1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 if (PGOReader) { 420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 421 if (PGOStats.hasDiagnostics()) 422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 423 } 424 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 425 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 426 EmitGlobalAnnotations(); 427 EmitStaticExternCAliases(); 428 EmitDeferredUnusedCoverageMappings(); 429 if (CoverageMapping) 430 CoverageMapping->emit(); 431 if (CodeGenOpts.SanitizeCfiCrossDso) { 432 CodeGenFunction(*this).EmitCfiCheckFail(); 433 CodeGenFunction(*this).EmitCfiCheckStub(); 434 } 435 emitAtAvailableLinkGuard(); 436 emitLLVMUsed(); 437 if (SanStats) 438 SanStats->finish(); 439 440 if (CodeGenOpts.Autolink && 441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 442 EmitModuleLinkOptions(); 443 } 444 445 // Record mregparm value now so it is visible through rest of codegen. 446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 448 CodeGenOpts.NumRegisterParameters); 449 450 if (CodeGenOpts.DwarfVersion) { 451 // We actually want the latest version when there are conflicts. 452 // We can change from Warning to Latest if such mode is supported. 453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 454 CodeGenOpts.DwarfVersion); 455 } 456 if (CodeGenOpts.EmitCodeView) { 457 // Indicate that we want CodeView in the metadata. 458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 459 } 460 if (CodeGenOpts.ControlFlowGuard) { 461 // We want function ID tables for Control Flow Guard. 462 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 463 } 464 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 465 // We don't support LTO with 2 with different StrictVTablePointers 466 // FIXME: we could support it by stripping all the information introduced 467 // by StrictVTablePointers. 468 469 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 470 471 llvm::Metadata *Ops[2] = { 472 llvm::MDString::get(VMContext, "StrictVTablePointers"), 473 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 474 llvm::Type::getInt32Ty(VMContext), 1))}; 475 476 getModule().addModuleFlag(llvm::Module::Require, 477 "StrictVTablePointersRequirement", 478 llvm::MDNode::get(VMContext, Ops)); 479 } 480 if (DebugInfo) 481 // We support a single version in the linked module. The LLVM 482 // parser will drop debug info with a different version number 483 // (and warn about it, too). 484 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 485 llvm::DEBUG_METADATA_VERSION); 486 487 // We need to record the widths of enums and wchar_t, so that we can generate 488 // the correct build attributes in the ARM backend. wchar_size is also used by 489 // TargetLibraryInfo. 490 uint64_t WCharWidth = 491 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 492 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 493 494 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 495 if ( Arch == llvm::Triple::arm 496 || Arch == llvm::Triple::armeb 497 || Arch == llvm::Triple::thumb 498 || Arch == llvm::Triple::thumbeb) { 499 // The minimum width of an enum in bytes 500 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 501 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 502 } 503 504 if (CodeGenOpts.SanitizeCfiCrossDso) { 505 // Indicate that we want cross-DSO control flow integrity checks. 506 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 507 } 508 509 if (CodeGenOpts.CFProtectionReturn && 510 Target.checkCFProtectionReturnSupported(getDiags())) { 511 // Indicate that we want to instrument return control flow protection. 512 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 513 1); 514 } 515 516 if (CodeGenOpts.CFProtectionBranch && 517 Target.checkCFProtectionBranchSupported(getDiags())) { 518 // Indicate that we want to instrument branch control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 520 1); 521 } 522 523 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 524 // Indicate whether __nvvm_reflect should be configured to flush denormal 525 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 526 // property.) 527 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 528 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 529 } 530 531 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 532 if (LangOpts.OpenCL) { 533 EmitOpenCLMetadata(); 534 // Emit SPIR version. 535 if (getTriple().getArch() == llvm::Triple::spir || 536 getTriple().getArch() == llvm::Triple::spir64) { 537 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 538 // opencl.spir.version named metadata. 539 llvm::Metadata *SPIRVerElts[] = { 540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 541 Int32Ty, LangOpts.OpenCLVersion / 100)), 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 544 llvm::NamedMDNode *SPIRVerMD = 545 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 546 llvm::LLVMContext &Ctx = TheModule.getContext(); 547 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 548 } 549 } 550 551 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 552 assert(PLevel < 3 && "Invalid PIC Level"); 553 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 554 if (Context.getLangOpts().PIE) 555 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 556 } 557 558 if (CodeGenOpts.NoPLT) 559 getModule().setRtLibUseGOT(); 560 561 SimplifyPersonality(); 562 563 if (getCodeGenOpts().EmitDeclMetadata) 564 EmitDeclMetadata(); 565 566 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 567 EmitCoverageFile(); 568 569 if (DebugInfo) 570 DebugInfo->finalize(); 571 572 EmitVersionIdentMetadata(); 573 574 EmitTargetMetadata(); 575 } 576 577 void CodeGenModule::EmitOpenCLMetadata() { 578 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 579 // opencl.ocl.version named metadata node. 580 llvm::Metadata *OCLVerElts[] = { 581 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 582 Int32Ty, LangOpts.OpenCLVersion / 100)), 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 585 llvm::NamedMDNode *OCLVerMD = 586 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 587 llvm::LLVMContext &Ctx = TheModule.getContext(); 588 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 589 } 590 591 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 592 // Make sure that this type is translated. 593 Types.UpdateCompletedType(TD); 594 } 595 596 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 597 // Make sure that this type is translated. 598 Types.RefreshTypeCacheForClass(RD); 599 } 600 601 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 602 if (!TBAA) 603 return nullptr; 604 return TBAA->getTypeInfo(QTy); 605 } 606 607 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 608 if (!TBAA) 609 return TBAAAccessInfo(); 610 return TBAA->getAccessInfo(AccessType); 611 } 612 613 TBAAAccessInfo 614 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 615 if (!TBAA) 616 return TBAAAccessInfo(); 617 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 618 } 619 620 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 621 if (!TBAA) 622 return nullptr; 623 return TBAA->getTBAAStructInfo(QTy); 624 } 625 626 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 627 if (!TBAA) 628 return nullptr; 629 return TBAA->getBaseTypeInfo(QTy); 630 } 631 632 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 633 if (!TBAA) 634 return nullptr; 635 return TBAA->getAccessTagInfo(Info); 636 } 637 638 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 639 TBAAAccessInfo TargetInfo) { 640 if (!TBAA) 641 return TBAAAccessInfo(); 642 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 643 } 644 645 TBAAAccessInfo 646 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 647 TBAAAccessInfo InfoB) { 648 if (!TBAA) 649 return TBAAAccessInfo(); 650 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 651 } 652 653 TBAAAccessInfo 654 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 655 TBAAAccessInfo SrcInfo) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 659 } 660 661 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 662 TBAAAccessInfo TBAAInfo) { 663 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 664 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 665 } 666 667 void CodeGenModule::DecorateInstructionWithInvariantGroup( 668 llvm::Instruction *I, const CXXRecordDecl *RD) { 669 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 670 llvm::MDNode::get(getLLVMContext(), {})); 671 } 672 673 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 674 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 675 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 676 } 677 678 /// ErrorUnsupported - Print out an error that codegen doesn't support the 679 /// specified stmt yet. 680 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 681 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 682 "cannot compile this %0 yet"); 683 std::string Msg = Type; 684 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 685 << Msg << S->getSourceRange(); 686 } 687 688 /// ErrorUnsupported - Print out an error that codegen doesn't support the 689 /// specified decl yet. 690 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 691 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 692 "cannot compile this %0 yet"); 693 std::string Msg = Type; 694 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 695 } 696 697 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 698 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 699 } 700 701 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 702 const NamedDecl *D) const { 703 if (GV->hasDLLImportStorageClass()) 704 return; 705 // Internal definitions always have default visibility. 706 if (GV->hasLocalLinkage()) { 707 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 708 return; 709 } 710 711 // Set visibility for definitions. 712 LinkageInfo LV = D->getLinkageAndVisibility(); 713 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 714 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 715 } 716 717 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 718 llvm::GlobalValue *GV) { 719 // DLLImport explicitly marks the GV as external. 720 if (GV->hasDLLImportStorageClass()) 721 return false; 722 723 const llvm::Triple &TT = CGM.getTriple(); 724 // Every other GV is local on COFF. 725 // Make an exception for windows OS in the triple: Some firmware builds use 726 // *-win32-macho triples. This (accidentally?) produced windows relocations 727 // without GOT tables in older clang versions; Keep this behaviour. 728 // FIXME: even thread local variables? 729 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 730 return true; 731 732 // Only handle COFF and ELF for now. 733 if (!TT.isOSBinFormatELF()) 734 return false; 735 736 // If this is not an executable, don't assume anything is local. 737 const auto &CGOpts = CGM.getCodeGenOpts(); 738 llvm::Reloc::Model RM = CGOpts.RelocationModel; 739 const auto &LOpts = CGM.getLangOpts(); 740 if (RM != llvm::Reloc::Static && !LOpts.PIE) 741 return false; 742 743 // A definition cannot be preempted from an executable. 744 if (!GV->isDeclarationForLinker()) 745 return true; 746 747 // Most PIC code sequences that assume that a symbol is local cannot produce a 748 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 749 // depended, it seems worth it to handle it here. 750 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 751 return false; 752 753 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 754 llvm::Triple::ArchType Arch = TT.getArch(); 755 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 756 Arch == llvm::Triple::ppc64le) 757 return false; 758 759 // If we can use copy relocations we can assume it is local. 760 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 761 if (!Var->isThreadLocal() && 762 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 763 return true; 764 765 // If we can use a plt entry as the symbol address we can assume it 766 // is local. 767 // FIXME: This should work for PIE, but the gold linker doesn't support it. 768 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 769 return true; 770 771 // Otherwise don't assue it is local. 772 return false; 773 } 774 775 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 776 if (shouldAssumeDSOLocal(*this, GV)) 777 GV->setDSOLocal(true); 778 } 779 780 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 781 const NamedDecl *D) const { 782 setGlobalVisibility(GV, D); 783 setDSOLocal(GV); 784 } 785 786 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 787 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 788 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 789 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 790 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 791 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 792 } 793 794 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 795 CodeGenOptions::TLSModel M) { 796 switch (M) { 797 case CodeGenOptions::GeneralDynamicTLSModel: 798 return llvm::GlobalVariable::GeneralDynamicTLSModel; 799 case CodeGenOptions::LocalDynamicTLSModel: 800 return llvm::GlobalVariable::LocalDynamicTLSModel; 801 case CodeGenOptions::InitialExecTLSModel: 802 return llvm::GlobalVariable::InitialExecTLSModel; 803 case CodeGenOptions::LocalExecTLSModel: 804 return llvm::GlobalVariable::LocalExecTLSModel; 805 } 806 llvm_unreachable("Invalid TLS model!"); 807 } 808 809 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 810 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 811 812 llvm::GlobalValue::ThreadLocalMode TLM; 813 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 814 815 // Override the TLS model if it is explicitly specified. 816 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 817 TLM = GetLLVMTLSModel(Attr->getModel()); 818 } 819 820 GV->setThreadLocalMode(TLM); 821 } 822 823 static void AppendTargetMangling(const CodeGenModule &CGM, 824 const TargetAttr *Attr, raw_ostream &Out) { 825 if (Attr->isDefaultVersion()) 826 return; 827 828 Out << '.'; 829 const auto &Target = CGM.getTarget(); 830 TargetAttr::ParsedTargetAttr Info = 831 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 832 // Multiversioning doesn't allow "no-${feature}", so we can 833 // only have "+" prefixes here. 834 assert(LHS.startswith("+") && RHS.startswith("+") && 835 "Features should always have a prefix."); 836 return Target.multiVersionSortPriority(LHS.substr(1)) > 837 Target.multiVersionSortPriority(RHS.substr(1)); 838 }); 839 840 bool IsFirst = true; 841 842 if (!Info.Architecture.empty()) { 843 IsFirst = false; 844 Out << "arch_" << Info.Architecture; 845 } 846 847 for (StringRef Feat : Info.Features) { 848 if (!IsFirst) 849 Out << '_'; 850 IsFirst = false; 851 Out << Feat.substr(1); 852 } 853 } 854 855 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 856 const NamedDecl *ND, 857 bool OmitTargetMangling = false) { 858 SmallString<256> Buffer; 859 llvm::raw_svector_ostream Out(Buffer); 860 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 861 if (MC.shouldMangleDeclName(ND)) { 862 llvm::raw_svector_ostream Out(Buffer); 863 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 864 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 865 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 866 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 867 else 868 MC.mangleName(ND, Out); 869 } else { 870 IdentifierInfo *II = ND->getIdentifier(); 871 assert(II && "Attempt to mangle unnamed decl."); 872 const auto *FD = dyn_cast<FunctionDecl>(ND); 873 874 if (FD && 875 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 876 llvm::raw_svector_ostream Out(Buffer); 877 Out << "__regcall3__" << II->getName(); 878 } else { 879 Out << II->getName(); 880 } 881 } 882 883 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 884 if (FD->isMultiVersion() && !OmitTargetMangling) 885 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 886 return Out.str(); 887 } 888 889 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 890 const FunctionDecl *FD) { 891 if (!FD->isMultiVersion()) 892 return; 893 894 // Get the name of what this would be without the 'target' attribute. This 895 // allows us to lookup the version that was emitted when this wasn't a 896 // multiversion function. 897 std::string NonTargetName = 898 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 899 GlobalDecl OtherGD; 900 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 901 assert(OtherGD.getCanonicalDecl() 902 .getDecl() 903 ->getAsFunction() 904 ->isMultiVersion() && 905 "Other GD should now be a multiversioned function"); 906 // OtherFD is the version of this function that was mangled BEFORE 907 // becoming a MultiVersion function. It potentially needs to be updated. 908 const FunctionDecl *OtherFD = 909 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 910 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 911 // This is so that if the initial version was already the 'default' 912 // version, we don't try to update it. 913 if (OtherName != NonTargetName) { 914 // Remove instead of erase, since others may have stored the StringRef 915 // to this. 916 const auto ExistingRecord = Manglings.find(NonTargetName); 917 if (ExistingRecord != std::end(Manglings)) 918 Manglings.remove(&(*ExistingRecord)); 919 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 920 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 921 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 922 Entry->setName(OtherName); 923 } 924 } 925 } 926 927 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 928 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 929 930 // Some ABIs don't have constructor variants. Make sure that base and 931 // complete constructors get mangled the same. 932 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 933 if (!getTarget().getCXXABI().hasConstructorVariants()) { 934 CXXCtorType OrigCtorType = GD.getCtorType(); 935 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 936 if (OrigCtorType == Ctor_Base) 937 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 938 } 939 } 940 941 auto FoundName = MangledDeclNames.find(CanonicalGD); 942 if (FoundName != MangledDeclNames.end()) 943 return FoundName->second; 944 945 946 // Keep the first result in the case of a mangling collision. 947 const auto *ND = cast<NamedDecl>(GD.getDecl()); 948 auto Result = 949 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 950 return MangledDeclNames[CanonicalGD] = Result.first->first(); 951 } 952 953 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 954 const BlockDecl *BD) { 955 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 956 const Decl *D = GD.getDecl(); 957 958 SmallString<256> Buffer; 959 llvm::raw_svector_ostream Out(Buffer); 960 if (!D) 961 MangleCtx.mangleGlobalBlock(BD, 962 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 963 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 964 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 965 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 966 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 967 else 968 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 969 970 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 971 return Result.first->first(); 972 } 973 974 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 975 return getModule().getNamedValue(Name); 976 } 977 978 /// AddGlobalCtor - Add a function to the list that will be called before 979 /// main() runs. 980 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 981 llvm::Constant *AssociatedData) { 982 // FIXME: Type coercion of void()* types. 983 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 984 } 985 986 /// AddGlobalDtor - Add a function to the list that will be called 987 /// when the module is unloaded. 988 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 989 // FIXME: Type coercion of void()* types. 990 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 991 } 992 993 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 994 if (Fns.empty()) return; 995 996 // Ctor function type is void()*. 997 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 998 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 999 1000 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1001 llvm::StructType *CtorStructTy = llvm::StructType::get( 1002 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1003 1004 // Construct the constructor and destructor arrays. 1005 ConstantInitBuilder builder(*this); 1006 auto ctors = builder.beginArray(CtorStructTy); 1007 for (const auto &I : Fns) { 1008 auto ctor = ctors.beginStruct(CtorStructTy); 1009 ctor.addInt(Int32Ty, I.Priority); 1010 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1011 if (I.AssociatedData) 1012 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1013 else 1014 ctor.addNullPointer(VoidPtrTy); 1015 ctor.finishAndAddTo(ctors); 1016 } 1017 1018 auto list = 1019 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1020 /*constant*/ false, 1021 llvm::GlobalValue::AppendingLinkage); 1022 1023 // The LTO linker doesn't seem to like it when we set an alignment 1024 // on appending variables. Take it off as a workaround. 1025 list->setAlignment(0); 1026 1027 Fns.clear(); 1028 } 1029 1030 llvm::GlobalValue::LinkageTypes 1031 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1032 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1033 1034 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1035 1036 if (isa<CXXDestructorDecl>(D) && 1037 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1038 GD.getDtorType())) { 1039 // Destructor variants in the Microsoft C++ ABI are always internal or 1040 // linkonce_odr thunks emitted on an as-needed basis. 1041 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 1042 : llvm::GlobalValue::LinkOnceODRLinkage; 1043 } 1044 1045 if (isa<CXXConstructorDecl>(D) && 1046 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1047 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1048 // Our approach to inheriting constructors is fundamentally different from 1049 // that used by the MS ABI, so keep our inheriting constructor thunks 1050 // internal rather than trying to pick an unambiguous mangling for them. 1051 return llvm::GlobalValue::InternalLinkage; 1052 } 1053 1054 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1055 } 1056 1057 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 1058 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1059 1060 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 1061 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 1062 // Don't dllexport/import destructor thunks. 1063 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1064 return; 1065 } 1066 } 1067 1068 if (FD->hasAttr<DLLImportAttr>()) 1069 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1070 else if (FD->hasAttr<DLLExportAttr>()) 1071 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1072 else 1073 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 1074 } 1075 1076 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1077 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1078 if (!MDS) return nullptr; 1079 1080 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1081 } 1082 1083 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 1084 llvm::Function *F) { 1085 setNonAliasAttributes(D, F); 1086 } 1087 1088 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1089 const CGFunctionInfo &Info, 1090 llvm::Function *F) { 1091 unsigned CallingConv; 1092 llvm::AttributeList PAL; 1093 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1094 F->setAttributes(PAL); 1095 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1096 } 1097 1098 /// Determines whether the language options require us to model 1099 /// unwind exceptions. We treat -fexceptions as mandating this 1100 /// except under the fragile ObjC ABI with only ObjC exceptions 1101 /// enabled. This means, for example, that C with -fexceptions 1102 /// enables this. 1103 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1104 // If exceptions are completely disabled, obviously this is false. 1105 if (!LangOpts.Exceptions) return false; 1106 1107 // If C++ exceptions are enabled, this is true. 1108 if (LangOpts.CXXExceptions) return true; 1109 1110 // If ObjC exceptions are enabled, this depends on the ABI. 1111 if (LangOpts.ObjCExceptions) { 1112 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1113 } 1114 1115 return true; 1116 } 1117 1118 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1119 llvm::Function *F) { 1120 llvm::AttrBuilder B; 1121 1122 if (CodeGenOpts.UnwindTables) 1123 B.addAttribute(llvm::Attribute::UWTable); 1124 1125 if (!hasUnwindExceptions(LangOpts)) 1126 B.addAttribute(llvm::Attribute::NoUnwind); 1127 1128 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1129 B.addAttribute(llvm::Attribute::StackProtect); 1130 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1131 B.addAttribute(llvm::Attribute::StackProtectStrong); 1132 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1133 B.addAttribute(llvm::Attribute::StackProtectReq); 1134 1135 if (!D) { 1136 // If we don't have a declaration to control inlining, the function isn't 1137 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1138 // disabled, mark the function as noinline. 1139 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1140 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1141 B.addAttribute(llvm::Attribute::NoInline); 1142 1143 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1144 return; 1145 } 1146 1147 // Track whether we need to add the optnone LLVM attribute, 1148 // starting with the default for this optimization level. 1149 bool ShouldAddOptNone = 1150 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1151 // We can't add optnone in the following cases, it won't pass the verifier. 1152 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1153 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1154 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1155 1156 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1157 B.addAttribute(llvm::Attribute::OptimizeNone); 1158 1159 // OptimizeNone implies noinline; we should not be inlining such functions. 1160 B.addAttribute(llvm::Attribute::NoInline); 1161 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1162 "OptimizeNone and AlwaysInline on same function!"); 1163 1164 // We still need to handle naked functions even though optnone subsumes 1165 // much of their semantics. 1166 if (D->hasAttr<NakedAttr>()) 1167 B.addAttribute(llvm::Attribute::Naked); 1168 1169 // OptimizeNone wins over OptimizeForSize and MinSize. 1170 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1171 F->removeFnAttr(llvm::Attribute::MinSize); 1172 } else if (D->hasAttr<NakedAttr>()) { 1173 // Naked implies noinline: we should not be inlining such functions. 1174 B.addAttribute(llvm::Attribute::Naked); 1175 B.addAttribute(llvm::Attribute::NoInline); 1176 } else if (D->hasAttr<NoDuplicateAttr>()) { 1177 B.addAttribute(llvm::Attribute::NoDuplicate); 1178 } else if (D->hasAttr<NoInlineAttr>()) { 1179 B.addAttribute(llvm::Attribute::NoInline); 1180 } else if (D->hasAttr<AlwaysInlineAttr>() && 1181 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1182 // (noinline wins over always_inline, and we can't specify both in IR) 1183 B.addAttribute(llvm::Attribute::AlwaysInline); 1184 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1185 // If we're not inlining, then force everything that isn't always_inline to 1186 // carry an explicit noinline attribute. 1187 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1188 B.addAttribute(llvm::Attribute::NoInline); 1189 } else { 1190 // Otherwise, propagate the inline hint attribute and potentially use its 1191 // absence to mark things as noinline. 1192 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1193 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1194 return Redecl->isInlineSpecified(); 1195 })) { 1196 B.addAttribute(llvm::Attribute::InlineHint); 1197 } else if (CodeGenOpts.getInlining() == 1198 CodeGenOptions::OnlyHintInlining && 1199 !FD->isInlined() && 1200 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1201 B.addAttribute(llvm::Attribute::NoInline); 1202 } 1203 } 1204 } 1205 1206 // Add other optimization related attributes if we are optimizing this 1207 // function. 1208 if (!D->hasAttr<OptimizeNoneAttr>()) { 1209 if (D->hasAttr<ColdAttr>()) { 1210 if (!ShouldAddOptNone) 1211 B.addAttribute(llvm::Attribute::OptimizeForSize); 1212 B.addAttribute(llvm::Attribute::Cold); 1213 } 1214 1215 if (D->hasAttr<MinSizeAttr>()) 1216 B.addAttribute(llvm::Attribute::MinSize); 1217 } 1218 1219 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1220 1221 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1222 if (alignment) 1223 F->setAlignment(alignment); 1224 1225 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1226 // reserve a bit for differentiating between virtual and non-virtual member 1227 // functions. If the current target's C++ ABI requires this and this is a 1228 // member function, set its alignment accordingly. 1229 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1230 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1231 F->setAlignment(2); 1232 } 1233 1234 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1235 if (CodeGenOpts.SanitizeCfiCrossDso) 1236 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1237 CreateFunctionTypeMetadata(FD, F); 1238 } 1239 1240 void CodeGenModule::SetCommonAttributes(const Decl *D, 1241 llvm::GlobalValue *GV) { 1242 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1243 setGVProperties(GV, ND); 1244 else 1245 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1246 1247 if (D && D->hasAttr<UsedAttr>()) 1248 addUsedGlobal(GV); 1249 } 1250 1251 void CodeGenModule::setAliasAttributes(const Decl *D, 1252 llvm::GlobalValue *GV) { 1253 SetCommonAttributes(D, GV); 1254 1255 // Process the dllexport attribute based on whether the original definition 1256 // (not necessarily the aliasee) was exported. 1257 if (D->hasAttr<DLLExportAttr>()) 1258 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1259 } 1260 1261 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1262 llvm::AttrBuilder &Attrs) { 1263 // Add target-cpu and target-features attributes to functions. If 1264 // we have a decl for the function and it has a target attribute then 1265 // parse that and add it to the feature set. 1266 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1267 std::vector<std::string> Features; 1268 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1269 FD = FD ? FD->getMostRecentDecl() : FD; 1270 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1271 bool AddedAttr = false; 1272 if (TD) { 1273 llvm::StringMap<bool> FeatureMap; 1274 getFunctionFeatureMap(FeatureMap, FD); 1275 1276 // Produce the canonical string for this set of features. 1277 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1278 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1279 1280 // Now add the target-cpu and target-features to the function. 1281 // While we populated the feature map above, we still need to 1282 // get and parse the target attribute so we can get the cpu for 1283 // the function. 1284 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1285 if (ParsedAttr.Architecture != "" && 1286 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1287 TargetCPU = ParsedAttr.Architecture; 1288 } else { 1289 // Otherwise just add the existing target cpu and target features to the 1290 // function. 1291 Features = getTarget().getTargetOpts().Features; 1292 } 1293 1294 if (TargetCPU != "") { 1295 Attrs.addAttribute("target-cpu", TargetCPU); 1296 AddedAttr = true; 1297 } 1298 if (!Features.empty()) { 1299 std::sort(Features.begin(), Features.end()); 1300 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1301 AddedAttr = true; 1302 } 1303 1304 return AddedAttr; 1305 } 1306 1307 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1308 llvm::GlobalObject *GO) { 1309 SetCommonAttributes(D, GO); 1310 1311 if (D) { 1312 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1313 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1314 GV->addAttribute("bss-section", SA->getName()); 1315 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1316 GV->addAttribute("data-section", SA->getName()); 1317 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1318 GV->addAttribute("rodata-section", SA->getName()); 1319 } 1320 1321 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1322 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1323 if (!D->getAttr<SectionAttr>()) 1324 F->addFnAttr("implicit-section-name", SA->getName()); 1325 1326 llvm::AttrBuilder Attrs; 1327 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1328 // We know that GetCPUAndFeaturesAttributes will always have the 1329 // newest set, since it has the newest possible FunctionDecl, so the 1330 // new ones should replace the old. 1331 F->removeFnAttr("target-cpu"); 1332 F->removeFnAttr("target-features"); 1333 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1334 } 1335 } 1336 1337 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1338 GO->setSection(SA->getName()); 1339 } 1340 1341 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1342 } 1343 1344 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1345 llvm::Function *F, 1346 const CGFunctionInfo &FI) { 1347 SetLLVMFunctionAttributes(D, FI, F); 1348 SetLLVMFunctionAttributesForDefinition(D, F); 1349 1350 F->setLinkage(llvm::Function::InternalLinkage); 1351 1352 setNonAliasAttributes(D, F); 1353 } 1354 1355 static void setLinkageForGV(llvm::GlobalValue *GV, 1356 const NamedDecl *ND) { 1357 // Set linkage and visibility in case we never see a definition. 1358 LinkageInfo LV = ND->getLinkageAndVisibility(); 1359 if (!isExternallyVisible(LV.getLinkage())) { 1360 // Don't set internal linkage on declarations. 1361 } else { 1362 if (ND->hasAttr<DLLImportAttr>()) { 1363 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1364 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1365 } else if (ND->hasAttr<DLLExportAttr>()) { 1366 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1367 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1368 // "extern_weak" is overloaded in LLVM; we probably should have 1369 // separate linkage types for this. 1370 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1371 } 1372 } 1373 } 1374 1375 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1376 llvm::Function *F) { 1377 // Only if we are checking indirect calls. 1378 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1379 return; 1380 1381 // Non-static class methods are handled via vtable pointer checks elsewhere. 1382 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1383 return; 1384 1385 // Additionally, if building with cross-DSO support... 1386 if (CodeGenOpts.SanitizeCfiCrossDso) { 1387 // Skip available_externally functions. They won't be codegen'ed in the 1388 // current module anyway. 1389 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1390 return; 1391 } 1392 1393 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1394 F->addTypeMetadata(0, MD); 1395 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1396 1397 // Emit a hash-based bit set entry for cross-DSO calls. 1398 if (CodeGenOpts.SanitizeCfiCrossDso) 1399 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1400 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1401 } 1402 1403 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1404 bool IsIncompleteFunction, 1405 bool IsThunk) { 1406 1407 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1408 // If this is an intrinsic function, set the function's attributes 1409 // to the intrinsic's attributes. 1410 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1411 return; 1412 } 1413 1414 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1415 1416 if (!IsIncompleteFunction) { 1417 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1418 // Setup target-specific attributes. 1419 if (F->isDeclaration()) 1420 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1421 } 1422 1423 // Add the Returned attribute for "this", except for iOS 5 and earlier 1424 // where substantial code, including the libstdc++ dylib, was compiled with 1425 // GCC and does not actually return "this". 1426 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1427 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1428 assert(!F->arg_empty() && 1429 F->arg_begin()->getType() 1430 ->canLosslesslyBitCastTo(F->getReturnType()) && 1431 "unexpected this return"); 1432 F->addAttribute(1, llvm::Attribute::Returned); 1433 } 1434 1435 // Only a few attributes are set on declarations; these may later be 1436 // overridden by a definition. 1437 1438 setLinkageForGV(F, FD); 1439 setGVProperties(F, FD); 1440 1441 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1442 F->addFnAttr("implicit-section-name"); 1443 } 1444 1445 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1446 F->setSection(SA->getName()); 1447 1448 if (FD->isReplaceableGlobalAllocationFunction()) { 1449 // A replaceable global allocation function does not act like a builtin by 1450 // default, only if it is invoked by a new-expression or delete-expression. 1451 F->addAttribute(llvm::AttributeList::FunctionIndex, 1452 llvm::Attribute::NoBuiltin); 1453 1454 // A sane operator new returns a non-aliasing pointer. 1455 // FIXME: Also add NonNull attribute to the return value 1456 // for the non-nothrow forms? 1457 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1458 if (getCodeGenOpts().AssumeSaneOperatorNew && 1459 (Kind == OO_New || Kind == OO_Array_New)) 1460 F->addAttribute(llvm::AttributeList::ReturnIndex, 1461 llvm::Attribute::NoAlias); 1462 } 1463 1464 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1465 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1466 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1467 if (MD->isVirtual()) 1468 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1469 1470 // Don't emit entries for function declarations in the cross-DSO mode. This 1471 // is handled with better precision by the receiving DSO. 1472 if (!CodeGenOpts.SanitizeCfiCrossDso) 1473 CreateFunctionTypeMetadata(FD, F); 1474 1475 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1476 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1477 } 1478 1479 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1480 assert(!GV->isDeclaration() && 1481 "Only globals with definition can force usage."); 1482 LLVMUsed.emplace_back(GV); 1483 } 1484 1485 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1486 assert(!GV->isDeclaration() && 1487 "Only globals with definition can force usage."); 1488 LLVMCompilerUsed.emplace_back(GV); 1489 } 1490 1491 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1492 std::vector<llvm::WeakTrackingVH> &List) { 1493 // Don't create llvm.used if there is no need. 1494 if (List.empty()) 1495 return; 1496 1497 // Convert List to what ConstantArray needs. 1498 SmallVector<llvm::Constant*, 8> UsedArray; 1499 UsedArray.resize(List.size()); 1500 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1501 UsedArray[i] = 1502 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1503 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1504 } 1505 1506 if (UsedArray.empty()) 1507 return; 1508 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1509 1510 auto *GV = new llvm::GlobalVariable( 1511 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1512 llvm::ConstantArray::get(ATy, UsedArray), Name); 1513 1514 GV->setSection("llvm.metadata"); 1515 } 1516 1517 void CodeGenModule::emitLLVMUsed() { 1518 emitUsed(*this, "llvm.used", LLVMUsed); 1519 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1520 } 1521 1522 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1523 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1524 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1525 } 1526 1527 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1528 llvm::SmallString<32> Opt; 1529 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1530 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1531 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1532 } 1533 1534 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1535 auto &C = getLLVMContext(); 1536 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1537 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1538 } 1539 1540 void CodeGenModule::AddDependentLib(StringRef Lib) { 1541 llvm::SmallString<24> Opt; 1542 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1543 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1544 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1545 } 1546 1547 /// \brief Add link options implied by the given module, including modules 1548 /// it depends on, using a postorder walk. 1549 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1550 SmallVectorImpl<llvm::MDNode *> &Metadata, 1551 llvm::SmallPtrSet<Module *, 16> &Visited) { 1552 // Import this module's parent. 1553 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1554 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1555 } 1556 1557 // Import this module's dependencies. 1558 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1559 if (Visited.insert(Mod->Imports[I - 1]).second) 1560 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1561 } 1562 1563 // Add linker options to link against the libraries/frameworks 1564 // described by this module. 1565 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1566 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1567 // Link against a framework. Frameworks are currently Darwin only, so we 1568 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1569 if (Mod->LinkLibraries[I-1].IsFramework) { 1570 llvm::Metadata *Args[2] = { 1571 llvm::MDString::get(Context, "-framework"), 1572 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1573 1574 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1575 continue; 1576 } 1577 1578 // Link against a library. 1579 llvm::SmallString<24> Opt; 1580 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1581 Mod->LinkLibraries[I-1].Library, Opt); 1582 auto *OptString = llvm::MDString::get(Context, Opt); 1583 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1584 } 1585 } 1586 1587 void CodeGenModule::EmitModuleLinkOptions() { 1588 // Collect the set of all of the modules we want to visit to emit link 1589 // options, which is essentially the imported modules and all of their 1590 // non-explicit child modules. 1591 llvm::SetVector<clang::Module *> LinkModules; 1592 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1593 SmallVector<clang::Module *, 16> Stack; 1594 1595 // Seed the stack with imported modules. 1596 for (Module *M : ImportedModules) { 1597 // Do not add any link flags when an implementation TU of a module imports 1598 // a header of that same module. 1599 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1600 !getLangOpts().isCompilingModule()) 1601 continue; 1602 if (Visited.insert(M).second) 1603 Stack.push_back(M); 1604 } 1605 1606 // Find all of the modules to import, making a little effort to prune 1607 // non-leaf modules. 1608 while (!Stack.empty()) { 1609 clang::Module *Mod = Stack.pop_back_val(); 1610 1611 bool AnyChildren = false; 1612 1613 // Visit the submodules of this module. 1614 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1615 SubEnd = Mod->submodule_end(); 1616 Sub != SubEnd; ++Sub) { 1617 // Skip explicit children; they need to be explicitly imported to be 1618 // linked against. 1619 if ((*Sub)->IsExplicit) 1620 continue; 1621 1622 if (Visited.insert(*Sub).second) { 1623 Stack.push_back(*Sub); 1624 AnyChildren = true; 1625 } 1626 } 1627 1628 // We didn't find any children, so add this module to the list of 1629 // modules to link against. 1630 if (!AnyChildren) { 1631 LinkModules.insert(Mod); 1632 } 1633 } 1634 1635 // Add link options for all of the imported modules in reverse topological 1636 // order. We don't do anything to try to order import link flags with respect 1637 // to linker options inserted by things like #pragma comment(). 1638 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1639 Visited.clear(); 1640 for (Module *M : LinkModules) 1641 if (Visited.insert(M).second) 1642 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1643 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1644 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1645 1646 // Add the linker options metadata flag. 1647 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1648 for (auto *MD : LinkerOptionsMetadata) 1649 NMD->addOperand(MD); 1650 } 1651 1652 void CodeGenModule::EmitDeferred() { 1653 // Emit code for any potentially referenced deferred decls. Since a 1654 // previously unused static decl may become used during the generation of code 1655 // for a static function, iterate until no changes are made. 1656 1657 if (!DeferredVTables.empty()) { 1658 EmitDeferredVTables(); 1659 1660 // Emitting a vtable doesn't directly cause more vtables to 1661 // become deferred, although it can cause functions to be 1662 // emitted that then need those vtables. 1663 assert(DeferredVTables.empty()); 1664 } 1665 1666 // Stop if we're out of both deferred vtables and deferred declarations. 1667 if (DeferredDeclsToEmit.empty()) 1668 return; 1669 1670 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1671 // work, it will not interfere with this. 1672 std::vector<GlobalDecl> CurDeclsToEmit; 1673 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1674 1675 for (GlobalDecl &D : CurDeclsToEmit) { 1676 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1677 // to get GlobalValue with exactly the type we need, not something that 1678 // might had been created for another decl with the same mangled name but 1679 // different type. 1680 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1681 GetAddrOfGlobal(D, ForDefinition)); 1682 1683 // In case of different address spaces, we may still get a cast, even with 1684 // IsForDefinition equal to true. Query mangled names table to get 1685 // GlobalValue. 1686 if (!GV) 1687 GV = GetGlobalValue(getMangledName(D)); 1688 1689 // Make sure GetGlobalValue returned non-null. 1690 assert(GV); 1691 1692 // Check to see if we've already emitted this. This is necessary 1693 // for a couple of reasons: first, decls can end up in the 1694 // deferred-decls queue multiple times, and second, decls can end 1695 // up with definitions in unusual ways (e.g. by an extern inline 1696 // function acquiring a strong function redefinition). Just 1697 // ignore these cases. 1698 if (!GV->isDeclaration()) 1699 continue; 1700 1701 // Otherwise, emit the definition and move on to the next one. 1702 EmitGlobalDefinition(D, GV); 1703 1704 // If we found out that we need to emit more decls, do that recursively. 1705 // This has the advantage that the decls are emitted in a DFS and related 1706 // ones are close together, which is convenient for testing. 1707 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1708 EmitDeferred(); 1709 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1710 } 1711 } 1712 } 1713 1714 void CodeGenModule::EmitVTablesOpportunistically() { 1715 // Try to emit external vtables as available_externally if they have emitted 1716 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1717 // is not allowed to create new references to things that need to be emitted 1718 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1719 1720 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1721 && "Only emit opportunistic vtables with optimizations"); 1722 1723 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1724 assert(getVTables().isVTableExternal(RD) && 1725 "This queue should only contain external vtables"); 1726 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1727 VTables.GenerateClassData(RD); 1728 } 1729 OpportunisticVTables.clear(); 1730 } 1731 1732 void CodeGenModule::EmitGlobalAnnotations() { 1733 if (Annotations.empty()) 1734 return; 1735 1736 // Create a new global variable for the ConstantStruct in the Module. 1737 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1738 Annotations[0]->getType(), Annotations.size()), Annotations); 1739 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1740 llvm::GlobalValue::AppendingLinkage, 1741 Array, "llvm.global.annotations"); 1742 gv->setSection(AnnotationSection); 1743 } 1744 1745 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1746 llvm::Constant *&AStr = AnnotationStrings[Str]; 1747 if (AStr) 1748 return AStr; 1749 1750 // Not found yet, create a new global. 1751 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1752 auto *gv = 1753 new llvm::GlobalVariable(getModule(), s->getType(), true, 1754 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1755 gv->setSection(AnnotationSection); 1756 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1757 AStr = gv; 1758 return gv; 1759 } 1760 1761 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1762 SourceManager &SM = getContext().getSourceManager(); 1763 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1764 if (PLoc.isValid()) 1765 return EmitAnnotationString(PLoc.getFilename()); 1766 return EmitAnnotationString(SM.getBufferName(Loc)); 1767 } 1768 1769 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1770 SourceManager &SM = getContext().getSourceManager(); 1771 PresumedLoc PLoc = SM.getPresumedLoc(L); 1772 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1773 SM.getExpansionLineNumber(L); 1774 return llvm::ConstantInt::get(Int32Ty, LineNo); 1775 } 1776 1777 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1778 const AnnotateAttr *AA, 1779 SourceLocation L) { 1780 // Get the globals for file name, annotation, and the line number. 1781 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1782 *UnitGV = EmitAnnotationUnit(L), 1783 *LineNoCst = EmitAnnotationLineNo(L); 1784 1785 // Create the ConstantStruct for the global annotation. 1786 llvm::Constant *Fields[4] = { 1787 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1788 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1789 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1790 LineNoCst 1791 }; 1792 return llvm::ConstantStruct::getAnon(Fields); 1793 } 1794 1795 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1796 llvm::GlobalValue *GV) { 1797 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1798 // Get the struct elements for these annotations. 1799 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1800 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1801 } 1802 1803 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1804 llvm::Function *Fn, 1805 SourceLocation Loc) const { 1806 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1807 // Blacklist by function name. 1808 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1809 return true; 1810 // Blacklist by location. 1811 if (Loc.isValid()) 1812 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1813 // If location is unknown, this may be a compiler-generated function. Assume 1814 // it's located in the main file. 1815 auto &SM = Context.getSourceManager(); 1816 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1817 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1818 } 1819 return false; 1820 } 1821 1822 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1823 SourceLocation Loc, QualType Ty, 1824 StringRef Category) const { 1825 // For now globals can be blacklisted only in ASan and KASan. 1826 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1827 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1828 if (!EnabledAsanMask) 1829 return false; 1830 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1831 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1832 return true; 1833 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1834 return true; 1835 // Check global type. 1836 if (!Ty.isNull()) { 1837 // Drill down the array types: if global variable of a fixed type is 1838 // blacklisted, we also don't instrument arrays of them. 1839 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1840 Ty = AT->getElementType(); 1841 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1842 // We allow to blacklist only record types (classes, structs etc.) 1843 if (Ty->isRecordType()) { 1844 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1845 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1846 return true; 1847 } 1848 } 1849 return false; 1850 } 1851 1852 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1853 StringRef Category) const { 1854 if (!LangOpts.XRayInstrument) 1855 return false; 1856 const auto &XRayFilter = getContext().getXRayFilter(); 1857 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1858 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1859 if (Loc.isValid()) 1860 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1861 if (Attr == ImbueAttr::NONE) 1862 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1863 switch (Attr) { 1864 case ImbueAttr::NONE: 1865 return false; 1866 case ImbueAttr::ALWAYS: 1867 Fn->addFnAttr("function-instrument", "xray-always"); 1868 break; 1869 case ImbueAttr::ALWAYS_ARG1: 1870 Fn->addFnAttr("function-instrument", "xray-always"); 1871 Fn->addFnAttr("xray-log-args", "1"); 1872 break; 1873 case ImbueAttr::NEVER: 1874 Fn->addFnAttr("function-instrument", "xray-never"); 1875 break; 1876 } 1877 return true; 1878 } 1879 1880 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1881 // Never defer when EmitAllDecls is specified. 1882 if (LangOpts.EmitAllDecls) 1883 return true; 1884 1885 return getContext().DeclMustBeEmitted(Global); 1886 } 1887 1888 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1889 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1890 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1891 // Implicit template instantiations may change linkage if they are later 1892 // explicitly instantiated, so they should not be emitted eagerly. 1893 return false; 1894 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1895 if (Context.getInlineVariableDefinitionKind(VD) == 1896 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1897 // A definition of an inline constexpr static data member may change 1898 // linkage later if it's redeclared outside the class. 1899 return false; 1900 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1901 // codegen for global variables, because they may be marked as threadprivate. 1902 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1903 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1904 return false; 1905 1906 return true; 1907 } 1908 1909 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1910 const CXXUuidofExpr* E) { 1911 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1912 // well-formed. 1913 StringRef Uuid = E->getUuidStr(); 1914 std::string Name = "_GUID_" + Uuid.lower(); 1915 std::replace(Name.begin(), Name.end(), '-', '_'); 1916 1917 // The UUID descriptor should be pointer aligned. 1918 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1919 1920 // Look for an existing global. 1921 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1922 return ConstantAddress(GV, Alignment); 1923 1924 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1925 assert(Init && "failed to initialize as constant"); 1926 1927 auto *GV = new llvm::GlobalVariable( 1928 getModule(), Init->getType(), 1929 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1930 if (supportsCOMDAT()) 1931 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1932 return ConstantAddress(GV, Alignment); 1933 } 1934 1935 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1936 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1937 assert(AA && "No alias?"); 1938 1939 CharUnits Alignment = getContext().getDeclAlign(VD); 1940 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1941 1942 // See if there is already something with the target's name in the module. 1943 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1944 if (Entry) { 1945 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1946 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1947 return ConstantAddress(Ptr, Alignment); 1948 } 1949 1950 llvm::Constant *Aliasee; 1951 if (isa<llvm::FunctionType>(DeclTy)) 1952 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1953 GlobalDecl(cast<FunctionDecl>(VD)), 1954 /*ForVTable=*/false); 1955 else 1956 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1957 llvm::PointerType::getUnqual(DeclTy), 1958 nullptr); 1959 1960 auto *F = cast<llvm::GlobalValue>(Aliasee); 1961 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1962 WeakRefReferences.insert(F); 1963 1964 return ConstantAddress(Aliasee, Alignment); 1965 } 1966 1967 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1968 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1969 1970 // Weak references don't produce any output by themselves. 1971 if (Global->hasAttr<WeakRefAttr>()) 1972 return; 1973 1974 // If this is an alias definition (which otherwise looks like a declaration) 1975 // emit it now. 1976 if (Global->hasAttr<AliasAttr>()) 1977 return EmitAliasDefinition(GD); 1978 1979 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1980 if (Global->hasAttr<IFuncAttr>()) 1981 return emitIFuncDefinition(GD); 1982 1983 // If this is CUDA, be selective about which declarations we emit. 1984 if (LangOpts.CUDA) { 1985 if (LangOpts.CUDAIsDevice) { 1986 if (!Global->hasAttr<CUDADeviceAttr>() && 1987 !Global->hasAttr<CUDAGlobalAttr>() && 1988 !Global->hasAttr<CUDAConstantAttr>() && 1989 !Global->hasAttr<CUDASharedAttr>()) 1990 return; 1991 } else { 1992 // We need to emit host-side 'shadows' for all global 1993 // device-side variables because the CUDA runtime needs their 1994 // size and host-side address in order to provide access to 1995 // their device-side incarnations. 1996 1997 // So device-only functions are the only things we skip. 1998 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1999 Global->hasAttr<CUDADeviceAttr>()) 2000 return; 2001 2002 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2003 "Expected Variable or Function"); 2004 } 2005 } 2006 2007 if (LangOpts.OpenMP) { 2008 // If this is OpenMP device, check if it is legal to emit this global 2009 // normally. 2010 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2011 return; 2012 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2013 if (MustBeEmitted(Global)) 2014 EmitOMPDeclareReduction(DRD); 2015 return; 2016 } 2017 } 2018 2019 // Ignore declarations, they will be emitted on their first use. 2020 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2021 // Forward declarations are emitted lazily on first use. 2022 if (!FD->doesThisDeclarationHaveABody()) { 2023 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2024 return; 2025 2026 StringRef MangledName = getMangledName(GD); 2027 2028 // Compute the function info and LLVM type. 2029 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2030 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2031 2032 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2033 /*DontDefer=*/false); 2034 return; 2035 } 2036 } else { 2037 const auto *VD = cast<VarDecl>(Global); 2038 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2039 // We need to emit device-side global CUDA variables even if a 2040 // variable does not have a definition -- we still need to define 2041 // host-side shadow for it. 2042 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2043 !VD->hasDefinition() && 2044 (VD->hasAttr<CUDAConstantAttr>() || 2045 VD->hasAttr<CUDADeviceAttr>()); 2046 if (!MustEmitForCuda && 2047 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2048 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2049 // If this declaration may have caused an inline variable definition to 2050 // change linkage, make sure that it's emitted. 2051 if (Context.getInlineVariableDefinitionKind(VD) == 2052 ASTContext::InlineVariableDefinitionKind::Strong) 2053 GetAddrOfGlobalVar(VD); 2054 return; 2055 } 2056 } 2057 2058 // Defer code generation to first use when possible, e.g. if this is an inline 2059 // function. If the global must always be emitted, do it eagerly if possible 2060 // to benefit from cache locality. 2061 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2062 // Emit the definition if it can't be deferred. 2063 EmitGlobalDefinition(GD); 2064 return; 2065 } 2066 2067 // If we're deferring emission of a C++ variable with an 2068 // initializer, remember the order in which it appeared in the file. 2069 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2070 cast<VarDecl>(Global)->hasInit()) { 2071 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2072 CXXGlobalInits.push_back(nullptr); 2073 } 2074 2075 StringRef MangledName = getMangledName(GD); 2076 if (GetGlobalValue(MangledName) != nullptr) { 2077 // The value has already been used and should therefore be emitted. 2078 addDeferredDeclToEmit(GD); 2079 } else if (MustBeEmitted(Global)) { 2080 // The value must be emitted, but cannot be emitted eagerly. 2081 assert(!MayBeEmittedEagerly(Global)); 2082 addDeferredDeclToEmit(GD); 2083 } else { 2084 // Otherwise, remember that we saw a deferred decl with this name. The 2085 // first use of the mangled name will cause it to move into 2086 // DeferredDeclsToEmit. 2087 DeferredDecls[MangledName] = GD; 2088 } 2089 } 2090 2091 // Check if T is a class type with a destructor that's not dllimport. 2092 static bool HasNonDllImportDtor(QualType T) { 2093 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2094 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2095 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2096 return true; 2097 2098 return false; 2099 } 2100 2101 namespace { 2102 struct FunctionIsDirectlyRecursive : 2103 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2104 const StringRef Name; 2105 const Builtin::Context &BI; 2106 bool Result; 2107 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2108 Name(N), BI(C), Result(false) { 2109 } 2110 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2111 2112 bool TraverseCallExpr(CallExpr *E) { 2113 const FunctionDecl *FD = E->getDirectCallee(); 2114 if (!FD) 2115 return true; 2116 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2117 if (Attr && Name == Attr->getLabel()) { 2118 Result = true; 2119 return false; 2120 } 2121 unsigned BuiltinID = FD->getBuiltinID(); 2122 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2123 return true; 2124 StringRef BuiltinName = BI.getName(BuiltinID); 2125 if (BuiltinName.startswith("__builtin_") && 2126 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2127 Result = true; 2128 return false; 2129 } 2130 return true; 2131 } 2132 }; 2133 2134 // Make sure we're not referencing non-imported vars or functions. 2135 struct DLLImportFunctionVisitor 2136 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2137 bool SafeToInline = true; 2138 2139 bool shouldVisitImplicitCode() const { return true; } 2140 2141 bool VisitVarDecl(VarDecl *VD) { 2142 if (VD->getTLSKind()) { 2143 // A thread-local variable cannot be imported. 2144 SafeToInline = false; 2145 return SafeToInline; 2146 } 2147 2148 // A variable definition might imply a destructor call. 2149 if (VD->isThisDeclarationADefinition()) 2150 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2151 2152 return SafeToInline; 2153 } 2154 2155 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2156 if (const auto *D = E->getTemporary()->getDestructor()) 2157 SafeToInline = D->hasAttr<DLLImportAttr>(); 2158 return SafeToInline; 2159 } 2160 2161 bool VisitDeclRefExpr(DeclRefExpr *E) { 2162 ValueDecl *VD = E->getDecl(); 2163 if (isa<FunctionDecl>(VD)) 2164 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2165 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2166 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2167 return SafeToInline; 2168 } 2169 2170 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2171 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2172 return SafeToInline; 2173 } 2174 2175 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2176 CXXMethodDecl *M = E->getMethodDecl(); 2177 if (!M) { 2178 // Call through a pointer to member function. This is safe to inline. 2179 SafeToInline = true; 2180 } else { 2181 SafeToInline = M->hasAttr<DLLImportAttr>(); 2182 } 2183 return SafeToInline; 2184 } 2185 2186 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2187 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2188 return SafeToInline; 2189 } 2190 2191 bool VisitCXXNewExpr(CXXNewExpr *E) { 2192 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2193 return SafeToInline; 2194 } 2195 }; 2196 } 2197 2198 // isTriviallyRecursive - Check if this function calls another 2199 // decl that, because of the asm attribute or the other decl being a builtin, 2200 // ends up pointing to itself. 2201 bool 2202 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2203 StringRef Name; 2204 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2205 // asm labels are a special kind of mangling we have to support. 2206 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2207 if (!Attr) 2208 return false; 2209 Name = Attr->getLabel(); 2210 } else { 2211 Name = FD->getName(); 2212 } 2213 2214 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2215 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2216 return Walker.Result; 2217 } 2218 2219 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2220 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2221 return true; 2222 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2223 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2224 return false; 2225 2226 if (F->hasAttr<DLLImportAttr>()) { 2227 // Check whether it would be safe to inline this dllimport function. 2228 DLLImportFunctionVisitor Visitor; 2229 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2230 if (!Visitor.SafeToInline) 2231 return false; 2232 2233 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2234 // Implicit destructor invocations aren't captured in the AST, so the 2235 // check above can't see them. Check for them manually here. 2236 for (const Decl *Member : Dtor->getParent()->decls()) 2237 if (isa<FieldDecl>(Member)) 2238 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2239 return false; 2240 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2241 if (HasNonDllImportDtor(B.getType())) 2242 return false; 2243 } 2244 } 2245 2246 // PR9614. Avoid cases where the source code is lying to us. An available 2247 // externally function should have an equivalent function somewhere else, 2248 // but a function that calls itself is clearly not equivalent to the real 2249 // implementation. 2250 // This happens in glibc's btowc and in some configure checks. 2251 return !isTriviallyRecursive(F); 2252 } 2253 2254 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2255 return CodeGenOpts.OptimizationLevel > 0; 2256 } 2257 2258 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2259 const auto *D = cast<ValueDecl>(GD.getDecl()); 2260 2261 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2262 Context.getSourceManager(), 2263 "Generating code for declaration"); 2264 2265 if (isa<FunctionDecl>(D)) { 2266 // At -O0, don't generate IR for functions with available_externally 2267 // linkage. 2268 if (!shouldEmitFunction(GD)) 2269 return; 2270 2271 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2272 // Make sure to emit the definition(s) before we emit the thunks. 2273 // This is necessary for the generation of certain thunks. 2274 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2275 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2276 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2277 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2278 else 2279 EmitGlobalFunctionDefinition(GD, GV); 2280 2281 if (Method->isVirtual()) 2282 getVTables().EmitThunks(GD); 2283 2284 return; 2285 } 2286 2287 return EmitGlobalFunctionDefinition(GD, GV); 2288 } 2289 2290 if (const auto *VD = dyn_cast<VarDecl>(D)) 2291 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2292 2293 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2294 } 2295 2296 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2297 llvm::Function *NewFn); 2298 2299 void CodeGenModule::emitMultiVersionFunctions() { 2300 for (GlobalDecl GD : MultiVersionFuncs) { 2301 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2302 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2303 getContext().forEachMultiversionedFunctionVersion( 2304 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2305 GlobalDecl CurGD{ 2306 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2307 StringRef MangledName = getMangledName(CurGD); 2308 llvm::Constant *Func = GetGlobalValue(MangledName); 2309 if (!Func) { 2310 if (CurFD->isDefined()) { 2311 EmitGlobalFunctionDefinition(CurGD, nullptr); 2312 Func = GetGlobalValue(MangledName); 2313 } else { 2314 const CGFunctionInfo &FI = 2315 getTypes().arrangeGlobalDeclaration(GD); 2316 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2317 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2318 /*DontDefer=*/false, ForDefinition); 2319 } 2320 assert(Func && "This should have just been created"); 2321 } 2322 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2323 CurFD->getAttr<TargetAttr>()->parse()); 2324 }); 2325 2326 llvm::Function *ResolverFunc = cast<llvm::Function>( 2327 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2328 if (supportsCOMDAT()) 2329 ResolverFunc->setComdat( 2330 getModule().getOrInsertComdat(ResolverFunc->getName())); 2331 std::stable_sort( 2332 Options.begin(), Options.end(), 2333 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2334 CodeGenFunction CGF(*this); 2335 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2336 } 2337 } 2338 2339 /// If an ifunc for the specified mangled name is not in the module, create and 2340 /// return an llvm IFunc Function with the specified type. 2341 llvm::Constant * 2342 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2343 StringRef MangledName, 2344 const FunctionDecl *FD) { 2345 std::string IFuncName = (MangledName + ".ifunc").str(); 2346 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2347 return IFuncGV; 2348 2349 // Since this is the first time we've created this IFunc, make sure 2350 // that we put this multiversioned function into the list to be 2351 // replaced later. 2352 MultiVersionFuncs.push_back(GD); 2353 2354 std::string ResolverName = (MangledName + ".resolver").str(); 2355 llvm::Type *ResolverType = llvm::FunctionType::get( 2356 llvm::PointerType::get(DeclTy, 2357 Context.getTargetAddressSpace(FD->getType())), 2358 false); 2359 llvm::Constant *Resolver = 2360 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2361 /*ForVTable=*/false); 2362 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2363 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2364 GIF->setName(IFuncName); 2365 SetCommonAttributes(FD, GIF); 2366 2367 return GIF; 2368 } 2369 2370 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2371 /// module, create and return an llvm Function with the specified type. If there 2372 /// is something in the module with the specified name, return it potentially 2373 /// bitcasted to the right type. 2374 /// 2375 /// If D is non-null, it specifies a decl that correspond to this. This is used 2376 /// to set the attributes on the function when it is first created. 2377 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2378 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2379 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2380 ForDefinition_t IsForDefinition) { 2381 const Decl *D = GD.getDecl(); 2382 2383 // Any attempts to use a MultiVersion function should result in retrieving 2384 // the iFunc instead. Name Mangling will handle the rest of the changes. 2385 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2386 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2387 UpdateMultiVersionNames(GD, FD); 2388 if (!IsForDefinition) 2389 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2390 } 2391 } 2392 2393 // Lookup the entry, lazily creating it if necessary. 2394 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2395 if (Entry) { 2396 if (WeakRefReferences.erase(Entry)) { 2397 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2398 if (FD && !FD->hasAttr<WeakAttr>()) 2399 Entry->setLinkage(llvm::Function::ExternalLinkage); 2400 } 2401 2402 // Handle dropped DLL attributes. 2403 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2404 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2405 2406 // If there are two attempts to define the same mangled name, issue an 2407 // error. 2408 if (IsForDefinition && !Entry->isDeclaration()) { 2409 GlobalDecl OtherGD; 2410 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2411 // to make sure that we issue an error only once. 2412 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2413 (GD.getCanonicalDecl().getDecl() != 2414 OtherGD.getCanonicalDecl().getDecl()) && 2415 DiagnosedConflictingDefinitions.insert(GD).second) { 2416 getDiags().Report(D->getLocation(), 2417 diag::err_duplicate_mangled_name); 2418 getDiags().Report(OtherGD.getDecl()->getLocation(), 2419 diag::note_previous_definition); 2420 } 2421 } 2422 2423 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2424 (Entry->getType()->getElementType() == Ty)) { 2425 return Entry; 2426 } 2427 2428 // Make sure the result is of the correct type. 2429 // (If function is requested for a definition, we always need to create a new 2430 // function, not just return a bitcast.) 2431 if (!IsForDefinition) 2432 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2433 } 2434 2435 // This function doesn't have a complete type (for example, the return 2436 // type is an incomplete struct). Use a fake type instead, and make 2437 // sure not to try to set attributes. 2438 bool IsIncompleteFunction = false; 2439 2440 llvm::FunctionType *FTy; 2441 if (isa<llvm::FunctionType>(Ty)) { 2442 FTy = cast<llvm::FunctionType>(Ty); 2443 } else { 2444 FTy = llvm::FunctionType::get(VoidTy, false); 2445 IsIncompleteFunction = true; 2446 } 2447 2448 llvm::Function *F = 2449 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2450 Entry ? StringRef() : MangledName, &getModule()); 2451 2452 // If we already created a function with the same mangled name (but different 2453 // type) before, take its name and add it to the list of functions to be 2454 // replaced with F at the end of CodeGen. 2455 // 2456 // This happens if there is a prototype for a function (e.g. "int f()") and 2457 // then a definition of a different type (e.g. "int f(int x)"). 2458 if (Entry) { 2459 F->takeName(Entry); 2460 2461 // This might be an implementation of a function without a prototype, in 2462 // which case, try to do special replacement of calls which match the new 2463 // prototype. The really key thing here is that we also potentially drop 2464 // arguments from the call site so as to make a direct call, which makes the 2465 // inliner happier and suppresses a number of optimizer warnings (!) about 2466 // dropping arguments. 2467 if (!Entry->use_empty()) { 2468 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2469 Entry->removeDeadConstantUsers(); 2470 } 2471 2472 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2473 F, Entry->getType()->getElementType()->getPointerTo()); 2474 addGlobalValReplacement(Entry, BC); 2475 } 2476 2477 assert(F->getName() == MangledName && "name was uniqued!"); 2478 if (D) 2479 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2480 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2481 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2482 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2483 } 2484 2485 if (!DontDefer) { 2486 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2487 // each other bottoming out with the base dtor. Therefore we emit non-base 2488 // dtors on usage, even if there is no dtor definition in the TU. 2489 if (D && isa<CXXDestructorDecl>(D) && 2490 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2491 GD.getDtorType())) 2492 addDeferredDeclToEmit(GD); 2493 2494 // This is the first use or definition of a mangled name. If there is a 2495 // deferred decl with this name, remember that we need to emit it at the end 2496 // of the file. 2497 auto DDI = DeferredDecls.find(MangledName); 2498 if (DDI != DeferredDecls.end()) { 2499 // Move the potentially referenced deferred decl to the 2500 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2501 // don't need it anymore). 2502 addDeferredDeclToEmit(DDI->second); 2503 DeferredDecls.erase(DDI); 2504 2505 // Otherwise, there are cases we have to worry about where we're 2506 // using a declaration for which we must emit a definition but where 2507 // we might not find a top-level definition: 2508 // - member functions defined inline in their classes 2509 // - friend functions defined inline in some class 2510 // - special member functions with implicit definitions 2511 // If we ever change our AST traversal to walk into class methods, 2512 // this will be unnecessary. 2513 // 2514 // We also don't emit a definition for a function if it's going to be an 2515 // entry in a vtable, unless it's already marked as used. 2516 } else if (getLangOpts().CPlusPlus && D) { 2517 // Look for a declaration that's lexically in a record. 2518 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2519 FD = FD->getPreviousDecl()) { 2520 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2521 if (FD->doesThisDeclarationHaveABody()) { 2522 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2523 break; 2524 } 2525 } 2526 } 2527 } 2528 } 2529 2530 // Make sure the result is of the requested type. 2531 if (!IsIncompleteFunction) { 2532 assert(F->getType()->getElementType() == Ty); 2533 return F; 2534 } 2535 2536 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2537 return llvm::ConstantExpr::getBitCast(F, PTy); 2538 } 2539 2540 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2541 /// non-null, then this function will use the specified type if it has to 2542 /// create it (this occurs when we see a definition of the function). 2543 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2544 llvm::Type *Ty, 2545 bool ForVTable, 2546 bool DontDefer, 2547 ForDefinition_t IsForDefinition) { 2548 // If there was no specific requested type, just convert it now. 2549 if (!Ty) { 2550 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2551 auto CanonTy = Context.getCanonicalType(FD->getType()); 2552 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2553 } 2554 2555 StringRef MangledName = getMangledName(GD); 2556 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2557 /*IsThunk=*/false, llvm::AttributeList(), 2558 IsForDefinition); 2559 } 2560 2561 static const FunctionDecl * 2562 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2563 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2564 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2565 2566 IdentifierInfo &CII = C.Idents.get(Name); 2567 for (const auto &Result : DC->lookup(&CII)) 2568 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2569 return FD; 2570 2571 if (!C.getLangOpts().CPlusPlus) 2572 return nullptr; 2573 2574 // Demangle the premangled name from getTerminateFn() 2575 IdentifierInfo &CXXII = 2576 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2577 ? C.Idents.get("terminate") 2578 : C.Idents.get(Name); 2579 2580 for (const auto &N : {"__cxxabiv1", "std"}) { 2581 IdentifierInfo &NS = C.Idents.get(N); 2582 for (const auto &Result : DC->lookup(&NS)) { 2583 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2584 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2585 for (const auto &Result : LSD->lookup(&NS)) 2586 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2587 break; 2588 2589 if (ND) 2590 for (const auto &Result : ND->lookup(&CXXII)) 2591 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2592 return FD; 2593 } 2594 } 2595 2596 return nullptr; 2597 } 2598 2599 /// CreateRuntimeFunction - Create a new runtime function with the specified 2600 /// type and name. 2601 llvm::Constant * 2602 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2603 llvm::AttributeList ExtraAttrs, 2604 bool Local) { 2605 llvm::Constant *C = 2606 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2607 /*DontDefer=*/false, /*IsThunk=*/false, 2608 ExtraAttrs); 2609 2610 if (auto *F = dyn_cast<llvm::Function>(C)) { 2611 if (F->empty()) { 2612 F->setCallingConv(getRuntimeCC()); 2613 2614 if (!Local && getTriple().isOSBinFormatCOFF() && 2615 !getCodeGenOpts().LTOVisibilityPublicStd && 2616 !getTriple().isWindowsGNUEnvironment()) { 2617 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2618 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2619 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2620 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2621 } 2622 } 2623 } 2624 } 2625 2626 return C; 2627 } 2628 2629 /// CreateBuiltinFunction - Create a new builtin function with the specified 2630 /// type and name. 2631 llvm::Constant * 2632 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2633 llvm::AttributeList ExtraAttrs) { 2634 llvm::Constant *C = 2635 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2636 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2637 if (auto *F = dyn_cast<llvm::Function>(C)) 2638 if (F->empty()) 2639 F->setCallingConv(getBuiltinCC()); 2640 return C; 2641 } 2642 2643 /// isTypeConstant - Determine whether an object of this type can be emitted 2644 /// as a constant. 2645 /// 2646 /// If ExcludeCtor is true, the duration when the object's constructor runs 2647 /// will not be considered. The caller will need to verify that the object is 2648 /// not written to during its construction. 2649 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2650 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2651 return false; 2652 2653 if (Context.getLangOpts().CPlusPlus) { 2654 if (const CXXRecordDecl *Record 2655 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2656 return ExcludeCtor && !Record->hasMutableFields() && 2657 Record->hasTrivialDestructor(); 2658 } 2659 2660 return true; 2661 } 2662 2663 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2664 /// create and return an llvm GlobalVariable with the specified type. If there 2665 /// is something in the module with the specified name, return it potentially 2666 /// bitcasted to the right type. 2667 /// 2668 /// If D is non-null, it specifies a decl that correspond to this. This is used 2669 /// to set the attributes on the global when it is first created. 2670 /// 2671 /// If IsForDefinition is true, it is guranteed that an actual global with 2672 /// type Ty will be returned, not conversion of a variable with the same 2673 /// mangled name but some other type. 2674 llvm::Constant * 2675 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2676 llvm::PointerType *Ty, 2677 const VarDecl *D, 2678 ForDefinition_t IsForDefinition) { 2679 // Lookup the entry, lazily creating it if necessary. 2680 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2681 if (Entry) { 2682 if (WeakRefReferences.erase(Entry)) { 2683 if (D && !D->hasAttr<WeakAttr>()) 2684 Entry->setLinkage(llvm::Function::ExternalLinkage); 2685 } 2686 2687 // Handle dropped DLL attributes. 2688 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2689 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2690 2691 if (Entry->getType() == Ty) 2692 return Entry; 2693 2694 // If there are two attempts to define the same mangled name, issue an 2695 // error. 2696 if (IsForDefinition && !Entry->isDeclaration()) { 2697 GlobalDecl OtherGD; 2698 const VarDecl *OtherD; 2699 2700 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2701 // to make sure that we issue an error only once. 2702 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2703 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2704 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2705 OtherD->hasInit() && 2706 DiagnosedConflictingDefinitions.insert(D).second) { 2707 getDiags().Report(D->getLocation(), 2708 diag::err_duplicate_mangled_name); 2709 getDiags().Report(OtherGD.getDecl()->getLocation(), 2710 diag::note_previous_definition); 2711 } 2712 } 2713 2714 // Make sure the result is of the correct type. 2715 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2716 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2717 2718 // (If global is requested for a definition, we always need to create a new 2719 // global, not just return a bitcast.) 2720 if (!IsForDefinition) 2721 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2722 } 2723 2724 auto AddrSpace = GetGlobalVarAddressSpace(D); 2725 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2726 2727 auto *GV = new llvm::GlobalVariable( 2728 getModule(), Ty->getElementType(), false, 2729 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2730 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2731 2732 // If we already created a global with the same mangled name (but different 2733 // type) before, take its name and remove it from its parent. 2734 if (Entry) { 2735 GV->takeName(Entry); 2736 2737 if (!Entry->use_empty()) { 2738 llvm::Constant *NewPtrForOldDecl = 2739 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2740 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2741 } 2742 2743 Entry->eraseFromParent(); 2744 } 2745 2746 // This is the first use or definition of a mangled name. If there is a 2747 // deferred decl with this name, remember that we need to emit it at the end 2748 // of the file. 2749 auto DDI = DeferredDecls.find(MangledName); 2750 if (DDI != DeferredDecls.end()) { 2751 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2752 // list, and remove it from DeferredDecls (since we don't need it anymore). 2753 addDeferredDeclToEmit(DDI->second); 2754 DeferredDecls.erase(DDI); 2755 } 2756 2757 // Handle things which are present even on external declarations. 2758 if (D) { 2759 // FIXME: This code is overly simple and should be merged with other global 2760 // handling. 2761 GV->setConstant(isTypeConstant(D->getType(), false)); 2762 2763 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2764 2765 setLinkageForGV(GV, D); 2766 2767 if (D->getTLSKind()) { 2768 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2769 CXXThreadLocals.push_back(D); 2770 setTLSMode(GV, *D); 2771 } 2772 2773 setGVProperties(GV, D); 2774 2775 // If required by the ABI, treat declarations of static data members with 2776 // inline initializers as definitions. 2777 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2778 EmitGlobalVarDefinition(D); 2779 } 2780 2781 // Emit section information for extern variables. 2782 if (D->hasExternalStorage()) { 2783 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2784 GV->setSection(SA->getName()); 2785 } 2786 2787 // Handle XCore specific ABI requirements. 2788 if (getTriple().getArch() == llvm::Triple::xcore && 2789 D->getLanguageLinkage() == CLanguageLinkage && 2790 D->getType().isConstant(Context) && 2791 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2792 GV->setSection(".cp.rodata"); 2793 2794 // Check if we a have a const declaration with an initializer, we may be 2795 // able to emit it as available_externally to expose it's value to the 2796 // optimizer. 2797 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2798 D->getType().isConstQualified() && !GV->hasInitializer() && 2799 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2800 const auto *Record = 2801 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2802 bool HasMutableFields = Record && Record->hasMutableFields(); 2803 if (!HasMutableFields) { 2804 const VarDecl *InitDecl; 2805 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2806 if (InitExpr) { 2807 ConstantEmitter emitter(*this); 2808 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2809 if (Init) { 2810 auto *InitType = Init->getType(); 2811 if (GV->getType()->getElementType() != InitType) { 2812 // The type of the initializer does not match the definition. 2813 // This happens when an initializer has a different type from 2814 // the type of the global (because of padding at the end of a 2815 // structure for instance). 2816 GV->setName(StringRef()); 2817 // Make a new global with the correct type, this is now guaranteed 2818 // to work. 2819 auto *NewGV = cast<llvm::GlobalVariable>( 2820 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2821 2822 // Erase the old global, since it is no longer used. 2823 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2824 GV = NewGV; 2825 } else { 2826 GV->setInitializer(Init); 2827 GV->setConstant(true); 2828 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2829 } 2830 emitter.finalize(GV); 2831 } 2832 } 2833 } 2834 } 2835 } 2836 2837 LangAS ExpectedAS = 2838 D ? D->getType().getAddressSpace() 2839 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2840 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2841 Ty->getPointerAddressSpace()); 2842 if (AddrSpace != ExpectedAS) 2843 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2844 ExpectedAS, Ty); 2845 2846 return GV; 2847 } 2848 2849 llvm::Constant * 2850 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2851 ForDefinition_t IsForDefinition) { 2852 const Decl *D = GD.getDecl(); 2853 if (isa<CXXConstructorDecl>(D)) 2854 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2855 getFromCtorType(GD.getCtorType()), 2856 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2857 /*DontDefer=*/false, IsForDefinition); 2858 else if (isa<CXXDestructorDecl>(D)) 2859 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2860 getFromDtorType(GD.getDtorType()), 2861 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2862 /*DontDefer=*/false, IsForDefinition); 2863 else if (isa<CXXMethodDecl>(D)) { 2864 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2865 cast<CXXMethodDecl>(D)); 2866 auto Ty = getTypes().GetFunctionType(*FInfo); 2867 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2868 IsForDefinition); 2869 } else if (isa<FunctionDecl>(D)) { 2870 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2871 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2872 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2873 IsForDefinition); 2874 } else 2875 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2876 IsForDefinition); 2877 } 2878 2879 llvm::GlobalVariable * 2880 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2881 llvm::Type *Ty, 2882 llvm::GlobalValue::LinkageTypes Linkage) { 2883 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2884 llvm::GlobalVariable *OldGV = nullptr; 2885 2886 if (GV) { 2887 // Check if the variable has the right type. 2888 if (GV->getType()->getElementType() == Ty) 2889 return GV; 2890 2891 // Because C++ name mangling, the only way we can end up with an already 2892 // existing global with the same name is if it has been declared extern "C". 2893 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2894 OldGV = GV; 2895 } 2896 2897 // Create a new variable. 2898 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2899 Linkage, nullptr, Name); 2900 2901 if (OldGV) { 2902 // Replace occurrences of the old variable if needed. 2903 GV->takeName(OldGV); 2904 2905 if (!OldGV->use_empty()) { 2906 llvm::Constant *NewPtrForOldDecl = 2907 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2908 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2909 } 2910 2911 OldGV->eraseFromParent(); 2912 } 2913 2914 if (supportsCOMDAT() && GV->isWeakForLinker() && 2915 !GV->hasAvailableExternallyLinkage()) 2916 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2917 2918 return GV; 2919 } 2920 2921 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2922 /// given global variable. If Ty is non-null and if the global doesn't exist, 2923 /// then it will be created with the specified type instead of whatever the 2924 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2925 /// that an actual global with type Ty will be returned, not conversion of a 2926 /// variable with the same mangled name but some other type. 2927 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2928 llvm::Type *Ty, 2929 ForDefinition_t IsForDefinition) { 2930 assert(D->hasGlobalStorage() && "Not a global variable"); 2931 QualType ASTTy = D->getType(); 2932 if (!Ty) 2933 Ty = getTypes().ConvertTypeForMem(ASTTy); 2934 2935 llvm::PointerType *PTy = 2936 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2937 2938 StringRef MangledName = getMangledName(D); 2939 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2940 } 2941 2942 /// CreateRuntimeVariable - Create a new runtime global variable with the 2943 /// specified type and name. 2944 llvm::Constant * 2945 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2946 StringRef Name) { 2947 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2948 } 2949 2950 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2951 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2952 2953 StringRef MangledName = getMangledName(D); 2954 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2955 2956 // We already have a definition, not declaration, with the same mangled name. 2957 // Emitting of declaration is not required (and actually overwrites emitted 2958 // definition). 2959 if (GV && !GV->isDeclaration()) 2960 return; 2961 2962 // If we have not seen a reference to this variable yet, place it into the 2963 // deferred declarations table to be emitted if needed later. 2964 if (!MustBeEmitted(D) && !GV) { 2965 DeferredDecls[MangledName] = D; 2966 return; 2967 } 2968 2969 // The tentative definition is the only definition. 2970 EmitGlobalVarDefinition(D); 2971 } 2972 2973 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2974 return Context.toCharUnitsFromBits( 2975 getDataLayout().getTypeStoreSizeInBits(Ty)); 2976 } 2977 2978 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2979 LangAS AddrSpace = LangAS::Default; 2980 if (LangOpts.OpenCL) { 2981 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2982 assert(AddrSpace == LangAS::opencl_global || 2983 AddrSpace == LangAS::opencl_constant || 2984 AddrSpace == LangAS::opencl_local || 2985 AddrSpace >= LangAS::FirstTargetAddressSpace); 2986 return AddrSpace; 2987 } 2988 2989 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2990 if (D && D->hasAttr<CUDAConstantAttr>()) 2991 return LangAS::cuda_constant; 2992 else if (D && D->hasAttr<CUDASharedAttr>()) 2993 return LangAS::cuda_shared; 2994 else 2995 return LangAS::cuda_device; 2996 } 2997 2998 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2999 } 3000 3001 template<typename SomeDecl> 3002 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3003 llvm::GlobalValue *GV) { 3004 if (!getLangOpts().CPlusPlus) 3005 return; 3006 3007 // Must have 'used' attribute, or else inline assembly can't rely on 3008 // the name existing. 3009 if (!D->template hasAttr<UsedAttr>()) 3010 return; 3011 3012 // Must have internal linkage and an ordinary name. 3013 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3014 return; 3015 3016 // Must be in an extern "C" context. Entities declared directly within 3017 // a record are not extern "C" even if the record is in such a context. 3018 const SomeDecl *First = D->getFirstDecl(); 3019 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3020 return; 3021 3022 // OK, this is an internal linkage entity inside an extern "C" linkage 3023 // specification. Make a note of that so we can give it the "expected" 3024 // mangled name if nothing else is using that name. 3025 std::pair<StaticExternCMap::iterator, bool> R = 3026 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3027 3028 // If we have multiple internal linkage entities with the same name 3029 // in extern "C" regions, none of them gets that name. 3030 if (!R.second) 3031 R.first->second = nullptr; 3032 } 3033 3034 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3035 if (!CGM.supportsCOMDAT()) 3036 return false; 3037 3038 if (D.hasAttr<SelectAnyAttr>()) 3039 return true; 3040 3041 GVALinkage Linkage; 3042 if (auto *VD = dyn_cast<VarDecl>(&D)) 3043 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3044 else 3045 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3046 3047 switch (Linkage) { 3048 case GVA_Internal: 3049 case GVA_AvailableExternally: 3050 case GVA_StrongExternal: 3051 return false; 3052 case GVA_DiscardableODR: 3053 case GVA_StrongODR: 3054 return true; 3055 } 3056 llvm_unreachable("No such linkage"); 3057 } 3058 3059 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3060 llvm::GlobalObject &GO) { 3061 if (!shouldBeInCOMDAT(*this, D)) 3062 return; 3063 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3064 } 3065 3066 /// Pass IsTentative as true if you want to create a tentative definition. 3067 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3068 bool IsTentative) { 3069 // OpenCL global variables of sampler type are translated to function calls, 3070 // therefore no need to be translated. 3071 QualType ASTTy = D->getType(); 3072 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3073 return; 3074 3075 llvm::Constant *Init = nullptr; 3076 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3077 bool NeedsGlobalCtor = false; 3078 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3079 3080 const VarDecl *InitDecl; 3081 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3082 3083 Optional<ConstantEmitter> emitter; 3084 3085 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3086 // as part of their declaration." Sema has already checked for 3087 // error cases, so we just need to set Init to UndefValue. 3088 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3089 D->hasAttr<CUDASharedAttr>()) 3090 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3091 else if (!InitExpr) { 3092 // This is a tentative definition; tentative definitions are 3093 // implicitly initialized with { 0 }. 3094 // 3095 // Note that tentative definitions are only emitted at the end of 3096 // a translation unit, so they should never have incomplete 3097 // type. In addition, EmitTentativeDefinition makes sure that we 3098 // never attempt to emit a tentative definition if a real one 3099 // exists. A use may still exists, however, so we still may need 3100 // to do a RAUW. 3101 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3102 Init = EmitNullConstant(D->getType()); 3103 } else { 3104 initializedGlobalDecl = GlobalDecl(D); 3105 emitter.emplace(*this); 3106 Init = emitter->tryEmitForInitializer(*InitDecl); 3107 3108 if (!Init) { 3109 QualType T = InitExpr->getType(); 3110 if (D->getType()->isReferenceType()) 3111 T = D->getType(); 3112 3113 if (getLangOpts().CPlusPlus) { 3114 Init = EmitNullConstant(T); 3115 NeedsGlobalCtor = true; 3116 } else { 3117 ErrorUnsupported(D, "static initializer"); 3118 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3119 } 3120 } else { 3121 // We don't need an initializer, so remove the entry for the delayed 3122 // initializer position (just in case this entry was delayed) if we 3123 // also don't need to register a destructor. 3124 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3125 DelayedCXXInitPosition.erase(D); 3126 } 3127 } 3128 3129 llvm::Type* InitType = Init->getType(); 3130 llvm::Constant *Entry = 3131 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3132 3133 // Strip off a bitcast if we got one back. 3134 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3135 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3136 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3137 // All zero index gep. 3138 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3139 Entry = CE->getOperand(0); 3140 } 3141 3142 // Entry is now either a Function or GlobalVariable. 3143 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3144 3145 // We have a definition after a declaration with the wrong type. 3146 // We must make a new GlobalVariable* and update everything that used OldGV 3147 // (a declaration or tentative definition) with the new GlobalVariable* 3148 // (which will be a definition). 3149 // 3150 // This happens if there is a prototype for a global (e.g. 3151 // "extern int x[];") and then a definition of a different type (e.g. 3152 // "int x[10];"). This also happens when an initializer has a different type 3153 // from the type of the global (this happens with unions). 3154 if (!GV || GV->getType()->getElementType() != InitType || 3155 GV->getType()->getAddressSpace() != 3156 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3157 3158 // Move the old entry aside so that we'll create a new one. 3159 Entry->setName(StringRef()); 3160 3161 // Make a new global with the correct type, this is now guaranteed to work. 3162 GV = cast<llvm::GlobalVariable>( 3163 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3164 3165 // Replace all uses of the old global with the new global 3166 llvm::Constant *NewPtrForOldDecl = 3167 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3168 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3169 3170 // Erase the old global, since it is no longer used. 3171 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3172 } 3173 3174 MaybeHandleStaticInExternC(D, GV); 3175 3176 if (D->hasAttr<AnnotateAttr>()) 3177 AddGlobalAnnotations(D, GV); 3178 3179 // Set the llvm linkage type as appropriate. 3180 llvm::GlobalValue::LinkageTypes Linkage = 3181 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3182 3183 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3184 // the device. [...]" 3185 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3186 // __device__, declares a variable that: [...] 3187 // Is accessible from all the threads within the grid and from the host 3188 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3189 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3190 if (GV && LangOpts.CUDA) { 3191 if (LangOpts.CUDAIsDevice) { 3192 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3193 GV->setExternallyInitialized(true); 3194 } else { 3195 // Host-side shadows of external declarations of device-side 3196 // global variables become internal definitions. These have to 3197 // be internal in order to prevent name conflicts with global 3198 // host variables with the same name in a different TUs. 3199 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3200 Linkage = llvm::GlobalValue::InternalLinkage; 3201 3202 // Shadow variables and their properties must be registered 3203 // with CUDA runtime. 3204 unsigned Flags = 0; 3205 if (!D->hasDefinition()) 3206 Flags |= CGCUDARuntime::ExternDeviceVar; 3207 if (D->hasAttr<CUDAConstantAttr>()) 3208 Flags |= CGCUDARuntime::ConstantDeviceVar; 3209 getCUDARuntime().registerDeviceVar(*GV, Flags); 3210 } else if (D->hasAttr<CUDASharedAttr>()) 3211 // __shared__ variables are odd. Shadows do get created, but 3212 // they are not registered with the CUDA runtime, so they 3213 // can't really be used to access their device-side 3214 // counterparts. It's not clear yet whether it's nvcc's bug or 3215 // a feature, but we've got to do the same for compatibility. 3216 Linkage = llvm::GlobalValue::InternalLinkage; 3217 } 3218 } 3219 3220 GV->setInitializer(Init); 3221 if (emitter) emitter->finalize(GV); 3222 3223 // If it is safe to mark the global 'constant', do so now. 3224 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3225 isTypeConstant(D->getType(), true)); 3226 3227 // If it is in a read-only section, mark it 'constant'. 3228 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3229 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3230 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3231 GV->setConstant(true); 3232 } 3233 3234 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3235 3236 3237 // On Darwin, if the normal linkage of a C++ thread_local variable is 3238 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3239 // copies within a linkage unit; otherwise, the backing variable has 3240 // internal linkage and all accesses should just be calls to the 3241 // Itanium-specified entry point, which has the normal linkage of the 3242 // variable. This is to preserve the ability to change the implementation 3243 // behind the scenes. 3244 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3245 Context.getTargetInfo().getTriple().isOSDarwin() && 3246 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3247 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3248 Linkage = llvm::GlobalValue::InternalLinkage; 3249 3250 GV->setLinkage(Linkage); 3251 if (D->hasAttr<DLLImportAttr>()) 3252 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3253 else if (D->hasAttr<DLLExportAttr>()) 3254 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3255 else 3256 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3257 3258 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3259 // common vars aren't constant even if declared const. 3260 GV->setConstant(false); 3261 // Tentative definition of global variables may be initialized with 3262 // non-zero null pointers. In this case they should have weak linkage 3263 // since common linkage must have zero initializer and must not have 3264 // explicit section therefore cannot have non-zero initial value. 3265 if (!GV->getInitializer()->isNullValue()) 3266 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3267 } 3268 3269 setNonAliasAttributes(D, GV); 3270 3271 if (D->getTLSKind() && !GV->isThreadLocal()) { 3272 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3273 CXXThreadLocals.push_back(D); 3274 setTLSMode(GV, *D); 3275 } 3276 3277 maybeSetTrivialComdat(*D, *GV); 3278 3279 // Emit the initializer function if necessary. 3280 if (NeedsGlobalCtor || NeedsGlobalDtor) 3281 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3282 3283 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3284 3285 // Emit global variable debug information. 3286 if (CGDebugInfo *DI = getModuleDebugInfo()) 3287 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3288 DI->EmitGlobalVariable(GV, D); 3289 } 3290 3291 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3292 CodeGenModule &CGM, const VarDecl *D, 3293 bool NoCommon) { 3294 // Don't give variables common linkage if -fno-common was specified unless it 3295 // was overridden by a NoCommon attribute. 3296 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3297 return true; 3298 3299 // C11 6.9.2/2: 3300 // A declaration of an identifier for an object that has file scope without 3301 // an initializer, and without a storage-class specifier or with the 3302 // storage-class specifier static, constitutes a tentative definition. 3303 if (D->getInit() || D->hasExternalStorage()) 3304 return true; 3305 3306 // A variable cannot be both common and exist in a section. 3307 if (D->hasAttr<SectionAttr>()) 3308 return true; 3309 3310 // A variable cannot be both common and exist in a section. 3311 // We dont try to determine which is the right section in the front-end. 3312 // If no specialized section name is applicable, it will resort to default. 3313 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3314 D->hasAttr<PragmaClangDataSectionAttr>() || 3315 D->hasAttr<PragmaClangRodataSectionAttr>()) 3316 return true; 3317 3318 // Thread local vars aren't considered common linkage. 3319 if (D->getTLSKind()) 3320 return true; 3321 3322 // Tentative definitions marked with WeakImportAttr are true definitions. 3323 if (D->hasAttr<WeakImportAttr>()) 3324 return true; 3325 3326 // A variable cannot be both common and exist in a comdat. 3327 if (shouldBeInCOMDAT(CGM, *D)) 3328 return true; 3329 3330 // Declarations with a required alignment do not have common linkage in MSVC 3331 // mode. 3332 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3333 if (D->hasAttr<AlignedAttr>()) 3334 return true; 3335 QualType VarType = D->getType(); 3336 if (Context.isAlignmentRequired(VarType)) 3337 return true; 3338 3339 if (const auto *RT = VarType->getAs<RecordType>()) { 3340 const RecordDecl *RD = RT->getDecl(); 3341 for (const FieldDecl *FD : RD->fields()) { 3342 if (FD->isBitField()) 3343 continue; 3344 if (FD->hasAttr<AlignedAttr>()) 3345 return true; 3346 if (Context.isAlignmentRequired(FD->getType())) 3347 return true; 3348 } 3349 } 3350 } 3351 3352 return false; 3353 } 3354 3355 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3356 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3357 if (Linkage == GVA_Internal) 3358 return llvm::Function::InternalLinkage; 3359 3360 if (D->hasAttr<WeakAttr>()) { 3361 if (IsConstantVariable) 3362 return llvm::GlobalVariable::WeakODRLinkage; 3363 else 3364 return llvm::GlobalVariable::WeakAnyLinkage; 3365 } 3366 3367 // We are guaranteed to have a strong definition somewhere else, 3368 // so we can use available_externally linkage. 3369 if (Linkage == GVA_AvailableExternally) 3370 return llvm::GlobalValue::AvailableExternallyLinkage; 3371 3372 // Note that Apple's kernel linker doesn't support symbol 3373 // coalescing, so we need to avoid linkonce and weak linkages there. 3374 // Normally, this means we just map to internal, but for explicit 3375 // instantiations we'll map to external. 3376 3377 // In C++, the compiler has to emit a definition in every translation unit 3378 // that references the function. We should use linkonce_odr because 3379 // a) if all references in this translation unit are optimized away, we 3380 // don't need to codegen it. b) if the function persists, it needs to be 3381 // merged with other definitions. c) C++ has the ODR, so we know the 3382 // definition is dependable. 3383 if (Linkage == GVA_DiscardableODR) 3384 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3385 : llvm::Function::InternalLinkage; 3386 3387 // An explicit instantiation of a template has weak linkage, since 3388 // explicit instantiations can occur in multiple translation units 3389 // and must all be equivalent. However, we are not allowed to 3390 // throw away these explicit instantiations. 3391 // 3392 // We don't currently support CUDA device code spread out across multiple TUs, 3393 // so say that CUDA templates are either external (for kernels) or internal. 3394 // This lets llvm perform aggressive inter-procedural optimizations. 3395 if (Linkage == GVA_StrongODR) { 3396 if (Context.getLangOpts().AppleKext) 3397 return llvm::Function::ExternalLinkage; 3398 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3399 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3400 : llvm::Function::InternalLinkage; 3401 return llvm::Function::WeakODRLinkage; 3402 } 3403 3404 // C++ doesn't have tentative definitions and thus cannot have common 3405 // linkage. 3406 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3407 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3408 CodeGenOpts.NoCommon)) 3409 return llvm::GlobalVariable::CommonLinkage; 3410 3411 // selectany symbols are externally visible, so use weak instead of 3412 // linkonce. MSVC optimizes away references to const selectany globals, so 3413 // all definitions should be the same and ODR linkage should be used. 3414 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3415 if (D->hasAttr<SelectAnyAttr>()) 3416 return llvm::GlobalVariable::WeakODRLinkage; 3417 3418 // Otherwise, we have strong external linkage. 3419 assert(Linkage == GVA_StrongExternal); 3420 return llvm::GlobalVariable::ExternalLinkage; 3421 } 3422 3423 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3424 const VarDecl *VD, bool IsConstant) { 3425 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3426 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3427 } 3428 3429 /// Replace the uses of a function that was declared with a non-proto type. 3430 /// We want to silently drop extra arguments from call sites 3431 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3432 llvm::Function *newFn) { 3433 // Fast path. 3434 if (old->use_empty()) return; 3435 3436 llvm::Type *newRetTy = newFn->getReturnType(); 3437 SmallVector<llvm::Value*, 4> newArgs; 3438 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3439 3440 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3441 ui != ue; ) { 3442 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3443 llvm::User *user = use->getUser(); 3444 3445 // Recognize and replace uses of bitcasts. Most calls to 3446 // unprototyped functions will use bitcasts. 3447 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3448 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3449 replaceUsesOfNonProtoConstant(bitcast, newFn); 3450 continue; 3451 } 3452 3453 // Recognize calls to the function. 3454 llvm::CallSite callSite(user); 3455 if (!callSite) continue; 3456 if (!callSite.isCallee(&*use)) continue; 3457 3458 // If the return types don't match exactly, then we can't 3459 // transform this call unless it's dead. 3460 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3461 continue; 3462 3463 // Get the call site's attribute list. 3464 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3465 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3466 3467 // If the function was passed too few arguments, don't transform. 3468 unsigned newNumArgs = newFn->arg_size(); 3469 if (callSite.arg_size() < newNumArgs) continue; 3470 3471 // If extra arguments were passed, we silently drop them. 3472 // If any of the types mismatch, we don't transform. 3473 unsigned argNo = 0; 3474 bool dontTransform = false; 3475 for (llvm::Argument &A : newFn->args()) { 3476 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3477 dontTransform = true; 3478 break; 3479 } 3480 3481 // Add any parameter attributes. 3482 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3483 argNo++; 3484 } 3485 if (dontTransform) 3486 continue; 3487 3488 // Okay, we can transform this. Create the new call instruction and copy 3489 // over the required information. 3490 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3491 3492 // Copy over any operand bundles. 3493 callSite.getOperandBundlesAsDefs(newBundles); 3494 3495 llvm::CallSite newCall; 3496 if (callSite.isCall()) { 3497 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3498 callSite.getInstruction()); 3499 } else { 3500 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3501 newCall = llvm::InvokeInst::Create(newFn, 3502 oldInvoke->getNormalDest(), 3503 oldInvoke->getUnwindDest(), 3504 newArgs, newBundles, "", 3505 callSite.getInstruction()); 3506 } 3507 newArgs.clear(); // for the next iteration 3508 3509 if (!newCall->getType()->isVoidTy()) 3510 newCall->takeName(callSite.getInstruction()); 3511 newCall.setAttributes(llvm::AttributeList::get( 3512 newFn->getContext(), oldAttrs.getFnAttributes(), 3513 oldAttrs.getRetAttributes(), newArgAttrs)); 3514 newCall.setCallingConv(callSite.getCallingConv()); 3515 3516 // Finally, remove the old call, replacing any uses with the new one. 3517 if (!callSite->use_empty()) 3518 callSite->replaceAllUsesWith(newCall.getInstruction()); 3519 3520 // Copy debug location attached to CI. 3521 if (callSite->getDebugLoc()) 3522 newCall->setDebugLoc(callSite->getDebugLoc()); 3523 3524 callSite->eraseFromParent(); 3525 } 3526 } 3527 3528 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3529 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3530 /// existing call uses of the old function in the module, this adjusts them to 3531 /// call the new function directly. 3532 /// 3533 /// This is not just a cleanup: the always_inline pass requires direct calls to 3534 /// functions to be able to inline them. If there is a bitcast in the way, it 3535 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3536 /// run at -O0. 3537 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3538 llvm::Function *NewFn) { 3539 // If we're redefining a global as a function, don't transform it. 3540 if (!isa<llvm::Function>(Old)) return; 3541 3542 replaceUsesOfNonProtoConstant(Old, NewFn); 3543 } 3544 3545 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3546 auto DK = VD->isThisDeclarationADefinition(); 3547 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3548 return; 3549 3550 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3551 // If we have a definition, this might be a deferred decl. If the 3552 // instantiation is explicit, make sure we emit it at the end. 3553 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3554 GetAddrOfGlobalVar(VD); 3555 3556 EmitTopLevelDecl(VD); 3557 } 3558 3559 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3560 llvm::GlobalValue *GV) { 3561 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3562 3563 // Compute the function info and LLVM type. 3564 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3565 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3566 3567 // Get or create the prototype for the function. 3568 if (!GV || (GV->getType()->getElementType() != Ty)) 3569 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3570 /*DontDefer=*/true, 3571 ForDefinition)); 3572 3573 // Already emitted. 3574 if (!GV->isDeclaration()) 3575 return; 3576 3577 // We need to set linkage and visibility on the function before 3578 // generating code for it because various parts of IR generation 3579 // want to propagate this information down (e.g. to local static 3580 // declarations). 3581 auto *Fn = cast<llvm::Function>(GV); 3582 setFunctionLinkage(GD, Fn); 3583 setFunctionDLLStorageClass(GD, Fn); 3584 3585 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3586 setGVProperties(Fn, D); 3587 3588 MaybeHandleStaticInExternC(D, Fn); 3589 3590 maybeSetTrivialComdat(*D, *Fn); 3591 3592 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3593 3594 setFunctionDefinitionAttributes(D, Fn); 3595 SetLLVMFunctionAttributesForDefinition(D, Fn); 3596 3597 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3598 AddGlobalCtor(Fn, CA->getPriority()); 3599 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3600 AddGlobalDtor(Fn, DA->getPriority()); 3601 if (D->hasAttr<AnnotateAttr>()) 3602 AddGlobalAnnotations(D, Fn); 3603 } 3604 3605 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3606 const auto *D = cast<ValueDecl>(GD.getDecl()); 3607 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3608 assert(AA && "Not an alias?"); 3609 3610 StringRef MangledName = getMangledName(GD); 3611 3612 if (AA->getAliasee() == MangledName) { 3613 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3614 return; 3615 } 3616 3617 // If there is a definition in the module, then it wins over the alias. 3618 // This is dubious, but allow it to be safe. Just ignore the alias. 3619 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3620 if (Entry && !Entry->isDeclaration()) 3621 return; 3622 3623 Aliases.push_back(GD); 3624 3625 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3626 3627 // Create a reference to the named value. This ensures that it is emitted 3628 // if a deferred decl. 3629 llvm::Constant *Aliasee; 3630 if (isa<llvm::FunctionType>(DeclTy)) 3631 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3632 /*ForVTable=*/false); 3633 else 3634 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3635 llvm::PointerType::getUnqual(DeclTy), 3636 /*D=*/nullptr); 3637 3638 // Create the new alias itself, but don't set a name yet. 3639 auto *GA = llvm::GlobalAlias::create( 3640 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3641 3642 if (Entry) { 3643 if (GA->getAliasee() == Entry) { 3644 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3645 return; 3646 } 3647 3648 assert(Entry->isDeclaration()); 3649 3650 // If there is a declaration in the module, then we had an extern followed 3651 // by the alias, as in: 3652 // extern int test6(); 3653 // ... 3654 // int test6() __attribute__((alias("test7"))); 3655 // 3656 // Remove it and replace uses of it with the alias. 3657 GA->takeName(Entry); 3658 3659 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3660 Entry->getType())); 3661 Entry->eraseFromParent(); 3662 } else { 3663 GA->setName(MangledName); 3664 } 3665 3666 // Set attributes which are particular to an alias; this is a 3667 // specialization of the attributes which may be set on a global 3668 // variable/function. 3669 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3670 D->isWeakImported()) { 3671 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3672 } 3673 3674 if (const auto *VD = dyn_cast<VarDecl>(D)) 3675 if (VD->getTLSKind()) 3676 setTLSMode(GA, *VD); 3677 3678 setAliasAttributes(D, GA); 3679 } 3680 3681 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3682 const auto *D = cast<ValueDecl>(GD.getDecl()); 3683 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3684 assert(IFA && "Not an ifunc?"); 3685 3686 StringRef MangledName = getMangledName(GD); 3687 3688 if (IFA->getResolver() == MangledName) { 3689 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3690 return; 3691 } 3692 3693 // Report an error if some definition overrides ifunc. 3694 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3695 if (Entry && !Entry->isDeclaration()) { 3696 GlobalDecl OtherGD; 3697 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3698 DiagnosedConflictingDefinitions.insert(GD).second) { 3699 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3700 Diags.Report(OtherGD.getDecl()->getLocation(), 3701 diag::note_previous_definition); 3702 } 3703 return; 3704 } 3705 3706 Aliases.push_back(GD); 3707 3708 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3709 llvm::Constant *Resolver = 3710 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3711 /*ForVTable=*/false); 3712 llvm::GlobalIFunc *GIF = 3713 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3714 "", Resolver, &getModule()); 3715 if (Entry) { 3716 if (GIF->getResolver() == Entry) { 3717 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3718 return; 3719 } 3720 assert(Entry->isDeclaration()); 3721 3722 // If there is a declaration in the module, then we had an extern followed 3723 // by the ifunc, as in: 3724 // extern int test(); 3725 // ... 3726 // int test() __attribute__((ifunc("resolver"))); 3727 // 3728 // Remove it and replace uses of it with the ifunc. 3729 GIF->takeName(Entry); 3730 3731 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3732 Entry->getType())); 3733 Entry->eraseFromParent(); 3734 } else 3735 GIF->setName(MangledName); 3736 3737 SetCommonAttributes(D, GIF); 3738 } 3739 3740 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3741 ArrayRef<llvm::Type*> Tys) { 3742 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3743 Tys); 3744 } 3745 3746 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3747 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3748 const StringLiteral *Literal, bool TargetIsLSB, 3749 bool &IsUTF16, unsigned &StringLength) { 3750 StringRef String = Literal->getString(); 3751 unsigned NumBytes = String.size(); 3752 3753 // Check for simple case. 3754 if (!Literal->containsNonAsciiOrNull()) { 3755 StringLength = NumBytes; 3756 return *Map.insert(std::make_pair(String, nullptr)).first; 3757 } 3758 3759 // Otherwise, convert the UTF8 literals into a string of shorts. 3760 IsUTF16 = true; 3761 3762 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3763 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3764 llvm::UTF16 *ToPtr = &ToBuf[0]; 3765 3766 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3767 ToPtr + NumBytes, llvm::strictConversion); 3768 3769 // ConvertUTF8toUTF16 returns the length in ToPtr. 3770 StringLength = ToPtr - &ToBuf[0]; 3771 3772 // Add an explicit null. 3773 *ToPtr = 0; 3774 return *Map.insert(std::make_pair( 3775 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3776 (StringLength + 1) * 2), 3777 nullptr)).first; 3778 } 3779 3780 ConstantAddress 3781 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3782 unsigned StringLength = 0; 3783 bool isUTF16 = false; 3784 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3785 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3786 getDataLayout().isLittleEndian(), isUTF16, 3787 StringLength); 3788 3789 if (auto *C = Entry.second) 3790 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3791 3792 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3793 llvm::Constant *Zeros[] = { Zero, Zero }; 3794 3795 // If we don't already have it, get __CFConstantStringClassReference. 3796 if (!CFConstantStringClassRef) { 3797 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3798 Ty = llvm::ArrayType::get(Ty, 0); 3799 llvm::Constant *GV = 3800 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3801 3802 if (getTriple().isOSBinFormatCOFF()) { 3803 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3804 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3805 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3806 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3807 3808 const VarDecl *VD = nullptr; 3809 for (const auto &Result : DC->lookup(&II)) 3810 if ((VD = dyn_cast<VarDecl>(Result))) 3811 break; 3812 3813 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3814 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3815 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3816 } else { 3817 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3818 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3819 } 3820 } 3821 3822 // Decay array -> ptr 3823 CFConstantStringClassRef = 3824 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3825 } 3826 3827 QualType CFTy = getContext().getCFConstantStringType(); 3828 3829 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3830 3831 ConstantInitBuilder Builder(*this); 3832 auto Fields = Builder.beginStruct(STy); 3833 3834 // Class pointer. 3835 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3836 3837 // Flags. 3838 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3839 3840 // String pointer. 3841 llvm::Constant *C = nullptr; 3842 if (isUTF16) { 3843 auto Arr = llvm::makeArrayRef( 3844 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3845 Entry.first().size() / 2); 3846 C = llvm::ConstantDataArray::get(VMContext, Arr); 3847 } else { 3848 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3849 } 3850 3851 // Note: -fwritable-strings doesn't make the backing store strings of 3852 // CFStrings writable. (See <rdar://problem/10657500>) 3853 auto *GV = 3854 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3855 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3856 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3857 // Don't enforce the target's minimum global alignment, since the only use 3858 // of the string is via this class initializer. 3859 CharUnits Align = isUTF16 3860 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3861 : getContext().getTypeAlignInChars(getContext().CharTy); 3862 GV->setAlignment(Align.getQuantity()); 3863 3864 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3865 // Without it LLVM can merge the string with a non unnamed_addr one during 3866 // LTO. Doing that changes the section it ends in, which surprises ld64. 3867 if (getTriple().isOSBinFormatMachO()) 3868 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3869 : "__TEXT,__cstring,cstring_literals"); 3870 3871 // String. 3872 llvm::Constant *Str = 3873 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3874 3875 if (isUTF16) 3876 // Cast the UTF16 string to the correct type. 3877 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3878 Fields.add(Str); 3879 3880 // String length. 3881 auto Ty = getTypes().ConvertType(getContext().LongTy); 3882 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3883 3884 CharUnits Alignment = getPointerAlign(); 3885 3886 // The struct. 3887 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3888 /*isConstant=*/false, 3889 llvm::GlobalVariable::PrivateLinkage); 3890 switch (getTriple().getObjectFormat()) { 3891 case llvm::Triple::UnknownObjectFormat: 3892 llvm_unreachable("unknown file format"); 3893 case llvm::Triple::COFF: 3894 case llvm::Triple::ELF: 3895 case llvm::Triple::Wasm: 3896 GV->setSection("cfstring"); 3897 break; 3898 case llvm::Triple::MachO: 3899 GV->setSection("__DATA,__cfstring"); 3900 break; 3901 } 3902 Entry.second = GV; 3903 3904 return ConstantAddress(GV, Alignment); 3905 } 3906 3907 bool CodeGenModule::getExpressionLocationsEnabled() const { 3908 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3909 } 3910 3911 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3912 if (ObjCFastEnumerationStateType.isNull()) { 3913 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3914 D->startDefinition(); 3915 3916 QualType FieldTypes[] = { 3917 Context.UnsignedLongTy, 3918 Context.getPointerType(Context.getObjCIdType()), 3919 Context.getPointerType(Context.UnsignedLongTy), 3920 Context.getConstantArrayType(Context.UnsignedLongTy, 3921 llvm::APInt(32, 5), ArrayType::Normal, 0) 3922 }; 3923 3924 for (size_t i = 0; i < 4; ++i) { 3925 FieldDecl *Field = FieldDecl::Create(Context, 3926 D, 3927 SourceLocation(), 3928 SourceLocation(), nullptr, 3929 FieldTypes[i], /*TInfo=*/nullptr, 3930 /*BitWidth=*/nullptr, 3931 /*Mutable=*/false, 3932 ICIS_NoInit); 3933 Field->setAccess(AS_public); 3934 D->addDecl(Field); 3935 } 3936 3937 D->completeDefinition(); 3938 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3939 } 3940 3941 return ObjCFastEnumerationStateType; 3942 } 3943 3944 llvm::Constant * 3945 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3946 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3947 3948 // Don't emit it as the address of the string, emit the string data itself 3949 // as an inline array. 3950 if (E->getCharByteWidth() == 1) { 3951 SmallString<64> Str(E->getString()); 3952 3953 // Resize the string to the right size, which is indicated by its type. 3954 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3955 Str.resize(CAT->getSize().getZExtValue()); 3956 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3957 } 3958 3959 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3960 llvm::Type *ElemTy = AType->getElementType(); 3961 unsigned NumElements = AType->getNumElements(); 3962 3963 // Wide strings have either 2-byte or 4-byte elements. 3964 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3965 SmallVector<uint16_t, 32> Elements; 3966 Elements.reserve(NumElements); 3967 3968 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3969 Elements.push_back(E->getCodeUnit(i)); 3970 Elements.resize(NumElements); 3971 return llvm::ConstantDataArray::get(VMContext, Elements); 3972 } 3973 3974 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3975 SmallVector<uint32_t, 32> Elements; 3976 Elements.reserve(NumElements); 3977 3978 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3979 Elements.push_back(E->getCodeUnit(i)); 3980 Elements.resize(NumElements); 3981 return llvm::ConstantDataArray::get(VMContext, Elements); 3982 } 3983 3984 static llvm::GlobalVariable * 3985 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3986 CodeGenModule &CGM, StringRef GlobalName, 3987 CharUnits Alignment) { 3988 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3989 unsigned AddrSpace = 0; 3990 if (CGM.getLangOpts().OpenCL) 3991 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3992 3993 llvm::Module &M = CGM.getModule(); 3994 // Create a global variable for this string 3995 auto *GV = new llvm::GlobalVariable( 3996 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3997 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3998 GV->setAlignment(Alignment.getQuantity()); 3999 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4000 if (GV->isWeakForLinker()) { 4001 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4002 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4003 } 4004 4005 return GV; 4006 } 4007 4008 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4009 /// constant array for the given string literal. 4010 ConstantAddress 4011 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4012 StringRef Name) { 4013 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4014 4015 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4016 llvm::GlobalVariable **Entry = nullptr; 4017 if (!LangOpts.WritableStrings) { 4018 Entry = &ConstantStringMap[C]; 4019 if (auto GV = *Entry) { 4020 if (Alignment.getQuantity() > GV->getAlignment()) 4021 GV->setAlignment(Alignment.getQuantity()); 4022 return ConstantAddress(GV, Alignment); 4023 } 4024 } 4025 4026 SmallString<256> MangledNameBuffer; 4027 StringRef GlobalVariableName; 4028 llvm::GlobalValue::LinkageTypes LT; 4029 4030 // Mangle the string literal if the ABI allows for it. However, we cannot 4031 // do this if we are compiling with ASan or -fwritable-strings because they 4032 // rely on strings having normal linkage. 4033 if (!LangOpts.WritableStrings && 4034 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4035 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4036 llvm::raw_svector_ostream Out(MangledNameBuffer); 4037 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4038 4039 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4040 GlobalVariableName = MangledNameBuffer; 4041 } else { 4042 LT = llvm::GlobalValue::PrivateLinkage; 4043 GlobalVariableName = Name; 4044 } 4045 4046 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4047 if (Entry) 4048 *Entry = GV; 4049 4050 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4051 QualType()); 4052 return ConstantAddress(GV, Alignment); 4053 } 4054 4055 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4056 /// array for the given ObjCEncodeExpr node. 4057 ConstantAddress 4058 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4059 std::string Str; 4060 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4061 4062 return GetAddrOfConstantCString(Str); 4063 } 4064 4065 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4066 /// the literal and a terminating '\0' character. 4067 /// The result has pointer to array type. 4068 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4069 const std::string &Str, const char *GlobalName) { 4070 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4071 CharUnits Alignment = 4072 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4073 4074 llvm::Constant *C = 4075 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4076 4077 // Don't share any string literals if strings aren't constant. 4078 llvm::GlobalVariable **Entry = nullptr; 4079 if (!LangOpts.WritableStrings) { 4080 Entry = &ConstantStringMap[C]; 4081 if (auto GV = *Entry) { 4082 if (Alignment.getQuantity() > GV->getAlignment()) 4083 GV->setAlignment(Alignment.getQuantity()); 4084 return ConstantAddress(GV, Alignment); 4085 } 4086 } 4087 4088 // Get the default prefix if a name wasn't specified. 4089 if (!GlobalName) 4090 GlobalName = ".str"; 4091 // Create a global variable for this. 4092 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4093 GlobalName, Alignment); 4094 if (Entry) 4095 *Entry = GV; 4096 return ConstantAddress(GV, Alignment); 4097 } 4098 4099 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4100 const MaterializeTemporaryExpr *E, const Expr *Init) { 4101 assert((E->getStorageDuration() == SD_Static || 4102 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4103 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4104 4105 // If we're not materializing a subobject of the temporary, keep the 4106 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4107 QualType MaterializedType = Init->getType(); 4108 if (Init == E->GetTemporaryExpr()) 4109 MaterializedType = E->getType(); 4110 4111 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4112 4113 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4114 return ConstantAddress(Slot, Align); 4115 4116 // FIXME: If an externally-visible declaration extends multiple temporaries, 4117 // we need to give each temporary the same name in every translation unit (and 4118 // we also need to make the temporaries externally-visible). 4119 SmallString<256> Name; 4120 llvm::raw_svector_ostream Out(Name); 4121 getCXXABI().getMangleContext().mangleReferenceTemporary( 4122 VD, E->getManglingNumber(), Out); 4123 4124 APValue *Value = nullptr; 4125 if (E->getStorageDuration() == SD_Static) { 4126 // We might have a cached constant initializer for this temporary. Note 4127 // that this might have a different value from the value computed by 4128 // evaluating the initializer if the surrounding constant expression 4129 // modifies the temporary. 4130 Value = getContext().getMaterializedTemporaryValue(E, false); 4131 if (Value && Value->isUninit()) 4132 Value = nullptr; 4133 } 4134 4135 // Try evaluating it now, it might have a constant initializer. 4136 Expr::EvalResult EvalResult; 4137 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4138 !EvalResult.hasSideEffects()) 4139 Value = &EvalResult.Val; 4140 4141 LangAS AddrSpace = 4142 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4143 4144 Optional<ConstantEmitter> emitter; 4145 llvm::Constant *InitialValue = nullptr; 4146 bool Constant = false; 4147 llvm::Type *Type; 4148 if (Value) { 4149 // The temporary has a constant initializer, use it. 4150 emitter.emplace(*this); 4151 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4152 MaterializedType); 4153 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4154 Type = InitialValue->getType(); 4155 } else { 4156 // No initializer, the initialization will be provided when we 4157 // initialize the declaration which performed lifetime extension. 4158 Type = getTypes().ConvertTypeForMem(MaterializedType); 4159 } 4160 4161 // Create a global variable for this lifetime-extended temporary. 4162 llvm::GlobalValue::LinkageTypes Linkage = 4163 getLLVMLinkageVarDefinition(VD, Constant); 4164 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4165 const VarDecl *InitVD; 4166 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4167 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4168 // Temporaries defined inside a class get linkonce_odr linkage because the 4169 // class can be defined in multipe translation units. 4170 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4171 } else { 4172 // There is no need for this temporary to have external linkage if the 4173 // VarDecl has external linkage. 4174 Linkage = llvm::GlobalVariable::InternalLinkage; 4175 } 4176 } 4177 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4178 auto *GV = new llvm::GlobalVariable( 4179 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4180 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4181 if (emitter) emitter->finalize(GV); 4182 setGVProperties(GV, VD); 4183 GV->setAlignment(Align.getQuantity()); 4184 if (supportsCOMDAT() && GV->isWeakForLinker()) 4185 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4186 if (VD->getTLSKind()) 4187 setTLSMode(GV, *VD); 4188 llvm::Constant *CV = GV; 4189 if (AddrSpace != LangAS::Default) 4190 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4191 *this, GV, AddrSpace, LangAS::Default, 4192 Type->getPointerTo( 4193 getContext().getTargetAddressSpace(LangAS::Default))); 4194 MaterializedGlobalTemporaryMap[E] = CV; 4195 return ConstantAddress(CV, Align); 4196 } 4197 4198 /// EmitObjCPropertyImplementations - Emit information for synthesized 4199 /// properties for an implementation. 4200 void CodeGenModule::EmitObjCPropertyImplementations(const 4201 ObjCImplementationDecl *D) { 4202 for (const auto *PID : D->property_impls()) { 4203 // Dynamic is just for type-checking. 4204 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4205 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4206 4207 // Determine which methods need to be implemented, some may have 4208 // been overridden. Note that ::isPropertyAccessor is not the method 4209 // we want, that just indicates if the decl came from a 4210 // property. What we want to know is if the method is defined in 4211 // this implementation. 4212 if (!D->getInstanceMethod(PD->getGetterName())) 4213 CodeGenFunction(*this).GenerateObjCGetter( 4214 const_cast<ObjCImplementationDecl *>(D), PID); 4215 if (!PD->isReadOnly() && 4216 !D->getInstanceMethod(PD->getSetterName())) 4217 CodeGenFunction(*this).GenerateObjCSetter( 4218 const_cast<ObjCImplementationDecl *>(D), PID); 4219 } 4220 } 4221 } 4222 4223 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4224 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4225 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4226 ivar; ivar = ivar->getNextIvar()) 4227 if (ivar->getType().isDestructedType()) 4228 return true; 4229 4230 return false; 4231 } 4232 4233 static bool AllTrivialInitializers(CodeGenModule &CGM, 4234 ObjCImplementationDecl *D) { 4235 CodeGenFunction CGF(CGM); 4236 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4237 E = D->init_end(); B != E; ++B) { 4238 CXXCtorInitializer *CtorInitExp = *B; 4239 Expr *Init = CtorInitExp->getInit(); 4240 if (!CGF.isTrivialInitializer(Init)) 4241 return false; 4242 } 4243 return true; 4244 } 4245 4246 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4247 /// for an implementation. 4248 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4249 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4250 if (needsDestructMethod(D)) { 4251 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4252 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4253 ObjCMethodDecl *DTORMethod = 4254 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4255 cxxSelector, getContext().VoidTy, nullptr, D, 4256 /*isInstance=*/true, /*isVariadic=*/false, 4257 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4258 /*isDefined=*/false, ObjCMethodDecl::Required); 4259 D->addInstanceMethod(DTORMethod); 4260 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4261 D->setHasDestructors(true); 4262 } 4263 4264 // If the implementation doesn't have any ivar initializers, we don't need 4265 // a .cxx_construct. 4266 if (D->getNumIvarInitializers() == 0 || 4267 AllTrivialInitializers(*this, D)) 4268 return; 4269 4270 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4271 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4272 // The constructor returns 'self'. 4273 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4274 D->getLocation(), 4275 D->getLocation(), 4276 cxxSelector, 4277 getContext().getObjCIdType(), 4278 nullptr, D, /*isInstance=*/true, 4279 /*isVariadic=*/false, 4280 /*isPropertyAccessor=*/true, 4281 /*isImplicitlyDeclared=*/true, 4282 /*isDefined=*/false, 4283 ObjCMethodDecl::Required); 4284 D->addInstanceMethod(CTORMethod); 4285 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4286 D->setHasNonZeroConstructors(true); 4287 } 4288 4289 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4290 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4291 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4292 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4293 ErrorUnsupported(LSD, "linkage spec"); 4294 return; 4295 } 4296 4297 EmitDeclContext(LSD); 4298 } 4299 4300 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4301 for (auto *I : DC->decls()) { 4302 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4303 // are themselves considered "top-level", so EmitTopLevelDecl on an 4304 // ObjCImplDecl does not recursively visit them. We need to do that in 4305 // case they're nested inside another construct (LinkageSpecDecl / 4306 // ExportDecl) that does stop them from being considered "top-level". 4307 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4308 for (auto *M : OID->methods()) 4309 EmitTopLevelDecl(M); 4310 } 4311 4312 EmitTopLevelDecl(I); 4313 } 4314 } 4315 4316 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4317 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4318 // Ignore dependent declarations. 4319 if (D->isTemplated()) 4320 return; 4321 4322 switch (D->getKind()) { 4323 case Decl::CXXConversion: 4324 case Decl::CXXMethod: 4325 case Decl::Function: 4326 EmitGlobal(cast<FunctionDecl>(D)); 4327 // Always provide some coverage mapping 4328 // even for the functions that aren't emitted. 4329 AddDeferredUnusedCoverageMapping(D); 4330 break; 4331 4332 case Decl::CXXDeductionGuide: 4333 // Function-like, but does not result in code emission. 4334 break; 4335 4336 case Decl::Var: 4337 case Decl::Decomposition: 4338 case Decl::VarTemplateSpecialization: 4339 EmitGlobal(cast<VarDecl>(D)); 4340 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4341 for (auto *B : DD->bindings()) 4342 if (auto *HD = B->getHoldingVar()) 4343 EmitGlobal(HD); 4344 break; 4345 4346 // Indirect fields from global anonymous structs and unions can be 4347 // ignored; only the actual variable requires IR gen support. 4348 case Decl::IndirectField: 4349 break; 4350 4351 // C++ Decls 4352 case Decl::Namespace: 4353 EmitDeclContext(cast<NamespaceDecl>(D)); 4354 break; 4355 case Decl::ClassTemplateSpecialization: { 4356 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4357 if (DebugInfo && 4358 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4359 Spec->hasDefinition()) 4360 DebugInfo->completeTemplateDefinition(*Spec); 4361 } LLVM_FALLTHROUGH; 4362 case Decl::CXXRecord: 4363 if (DebugInfo) { 4364 if (auto *ES = D->getASTContext().getExternalSource()) 4365 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4366 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4367 } 4368 // Emit any static data members, they may be definitions. 4369 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4370 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4371 EmitTopLevelDecl(I); 4372 break; 4373 // No code generation needed. 4374 case Decl::UsingShadow: 4375 case Decl::ClassTemplate: 4376 case Decl::VarTemplate: 4377 case Decl::VarTemplatePartialSpecialization: 4378 case Decl::FunctionTemplate: 4379 case Decl::TypeAliasTemplate: 4380 case Decl::Block: 4381 case Decl::Empty: 4382 break; 4383 case Decl::Using: // using X; [C++] 4384 if (CGDebugInfo *DI = getModuleDebugInfo()) 4385 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4386 return; 4387 case Decl::NamespaceAlias: 4388 if (CGDebugInfo *DI = getModuleDebugInfo()) 4389 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4390 return; 4391 case Decl::UsingDirective: // using namespace X; [C++] 4392 if (CGDebugInfo *DI = getModuleDebugInfo()) 4393 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4394 return; 4395 case Decl::CXXConstructor: 4396 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4397 break; 4398 case Decl::CXXDestructor: 4399 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4400 break; 4401 4402 case Decl::StaticAssert: 4403 // Nothing to do. 4404 break; 4405 4406 // Objective-C Decls 4407 4408 // Forward declarations, no (immediate) code generation. 4409 case Decl::ObjCInterface: 4410 case Decl::ObjCCategory: 4411 break; 4412 4413 case Decl::ObjCProtocol: { 4414 auto *Proto = cast<ObjCProtocolDecl>(D); 4415 if (Proto->isThisDeclarationADefinition()) 4416 ObjCRuntime->GenerateProtocol(Proto); 4417 break; 4418 } 4419 4420 case Decl::ObjCCategoryImpl: 4421 // Categories have properties but don't support synthesize so we 4422 // can ignore them here. 4423 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4424 break; 4425 4426 case Decl::ObjCImplementation: { 4427 auto *OMD = cast<ObjCImplementationDecl>(D); 4428 EmitObjCPropertyImplementations(OMD); 4429 EmitObjCIvarInitializations(OMD); 4430 ObjCRuntime->GenerateClass(OMD); 4431 // Emit global variable debug information. 4432 if (CGDebugInfo *DI = getModuleDebugInfo()) 4433 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4434 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4435 OMD->getClassInterface()), OMD->getLocation()); 4436 break; 4437 } 4438 case Decl::ObjCMethod: { 4439 auto *OMD = cast<ObjCMethodDecl>(D); 4440 // If this is not a prototype, emit the body. 4441 if (OMD->getBody()) 4442 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4443 break; 4444 } 4445 case Decl::ObjCCompatibleAlias: 4446 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4447 break; 4448 4449 case Decl::PragmaComment: { 4450 const auto *PCD = cast<PragmaCommentDecl>(D); 4451 switch (PCD->getCommentKind()) { 4452 case PCK_Unknown: 4453 llvm_unreachable("unexpected pragma comment kind"); 4454 case PCK_Linker: 4455 AppendLinkerOptions(PCD->getArg()); 4456 break; 4457 case PCK_Lib: 4458 if (getTarget().getTriple().isOSBinFormatELF() && 4459 !getTarget().getTriple().isPS4()) 4460 AddELFLibDirective(PCD->getArg()); 4461 else 4462 AddDependentLib(PCD->getArg()); 4463 break; 4464 case PCK_Compiler: 4465 case PCK_ExeStr: 4466 case PCK_User: 4467 break; // We ignore all of these. 4468 } 4469 break; 4470 } 4471 4472 case Decl::PragmaDetectMismatch: { 4473 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4474 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4475 break; 4476 } 4477 4478 case Decl::LinkageSpec: 4479 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4480 break; 4481 4482 case Decl::FileScopeAsm: { 4483 // File-scope asm is ignored during device-side CUDA compilation. 4484 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4485 break; 4486 // File-scope asm is ignored during device-side OpenMP compilation. 4487 if (LangOpts.OpenMPIsDevice) 4488 break; 4489 auto *AD = cast<FileScopeAsmDecl>(D); 4490 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4491 break; 4492 } 4493 4494 case Decl::Import: { 4495 auto *Import = cast<ImportDecl>(D); 4496 4497 // If we've already imported this module, we're done. 4498 if (!ImportedModules.insert(Import->getImportedModule())) 4499 break; 4500 4501 // Emit debug information for direct imports. 4502 if (!Import->getImportedOwningModule()) { 4503 if (CGDebugInfo *DI = getModuleDebugInfo()) 4504 DI->EmitImportDecl(*Import); 4505 } 4506 4507 // Find all of the submodules and emit the module initializers. 4508 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4509 SmallVector<clang::Module *, 16> Stack; 4510 Visited.insert(Import->getImportedModule()); 4511 Stack.push_back(Import->getImportedModule()); 4512 4513 while (!Stack.empty()) { 4514 clang::Module *Mod = Stack.pop_back_val(); 4515 if (!EmittedModuleInitializers.insert(Mod).second) 4516 continue; 4517 4518 for (auto *D : Context.getModuleInitializers(Mod)) 4519 EmitTopLevelDecl(D); 4520 4521 // Visit the submodules of this module. 4522 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4523 SubEnd = Mod->submodule_end(); 4524 Sub != SubEnd; ++Sub) { 4525 // Skip explicit children; they need to be explicitly imported to emit 4526 // the initializers. 4527 if ((*Sub)->IsExplicit) 4528 continue; 4529 4530 if (Visited.insert(*Sub).second) 4531 Stack.push_back(*Sub); 4532 } 4533 } 4534 break; 4535 } 4536 4537 case Decl::Export: 4538 EmitDeclContext(cast<ExportDecl>(D)); 4539 break; 4540 4541 case Decl::OMPThreadPrivate: 4542 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4543 break; 4544 4545 case Decl::OMPDeclareReduction: 4546 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4547 break; 4548 4549 default: 4550 // Make sure we handled everything we should, every other kind is a 4551 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4552 // function. Need to recode Decl::Kind to do that easily. 4553 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4554 break; 4555 } 4556 } 4557 4558 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4559 // Do we need to generate coverage mapping? 4560 if (!CodeGenOpts.CoverageMapping) 4561 return; 4562 switch (D->getKind()) { 4563 case Decl::CXXConversion: 4564 case Decl::CXXMethod: 4565 case Decl::Function: 4566 case Decl::ObjCMethod: 4567 case Decl::CXXConstructor: 4568 case Decl::CXXDestructor: { 4569 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4570 return; 4571 SourceManager &SM = getContext().getSourceManager(); 4572 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4573 return; 4574 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4575 if (I == DeferredEmptyCoverageMappingDecls.end()) 4576 DeferredEmptyCoverageMappingDecls[D] = true; 4577 break; 4578 } 4579 default: 4580 break; 4581 }; 4582 } 4583 4584 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4585 // Do we need to generate coverage mapping? 4586 if (!CodeGenOpts.CoverageMapping) 4587 return; 4588 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4589 if (Fn->isTemplateInstantiation()) 4590 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4591 } 4592 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4593 if (I == DeferredEmptyCoverageMappingDecls.end()) 4594 DeferredEmptyCoverageMappingDecls[D] = false; 4595 else 4596 I->second = false; 4597 } 4598 4599 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4600 // We call takeVector() here to avoid use-after-free. 4601 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4602 // we deserialize function bodies to emit coverage info for them, and that 4603 // deserializes more declarations. How should we handle that case? 4604 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4605 if (!Entry.second) 4606 continue; 4607 const Decl *D = Entry.first; 4608 switch (D->getKind()) { 4609 case Decl::CXXConversion: 4610 case Decl::CXXMethod: 4611 case Decl::Function: 4612 case Decl::ObjCMethod: { 4613 CodeGenPGO PGO(*this); 4614 GlobalDecl GD(cast<FunctionDecl>(D)); 4615 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4616 getFunctionLinkage(GD)); 4617 break; 4618 } 4619 case Decl::CXXConstructor: { 4620 CodeGenPGO PGO(*this); 4621 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4622 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4623 getFunctionLinkage(GD)); 4624 break; 4625 } 4626 case Decl::CXXDestructor: { 4627 CodeGenPGO PGO(*this); 4628 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4629 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4630 getFunctionLinkage(GD)); 4631 break; 4632 } 4633 default: 4634 break; 4635 }; 4636 } 4637 } 4638 4639 /// Turns the given pointer into a constant. 4640 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4641 const void *Ptr) { 4642 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4643 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4644 return llvm::ConstantInt::get(i64, PtrInt); 4645 } 4646 4647 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4648 llvm::NamedMDNode *&GlobalMetadata, 4649 GlobalDecl D, 4650 llvm::GlobalValue *Addr) { 4651 if (!GlobalMetadata) 4652 GlobalMetadata = 4653 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4654 4655 // TODO: should we report variant information for ctors/dtors? 4656 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4657 llvm::ConstantAsMetadata::get(GetPointerConstant( 4658 CGM.getLLVMContext(), D.getDecl()))}; 4659 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4660 } 4661 4662 /// For each function which is declared within an extern "C" region and marked 4663 /// as 'used', but has internal linkage, create an alias from the unmangled 4664 /// name to the mangled name if possible. People expect to be able to refer 4665 /// to such functions with an unmangled name from inline assembly within the 4666 /// same translation unit. 4667 void CodeGenModule::EmitStaticExternCAliases() { 4668 // Don't do anything if we're generating CUDA device code -- the NVPTX 4669 // assembly target doesn't support aliases. 4670 if (Context.getTargetInfo().getTriple().isNVPTX()) 4671 return; 4672 for (auto &I : StaticExternCValues) { 4673 IdentifierInfo *Name = I.first; 4674 llvm::GlobalValue *Val = I.second; 4675 if (Val && !getModule().getNamedValue(Name->getName())) 4676 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4677 } 4678 } 4679 4680 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4681 GlobalDecl &Result) const { 4682 auto Res = Manglings.find(MangledName); 4683 if (Res == Manglings.end()) 4684 return false; 4685 Result = Res->getValue(); 4686 return true; 4687 } 4688 4689 /// Emits metadata nodes associating all the global values in the 4690 /// current module with the Decls they came from. This is useful for 4691 /// projects using IR gen as a subroutine. 4692 /// 4693 /// Since there's currently no way to associate an MDNode directly 4694 /// with an llvm::GlobalValue, we create a global named metadata 4695 /// with the name 'clang.global.decl.ptrs'. 4696 void CodeGenModule::EmitDeclMetadata() { 4697 llvm::NamedMDNode *GlobalMetadata = nullptr; 4698 4699 for (auto &I : MangledDeclNames) { 4700 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4701 // Some mangled names don't necessarily have an associated GlobalValue 4702 // in this module, e.g. if we mangled it for DebugInfo. 4703 if (Addr) 4704 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4705 } 4706 } 4707 4708 /// Emits metadata nodes for all the local variables in the current 4709 /// function. 4710 void CodeGenFunction::EmitDeclMetadata() { 4711 if (LocalDeclMap.empty()) return; 4712 4713 llvm::LLVMContext &Context = getLLVMContext(); 4714 4715 // Find the unique metadata ID for this name. 4716 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4717 4718 llvm::NamedMDNode *GlobalMetadata = nullptr; 4719 4720 for (auto &I : LocalDeclMap) { 4721 const Decl *D = I.first; 4722 llvm::Value *Addr = I.second.getPointer(); 4723 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4724 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4725 Alloca->setMetadata( 4726 DeclPtrKind, llvm::MDNode::get( 4727 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4728 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4729 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4730 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4731 } 4732 } 4733 } 4734 4735 void CodeGenModule::EmitVersionIdentMetadata() { 4736 llvm::NamedMDNode *IdentMetadata = 4737 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4738 std::string Version = getClangFullVersion(); 4739 llvm::LLVMContext &Ctx = TheModule.getContext(); 4740 4741 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4742 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4743 } 4744 4745 void CodeGenModule::EmitTargetMetadata() { 4746 // Warning, new MangledDeclNames may be appended within this loop. 4747 // We rely on MapVector insertions adding new elements to the end 4748 // of the container. 4749 // FIXME: Move this loop into the one target that needs it, and only 4750 // loop over those declarations for which we couldn't emit the target 4751 // metadata when we emitted the declaration. 4752 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4753 auto Val = *(MangledDeclNames.begin() + I); 4754 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4755 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4756 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4757 } 4758 } 4759 4760 void CodeGenModule::EmitCoverageFile() { 4761 if (getCodeGenOpts().CoverageDataFile.empty() && 4762 getCodeGenOpts().CoverageNotesFile.empty()) 4763 return; 4764 4765 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4766 if (!CUNode) 4767 return; 4768 4769 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4770 llvm::LLVMContext &Ctx = TheModule.getContext(); 4771 auto *CoverageDataFile = 4772 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4773 auto *CoverageNotesFile = 4774 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4775 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4776 llvm::MDNode *CU = CUNode->getOperand(i); 4777 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4778 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4779 } 4780 } 4781 4782 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4783 // Sema has checked that all uuid strings are of the form 4784 // "12345678-1234-1234-1234-1234567890ab". 4785 assert(Uuid.size() == 36); 4786 for (unsigned i = 0; i < 36; ++i) { 4787 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4788 else assert(isHexDigit(Uuid[i])); 4789 } 4790 4791 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4792 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4793 4794 llvm::Constant *Field3[8]; 4795 for (unsigned Idx = 0; Idx < 8; ++Idx) 4796 Field3[Idx] = llvm::ConstantInt::get( 4797 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4798 4799 llvm::Constant *Fields[4] = { 4800 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4801 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4802 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4803 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4804 }; 4805 4806 return llvm::ConstantStruct::getAnon(Fields); 4807 } 4808 4809 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4810 bool ForEH) { 4811 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4812 // FIXME: should we even be calling this method if RTTI is disabled 4813 // and it's not for EH? 4814 if (!ForEH && !getLangOpts().RTTI) 4815 return llvm::Constant::getNullValue(Int8PtrTy); 4816 4817 if (ForEH && Ty->isObjCObjectPointerType() && 4818 LangOpts.ObjCRuntime.isGNUFamily()) 4819 return ObjCRuntime->GetEHType(Ty); 4820 4821 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4822 } 4823 4824 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4825 // Do not emit threadprivates in simd-only mode. 4826 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4827 return; 4828 for (auto RefExpr : D->varlists()) { 4829 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4830 bool PerformInit = 4831 VD->getAnyInitializer() && 4832 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4833 /*ForRef=*/false); 4834 4835 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4836 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4837 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4838 CXXGlobalInits.push_back(InitFunction); 4839 } 4840 } 4841 4842 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4843 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4844 if (InternalId) 4845 return InternalId; 4846 4847 if (isExternallyVisible(T->getLinkage())) { 4848 std::string OutName; 4849 llvm::raw_string_ostream Out(OutName); 4850 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4851 4852 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4853 } else { 4854 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4855 llvm::ArrayRef<llvm::Metadata *>()); 4856 } 4857 4858 return InternalId; 4859 } 4860 4861 // Generalize pointer types to a void pointer with the qualifiers of the 4862 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4863 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4864 // 'void *'. 4865 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4866 if (!Ty->isPointerType()) 4867 return Ty; 4868 4869 return Ctx.getPointerType( 4870 QualType(Ctx.VoidTy).withCVRQualifiers( 4871 Ty->getPointeeType().getCVRQualifiers())); 4872 } 4873 4874 // Apply type generalization to a FunctionType's return and argument types 4875 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4876 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4877 SmallVector<QualType, 8> GeneralizedParams; 4878 for (auto &Param : FnType->param_types()) 4879 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4880 4881 return Ctx.getFunctionType( 4882 GeneralizeType(Ctx, FnType->getReturnType()), 4883 GeneralizedParams, FnType->getExtProtoInfo()); 4884 } 4885 4886 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4887 return Ctx.getFunctionNoProtoType( 4888 GeneralizeType(Ctx, FnType->getReturnType())); 4889 4890 llvm_unreachable("Encountered unknown FunctionType"); 4891 } 4892 4893 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4894 T = GeneralizeFunctionType(getContext(), T); 4895 4896 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4897 if (InternalId) 4898 return InternalId; 4899 4900 if (isExternallyVisible(T->getLinkage())) { 4901 std::string OutName; 4902 llvm::raw_string_ostream Out(OutName); 4903 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4904 Out << ".generalized"; 4905 4906 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4907 } else { 4908 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4909 llvm::ArrayRef<llvm::Metadata *>()); 4910 } 4911 4912 return InternalId; 4913 } 4914 4915 /// Returns whether this module needs the "all-vtables" type identifier. 4916 bool CodeGenModule::NeedAllVtablesTypeId() const { 4917 // Returns true if at least one of vtable-based CFI checkers is enabled and 4918 // is not in the trapping mode. 4919 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4920 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4921 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4922 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4923 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4924 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4925 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4926 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4927 } 4928 4929 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4930 CharUnits Offset, 4931 const CXXRecordDecl *RD) { 4932 llvm::Metadata *MD = 4933 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4934 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4935 4936 if (CodeGenOpts.SanitizeCfiCrossDso) 4937 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4938 VTable->addTypeMetadata(Offset.getQuantity(), 4939 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4940 4941 if (NeedAllVtablesTypeId()) { 4942 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4943 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4944 } 4945 } 4946 4947 // Fills in the supplied string map with the set of target features for the 4948 // passed in function. 4949 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4950 const FunctionDecl *FD) { 4951 StringRef TargetCPU = Target.getTargetOpts().CPU; 4952 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4953 // If we have a TargetAttr build up the feature map based on that. 4954 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4955 4956 ParsedAttr.Features.erase( 4957 llvm::remove_if(ParsedAttr.Features, 4958 [&](const std::string &Feat) { 4959 return !Target.isValidFeatureName( 4960 StringRef{Feat}.substr(1)); 4961 }), 4962 ParsedAttr.Features.end()); 4963 4964 // Make a copy of the features as passed on the command line into the 4965 // beginning of the additional features from the function to override. 4966 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4967 Target.getTargetOpts().FeaturesAsWritten.begin(), 4968 Target.getTargetOpts().FeaturesAsWritten.end()); 4969 4970 if (ParsedAttr.Architecture != "" && 4971 Target.isValidCPUName(ParsedAttr.Architecture)) 4972 TargetCPU = ParsedAttr.Architecture; 4973 4974 // Now populate the feature map, first with the TargetCPU which is either 4975 // the default or a new one from the target attribute string. Then we'll use 4976 // the passed in features (FeaturesAsWritten) along with the new ones from 4977 // the attribute. 4978 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4979 ParsedAttr.Features); 4980 } else { 4981 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4982 Target.getTargetOpts().Features); 4983 } 4984 } 4985 4986 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4987 if (!SanStats) 4988 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4989 4990 return *SanStats; 4991 } 4992 llvm::Value * 4993 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4994 CodeGenFunction &CGF) { 4995 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4996 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4997 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4998 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4999 "__translate_sampler_initializer"), 5000 {C}); 5001 } 5002