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 938 } 939 940 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 941 TBAAAccessInfo TBAAInfo) { 942 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 943 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 944 } 945 946 void CodeGenModule::DecorateInstructionWithInvariantGroup( 947 llvm::Instruction *I, const CXXRecordDecl *RD) { 948 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 949 llvm::MDNode::get(getLLVMContext(), {})); 950 } 951 952 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 953 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 954 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 955 } 956 957 /// ErrorUnsupported - Print out an error that codegen doesn't support the 958 /// specified stmt yet. 959 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 960 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 961 "cannot compile this %0 yet"); 962 std::string Msg = Type; 963 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 964 << Msg << S->getSourceRange(); 965 } 966 967 /// ErrorUnsupported - Print out an error that codegen doesn't support the 968 /// specified decl yet. 969 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 970 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 971 "cannot compile this %0 yet"); 972 std::string Msg = Type; 973 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 974 } 975 976 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 977 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 978 } 979 980 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 981 const NamedDecl *D) const { 982 if (GV->hasDLLImportStorageClass()) 983 return; 984 // Internal definitions always have default visibility. 985 if (GV->hasLocalLinkage()) { 986 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 987 return; 988 } 989 if (!D) 990 return; 991 // Set visibility for definitions, and for declarations if requested globally 992 // or set explicitly. 993 LinkageInfo LV = D->getLinkageAndVisibility(); 994 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 995 !GV->isDeclarationForLinker()) 996 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 997 } 998 999 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1000 llvm::GlobalValue *GV) { 1001 if (GV->hasLocalLinkage()) 1002 return true; 1003 1004 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1005 return true; 1006 1007 // DLLImport explicitly marks the GV as external. 1008 if (GV->hasDLLImportStorageClass()) 1009 return false; 1010 1011 const llvm::Triple &TT = CGM.getTriple(); 1012 if (TT.isWindowsGNUEnvironment()) { 1013 // In MinGW, variables without DLLImport can still be automatically 1014 // imported from a DLL by the linker; don't mark variables that 1015 // potentially could come from another DLL as DSO local. 1016 1017 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1018 // (and this actually happens in the public interface of libstdc++), so 1019 // such variables can't be marked as DSO local. (Native TLS variables 1020 // can't be dllimported at all, though.) 1021 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1022 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1023 return false; 1024 } 1025 1026 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1027 // remain unresolved in the link, they can be resolved to zero, which is 1028 // outside the current DSO. 1029 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1030 return false; 1031 1032 // Every other GV is local on COFF. 1033 // Make an exception for windows OS in the triple: Some firmware builds use 1034 // *-win32-macho triples. This (accidentally?) produced windows relocations 1035 // without GOT tables in older clang versions; Keep this behaviour. 1036 // FIXME: even thread local variables? 1037 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1038 return true; 1039 1040 // Only handle COFF and ELF for now. 1041 if (!TT.isOSBinFormatELF()) 1042 return false; 1043 1044 // If this is not an executable, don't assume anything is local. 1045 const auto &CGOpts = CGM.getCodeGenOpts(); 1046 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1047 const auto &LOpts = CGM.getLangOpts(); 1048 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1049 // On ELF, if -fno-semantic-interposition is specified and the target 1050 // supports local aliases, there will be neither CC1 1051 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1052 // dso_local on the function if using a local alias is preferable (can avoid 1053 // PLT indirection). 1054 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1055 return false; 1056 return !(CGM.getLangOpts().SemanticInterposition || 1057 CGM.getLangOpts().HalfNoSemanticInterposition); 1058 } 1059 1060 // A definition cannot be preempted from an executable. 1061 if (!GV->isDeclarationForLinker()) 1062 return true; 1063 1064 // Most PIC code sequences that assume that a symbol is local cannot produce a 1065 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1066 // depended, it seems worth it to handle it here. 1067 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1068 return false; 1069 1070 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1071 if (TT.isPPC64()) 1072 return false; 1073 1074 if (CGOpts.DirectAccessExternalData) { 1075 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1076 // for non-thread-local variables. If the symbol is not defined in the 1077 // executable, a copy relocation will be needed at link time. dso_local is 1078 // excluded for thread-local variables because they generally don't support 1079 // copy relocations. 1080 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1081 if (!Var->isThreadLocal()) 1082 return true; 1083 1084 // -fno-pic sets dso_local on a function declaration to allow direct 1085 // accesses when taking its address (similar to a data symbol). If the 1086 // function is not defined in the executable, a canonical PLT entry will be 1087 // needed at link time. -fno-direct-access-external-data can avoid the 1088 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1089 // it could just cause trouble without providing perceptible benefits. 1090 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1091 return true; 1092 } 1093 1094 // If we can use copy relocations we can assume it is local. 1095 1096 // Otherwise don't assume it is local. 1097 return false; 1098 } 1099 1100 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1101 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1102 } 1103 1104 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1105 GlobalDecl GD) const { 1106 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1107 // C++ destructors have a few C++ ABI specific special cases. 1108 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1109 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1110 return; 1111 } 1112 setDLLImportDLLExport(GV, D); 1113 } 1114 1115 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1116 const NamedDecl *D) const { 1117 if (D && D->isExternallyVisible()) { 1118 if (D->hasAttr<DLLImportAttr>()) 1119 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1120 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1121 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1122 } 1123 } 1124 1125 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1126 GlobalDecl GD) const { 1127 setDLLImportDLLExport(GV, GD); 1128 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1129 } 1130 1131 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1132 const NamedDecl *D) const { 1133 setDLLImportDLLExport(GV, D); 1134 setGVPropertiesAux(GV, D); 1135 } 1136 1137 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1138 const NamedDecl *D) const { 1139 setGlobalVisibility(GV, D); 1140 setDSOLocal(GV); 1141 GV->setPartition(CodeGenOpts.SymbolPartition); 1142 } 1143 1144 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1145 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1146 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1147 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1148 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1149 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1150 } 1151 1152 llvm::GlobalVariable::ThreadLocalMode 1153 CodeGenModule::GetDefaultLLVMTLSModel() const { 1154 switch (CodeGenOpts.getDefaultTLSModel()) { 1155 case CodeGenOptions::GeneralDynamicTLSModel: 1156 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1157 case CodeGenOptions::LocalDynamicTLSModel: 1158 return llvm::GlobalVariable::LocalDynamicTLSModel; 1159 case CodeGenOptions::InitialExecTLSModel: 1160 return llvm::GlobalVariable::InitialExecTLSModel; 1161 case CodeGenOptions::LocalExecTLSModel: 1162 return llvm::GlobalVariable::LocalExecTLSModel; 1163 } 1164 llvm_unreachable("Invalid TLS model!"); 1165 } 1166 1167 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1168 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1169 1170 llvm::GlobalValue::ThreadLocalMode TLM; 1171 TLM = GetDefaultLLVMTLSModel(); 1172 1173 // Override the TLS model if it is explicitly specified. 1174 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1175 TLM = GetLLVMTLSModel(Attr->getModel()); 1176 } 1177 1178 GV->setThreadLocalMode(TLM); 1179 } 1180 1181 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1182 StringRef Name) { 1183 const TargetInfo &Target = CGM.getTarget(); 1184 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1185 } 1186 1187 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1188 const CPUSpecificAttr *Attr, 1189 unsigned CPUIndex, 1190 raw_ostream &Out) { 1191 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1192 // supported. 1193 if (Attr) 1194 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1195 else if (CGM.getTarget().supportsIFunc()) 1196 Out << ".resolver"; 1197 } 1198 1199 static void AppendTargetMangling(const CodeGenModule &CGM, 1200 const TargetAttr *Attr, raw_ostream &Out) { 1201 if (Attr->isDefaultVersion()) 1202 return; 1203 1204 Out << '.'; 1205 const TargetInfo &Target = CGM.getTarget(); 1206 ParsedTargetAttr Info = 1207 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1208 // Multiversioning doesn't allow "no-${feature}", so we can 1209 // only have "+" prefixes here. 1210 assert(LHS.startswith("+") && RHS.startswith("+") && 1211 "Features should always have a prefix."); 1212 return Target.multiVersionSortPriority(LHS.substr(1)) > 1213 Target.multiVersionSortPriority(RHS.substr(1)); 1214 }); 1215 1216 bool IsFirst = true; 1217 1218 if (!Info.Architecture.empty()) { 1219 IsFirst = false; 1220 Out << "arch_" << Info.Architecture; 1221 } 1222 1223 for (StringRef Feat : Info.Features) { 1224 if (!IsFirst) 1225 Out << '_'; 1226 IsFirst = false; 1227 Out << Feat.substr(1); 1228 } 1229 } 1230 1231 // Returns true if GD is a function decl with internal linkage and 1232 // needs a unique suffix after the mangled name. 1233 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1234 CodeGenModule &CGM) { 1235 const Decl *D = GD.getDecl(); 1236 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1237 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1238 } 1239 1240 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1241 const NamedDecl *ND, 1242 bool OmitMultiVersionMangling = false) { 1243 SmallString<256> Buffer; 1244 llvm::raw_svector_ostream Out(Buffer); 1245 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1246 if (!CGM.getModuleNameHash().empty()) 1247 MC.needsUniqueInternalLinkageNames(); 1248 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1249 if (ShouldMangle) 1250 MC.mangleName(GD.getWithDecl(ND), Out); 1251 else { 1252 IdentifierInfo *II = ND->getIdentifier(); 1253 assert(II && "Attempt to mangle unnamed decl."); 1254 const auto *FD = dyn_cast<FunctionDecl>(ND); 1255 1256 if (FD && 1257 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1258 Out << "__regcall3__" << II->getName(); 1259 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1260 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1261 Out << "__device_stub__" << II->getName(); 1262 } else { 1263 Out << II->getName(); 1264 } 1265 } 1266 1267 // Check if the module name hash should be appended for internal linkage 1268 // symbols. This should come before multi-version target suffixes are 1269 // appended. This is to keep the name and module hash suffix of the 1270 // internal linkage function together. The unique suffix should only be 1271 // added when name mangling is done to make sure that the final name can 1272 // be properly demangled. For example, for C functions without prototypes, 1273 // name mangling is not done and the unique suffix should not be appeneded 1274 // then. 1275 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1276 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1277 "Hash computed when not explicitly requested"); 1278 Out << CGM.getModuleNameHash(); 1279 } 1280 1281 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1282 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1283 switch (FD->getMultiVersionKind()) { 1284 case MultiVersionKind::CPUDispatch: 1285 case MultiVersionKind::CPUSpecific: 1286 AppendCPUSpecificCPUDispatchMangling(CGM, 1287 FD->getAttr<CPUSpecificAttr>(), 1288 GD.getMultiVersionIndex(), Out); 1289 break; 1290 case MultiVersionKind::Target: 1291 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1292 break; 1293 case MultiVersionKind::None: 1294 llvm_unreachable("None multiversion type isn't valid here"); 1295 } 1296 } 1297 1298 // Make unique name for device side static file-scope variable for HIP. 1299 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1300 CGM.getLangOpts().GPURelocatableDeviceCode && 1301 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1302 CGM.printPostfixForExternalizedStaticVar(Out); 1303 return std::string(Out.str()); 1304 } 1305 1306 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1307 const FunctionDecl *FD) { 1308 if (!FD->isMultiVersion()) 1309 return; 1310 1311 // Get the name of what this would be without the 'target' attribute. This 1312 // allows us to lookup the version that was emitted when this wasn't a 1313 // multiversion function. 1314 std::string NonTargetName = 1315 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1316 GlobalDecl OtherGD; 1317 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1318 assert(OtherGD.getCanonicalDecl() 1319 .getDecl() 1320 ->getAsFunction() 1321 ->isMultiVersion() && 1322 "Other GD should now be a multiversioned function"); 1323 // OtherFD is the version of this function that was mangled BEFORE 1324 // becoming a MultiVersion function. It potentially needs to be updated. 1325 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1326 .getDecl() 1327 ->getAsFunction() 1328 ->getMostRecentDecl(); 1329 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1330 // This is so that if the initial version was already the 'default' 1331 // version, we don't try to update it. 1332 if (OtherName != NonTargetName) { 1333 // Remove instead of erase, since others may have stored the StringRef 1334 // to this. 1335 const auto ExistingRecord = Manglings.find(NonTargetName); 1336 if (ExistingRecord != std::end(Manglings)) 1337 Manglings.remove(&(*ExistingRecord)); 1338 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1339 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1340 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1341 Entry->setName(OtherName); 1342 } 1343 } 1344 } 1345 1346 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1347 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1348 1349 // Some ABIs don't have constructor variants. Make sure that base and 1350 // complete constructors get mangled the same. 1351 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1352 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1353 CXXCtorType OrigCtorType = GD.getCtorType(); 1354 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1355 if (OrigCtorType == Ctor_Base) 1356 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1357 } 1358 } 1359 1360 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1361 // static device variable depends on whether the variable is referenced by 1362 // a host or device host function. Therefore the mangled name cannot be 1363 // cached. 1364 if (!LangOpts.CUDAIsDevice || 1365 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1366 auto FoundName = MangledDeclNames.find(CanonicalGD); 1367 if (FoundName != MangledDeclNames.end()) 1368 return FoundName->second; 1369 } 1370 1371 // Keep the first result in the case of a mangling collision. 1372 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1373 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1374 1375 // Ensure either we have different ABIs between host and device compilations, 1376 // says host compilation following MSVC ABI but device compilation follows 1377 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1378 // mangling should be the same after name stubbing. The later checking is 1379 // very important as the device kernel name being mangled in host-compilation 1380 // is used to resolve the device binaries to be executed. Inconsistent naming 1381 // result in undefined behavior. Even though we cannot check that naming 1382 // directly between host- and device-compilations, the host- and 1383 // device-mangling in host compilation could help catching certain ones. 1384 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1385 getLangOpts().CUDAIsDevice || 1386 (getContext().getAuxTargetInfo() && 1387 (getContext().getAuxTargetInfo()->getCXXABI() != 1388 getContext().getTargetInfo().getCXXABI())) || 1389 getCUDARuntime().getDeviceSideName(ND) == 1390 getMangledNameImpl( 1391 *this, 1392 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1393 ND)); 1394 1395 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1396 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1397 } 1398 1399 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1400 const BlockDecl *BD) { 1401 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1402 const Decl *D = GD.getDecl(); 1403 1404 SmallString<256> Buffer; 1405 llvm::raw_svector_ostream Out(Buffer); 1406 if (!D) 1407 MangleCtx.mangleGlobalBlock(BD, 1408 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1409 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1410 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1411 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1412 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1413 else 1414 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1415 1416 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1417 return Result.first->first(); 1418 } 1419 1420 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1421 return getModule().getNamedValue(Name); 1422 } 1423 1424 /// AddGlobalCtor - Add a function to the list that will be called before 1425 /// main() runs. 1426 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1427 llvm::Constant *AssociatedData) { 1428 // FIXME: Type coercion of void()* types. 1429 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1430 } 1431 1432 /// AddGlobalDtor - Add a function to the list that will be called 1433 /// when the module is unloaded. 1434 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1435 bool IsDtorAttrFunc) { 1436 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1437 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1438 DtorsUsingAtExit[Priority].push_back(Dtor); 1439 return; 1440 } 1441 1442 // FIXME: Type coercion of void()* types. 1443 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1444 } 1445 1446 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1447 if (Fns.empty()) return; 1448 1449 // Ctor function type is void()*. 1450 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1451 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1452 TheModule.getDataLayout().getProgramAddressSpace()); 1453 1454 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1455 llvm::StructType *CtorStructTy = llvm::StructType::get( 1456 Int32Ty, CtorPFTy, VoidPtrTy); 1457 1458 // Construct the constructor and destructor arrays. 1459 ConstantInitBuilder builder(*this); 1460 auto ctors = builder.beginArray(CtorStructTy); 1461 for (const auto &I : Fns) { 1462 auto ctor = ctors.beginStruct(CtorStructTy); 1463 ctor.addInt(Int32Ty, I.Priority); 1464 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1465 if (I.AssociatedData) 1466 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1467 else 1468 ctor.addNullPointer(VoidPtrTy); 1469 ctor.finishAndAddTo(ctors); 1470 } 1471 1472 auto list = 1473 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1474 /*constant*/ false, 1475 llvm::GlobalValue::AppendingLinkage); 1476 1477 // The LTO linker doesn't seem to like it when we set an alignment 1478 // on appending variables. Take it off as a workaround. 1479 list->setAlignment(llvm::None); 1480 1481 Fns.clear(); 1482 } 1483 1484 llvm::GlobalValue::LinkageTypes 1485 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1486 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1487 1488 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1489 1490 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1491 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1492 1493 if (isa<CXXConstructorDecl>(D) && 1494 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1495 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1496 // Our approach to inheriting constructors is fundamentally different from 1497 // that used by the MS ABI, so keep our inheriting constructor thunks 1498 // internal rather than trying to pick an unambiguous mangling for them. 1499 return llvm::GlobalValue::InternalLinkage; 1500 } 1501 1502 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1503 } 1504 1505 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1506 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1507 if (!MDS) return nullptr; 1508 1509 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1510 } 1511 1512 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1513 const CGFunctionInfo &Info, 1514 llvm::Function *F, bool IsThunk) { 1515 unsigned CallingConv; 1516 llvm::AttributeList PAL; 1517 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1518 /*AttrOnCallSite=*/false, IsThunk); 1519 F->setAttributes(PAL); 1520 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1521 } 1522 1523 static void removeImageAccessQualifier(std::string& TyName) { 1524 std::string ReadOnlyQual("__read_only"); 1525 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1526 if (ReadOnlyPos != std::string::npos) 1527 // "+ 1" for the space after access qualifier. 1528 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1529 else { 1530 std::string WriteOnlyQual("__write_only"); 1531 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1532 if (WriteOnlyPos != std::string::npos) 1533 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1534 else { 1535 std::string ReadWriteQual("__read_write"); 1536 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1537 if (ReadWritePos != std::string::npos) 1538 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1539 } 1540 } 1541 } 1542 1543 // Returns the address space id that should be produced to the 1544 // kernel_arg_addr_space metadata. This is always fixed to the ids 1545 // as specified in the SPIR 2.0 specification in order to differentiate 1546 // for example in clGetKernelArgInfo() implementation between the address 1547 // spaces with targets without unique mapping to the OpenCL address spaces 1548 // (basically all single AS CPUs). 1549 static unsigned ArgInfoAddressSpace(LangAS AS) { 1550 switch (AS) { 1551 case LangAS::opencl_global: 1552 return 1; 1553 case LangAS::opencl_constant: 1554 return 2; 1555 case LangAS::opencl_local: 1556 return 3; 1557 case LangAS::opencl_generic: 1558 return 4; // Not in SPIR 2.0 specs. 1559 case LangAS::opencl_global_device: 1560 return 5; 1561 case LangAS::opencl_global_host: 1562 return 6; 1563 default: 1564 return 0; // Assume private. 1565 } 1566 } 1567 1568 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1569 const FunctionDecl *FD, 1570 CodeGenFunction *CGF) { 1571 assert(((FD && CGF) || (!FD && !CGF)) && 1572 "Incorrect use - FD and CGF should either be both null or not!"); 1573 // Create MDNodes that represent the kernel arg metadata. 1574 // Each MDNode is a list in the form of "key", N number of values which is 1575 // the same number of values as their are kernel arguments. 1576 1577 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1578 1579 // MDNode for the kernel argument address space qualifiers. 1580 SmallVector<llvm::Metadata *, 8> addressQuals; 1581 1582 // MDNode for the kernel argument access qualifiers (images only). 1583 SmallVector<llvm::Metadata *, 8> accessQuals; 1584 1585 // MDNode for the kernel argument type names. 1586 SmallVector<llvm::Metadata *, 8> argTypeNames; 1587 1588 // MDNode for the kernel argument base type names. 1589 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1590 1591 // MDNode for the kernel argument type qualifiers. 1592 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1593 1594 // MDNode for the kernel argument names. 1595 SmallVector<llvm::Metadata *, 8> argNames; 1596 1597 if (FD && CGF) 1598 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1599 const ParmVarDecl *parm = FD->getParamDecl(i); 1600 QualType ty = parm->getType(); 1601 std::string typeQuals; 1602 1603 // Get image and pipe access qualifier: 1604 if (ty->isImageType() || ty->isPipeType()) { 1605 const Decl *PDecl = parm; 1606 if (auto *TD = dyn_cast<TypedefType>(ty)) 1607 PDecl = TD->getDecl(); 1608 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1609 if (A && A->isWriteOnly()) 1610 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1611 else if (A && A->isReadWrite()) 1612 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1613 else 1614 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1615 } else 1616 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1617 1618 // Get argument name. 1619 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1620 1621 auto getTypeSpelling = [&](QualType Ty) { 1622 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1623 1624 if (Ty.isCanonical()) { 1625 StringRef typeNameRef = typeName; 1626 // Turn "unsigned type" to "utype" 1627 if (typeNameRef.consume_front("unsigned ")) 1628 return std::string("u") + typeNameRef.str(); 1629 if (typeNameRef.consume_front("signed ")) 1630 return typeNameRef.str(); 1631 } 1632 1633 return typeName; 1634 }; 1635 1636 if (ty->isPointerType()) { 1637 QualType pointeeTy = ty->getPointeeType(); 1638 1639 // Get address qualifier. 1640 addressQuals.push_back( 1641 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1642 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1643 1644 // Get argument type name. 1645 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1646 std::string baseTypeName = 1647 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1648 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1649 argBaseTypeNames.push_back( 1650 llvm::MDString::get(VMContext, baseTypeName)); 1651 1652 // Get argument type qualifiers: 1653 if (ty.isRestrictQualified()) 1654 typeQuals = "restrict"; 1655 if (pointeeTy.isConstQualified() || 1656 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1657 typeQuals += typeQuals.empty() ? "const" : " const"; 1658 if (pointeeTy.isVolatileQualified()) 1659 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1660 } else { 1661 uint32_t AddrSpc = 0; 1662 bool isPipe = ty->isPipeType(); 1663 if (ty->isImageType() || isPipe) 1664 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1665 1666 addressQuals.push_back( 1667 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1668 1669 // Get argument type name. 1670 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1671 std::string typeName = getTypeSpelling(ty); 1672 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1673 1674 // Remove access qualifiers on images 1675 // (as they are inseparable from type in clang implementation, 1676 // but OpenCL spec provides a special query to get access qualifier 1677 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1678 if (ty->isImageType()) { 1679 removeImageAccessQualifier(typeName); 1680 removeImageAccessQualifier(baseTypeName); 1681 } 1682 1683 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1684 argBaseTypeNames.push_back( 1685 llvm::MDString::get(VMContext, baseTypeName)); 1686 1687 if (isPipe) 1688 typeQuals = "pipe"; 1689 } 1690 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1691 } 1692 1693 Fn->setMetadata("kernel_arg_addr_space", 1694 llvm::MDNode::get(VMContext, addressQuals)); 1695 Fn->setMetadata("kernel_arg_access_qual", 1696 llvm::MDNode::get(VMContext, accessQuals)); 1697 Fn->setMetadata("kernel_arg_type", 1698 llvm::MDNode::get(VMContext, argTypeNames)); 1699 Fn->setMetadata("kernel_arg_base_type", 1700 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1701 Fn->setMetadata("kernel_arg_type_qual", 1702 llvm::MDNode::get(VMContext, argTypeQuals)); 1703 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1704 Fn->setMetadata("kernel_arg_name", 1705 llvm::MDNode::get(VMContext, argNames)); 1706 } 1707 1708 /// Determines whether the language options require us to model 1709 /// unwind exceptions. We treat -fexceptions as mandating this 1710 /// except under the fragile ObjC ABI with only ObjC exceptions 1711 /// enabled. This means, for example, that C with -fexceptions 1712 /// enables this. 1713 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1714 // If exceptions are completely disabled, obviously this is false. 1715 if (!LangOpts.Exceptions) return false; 1716 1717 // If C++ exceptions are enabled, this is true. 1718 if (LangOpts.CXXExceptions) return true; 1719 1720 // If ObjC exceptions are enabled, this depends on the ABI. 1721 if (LangOpts.ObjCExceptions) { 1722 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1723 } 1724 1725 return true; 1726 } 1727 1728 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1729 const CXXMethodDecl *MD) { 1730 // Check that the type metadata can ever actually be used by a call. 1731 if (!CGM.getCodeGenOpts().LTOUnit || 1732 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1733 return false; 1734 1735 // Only functions whose address can be taken with a member function pointer 1736 // need this sort of type metadata. 1737 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1738 !isa<CXXDestructorDecl>(MD); 1739 } 1740 1741 std::vector<const CXXRecordDecl *> 1742 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1743 llvm::SetVector<const CXXRecordDecl *> MostBases; 1744 1745 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1746 CollectMostBases = [&](const CXXRecordDecl *RD) { 1747 if (RD->getNumBases() == 0) 1748 MostBases.insert(RD); 1749 for (const CXXBaseSpecifier &B : RD->bases()) 1750 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1751 }; 1752 CollectMostBases(RD); 1753 return MostBases.takeVector(); 1754 } 1755 1756 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1757 llvm::Function *F) { 1758 llvm::AttrBuilder B; 1759 1760 if (CodeGenOpts.UnwindTables) 1761 B.addAttribute(llvm::Attribute::UWTable); 1762 1763 if (CodeGenOpts.StackClashProtector) 1764 B.addAttribute("probe-stack", "inline-asm"); 1765 1766 if (!hasUnwindExceptions(LangOpts)) 1767 B.addAttribute(llvm::Attribute::NoUnwind); 1768 1769 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1770 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1771 B.addAttribute(llvm::Attribute::StackProtect); 1772 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1773 B.addAttribute(llvm::Attribute::StackProtectStrong); 1774 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1775 B.addAttribute(llvm::Attribute::StackProtectReq); 1776 } 1777 1778 if (!D) { 1779 // If we don't have a declaration to control inlining, the function isn't 1780 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1781 // disabled, mark the function as noinline. 1782 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1783 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1784 B.addAttribute(llvm::Attribute::NoInline); 1785 1786 F->addFnAttrs(B); 1787 return; 1788 } 1789 1790 // Track whether we need to add the optnone LLVM attribute, 1791 // starting with the default for this optimization level. 1792 bool ShouldAddOptNone = 1793 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1794 // We can't add optnone in the following cases, it won't pass the verifier. 1795 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1796 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1797 1798 // Add optnone, but do so only if the function isn't always_inline. 1799 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1800 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1801 B.addAttribute(llvm::Attribute::OptimizeNone); 1802 1803 // OptimizeNone implies noinline; we should not be inlining such functions. 1804 B.addAttribute(llvm::Attribute::NoInline); 1805 1806 // We still need to handle naked functions even though optnone subsumes 1807 // much of their semantics. 1808 if (D->hasAttr<NakedAttr>()) 1809 B.addAttribute(llvm::Attribute::Naked); 1810 1811 // OptimizeNone wins over OptimizeForSize and MinSize. 1812 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1813 F->removeFnAttr(llvm::Attribute::MinSize); 1814 } else if (D->hasAttr<NakedAttr>()) { 1815 // Naked implies noinline: we should not be inlining such functions. 1816 B.addAttribute(llvm::Attribute::Naked); 1817 B.addAttribute(llvm::Attribute::NoInline); 1818 } else if (D->hasAttr<NoDuplicateAttr>()) { 1819 B.addAttribute(llvm::Attribute::NoDuplicate); 1820 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1821 // Add noinline if the function isn't always_inline. 1822 B.addAttribute(llvm::Attribute::NoInline); 1823 } else if (D->hasAttr<AlwaysInlineAttr>() && 1824 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1825 // (noinline wins over always_inline, and we can't specify both in IR) 1826 B.addAttribute(llvm::Attribute::AlwaysInline); 1827 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1828 // If we're not inlining, then force everything that isn't always_inline to 1829 // carry an explicit noinline attribute. 1830 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1831 B.addAttribute(llvm::Attribute::NoInline); 1832 } else { 1833 // Otherwise, propagate the inline hint attribute and potentially use its 1834 // absence to mark things as noinline. 1835 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1836 // Search function and template pattern redeclarations for inline. 1837 auto CheckForInline = [](const FunctionDecl *FD) { 1838 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1839 return Redecl->isInlineSpecified(); 1840 }; 1841 if (any_of(FD->redecls(), CheckRedeclForInline)) 1842 return true; 1843 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1844 if (!Pattern) 1845 return false; 1846 return any_of(Pattern->redecls(), CheckRedeclForInline); 1847 }; 1848 if (CheckForInline(FD)) { 1849 B.addAttribute(llvm::Attribute::InlineHint); 1850 } else if (CodeGenOpts.getInlining() == 1851 CodeGenOptions::OnlyHintInlining && 1852 !FD->isInlined() && 1853 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1854 B.addAttribute(llvm::Attribute::NoInline); 1855 } 1856 } 1857 } 1858 1859 // Add other optimization related attributes if we are optimizing this 1860 // function. 1861 if (!D->hasAttr<OptimizeNoneAttr>()) { 1862 if (D->hasAttr<ColdAttr>()) { 1863 if (!ShouldAddOptNone) 1864 B.addAttribute(llvm::Attribute::OptimizeForSize); 1865 B.addAttribute(llvm::Attribute::Cold); 1866 } 1867 if (D->hasAttr<HotAttr>()) 1868 B.addAttribute(llvm::Attribute::Hot); 1869 if (D->hasAttr<MinSizeAttr>()) 1870 B.addAttribute(llvm::Attribute::MinSize); 1871 } 1872 1873 F->addFnAttrs(B); 1874 1875 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1876 if (alignment) 1877 F->setAlignment(llvm::Align(alignment)); 1878 1879 if (!D->hasAttr<AlignedAttr>()) 1880 if (LangOpts.FunctionAlignment) 1881 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1882 1883 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1884 // reserve a bit for differentiating between virtual and non-virtual member 1885 // functions. If the current target's C++ ABI requires this and this is a 1886 // member function, set its alignment accordingly. 1887 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1888 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1889 F->setAlignment(llvm::Align(2)); 1890 } 1891 1892 // In the cross-dso CFI mode with canonical jump tables, we want !type 1893 // attributes on definitions only. 1894 if (CodeGenOpts.SanitizeCfiCrossDso && 1895 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1896 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1897 // Skip available_externally functions. They won't be codegen'ed in the 1898 // current module anyway. 1899 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1900 CreateFunctionTypeMetadataForIcall(FD, F); 1901 } 1902 } 1903 1904 // Emit type metadata on member functions for member function pointer checks. 1905 // These are only ever necessary on definitions; we're guaranteed that the 1906 // definition will be present in the LTO unit as a result of LTO visibility. 1907 auto *MD = dyn_cast<CXXMethodDecl>(D); 1908 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1909 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1910 llvm::Metadata *Id = 1911 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1912 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1913 F->addTypeMetadata(0, Id); 1914 } 1915 } 1916 } 1917 1918 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1919 llvm::Function *F) { 1920 if (D->hasAttr<StrictFPAttr>()) { 1921 llvm::AttrBuilder FuncAttrs; 1922 FuncAttrs.addAttribute("strictfp"); 1923 F->addFnAttrs(FuncAttrs); 1924 } 1925 } 1926 1927 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1928 const Decl *D = GD.getDecl(); 1929 if (dyn_cast_or_null<NamedDecl>(D)) 1930 setGVProperties(GV, GD); 1931 else 1932 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1933 1934 if (D && D->hasAttr<UsedAttr>()) 1935 addUsedOrCompilerUsedGlobal(GV); 1936 1937 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1938 const auto *VD = cast<VarDecl>(D); 1939 if (VD->getType().isConstQualified() && 1940 VD->getStorageDuration() == SD_Static) 1941 addUsedOrCompilerUsedGlobal(GV); 1942 } 1943 } 1944 1945 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1946 llvm::AttrBuilder &Attrs) { 1947 // Add target-cpu and target-features attributes to functions. If 1948 // we have a decl for the function and it has a target attribute then 1949 // parse that and add it to the feature set. 1950 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1951 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1952 std::vector<std::string> Features; 1953 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1954 FD = FD ? FD->getMostRecentDecl() : FD; 1955 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1956 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1957 bool AddedAttr = false; 1958 if (TD || SD) { 1959 llvm::StringMap<bool> FeatureMap; 1960 getContext().getFunctionFeatureMap(FeatureMap, GD); 1961 1962 // Produce the canonical string for this set of features. 1963 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1964 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1965 1966 // Now add the target-cpu and target-features to the function. 1967 // While we populated the feature map above, we still need to 1968 // get and parse the target attribute so we can get the cpu for 1969 // the function. 1970 if (TD) { 1971 ParsedTargetAttr ParsedAttr = TD->parse(); 1972 if (!ParsedAttr.Architecture.empty() && 1973 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1974 TargetCPU = ParsedAttr.Architecture; 1975 TuneCPU = ""; // Clear the tune CPU. 1976 } 1977 if (!ParsedAttr.Tune.empty() && 1978 getTarget().isValidCPUName(ParsedAttr.Tune)) 1979 TuneCPU = ParsedAttr.Tune; 1980 } 1981 } else { 1982 // Otherwise just add the existing target cpu and target features to the 1983 // function. 1984 Features = getTarget().getTargetOpts().Features; 1985 } 1986 1987 if (!TargetCPU.empty()) { 1988 Attrs.addAttribute("target-cpu", TargetCPU); 1989 AddedAttr = true; 1990 } 1991 if (!TuneCPU.empty()) { 1992 Attrs.addAttribute("tune-cpu", TuneCPU); 1993 AddedAttr = true; 1994 } 1995 if (!Features.empty()) { 1996 llvm::sort(Features); 1997 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1998 AddedAttr = true; 1999 } 2000 2001 return AddedAttr; 2002 } 2003 2004 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2005 llvm::GlobalObject *GO) { 2006 const Decl *D = GD.getDecl(); 2007 SetCommonAttributes(GD, GO); 2008 2009 if (D) { 2010 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2011 if (D->hasAttr<RetainAttr>()) 2012 addUsedGlobal(GV); 2013 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2014 GV->addAttribute("bss-section", SA->getName()); 2015 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2016 GV->addAttribute("data-section", SA->getName()); 2017 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2018 GV->addAttribute("rodata-section", SA->getName()); 2019 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2020 GV->addAttribute("relro-section", SA->getName()); 2021 } 2022 2023 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2024 if (D->hasAttr<RetainAttr>()) 2025 addUsedGlobal(F); 2026 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2027 if (!D->getAttr<SectionAttr>()) 2028 F->addFnAttr("implicit-section-name", SA->getName()); 2029 2030 llvm::AttrBuilder Attrs; 2031 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2032 // We know that GetCPUAndFeaturesAttributes will always have the 2033 // newest set, since it has the newest possible FunctionDecl, so the 2034 // new ones should replace the old. 2035 llvm::AttrBuilder RemoveAttrs; 2036 RemoveAttrs.addAttribute("target-cpu"); 2037 RemoveAttrs.addAttribute("target-features"); 2038 RemoveAttrs.addAttribute("tune-cpu"); 2039 F->removeFnAttrs(RemoveAttrs); 2040 F->addFnAttrs(Attrs); 2041 } 2042 } 2043 2044 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2045 GO->setSection(CSA->getName()); 2046 else if (const auto *SA = D->getAttr<SectionAttr>()) 2047 GO->setSection(SA->getName()); 2048 } 2049 2050 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2051 } 2052 2053 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2054 llvm::Function *F, 2055 const CGFunctionInfo &FI) { 2056 const Decl *D = GD.getDecl(); 2057 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2058 SetLLVMFunctionAttributesForDefinition(D, F); 2059 2060 F->setLinkage(llvm::Function::InternalLinkage); 2061 2062 setNonAliasAttributes(GD, F); 2063 } 2064 2065 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2066 // Set linkage and visibility in case we never see a definition. 2067 LinkageInfo LV = ND->getLinkageAndVisibility(); 2068 // Don't set internal linkage on declarations. 2069 // "extern_weak" is overloaded in LLVM; we probably should have 2070 // separate linkage types for this. 2071 if (isExternallyVisible(LV.getLinkage()) && 2072 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2073 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2074 } 2075 2076 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2077 llvm::Function *F) { 2078 // Only if we are checking indirect calls. 2079 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2080 return; 2081 2082 // Non-static class methods are handled via vtable or member function pointer 2083 // checks elsewhere. 2084 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2085 return; 2086 2087 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2088 F->addTypeMetadata(0, MD); 2089 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2090 2091 // Emit a hash-based bit set entry for cross-DSO calls. 2092 if (CodeGenOpts.SanitizeCfiCrossDso) 2093 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2094 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2095 } 2096 2097 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2098 bool IsIncompleteFunction, 2099 bool IsThunk) { 2100 2101 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2102 // If this is an intrinsic function, set the function's attributes 2103 // to the intrinsic's attributes. 2104 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2105 return; 2106 } 2107 2108 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2109 2110 if (!IsIncompleteFunction) 2111 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2112 IsThunk); 2113 2114 // Add the Returned attribute for "this", except for iOS 5 and earlier 2115 // where substantial code, including the libstdc++ dylib, was compiled with 2116 // GCC and does not actually return "this". 2117 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2118 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2119 assert(!F->arg_empty() && 2120 F->arg_begin()->getType() 2121 ->canLosslesslyBitCastTo(F->getReturnType()) && 2122 "unexpected this return"); 2123 F->addParamAttr(0, llvm::Attribute::Returned); 2124 } 2125 2126 // Only a few attributes are set on declarations; these may later be 2127 // overridden by a definition. 2128 2129 setLinkageForGV(F, FD); 2130 setGVProperties(F, FD); 2131 2132 // Setup target-specific attributes. 2133 if (!IsIncompleteFunction && F->isDeclaration()) 2134 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2135 2136 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2137 F->setSection(CSA->getName()); 2138 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2139 F->setSection(SA->getName()); 2140 2141 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2142 if (EA->isError()) 2143 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2144 else if (EA->isWarning()) 2145 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2146 } 2147 2148 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2149 if (FD->isInlineBuiltinDeclaration()) { 2150 const FunctionDecl *FDBody; 2151 bool HasBody = FD->hasBody(FDBody); 2152 (void)HasBody; 2153 assert(HasBody && "Inline builtin declarations should always have an " 2154 "available body!"); 2155 if (shouldEmitFunction(FDBody)) 2156 F->addFnAttr(llvm::Attribute::NoBuiltin); 2157 } 2158 2159 if (FD->isReplaceableGlobalAllocationFunction()) { 2160 // A replaceable global allocation function does not act like a builtin by 2161 // default, only if it is invoked by a new-expression or delete-expression. 2162 F->addFnAttr(llvm::Attribute::NoBuiltin); 2163 } 2164 2165 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2166 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2167 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2168 if (MD->isVirtual()) 2169 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2170 2171 // Don't emit entries for function declarations in the cross-DSO mode. This 2172 // is handled with better precision by the receiving DSO. But if jump tables 2173 // are non-canonical then we need type metadata in order to produce the local 2174 // jump table. 2175 if (!CodeGenOpts.SanitizeCfiCrossDso || 2176 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2177 CreateFunctionTypeMetadataForIcall(FD, F); 2178 2179 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2180 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2181 2182 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2183 // Annotate the callback behavior as metadata: 2184 // - The callback callee (as argument number). 2185 // - The callback payloads (as argument numbers). 2186 llvm::LLVMContext &Ctx = F->getContext(); 2187 llvm::MDBuilder MDB(Ctx); 2188 2189 // The payload indices are all but the first one in the encoding. The first 2190 // identifies the callback callee. 2191 int CalleeIdx = *CB->encoding_begin(); 2192 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2193 F->addMetadata(llvm::LLVMContext::MD_callback, 2194 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2195 CalleeIdx, PayloadIndices, 2196 /* VarArgsArePassed */ false)})); 2197 } 2198 } 2199 2200 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2201 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2202 "Only globals with definition can force usage."); 2203 LLVMUsed.emplace_back(GV); 2204 } 2205 2206 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2207 assert(!GV->isDeclaration() && 2208 "Only globals with definition can force usage."); 2209 LLVMCompilerUsed.emplace_back(GV); 2210 } 2211 2212 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2213 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2214 "Only globals with definition can force usage."); 2215 if (getTriple().isOSBinFormatELF()) 2216 LLVMCompilerUsed.emplace_back(GV); 2217 else 2218 LLVMUsed.emplace_back(GV); 2219 } 2220 2221 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2222 std::vector<llvm::WeakTrackingVH> &List) { 2223 // Don't create llvm.used if there is no need. 2224 if (List.empty()) 2225 return; 2226 2227 // Convert List to what ConstantArray needs. 2228 SmallVector<llvm::Constant*, 8> UsedArray; 2229 UsedArray.resize(List.size()); 2230 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2231 UsedArray[i] = 2232 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2233 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2234 } 2235 2236 if (UsedArray.empty()) 2237 return; 2238 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2239 2240 auto *GV = new llvm::GlobalVariable( 2241 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2242 llvm::ConstantArray::get(ATy, UsedArray), Name); 2243 2244 GV->setSection("llvm.metadata"); 2245 } 2246 2247 void CodeGenModule::emitLLVMUsed() { 2248 emitUsed(*this, "llvm.used", LLVMUsed); 2249 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2250 } 2251 2252 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2253 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2254 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2255 } 2256 2257 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2258 llvm::SmallString<32> Opt; 2259 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2260 if (Opt.empty()) 2261 return; 2262 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2263 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2264 } 2265 2266 void CodeGenModule::AddDependentLib(StringRef Lib) { 2267 auto &C = getLLVMContext(); 2268 if (getTarget().getTriple().isOSBinFormatELF()) { 2269 ELFDependentLibraries.push_back( 2270 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2271 return; 2272 } 2273 2274 llvm::SmallString<24> Opt; 2275 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2276 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2277 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2278 } 2279 2280 /// Add link options implied by the given module, including modules 2281 /// it depends on, using a postorder walk. 2282 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2283 SmallVectorImpl<llvm::MDNode *> &Metadata, 2284 llvm::SmallPtrSet<Module *, 16> &Visited) { 2285 // Import this module's parent. 2286 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2287 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2288 } 2289 2290 // Import this module's dependencies. 2291 for (Module *Import : llvm::reverse(Mod->Imports)) { 2292 if (Visited.insert(Import).second) 2293 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2294 } 2295 2296 // Add linker options to link against the libraries/frameworks 2297 // described by this module. 2298 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2299 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2300 2301 // For modules that use export_as for linking, use that module 2302 // name instead. 2303 if (Mod->UseExportAsModuleLinkName) 2304 return; 2305 2306 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2307 // Link against a framework. Frameworks are currently Darwin only, so we 2308 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2309 if (LL.IsFramework) { 2310 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2311 llvm::MDString::get(Context, LL.Library)}; 2312 2313 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2314 continue; 2315 } 2316 2317 // Link against a library. 2318 if (IsELF) { 2319 llvm::Metadata *Args[2] = { 2320 llvm::MDString::get(Context, "lib"), 2321 llvm::MDString::get(Context, LL.Library), 2322 }; 2323 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2324 } else { 2325 llvm::SmallString<24> Opt; 2326 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2327 auto *OptString = llvm::MDString::get(Context, Opt); 2328 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2329 } 2330 } 2331 } 2332 2333 void CodeGenModule::EmitModuleLinkOptions() { 2334 // Collect the set of all of the modules we want to visit to emit link 2335 // options, which is essentially the imported modules and all of their 2336 // non-explicit child modules. 2337 llvm::SetVector<clang::Module *> LinkModules; 2338 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2339 SmallVector<clang::Module *, 16> Stack; 2340 2341 // Seed the stack with imported modules. 2342 for (Module *M : ImportedModules) { 2343 // Do not add any link flags when an implementation TU of a module imports 2344 // a header of that same module. 2345 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2346 !getLangOpts().isCompilingModule()) 2347 continue; 2348 if (Visited.insert(M).second) 2349 Stack.push_back(M); 2350 } 2351 2352 // Find all of the modules to import, making a little effort to prune 2353 // non-leaf modules. 2354 while (!Stack.empty()) { 2355 clang::Module *Mod = Stack.pop_back_val(); 2356 2357 bool AnyChildren = false; 2358 2359 // Visit the submodules of this module. 2360 for (const auto &SM : Mod->submodules()) { 2361 // Skip explicit children; they need to be explicitly imported to be 2362 // linked against. 2363 if (SM->IsExplicit) 2364 continue; 2365 2366 if (Visited.insert(SM).second) { 2367 Stack.push_back(SM); 2368 AnyChildren = true; 2369 } 2370 } 2371 2372 // We didn't find any children, so add this module to the list of 2373 // modules to link against. 2374 if (!AnyChildren) { 2375 LinkModules.insert(Mod); 2376 } 2377 } 2378 2379 // Add link options for all of the imported modules in reverse topological 2380 // order. We don't do anything to try to order import link flags with respect 2381 // to linker options inserted by things like #pragma comment(). 2382 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2383 Visited.clear(); 2384 for (Module *M : LinkModules) 2385 if (Visited.insert(M).second) 2386 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2387 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2388 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2389 2390 // Add the linker options metadata flag. 2391 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2392 for (auto *MD : LinkerOptionsMetadata) 2393 NMD->addOperand(MD); 2394 } 2395 2396 void CodeGenModule::EmitDeferred() { 2397 // Emit deferred declare target declarations. 2398 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2399 getOpenMPRuntime().emitDeferredTargetDecls(); 2400 2401 // Emit code for any potentially referenced deferred decls. Since a 2402 // previously unused static decl may become used during the generation of code 2403 // for a static function, iterate until no changes are made. 2404 2405 if (!DeferredVTables.empty()) { 2406 EmitDeferredVTables(); 2407 2408 // Emitting a vtable doesn't directly cause more vtables to 2409 // become deferred, although it can cause functions to be 2410 // emitted that then need those vtables. 2411 assert(DeferredVTables.empty()); 2412 } 2413 2414 // Emit CUDA/HIP static device variables referenced by host code only. 2415 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2416 // needed for further handling. 2417 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2418 for (const auto *V : getContext().CUDADeviceVarODRUsedByHost) 2419 DeferredDeclsToEmit.push_back(V); 2420 2421 // Stop if we're out of both deferred vtables and deferred declarations. 2422 if (DeferredDeclsToEmit.empty()) 2423 return; 2424 2425 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2426 // work, it will not interfere with this. 2427 std::vector<GlobalDecl> CurDeclsToEmit; 2428 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2429 2430 for (GlobalDecl &D : CurDeclsToEmit) { 2431 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2432 // to get GlobalValue with exactly the type we need, not something that 2433 // might had been created for another decl with the same mangled name but 2434 // different type. 2435 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2436 GetAddrOfGlobal(D, ForDefinition)); 2437 2438 // In case of different address spaces, we may still get a cast, even with 2439 // IsForDefinition equal to true. Query mangled names table to get 2440 // GlobalValue. 2441 if (!GV) 2442 GV = GetGlobalValue(getMangledName(D)); 2443 2444 // Make sure GetGlobalValue returned non-null. 2445 assert(GV); 2446 2447 // Check to see if we've already emitted this. This is necessary 2448 // for a couple of reasons: first, decls can end up in the 2449 // deferred-decls queue multiple times, and second, decls can end 2450 // up with definitions in unusual ways (e.g. by an extern inline 2451 // function acquiring a strong function redefinition). Just 2452 // ignore these cases. 2453 if (!GV->isDeclaration()) 2454 continue; 2455 2456 // If this is OpenMP, check if it is legal to emit this global normally. 2457 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2458 continue; 2459 2460 // Otherwise, emit the definition and move on to the next one. 2461 EmitGlobalDefinition(D, GV); 2462 2463 // If we found out that we need to emit more decls, do that recursively. 2464 // This has the advantage that the decls are emitted in a DFS and related 2465 // ones are close together, which is convenient for testing. 2466 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2467 EmitDeferred(); 2468 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2469 } 2470 } 2471 } 2472 2473 void CodeGenModule::EmitVTablesOpportunistically() { 2474 // Try to emit external vtables as available_externally if they have emitted 2475 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2476 // is not allowed to create new references to things that need to be emitted 2477 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2478 2479 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2480 && "Only emit opportunistic vtables with optimizations"); 2481 2482 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2483 assert(getVTables().isVTableExternal(RD) && 2484 "This queue should only contain external vtables"); 2485 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2486 VTables.GenerateClassData(RD); 2487 } 2488 OpportunisticVTables.clear(); 2489 } 2490 2491 void CodeGenModule::EmitGlobalAnnotations() { 2492 if (Annotations.empty()) 2493 return; 2494 2495 // Create a new global variable for the ConstantStruct in the Module. 2496 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2497 Annotations[0]->getType(), Annotations.size()), Annotations); 2498 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2499 llvm::GlobalValue::AppendingLinkage, 2500 Array, "llvm.global.annotations"); 2501 gv->setSection(AnnotationSection); 2502 } 2503 2504 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2505 llvm::Constant *&AStr = AnnotationStrings[Str]; 2506 if (AStr) 2507 return AStr; 2508 2509 // Not found yet, create a new global. 2510 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2511 auto *gv = 2512 new llvm::GlobalVariable(getModule(), s->getType(), true, 2513 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2514 gv->setSection(AnnotationSection); 2515 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2516 AStr = gv; 2517 return gv; 2518 } 2519 2520 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2521 SourceManager &SM = getContext().getSourceManager(); 2522 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2523 if (PLoc.isValid()) 2524 return EmitAnnotationString(PLoc.getFilename()); 2525 return EmitAnnotationString(SM.getBufferName(Loc)); 2526 } 2527 2528 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2529 SourceManager &SM = getContext().getSourceManager(); 2530 PresumedLoc PLoc = SM.getPresumedLoc(L); 2531 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2532 SM.getExpansionLineNumber(L); 2533 return llvm::ConstantInt::get(Int32Ty, LineNo); 2534 } 2535 2536 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2537 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2538 if (Exprs.empty()) 2539 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2540 2541 llvm::FoldingSetNodeID ID; 2542 for (Expr *E : Exprs) { 2543 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2544 } 2545 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2546 if (Lookup) 2547 return Lookup; 2548 2549 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2550 LLVMArgs.reserve(Exprs.size()); 2551 ConstantEmitter ConstEmiter(*this); 2552 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2553 const auto *CE = cast<clang::ConstantExpr>(E); 2554 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2555 CE->getType()); 2556 }); 2557 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2558 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2559 llvm::GlobalValue::PrivateLinkage, Struct, 2560 ".args"); 2561 GV->setSection(AnnotationSection); 2562 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2563 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2564 2565 Lookup = Bitcasted; 2566 return Bitcasted; 2567 } 2568 2569 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2570 const AnnotateAttr *AA, 2571 SourceLocation L) { 2572 // Get the globals for file name, annotation, and the line number. 2573 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2574 *UnitGV = EmitAnnotationUnit(L), 2575 *LineNoCst = EmitAnnotationLineNo(L), 2576 *Args = EmitAnnotationArgs(AA); 2577 2578 llvm::Constant *GVInGlobalsAS = GV; 2579 if (GV->getAddressSpace() != 2580 getDataLayout().getDefaultGlobalsAddressSpace()) { 2581 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2582 GV, GV->getValueType()->getPointerTo( 2583 getDataLayout().getDefaultGlobalsAddressSpace())); 2584 } 2585 2586 // Create the ConstantStruct for the global annotation. 2587 llvm::Constant *Fields[] = { 2588 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2589 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2590 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2591 LineNoCst, 2592 Args, 2593 }; 2594 return llvm::ConstantStruct::getAnon(Fields); 2595 } 2596 2597 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2598 llvm::GlobalValue *GV) { 2599 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2600 // Get the struct elements for these annotations. 2601 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2602 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2603 } 2604 2605 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2606 SourceLocation Loc) const { 2607 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2608 // NoSanitize by function name. 2609 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2610 return true; 2611 // NoSanitize by location. 2612 if (Loc.isValid()) 2613 return NoSanitizeL.containsLocation(Kind, Loc); 2614 // If location is unknown, this may be a compiler-generated function. Assume 2615 // it's located in the main file. 2616 auto &SM = Context.getSourceManager(); 2617 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2618 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2619 } 2620 return false; 2621 } 2622 2623 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2624 SourceLocation Loc, QualType Ty, 2625 StringRef Category) const { 2626 // For now globals can be ignored only in ASan and KASan. 2627 const SanitizerMask EnabledAsanMask = 2628 LangOpts.Sanitize.Mask & 2629 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2630 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2631 SanitizerKind::MemTag); 2632 if (!EnabledAsanMask) 2633 return false; 2634 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2635 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2636 return true; 2637 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2638 return true; 2639 // Check global type. 2640 if (!Ty.isNull()) { 2641 // Drill down the array types: if global variable of a fixed type is 2642 // not sanitized, we also don't instrument arrays of them. 2643 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2644 Ty = AT->getElementType(); 2645 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2646 // Only record types (classes, structs etc.) are ignored. 2647 if (Ty->isRecordType()) { 2648 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2649 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2650 return true; 2651 } 2652 } 2653 return false; 2654 } 2655 2656 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2657 StringRef Category) const { 2658 const auto &XRayFilter = getContext().getXRayFilter(); 2659 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2660 auto Attr = ImbueAttr::NONE; 2661 if (Loc.isValid()) 2662 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2663 if (Attr == ImbueAttr::NONE) 2664 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2665 switch (Attr) { 2666 case ImbueAttr::NONE: 2667 return false; 2668 case ImbueAttr::ALWAYS: 2669 Fn->addFnAttr("function-instrument", "xray-always"); 2670 break; 2671 case ImbueAttr::ALWAYS_ARG1: 2672 Fn->addFnAttr("function-instrument", "xray-always"); 2673 Fn->addFnAttr("xray-log-args", "1"); 2674 break; 2675 case ImbueAttr::NEVER: 2676 Fn->addFnAttr("function-instrument", "xray-never"); 2677 break; 2678 } 2679 return true; 2680 } 2681 2682 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2683 SourceLocation Loc) const { 2684 const auto &ProfileList = getContext().getProfileList(); 2685 // If the profile list is empty, then instrument everything. 2686 if (ProfileList.isEmpty()) 2687 return false; 2688 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2689 // First, check the function name. 2690 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2691 if (V.hasValue()) 2692 return *V; 2693 // Next, check the source location. 2694 if (Loc.isValid()) { 2695 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2696 if (V.hasValue()) 2697 return *V; 2698 } 2699 // If location is unknown, this may be a compiler-generated function. Assume 2700 // it's located in the main file. 2701 auto &SM = Context.getSourceManager(); 2702 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2703 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2704 if (V.hasValue()) 2705 return *V; 2706 } 2707 return ProfileList.getDefault(); 2708 } 2709 2710 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2711 // Never defer when EmitAllDecls is specified. 2712 if (LangOpts.EmitAllDecls) 2713 return true; 2714 2715 if (CodeGenOpts.KeepStaticConsts) { 2716 const auto *VD = dyn_cast<VarDecl>(Global); 2717 if (VD && VD->getType().isConstQualified() && 2718 VD->getStorageDuration() == SD_Static) 2719 return true; 2720 } 2721 2722 return getContext().DeclMustBeEmitted(Global); 2723 } 2724 2725 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2726 // In OpenMP 5.0 variables and function may be marked as 2727 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2728 // that they must be emitted on the host/device. To be sure we need to have 2729 // seen a declare target with an explicit mentioning of the function, we know 2730 // we have if the level of the declare target attribute is -1. Note that we 2731 // check somewhere else if we should emit this at all. 2732 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2733 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2734 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2735 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2736 return false; 2737 } 2738 2739 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2740 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2741 // Implicit template instantiations may change linkage if they are later 2742 // explicitly instantiated, so they should not be emitted eagerly. 2743 return false; 2744 } 2745 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2746 if (Context.getInlineVariableDefinitionKind(VD) == 2747 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2748 // A definition of an inline constexpr static data member may change 2749 // linkage later if it's redeclared outside the class. 2750 return false; 2751 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2752 // codegen for global variables, because they may be marked as threadprivate. 2753 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2754 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2755 !isTypeConstant(Global->getType(), false) && 2756 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2757 return false; 2758 2759 return true; 2760 } 2761 2762 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2763 StringRef Name = getMangledName(GD); 2764 2765 // The UUID descriptor should be pointer aligned. 2766 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2767 2768 // Look for an existing global. 2769 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2770 return ConstantAddress(GV, Alignment); 2771 2772 ConstantEmitter Emitter(*this); 2773 llvm::Constant *Init; 2774 2775 APValue &V = GD->getAsAPValue(); 2776 if (!V.isAbsent()) { 2777 // If possible, emit the APValue version of the initializer. In particular, 2778 // this gets the type of the constant right. 2779 Init = Emitter.emitForInitializer( 2780 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2781 } else { 2782 // As a fallback, directly construct the constant. 2783 // FIXME: This may get padding wrong under esoteric struct layout rules. 2784 // MSVC appears to create a complete type 'struct __s_GUID' that it 2785 // presumably uses to represent these constants. 2786 MSGuidDecl::Parts Parts = GD->getParts(); 2787 llvm::Constant *Fields[4] = { 2788 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2789 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2790 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2791 llvm::ConstantDataArray::getRaw( 2792 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2793 Int8Ty)}; 2794 Init = llvm::ConstantStruct::getAnon(Fields); 2795 } 2796 2797 auto *GV = new llvm::GlobalVariable( 2798 getModule(), Init->getType(), 2799 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2800 if (supportsCOMDAT()) 2801 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2802 setDSOLocal(GV); 2803 2804 llvm::Constant *Addr = GV; 2805 if (!V.isAbsent()) { 2806 Emitter.finalize(GV); 2807 } else { 2808 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2809 Addr = llvm::ConstantExpr::getBitCast( 2810 GV, Ty->getPointerTo(GV->getAddressSpace())); 2811 } 2812 return ConstantAddress(Addr, Alignment); 2813 } 2814 2815 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2816 const TemplateParamObjectDecl *TPO) { 2817 StringRef Name = getMangledName(TPO); 2818 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2819 2820 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2821 return ConstantAddress(GV, Alignment); 2822 2823 ConstantEmitter Emitter(*this); 2824 llvm::Constant *Init = Emitter.emitForInitializer( 2825 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2826 2827 if (!Init) { 2828 ErrorUnsupported(TPO, "template parameter object"); 2829 return ConstantAddress::invalid(); 2830 } 2831 2832 auto *GV = new llvm::GlobalVariable( 2833 getModule(), Init->getType(), 2834 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2835 if (supportsCOMDAT()) 2836 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2837 Emitter.finalize(GV); 2838 2839 return ConstantAddress(GV, Alignment); 2840 } 2841 2842 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2843 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2844 assert(AA && "No alias?"); 2845 2846 CharUnits Alignment = getContext().getDeclAlign(VD); 2847 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2848 2849 // See if there is already something with the target's name in the module. 2850 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2851 if (Entry) { 2852 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2853 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2854 return ConstantAddress(Ptr, Alignment); 2855 } 2856 2857 llvm::Constant *Aliasee; 2858 if (isa<llvm::FunctionType>(DeclTy)) 2859 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2860 GlobalDecl(cast<FunctionDecl>(VD)), 2861 /*ForVTable=*/false); 2862 else 2863 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 2864 nullptr); 2865 2866 auto *F = cast<llvm::GlobalValue>(Aliasee); 2867 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2868 WeakRefReferences.insert(F); 2869 2870 return ConstantAddress(Aliasee, Alignment); 2871 } 2872 2873 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2874 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2875 2876 // Weak references don't produce any output by themselves. 2877 if (Global->hasAttr<WeakRefAttr>()) 2878 return; 2879 2880 // If this is an alias definition (which otherwise looks like a declaration) 2881 // emit it now. 2882 if (Global->hasAttr<AliasAttr>()) 2883 return EmitAliasDefinition(GD); 2884 2885 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2886 if (Global->hasAttr<IFuncAttr>()) 2887 return emitIFuncDefinition(GD); 2888 2889 // If this is a cpu_dispatch multiversion function, emit the resolver. 2890 if (Global->hasAttr<CPUDispatchAttr>()) 2891 return emitCPUDispatchDefinition(GD); 2892 2893 // If this is CUDA, be selective about which declarations we emit. 2894 if (LangOpts.CUDA) { 2895 if (LangOpts.CUDAIsDevice) { 2896 if (!Global->hasAttr<CUDADeviceAttr>() && 2897 !Global->hasAttr<CUDAGlobalAttr>() && 2898 !Global->hasAttr<CUDAConstantAttr>() && 2899 !Global->hasAttr<CUDASharedAttr>() && 2900 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2901 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2902 return; 2903 } else { 2904 // We need to emit host-side 'shadows' for all global 2905 // device-side variables because the CUDA runtime needs their 2906 // size and host-side address in order to provide access to 2907 // their device-side incarnations. 2908 2909 // So device-only functions are the only things we skip. 2910 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2911 Global->hasAttr<CUDADeviceAttr>()) 2912 return; 2913 2914 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2915 "Expected Variable or Function"); 2916 } 2917 } 2918 2919 if (LangOpts.OpenMP) { 2920 // If this is OpenMP, check if it is legal to emit this global normally. 2921 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2922 return; 2923 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2924 if (MustBeEmitted(Global)) 2925 EmitOMPDeclareReduction(DRD); 2926 return; 2927 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2928 if (MustBeEmitted(Global)) 2929 EmitOMPDeclareMapper(DMD); 2930 return; 2931 } 2932 } 2933 2934 // Ignore declarations, they will be emitted on their first use. 2935 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2936 // Forward declarations are emitted lazily on first use. 2937 if (!FD->doesThisDeclarationHaveABody()) { 2938 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2939 return; 2940 2941 StringRef MangledName = getMangledName(GD); 2942 2943 // Compute the function info and LLVM type. 2944 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2945 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2946 2947 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2948 /*DontDefer=*/false); 2949 return; 2950 } 2951 } else { 2952 const auto *VD = cast<VarDecl>(Global); 2953 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2954 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2955 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2956 if (LangOpts.OpenMP) { 2957 // Emit declaration of the must-be-emitted declare target variable. 2958 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2959 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2960 bool UnifiedMemoryEnabled = 2961 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2962 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2963 !UnifiedMemoryEnabled) { 2964 (void)GetAddrOfGlobalVar(VD); 2965 } else { 2966 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2967 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2968 UnifiedMemoryEnabled)) && 2969 "Link clause or to clause with unified memory expected."); 2970 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2971 } 2972 2973 return; 2974 } 2975 } 2976 // If this declaration may have caused an inline variable definition to 2977 // change linkage, make sure that it's emitted. 2978 if (Context.getInlineVariableDefinitionKind(VD) == 2979 ASTContext::InlineVariableDefinitionKind::Strong) 2980 GetAddrOfGlobalVar(VD); 2981 return; 2982 } 2983 } 2984 2985 // Defer code generation to first use when possible, e.g. if this is an inline 2986 // function. If the global must always be emitted, do it eagerly if possible 2987 // to benefit from cache locality. 2988 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2989 // Emit the definition if it can't be deferred. 2990 EmitGlobalDefinition(GD); 2991 return; 2992 } 2993 2994 // If we're deferring emission of a C++ variable with an 2995 // initializer, remember the order in which it appeared in the file. 2996 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2997 cast<VarDecl>(Global)->hasInit()) { 2998 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2999 CXXGlobalInits.push_back(nullptr); 3000 } 3001 3002 StringRef MangledName = getMangledName(GD); 3003 if (GetGlobalValue(MangledName) != nullptr) { 3004 // The value has already been used and should therefore be emitted. 3005 addDeferredDeclToEmit(GD); 3006 } else if (MustBeEmitted(Global)) { 3007 // The value must be emitted, but cannot be emitted eagerly. 3008 assert(!MayBeEmittedEagerly(Global)); 3009 addDeferredDeclToEmit(GD); 3010 } else { 3011 // Otherwise, remember that we saw a deferred decl with this name. The 3012 // first use of the mangled name will cause it to move into 3013 // DeferredDeclsToEmit. 3014 DeferredDecls[MangledName] = GD; 3015 } 3016 } 3017 3018 // Check if T is a class type with a destructor that's not dllimport. 3019 static bool HasNonDllImportDtor(QualType T) { 3020 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3021 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3022 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3023 return true; 3024 3025 return false; 3026 } 3027 3028 namespace { 3029 struct FunctionIsDirectlyRecursive 3030 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3031 const StringRef Name; 3032 const Builtin::Context &BI; 3033 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3034 : Name(N), BI(C) {} 3035 3036 bool VisitCallExpr(const CallExpr *E) { 3037 const FunctionDecl *FD = E->getDirectCallee(); 3038 if (!FD) 3039 return false; 3040 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3041 if (Attr && Name == Attr->getLabel()) 3042 return true; 3043 unsigned BuiltinID = FD->getBuiltinID(); 3044 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3045 return false; 3046 StringRef BuiltinName = BI.getName(BuiltinID); 3047 if (BuiltinName.startswith("__builtin_") && 3048 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3049 return true; 3050 } 3051 return false; 3052 } 3053 3054 bool VisitStmt(const Stmt *S) { 3055 for (const Stmt *Child : S->children()) 3056 if (Child && this->Visit(Child)) 3057 return true; 3058 return false; 3059 } 3060 }; 3061 3062 // Make sure we're not referencing non-imported vars or functions. 3063 struct DLLImportFunctionVisitor 3064 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3065 bool SafeToInline = true; 3066 3067 bool shouldVisitImplicitCode() const { return true; } 3068 3069 bool VisitVarDecl(VarDecl *VD) { 3070 if (VD->getTLSKind()) { 3071 // A thread-local variable cannot be imported. 3072 SafeToInline = false; 3073 return SafeToInline; 3074 } 3075 3076 // A variable definition might imply a destructor call. 3077 if (VD->isThisDeclarationADefinition()) 3078 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3079 3080 return SafeToInline; 3081 } 3082 3083 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3084 if (const auto *D = E->getTemporary()->getDestructor()) 3085 SafeToInline = D->hasAttr<DLLImportAttr>(); 3086 return SafeToInline; 3087 } 3088 3089 bool VisitDeclRefExpr(DeclRefExpr *E) { 3090 ValueDecl *VD = E->getDecl(); 3091 if (isa<FunctionDecl>(VD)) 3092 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3093 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3094 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3095 return SafeToInline; 3096 } 3097 3098 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3099 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3100 return SafeToInline; 3101 } 3102 3103 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3104 CXXMethodDecl *M = E->getMethodDecl(); 3105 if (!M) { 3106 // Call through a pointer to member function. This is safe to inline. 3107 SafeToInline = true; 3108 } else { 3109 SafeToInline = M->hasAttr<DLLImportAttr>(); 3110 } 3111 return SafeToInline; 3112 } 3113 3114 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3115 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3116 return SafeToInline; 3117 } 3118 3119 bool VisitCXXNewExpr(CXXNewExpr *E) { 3120 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3121 return SafeToInline; 3122 } 3123 }; 3124 } 3125 3126 // isTriviallyRecursive - Check if this function calls another 3127 // decl that, because of the asm attribute or the other decl being a builtin, 3128 // ends up pointing to itself. 3129 bool 3130 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3131 StringRef Name; 3132 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3133 // asm labels are a special kind of mangling we have to support. 3134 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3135 if (!Attr) 3136 return false; 3137 Name = Attr->getLabel(); 3138 } else { 3139 Name = FD->getName(); 3140 } 3141 3142 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3143 const Stmt *Body = FD->getBody(); 3144 return Body ? Walker.Visit(Body) : false; 3145 } 3146 3147 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3148 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3149 return true; 3150 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3151 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3152 return false; 3153 3154 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3155 // Check whether it would be safe to inline this dllimport function. 3156 DLLImportFunctionVisitor Visitor; 3157 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3158 if (!Visitor.SafeToInline) 3159 return false; 3160 3161 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3162 // Implicit destructor invocations aren't captured in the AST, so the 3163 // check above can't see them. Check for them manually here. 3164 for (const Decl *Member : Dtor->getParent()->decls()) 3165 if (isa<FieldDecl>(Member)) 3166 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3167 return false; 3168 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3169 if (HasNonDllImportDtor(B.getType())) 3170 return false; 3171 } 3172 } 3173 3174 // Inline builtins declaration must be emitted. They often are fortified 3175 // functions. 3176 if (F->isInlineBuiltinDeclaration()) 3177 return true; 3178 3179 // PR9614. Avoid cases where the source code is lying to us. An available 3180 // externally function should have an equivalent function somewhere else, 3181 // but a function that calls itself through asm label/`__builtin_` trickery is 3182 // clearly not equivalent to the real implementation. 3183 // This happens in glibc's btowc and in some configure checks. 3184 return !isTriviallyRecursive(F); 3185 } 3186 3187 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3188 return CodeGenOpts.OptimizationLevel > 0; 3189 } 3190 3191 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3192 llvm::GlobalValue *GV) { 3193 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3194 3195 if (FD->isCPUSpecificMultiVersion()) { 3196 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3197 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3198 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3199 // Requires multiple emits. 3200 } else 3201 EmitGlobalFunctionDefinition(GD, GV); 3202 } 3203 3204 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3205 const auto *D = cast<ValueDecl>(GD.getDecl()); 3206 3207 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3208 Context.getSourceManager(), 3209 "Generating code for declaration"); 3210 3211 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3212 // At -O0, don't generate IR for functions with available_externally 3213 // linkage. 3214 if (!shouldEmitFunction(GD)) 3215 return; 3216 3217 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3218 std::string Name; 3219 llvm::raw_string_ostream OS(Name); 3220 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3221 /*Qualified=*/true); 3222 return Name; 3223 }); 3224 3225 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3226 // Make sure to emit the definition(s) before we emit the thunks. 3227 // This is necessary for the generation of certain thunks. 3228 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3229 ABI->emitCXXStructor(GD); 3230 else if (FD->isMultiVersion()) 3231 EmitMultiVersionFunctionDefinition(GD, GV); 3232 else 3233 EmitGlobalFunctionDefinition(GD, GV); 3234 3235 if (Method->isVirtual()) 3236 getVTables().EmitThunks(GD); 3237 3238 return; 3239 } 3240 3241 if (FD->isMultiVersion()) 3242 return EmitMultiVersionFunctionDefinition(GD, GV); 3243 return EmitGlobalFunctionDefinition(GD, GV); 3244 } 3245 3246 if (const auto *VD = dyn_cast<VarDecl>(D)) 3247 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3248 3249 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3250 } 3251 3252 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3253 llvm::Function *NewFn); 3254 3255 static unsigned 3256 TargetMVPriority(const TargetInfo &TI, 3257 const CodeGenFunction::MultiVersionResolverOption &RO) { 3258 unsigned Priority = 0; 3259 for (StringRef Feat : RO.Conditions.Features) 3260 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3261 3262 if (!RO.Conditions.Architecture.empty()) 3263 Priority = std::max( 3264 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3265 return Priority; 3266 } 3267 3268 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3269 // TU can forward declare the function without causing problems. Particularly 3270 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3271 // work with internal linkage functions, so that the same function name can be 3272 // used with internal linkage in multiple TUs. 3273 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3274 GlobalDecl GD) { 3275 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3276 if (FD->getFormalLinkage() == InternalLinkage) 3277 return llvm::GlobalValue::InternalLinkage; 3278 return llvm::GlobalValue::WeakODRLinkage; 3279 } 3280 3281 void CodeGenModule::emitMultiVersionFunctions() { 3282 std::vector<GlobalDecl> MVFuncsToEmit; 3283 MultiVersionFuncs.swap(MVFuncsToEmit); 3284 for (GlobalDecl GD : MVFuncsToEmit) { 3285 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3286 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3287 getContext().forEachMultiversionedFunctionVersion( 3288 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3289 GlobalDecl CurGD{ 3290 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3291 StringRef MangledName = getMangledName(CurGD); 3292 llvm::Constant *Func = GetGlobalValue(MangledName); 3293 if (!Func) { 3294 if (CurFD->isDefined()) { 3295 EmitGlobalFunctionDefinition(CurGD, nullptr); 3296 Func = GetGlobalValue(MangledName); 3297 } else { 3298 const CGFunctionInfo &FI = 3299 getTypes().arrangeGlobalDeclaration(GD); 3300 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3301 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3302 /*DontDefer=*/false, ForDefinition); 3303 } 3304 assert(Func && "This should have just been created"); 3305 } 3306 3307 const auto *TA = CurFD->getAttr<TargetAttr>(); 3308 llvm::SmallVector<StringRef, 8> Feats; 3309 TA->getAddedFeatures(Feats); 3310 3311 Options.emplace_back(cast<llvm::Function>(Func), 3312 TA->getArchitecture(), Feats); 3313 }); 3314 3315 llvm::Function *ResolverFunc; 3316 const TargetInfo &TI = getTarget(); 3317 3318 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3319 ResolverFunc = cast<llvm::Function>( 3320 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3321 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3322 } else { 3323 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3324 } 3325 3326 if (supportsCOMDAT()) 3327 ResolverFunc->setComdat( 3328 getModule().getOrInsertComdat(ResolverFunc->getName())); 3329 3330 llvm::stable_sort( 3331 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3332 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3333 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3334 }); 3335 CodeGenFunction CGF(*this); 3336 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3337 } 3338 3339 // Ensure that any additions to the deferred decls list caused by emitting a 3340 // variant are emitted. This can happen when the variant itself is inline and 3341 // calls a function without linkage. 3342 if (!MVFuncsToEmit.empty()) 3343 EmitDeferred(); 3344 3345 // Ensure that any additions to the multiversion funcs list from either the 3346 // deferred decls or the multiversion functions themselves are emitted. 3347 if (!MultiVersionFuncs.empty()) 3348 emitMultiVersionFunctions(); 3349 } 3350 3351 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3352 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3353 assert(FD && "Not a FunctionDecl?"); 3354 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3355 assert(DD && "Not a cpu_dispatch Function?"); 3356 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3357 3358 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3359 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3360 DeclTy = getTypes().GetFunctionType(FInfo); 3361 } 3362 3363 StringRef ResolverName = getMangledName(GD); 3364 3365 llvm::Type *ResolverType; 3366 GlobalDecl ResolverGD; 3367 if (getTarget().supportsIFunc()) 3368 ResolverType = llvm::FunctionType::get( 3369 llvm::PointerType::get(DeclTy, 3370 Context.getTargetAddressSpace(FD->getType())), 3371 false); 3372 else { 3373 ResolverType = DeclTy; 3374 ResolverGD = GD; 3375 } 3376 3377 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3378 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3379 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3380 if (supportsCOMDAT()) 3381 ResolverFunc->setComdat( 3382 getModule().getOrInsertComdat(ResolverFunc->getName())); 3383 3384 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3385 const TargetInfo &Target = getTarget(); 3386 unsigned Index = 0; 3387 for (const IdentifierInfo *II : DD->cpus()) { 3388 // Get the name of the target function so we can look it up/create it. 3389 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3390 getCPUSpecificMangling(*this, II->getName()); 3391 3392 llvm::Constant *Func = GetGlobalValue(MangledName); 3393 3394 if (!Func) { 3395 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3396 if (ExistingDecl.getDecl() && 3397 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3398 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3399 Func = GetGlobalValue(MangledName); 3400 } else { 3401 if (!ExistingDecl.getDecl()) 3402 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3403 3404 Func = GetOrCreateLLVMFunction( 3405 MangledName, DeclTy, ExistingDecl, 3406 /*ForVTable=*/false, /*DontDefer=*/true, 3407 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3408 } 3409 } 3410 3411 llvm::SmallVector<StringRef, 32> Features; 3412 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3413 llvm::transform(Features, Features.begin(), 3414 [](StringRef Str) { return Str.substr(1); }); 3415 llvm::erase_if(Features, [&Target](StringRef Feat) { 3416 return !Target.validateCpuSupports(Feat); 3417 }); 3418 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3419 ++Index; 3420 } 3421 3422 llvm::stable_sort( 3423 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3424 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3425 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3426 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3427 }); 3428 3429 // If the list contains multiple 'default' versions, such as when it contains 3430 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3431 // always run on at least a 'pentium'). We do this by deleting the 'least 3432 // advanced' (read, lowest mangling letter). 3433 while (Options.size() > 1 && 3434 llvm::X86::getCpuSupportsMask( 3435 (Options.end() - 2)->Conditions.Features) == 0) { 3436 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3437 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3438 if (LHSName.compare(RHSName) < 0) 3439 Options.erase(Options.end() - 2); 3440 else 3441 Options.erase(Options.end() - 1); 3442 } 3443 3444 CodeGenFunction CGF(*this); 3445 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3446 3447 if (getTarget().supportsIFunc()) { 3448 std::string AliasName = getMangledNameImpl( 3449 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3450 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3451 if (!AliasFunc) { 3452 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3453 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3454 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3455 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, 3456 getMultiversionLinkage(*this, GD), 3457 AliasName, IFunc, &getModule()); 3458 SetCommonAttributes(GD, GA); 3459 } 3460 } 3461 } 3462 3463 /// If a dispatcher for the specified mangled name is not in the module, create 3464 /// and return an llvm Function with the specified type. 3465 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3466 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3467 std::string MangledName = 3468 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3469 3470 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3471 // a separate resolver). 3472 std::string ResolverName = MangledName; 3473 if (getTarget().supportsIFunc()) 3474 ResolverName += ".ifunc"; 3475 else if (FD->isTargetMultiVersion()) 3476 ResolverName += ".resolver"; 3477 3478 // If this already exists, just return that one. 3479 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3480 return ResolverGV; 3481 3482 // Since this is the first time we've created this IFunc, make sure 3483 // that we put this multiversioned function into the list to be 3484 // replaced later if necessary (target multiversioning only). 3485 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3486 MultiVersionFuncs.push_back(GD); 3487 3488 if (getTarget().supportsIFunc()) { 3489 llvm::Type *ResolverType = llvm::FunctionType::get( 3490 llvm::PointerType::get( 3491 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3492 false); 3493 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3494 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3495 /*ForVTable=*/false); 3496 llvm::GlobalIFunc *GIF = 3497 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3498 "", Resolver, &getModule()); 3499 GIF->setName(ResolverName); 3500 SetCommonAttributes(FD, GIF); 3501 3502 return GIF; 3503 } 3504 3505 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3506 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3507 assert(isa<llvm::GlobalValue>(Resolver) && 3508 "Resolver should be created for the first time"); 3509 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3510 return Resolver; 3511 } 3512 3513 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3514 /// module, create and return an llvm Function with the specified type. If there 3515 /// is something in the module with the specified name, return it potentially 3516 /// bitcasted to the right type. 3517 /// 3518 /// If D is non-null, it specifies a decl that correspond to this. This is used 3519 /// to set the attributes on the function when it is first created. 3520 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3521 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3522 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3523 ForDefinition_t IsForDefinition) { 3524 const Decl *D = GD.getDecl(); 3525 3526 // Any attempts to use a MultiVersion function should result in retrieving 3527 // the iFunc instead. Name Mangling will handle the rest of the changes. 3528 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3529 // For the device mark the function as one that should be emitted. 3530 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3531 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3532 !DontDefer && !IsForDefinition) { 3533 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3534 GlobalDecl GDDef; 3535 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3536 GDDef = GlobalDecl(CD, GD.getCtorType()); 3537 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3538 GDDef = GlobalDecl(DD, GD.getDtorType()); 3539 else 3540 GDDef = GlobalDecl(FDDef); 3541 EmitGlobal(GDDef); 3542 } 3543 } 3544 3545 if (FD->isMultiVersion()) { 3546 if (FD->hasAttr<TargetAttr>()) 3547 UpdateMultiVersionNames(GD, FD); 3548 if (!IsForDefinition) 3549 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3550 } 3551 } 3552 3553 // Lookup the entry, lazily creating it if necessary. 3554 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3555 if (Entry) { 3556 if (WeakRefReferences.erase(Entry)) { 3557 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3558 if (FD && !FD->hasAttr<WeakAttr>()) 3559 Entry->setLinkage(llvm::Function::ExternalLinkage); 3560 } 3561 3562 // Handle dropped DLL attributes. 3563 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3564 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3565 setDSOLocal(Entry); 3566 } 3567 3568 // If there are two attempts to define the same mangled name, issue an 3569 // error. 3570 if (IsForDefinition && !Entry->isDeclaration()) { 3571 GlobalDecl OtherGD; 3572 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3573 // to make sure that we issue an error only once. 3574 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3575 (GD.getCanonicalDecl().getDecl() != 3576 OtherGD.getCanonicalDecl().getDecl()) && 3577 DiagnosedConflictingDefinitions.insert(GD).second) { 3578 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3579 << MangledName; 3580 getDiags().Report(OtherGD.getDecl()->getLocation(), 3581 diag::note_previous_definition); 3582 } 3583 } 3584 3585 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3586 (Entry->getValueType() == Ty)) { 3587 return Entry; 3588 } 3589 3590 // Make sure the result is of the correct type. 3591 // (If function is requested for a definition, we always need to create a new 3592 // function, not just return a bitcast.) 3593 if (!IsForDefinition) 3594 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3595 } 3596 3597 // This function doesn't have a complete type (for example, the return 3598 // type is an incomplete struct). Use a fake type instead, and make 3599 // sure not to try to set attributes. 3600 bool IsIncompleteFunction = false; 3601 3602 llvm::FunctionType *FTy; 3603 if (isa<llvm::FunctionType>(Ty)) { 3604 FTy = cast<llvm::FunctionType>(Ty); 3605 } else { 3606 FTy = llvm::FunctionType::get(VoidTy, false); 3607 IsIncompleteFunction = true; 3608 } 3609 3610 llvm::Function *F = 3611 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3612 Entry ? StringRef() : MangledName, &getModule()); 3613 3614 // If we already created a function with the same mangled name (but different 3615 // type) before, take its name and add it to the list of functions to be 3616 // replaced with F at the end of CodeGen. 3617 // 3618 // This happens if there is a prototype for a function (e.g. "int f()") and 3619 // then a definition of a different type (e.g. "int f(int x)"). 3620 if (Entry) { 3621 F->takeName(Entry); 3622 3623 // This might be an implementation of a function without a prototype, in 3624 // which case, try to do special replacement of calls which match the new 3625 // prototype. The really key thing here is that we also potentially drop 3626 // arguments from the call site so as to make a direct call, which makes the 3627 // inliner happier and suppresses a number of optimizer warnings (!) about 3628 // dropping arguments. 3629 if (!Entry->use_empty()) { 3630 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3631 Entry->removeDeadConstantUsers(); 3632 } 3633 3634 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3635 F, Entry->getValueType()->getPointerTo()); 3636 addGlobalValReplacement(Entry, BC); 3637 } 3638 3639 assert(F->getName() == MangledName && "name was uniqued!"); 3640 if (D) 3641 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3642 if (ExtraAttrs.hasFnAttrs()) { 3643 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3644 F->addFnAttrs(B); 3645 } 3646 3647 if (!DontDefer) { 3648 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3649 // each other bottoming out with the base dtor. Therefore we emit non-base 3650 // dtors on usage, even if there is no dtor definition in the TU. 3651 if (D && isa<CXXDestructorDecl>(D) && 3652 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3653 GD.getDtorType())) 3654 addDeferredDeclToEmit(GD); 3655 3656 // This is the first use or definition of a mangled name. If there is a 3657 // deferred decl with this name, remember that we need to emit it at the end 3658 // of the file. 3659 auto DDI = DeferredDecls.find(MangledName); 3660 if (DDI != DeferredDecls.end()) { 3661 // Move the potentially referenced deferred decl to the 3662 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3663 // don't need it anymore). 3664 addDeferredDeclToEmit(DDI->second); 3665 DeferredDecls.erase(DDI); 3666 3667 // Otherwise, there are cases we have to worry about where we're 3668 // using a declaration for which we must emit a definition but where 3669 // we might not find a top-level definition: 3670 // - member functions defined inline in their classes 3671 // - friend functions defined inline in some class 3672 // - special member functions with implicit definitions 3673 // If we ever change our AST traversal to walk into class methods, 3674 // this will be unnecessary. 3675 // 3676 // We also don't emit a definition for a function if it's going to be an 3677 // entry in a vtable, unless it's already marked as used. 3678 } else if (getLangOpts().CPlusPlus && D) { 3679 // Look for a declaration that's lexically in a record. 3680 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3681 FD = FD->getPreviousDecl()) { 3682 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3683 if (FD->doesThisDeclarationHaveABody()) { 3684 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3685 break; 3686 } 3687 } 3688 } 3689 } 3690 } 3691 3692 // Make sure the result is of the requested type. 3693 if (!IsIncompleteFunction) { 3694 assert(F->getFunctionType() == Ty); 3695 return F; 3696 } 3697 3698 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3699 return llvm::ConstantExpr::getBitCast(F, PTy); 3700 } 3701 3702 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3703 /// non-null, then this function will use the specified type if it has to 3704 /// create it (this occurs when we see a definition of the function). 3705 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3706 llvm::Type *Ty, 3707 bool ForVTable, 3708 bool DontDefer, 3709 ForDefinition_t IsForDefinition) { 3710 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3711 "consteval function should never be emitted"); 3712 // If there was no specific requested type, just convert it now. 3713 if (!Ty) { 3714 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3715 Ty = getTypes().ConvertType(FD->getType()); 3716 } 3717 3718 // Devirtualized destructor calls may come through here instead of via 3719 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3720 // of the complete destructor when necessary. 3721 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3722 if (getTarget().getCXXABI().isMicrosoft() && 3723 GD.getDtorType() == Dtor_Complete && 3724 DD->getParent()->getNumVBases() == 0) 3725 GD = GlobalDecl(DD, Dtor_Base); 3726 } 3727 3728 StringRef MangledName = getMangledName(GD); 3729 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3730 /*IsThunk=*/false, llvm::AttributeList(), 3731 IsForDefinition); 3732 // Returns kernel handle for HIP kernel stub function. 3733 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3734 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3735 auto *Handle = getCUDARuntime().getKernelHandle( 3736 cast<llvm::Function>(F->stripPointerCasts()), GD); 3737 if (IsForDefinition) 3738 return F; 3739 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3740 } 3741 return F; 3742 } 3743 3744 static const FunctionDecl * 3745 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3746 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3747 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3748 3749 IdentifierInfo &CII = C.Idents.get(Name); 3750 for (const auto *Result : DC->lookup(&CII)) 3751 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3752 return FD; 3753 3754 if (!C.getLangOpts().CPlusPlus) 3755 return nullptr; 3756 3757 // Demangle the premangled name from getTerminateFn() 3758 IdentifierInfo &CXXII = 3759 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3760 ? C.Idents.get("terminate") 3761 : C.Idents.get(Name); 3762 3763 for (const auto &N : {"__cxxabiv1", "std"}) { 3764 IdentifierInfo &NS = C.Idents.get(N); 3765 for (const auto *Result : DC->lookup(&NS)) { 3766 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3767 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3768 for (const auto *Result : LSD->lookup(&NS)) 3769 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3770 break; 3771 3772 if (ND) 3773 for (const auto *Result : ND->lookup(&CXXII)) 3774 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3775 return FD; 3776 } 3777 } 3778 3779 return nullptr; 3780 } 3781 3782 /// CreateRuntimeFunction - Create a new runtime function with the specified 3783 /// type and name. 3784 llvm::FunctionCallee 3785 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3786 llvm::AttributeList ExtraAttrs, bool Local, 3787 bool AssumeConvergent) { 3788 if (AssumeConvergent) { 3789 ExtraAttrs = 3790 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 3791 } 3792 3793 llvm::Constant *C = 3794 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3795 /*DontDefer=*/false, /*IsThunk=*/false, 3796 ExtraAttrs); 3797 3798 if (auto *F = dyn_cast<llvm::Function>(C)) { 3799 if (F->empty()) { 3800 F->setCallingConv(getRuntimeCC()); 3801 3802 // In Windows Itanium environments, try to mark runtime functions 3803 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3804 // will link their standard library statically or dynamically. Marking 3805 // functions imported when they are not imported can cause linker errors 3806 // and warnings. 3807 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3808 !getCodeGenOpts().LTOVisibilityPublicStd) { 3809 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3810 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3811 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3812 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3813 } 3814 } 3815 setDSOLocal(F); 3816 } 3817 } 3818 3819 return {FTy, C}; 3820 } 3821 3822 /// isTypeConstant - Determine whether an object of this type can be emitted 3823 /// as a constant. 3824 /// 3825 /// If ExcludeCtor is true, the duration when the object's constructor runs 3826 /// will not be considered. The caller will need to verify that the object is 3827 /// not written to during its construction. 3828 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3829 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3830 return false; 3831 3832 if (Context.getLangOpts().CPlusPlus) { 3833 if (const CXXRecordDecl *Record 3834 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3835 return ExcludeCtor && !Record->hasMutableFields() && 3836 Record->hasTrivialDestructor(); 3837 } 3838 3839 return true; 3840 } 3841 3842 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3843 /// create and return an llvm GlobalVariable with the specified type and address 3844 /// space. If there is something in the module with the specified name, return 3845 /// it potentially bitcasted to the right type. 3846 /// 3847 /// If D is non-null, it specifies a decl that correspond to this. This is used 3848 /// to set the attributes on the global when it is first created. 3849 /// 3850 /// If IsForDefinition is true, it is guaranteed that an actual global with 3851 /// type Ty will be returned, not conversion of a variable with the same 3852 /// mangled name but some other type. 3853 llvm::Constant * 3854 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 3855 LangAS AddrSpace, const VarDecl *D, 3856 ForDefinition_t IsForDefinition) { 3857 // Lookup the entry, lazily creating it if necessary. 3858 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3859 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3860 if (Entry) { 3861 if (WeakRefReferences.erase(Entry)) { 3862 if (D && !D->hasAttr<WeakAttr>()) 3863 Entry->setLinkage(llvm::Function::ExternalLinkage); 3864 } 3865 3866 // Handle dropped DLL attributes. 3867 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3868 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3869 3870 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3871 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3872 3873 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 3874 return Entry; 3875 3876 // If there are two attempts to define the same mangled name, issue an 3877 // error. 3878 if (IsForDefinition && !Entry->isDeclaration()) { 3879 GlobalDecl OtherGD; 3880 const VarDecl *OtherD; 3881 3882 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3883 // to make sure that we issue an error only once. 3884 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3885 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3886 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3887 OtherD->hasInit() && 3888 DiagnosedConflictingDefinitions.insert(D).second) { 3889 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3890 << MangledName; 3891 getDiags().Report(OtherGD.getDecl()->getLocation(), 3892 diag::note_previous_definition); 3893 } 3894 } 3895 3896 // Make sure the result is of the correct type. 3897 if (Entry->getType()->getAddressSpace() != TargetAS) { 3898 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 3899 Ty->getPointerTo(TargetAS)); 3900 } 3901 3902 // (If global is requested for a definition, we always need to create a new 3903 // global, not just return a bitcast.) 3904 if (!IsForDefinition) 3905 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 3906 } 3907 3908 auto DAddrSpace = GetGlobalVarAddressSpace(D); 3909 3910 auto *GV = new llvm::GlobalVariable( 3911 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 3912 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 3913 getContext().getTargetAddressSpace(DAddrSpace)); 3914 3915 // If we already created a global with the same mangled name (but different 3916 // type) before, take its name and remove it from its parent. 3917 if (Entry) { 3918 GV->takeName(Entry); 3919 3920 if (!Entry->use_empty()) { 3921 llvm::Constant *NewPtrForOldDecl = 3922 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3923 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3924 } 3925 3926 Entry->eraseFromParent(); 3927 } 3928 3929 // This is the first use or definition of a mangled name. If there is a 3930 // deferred decl with this name, remember that we need to emit it at the end 3931 // of the file. 3932 auto DDI = DeferredDecls.find(MangledName); 3933 if (DDI != DeferredDecls.end()) { 3934 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3935 // list, and remove it from DeferredDecls (since we don't need it anymore). 3936 addDeferredDeclToEmit(DDI->second); 3937 DeferredDecls.erase(DDI); 3938 } 3939 3940 // Handle things which are present even on external declarations. 3941 if (D) { 3942 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3943 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3944 3945 // FIXME: This code is overly simple and should be merged with other global 3946 // handling. 3947 GV->setConstant(isTypeConstant(D->getType(), false)); 3948 3949 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3950 3951 setLinkageForGV(GV, D); 3952 3953 if (D->getTLSKind()) { 3954 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3955 CXXThreadLocals.push_back(D); 3956 setTLSMode(GV, *D); 3957 } 3958 3959 setGVProperties(GV, D); 3960 3961 // If required by the ABI, treat declarations of static data members with 3962 // inline initializers as definitions. 3963 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3964 EmitGlobalVarDefinition(D); 3965 } 3966 3967 // Emit section information for extern variables. 3968 if (D->hasExternalStorage()) { 3969 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3970 GV->setSection(SA->getName()); 3971 } 3972 3973 // Handle XCore specific ABI requirements. 3974 if (getTriple().getArch() == llvm::Triple::xcore && 3975 D->getLanguageLinkage() == CLanguageLinkage && 3976 D->getType().isConstant(Context) && 3977 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3978 GV->setSection(".cp.rodata"); 3979 3980 // Check if we a have a const declaration with an initializer, we may be 3981 // able to emit it as available_externally to expose it's value to the 3982 // optimizer. 3983 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3984 D->getType().isConstQualified() && !GV->hasInitializer() && 3985 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3986 const auto *Record = 3987 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3988 bool HasMutableFields = Record && Record->hasMutableFields(); 3989 if (!HasMutableFields) { 3990 const VarDecl *InitDecl; 3991 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3992 if (InitExpr) { 3993 ConstantEmitter emitter(*this); 3994 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3995 if (Init) { 3996 auto *InitType = Init->getType(); 3997 if (GV->getValueType() != InitType) { 3998 // The type of the initializer does not match the definition. 3999 // This happens when an initializer has a different type from 4000 // the type of the global (because of padding at the end of a 4001 // structure for instance). 4002 GV->setName(StringRef()); 4003 // Make a new global with the correct type, this is now guaranteed 4004 // to work. 4005 auto *NewGV = cast<llvm::GlobalVariable>( 4006 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4007 ->stripPointerCasts()); 4008 4009 // Erase the old global, since it is no longer used. 4010 GV->eraseFromParent(); 4011 GV = NewGV; 4012 } else { 4013 GV->setInitializer(Init); 4014 GV->setConstant(true); 4015 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4016 } 4017 emitter.finalize(GV); 4018 } 4019 } 4020 } 4021 } 4022 } 4023 4024 if (GV->isDeclaration()) { 4025 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4026 // External HIP managed variables needed to be recorded for transformation 4027 // in both device and host compilations. 4028 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4029 D->hasExternalStorage()) 4030 getCUDARuntime().handleVarRegistration(D, *GV); 4031 } 4032 4033 LangAS ExpectedAS = 4034 D ? D->getType().getAddressSpace() 4035 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4036 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4037 if (DAddrSpace != ExpectedAS) { 4038 return getTargetCodeGenInfo().performAddrSpaceCast( 4039 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4040 } 4041 4042 return GV; 4043 } 4044 4045 llvm::Constant * 4046 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4047 const Decl *D = GD.getDecl(); 4048 4049 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4050 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4051 /*DontDefer=*/false, IsForDefinition); 4052 4053 if (isa<CXXMethodDecl>(D)) { 4054 auto FInfo = 4055 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4056 auto Ty = getTypes().GetFunctionType(*FInfo); 4057 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4058 IsForDefinition); 4059 } 4060 4061 if (isa<FunctionDecl>(D)) { 4062 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4063 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4064 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4065 IsForDefinition); 4066 } 4067 4068 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4069 } 4070 4071 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4072 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4073 unsigned Alignment) { 4074 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4075 llvm::GlobalVariable *OldGV = nullptr; 4076 4077 if (GV) { 4078 // Check if the variable has the right type. 4079 if (GV->getValueType() == Ty) 4080 return GV; 4081 4082 // Because C++ name mangling, the only way we can end up with an already 4083 // existing global with the same name is if it has been declared extern "C". 4084 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4085 OldGV = GV; 4086 } 4087 4088 // Create a new variable. 4089 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4090 Linkage, nullptr, Name); 4091 4092 if (OldGV) { 4093 // Replace occurrences of the old variable if needed. 4094 GV->takeName(OldGV); 4095 4096 if (!OldGV->use_empty()) { 4097 llvm::Constant *NewPtrForOldDecl = 4098 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4099 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4100 } 4101 4102 OldGV->eraseFromParent(); 4103 } 4104 4105 if (supportsCOMDAT() && GV->isWeakForLinker() && 4106 !GV->hasAvailableExternallyLinkage()) 4107 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4108 4109 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4110 4111 return GV; 4112 } 4113 4114 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4115 /// given global variable. If Ty is non-null and if the global doesn't exist, 4116 /// then it will be created with the specified type instead of whatever the 4117 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4118 /// that an actual global with type Ty will be returned, not conversion of a 4119 /// variable with the same mangled name but some other type. 4120 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4121 llvm::Type *Ty, 4122 ForDefinition_t IsForDefinition) { 4123 assert(D->hasGlobalStorage() && "Not a global variable"); 4124 QualType ASTTy = D->getType(); 4125 if (!Ty) 4126 Ty = getTypes().ConvertTypeForMem(ASTTy); 4127 4128 StringRef MangledName = getMangledName(D); 4129 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4130 IsForDefinition); 4131 } 4132 4133 /// CreateRuntimeVariable - Create a new runtime global variable with the 4134 /// specified type and name. 4135 llvm::Constant * 4136 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4137 StringRef Name) { 4138 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4139 : LangAS::Default; 4140 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4141 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4142 return Ret; 4143 } 4144 4145 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4146 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4147 4148 StringRef MangledName = getMangledName(D); 4149 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4150 4151 // We already have a definition, not declaration, with the same mangled name. 4152 // Emitting of declaration is not required (and actually overwrites emitted 4153 // definition). 4154 if (GV && !GV->isDeclaration()) 4155 return; 4156 4157 // If we have not seen a reference to this variable yet, place it into the 4158 // deferred declarations table to be emitted if needed later. 4159 if (!MustBeEmitted(D) && !GV) { 4160 DeferredDecls[MangledName] = D; 4161 return; 4162 } 4163 4164 // The tentative definition is the only definition. 4165 EmitGlobalVarDefinition(D); 4166 } 4167 4168 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4169 EmitExternalVarDeclaration(D); 4170 } 4171 4172 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4173 return Context.toCharUnitsFromBits( 4174 getDataLayout().getTypeStoreSizeInBits(Ty)); 4175 } 4176 4177 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4178 if (LangOpts.OpenCL) { 4179 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4180 assert(AS == LangAS::opencl_global || 4181 AS == LangAS::opencl_global_device || 4182 AS == LangAS::opencl_global_host || 4183 AS == LangAS::opencl_constant || 4184 AS == LangAS::opencl_local || 4185 AS >= LangAS::FirstTargetAddressSpace); 4186 return AS; 4187 } 4188 4189 if (LangOpts.SYCLIsDevice && 4190 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4191 return LangAS::sycl_global; 4192 4193 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4194 if (D && D->hasAttr<CUDAConstantAttr>()) 4195 return LangAS::cuda_constant; 4196 else if (D && D->hasAttr<CUDASharedAttr>()) 4197 return LangAS::cuda_shared; 4198 else if (D && D->hasAttr<CUDADeviceAttr>()) 4199 return LangAS::cuda_device; 4200 else if (D && D->getType().isConstQualified()) 4201 return LangAS::cuda_constant; 4202 else 4203 return LangAS::cuda_device; 4204 } 4205 4206 if (LangOpts.OpenMP) { 4207 LangAS AS; 4208 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4209 return AS; 4210 } 4211 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4212 } 4213 4214 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4215 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4216 if (LangOpts.OpenCL) 4217 return LangAS::opencl_constant; 4218 if (LangOpts.SYCLIsDevice) 4219 return LangAS::sycl_global; 4220 if (auto AS = getTarget().getConstantAddressSpace()) 4221 return AS.getValue(); 4222 return LangAS::Default; 4223 } 4224 4225 // In address space agnostic languages, string literals are in default address 4226 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4227 // emitted in constant address space in LLVM IR. To be consistent with other 4228 // parts of AST, string literal global variables in constant address space 4229 // need to be casted to default address space before being put into address 4230 // map and referenced by other part of CodeGen. 4231 // In OpenCL, string literals are in constant address space in AST, therefore 4232 // they should not be casted to default address space. 4233 static llvm::Constant * 4234 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4235 llvm::GlobalVariable *GV) { 4236 llvm::Constant *Cast = GV; 4237 if (!CGM.getLangOpts().OpenCL) { 4238 auto AS = CGM.GetGlobalConstantAddressSpace(); 4239 if (AS != LangAS::Default) 4240 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4241 CGM, GV, AS, LangAS::Default, 4242 GV->getValueType()->getPointerTo( 4243 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4244 } 4245 return Cast; 4246 } 4247 4248 template<typename SomeDecl> 4249 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4250 llvm::GlobalValue *GV) { 4251 if (!getLangOpts().CPlusPlus) 4252 return; 4253 4254 // Must have 'used' attribute, or else inline assembly can't rely on 4255 // the name existing. 4256 if (!D->template hasAttr<UsedAttr>()) 4257 return; 4258 4259 // Must have internal linkage and an ordinary name. 4260 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4261 return; 4262 4263 // Must be in an extern "C" context. Entities declared directly within 4264 // a record are not extern "C" even if the record is in such a context. 4265 const SomeDecl *First = D->getFirstDecl(); 4266 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4267 return; 4268 4269 // OK, this is an internal linkage entity inside an extern "C" linkage 4270 // specification. Make a note of that so we can give it the "expected" 4271 // mangled name if nothing else is using that name. 4272 std::pair<StaticExternCMap::iterator, bool> R = 4273 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4274 4275 // If we have multiple internal linkage entities with the same name 4276 // in extern "C" regions, none of them gets that name. 4277 if (!R.second) 4278 R.first->second = nullptr; 4279 } 4280 4281 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4282 if (!CGM.supportsCOMDAT()) 4283 return false; 4284 4285 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4286 // them being "merged" by the COMDAT Folding linker optimization. 4287 if (D.hasAttr<CUDAGlobalAttr>()) 4288 return false; 4289 4290 if (D.hasAttr<SelectAnyAttr>()) 4291 return true; 4292 4293 GVALinkage Linkage; 4294 if (auto *VD = dyn_cast<VarDecl>(&D)) 4295 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4296 else 4297 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4298 4299 switch (Linkage) { 4300 case GVA_Internal: 4301 case GVA_AvailableExternally: 4302 case GVA_StrongExternal: 4303 return false; 4304 case GVA_DiscardableODR: 4305 case GVA_StrongODR: 4306 return true; 4307 } 4308 llvm_unreachable("No such linkage"); 4309 } 4310 4311 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4312 llvm::GlobalObject &GO) { 4313 if (!shouldBeInCOMDAT(*this, D)) 4314 return; 4315 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4316 } 4317 4318 /// Pass IsTentative as true if you want to create a tentative definition. 4319 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4320 bool IsTentative) { 4321 // OpenCL global variables of sampler type are translated to function calls, 4322 // therefore no need to be translated. 4323 QualType ASTTy = D->getType(); 4324 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4325 return; 4326 4327 // If this is OpenMP device, check if it is legal to emit this global 4328 // normally. 4329 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4330 OpenMPRuntime->emitTargetGlobalVariable(D)) 4331 return; 4332 4333 llvm::TrackingVH<llvm::Constant> Init; 4334 bool NeedsGlobalCtor = false; 4335 bool NeedsGlobalDtor = 4336 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4337 4338 const VarDecl *InitDecl; 4339 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4340 4341 Optional<ConstantEmitter> emitter; 4342 4343 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4344 // as part of their declaration." Sema has already checked for 4345 // error cases, so we just need to set Init to UndefValue. 4346 bool IsCUDASharedVar = 4347 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4348 // Shadows of initialized device-side global variables are also left 4349 // undefined. 4350 // Managed Variables should be initialized on both host side and device side. 4351 bool IsCUDAShadowVar = 4352 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4353 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4354 D->hasAttr<CUDASharedAttr>()); 4355 bool IsCUDADeviceShadowVar = 4356 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4357 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4358 D->getType()->isCUDADeviceBuiltinTextureType()); 4359 if (getLangOpts().CUDA && 4360 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4361 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4362 else if (D->hasAttr<LoaderUninitializedAttr>()) 4363 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4364 else if (!InitExpr) { 4365 // This is a tentative definition; tentative definitions are 4366 // implicitly initialized with { 0 }. 4367 // 4368 // Note that tentative definitions are only emitted at the end of 4369 // a translation unit, so they should never have incomplete 4370 // type. In addition, EmitTentativeDefinition makes sure that we 4371 // never attempt to emit a tentative definition if a real one 4372 // exists. A use may still exists, however, so we still may need 4373 // to do a RAUW. 4374 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4375 Init = EmitNullConstant(D->getType()); 4376 } else { 4377 initializedGlobalDecl = GlobalDecl(D); 4378 emitter.emplace(*this); 4379 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4380 if (!Initializer) { 4381 QualType T = InitExpr->getType(); 4382 if (D->getType()->isReferenceType()) 4383 T = D->getType(); 4384 4385 if (getLangOpts().CPlusPlus) { 4386 Init = EmitNullConstant(T); 4387 NeedsGlobalCtor = true; 4388 } else { 4389 ErrorUnsupported(D, "static initializer"); 4390 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4391 } 4392 } else { 4393 Init = Initializer; 4394 // We don't need an initializer, so remove the entry for the delayed 4395 // initializer position (just in case this entry was delayed) if we 4396 // also don't need to register a destructor. 4397 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4398 DelayedCXXInitPosition.erase(D); 4399 } 4400 } 4401 4402 llvm::Type* InitType = Init->getType(); 4403 llvm::Constant *Entry = 4404 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4405 4406 // Strip off pointer casts if we got them. 4407 Entry = Entry->stripPointerCasts(); 4408 4409 // Entry is now either a Function or GlobalVariable. 4410 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4411 4412 // We have a definition after a declaration with the wrong type. 4413 // We must make a new GlobalVariable* and update everything that used OldGV 4414 // (a declaration or tentative definition) with the new GlobalVariable* 4415 // (which will be a definition). 4416 // 4417 // This happens if there is a prototype for a global (e.g. 4418 // "extern int x[];") and then a definition of a different type (e.g. 4419 // "int x[10];"). This also happens when an initializer has a different type 4420 // from the type of the global (this happens with unions). 4421 if (!GV || GV->getValueType() != InitType || 4422 GV->getType()->getAddressSpace() != 4423 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4424 4425 // Move the old entry aside so that we'll create a new one. 4426 Entry->setName(StringRef()); 4427 4428 // Make a new global with the correct type, this is now guaranteed to work. 4429 GV = cast<llvm::GlobalVariable>( 4430 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4431 ->stripPointerCasts()); 4432 4433 // Replace all uses of the old global with the new global 4434 llvm::Constant *NewPtrForOldDecl = 4435 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4436 Entry->getType()); 4437 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4438 4439 // Erase the old global, since it is no longer used. 4440 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4441 } 4442 4443 MaybeHandleStaticInExternC(D, GV); 4444 4445 if (D->hasAttr<AnnotateAttr>()) 4446 AddGlobalAnnotations(D, GV); 4447 4448 // Set the llvm linkage type as appropriate. 4449 llvm::GlobalValue::LinkageTypes Linkage = 4450 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4451 4452 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4453 // the device. [...]" 4454 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4455 // __device__, declares a variable that: [...] 4456 // Is accessible from all the threads within the grid and from the host 4457 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4458 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4459 if (GV && LangOpts.CUDA) { 4460 if (LangOpts.CUDAIsDevice) { 4461 if (Linkage != llvm::GlobalValue::InternalLinkage && 4462 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4463 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4464 D->getType()->isCUDADeviceBuiltinTextureType())) 4465 GV->setExternallyInitialized(true); 4466 } else { 4467 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4468 } 4469 getCUDARuntime().handleVarRegistration(D, *GV); 4470 } 4471 4472 GV->setInitializer(Init); 4473 if (emitter) 4474 emitter->finalize(GV); 4475 4476 // If it is safe to mark the global 'constant', do so now. 4477 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4478 isTypeConstant(D->getType(), true)); 4479 4480 // If it is in a read-only section, mark it 'constant'. 4481 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4482 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4483 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4484 GV->setConstant(true); 4485 } 4486 4487 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4488 4489 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4490 // function is only defined alongside the variable, not also alongside 4491 // callers. Normally, all accesses to a thread_local go through the 4492 // thread-wrapper in order to ensure initialization has occurred, underlying 4493 // variable will never be used other than the thread-wrapper, so it can be 4494 // converted to internal linkage. 4495 // 4496 // However, if the variable has the 'constinit' attribute, it _can_ be 4497 // referenced directly, without calling the thread-wrapper, so the linkage 4498 // must not be changed. 4499 // 4500 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4501 // weak or linkonce, the de-duplication semantics are important to preserve, 4502 // so we don't change the linkage. 4503 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4504 Linkage == llvm::GlobalValue::ExternalLinkage && 4505 Context.getTargetInfo().getTriple().isOSDarwin() && 4506 !D->hasAttr<ConstInitAttr>()) 4507 Linkage = llvm::GlobalValue::InternalLinkage; 4508 4509 GV->setLinkage(Linkage); 4510 if (D->hasAttr<DLLImportAttr>()) 4511 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4512 else if (D->hasAttr<DLLExportAttr>()) 4513 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4514 else 4515 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4516 4517 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4518 // common vars aren't constant even if declared const. 4519 GV->setConstant(false); 4520 // Tentative definition of global variables may be initialized with 4521 // non-zero null pointers. In this case they should have weak linkage 4522 // since common linkage must have zero initializer and must not have 4523 // explicit section therefore cannot have non-zero initial value. 4524 if (!GV->getInitializer()->isNullValue()) 4525 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4526 } 4527 4528 setNonAliasAttributes(D, GV); 4529 4530 if (D->getTLSKind() && !GV->isThreadLocal()) { 4531 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4532 CXXThreadLocals.push_back(D); 4533 setTLSMode(GV, *D); 4534 } 4535 4536 maybeSetTrivialComdat(*D, *GV); 4537 4538 // Emit the initializer function if necessary. 4539 if (NeedsGlobalCtor || NeedsGlobalDtor) 4540 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4541 4542 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4543 4544 // Emit global variable debug information. 4545 if (CGDebugInfo *DI = getModuleDebugInfo()) 4546 if (getCodeGenOpts().hasReducedDebugInfo()) 4547 DI->EmitGlobalVariable(GV, D); 4548 } 4549 4550 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4551 if (CGDebugInfo *DI = getModuleDebugInfo()) 4552 if (getCodeGenOpts().hasReducedDebugInfo()) { 4553 QualType ASTTy = D->getType(); 4554 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4555 llvm::Constant *GV = 4556 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4557 DI->EmitExternalVariable( 4558 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4559 } 4560 } 4561 4562 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4563 CodeGenModule &CGM, const VarDecl *D, 4564 bool NoCommon) { 4565 // Don't give variables common linkage if -fno-common was specified unless it 4566 // was overridden by a NoCommon attribute. 4567 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4568 return true; 4569 4570 // C11 6.9.2/2: 4571 // A declaration of an identifier for an object that has file scope without 4572 // an initializer, and without a storage-class specifier or with the 4573 // storage-class specifier static, constitutes a tentative definition. 4574 if (D->getInit() || D->hasExternalStorage()) 4575 return true; 4576 4577 // A variable cannot be both common and exist in a section. 4578 if (D->hasAttr<SectionAttr>()) 4579 return true; 4580 4581 // A variable cannot be both common and exist in a section. 4582 // We don't try to determine which is the right section in the front-end. 4583 // If no specialized section name is applicable, it will resort to default. 4584 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4585 D->hasAttr<PragmaClangDataSectionAttr>() || 4586 D->hasAttr<PragmaClangRelroSectionAttr>() || 4587 D->hasAttr<PragmaClangRodataSectionAttr>()) 4588 return true; 4589 4590 // Thread local vars aren't considered common linkage. 4591 if (D->getTLSKind()) 4592 return true; 4593 4594 // Tentative definitions marked with WeakImportAttr are true definitions. 4595 if (D->hasAttr<WeakImportAttr>()) 4596 return true; 4597 4598 // A variable cannot be both common and exist in a comdat. 4599 if (shouldBeInCOMDAT(CGM, *D)) 4600 return true; 4601 4602 // Declarations with a required alignment do not have common linkage in MSVC 4603 // mode. 4604 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4605 if (D->hasAttr<AlignedAttr>()) 4606 return true; 4607 QualType VarType = D->getType(); 4608 if (Context.isAlignmentRequired(VarType)) 4609 return true; 4610 4611 if (const auto *RT = VarType->getAs<RecordType>()) { 4612 const RecordDecl *RD = RT->getDecl(); 4613 for (const FieldDecl *FD : RD->fields()) { 4614 if (FD->isBitField()) 4615 continue; 4616 if (FD->hasAttr<AlignedAttr>()) 4617 return true; 4618 if (Context.isAlignmentRequired(FD->getType())) 4619 return true; 4620 } 4621 } 4622 } 4623 4624 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4625 // common symbols, so symbols with greater alignment requirements cannot be 4626 // common. 4627 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4628 // alignments for common symbols via the aligncomm directive, so this 4629 // restriction only applies to MSVC environments. 4630 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4631 Context.getTypeAlignIfKnown(D->getType()) > 4632 Context.toBits(CharUnits::fromQuantity(32))) 4633 return true; 4634 4635 return false; 4636 } 4637 4638 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4639 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4640 if (Linkage == GVA_Internal) 4641 return llvm::Function::InternalLinkage; 4642 4643 if (D->hasAttr<WeakAttr>()) { 4644 if (IsConstantVariable) 4645 return llvm::GlobalVariable::WeakODRLinkage; 4646 else 4647 return llvm::GlobalVariable::WeakAnyLinkage; 4648 } 4649 4650 if (const auto *FD = D->getAsFunction()) 4651 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4652 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4653 4654 // We are guaranteed to have a strong definition somewhere else, 4655 // so we can use available_externally linkage. 4656 if (Linkage == GVA_AvailableExternally) 4657 return llvm::GlobalValue::AvailableExternallyLinkage; 4658 4659 // Note that Apple's kernel linker doesn't support symbol 4660 // coalescing, so we need to avoid linkonce and weak linkages there. 4661 // Normally, this means we just map to internal, but for explicit 4662 // instantiations we'll map to external. 4663 4664 // In C++, the compiler has to emit a definition in every translation unit 4665 // that references the function. We should use linkonce_odr because 4666 // a) if all references in this translation unit are optimized away, we 4667 // don't need to codegen it. b) if the function persists, it needs to be 4668 // merged with other definitions. c) C++ has the ODR, so we know the 4669 // definition is dependable. 4670 if (Linkage == GVA_DiscardableODR) 4671 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4672 : llvm::Function::InternalLinkage; 4673 4674 // An explicit instantiation of a template has weak linkage, since 4675 // explicit instantiations can occur in multiple translation units 4676 // and must all be equivalent. However, we are not allowed to 4677 // throw away these explicit instantiations. 4678 // 4679 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4680 // so say that CUDA templates are either external (for kernels) or internal. 4681 // This lets llvm perform aggressive inter-procedural optimizations. For 4682 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4683 // therefore we need to follow the normal linkage paradigm. 4684 if (Linkage == GVA_StrongODR) { 4685 if (getLangOpts().AppleKext) 4686 return llvm::Function::ExternalLinkage; 4687 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4688 !getLangOpts().GPURelocatableDeviceCode) 4689 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4690 : llvm::Function::InternalLinkage; 4691 return llvm::Function::WeakODRLinkage; 4692 } 4693 4694 // C++ doesn't have tentative definitions and thus cannot have common 4695 // linkage. 4696 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4697 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4698 CodeGenOpts.NoCommon)) 4699 return llvm::GlobalVariable::CommonLinkage; 4700 4701 // selectany symbols are externally visible, so use weak instead of 4702 // linkonce. MSVC optimizes away references to const selectany globals, so 4703 // all definitions should be the same and ODR linkage should be used. 4704 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4705 if (D->hasAttr<SelectAnyAttr>()) 4706 return llvm::GlobalVariable::WeakODRLinkage; 4707 4708 // Otherwise, we have strong external linkage. 4709 assert(Linkage == GVA_StrongExternal); 4710 return llvm::GlobalVariable::ExternalLinkage; 4711 } 4712 4713 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4714 const VarDecl *VD, bool IsConstant) { 4715 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4716 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4717 } 4718 4719 /// Replace the uses of a function that was declared with a non-proto type. 4720 /// We want to silently drop extra arguments from call sites 4721 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4722 llvm::Function *newFn) { 4723 // Fast path. 4724 if (old->use_empty()) return; 4725 4726 llvm::Type *newRetTy = newFn->getReturnType(); 4727 SmallVector<llvm::Value*, 4> newArgs; 4728 4729 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4730 ui != ue; ) { 4731 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4732 llvm::User *user = use->getUser(); 4733 4734 // Recognize and replace uses of bitcasts. Most calls to 4735 // unprototyped functions will use bitcasts. 4736 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4737 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4738 replaceUsesOfNonProtoConstant(bitcast, newFn); 4739 continue; 4740 } 4741 4742 // Recognize calls to the function. 4743 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4744 if (!callSite) continue; 4745 if (!callSite->isCallee(&*use)) 4746 continue; 4747 4748 // If the return types don't match exactly, then we can't 4749 // transform this call unless it's dead. 4750 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4751 continue; 4752 4753 // Get the call site's attribute list. 4754 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4755 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4756 4757 // If the function was passed too few arguments, don't transform. 4758 unsigned newNumArgs = newFn->arg_size(); 4759 if (callSite->arg_size() < newNumArgs) 4760 continue; 4761 4762 // If extra arguments were passed, we silently drop them. 4763 // If any of the types mismatch, we don't transform. 4764 unsigned argNo = 0; 4765 bool dontTransform = false; 4766 for (llvm::Argument &A : newFn->args()) { 4767 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4768 dontTransform = true; 4769 break; 4770 } 4771 4772 // Add any parameter attributes. 4773 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 4774 argNo++; 4775 } 4776 if (dontTransform) 4777 continue; 4778 4779 // Okay, we can transform this. Create the new call instruction and copy 4780 // over the required information. 4781 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4782 4783 // Copy over any operand bundles. 4784 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4785 callSite->getOperandBundlesAsDefs(newBundles); 4786 4787 llvm::CallBase *newCall; 4788 if (dyn_cast<llvm::CallInst>(callSite)) { 4789 newCall = 4790 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4791 } else { 4792 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4793 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4794 oldInvoke->getUnwindDest(), newArgs, 4795 newBundles, "", callSite); 4796 } 4797 newArgs.clear(); // for the next iteration 4798 4799 if (!newCall->getType()->isVoidTy()) 4800 newCall->takeName(callSite); 4801 newCall->setAttributes( 4802 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 4803 oldAttrs.getRetAttrs(), newArgAttrs)); 4804 newCall->setCallingConv(callSite->getCallingConv()); 4805 4806 // Finally, remove the old call, replacing any uses with the new one. 4807 if (!callSite->use_empty()) 4808 callSite->replaceAllUsesWith(newCall); 4809 4810 // Copy debug location attached to CI. 4811 if (callSite->getDebugLoc()) 4812 newCall->setDebugLoc(callSite->getDebugLoc()); 4813 4814 callSite->eraseFromParent(); 4815 } 4816 } 4817 4818 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4819 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4820 /// existing call uses of the old function in the module, this adjusts them to 4821 /// call the new function directly. 4822 /// 4823 /// This is not just a cleanup: the always_inline pass requires direct calls to 4824 /// functions to be able to inline them. If there is a bitcast in the way, it 4825 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4826 /// run at -O0. 4827 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4828 llvm::Function *NewFn) { 4829 // If we're redefining a global as a function, don't transform it. 4830 if (!isa<llvm::Function>(Old)) return; 4831 4832 replaceUsesOfNonProtoConstant(Old, NewFn); 4833 } 4834 4835 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4836 auto DK = VD->isThisDeclarationADefinition(); 4837 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4838 return; 4839 4840 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4841 // If we have a definition, this might be a deferred decl. If the 4842 // instantiation is explicit, make sure we emit it at the end. 4843 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4844 GetAddrOfGlobalVar(VD); 4845 4846 EmitTopLevelDecl(VD); 4847 } 4848 4849 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4850 llvm::GlobalValue *GV) { 4851 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4852 4853 // Compute the function info and LLVM type. 4854 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4855 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4856 4857 // Get or create the prototype for the function. 4858 if (!GV || (GV->getValueType() != Ty)) 4859 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4860 /*DontDefer=*/true, 4861 ForDefinition)); 4862 4863 // Already emitted. 4864 if (!GV->isDeclaration()) 4865 return; 4866 4867 // We need to set linkage and visibility on the function before 4868 // generating code for it because various parts of IR generation 4869 // want to propagate this information down (e.g. to local static 4870 // declarations). 4871 auto *Fn = cast<llvm::Function>(GV); 4872 setFunctionLinkage(GD, Fn); 4873 4874 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4875 setGVProperties(Fn, GD); 4876 4877 MaybeHandleStaticInExternC(D, Fn); 4878 4879 maybeSetTrivialComdat(*D, *Fn); 4880 4881 // Set CodeGen attributes that represent floating point environment. 4882 setLLVMFunctionFEnvAttributes(D, Fn); 4883 4884 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4885 4886 setNonAliasAttributes(GD, Fn); 4887 SetLLVMFunctionAttributesForDefinition(D, Fn); 4888 4889 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4890 AddGlobalCtor(Fn, CA->getPriority()); 4891 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4892 AddGlobalDtor(Fn, DA->getPriority(), true); 4893 if (D->hasAttr<AnnotateAttr>()) 4894 AddGlobalAnnotations(D, Fn); 4895 } 4896 4897 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4898 const auto *D = cast<ValueDecl>(GD.getDecl()); 4899 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4900 assert(AA && "Not an alias?"); 4901 4902 StringRef MangledName = getMangledName(GD); 4903 4904 if (AA->getAliasee() == MangledName) { 4905 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4906 return; 4907 } 4908 4909 // If there is a definition in the module, then it wins over the alias. 4910 // This is dubious, but allow it to be safe. Just ignore the alias. 4911 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4912 if (Entry && !Entry->isDeclaration()) 4913 return; 4914 4915 Aliases.push_back(GD); 4916 4917 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4918 4919 // Create a reference to the named value. This ensures that it is emitted 4920 // if a deferred decl. 4921 llvm::Constant *Aliasee; 4922 llvm::GlobalValue::LinkageTypes LT; 4923 if (isa<llvm::FunctionType>(DeclTy)) { 4924 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4925 /*ForVTable=*/false); 4926 LT = getFunctionLinkage(GD); 4927 } else { 4928 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 4929 /*D=*/nullptr); 4930 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4931 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4932 else 4933 LT = getFunctionLinkage(GD); 4934 } 4935 4936 // Create the new alias itself, but don't set a name yet. 4937 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4938 auto *GA = 4939 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4940 4941 if (Entry) { 4942 if (GA->getAliasee() == Entry) { 4943 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4944 return; 4945 } 4946 4947 assert(Entry->isDeclaration()); 4948 4949 // If there is a declaration in the module, then we had an extern followed 4950 // by the alias, as in: 4951 // extern int test6(); 4952 // ... 4953 // int test6() __attribute__((alias("test7"))); 4954 // 4955 // Remove it and replace uses of it with the alias. 4956 GA->takeName(Entry); 4957 4958 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4959 Entry->getType())); 4960 Entry->eraseFromParent(); 4961 } else { 4962 GA->setName(MangledName); 4963 } 4964 4965 // Set attributes which are particular to an alias; this is a 4966 // specialization of the attributes which may be set on a global 4967 // variable/function. 4968 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4969 D->isWeakImported()) { 4970 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4971 } 4972 4973 if (const auto *VD = dyn_cast<VarDecl>(D)) 4974 if (VD->getTLSKind()) 4975 setTLSMode(GA, *VD); 4976 4977 SetCommonAttributes(GD, GA); 4978 } 4979 4980 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4981 const auto *D = cast<ValueDecl>(GD.getDecl()); 4982 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4983 assert(IFA && "Not an ifunc?"); 4984 4985 StringRef MangledName = getMangledName(GD); 4986 4987 if (IFA->getResolver() == MangledName) { 4988 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4989 return; 4990 } 4991 4992 // Report an error if some definition overrides ifunc. 4993 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4994 if (Entry && !Entry->isDeclaration()) { 4995 GlobalDecl OtherGD; 4996 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4997 DiagnosedConflictingDefinitions.insert(GD).second) { 4998 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4999 << MangledName; 5000 Diags.Report(OtherGD.getDecl()->getLocation(), 5001 diag::note_previous_definition); 5002 } 5003 return; 5004 } 5005 5006 Aliases.push_back(GD); 5007 5008 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5009 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5010 llvm::Constant *Resolver = 5011 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, GD, 5012 /*ForVTable=*/false); 5013 llvm::GlobalIFunc *GIF = 5014 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5015 "", Resolver, &getModule()); 5016 if (Entry) { 5017 if (GIF->getResolver() == Entry) { 5018 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5019 return; 5020 } 5021 assert(Entry->isDeclaration()); 5022 5023 // If there is a declaration in the module, then we had an extern followed 5024 // by the ifunc, as in: 5025 // extern int test(); 5026 // ... 5027 // int test() __attribute__((ifunc("resolver"))); 5028 // 5029 // Remove it and replace uses of it with the ifunc. 5030 GIF->takeName(Entry); 5031 5032 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5033 Entry->getType())); 5034 Entry->eraseFromParent(); 5035 } else 5036 GIF->setName(MangledName); 5037 5038 SetCommonAttributes(GD, GIF); 5039 } 5040 5041 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5042 ArrayRef<llvm::Type*> Tys) { 5043 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5044 Tys); 5045 } 5046 5047 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5048 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5049 const StringLiteral *Literal, bool TargetIsLSB, 5050 bool &IsUTF16, unsigned &StringLength) { 5051 StringRef String = Literal->getString(); 5052 unsigned NumBytes = String.size(); 5053 5054 // Check for simple case. 5055 if (!Literal->containsNonAsciiOrNull()) { 5056 StringLength = NumBytes; 5057 return *Map.insert(std::make_pair(String, nullptr)).first; 5058 } 5059 5060 // Otherwise, convert the UTF8 literals into a string of shorts. 5061 IsUTF16 = true; 5062 5063 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5064 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5065 llvm::UTF16 *ToPtr = &ToBuf[0]; 5066 5067 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5068 ToPtr + NumBytes, llvm::strictConversion); 5069 5070 // ConvertUTF8toUTF16 returns the length in ToPtr. 5071 StringLength = ToPtr - &ToBuf[0]; 5072 5073 // Add an explicit null. 5074 *ToPtr = 0; 5075 return *Map.insert(std::make_pair( 5076 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5077 (StringLength + 1) * 2), 5078 nullptr)).first; 5079 } 5080 5081 ConstantAddress 5082 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5083 unsigned StringLength = 0; 5084 bool isUTF16 = false; 5085 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5086 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5087 getDataLayout().isLittleEndian(), isUTF16, 5088 StringLength); 5089 5090 if (auto *C = Entry.second) 5091 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 5092 5093 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5094 llvm::Constant *Zeros[] = { Zero, Zero }; 5095 5096 const ASTContext &Context = getContext(); 5097 const llvm::Triple &Triple = getTriple(); 5098 5099 const auto CFRuntime = getLangOpts().CFRuntime; 5100 const bool IsSwiftABI = 5101 static_cast<unsigned>(CFRuntime) >= 5102 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5103 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5104 5105 // If we don't already have it, get __CFConstantStringClassReference. 5106 if (!CFConstantStringClassRef) { 5107 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5108 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5109 Ty = llvm::ArrayType::get(Ty, 0); 5110 5111 switch (CFRuntime) { 5112 default: break; 5113 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5114 case LangOptions::CoreFoundationABI::Swift5_0: 5115 CFConstantStringClassName = 5116 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5117 : "$s10Foundation19_NSCFConstantStringCN"; 5118 Ty = IntPtrTy; 5119 break; 5120 case LangOptions::CoreFoundationABI::Swift4_2: 5121 CFConstantStringClassName = 5122 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5123 : "$S10Foundation19_NSCFConstantStringCN"; 5124 Ty = IntPtrTy; 5125 break; 5126 case LangOptions::CoreFoundationABI::Swift4_1: 5127 CFConstantStringClassName = 5128 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5129 : "__T010Foundation19_NSCFConstantStringCN"; 5130 Ty = IntPtrTy; 5131 break; 5132 } 5133 5134 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5135 5136 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5137 llvm::GlobalValue *GV = nullptr; 5138 5139 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5140 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5141 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5142 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5143 5144 const VarDecl *VD = nullptr; 5145 for (const auto *Result : DC->lookup(&II)) 5146 if ((VD = dyn_cast<VarDecl>(Result))) 5147 break; 5148 5149 if (Triple.isOSBinFormatELF()) { 5150 if (!VD) 5151 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5152 } else { 5153 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5154 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5155 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5156 else 5157 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5158 } 5159 5160 setDSOLocal(GV); 5161 } 5162 } 5163 5164 // Decay array -> ptr 5165 CFConstantStringClassRef = 5166 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5167 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5168 } 5169 5170 QualType CFTy = Context.getCFConstantStringType(); 5171 5172 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5173 5174 ConstantInitBuilder Builder(*this); 5175 auto Fields = Builder.beginStruct(STy); 5176 5177 // Class pointer. 5178 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5179 5180 // Flags. 5181 if (IsSwiftABI) { 5182 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5183 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5184 } else { 5185 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5186 } 5187 5188 // String pointer. 5189 llvm::Constant *C = nullptr; 5190 if (isUTF16) { 5191 auto Arr = llvm::makeArrayRef( 5192 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5193 Entry.first().size() / 2); 5194 C = llvm::ConstantDataArray::get(VMContext, Arr); 5195 } else { 5196 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5197 } 5198 5199 // Note: -fwritable-strings doesn't make the backing store strings of 5200 // CFStrings writable. (See <rdar://problem/10657500>) 5201 auto *GV = 5202 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5203 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5204 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5205 // Don't enforce the target's minimum global alignment, since the only use 5206 // of the string is via this class initializer. 5207 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5208 : Context.getTypeAlignInChars(Context.CharTy); 5209 GV->setAlignment(Align.getAsAlign()); 5210 5211 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5212 // Without it LLVM can merge the string with a non unnamed_addr one during 5213 // LTO. Doing that changes the section it ends in, which surprises ld64. 5214 if (Triple.isOSBinFormatMachO()) 5215 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5216 : "__TEXT,__cstring,cstring_literals"); 5217 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5218 // the static linker to adjust permissions to read-only later on. 5219 else if (Triple.isOSBinFormatELF()) 5220 GV->setSection(".rodata"); 5221 5222 // String. 5223 llvm::Constant *Str = 5224 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5225 5226 if (isUTF16) 5227 // Cast the UTF16 string to the correct type. 5228 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5229 Fields.add(Str); 5230 5231 // String length. 5232 llvm::IntegerType *LengthTy = 5233 llvm::IntegerType::get(getModule().getContext(), 5234 Context.getTargetInfo().getLongWidth()); 5235 if (IsSwiftABI) { 5236 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5237 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5238 LengthTy = Int32Ty; 5239 else 5240 LengthTy = IntPtrTy; 5241 } 5242 Fields.addInt(LengthTy, StringLength); 5243 5244 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5245 // properly aligned on 32-bit platforms. 5246 CharUnits Alignment = 5247 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5248 5249 // The struct. 5250 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5251 /*isConstant=*/false, 5252 llvm::GlobalVariable::PrivateLinkage); 5253 GV->addAttribute("objc_arc_inert"); 5254 switch (Triple.getObjectFormat()) { 5255 case llvm::Triple::UnknownObjectFormat: 5256 llvm_unreachable("unknown file format"); 5257 case llvm::Triple::GOFF: 5258 llvm_unreachable("GOFF is not yet implemented"); 5259 case llvm::Triple::XCOFF: 5260 llvm_unreachable("XCOFF is not yet implemented"); 5261 case llvm::Triple::COFF: 5262 case llvm::Triple::ELF: 5263 case llvm::Triple::Wasm: 5264 GV->setSection("cfstring"); 5265 break; 5266 case llvm::Triple::MachO: 5267 GV->setSection("__DATA,__cfstring"); 5268 break; 5269 } 5270 Entry.second = GV; 5271 5272 return ConstantAddress(GV, Alignment); 5273 } 5274 5275 bool CodeGenModule::getExpressionLocationsEnabled() const { 5276 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5277 } 5278 5279 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5280 if (ObjCFastEnumerationStateType.isNull()) { 5281 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5282 D->startDefinition(); 5283 5284 QualType FieldTypes[] = { 5285 Context.UnsignedLongTy, 5286 Context.getPointerType(Context.getObjCIdType()), 5287 Context.getPointerType(Context.UnsignedLongTy), 5288 Context.getConstantArrayType(Context.UnsignedLongTy, 5289 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5290 }; 5291 5292 for (size_t i = 0; i < 4; ++i) { 5293 FieldDecl *Field = FieldDecl::Create(Context, 5294 D, 5295 SourceLocation(), 5296 SourceLocation(), nullptr, 5297 FieldTypes[i], /*TInfo=*/nullptr, 5298 /*BitWidth=*/nullptr, 5299 /*Mutable=*/false, 5300 ICIS_NoInit); 5301 Field->setAccess(AS_public); 5302 D->addDecl(Field); 5303 } 5304 5305 D->completeDefinition(); 5306 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5307 } 5308 5309 return ObjCFastEnumerationStateType; 5310 } 5311 5312 llvm::Constant * 5313 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5314 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5315 5316 // Don't emit it as the address of the string, emit the string data itself 5317 // as an inline array. 5318 if (E->getCharByteWidth() == 1) { 5319 SmallString<64> Str(E->getString()); 5320 5321 // Resize the string to the right size, which is indicated by its type. 5322 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5323 Str.resize(CAT->getSize().getZExtValue()); 5324 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5325 } 5326 5327 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5328 llvm::Type *ElemTy = AType->getElementType(); 5329 unsigned NumElements = AType->getNumElements(); 5330 5331 // Wide strings have either 2-byte or 4-byte elements. 5332 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5333 SmallVector<uint16_t, 32> Elements; 5334 Elements.reserve(NumElements); 5335 5336 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5337 Elements.push_back(E->getCodeUnit(i)); 5338 Elements.resize(NumElements); 5339 return llvm::ConstantDataArray::get(VMContext, Elements); 5340 } 5341 5342 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5343 SmallVector<uint32_t, 32> Elements; 5344 Elements.reserve(NumElements); 5345 5346 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5347 Elements.push_back(E->getCodeUnit(i)); 5348 Elements.resize(NumElements); 5349 return llvm::ConstantDataArray::get(VMContext, Elements); 5350 } 5351 5352 static llvm::GlobalVariable * 5353 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5354 CodeGenModule &CGM, StringRef GlobalName, 5355 CharUnits Alignment) { 5356 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5357 CGM.GetGlobalConstantAddressSpace()); 5358 5359 llvm::Module &M = CGM.getModule(); 5360 // Create a global variable for this string 5361 auto *GV = new llvm::GlobalVariable( 5362 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5363 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5364 GV->setAlignment(Alignment.getAsAlign()); 5365 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5366 if (GV->isWeakForLinker()) { 5367 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5368 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5369 } 5370 CGM.setDSOLocal(GV); 5371 5372 return GV; 5373 } 5374 5375 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5376 /// constant array for the given string literal. 5377 ConstantAddress 5378 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5379 StringRef Name) { 5380 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5381 5382 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5383 llvm::GlobalVariable **Entry = nullptr; 5384 if (!LangOpts.WritableStrings) { 5385 Entry = &ConstantStringMap[C]; 5386 if (auto GV = *Entry) { 5387 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5388 GV->setAlignment(Alignment.getAsAlign()); 5389 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5390 Alignment); 5391 } 5392 } 5393 5394 SmallString<256> MangledNameBuffer; 5395 StringRef GlobalVariableName; 5396 llvm::GlobalValue::LinkageTypes LT; 5397 5398 // Mangle the string literal if that's how the ABI merges duplicate strings. 5399 // Don't do it if they are writable, since we don't want writes in one TU to 5400 // affect strings in another. 5401 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5402 !LangOpts.WritableStrings) { 5403 llvm::raw_svector_ostream Out(MangledNameBuffer); 5404 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5405 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5406 GlobalVariableName = MangledNameBuffer; 5407 } else { 5408 LT = llvm::GlobalValue::PrivateLinkage; 5409 GlobalVariableName = Name; 5410 } 5411 5412 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5413 if (Entry) 5414 *Entry = GV; 5415 5416 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5417 QualType()); 5418 5419 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5420 Alignment); 5421 } 5422 5423 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5424 /// array for the given ObjCEncodeExpr node. 5425 ConstantAddress 5426 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5427 std::string Str; 5428 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5429 5430 return GetAddrOfConstantCString(Str); 5431 } 5432 5433 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5434 /// the literal and a terminating '\0' character. 5435 /// The result has pointer to array type. 5436 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5437 const std::string &Str, const char *GlobalName) { 5438 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5439 CharUnits Alignment = 5440 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5441 5442 llvm::Constant *C = 5443 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5444 5445 // Don't share any string literals if strings aren't constant. 5446 llvm::GlobalVariable **Entry = nullptr; 5447 if (!LangOpts.WritableStrings) { 5448 Entry = &ConstantStringMap[C]; 5449 if (auto GV = *Entry) { 5450 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5451 GV->setAlignment(Alignment.getAsAlign()); 5452 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5453 Alignment); 5454 } 5455 } 5456 5457 // Get the default prefix if a name wasn't specified. 5458 if (!GlobalName) 5459 GlobalName = ".str"; 5460 // Create a global variable for this. 5461 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5462 GlobalName, Alignment); 5463 if (Entry) 5464 *Entry = GV; 5465 5466 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5467 Alignment); 5468 } 5469 5470 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5471 const MaterializeTemporaryExpr *E, const Expr *Init) { 5472 assert((E->getStorageDuration() == SD_Static || 5473 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5474 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5475 5476 // If we're not materializing a subobject of the temporary, keep the 5477 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5478 QualType MaterializedType = Init->getType(); 5479 if (Init == E->getSubExpr()) 5480 MaterializedType = E->getType(); 5481 5482 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5483 5484 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5485 if (!InsertResult.second) { 5486 // We've seen this before: either we already created it or we're in the 5487 // process of doing so. 5488 if (!InsertResult.first->second) { 5489 // We recursively re-entered this function, probably during emission of 5490 // the initializer. Create a placeholder. We'll clean this up in the 5491 // outer call, at the end of this function. 5492 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5493 InsertResult.first->second = new llvm::GlobalVariable( 5494 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5495 nullptr); 5496 } 5497 return ConstantAddress(InsertResult.first->second, Align); 5498 } 5499 5500 // FIXME: If an externally-visible declaration extends multiple temporaries, 5501 // we need to give each temporary the same name in every translation unit (and 5502 // we also need to make the temporaries externally-visible). 5503 SmallString<256> Name; 5504 llvm::raw_svector_ostream Out(Name); 5505 getCXXABI().getMangleContext().mangleReferenceTemporary( 5506 VD, E->getManglingNumber(), Out); 5507 5508 APValue *Value = nullptr; 5509 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5510 // If the initializer of the extending declaration is a constant 5511 // initializer, we should have a cached constant initializer for this 5512 // temporary. Note that this might have a different value from the value 5513 // computed by evaluating the initializer if the surrounding constant 5514 // expression modifies the temporary. 5515 Value = E->getOrCreateValue(false); 5516 } 5517 5518 // Try evaluating it now, it might have a constant initializer. 5519 Expr::EvalResult EvalResult; 5520 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5521 !EvalResult.hasSideEffects()) 5522 Value = &EvalResult.Val; 5523 5524 LangAS AddrSpace = 5525 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5526 5527 Optional<ConstantEmitter> emitter; 5528 llvm::Constant *InitialValue = nullptr; 5529 bool Constant = false; 5530 llvm::Type *Type; 5531 if (Value) { 5532 // The temporary has a constant initializer, use it. 5533 emitter.emplace(*this); 5534 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5535 MaterializedType); 5536 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5537 Type = InitialValue->getType(); 5538 } else { 5539 // No initializer, the initialization will be provided when we 5540 // initialize the declaration which performed lifetime extension. 5541 Type = getTypes().ConvertTypeForMem(MaterializedType); 5542 } 5543 5544 // Create a global variable for this lifetime-extended temporary. 5545 llvm::GlobalValue::LinkageTypes Linkage = 5546 getLLVMLinkageVarDefinition(VD, Constant); 5547 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5548 const VarDecl *InitVD; 5549 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5550 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5551 // Temporaries defined inside a class get linkonce_odr linkage because the 5552 // class can be defined in multiple translation units. 5553 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5554 } else { 5555 // There is no need for this temporary to have external linkage if the 5556 // VarDecl has external linkage. 5557 Linkage = llvm::GlobalVariable::InternalLinkage; 5558 } 5559 } 5560 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5561 auto *GV = new llvm::GlobalVariable( 5562 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5563 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5564 if (emitter) emitter->finalize(GV); 5565 setGVProperties(GV, VD); 5566 GV->setAlignment(Align.getAsAlign()); 5567 if (supportsCOMDAT() && GV->isWeakForLinker()) 5568 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5569 if (VD->getTLSKind()) 5570 setTLSMode(GV, *VD); 5571 llvm::Constant *CV = GV; 5572 if (AddrSpace != LangAS::Default) 5573 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5574 *this, GV, AddrSpace, LangAS::Default, 5575 Type->getPointerTo( 5576 getContext().getTargetAddressSpace(LangAS::Default))); 5577 5578 // Update the map with the new temporary. If we created a placeholder above, 5579 // replace it with the new global now. 5580 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5581 if (Entry) { 5582 Entry->replaceAllUsesWith( 5583 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5584 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5585 } 5586 Entry = CV; 5587 5588 return ConstantAddress(CV, Align); 5589 } 5590 5591 /// EmitObjCPropertyImplementations - Emit information for synthesized 5592 /// properties for an implementation. 5593 void CodeGenModule::EmitObjCPropertyImplementations(const 5594 ObjCImplementationDecl *D) { 5595 for (const auto *PID : D->property_impls()) { 5596 // Dynamic is just for type-checking. 5597 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5598 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5599 5600 // Determine which methods need to be implemented, some may have 5601 // been overridden. Note that ::isPropertyAccessor is not the method 5602 // we want, that just indicates if the decl came from a 5603 // property. What we want to know is if the method is defined in 5604 // this implementation. 5605 auto *Getter = PID->getGetterMethodDecl(); 5606 if (!Getter || Getter->isSynthesizedAccessorStub()) 5607 CodeGenFunction(*this).GenerateObjCGetter( 5608 const_cast<ObjCImplementationDecl *>(D), PID); 5609 auto *Setter = PID->getSetterMethodDecl(); 5610 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5611 CodeGenFunction(*this).GenerateObjCSetter( 5612 const_cast<ObjCImplementationDecl *>(D), PID); 5613 } 5614 } 5615 } 5616 5617 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5618 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5619 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5620 ivar; ivar = ivar->getNextIvar()) 5621 if (ivar->getType().isDestructedType()) 5622 return true; 5623 5624 return false; 5625 } 5626 5627 static bool AllTrivialInitializers(CodeGenModule &CGM, 5628 ObjCImplementationDecl *D) { 5629 CodeGenFunction CGF(CGM); 5630 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5631 E = D->init_end(); B != E; ++B) { 5632 CXXCtorInitializer *CtorInitExp = *B; 5633 Expr *Init = CtorInitExp->getInit(); 5634 if (!CGF.isTrivialInitializer(Init)) 5635 return false; 5636 } 5637 return true; 5638 } 5639 5640 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5641 /// for an implementation. 5642 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5643 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5644 if (needsDestructMethod(D)) { 5645 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5646 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5647 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5648 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5649 getContext().VoidTy, nullptr, D, 5650 /*isInstance=*/true, /*isVariadic=*/false, 5651 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5652 /*isImplicitlyDeclared=*/true, 5653 /*isDefined=*/false, ObjCMethodDecl::Required); 5654 D->addInstanceMethod(DTORMethod); 5655 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5656 D->setHasDestructors(true); 5657 } 5658 5659 // If the implementation doesn't have any ivar initializers, we don't need 5660 // a .cxx_construct. 5661 if (D->getNumIvarInitializers() == 0 || 5662 AllTrivialInitializers(*this, D)) 5663 return; 5664 5665 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5666 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5667 // The constructor returns 'self'. 5668 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5669 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5670 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5671 /*isVariadic=*/false, 5672 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5673 /*isImplicitlyDeclared=*/true, 5674 /*isDefined=*/false, ObjCMethodDecl::Required); 5675 D->addInstanceMethod(CTORMethod); 5676 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5677 D->setHasNonZeroConstructors(true); 5678 } 5679 5680 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5681 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5682 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5683 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5684 ErrorUnsupported(LSD, "linkage spec"); 5685 return; 5686 } 5687 5688 EmitDeclContext(LSD); 5689 } 5690 5691 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5692 for (auto *I : DC->decls()) { 5693 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5694 // are themselves considered "top-level", so EmitTopLevelDecl on an 5695 // ObjCImplDecl does not recursively visit them. We need to do that in 5696 // case they're nested inside another construct (LinkageSpecDecl / 5697 // ExportDecl) that does stop them from being considered "top-level". 5698 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5699 for (auto *M : OID->methods()) 5700 EmitTopLevelDecl(M); 5701 } 5702 5703 EmitTopLevelDecl(I); 5704 } 5705 } 5706 5707 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5708 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5709 // Ignore dependent declarations. 5710 if (D->isTemplated()) 5711 return; 5712 5713 // Consteval function shouldn't be emitted. 5714 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5715 if (FD->isConsteval()) 5716 return; 5717 5718 switch (D->getKind()) { 5719 case Decl::CXXConversion: 5720 case Decl::CXXMethod: 5721 case Decl::Function: 5722 EmitGlobal(cast<FunctionDecl>(D)); 5723 // Always provide some coverage mapping 5724 // even for the functions that aren't emitted. 5725 AddDeferredUnusedCoverageMapping(D); 5726 break; 5727 5728 case Decl::CXXDeductionGuide: 5729 // Function-like, but does not result in code emission. 5730 break; 5731 5732 case Decl::Var: 5733 case Decl::Decomposition: 5734 case Decl::VarTemplateSpecialization: 5735 EmitGlobal(cast<VarDecl>(D)); 5736 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5737 for (auto *B : DD->bindings()) 5738 if (auto *HD = B->getHoldingVar()) 5739 EmitGlobal(HD); 5740 break; 5741 5742 // Indirect fields from global anonymous structs and unions can be 5743 // ignored; only the actual variable requires IR gen support. 5744 case Decl::IndirectField: 5745 break; 5746 5747 // C++ Decls 5748 case Decl::Namespace: 5749 EmitDeclContext(cast<NamespaceDecl>(D)); 5750 break; 5751 case Decl::ClassTemplateSpecialization: { 5752 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5753 if (CGDebugInfo *DI = getModuleDebugInfo()) 5754 if (Spec->getSpecializationKind() == 5755 TSK_ExplicitInstantiationDefinition && 5756 Spec->hasDefinition()) 5757 DI->completeTemplateDefinition(*Spec); 5758 } LLVM_FALLTHROUGH; 5759 case Decl::CXXRecord: { 5760 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5761 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5762 if (CRD->hasDefinition()) 5763 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5764 if (auto *ES = D->getASTContext().getExternalSource()) 5765 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5766 DI->completeUnusedClass(*CRD); 5767 } 5768 // Emit any static data members, they may be definitions. 5769 for (auto *I : CRD->decls()) 5770 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5771 EmitTopLevelDecl(I); 5772 break; 5773 } 5774 // No code generation needed. 5775 case Decl::UsingShadow: 5776 case Decl::ClassTemplate: 5777 case Decl::VarTemplate: 5778 case Decl::Concept: 5779 case Decl::VarTemplatePartialSpecialization: 5780 case Decl::FunctionTemplate: 5781 case Decl::TypeAliasTemplate: 5782 case Decl::Block: 5783 case Decl::Empty: 5784 case Decl::Binding: 5785 break; 5786 case Decl::Using: // using X; [C++] 5787 if (CGDebugInfo *DI = getModuleDebugInfo()) 5788 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5789 break; 5790 case Decl::UsingEnum: // using enum X; [C++] 5791 if (CGDebugInfo *DI = getModuleDebugInfo()) 5792 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 5793 break; 5794 case Decl::NamespaceAlias: 5795 if (CGDebugInfo *DI = getModuleDebugInfo()) 5796 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5797 break; 5798 case Decl::UsingDirective: // using namespace X; [C++] 5799 if (CGDebugInfo *DI = getModuleDebugInfo()) 5800 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5801 break; 5802 case Decl::CXXConstructor: 5803 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5804 break; 5805 case Decl::CXXDestructor: 5806 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5807 break; 5808 5809 case Decl::StaticAssert: 5810 // Nothing to do. 5811 break; 5812 5813 // Objective-C Decls 5814 5815 // Forward declarations, no (immediate) code generation. 5816 case Decl::ObjCInterface: 5817 case Decl::ObjCCategory: 5818 break; 5819 5820 case Decl::ObjCProtocol: { 5821 auto *Proto = cast<ObjCProtocolDecl>(D); 5822 if (Proto->isThisDeclarationADefinition()) 5823 ObjCRuntime->GenerateProtocol(Proto); 5824 break; 5825 } 5826 5827 case Decl::ObjCCategoryImpl: 5828 // Categories have properties but don't support synthesize so we 5829 // can ignore them here. 5830 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5831 break; 5832 5833 case Decl::ObjCImplementation: { 5834 auto *OMD = cast<ObjCImplementationDecl>(D); 5835 EmitObjCPropertyImplementations(OMD); 5836 EmitObjCIvarInitializations(OMD); 5837 ObjCRuntime->GenerateClass(OMD); 5838 // Emit global variable debug information. 5839 if (CGDebugInfo *DI = getModuleDebugInfo()) 5840 if (getCodeGenOpts().hasReducedDebugInfo()) 5841 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5842 OMD->getClassInterface()), OMD->getLocation()); 5843 break; 5844 } 5845 case Decl::ObjCMethod: { 5846 auto *OMD = cast<ObjCMethodDecl>(D); 5847 // If this is not a prototype, emit the body. 5848 if (OMD->getBody()) 5849 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5850 break; 5851 } 5852 case Decl::ObjCCompatibleAlias: 5853 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5854 break; 5855 5856 case Decl::PragmaComment: { 5857 const auto *PCD = cast<PragmaCommentDecl>(D); 5858 switch (PCD->getCommentKind()) { 5859 case PCK_Unknown: 5860 llvm_unreachable("unexpected pragma comment kind"); 5861 case PCK_Linker: 5862 AppendLinkerOptions(PCD->getArg()); 5863 break; 5864 case PCK_Lib: 5865 AddDependentLib(PCD->getArg()); 5866 break; 5867 case PCK_Compiler: 5868 case PCK_ExeStr: 5869 case PCK_User: 5870 break; // We ignore all of these. 5871 } 5872 break; 5873 } 5874 5875 case Decl::PragmaDetectMismatch: { 5876 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5877 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5878 break; 5879 } 5880 5881 case Decl::LinkageSpec: 5882 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5883 break; 5884 5885 case Decl::FileScopeAsm: { 5886 // File-scope asm is ignored during device-side CUDA compilation. 5887 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5888 break; 5889 // File-scope asm is ignored during device-side OpenMP compilation. 5890 if (LangOpts.OpenMPIsDevice) 5891 break; 5892 // File-scope asm is ignored during device-side SYCL compilation. 5893 if (LangOpts.SYCLIsDevice) 5894 break; 5895 auto *AD = cast<FileScopeAsmDecl>(D); 5896 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5897 break; 5898 } 5899 5900 case Decl::Import: { 5901 auto *Import = cast<ImportDecl>(D); 5902 5903 // If we've already imported this module, we're done. 5904 if (!ImportedModules.insert(Import->getImportedModule())) 5905 break; 5906 5907 // Emit debug information for direct imports. 5908 if (!Import->getImportedOwningModule()) { 5909 if (CGDebugInfo *DI = getModuleDebugInfo()) 5910 DI->EmitImportDecl(*Import); 5911 } 5912 5913 // Find all of the submodules and emit the module initializers. 5914 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5915 SmallVector<clang::Module *, 16> Stack; 5916 Visited.insert(Import->getImportedModule()); 5917 Stack.push_back(Import->getImportedModule()); 5918 5919 while (!Stack.empty()) { 5920 clang::Module *Mod = Stack.pop_back_val(); 5921 if (!EmittedModuleInitializers.insert(Mod).second) 5922 continue; 5923 5924 for (auto *D : Context.getModuleInitializers(Mod)) 5925 EmitTopLevelDecl(D); 5926 5927 // Visit the submodules of this module. 5928 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5929 SubEnd = Mod->submodule_end(); 5930 Sub != SubEnd; ++Sub) { 5931 // Skip explicit children; they need to be explicitly imported to emit 5932 // the initializers. 5933 if ((*Sub)->IsExplicit) 5934 continue; 5935 5936 if (Visited.insert(*Sub).second) 5937 Stack.push_back(*Sub); 5938 } 5939 } 5940 break; 5941 } 5942 5943 case Decl::Export: 5944 EmitDeclContext(cast<ExportDecl>(D)); 5945 break; 5946 5947 case Decl::OMPThreadPrivate: 5948 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5949 break; 5950 5951 case Decl::OMPAllocate: 5952 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 5953 break; 5954 5955 case Decl::OMPDeclareReduction: 5956 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5957 break; 5958 5959 case Decl::OMPDeclareMapper: 5960 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5961 break; 5962 5963 case Decl::OMPRequires: 5964 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5965 break; 5966 5967 case Decl::Typedef: 5968 case Decl::TypeAlias: // using foo = bar; [C++11] 5969 if (CGDebugInfo *DI = getModuleDebugInfo()) 5970 DI->EmitAndRetainType( 5971 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5972 break; 5973 5974 case Decl::Record: 5975 if (CGDebugInfo *DI = getModuleDebugInfo()) 5976 if (cast<RecordDecl>(D)->getDefinition()) 5977 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5978 break; 5979 5980 case Decl::Enum: 5981 if (CGDebugInfo *DI = getModuleDebugInfo()) 5982 if (cast<EnumDecl>(D)->getDefinition()) 5983 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5984 break; 5985 5986 default: 5987 // Make sure we handled everything we should, every other kind is a 5988 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5989 // function. Need to recode Decl::Kind to do that easily. 5990 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5991 break; 5992 } 5993 } 5994 5995 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5996 // Do we need to generate coverage mapping? 5997 if (!CodeGenOpts.CoverageMapping) 5998 return; 5999 switch (D->getKind()) { 6000 case Decl::CXXConversion: 6001 case Decl::CXXMethod: 6002 case Decl::Function: 6003 case Decl::ObjCMethod: 6004 case Decl::CXXConstructor: 6005 case Decl::CXXDestructor: { 6006 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6007 break; 6008 SourceManager &SM = getContext().getSourceManager(); 6009 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6010 break; 6011 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6012 if (I == DeferredEmptyCoverageMappingDecls.end()) 6013 DeferredEmptyCoverageMappingDecls[D] = true; 6014 break; 6015 } 6016 default: 6017 break; 6018 }; 6019 } 6020 6021 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6022 // Do we need to generate coverage mapping? 6023 if (!CodeGenOpts.CoverageMapping) 6024 return; 6025 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6026 if (Fn->isTemplateInstantiation()) 6027 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6028 } 6029 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6030 if (I == DeferredEmptyCoverageMappingDecls.end()) 6031 DeferredEmptyCoverageMappingDecls[D] = false; 6032 else 6033 I->second = false; 6034 } 6035 6036 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6037 // We call takeVector() here to avoid use-after-free. 6038 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6039 // we deserialize function bodies to emit coverage info for them, and that 6040 // deserializes more declarations. How should we handle that case? 6041 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6042 if (!Entry.second) 6043 continue; 6044 const Decl *D = Entry.first; 6045 switch (D->getKind()) { 6046 case Decl::CXXConversion: 6047 case Decl::CXXMethod: 6048 case Decl::Function: 6049 case Decl::ObjCMethod: { 6050 CodeGenPGO PGO(*this); 6051 GlobalDecl GD(cast<FunctionDecl>(D)); 6052 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6053 getFunctionLinkage(GD)); 6054 break; 6055 } 6056 case Decl::CXXConstructor: { 6057 CodeGenPGO PGO(*this); 6058 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6059 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6060 getFunctionLinkage(GD)); 6061 break; 6062 } 6063 case Decl::CXXDestructor: { 6064 CodeGenPGO PGO(*this); 6065 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6066 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6067 getFunctionLinkage(GD)); 6068 break; 6069 } 6070 default: 6071 break; 6072 }; 6073 } 6074 } 6075 6076 void CodeGenModule::EmitMainVoidAlias() { 6077 // In order to transition away from "__original_main" gracefully, emit an 6078 // alias for "main" in the no-argument case so that libc can detect when 6079 // new-style no-argument main is in used. 6080 if (llvm::Function *F = getModule().getFunction("main")) { 6081 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6082 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6083 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6084 } 6085 } 6086 6087 /// Turns the given pointer into a constant. 6088 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6089 const void *Ptr) { 6090 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6091 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6092 return llvm::ConstantInt::get(i64, PtrInt); 6093 } 6094 6095 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6096 llvm::NamedMDNode *&GlobalMetadata, 6097 GlobalDecl D, 6098 llvm::GlobalValue *Addr) { 6099 if (!GlobalMetadata) 6100 GlobalMetadata = 6101 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6102 6103 // TODO: should we report variant information for ctors/dtors? 6104 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6105 llvm::ConstantAsMetadata::get(GetPointerConstant( 6106 CGM.getLLVMContext(), D.getDecl()))}; 6107 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6108 } 6109 6110 /// For each function which is declared within an extern "C" region and marked 6111 /// as 'used', but has internal linkage, create an alias from the unmangled 6112 /// name to the mangled name if possible. People expect to be able to refer 6113 /// to such functions with an unmangled name from inline assembly within the 6114 /// same translation unit. 6115 void CodeGenModule::EmitStaticExternCAliases() { 6116 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6117 return; 6118 for (auto &I : StaticExternCValues) { 6119 IdentifierInfo *Name = I.first; 6120 llvm::GlobalValue *Val = I.second; 6121 if (Val && !getModule().getNamedValue(Name->getName())) 6122 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6123 } 6124 } 6125 6126 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6127 GlobalDecl &Result) const { 6128 auto Res = Manglings.find(MangledName); 6129 if (Res == Manglings.end()) 6130 return false; 6131 Result = Res->getValue(); 6132 return true; 6133 } 6134 6135 /// Emits metadata nodes associating all the global values in the 6136 /// current module with the Decls they came from. This is useful for 6137 /// projects using IR gen as a subroutine. 6138 /// 6139 /// Since there's currently no way to associate an MDNode directly 6140 /// with an llvm::GlobalValue, we create a global named metadata 6141 /// with the name 'clang.global.decl.ptrs'. 6142 void CodeGenModule::EmitDeclMetadata() { 6143 llvm::NamedMDNode *GlobalMetadata = nullptr; 6144 6145 for (auto &I : MangledDeclNames) { 6146 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6147 // Some mangled names don't necessarily have an associated GlobalValue 6148 // in this module, e.g. if we mangled it for DebugInfo. 6149 if (Addr) 6150 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6151 } 6152 } 6153 6154 /// Emits metadata nodes for all the local variables in the current 6155 /// function. 6156 void CodeGenFunction::EmitDeclMetadata() { 6157 if (LocalDeclMap.empty()) return; 6158 6159 llvm::LLVMContext &Context = getLLVMContext(); 6160 6161 // Find the unique metadata ID for this name. 6162 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6163 6164 llvm::NamedMDNode *GlobalMetadata = nullptr; 6165 6166 for (auto &I : LocalDeclMap) { 6167 const Decl *D = I.first; 6168 llvm::Value *Addr = I.second.getPointer(); 6169 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6170 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6171 Alloca->setMetadata( 6172 DeclPtrKind, llvm::MDNode::get( 6173 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6174 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6175 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6176 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6177 } 6178 } 6179 } 6180 6181 void CodeGenModule::EmitVersionIdentMetadata() { 6182 llvm::NamedMDNode *IdentMetadata = 6183 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6184 std::string Version = getClangFullVersion(); 6185 llvm::LLVMContext &Ctx = TheModule.getContext(); 6186 6187 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6188 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6189 } 6190 6191 void CodeGenModule::EmitCommandLineMetadata() { 6192 llvm::NamedMDNode *CommandLineMetadata = 6193 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6194 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6195 llvm::LLVMContext &Ctx = TheModule.getContext(); 6196 6197 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6198 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6199 } 6200 6201 void CodeGenModule::EmitCoverageFile() { 6202 if (getCodeGenOpts().CoverageDataFile.empty() && 6203 getCodeGenOpts().CoverageNotesFile.empty()) 6204 return; 6205 6206 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6207 if (!CUNode) 6208 return; 6209 6210 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6211 llvm::LLVMContext &Ctx = TheModule.getContext(); 6212 auto *CoverageDataFile = 6213 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6214 auto *CoverageNotesFile = 6215 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6216 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6217 llvm::MDNode *CU = CUNode->getOperand(i); 6218 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6219 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6220 } 6221 } 6222 6223 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6224 bool ForEH) { 6225 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6226 // FIXME: should we even be calling this method if RTTI is disabled 6227 // and it's not for EH? 6228 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6229 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6230 getTriple().isNVPTX())) 6231 return llvm::Constant::getNullValue(Int8PtrTy); 6232 6233 if (ForEH && Ty->isObjCObjectPointerType() && 6234 LangOpts.ObjCRuntime.isGNUFamily()) 6235 return ObjCRuntime->GetEHType(Ty); 6236 6237 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6238 } 6239 6240 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6241 // Do not emit threadprivates in simd-only mode. 6242 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6243 return; 6244 for (auto RefExpr : D->varlists()) { 6245 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6246 bool PerformInit = 6247 VD->getAnyInitializer() && 6248 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6249 /*ForRef=*/false); 6250 6251 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6252 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6253 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6254 CXXGlobalInits.push_back(InitFunction); 6255 } 6256 } 6257 6258 llvm::Metadata * 6259 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6260 StringRef Suffix) { 6261 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6262 if (InternalId) 6263 return InternalId; 6264 6265 if (isExternallyVisible(T->getLinkage())) { 6266 std::string OutName; 6267 llvm::raw_string_ostream Out(OutName); 6268 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6269 Out << Suffix; 6270 6271 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6272 } else { 6273 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6274 llvm::ArrayRef<llvm::Metadata *>()); 6275 } 6276 6277 return InternalId; 6278 } 6279 6280 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6281 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6282 } 6283 6284 llvm::Metadata * 6285 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6286 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6287 } 6288 6289 // Generalize pointer types to a void pointer with the qualifiers of the 6290 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6291 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6292 // 'void *'. 6293 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6294 if (!Ty->isPointerType()) 6295 return Ty; 6296 6297 return Ctx.getPointerType( 6298 QualType(Ctx.VoidTy).withCVRQualifiers( 6299 Ty->getPointeeType().getCVRQualifiers())); 6300 } 6301 6302 // Apply type generalization to a FunctionType's return and argument types 6303 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6304 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6305 SmallVector<QualType, 8> GeneralizedParams; 6306 for (auto &Param : FnType->param_types()) 6307 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6308 6309 return Ctx.getFunctionType( 6310 GeneralizeType(Ctx, FnType->getReturnType()), 6311 GeneralizedParams, FnType->getExtProtoInfo()); 6312 } 6313 6314 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6315 return Ctx.getFunctionNoProtoType( 6316 GeneralizeType(Ctx, FnType->getReturnType())); 6317 6318 llvm_unreachable("Encountered unknown FunctionType"); 6319 } 6320 6321 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6322 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6323 GeneralizedMetadataIdMap, ".generalized"); 6324 } 6325 6326 /// Returns whether this module needs the "all-vtables" type identifier. 6327 bool CodeGenModule::NeedAllVtablesTypeId() const { 6328 // Returns true if at least one of vtable-based CFI checkers is enabled and 6329 // is not in the trapping mode. 6330 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6331 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6332 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6333 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6334 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6335 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6336 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6337 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6338 } 6339 6340 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6341 CharUnits Offset, 6342 const CXXRecordDecl *RD) { 6343 llvm::Metadata *MD = 6344 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6345 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6346 6347 if (CodeGenOpts.SanitizeCfiCrossDso) 6348 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6349 VTable->addTypeMetadata(Offset.getQuantity(), 6350 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6351 6352 if (NeedAllVtablesTypeId()) { 6353 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6354 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6355 } 6356 } 6357 6358 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6359 if (!SanStats) 6360 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6361 6362 return *SanStats; 6363 } 6364 6365 llvm::Value * 6366 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6367 CodeGenFunction &CGF) { 6368 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6369 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6370 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6371 auto *Call = CGF.EmitRuntimeCall( 6372 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6373 return Call; 6374 } 6375 6376 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6377 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6378 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6379 /* forPointeeType= */ true); 6380 } 6381 6382 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6383 LValueBaseInfo *BaseInfo, 6384 TBAAAccessInfo *TBAAInfo, 6385 bool forPointeeType) { 6386 if (TBAAInfo) 6387 *TBAAInfo = getTBAAAccessInfo(T); 6388 6389 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6390 // that doesn't return the information we need to compute BaseInfo. 6391 6392 // Honor alignment typedef attributes even on incomplete types. 6393 // We also honor them straight for C++ class types, even as pointees; 6394 // there's an expressivity gap here. 6395 if (auto TT = T->getAs<TypedefType>()) { 6396 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6397 if (BaseInfo) 6398 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6399 return getContext().toCharUnitsFromBits(Align); 6400 } 6401 } 6402 6403 bool AlignForArray = T->isArrayType(); 6404 6405 // Analyze the base element type, so we don't get confused by incomplete 6406 // array types. 6407 T = getContext().getBaseElementType(T); 6408 6409 if (T->isIncompleteType()) { 6410 // We could try to replicate the logic from 6411 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6412 // type is incomplete, so it's impossible to test. We could try to reuse 6413 // getTypeAlignIfKnown, but that doesn't return the information we need 6414 // to set BaseInfo. So just ignore the possibility that the alignment is 6415 // greater than one. 6416 if (BaseInfo) 6417 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6418 return CharUnits::One(); 6419 } 6420 6421 if (BaseInfo) 6422 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6423 6424 CharUnits Alignment; 6425 const CXXRecordDecl *RD; 6426 if (T.getQualifiers().hasUnaligned()) { 6427 Alignment = CharUnits::One(); 6428 } else if (forPointeeType && !AlignForArray && 6429 (RD = T->getAsCXXRecordDecl())) { 6430 // For C++ class pointees, we don't know whether we're pointing at a 6431 // base or a complete object, so we generally need to use the 6432 // non-virtual alignment. 6433 Alignment = getClassPointerAlignment(RD); 6434 } else { 6435 Alignment = getContext().getTypeAlignInChars(T); 6436 } 6437 6438 // Cap to the global maximum type alignment unless the alignment 6439 // was somehow explicit on the type. 6440 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6441 if (Alignment.getQuantity() > MaxAlign && 6442 !getContext().isAlignmentRequired(T)) 6443 Alignment = CharUnits::fromQuantity(MaxAlign); 6444 } 6445 return Alignment; 6446 } 6447 6448 bool CodeGenModule::stopAutoInit() { 6449 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6450 if (StopAfter) { 6451 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6452 // used 6453 if (NumAutoVarInit >= StopAfter) { 6454 return true; 6455 } 6456 if (!NumAutoVarInit) { 6457 unsigned DiagID = getDiags().getCustomDiagID( 6458 DiagnosticsEngine::Warning, 6459 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6460 "number of times ftrivial-auto-var-init=%1 gets applied."); 6461 getDiags().Report(DiagID) 6462 << StopAfter 6463 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6464 LangOptions::TrivialAutoVarInitKind::Zero 6465 ? "zero" 6466 : "pattern"); 6467 } 6468 ++NumAutoVarInit; 6469 } 6470 return false; 6471 } 6472 6473 void CodeGenModule::printPostfixForExternalizedStaticVar( 6474 llvm::raw_ostream &OS) const { 6475 OS << "__static__" << getContext().getCUIDHash(); 6476 } 6477