xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 80a1ee46d87b34f2bfabfc23e7226d615458bbec)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/CodeGen.h"
57 #include "llvm/Support/ConvertUTF.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/MD5.h"
60 
61 using namespace clang;
62 using namespace CodeGen;
63 
64 static llvm::cl::opt<bool> LimitedCoverage(
65     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
66     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
67     llvm::cl::init(false));
68 
69 static const char AnnotationSection[] = "llvm.metadata";
70 
71 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
72   switch (CGM.getTarget().getCXXABI().getKind()) {
73   case TargetCXXABI::GenericAArch64:
74   case TargetCXXABI::GenericARM:
75   case TargetCXXABI::iOS:
76   case TargetCXXABI::iOS64:
77   case TargetCXXABI::WatchOS:
78   case TargetCXXABI::GenericMIPS:
79   case TargetCXXABI::GenericItanium:
80   case TargetCXXABI::WebAssembly:
81     return CreateItaniumCXXABI(CGM);
82   case TargetCXXABI::Microsoft:
83     return CreateMicrosoftCXXABI(CGM);
84   }
85 
86   llvm_unreachable("invalid C++ ABI kind");
87 }
88 
89 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
90                              const PreprocessorOptions &PPO,
91                              const CodeGenOptions &CGO, llvm::Module &M,
92                              DiagnosticsEngine &diags,
93                              CoverageSourceInfo *CoverageInfo)
94     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
95       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
96       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
97       VMContext(M.getContext()), Types(*this), VTables(*this),
98       SanitizerMD(new SanitizerMetadata(*this)) {
99 
100   // Initialize the type cache.
101   llvm::LLVMContext &LLVMContext = M.getContext();
102   VoidTy = llvm::Type::getVoidTy(LLVMContext);
103   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
104   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
105   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
106   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
107   HalfTy = llvm::Type::getHalfTy(LLVMContext);
108   FloatTy = llvm::Type::getFloatTy(LLVMContext);
109   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
110   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
111   PointerAlignInBytes =
112     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
113   SizeSizeInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
115   IntAlignInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
117   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
118   IntPtrTy = llvm::IntegerType::get(LLVMContext,
119     C.getTargetInfo().getMaxPointerWidth());
120   Int8PtrTy = Int8Ty->getPointerTo(0);
121   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
122   AllocaInt8PtrTy = Int8Ty->getPointerTo(
123       M.getDataLayout().getAllocaAddrSpace());
124   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
125 
126   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
127 
128   if (LangOpts.ObjC)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324     }
325 
326     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
327     llvm::GlobalValue *AliaseeGV;
328     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
329       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
330     else
331       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
332 
333     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
334       StringRef AliasSection = SA->getName();
335       if (AliasSection != AliaseeGV->getSection())
336         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
337             << AliasSection << IsIFunc << IsIFunc;
338     }
339 
340     // We have to handle alias to weak aliases in here. LLVM itself disallows
341     // this since the object semantics would not match the IL one. For
342     // compatibility with gcc we implement it by just pointing the alias
343     // to its aliasee's aliasee. We also warn, since the user is probably
344     // expecting the link to be weak.
345     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
346       if (GA->isInterposable()) {
347         Diags.Report(Location, diag::warn_alias_to_weak_alias)
348             << GV->getName() << GA->getName() << IsIFunc;
349         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
350             GA->getIndirectSymbol(), Alias->getType());
351         Alias->setIndirectSymbol(Aliasee);
352       }
353     }
354   }
355   if (!Error)
356     return;
357 
358   for (const GlobalDecl &GD : Aliases) {
359     StringRef MangledName = getMangledName(GD);
360     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
361     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
362     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
363     Alias->eraseFromParent();
364   }
365 }
366 
367 void CodeGenModule::clear() {
368   DeferredDeclsToEmit.clear();
369   if (OpenMPRuntime)
370     OpenMPRuntime->clear();
371 }
372 
373 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
374                                        StringRef MainFile) {
375   if (!hasDiagnostics())
376     return;
377   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
378     if (MainFile.empty())
379       MainFile = "<stdin>";
380     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
381   } else {
382     if (Mismatched > 0)
383       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
384 
385     if (Missing > 0)
386       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
387   }
388 }
389 
390 void CodeGenModule::Release() {
391   EmitDeferred();
392   EmitVTablesOpportunistically();
393   applyGlobalValReplacements();
394   applyReplacements();
395   checkAliases();
396   emitMultiVersionFunctions();
397   EmitCXXGlobalInitFunc();
398   EmitCXXGlobalDtorFunc();
399   registerGlobalDtorsWithAtExit();
400   EmitCXXThreadLocalInitFunc();
401   if (ObjCRuntime)
402     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
403       AddGlobalCtor(ObjCInitFunction);
404   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
405       CUDARuntime) {
406     if (llvm::Function *CudaCtorFunction =
407             CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409   }
410   if (OpenMPRuntime) {
411     if (llvm::Function *OpenMPRegistrationFunction =
412             OpenMPRuntime->emitRegistrationFunction()) {
413       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
414         OpenMPRegistrationFunction : nullptr;
415       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
416     }
417     OpenMPRuntime->clear();
418   }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.CodeViewGHash) {
461     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
462   }
463   if (CodeGenOpts.ControlFlowGuard) {
464     // We want function ID tables for Control Flow Guard.
465     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
466   }
467   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
468     // We don't support LTO with 2 with different StrictVTablePointers
469     // FIXME: we could support it by stripping all the information introduced
470     // by StrictVTablePointers.
471 
472     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
473 
474     llvm::Metadata *Ops[2] = {
475               llvm::MDString::get(VMContext, "StrictVTablePointers"),
476               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
477                   llvm::Type::getInt32Ty(VMContext), 1))};
478 
479     getModule().addModuleFlag(llvm::Module::Require,
480                               "StrictVTablePointersRequirement",
481                               llvm::MDNode::get(VMContext, Ops));
482   }
483   if (DebugInfo)
484     // We support a single version in the linked module. The LLVM
485     // parser will drop debug info with a different version number
486     // (and warn about it, too).
487     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
488                               llvm::DEBUG_METADATA_VERSION);
489 
490   // We need to record the widths of enums and wchar_t, so that we can generate
491   // the correct build attributes in the ARM backend. wchar_size is also used by
492   // TargetLibraryInfo.
493   uint64_t WCharWidth =
494       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
495   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
496 
497   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
498   if (   Arch == llvm::Triple::arm
499       || Arch == llvm::Triple::armeb
500       || Arch == llvm::Triple::thumb
501       || Arch == llvm::Triple::thumbeb) {
502     // The minimum width of an enum in bytes
503     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
504     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
505   }
506 
507   if (CodeGenOpts.SanitizeCfiCrossDso) {
508     // Indicate that we want cross-DSO control flow integrity checks.
509     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
510   }
511 
512   if (CodeGenOpts.CFProtectionReturn &&
513       Target.checkCFProtectionReturnSupported(getDiags())) {
514     // Indicate that we want to instrument return control flow protection.
515     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
516                               1);
517   }
518 
519   if (CodeGenOpts.CFProtectionBranch &&
520       Target.checkCFProtectionBranchSupported(getDiags())) {
521     // Indicate that we want to instrument branch control flow protection.
522     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
523                               1);
524   }
525 
526   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
527     // Indicate whether __nvvm_reflect should be configured to flush denormal
528     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
529     // property.)
530     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
531                               CodeGenOpts.FlushDenorm ? 1 : 0);
532   }
533 
534   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
535   if (LangOpts.OpenCL) {
536     EmitOpenCLMetadata();
537     // Emit SPIR version.
538     if (getTriple().getArch() == llvm::Triple::spir ||
539         getTriple().getArch() == llvm::Triple::spir64) {
540       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
541       // opencl.spir.version named metadata.
542       llvm::Metadata *SPIRVerElts[] = {
543           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544               Int32Ty, LangOpts.OpenCLVersion / 100)),
545           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
546               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
547       llvm::NamedMDNode *SPIRVerMD =
548           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
549       llvm::LLVMContext &Ctx = TheModule.getContext();
550       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
551     }
552   }
553 
554   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
555     assert(PLevel < 3 && "Invalid PIC Level");
556     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
557     if (Context.getLangOpts().PIE)
558       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
559   }
560 
561   if (getCodeGenOpts().CodeModel.size() > 0) {
562     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
563                   .Case("tiny", llvm::CodeModel::Tiny)
564                   .Case("small", llvm::CodeModel::Small)
565                   .Case("kernel", llvm::CodeModel::Kernel)
566                   .Case("medium", llvm::CodeModel::Medium)
567                   .Case("large", llvm::CodeModel::Large)
568                   .Default(~0u);
569     if (CM != ~0u) {
570       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
571       getModule().setCodeModel(codeModel);
572     }
573   }
574 
575   if (CodeGenOpts.NoPLT)
576     getModule().setRtLibUseGOT();
577 
578   SimplifyPersonality();
579 
580   if (getCodeGenOpts().EmitDeclMetadata)
581     EmitDeclMetadata();
582 
583   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
584     EmitCoverageFile();
585 
586   if (DebugInfo)
587     DebugInfo->finalize();
588 
589   if (getCodeGenOpts().EmitVersionIdentMetadata)
590     EmitVersionIdentMetadata();
591 
592   if (!getCodeGenOpts().RecordCommandLine.empty())
593     EmitCommandLineMetadata();
594 
595   EmitTargetMetadata();
596 }
597 
598 void CodeGenModule::EmitOpenCLMetadata() {
599   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
600   // opencl.ocl.version named metadata node.
601   llvm::Metadata *OCLVerElts[] = {
602       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
603           Int32Ty, LangOpts.OpenCLVersion / 100)),
604       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
605           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
606   llvm::NamedMDNode *OCLVerMD =
607       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
608   llvm::LLVMContext &Ctx = TheModule.getContext();
609   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
610 }
611 
612 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
613   // Make sure that this type is translated.
614   Types.UpdateCompletedType(TD);
615 }
616 
617 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
618   // Make sure that this type is translated.
619   Types.RefreshTypeCacheForClass(RD);
620 }
621 
622 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
623   if (!TBAA)
624     return nullptr;
625   return TBAA->getTypeInfo(QTy);
626 }
627 
628 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
629   if (!TBAA)
630     return TBAAAccessInfo();
631   return TBAA->getAccessInfo(AccessType);
632 }
633 
634 TBAAAccessInfo
635 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
636   if (!TBAA)
637     return TBAAAccessInfo();
638   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
639 }
640 
641 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
642   if (!TBAA)
643     return nullptr;
644   return TBAA->getTBAAStructInfo(QTy);
645 }
646 
647 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
648   if (!TBAA)
649     return nullptr;
650   return TBAA->getBaseTypeInfo(QTy);
651 }
652 
653 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
654   if (!TBAA)
655     return nullptr;
656   return TBAA->getAccessTagInfo(Info);
657 }
658 
659 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
660                                                    TBAAAccessInfo TargetInfo) {
661   if (!TBAA)
662     return TBAAAccessInfo();
663   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
664 }
665 
666 TBAAAccessInfo
667 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
668                                                    TBAAAccessInfo InfoB) {
669   if (!TBAA)
670     return TBAAAccessInfo();
671   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
672 }
673 
674 TBAAAccessInfo
675 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
676                                               TBAAAccessInfo SrcInfo) {
677   if (!TBAA)
678     return TBAAAccessInfo();
679   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
680 }
681 
682 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
683                                                 TBAAAccessInfo TBAAInfo) {
684   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
685     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
686 }
687 
688 void CodeGenModule::DecorateInstructionWithInvariantGroup(
689     llvm::Instruction *I, const CXXRecordDecl *RD) {
690   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
691                  llvm::MDNode::get(getLLVMContext(), {}));
692 }
693 
694 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
695   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
696   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
697 }
698 
699 /// ErrorUnsupported - Print out an error that codegen doesn't support the
700 /// specified stmt yet.
701 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
702   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
703                                                "cannot compile this %0 yet");
704   std::string Msg = Type;
705   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
706       << Msg << S->getSourceRange();
707 }
708 
709 /// ErrorUnsupported - Print out an error that codegen doesn't support the
710 /// specified decl yet.
711 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
712   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
713                                                "cannot compile this %0 yet");
714   std::string Msg = Type;
715   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
716 }
717 
718 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
719   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
720 }
721 
722 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
723                                         const NamedDecl *D) const {
724   if (GV->hasDLLImportStorageClass())
725     return;
726   // Internal definitions always have default visibility.
727   if (GV->hasLocalLinkage()) {
728     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
729     return;
730   }
731   if (!D)
732     return;
733   // Set visibility for definitions, and for declarations if requested globally
734   // or set explicitly.
735   LinkageInfo LV = D->getLinkageAndVisibility();
736   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
737       !GV->isDeclarationForLinker())
738     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
739 }
740 
741 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
742                                  llvm::GlobalValue *GV) {
743   if (GV->hasLocalLinkage())
744     return true;
745 
746   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
747     return true;
748 
749   // DLLImport explicitly marks the GV as external.
750   if (GV->hasDLLImportStorageClass())
751     return false;
752 
753   const llvm::Triple &TT = CGM.getTriple();
754   if (TT.isWindowsGNUEnvironment()) {
755     // In MinGW, variables without DLLImport can still be automatically
756     // imported from a DLL by the linker; don't mark variables that
757     // potentially could come from another DLL as DSO local.
758     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
759         !GV->isThreadLocal())
760       return false;
761   }
762   // Every other GV is local on COFF.
763   // Make an exception for windows OS in the triple: Some firmware builds use
764   // *-win32-macho triples. This (accidentally?) produced windows relocations
765   // without GOT tables in older clang versions; Keep this behaviour.
766   // FIXME: even thread local variables?
767   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
768     return true;
769 
770   // Only handle COFF and ELF for now.
771   if (!TT.isOSBinFormatELF())
772     return false;
773 
774   // If this is not an executable, don't assume anything is local.
775   const auto &CGOpts = CGM.getCodeGenOpts();
776   llvm::Reloc::Model RM = CGOpts.RelocationModel;
777   const auto &LOpts = CGM.getLangOpts();
778   if (RM != llvm::Reloc::Static && !LOpts.PIE)
779     return false;
780 
781   // A definition cannot be preempted from an executable.
782   if (!GV->isDeclarationForLinker())
783     return true;
784 
785   // Most PIC code sequences that assume that a symbol is local cannot produce a
786   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
787   // depended, it seems worth it to handle it here.
788   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
789     return false;
790 
791   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
792   llvm::Triple::ArchType Arch = TT.getArch();
793   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
794       Arch == llvm::Triple::ppc64le)
795     return false;
796 
797   // If we can use copy relocations we can assume it is local.
798   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
799     if (!Var->isThreadLocal() &&
800         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
801       return true;
802 
803   // If we can use a plt entry as the symbol address we can assume it
804   // is local.
805   // FIXME: This should work for PIE, but the gold linker doesn't support it.
806   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
807     return true;
808 
809   // Otherwise don't assue it is local.
810   return false;
811 }
812 
813 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
814   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
815 }
816 
817 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
818                                           GlobalDecl GD) const {
819   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
820   // C++ destructors have a few C++ ABI specific special cases.
821   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
822     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
823     return;
824   }
825   setDLLImportDLLExport(GV, D);
826 }
827 
828 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
829                                           const NamedDecl *D) const {
830   if (D && D->isExternallyVisible()) {
831     if (D->hasAttr<DLLImportAttr>())
832       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
833     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
834       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
835   }
836 }
837 
838 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
839                                     GlobalDecl GD) const {
840   setDLLImportDLLExport(GV, GD);
841   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
842 }
843 
844 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
845                                     const NamedDecl *D) const {
846   setDLLImportDLLExport(GV, D);
847   setGlobalVisibilityAndLocal(GV, D);
848 }
849 
850 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
851                                                 const NamedDecl *D) const {
852   setGlobalVisibility(GV, D);
853   setDSOLocal(GV);
854 }
855 
856 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
857   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
858       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
859       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
860       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
861       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
862 }
863 
864 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
865     CodeGenOptions::TLSModel M) {
866   switch (M) {
867   case CodeGenOptions::GeneralDynamicTLSModel:
868     return llvm::GlobalVariable::GeneralDynamicTLSModel;
869   case CodeGenOptions::LocalDynamicTLSModel:
870     return llvm::GlobalVariable::LocalDynamicTLSModel;
871   case CodeGenOptions::InitialExecTLSModel:
872     return llvm::GlobalVariable::InitialExecTLSModel;
873   case CodeGenOptions::LocalExecTLSModel:
874     return llvm::GlobalVariable::LocalExecTLSModel;
875   }
876   llvm_unreachable("Invalid TLS model!");
877 }
878 
879 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
880   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
881 
882   llvm::GlobalValue::ThreadLocalMode TLM;
883   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
884 
885   // Override the TLS model if it is explicitly specified.
886   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
887     TLM = GetLLVMTLSModel(Attr->getModel());
888   }
889 
890   GV->setThreadLocalMode(TLM);
891 }
892 
893 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
894                                           StringRef Name) {
895   const TargetInfo &Target = CGM.getTarget();
896   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
897 }
898 
899 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
900                                                  const CPUSpecificAttr *Attr,
901                                                  unsigned CPUIndex,
902                                                  raw_ostream &Out) {
903   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
904   // supported.
905   if (Attr)
906     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
907   else if (CGM.getTarget().supportsIFunc())
908     Out << ".resolver";
909 }
910 
911 static void AppendTargetMangling(const CodeGenModule &CGM,
912                                  const TargetAttr *Attr, raw_ostream &Out) {
913   if (Attr->isDefaultVersion())
914     return;
915 
916   Out << '.';
917   const TargetInfo &Target = CGM.getTarget();
918   TargetAttr::ParsedTargetAttr Info =
919       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
920         // Multiversioning doesn't allow "no-${feature}", so we can
921         // only have "+" prefixes here.
922         assert(LHS.startswith("+") && RHS.startswith("+") &&
923                "Features should always have a prefix.");
924         return Target.multiVersionSortPriority(LHS.substr(1)) >
925                Target.multiVersionSortPriority(RHS.substr(1));
926       });
927 
928   bool IsFirst = true;
929 
930   if (!Info.Architecture.empty()) {
931     IsFirst = false;
932     Out << "arch_" << Info.Architecture;
933   }
934 
935   for (StringRef Feat : Info.Features) {
936     if (!IsFirst)
937       Out << '_';
938     IsFirst = false;
939     Out << Feat.substr(1);
940   }
941 }
942 
943 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
944                                       const NamedDecl *ND,
945                                       bool OmitMultiVersionMangling = false) {
946   SmallString<256> Buffer;
947   llvm::raw_svector_ostream Out(Buffer);
948   MangleContext &MC = CGM.getCXXABI().getMangleContext();
949   if (MC.shouldMangleDeclName(ND)) {
950     llvm::raw_svector_ostream Out(Buffer);
951     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
952       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
953     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
954       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
955     else
956       MC.mangleName(ND, Out);
957   } else {
958     IdentifierInfo *II = ND->getIdentifier();
959     assert(II && "Attempt to mangle unnamed decl.");
960     const auto *FD = dyn_cast<FunctionDecl>(ND);
961 
962     if (FD &&
963         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
964       llvm::raw_svector_ostream Out(Buffer);
965       Out << "__regcall3__" << II->getName();
966     } else {
967       Out << II->getName();
968     }
969   }
970 
971   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
972     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
973       switch (FD->getMultiVersionKind()) {
974       case MultiVersionKind::CPUDispatch:
975       case MultiVersionKind::CPUSpecific:
976         AppendCPUSpecificCPUDispatchMangling(CGM,
977                                              FD->getAttr<CPUSpecificAttr>(),
978                                              GD.getMultiVersionIndex(), Out);
979         break;
980       case MultiVersionKind::Target:
981         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
982         break;
983       case MultiVersionKind::None:
984         llvm_unreachable("None multiversion type isn't valid here");
985       }
986     }
987 
988   return Out.str();
989 }
990 
991 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
992                                             const FunctionDecl *FD) {
993   if (!FD->isMultiVersion())
994     return;
995 
996   // Get the name of what this would be without the 'target' attribute.  This
997   // allows us to lookup the version that was emitted when this wasn't a
998   // multiversion function.
999   std::string NonTargetName =
1000       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1001   GlobalDecl OtherGD;
1002   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1003     assert(OtherGD.getCanonicalDecl()
1004                .getDecl()
1005                ->getAsFunction()
1006                ->isMultiVersion() &&
1007            "Other GD should now be a multiversioned function");
1008     // OtherFD is the version of this function that was mangled BEFORE
1009     // becoming a MultiVersion function.  It potentially needs to be updated.
1010     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1011                                       .getDecl()
1012                                       ->getAsFunction()
1013                                       ->getMostRecentDecl();
1014     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1015     // This is so that if the initial version was already the 'default'
1016     // version, we don't try to update it.
1017     if (OtherName != NonTargetName) {
1018       // Remove instead of erase, since others may have stored the StringRef
1019       // to this.
1020       const auto ExistingRecord = Manglings.find(NonTargetName);
1021       if (ExistingRecord != std::end(Manglings))
1022         Manglings.remove(&(*ExistingRecord));
1023       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1024       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1025       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1026         Entry->setName(OtherName);
1027     }
1028   }
1029 }
1030 
1031 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1032   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1033 
1034   // Some ABIs don't have constructor variants.  Make sure that base and
1035   // complete constructors get mangled the same.
1036   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1037     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1038       CXXCtorType OrigCtorType = GD.getCtorType();
1039       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1040       if (OrigCtorType == Ctor_Base)
1041         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1042     }
1043   }
1044 
1045   auto FoundName = MangledDeclNames.find(CanonicalGD);
1046   if (FoundName != MangledDeclNames.end())
1047     return FoundName->second;
1048 
1049   // Keep the first result in the case of a mangling collision.
1050   const auto *ND = cast<NamedDecl>(GD.getDecl());
1051   auto Result =
1052       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1053   return MangledDeclNames[CanonicalGD] = Result.first->first();
1054 }
1055 
1056 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1057                                              const BlockDecl *BD) {
1058   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1059   const Decl *D = GD.getDecl();
1060 
1061   SmallString<256> Buffer;
1062   llvm::raw_svector_ostream Out(Buffer);
1063   if (!D)
1064     MangleCtx.mangleGlobalBlock(BD,
1065       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1066   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1067     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1068   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1069     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1070   else
1071     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1072 
1073   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1074   return Result.first->first();
1075 }
1076 
1077 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1078   return getModule().getNamedValue(Name);
1079 }
1080 
1081 /// AddGlobalCtor - Add a function to the list that will be called before
1082 /// main() runs.
1083 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1084                                   llvm::Constant *AssociatedData) {
1085   // FIXME: Type coercion of void()* types.
1086   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1087 }
1088 
1089 /// AddGlobalDtor - Add a function to the list that will be called
1090 /// when the module is unloaded.
1091 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1092   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1093     DtorsUsingAtExit[Priority].push_back(Dtor);
1094     return;
1095   }
1096 
1097   // FIXME: Type coercion of void()* types.
1098   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1099 }
1100 
1101 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1102   if (Fns.empty()) return;
1103 
1104   // Ctor function type is void()*.
1105   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1106   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1107       TheModule.getDataLayout().getProgramAddressSpace());
1108 
1109   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1110   llvm::StructType *CtorStructTy = llvm::StructType::get(
1111       Int32Ty, CtorPFTy, VoidPtrTy);
1112 
1113   // Construct the constructor and destructor arrays.
1114   ConstantInitBuilder builder(*this);
1115   auto ctors = builder.beginArray(CtorStructTy);
1116   for (const auto &I : Fns) {
1117     auto ctor = ctors.beginStruct(CtorStructTy);
1118     ctor.addInt(Int32Ty, I.Priority);
1119     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1120     if (I.AssociatedData)
1121       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1122     else
1123       ctor.addNullPointer(VoidPtrTy);
1124     ctor.finishAndAddTo(ctors);
1125   }
1126 
1127   auto list =
1128     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1129                                 /*constant*/ false,
1130                                 llvm::GlobalValue::AppendingLinkage);
1131 
1132   // The LTO linker doesn't seem to like it when we set an alignment
1133   // on appending variables.  Take it off as a workaround.
1134   list->setAlignment(0);
1135 
1136   Fns.clear();
1137 }
1138 
1139 llvm::GlobalValue::LinkageTypes
1140 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1141   const auto *D = cast<FunctionDecl>(GD.getDecl());
1142 
1143   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1144 
1145   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1146     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1147 
1148   if (isa<CXXConstructorDecl>(D) &&
1149       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1150       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1151     // Our approach to inheriting constructors is fundamentally different from
1152     // that used by the MS ABI, so keep our inheriting constructor thunks
1153     // internal rather than trying to pick an unambiguous mangling for them.
1154     return llvm::GlobalValue::InternalLinkage;
1155   }
1156 
1157   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1158 }
1159 
1160 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1161   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1162   if (!MDS) return nullptr;
1163 
1164   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1165 }
1166 
1167 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1168                                               const CGFunctionInfo &Info,
1169                                               llvm::Function *F) {
1170   unsigned CallingConv;
1171   llvm::AttributeList PAL;
1172   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1173   F->setAttributes(PAL);
1174   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1175 }
1176 
1177 /// Determines whether the language options require us to model
1178 /// unwind exceptions.  We treat -fexceptions as mandating this
1179 /// except under the fragile ObjC ABI with only ObjC exceptions
1180 /// enabled.  This means, for example, that C with -fexceptions
1181 /// enables this.
1182 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1183   // If exceptions are completely disabled, obviously this is false.
1184   if (!LangOpts.Exceptions) return false;
1185 
1186   // If C++ exceptions are enabled, this is true.
1187   if (LangOpts.CXXExceptions) return true;
1188 
1189   // If ObjC exceptions are enabled, this depends on the ABI.
1190   if (LangOpts.ObjCExceptions) {
1191     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1192   }
1193 
1194   return true;
1195 }
1196 
1197 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1198                                                       const CXXMethodDecl *MD) {
1199   // Check that the type metadata can ever actually be used by a call.
1200   if (!CGM.getCodeGenOpts().LTOUnit ||
1201       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1202     return false;
1203 
1204   // Only functions whose address can be taken with a member function pointer
1205   // need this sort of type metadata.
1206   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1207          !isa<CXXDestructorDecl>(MD);
1208 }
1209 
1210 std::vector<const CXXRecordDecl *>
1211 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1212   llvm::SetVector<const CXXRecordDecl *> MostBases;
1213 
1214   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1215   CollectMostBases = [&](const CXXRecordDecl *RD) {
1216     if (RD->getNumBases() == 0)
1217       MostBases.insert(RD);
1218     for (const CXXBaseSpecifier &B : RD->bases())
1219       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1220   };
1221   CollectMostBases(RD);
1222   return MostBases.takeVector();
1223 }
1224 
1225 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1226                                                            llvm::Function *F) {
1227   llvm::AttrBuilder B;
1228 
1229   if (CodeGenOpts.UnwindTables)
1230     B.addAttribute(llvm::Attribute::UWTable);
1231 
1232   if (!hasUnwindExceptions(LangOpts))
1233     B.addAttribute(llvm::Attribute::NoUnwind);
1234 
1235   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1236     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1237       B.addAttribute(llvm::Attribute::StackProtect);
1238     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1239       B.addAttribute(llvm::Attribute::StackProtectStrong);
1240     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1241       B.addAttribute(llvm::Attribute::StackProtectReq);
1242   }
1243 
1244   if (!D) {
1245     // If we don't have a declaration to control inlining, the function isn't
1246     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1247     // disabled, mark the function as noinline.
1248     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1249         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1250       B.addAttribute(llvm::Attribute::NoInline);
1251 
1252     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1253     return;
1254   }
1255 
1256   // Track whether we need to add the optnone LLVM attribute,
1257   // starting with the default for this optimization level.
1258   bool ShouldAddOptNone =
1259       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1260   // We can't add optnone in the following cases, it won't pass the verifier.
1261   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1262   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1263   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1264 
1265   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1266     B.addAttribute(llvm::Attribute::OptimizeNone);
1267 
1268     // OptimizeNone implies noinline; we should not be inlining such functions.
1269     B.addAttribute(llvm::Attribute::NoInline);
1270     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1271            "OptimizeNone and AlwaysInline on same function!");
1272 
1273     // We still need to handle naked functions even though optnone subsumes
1274     // much of their semantics.
1275     if (D->hasAttr<NakedAttr>())
1276       B.addAttribute(llvm::Attribute::Naked);
1277 
1278     // OptimizeNone wins over OptimizeForSize and MinSize.
1279     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1280     F->removeFnAttr(llvm::Attribute::MinSize);
1281   } else if (D->hasAttr<NakedAttr>()) {
1282     // Naked implies noinline: we should not be inlining such functions.
1283     B.addAttribute(llvm::Attribute::Naked);
1284     B.addAttribute(llvm::Attribute::NoInline);
1285   } else if (D->hasAttr<NoDuplicateAttr>()) {
1286     B.addAttribute(llvm::Attribute::NoDuplicate);
1287   } else if (D->hasAttr<NoInlineAttr>()) {
1288     B.addAttribute(llvm::Attribute::NoInline);
1289   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1290              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1291     // (noinline wins over always_inline, and we can't specify both in IR)
1292     B.addAttribute(llvm::Attribute::AlwaysInline);
1293   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1294     // If we're not inlining, then force everything that isn't always_inline to
1295     // carry an explicit noinline attribute.
1296     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1297       B.addAttribute(llvm::Attribute::NoInline);
1298   } else {
1299     // Otherwise, propagate the inline hint attribute and potentially use its
1300     // absence to mark things as noinline.
1301     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1302       // Search function and template pattern redeclarations for inline.
1303       auto CheckForInline = [](const FunctionDecl *FD) {
1304         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1305           return Redecl->isInlineSpecified();
1306         };
1307         if (any_of(FD->redecls(), CheckRedeclForInline))
1308           return true;
1309         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1310         if (!Pattern)
1311           return false;
1312         return any_of(Pattern->redecls(), CheckRedeclForInline);
1313       };
1314       if (CheckForInline(FD)) {
1315         B.addAttribute(llvm::Attribute::InlineHint);
1316       } else if (CodeGenOpts.getInlining() ==
1317                      CodeGenOptions::OnlyHintInlining &&
1318                  !FD->isInlined() &&
1319                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1320         B.addAttribute(llvm::Attribute::NoInline);
1321       }
1322     }
1323   }
1324 
1325   // Add other optimization related attributes if we are optimizing this
1326   // function.
1327   if (!D->hasAttr<OptimizeNoneAttr>()) {
1328     if (D->hasAttr<ColdAttr>()) {
1329       if (!ShouldAddOptNone)
1330         B.addAttribute(llvm::Attribute::OptimizeForSize);
1331       B.addAttribute(llvm::Attribute::Cold);
1332     }
1333 
1334     if (D->hasAttr<MinSizeAttr>())
1335       B.addAttribute(llvm::Attribute::MinSize);
1336   }
1337 
1338   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1339 
1340   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1341   if (alignment)
1342     F->setAlignment(alignment);
1343 
1344   if (!D->hasAttr<AlignedAttr>())
1345     if (LangOpts.FunctionAlignment)
1346       F->setAlignment(1 << LangOpts.FunctionAlignment);
1347 
1348   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1349   // reserve a bit for differentiating between virtual and non-virtual member
1350   // functions. If the current target's C++ ABI requires this and this is a
1351   // member function, set its alignment accordingly.
1352   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1353     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1354       F->setAlignment(2);
1355   }
1356 
1357   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1358   if (CodeGenOpts.SanitizeCfiCrossDso)
1359     if (auto *FD = dyn_cast<FunctionDecl>(D))
1360       CreateFunctionTypeMetadataForIcall(FD, F);
1361 
1362   // Emit type metadata on member functions for member function pointer checks.
1363   // These are only ever necessary on definitions; we're guaranteed that the
1364   // definition will be present in the LTO unit as a result of LTO visibility.
1365   auto *MD = dyn_cast<CXXMethodDecl>(D);
1366   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1367     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1368       llvm::Metadata *Id =
1369           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1370               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1371       F->addTypeMetadata(0, Id);
1372     }
1373   }
1374 }
1375 
1376 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1377   const Decl *D = GD.getDecl();
1378   if (dyn_cast_or_null<NamedDecl>(D))
1379     setGVProperties(GV, GD);
1380   else
1381     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1382 
1383   if (D && D->hasAttr<UsedAttr>())
1384     addUsedGlobal(GV);
1385 
1386   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1387     const auto *VD = cast<VarDecl>(D);
1388     if (VD->getType().isConstQualified() &&
1389         VD->getStorageDuration() == SD_Static)
1390       addUsedGlobal(GV);
1391   }
1392 }
1393 
1394 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1395                                                 llvm::AttrBuilder &Attrs) {
1396   // Add target-cpu and target-features attributes to functions. If
1397   // we have a decl for the function and it has a target attribute then
1398   // parse that and add it to the feature set.
1399   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1400   std::vector<std::string> Features;
1401   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1402   FD = FD ? FD->getMostRecentDecl() : FD;
1403   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1404   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1405   bool AddedAttr = false;
1406   if (TD || SD) {
1407     llvm::StringMap<bool> FeatureMap;
1408     getFunctionFeatureMap(FeatureMap, GD);
1409 
1410     // Produce the canonical string for this set of features.
1411     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1412       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1413 
1414     // Now add the target-cpu and target-features to the function.
1415     // While we populated the feature map above, we still need to
1416     // get and parse the target attribute so we can get the cpu for
1417     // the function.
1418     if (TD) {
1419       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1420       if (ParsedAttr.Architecture != "" &&
1421           getTarget().isValidCPUName(ParsedAttr.Architecture))
1422         TargetCPU = ParsedAttr.Architecture;
1423     }
1424   } else {
1425     // Otherwise just add the existing target cpu and target features to the
1426     // function.
1427     Features = getTarget().getTargetOpts().Features;
1428   }
1429 
1430   if (TargetCPU != "") {
1431     Attrs.addAttribute("target-cpu", TargetCPU);
1432     AddedAttr = true;
1433   }
1434   if (!Features.empty()) {
1435     llvm::sort(Features);
1436     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1437     AddedAttr = true;
1438   }
1439 
1440   return AddedAttr;
1441 }
1442 
1443 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1444                                           llvm::GlobalObject *GO) {
1445   const Decl *D = GD.getDecl();
1446   SetCommonAttributes(GD, GO);
1447 
1448   if (D) {
1449     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1450       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1451         GV->addAttribute("bss-section", SA->getName());
1452       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1453         GV->addAttribute("data-section", SA->getName());
1454       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1455         GV->addAttribute("rodata-section", SA->getName());
1456     }
1457 
1458     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1459       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1460         if (!D->getAttr<SectionAttr>())
1461           F->addFnAttr("implicit-section-name", SA->getName());
1462 
1463       llvm::AttrBuilder Attrs;
1464       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1465         // We know that GetCPUAndFeaturesAttributes will always have the
1466         // newest set, since it has the newest possible FunctionDecl, so the
1467         // new ones should replace the old.
1468         F->removeFnAttr("target-cpu");
1469         F->removeFnAttr("target-features");
1470         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1471       }
1472     }
1473 
1474     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1475       GO->setSection(CSA->getName());
1476     else if (const auto *SA = D->getAttr<SectionAttr>())
1477       GO->setSection(SA->getName());
1478   }
1479 
1480   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1481 }
1482 
1483 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1484                                                   llvm::Function *F,
1485                                                   const CGFunctionInfo &FI) {
1486   const Decl *D = GD.getDecl();
1487   SetLLVMFunctionAttributes(GD, FI, F);
1488   SetLLVMFunctionAttributesForDefinition(D, F);
1489 
1490   F->setLinkage(llvm::Function::InternalLinkage);
1491 
1492   setNonAliasAttributes(GD, F);
1493 }
1494 
1495 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1496   // Set linkage and visibility in case we never see a definition.
1497   LinkageInfo LV = ND->getLinkageAndVisibility();
1498   // Don't set internal linkage on declarations.
1499   // "extern_weak" is overloaded in LLVM; we probably should have
1500   // separate linkage types for this.
1501   if (isExternallyVisible(LV.getLinkage()) &&
1502       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1503     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1504 }
1505 
1506 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1507                                                        llvm::Function *F) {
1508   // Only if we are checking indirect calls.
1509   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1510     return;
1511 
1512   // Non-static class methods are handled via vtable or member function pointer
1513   // checks elsewhere.
1514   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1515     return;
1516 
1517   // Additionally, if building with cross-DSO support...
1518   if (CodeGenOpts.SanitizeCfiCrossDso) {
1519     // Skip available_externally functions. They won't be codegen'ed in the
1520     // current module anyway.
1521     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1522       return;
1523   }
1524 
1525   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1526   F->addTypeMetadata(0, MD);
1527   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1528 
1529   // Emit a hash-based bit set entry for cross-DSO calls.
1530   if (CodeGenOpts.SanitizeCfiCrossDso)
1531     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1532       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1533 }
1534 
1535 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1536                                           bool IsIncompleteFunction,
1537                                           bool IsThunk) {
1538 
1539   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1540     // If this is an intrinsic function, set the function's attributes
1541     // to the intrinsic's attributes.
1542     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1543     return;
1544   }
1545 
1546   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1547 
1548   if (!IsIncompleteFunction) {
1549     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1550     // Setup target-specific attributes.
1551     if (F->isDeclaration())
1552       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1553   }
1554 
1555   // Add the Returned attribute for "this", except for iOS 5 and earlier
1556   // where substantial code, including the libstdc++ dylib, was compiled with
1557   // GCC and does not actually return "this".
1558   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1559       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1560     assert(!F->arg_empty() &&
1561            F->arg_begin()->getType()
1562              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1563            "unexpected this return");
1564     F->addAttribute(1, llvm::Attribute::Returned);
1565   }
1566 
1567   // Only a few attributes are set on declarations; these may later be
1568   // overridden by a definition.
1569 
1570   setLinkageForGV(F, FD);
1571   setGVProperties(F, FD);
1572 
1573   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1574     F->setSection(CSA->getName());
1575   else if (const auto *SA = FD->getAttr<SectionAttr>())
1576      F->setSection(SA->getName());
1577 
1578   if (FD->isReplaceableGlobalAllocationFunction()) {
1579     // A replaceable global allocation function does not act like a builtin by
1580     // default, only if it is invoked by a new-expression or delete-expression.
1581     F->addAttribute(llvm::AttributeList::FunctionIndex,
1582                     llvm::Attribute::NoBuiltin);
1583 
1584     // A sane operator new returns a non-aliasing pointer.
1585     // FIXME: Also add NonNull attribute to the return value
1586     // for the non-nothrow forms?
1587     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1588     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1589         (Kind == OO_New || Kind == OO_Array_New))
1590       F->addAttribute(llvm::AttributeList::ReturnIndex,
1591                       llvm::Attribute::NoAlias);
1592   }
1593 
1594   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1595     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1596   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1597     if (MD->isVirtual())
1598       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1599 
1600   // Don't emit entries for function declarations in the cross-DSO mode. This
1601   // is handled with better precision by the receiving DSO.
1602   if (!CodeGenOpts.SanitizeCfiCrossDso)
1603     CreateFunctionTypeMetadataForIcall(FD, F);
1604 
1605   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1606     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1607 
1608   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1609     // Annotate the callback behavior as metadata:
1610     //  - The callback callee (as argument number).
1611     //  - The callback payloads (as argument numbers).
1612     llvm::LLVMContext &Ctx = F->getContext();
1613     llvm::MDBuilder MDB(Ctx);
1614 
1615     // The payload indices are all but the first one in the encoding. The first
1616     // identifies the callback callee.
1617     int CalleeIdx = *CB->encoding_begin();
1618     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1619     F->addMetadata(llvm::LLVMContext::MD_callback,
1620                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1621                                                CalleeIdx, PayloadIndices,
1622                                                /* VarArgsArePassed */ false)}));
1623   }
1624 }
1625 
1626 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1627   assert(!GV->isDeclaration() &&
1628          "Only globals with definition can force usage.");
1629   LLVMUsed.emplace_back(GV);
1630 }
1631 
1632 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1633   assert(!GV->isDeclaration() &&
1634          "Only globals with definition can force usage.");
1635   LLVMCompilerUsed.emplace_back(GV);
1636 }
1637 
1638 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1639                      std::vector<llvm::WeakTrackingVH> &List) {
1640   // Don't create llvm.used if there is no need.
1641   if (List.empty())
1642     return;
1643 
1644   // Convert List to what ConstantArray needs.
1645   SmallVector<llvm::Constant*, 8> UsedArray;
1646   UsedArray.resize(List.size());
1647   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1648     UsedArray[i] =
1649         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1650             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1651   }
1652 
1653   if (UsedArray.empty())
1654     return;
1655   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1656 
1657   auto *GV = new llvm::GlobalVariable(
1658       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1659       llvm::ConstantArray::get(ATy, UsedArray), Name);
1660 
1661   GV->setSection("llvm.metadata");
1662 }
1663 
1664 void CodeGenModule::emitLLVMUsed() {
1665   emitUsed(*this, "llvm.used", LLVMUsed);
1666   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1667 }
1668 
1669 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1670   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1671   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1672 }
1673 
1674 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1675   llvm::SmallString<32> Opt;
1676   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1677   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1678   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1679 }
1680 
1681 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1682   auto &C = getLLVMContext();
1683   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1684       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1685 }
1686 
1687 void CodeGenModule::AddDependentLib(StringRef Lib) {
1688   llvm::SmallString<24> Opt;
1689   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1690   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1691   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1692 }
1693 
1694 /// Add link options implied by the given module, including modules
1695 /// it depends on, using a postorder walk.
1696 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1697                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1698                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1699   // Import this module's parent.
1700   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1701     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1702   }
1703 
1704   // Import this module's dependencies.
1705   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1706     if (Visited.insert(Mod->Imports[I - 1]).second)
1707       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1708   }
1709 
1710   // Add linker options to link against the libraries/frameworks
1711   // described by this module.
1712   llvm::LLVMContext &Context = CGM.getLLVMContext();
1713   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1714   bool IsPS4 = CGM.getTarget().getTriple().isPS4();
1715 
1716   // For modules that use export_as for linking, use that module
1717   // name instead.
1718   if (Mod->UseExportAsModuleLinkName)
1719     return;
1720 
1721   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1722     // Link against a framework.  Frameworks are currently Darwin only, so we
1723     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1724     if (Mod->LinkLibraries[I-1].IsFramework) {
1725       llvm::Metadata *Args[2] = {
1726           llvm::MDString::get(Context, "-framework"),
1727           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1728 
1729       Metadata.push_back(llvm::MDNode::get(Context, Args));
1730       continue;
1731     }
1732 
1733     // Link against a library.
1734     if (IsELF && !IsPS4) {
1735       llvm::Metadata *Args[2] = {
1736           llvm::MDString::get(Context, "lib"),
1737           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1738       };
1739       Metadata.push_back(llvm::MDNode::get(Context, Args));
1740     } else {
1741       llvm::SmallString<24> Opt;
1742       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1743           Mod->LinkLibraries[I - 1].Library, Opt);
1744       auto *OptString = llvm::MDString::get(Context, Opt);
1745       Metadata.push_back(llvm::MDNode::get(Context, OptString));
1746     }
1747   }
1748 }
1749 
1750 void CodeGenModule::EmitModuleLinkOptions() {
1751   // Collect the set of all of the modules we want to visit to emit link
1752   // options, which is essentially the imported modules and all of their
1753   // non-explicit child modules.
1754   llvm::SetVector<clang::Module *> LinkModules;
1755   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1756   SmallVector<clang::Module *, 16> Stack;
1757 
1758   // Seed the stack with imported modules.
1759   for (Module *M : ImportedModules) {
1760     // Do not add any link flags when an implementation TU of a module imports
1761     // a header of that same module.
1762     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1763         !getLangOpts().isCompilingModule())
1764       continue;
1765     if (Visited.insert(M).second)
1766       Stack.push_back(M);
1767   }
1768 
1769   // Find all of the modules to import, making a little effort to prune
1770   // non-leaf modules.
1771   while (!Stack.empty()) {
1772     clang::Module *Mod = Stack.pop_back_val();
1773 
1774     bool AnyChildren = false;
1775 
1776     // Visit the submodules of this module.
1777     for (const auto &SM : Mod->submodules()) {
1778       // Skip explicit children; they need to be explicitly imported to be
1779       // linked against.
1780       if (SM->IsExplicit)
1781         continue;
1782 
1783       if (Visited.insert(SM).second) {
1784         Stack.push_back(SM);
1785         AnyChildren = true;
1786       }
1787     }
1788 
1789     // We didn't find any children, so add this module to the list of
1790     // modules to link against.
1791     if (!AnyChildren) {
1792       LinkModules.insert(Mod);
1793     }
1794   }
1795 
1796   // Add link options for all of the imported modules in reverse topological
1797   // order.  We don't do anything to try to order import link flags with respect
1798   // to linker options inserted by things like #pragma comment().
1799   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1800   Visited.clear();
1801   for (Module *M : LinkModules)
1802     if (Visited.insert(M).second)
1803       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1804   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1805   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1806 
1807   // Add the linker options metadata flag.
1808   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1809   for (auto *MD : LinkerOptionsMetadata)
1810     NMD->addOperand(MD);
1811 }
1812 
1813 void CodeGenModule::EmitDeferred() {
1814   // Emit deferred declare target declarations.
1815   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1816     getOpenMPRuntime().emitDeferredTargetDecls();
1817 
1818   // Emit code for any potentially referenced deferred decls.  Since a
1819   // previously unused static decl may become used during the generation of code
1820   // for a static function, iterate until no changes are made.
1821 
1822   if (!DeferredVTables.empty()) {
1823     EmitDeferredVTables();
1824 
1825     // Emitting a vtable doesn't directly cause more vtables to
1826     // become deferred, although it can cause functions to be
1827     // emitted that then need those vtables.
1828     assert(DeferredVTables.empty());
1829   }
1830 
1831   // Stop if we're out of both deferred vtables and deferred declarations.
1832   if (DeferredDeclsToEmit.empty())
1833     return;
1834 
1835   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1836   // work, it will not interfere with this.
1837   std::vector<GlobalDecl> CurDeclsToEmit;
1838   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1839 
1840   for (GlobalDecl &D : CurDeclsToEmit) {
1841     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1842     // to get GlobalValue with exactly the type we need, not something that
1843     // might had been created for another decl with the same mangled name but
1844     // different type.
1845     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1846         GetAddrOfGlobal(D, ForDefinition));
1847 
1848     // In case of different address spaces, we may still get a cast, even with
1849     // IsForDefinition equal to true. Query mangled names table to get
1850     // GlobalValue.
1851     if (!GV)
1852       GV = GetGlobalValue(getMangledName(D));
1853 
1854     // Make sure GetGlobalValue returned non-null.
1855     assert(GV);
1856 
1857     // Check to see if we've already emitted this.  This is necessary
1858     // for a couple of reasons: first, decls can end up in the
1859     // deferred-decls queue multiple times, and second, decls can end
1860     // up with definitions in unusual ways (e.g. by an extern inline
1861     // function acquiring a strong function redefinition).  Just
1862     // ignore these cases.
1863     if (!GV->isDeclaration())
1864       continue;
1865 
1866     // Otherwise, emit the definition and move on to the next one.
1867     EmitGlobalDefinition(D, GV);
1868 
1869     // If we found out that we need to emit more decls, do that recursively.
1870     // This has the advantage that the decls are emitted in a DFS and related
1871     // ones are close together, which is convenient for testing.
1872     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1873       EmitDeferred();
1874       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1875     }
1876   }
1877 }
1878 
1879 void CodeGenModule::EmitVTablesOpportunistically() {
1880   // Try to emit external vtables as available_externally if they have emitted
1881   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1882   // is not allowed to create new references to things that need to be emitted
1883   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1884 
1885   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1886          && "Only emit opportunistic vtables with optimizations");
1887 
1888   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1889     assert(getVTables().isVTableExternal(RD) &&
1890            "This queue should only contain external vtables");
1891     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1892       VTables.GenerateClassData(RD);
1893   }
1894   OpportunisticVTables.clear();
1895 }
1896 
1897 void CodeGenModule::EmitGlobalAnnotations() {
1898   if (Annotations.empty())
1899     return;
1900 
1901   // Create a new global variable for the ConstantStruct in the Module.
1902   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1903     Annotations[0]->getType(), Annotations.size()), Annotations);
1904   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1905                                       llvm::GlobalValue::AppendingLinkage,
1906                                       Array, "llvm.global.annotations");
1907   gv->setSection(AnnotationSection);
1908 }
1909 
1910 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1911   llvm::Constant *&AStr = AnnotationStrings[Str];
1912   if (AStr)
1913     return AStr;
1914 
1915   // Not found yet, create a new global.
1916   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1917   auto *gv =
1918       new llvm::GlobalVariable(getModule(), s->getType(), true,
1919                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1920   gv->setSection(AnnotationSection);
1921   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1922   AStr = gv;
1923   return gv;
1924 }
1925 
1926 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1927   SourceManager &SM = getContext().getSourceManager();
1928   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1929   if (PLoc.isValid())
1930     return EmitAnnotationString(PLoc.getFilename());
1931   return EmitAnnotationString(SM.getBufferName(Loc));
1932 }
1933 
1934 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1935   SourceManager &SM = getContext().getSourceManager();
1936   PresumedLoc PLoc = SM.getPresumedLoc(L);
1937   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1938     SM.getExpansionLineNumber(L);
1939   return llvm::ConstantInt::get(Int32Ty, LineNo);
1940 }
1941 
1942 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1943                                                 const AnnotateAttr *AA,
1944                                                 SourceLocation L) {
1945   // Get the globals for file name, annotation, and the line number.
1946   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1947                  *UnitGV = EmitAnnotationUnit(L),
1948                  *LineNoCst = EmitAnnotationLineNo(L);
1949 
1950   // Create the ConstantStruct for the global annotation.
1951   llvm::Constant *Fields[4] = {
1952     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1953     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1954     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1955     LineNoCst
1956   };
1957   return llvm::ConstantStruct::getAnon(Fields);
1958 }
1959 
1960 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1961                                          llvm::GlobalValue *GV) {
1962   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1963   // Get the struct elements for these annotations.
1964   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1965     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1966 }
1967 
1968 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1969                                            llvm::Function *Fn,
1970                                            SourceLocation Loc) const {
1971   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1972   // Blacklist by function name.
1973   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1974     return true;
1975   // Blacklist by location.
1976   if (Loc.isValid())
1977     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1978   // If location is unknown, this may be a compiler-generated function. Assume
1979   // it's located in the main file.
1980   auto &SM = Context.getSourceManager();
1981   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1982     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1983   }
1984   return false;
1985 }
1986 
1987 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1988                                            SourceLocation Loc, QualType Ty,
1989                                            StringRef Category) const {
1990   // For now globals can be blacklisted only in ASan and KASan.
1991   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1992       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1993        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1994   if (!EnabledAsanMask)
1995     return false;
1996   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1997   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1998     return true;
1999   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2000     return true;
2001   // Check global type.
2002   if (!Ty.isNull()) {
2003     // Drill down the array types: if global variable of a fixed type is
2004     // blacklisted, we also don't instrument arrays of them.
2005     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2006       Ty = AT->getElementType();
2007     Ty = Ty.getCanonicalType().getUnqualifiedType();
2008     // We allow to blacklist only record types (classes, structs etc.)
2009     if (Ty->isRecordType()) {
2010       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2011       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2012         return true;
2013     }
2014   }
2015   return false;
2016 }
2017 
2018 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2019                                    StringRef Category) const {
2020   const auto &XRayFilter = getContext().getXRayFilter();
2021   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2022   auto Attr = ImbueAttr::NONE;
2023   if (Loc.isValid())
2024     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2025   if (Attr == ImbueAttr::NONE)
2026     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2027   switch (Attr) {
2028   case ImbueAttr::NONE:
2029     return false;
2030   case ImbueAttr::ALWAYS:
2031     Fn->addFnAttr("function-instrument", "xray-always");
2032     break;
2033   case ImbueAttr::ALWAYS_ARG1:
2034     Fn->addFnAttr("function-instrument", "xray-always");
2035     Fn->addFnAttr("xray-log-args", "1");
2036     break;
2037   case ImbueAttr::NEVER:
2038     Fn->addFnAttr("function-instrument", "xray-never");
2039     break;
2040   }
2041   return true;
2042 }
2043 
2044 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2045   // Never defer when EmitAllDecls is specified.
2046   if (LangOpts.EmitAllDecls)
2047     return true;
2048 
2049   if (CodeGenOpts.KeepStaticConsts) {
2050     const auto *VD = dyn_cast<VarDecl>(Global);
2051     if (VD && VD->getType().isConstQualified() &&
2052         VD->getStorageDuration() == SD_Static)
2053       return true;
2054   }
2055 
2056   return getContext().DeclMustBeEmitted(Global);
2057 }
2058 
2059 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2060   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2061     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2062       // Implicit template instantiations may change linkage if they are later
2063       // explicitly instantiated, so they should not be emitted eagerly.
2064       return false;
2065   if (const auto *VD = dyn_cast<VarDecl>(Global))
2066     if (Context.getInlineVariableDefinitionKind(VD) ==
2067         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2068       // A definition of an inline constexpr static data member may change
2069       // linkage later if it's redeclared outside the class.
2070       return false;
2071   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2072   // codegen for global variables, because they may be marked as threadprivate.
2073   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2074       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2075       !isTypeConstant(Global->getType(), false) &&
2076       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2077     return false;
2078 
2079   return true;
2080 }
2081 
2082 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2083     const CXXUuidofExpr* E) {
2084   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2085   // well-formed.
2086   StringRef Uuid = E->getUuidStr();
2087   std::string Name = "_GUID_" + Uuid.lower();
2088   std::replace(Name.begin(), Name.end(), '-', '_');
2089 
2090   // The UUID descriptor should be pointer aligned.
2091   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2092 
2093   // Look for an existing global.
2094   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2095     return ConstantAddress(GV, Alignment);
2096 
2097   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2098   assert(Init && "failed to initialize as constant");
2099 
2100   auto *GV = new llvm::GlobalVariable(
2101       getModule(), Init->getType(),
2102       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2103   if (supportsCOMDAT())
2104     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2105   setDSOLocal(GV);
2106   return ConstantAddress(GV, Alignment);
2107 }
2108 
2109 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2110   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2111   assert(AA && "No alias?");
2112 
2113   CharUnits Alignment = getContext().getDeclAlign(VD);
2114   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2115 
2116   // See if there is already something with the target's name in the module.
2117   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2118   if (Entry) {
2119     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2120     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2121     return ConstantAddress(Ptr, Alignment);
2122   }
2123 
2124   llvm::Constant *Aliasee;
2125   if (isa<llvm::FunctionType>(DeclTy))
2126     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2127                                       GlobalDecl(cast<FunctionDecl>(VD)),
2128                                       /*ForVTable=*/false);
2129   else
2130     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2131                                     llvm::PointerType::getUnqual(DeclTy),
2132                                     nullptr);
2133 
2134   auto *F = cast<llvm::GlobalValue>(Aliasee);
2135   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2136   WeakRefReferences.insert(F);
2137 
2138   return ConstantAddress(Aliasee, Alignment);
2139 }
2140 
2141 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2142   const auto *Global = cast<ValueDecl>(GD.getDecl());
2143 
2144   // Weak references don't produce any output by themselves.
2145   if (Global->hasAttr<WeakRefAttr>())
2146     return;
2147 
2148   // If this is an alias definition (which otherwise looks like a declaration)
2149   // emit it now.
2150   if (Global->hasAttr<AliasAttr>())
2151     return EmitAliasDefinition(GD);
2152 
2153   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2154   if (Global->hasAttr<IFuncAttr>())
2155     return emitIFuncDefinition(GD);
2156 
2157   // If this is a cpu_dispatch multiversion function, emit the resolver.
2158   if (Global->hasAttr<CPUDispatchAttr>())
2159     return emitCPUDispatchDefinition(GD);
2160 
2161   // If this is CUDA, be selective about which declarations we emit.
2162   if (LangOpts.CUDA) {
2163     if (LangOpts.CUDAIsDevice) {
2164       if (!Global->hasAttr<CUDADeviceAttr>() &&
2165           !Global->hasAttr<CUDAGlobalAttr>() &&
2166           !Global->hasAttr<CUDAConstantAttr>() &&
2167           !Global->hasAttr<CUDASharedAttr>())
2168         return;
2169     } else {
2170       // We need to emit host-side 'shadows' for all global
2171       // device-side variables because the CUDA runtime needs their
2172       // size and host-side address in order to provide access to
2173       // their device-side incarnations.
2174 
2175       // So device-only functions are the only things we skip.
2176       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2177           Global->hasAttr<CUDADeviceAttr>())
2178         return;
2179 
2180       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2181              "Expected Variable or Function");
2182     }
2183   }
2184 
2185   if (LangOpts.OpenMP) {
2186     // If this is OpenMP device, check if it is legal to emit this global
2187     // normally.
2188     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2189       return;
2190     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2191       if (MustBeEmitted(Global))
2192         EmitOMPDeclareReduction(DRD);
2193       return;
2194     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2195       if (MustBeEmitted(Global))
2196         EmitOMPDeclareMapper(DMD);
2197       return;
2198     }
2199   }
2200 
2201   // Ignore declarations, they will be emitted on their first use.
2202   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2203     // Forward declarations are emitted lazily on first use.
2204     if (!FD->doesThisDeclarationHaveABody()) {
2205       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2206         return;
2207 
2208       StringRef MangledName = getMangledName(GD);
2209 
2210       // Compute the function info and LLVM type.
2211       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2212       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2213 
2214       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2215                               /*DontDefer=*/false);
2216       return;
2217     }
2218   } else {
2219     const auto *VD = cast<VarDecl>(Global);
2220     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2221     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2222         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2223       if (LangOpts.OpenMP) {
2224         // Emit declaration of the must-be-emitted declare target variable.
2225         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2226                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2227           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2228             (void)GetAddrOfGlobalVar(VD);
2229           } else {
2230             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2231                    "link claue expected.");
2232             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2233           }
2234           return;
2235         }
2236       }
2237       // If this declaration may have caused an inline variable definition to
2238       // change linkage, make sure that it's emitted.
2239       if (Context.getInlineVariableDefinitionKind(VD) ==
2240           ASTContext::InlineVariableDefinitionKind::Strong)
2241         GetAddrOfGlobalVar(VD);
2242       return;
2243     }
2244   }
2245 
2246   // Defer code generation to first use when possible, e.g. if this is an inline
2247   // function. If the global must always be emitted, do it eagerly if possible
2248   // to benefit from cache locality.
2249   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2250     // Emit the definition if it can't be deferred.
2251     EmitGlobalDefinition(GD);
2252     return;
2253   }
2254 
2255   // If we're deferring emission of a C++ variable with an
2256   // initializer, remember the order in which it appeared in the file.
2257   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2258       cast<VarDecl>(Global)->hasInit()) {
2259     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2260     CXXGlobalInits.push_back(nullptr);
2261   }
2262 
2263   StringRef MangledName = getMangledName(GD);
2264   if (GetGlobalValue(MangledName) != nullptr) {
2265     // The value has already been used and should therefore be emitted.
2266     addDeferredDeclToEmit(GD);
2267   } else if (MustBeEmitted(Global)) {
2268     // The value must be emitted, but cannot be emitted eagerly.
2269     assert(!MayBeEmittedEagerly(Global));
2270     addDeferredDeclToEmit(GD);
2271   } else {
2272     // Otherwise, remember that we saw a deferred decl with this name.  The
2273     // first use of the mangled name will cause it to move into
2274     // DeferredDeclsToEmit.
2275     DeferredDecls[MangledName] = GD;
2276   }
2277 }
2278 
2279 // Check if T is a class type with a destructor that's not dllimport.
2280 static bool HasNonDllImportDtor(QualType T) {
2281   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2282     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2283       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2284         return true;
2285 
2286   return false;
2287 }
2288 
2289 namespace {
2290   struct FunctionIsDirectlyRecursive
2291       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2292     const StringRef Name;
2293     const Builtin::Context &BI;
2294     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2295         : Name(N), BI(C) {}
2296 
2297     bool VisitCallExpr(const CallExpr *E) {
2298       const FunctionDecl *FD = E->getDirectCallee();
2299       if (!FD)
2300         return false;
2301       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2302       if (Attr && Name == Attr->getLabel())
2303         return true;
2304       unsigned BuiltinID = FD->getBuiltinID();
2305       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2306         return false;
2307       StringRef BuiltinName = BI.getName(BuiltinID);
2308       if (BuiltinName.startswith("__builtin_") &&
2309           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2310         return true;
2311       }
2312       return false;
2313     }
2314 
2315     bool VisitStmt(const Stmt *S) {
2316       for (const Stmt *Child : S->children())
2317         if (Child && this->Visit(Child))
2318           return true;
2319       return false;
2320     }
2321   };
2322 
2323   // Make sure we're not referencing non-imported vars or functions.
2324   struct DLLImportFunctionVisitor
2325       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2326     bool SafeToInline = true;
2327 
2328     bool shouldVisitImplicitCode() const { return true; }
2329 
2330     bool VisitVarDecl(VarDecl *VD) {
2331       if (VD->getTLSKind()) {
2332         // A thread-local variable cannot be imported.
2333         SafeToInline = false;
2334         return SafeToInline;
2335       }
2336 
2337       // A variable definition might imply a destructor call.
2338       if (VD->isThisDeclarationADefinition())
2339         SafeToInline = !HasNonDllImportDtor(VD->getType());
2340 
2341       return SafeToInline;
2342     }
2343 
2344     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2345       if (const auto *D = E->getTemporary()->getDestructor())
2346         SafeToInline = D->hasAttr<DLLImportAttr>();
2347       return SafeToInline;
2348     }
2349 
2350     bool VisitDeclRefExpr(DeclRefExpr *E) {
2351       ValueDecl *VD = E->getDecl();
2352       if (isa<FunctionDecl>(VD))
2353         SafeToInline = VD->hasAttr<DLLImportAttr>();
2354       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2355         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2356       return SafeToInline;
2357     }
2358 
2359     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2360       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2361       return SafeToInline;
2362     }
2363 
2364     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2365       CXXMethodDecl *M = E->getMethodDecl();
2366       if (!M) {
2367         // Call through a pointer to member function. This is safe to inline.
2368         SafeToInline = true;
2369       } else {
2370         SafeToInline = M->hasAttr<DLLImportAttr>();
2371       }
2372       return SafeToInline;
2373     }
2374 
2375     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2376       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2377       return SafeToInline;
2378     }
2379 
2380     bool VisitCXXNewExpr(CXXNewExpr *E) {
2381       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2382       return SafeToInline;
2383     }
2384   };
2385 }
2386 
2387 // isTriviallyRecursive - Check if this function calls another
2388 // decl that, because of the asm attribute or the other decl being a builtin,
2389 // ends up pointing to itself.
2390 bool
2391 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2392   StringRef Name;
2393   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2394     // asm labels are a special kind of mangling we have to support.
2395     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2396     if (!Attr)
2397       return false;
2398     Name = Attr->getLabel();
2399   } else {
2400     Name = FD->getName();
2401   }
2402 
2403   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2404   const Stmt *Body = FD->getBody();
2405   return Body ? Walker.Visit(Body) : false;
2406 }
2407 
2408 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2409   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2410     return true;
2411   const auto *F = cast<FunctionDecl>(GD.getDecl());
2412   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2413     return false;
2414 
2415   if (F->hasAttr<DLLImportAttr>()) {
2416     // Check whether it would be safe to inline this dllimport function.
2417     DLLImportFunctionVisitor Visitor;
2418     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2419     if (!Visitor.SafeToInline)
2420       return false;
2421 
2422     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2423       // Implicit destructor invocations aren't captured in the AST, so the
2424       // check above can't see them. Check for them manually here.
2425       for (const Decl *Member : Dtor->getParent()->decls())
2426         if (isa<FieldDecl>(Member))
2427           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2428             return false;
2429       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2430         if (HasNonDllImportDtor(B.getType()))
2431           return false;
2432     }
2433   }
2434 
2435   // PR9614. Avoid cases where the source code is lying to us. An available
2436   // externally function should have an equivalent function somewhere else,
2437   // but a function that calls itself is clearly not equivalent to the real
2438   // implementation.
2439   // This happens in glibc's btowc and in some configure checks.
2440   return !isTriviallyRecursive(F);
2441 }
2442 
2443 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2444   return CodeGenOpts.OptimizationLevel > 0;
2445 }
2446 
2447 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2448                                                        llvm::GlobalValue *GV) {
2449   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2450 
2451   if (FD->isCPUSpecificMultiVersion()) {
2452     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2453     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2454       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2455     // Requires multiple emits.
2456   } else
2457     EmitGlobalFunctionDefinition(GD, GV);
2458 }
2459 
2460 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2461   const auto *D = cast<ValueDecl>(GD.getDecl());
2462 
2463   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2464                                  Context.getSourceManager(),
2465                                  "Generating code for declaration");
2466 
2467   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2468     // At -O0, don't generate IR for functions with available_externally
2469     // linkage.
2470     if (!shouldEmitFunction(GD))
2471       return;
2472 
2473     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2474       // Make sure to emit the definition(s) before we emit the thunks.
2475       // This is necessary for the generation of certain thunks.
2476       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2477         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2478       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2479         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2480       else if (FD->isMultiVersion())
2481         EmitMultiVersionFunctionDefinition(GD, GV);
2482       else
2483         EmitGlobalFunctionDefinition(GD, GV);
2484 
2485       if (Method->isVirtual())
2486         getVTables().EmitThunks(GD);
2487 
2488       return;
2489     }
2490 
2491     if (FD->isMultiVersion())
2492       return EmitMultiVersionFunctionDefinition(GD, GV);
2493     return EmitGlobalFunctionDefinition(GD, GV);
2494   }
2495 
2496   if (const auto *VD = dyn_cast<VarDecl>(D))
2497     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2498 
2499   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2500 }
2501 
2502 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2503                                                       llvm::Function *NewFn);
2504 
2505 static unsigned
2506 TargetMVPriority(const TargetInfo &TI,
2507                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2508   unsigned Priority = 0;
2509   for (StringRef Feat : RO.Conditions.Features)
2510     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2511 
2512   if (!RO.Conditions.Architecture.empty())
2513     Priority = std::max(
2514         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2515   return Priority;
2516 }
2517 
2518 void CodeGenModule::emitMultiVersionFunctions() {
2519   for (GlobalDecl GD : MultiVersionFuncs) {
2520     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2521     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2522     getContext().forEachMultiversionedFunctionVersion(
2523         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2524           GlobalDecl CurGD{
2525               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2526           StringRef MangledName = getMangledName(CurGD);
2527           llvm::Constant *Func = GetGlobalValue(MangledName);
2528           if (!Func) {
2529             if (CurFD->isDefined()) {
2530               EmitGlobalFunctionDefinition(CurGD, nullptr);
2531               Func = GetGlobalValue(MangledName);
2532             } else {
2533               const CGFunctionInfo &FI =
2534                   getTypes().arrangeGlobalDeclaration(GD);
2535               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2536               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2537                                        /*DontDefer=*/false, ForDefinition);
2538             }
2539             assert(Func && "This should have just been created");
2540           }
2541 
2542           const auto *TA = CurFD->getAttr<TargetAttr>();
2543           llvm::SmallVector<StringRef, 8> Feats;
2544           TA->getAddedFeatures(Feats);
2545 
2546           Options.emplace_back(cast<llvm::Function>(Func),
2547                                TA->getArchitecture(), Feats);
2548         });
2549 
2550     llvm::Function *ResolverFunc;
2551     const TargetInfo &TI = getTarget();
2552 
2553     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2554       ResolverFunc = cast<llvm::Function>(
2555           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2556     else
2557       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2558 
2559     if (supportsCOMDAT())
2560       ResolverFunc->setComdat(
2561           getModule().getOrInsertComdat(ResolverFunc->getName()));
2562 
2563     std::stable_sort(
2564         Options.begin(), Options.end(),
2565         [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2566               const CodeGenFunction::MultiVersionResolverOption &RHS) {
2567           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2568         });
2569     CodeGenFunction CGF(*this);
2570     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2571   }
2572 }
2573 
2574 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2575   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2576   assert(FD && "Not a FunctionDecl?");
2577   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2578   assert(DD && "Not a cpu_dispatch Function?");
2579   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2580 
2581   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2582     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2583     DeclTy = getTypes().GetFunctionType(FInfo);
2584   }
2585 
2586   StringRef ResolverName = getMangledName(GD);
2587 
2588   llvm::Type *ResolverType;
2589   GlobalDecl ResolverGD;
2590   if (getTarget().supportsIFunc())
2591     ResolverType = llvm::FunctionType::get(
2592         llvm::PointerType::get(DeclTy,
2593                                Context.getTargetAddressSpace(FD->getType())),
2594         false);
2595   else {
2596     ResolverType = DeclTy;
2597     ResolverGD = GD;
2598   }
2599 
2600   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2601       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2602 
2603   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2604   const TargetInfo &Target = getTarget();
2605   unsigned Index = 0;
2606   for (const IdentifierInfo *II : DD->cpus()) {
2607     // Get the name of the target function so we can look it up/create it.
2608     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2609                               getCPUSpecificMangling(*this, II->getName());
2610 
2611     llvm::Constant *Func = GetGlobalValue(MangledName);
2612 
2613     if (!Func) {
2614       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2615       if (ExistingDecl.getDecl() &&
2616           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2617         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2618         Func = GetGlobalValue(MangledName);
2619       } else {
2620         if (!ExistingDecl.getDecl())
2621           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2622 
2623       Func = GetOrCreateLLVMFunction(
2624           MangledName, DeclTy, ExistingDecl,
2625           /*ForVTable=*/false, /*DontDefer=*/true,
2626           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2627       }
2628     }
2629 
2630     llvm::SmallVector<StringRef, 32> Features;
2631     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2632     llvm::transform(Features, Features.begin(),
2633                     [](StringRef Str) { return Str.substr(1); });
2634     Features.erase(std::remove_if(
2635         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2636           return !Target.validateCpuSupports(Feat);
2637         }), Features.end());
2638     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2639     ++Index;
2640   }
2641 
2642   llvm::sort(
2643       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2644                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2645         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2646                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2647       });
2648 
2649   // If the list contains multiple 'default' versions, such as when it contains
2650   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2651   // always run on at least a 'pentium'). We do this by deleting the 'least
2652   // advanced' (read, lowest mangling letter).
2653   while (Options.size() > 1 &&
2654          CodeGenFunction::GetX86CpuSupportsMask(
2655              (Options.end() - 2)->Conditions.Features) == 0) {
2656     StringRef LHSName = (Options.end() - 2)->Function->getName();
2657     StringRef RHSName = (Options.end() - 1)->Function->getName();
2658     if (LHSName.compare(RHSName) < 0)
2659       Options.erase(Options.end() - 2);
2660     else
2661       Options.erase(Options.end() - 1);
2662   }
2663 
2664   CodeGenFunction CGF(*this);
2665   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2666 }
2667 
2668 /// If a dispatcher for the specified mangled name is not in the module, create
2669 /// and return an llvm Function with the specified type.
2670 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2671     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2672   std::string MangledName =
2673       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2674 
2675   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2676   // a separate resolver).
2677   std::string ResolverName = MangledName;
2678   if (getTarget().supportsIFunc())
2679     ResolverName += ".ifunc";
2680   else if (FD->isTargetMultiVersion())
2681     ResolverName += ".resolver";
2682 
2683   // If this already exists, just return that one.
2684   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2685     return ResolverGV;
2686 
2687   // Since this is the first time we've created this IFunc, make sure
2688   // that we put this multiversioned function into the list to be
2689   // replaced later if necessary (target multiversioning only).
2690   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2691     MultiVersionFuncs.push_back(GD);
2692 
2693   if (getTarget().supportsIFunc()) {
2694     llvm::Type *ResolverType = llvm::FunctionType::get(
2695         llvm::PointerType::get(
2696             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2697         false);
2698     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2699         MangledName + ".resolver", ResolverType, GlobalDecl{},
2700         /*ForVTable=*/false);
2701     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2702         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2703     GIF->setName(ResolverName);
2704     SetCommonAttributes(FD, GIF);
2705 
2706     return GIF;
2707   }
2708 
2709   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2710       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2711   assert(isa<llvm::GlobalValue>(Resolver) &&
2712          "Resolver should be created for the first time");
2713   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2714   return Resolver;
2715 }
2716 
2717 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2718 /// module, create and return an llvm Function with the specified type. If there
2719 /// is something in the module with the specified name, return it potentially
2720 /// bitcasted to the right type.
2721 ///
2722 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2723 /// to set the attributes on the function when it is first created.
2724 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2725     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2726     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2727     ForDefinition_t IsForDefinition) {
2728   const Decl *D = GD.getDecl();
2729 
2730   // Any attempts to use a MultiVersion function should result in retrieving
2731   // the iFunc instead. Name Mangling will handle the rest of the changes.
2732   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2733     // For the device mark the function as one that should be emitted.
2734     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2735         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2736         !DontDefer && !IsForDefinition) {
2737       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2738         GlobalDecl GDDef;
2739         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2740           GDDef = GlobalDecl(CD, GD.getCtorType());
2741         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2742           GDDef = GlobalDecl(DD, GD.getDtorType());
2743         else
2744           GDDef = GlobalDecl(FDDef);
2745         EmitGlobal(GDDef);
2746       }
2747     }
2748 
2749     if (FD->isMultiVersion()) {
2750       const auto *TA = FD->getAttr<TargetAttr>();
2751       if (TA && TA->isDefaultVersion())
2752         UpdateMultiVersionNames(GD, FD);
2753       if (!IsForDefinition)
2754         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
2755     }
2756   }
2757 
2758   // Lookup the entry, lazily creating it if necessary.
2759   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2760   if (Entry) {
2761     if (WeakRefReferences.erase(Entry)) {
2762       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2763       if (FD && !FD->hasAttr<WeakAttr>())
2764         Entry->setLinkage(llvm::Function::ExternalLinkage);
2765     }
2766 
2767     // Handle dropped DLL attributes.
2768     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2769       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2770       setDSOLocal(Entry);
2771     }
2772 
2773     // If there are two attempts to define the same mangled name, issue an
2774     // error.
2775     if (IsForDefinition && !Entry->isDeclaration()) {
2776       GlobalDecl OtherGD;
2777       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2778       // to make sure that we issue an error only once.
2779       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2780           (GD.getCanonicalDecl().getDecl() !=
2781            OtherGD.getCanonicalDecl().getDecl()) &&
2782           DiagnosedConflictingDefinitions.insert(GD).second) {
2783         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2784             << MangledName;
2785         getDiags().Report(OtherGD.getDecl()->getLocation(),
2786                           diag::note_previous_definition);
2787       }
2788     }
2789 
2790     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2791         (Entry->getType()->getElementType() == Ty)) {
2792       return Entry;
2793     }
2794 
2795     // Make sure the result is of the correct type.
2796     // (If function is requested for a definition, we always need to create a new
2797     // function, not just return a bitcast.)
2798     if (!IsForDefinition)
2799       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2800   }
2801 
2802   // This function doesn't have a complete type (for example, the return
2803   // type is an incomplete struct). Use a fake type instead, and make
2804   // sure not to try to set attributes.
2805   bool IsIncompleteFunction = false;
2806 
2807   llvm::FunctionType *FTy;
2808   if (isa<llvm::FunctionType>(Ty)) {
2809     FTy = cast<llvm::FunctionType>(Ty);
2810   } else {
2811     FTy = llvm::FunctionType::get(VoidTy, false);
2812     IsIncompleteFunction = true;
2813   }
2814 
2815   llvm::Function *F =
2816       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2817                              Entry ? StringRef() : MangledName, &getModule());
2818 
2819   // If we already created a function with the same mangled name (but different
2820   // type) before, take its name and add it to the list of functions to be
2821   // replaced with F at the end of CodeGen.
2822   //
2823   // This happens if there is a prototype for a function (e.g. "int f()") and
2824   // then a definition of a different type (e.g. "int f(int x)").
2825   if (Entry) {
2826     F->takeName(Entry);
2827 
2828     // This might be an implementation of a function without a prototype, in
2829     // which case, try to do special replacement of calls which match the new
2830     // prototype.  The really key thing here is that we also potentially drop
2831     // arguments from the call site so as to make a direct call, which makes the
2832     // inliner happier and suppresses a number of optimizer warnings (!) about
2833     // dropping arguments.
2834     if (!Entry->use_empty()) {
2835       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2836       Entry->removeDeadConstantUsers();
2837     }
2838 
2839     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2840         F, Entry->getType()->getElementType()->getPointerTo());
2841     addGlobalValReplacement(Entry, BC);
2842   }
2843 
2844   assert(F->getName() == MangledName && "name was uniqued!");
2845   if (D)
2846     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2847   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2848     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2849     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2850   }
2851 
2852   if (!DontDefer) {
2853     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2854     // each other bottoming out with the base dtor.  Therefore we emit non-base
2855     // dtors on usage, even if there is no dtor definition in the TU.
2856     if (D && isa<CXXDestructorDecl>(D) &&
2857         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2858                                            GD.getDtorType()))
2859       addDeferredDeclToEmit(GD);
2860 
2861     // This is the first use or definition of a mangled name.  If there is a
2862     // deferred decl with this name, remember that we need to emit it at the end
2863     // of the file.
2864     auto DDI = DeferredDecls.find(MangledName);
2865     if (DDI != DeferredDecls.end()) {
2866       // Move the potentially referenced deferred decl to the
2867       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2868       // don't need it anymore).
2869       addDeferredDeclToEmit(DDI->second);
2870       DeferredDecls.erase(DDI);
2871 
2872       // Otherwise, there are cases we have to worry about where we're
2873       // using a declaration for which we must emit a definition but where
2874       // we might not find a top-level definition:
2875       //   - member functions defined inline in their classes
2876       //   - friend functions defined inline in some class
2877       //   - special member functions with implicit definitions
2878       // If we ever change our AST traversal to walk into class methods,
2879       // this will be unnecessary.
2880       //
2881       // We also don't emit a definition for a function if it's going to be an
2882       // entry in a vtable, unless it's already marked as used.
2883     } else if (getLangOpts().CPlusPlus && D) {
2884       // Look for a declaration that's lexically in a record.
2885       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2886            FD = FD->getPreviousDecl()) {
2887         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2888           if (FD->doesThisDeclarationHaveABody()) {
2889             addDeferredDeclToEmit(GD.getWithDecl(FD));
2890             break;
2891           }
2892         }
2893       }
2894     }
2895   }
2896 
2897   // Make sure the result is of the requested type.
2898   if (!IsIncompleteFunction) {
2899     assert(F->getType()->getElementType() == Ty);
2900     return F;
2901   }
2902 
2903   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2904   return llvm::ConstantExpr::getBitCast(F, PTy);
2905 }
2906 
2907 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2908 /// non-null, then this function will use the specified type if it has to
2909 /// create it (this occurs when we see a definition of the function).
2910 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2911                                                  llvm::Type *Ty,
2912                                                  bool ForVTable,
2913                                                  bool DontDefer,
2914                                               ForDefinition_t IsForDefinition) {
2915   // If there was no specific requested type, just convert it now.
2916   if (!Ty) {
2917     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2918     Ty = getTypes().ConvertType(FD->getType());
2919   }
2920 
2921   // Devirtualized destructor calls may come through here instead of via
2922   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2923   // of the complete destructor when necessary.
2924   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2925     if (getTarget().getCXXABI().isMicrosoft() &&
2926         GD.getDtorType() == Dtor_Complete &&
2927         DD->getParent()->getNumVBases() == 0)
2928       GD = GlobalDecl(DD, Dtor_Base);
2929   }
2930 
2931   StringRef MangledName = getMangledName(GD);
2932   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2933                                  /*IsThunk=*/false, llvm::AttributeList(),
2934                                  IsForDefinition);
2935 }
2936 
2937 static const FunctionDecl *
2938 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2939   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2940   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2941 
2942   IdentifierInfo &CII = C.Idents.get(Name);
2943   for (const auto &Result : DC->lookup(&CII))
2944     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2945       return FD;
2946 
2947   if (!C.getLangOpts().CPlusPlus)
2948     return nullptr;
2949 
2950   // Demangle the premangled name from getTerminateFn()
2951   IdentifierInfo &CXXII =
2952       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2953           ? C.Idents.get("terminate")
2954           : C.Idents.get(Name);
2955 
2956   for (const auto &N : {"__cxxabiv1", "std"}) {
2957     IdentifierInfo &NS = C.Idents.get(N);
2958     for (const auto &Result : DC->lookup(&NS)) {
2959       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2960       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2961         for (const auto &Result : LSD->lookup(&NS))
2962           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2963             break;
2964 
2965       if (ND)
2966         for (const auto &Result : ND->lookup(&CXXII))
2967           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2968             return FD;
2969     }
2970   }
2971 
2972   return nullptr;
2973 }
2974 
2975 /// CreateRuntimeFunction - Create a new runtime function with the specified
2976 /// type and name.
2977 llvm::FunctionCallee
2978 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2979                                      llvm::AttributeList ExtraAttrs,
2980                                      bool Local) {
2981   llvm::Constant *C =
2982       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2983                               /*DontDefer=*/false, /*IsThunk=*/false,
2984                               ExtraAttrs);
2985 
2986   if (auto *F = dyn_cast<llvm::Function>(C)) {
2987     if (F->empty()) {
2988       F->setCallingConv(getRuntimeCC());
2989 
2990       if (!Local && getTriple().isOSBinFormatCOFF() &&
2991           !getCodeGenOpts().LTOVisibilityPublicStd &&
2992           !getTriple().isWindowsGNUEnvironment()) {
2993         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2994         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2995           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2996           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2997         }
2998       }
2999       setDSOLocal(F);
3000     }
3001   }
3002 
3003   return {FTy, C};
3004 }
3005 
3006 /// isTypeConstant - Determine whether an object of this type can be emitted
3007 /// as a constant.
3008 ///
3009 /// If ExcludeCtor is true, the duration when the object's constructor runs
3010 /// will not be considered. The caller will need to verify that the object is
3011 /// not written to during its construction.
3012 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3013   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3014     return false;
3015 
3016   if (Context.getLangOpts().CPlusPlus) {
3017     if (const CXXRecordDecl *Record
3018           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3019       return ExcludeCtor && !Record->hasMutableFields() &&
3020              Record->hasTrivialDestructor();
3021   }
3022 
3023   return true;
3024 }
3025 
3026 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3027 /// create and return an llvm GlobalVariable with the specified type.  If there
3028 /// is something in the module with the specified name, return it potentially
3029 /// bitcasted to the right type.
3030 ///
3031 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3032 /// to set the attributes on the global when it is first created.
3033 ///
3034 /// If IsForDefinition is true, it is guaranteed that an actual global with
3035 /// type Ty will be returned, not conversion of a variable with the same
3036 /// mangled name but some other type.
3037 llvm::Constant *
3038 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3039                                      llvm::PointerType *Ty,
3040                                      const VarDecl *D,
3041                                      ForDefinition_t IsForDefinition) {
3042   // Lookup the entry, lazily creating it if necessary.
3043   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3044   if (Entry) {
3045     if (WeakRefReferences.erase(Entry)) {
3046       if (D && !D->hasAttr<WeakAttr>())
3047         Entry->setLinkage(llvm::Function::ExternalLinkage);
3048     }
3049 
3050     // Handle dropped DLL attributes.
3051     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3052       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3053 
3054     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3055       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3056 
3057     if (Entry->getType() == Ty)
3058       return Entry;
3059 
3060     // If there are two attempts to define the same mangled name, issue an
3061     // error.
3062     if (IsForDefinition && !Entry->isDeclaration()) {
3063       GlobalDecl OtherGD;
3064       const VarDecl *OtherD;
3065 
3066       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3067       // to make sure that we issue an error only once.
3068       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3069           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3070           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3071           OtherD->hasInit() &&
3072           DiagnosedConflictingDefinitions.insert(D).second) {
3073         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3074             << MangledName;
3075         getDiags().Report(OtherGD.getDecl()->getLocation(),
3076                           diag::note_previous_definition);
3077       }
3078     }
3079 
3080     // Make sure the result is of the correct type.
3081     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3082       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3083 
3084     // (If global is requested for a definition, we always need to create a new
3085     // global, not just return a bitcast.)
3086     if (!IsForDefinition)
3087       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3088   }
3089 
3090   auto AddrSpace = GetGlobalVarAddressSpace(D);
3091   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3092 
3093   auto *GV = new llvm::GlobalVariable(
3094       getModule(), Ty->getElementType(), false,
3095       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3096       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3097 
3098   // If we already created a global with the same mangled name (but different
3099   // type) before, take its name and remove it from its parent.
3100   if (Entry) {
3101     GV->takeName(Entry);
3102 
3103     if (!Entry->use_empty()) {
3104       llvm::Constant *NewPtrForOldDecl =
3105           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3106       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3107     }
3108 
3109     Entry->eraseFromParent();
3110   }
3111 
3112   // This is the first use or definition of a mangled name.  If there is a
3113   // deferred decl with this name, remember that we need to emit it at the end
3114   // of the file.
3115   auto DDI = DeferredDecls.find(MangledName);
3116   if (DDI != DeferredDecls.end()) {
3117     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3118     // list, and remove it from DeferredDecls (since we don't need it anymore).
3119     addDeferredDeclToEmit(DDI->second);
3120     DeferredDecls.erase(DDI);
3121   }
3122 
3123   // Handle things which are present even on external declarations.
3124   if (D) {
3125     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3126       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3127 
3128     // FIXME: This code is overly simple and should be merged with other global
3129     // handling.
3130     GV->setConstant(isTypeConstant(D->getType(), false));
3131 
3132     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3133 
3134     setLinkageForGV(GV, D);
3135 
3136     if (D->getTLSKind()) {
3137       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3138         CXXThreadLocals.push_back(D);
3139       setTLSMode(GV, *D);
3140     }
3141 
3142     setGVProperties(GV, D);
3143 
3144     // If required by the ABI, treat declarations of static data members with
3145     // inline initializers as definitions.
3146     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3147       EmitGlobalVarDefinition(D);
3148     }
3149 
3150     // Emit section information for extern variables.
3151     if (D->hasExternalStorage()) {
3152       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3153         GV->setSection(SA->getName());
3154     }
3155 
3156     // Handle XCore specific ABI requirements.
3157     if (getTriple().getArch() == llvm::Triple::xcore &&
3158         D->getLanguageLinkage() == CLanguageLinkage &&
3159         D->getType().isConstant(Context) &&
3160         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3161       GV->setSection(".cp.rodata");
3162 
3163     // Check if we a have a const declaration with an initializer, we may be
3164     // able to emit it as available_externally to expose it's value to the
3165     // optimizer.
3166     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3167         D->getType().isConstQualified() && !GV->hasInitializer() &&
3168         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3169       const auto *Record =
3170           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3171       bool HasMutableFields = Record && Record->hasMutableFields();
3172       if (!HasMutableFields) {
3173         const VarDecl *InitDecl;
3174         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3175         if (InitExpr) {
3176           ConstantEmitter emitter(*this);
3177           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3178           if (Init) {
3179             auto *InitType = Init->getType();
3180             if (GV->getType()->getElementType() != InitType) {
3181               // The type of the initializer does not match the definition.
3182               // This happens when an initializer has a different type from
3183               // the type of the global (because of padding at the end of a
3184               // structure for instance).
3185               GV->setName(StringRef());
3186               // Make a new global with the correct type, this is now guaranteed
3187               // to work.
3188               auto *NewGV = cast<llvm::GlobalVariable>(
3189                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3190 
3191               // Erase the old global, since it is no longer used.
3192               GV->eraseFromParent();
3193               GV = NewGV;
3194             } else {
3195               GV->setInitializer(Init);
3196               GV->setConstant(true);
3197               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3198             }
3199             emitter.finalize(GV);
3200           }
3201         }
3202       }
3203     }
3204   }
3205 
3206   LangAS ExpectedAS =
3207       D ? D->getType().getAddressSpace()
3208         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3209   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3210          Ty->getPointerAddressSpace());
3211   if (AddrSpace != ExpectedAS)
3212     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3213                                                        ExpectedAS, Ty);
3214 
3215   if (GV->isDeclaration())
3216     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3217 
3218   return GV;
3219 }
3220 
3221 llvm::Constant *
3222 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3223                                ForDefinition_t IsForDefinition) {
3224   const Decl *D = GD.getDecl();
3225   if (isa<CXXConstructorDecl>(D))
3226     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3227                                 getFromCtorType(GD.getCtorType()),
3228                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3229                                 /*DontDefer=*/false, IsForDefinition);
3230   else if (isa<CXXDestructorDecl>(D))
3231     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3232                                 getFromDtorType(GD.getDtorType()),
3233                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3234                                 /*DontDefer=*/false, IsForDefinition);
3235   else if (isa<CXXMethodDecl>(D)) {
3236     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3237         cast<CXXMethodDecl>(D));
3238     auto Ty = getTypes().GetFunctionType(*FInfo);
3239     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3240                              IsForDefinition);
3241   } else if (isa<FunctionDecl>(D)) {
3242     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3243     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3244     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3245                              IsForDefinition);
3246   } else
3247     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3248                               IsForDefinition);
3249 }
3250 
3251 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3252     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3253     unsigned Alignment) {
3254   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3255   llvm::GlobalVariable *OldGV = nullptr;
3256 
3257   if (GV) {
3258     // Check if the variable has the right type.
3259     if (GV->getType()->getElementType() == Ty)
3260       return GV;
3261 
3262     // Because C++ name mangling, the only way we can end up with an already
3263     // existing global with the same name is if it has been declared extern "C".
3264     assert(GV->isDeclaration() && "Declaration has wrong type!");
3265     OldGV = GV;
3266   }
3267 
3268   // Create a new variable.
3269   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3270                                 Linkage, nullptr, Name);
3271 
3272   if (OldGV) {
3273     // Replace occurrences of the old variable if needed.
3274     GV->takeName(OldGV);
3275 
3276     if (!OldGV->use_empty()) {
3277       llvm::Constant *NewPtrForOldDecl =
3278       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3279       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3280     }
3281 
3282     OldGV->eraseFromParent();
3283   }
3284 
3285   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3286       !GV->hasAvailableExternallyLinkage())
3287     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3288 
3289   GV->setAlignment(Alignment);
3290 
3291   return GV;
3292 }
3293 
3294 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3295 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3296 /// then it will be created with the specified type instead of whatever the
3297 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3298 /// that an actual global with type Ty will be returned, not conversion of a
3299 /// variable with the same mangled name but some other type.
3300 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3301                                                   llvm::Type *Ty,
3302                                            ForDefinition_t IsForDefinition) {
3303   assert(D->hasGlobalStorage() && "Not a global variable");
3304   QualType ASTTy = D->getType();
3305   if (!Ty)
3306     Ty = getTypes().ConvertTypeForMem(ASTTy);
3307 
3308   llvm::PointerType *PTy =
3309     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3310 
3311   StringRef MangledName = getMangledName(D);
3312   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3313 }
3314 
3315 /// CreateRuntimeVariable - Create a new runtime global variable with the
3316 /// specified type and name.
3317 llvm::Constant *
3318 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3319                                      StringRef Name) {
3320   auto *Ret =
3321       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3322   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3323   return Ret;
3324 }
3325 
3326 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3327   assert(!D->getInit() && "Cannot emit definite definitions here!");
3328 
3329   StringRef MangledName = getMangledName(D);
3330   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3331 
3332   // We already have a definition, not declaration, with the same mangled name.
3333   // Emitting of declaration is not required (and actually overwrites emitted
3334   // definition).
3335   if (GV && !GV->isDeclaration())
3336     return;
3337 
3338   // If we have not seen a reference to this variable yet, place it into the
3339   // deferred declarations table to be emitted if needed later.
3340   if (!MustBeEmitted(D) && !GV) {
3341       DeferredDecls[MangledName] = D;
3342       return;
3343   }
3344 
3345   // The tentative definition is the only definition.
3346   EmitGlobalVarDefinition(D);
3347 }
3348 
3349 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3350   return Context.toCharUnitsFromBits(
3351       getDataLayout().getTypeStoreSizeInBits(Ty));
3352 }
3353 
3354 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3355   LangAS AddrSpace = LangAS::Default;
3356   if (LangOpts.OpenCL) {
3357     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3358     assert(AddrSpace == LangAS::opencl_global ||
3359            AddrSpace == LangAS::opencl_constant ||
3360            AddrSpace == LangAS::opencl_local ||
3361            AddrSpace >= LangAS::FirstTargetAddressSpace);
3362     return AddrSpace;
3363   }
3364 
3365   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3366     if (D && D->hasAttr<CUDAConstantAttr>())
3367       return LangAS::cuda_constant;
3368     else if (D && D->hasAttr<CUDASharedAttr>())
3369       return LangAS::cuda_shared;
3370     else if (D && D->hasAttr<CUDADeviceAttr>())
3371       return LangAS::cuda_device;
3372     else if (D && D->getType().isConstQualified())
3373       return LangAS::cuda_constant;
3374     else
3375       return LangAS::cuda_device;
3376   }
3377 
3378   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3379 }
3380 
3381 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3382   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3383   if (LangOpts.OpenCL)
3384     return LangAS::opencl_constant;
3385   if (auto AS = getTarget().getConstantAddressSpace())
3386     return AS.getValue();
3387   return LangAS::Default;
3388 }
3389 
3390 // In address space agnostic languages, string literals are in default address
3391 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3392 // emitted in constant address space in LLVM IR. To be consistent with other
3393 // parts of AST, string literal global variables in constant address space
3394 // need to be casted to default address space before being put into address
3395 // map and referenced by other part of CodeGen.
3396 // In OpenCL, string literals are in constant address space in AST, therefore
3397 // they should not be casted to default address space.
3398 static llvm::Constant *
3399 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3400                                        llvm::GlobalVariable *GV) {
3401   llvm::Constant *Cast = GV;
3402   if (!CGM.getLangOpts().OpenCL) {
3403     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3404       if (AS != LangAS::Default)
3405         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3406             CGM, GV, AS.getValue(), LangAS::Default,
3407             GV->getValueType()->getPointerTo(
3408                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3409     }
3410   }
3411   return Cast;
3412 }
3413 
3414 template<typename SomeDecl>
3415 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3416                                                llvm::GlobalValue *GV) {
3417   if (!getLangOpts().CPlusPlus)
3418     return;
3419 
3420   // Must have 'used' attribute, or else inline assembly can't rely on
3421   // the name existing.
3422   if (!D->template hasAttr<UsedAttr>())
3423     return;
3424 
3425   // Must have internal linkage and an ordinary name.
3426   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3427     return;
3428 
3429   // Must be in an extern "C" context. Entities declared directly within
3430   // a record are not extern "C" even if the record is in such a context.
3431   const SomeDecl *First = D->getFirstDecl();
3432   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3433     return;
3434 
3435   // OK, this is an internal linkage entity inside an extern "C" linkage
3436   // specification. Make a note of that so we can give it the "expected"
3437   // mangled name if nothing else is using that name.
3438   std::pair<StaticExternCMap::iterator, bool> R =
3439       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3440 
3441   // If we have multiple internal linkage entities with the same name
3442   // in extern "C" regions, none of them gets that name.
3443   if (!R.second)
3444     R.first->second = nullptr;
3445 }
3446 
3447 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3448   if (!CGM.supportsCOMDAT())
3449     return false;
3450 
3451   if (D.hasAttr<SelectAnyAttr>())
3452     return true;
3453 
3454   GVALinkage Linkage;
3455   if (auto *VD = dyn_cast<VarDecl>(&D))
3456     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3457   else
3458     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3459 
3460   switch (Linkage) {
3461   case GVA_Internal:
3462   case GVA_AvailableExternally:
3463   case GVA_StrongExternal:
3464     return false;
3465   case GVA_DiscardableODR:
3466   case GVA_StrongODR:
3467     return true;
3468   }
3469   llvm_unreachable("No such linkage");
3470 }
3471 
3472 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3473                                           llvm::GlobalObject &GO) {
3474   if (!shouldBeInCOMDAT(*this, D))
3475     return;
3476   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3477 }
3478 
3479 /// Pass IsTentative as true if you want to create a tentative definition.
3480 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3481                                             bool IsTentative) {
3482   // OpenCL global variables of sampler type are translated to function calls,
3483   // therefore no need to be translated.
3484   QualType ASTTy = D->getType();
3485   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3486     return;
3487 
3488   // If this is OpenMP device, check if it is legal to emit this global
3489   // normally.
3490   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3491       OpenMPRuntime->emitTargetGlobalVariable(D))
3492     return;
3493 
3494   llvm::Constant *Init = nullptr;
3495   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3496   bool NeedsGlobalCtor = false;
3497   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3498 
3499   const VarDecl *InitDecl;
3500   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3501 
3502   Optional<ConstantEmitter> emitter;
3503 
3504   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3505   // as part of their declaration."  Sema has already checked for
3506   // error cases, so we just need to set Init to UndefValue.
3507   bool IsCUDASharedVar =
3508       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3509   // Shadows of initialized device-side global variables are also left
3510   // undefined.
3511   bool IsCUDAShadowVar =
3512       !getLangOpts().CUDAIsDevice &&
3513       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3514        D->hasAttr<CUDASharedAttr>());
3515   if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3516     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3517   else if (!InitExpr) {
3518     // This is a tentative definition; tentative definitions are
3519     // implicitly initialized with { 0 }.
3520     //
3521     // Note that tentative definitions are only emitted at the end of
3522     // a translation unit, so they should never have incomplete
3523     // type. In addition, EmitTentativeDefinition makes sure that we
3524     // never attempt to emit a tentative definition if a real one
3525     // exists. A use may still exists, however, so we still may need
3526     // to do a RAUW.
3527     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3528     Init = EmitNullConstant(D->getType());
3529   } else {
3530     initializedGlobalDecl = GlobalDecl(D);
3531     emitter.emplace(*this);
3532     Init = emitter->tryEmitForInitializer(*InitDecl);
3533 
3534     if (!Init) {
3535       QualType T = InitExpr->getType();
3536       if (D->getType()->isReferenceType())
3537         T = D->getType();
3538 
3539       if (getLangOpts().CPlusPlus) {
3540         Init = EmitNullConstant(T);
3541         NeedsGlobalCtor = true;
3542       } else {
3543         ErrorUnsupported(D, "static initializer");
3544         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3545       }
3546     } else {
3547       // We don't need an initializer, so remove the entry for the delayed
3548       // initializer position (just in case this entry was delayed) if we
3549       // also don't need to register a destructor.
3550       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3551         DelayedCXXInitPosition.erase(D);
3552     }
3553   }
3554 
3555   llvm::Type* InitType = Init->getType();
3556   llvm::Constant *Entry =
3557       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3558 
3559   // Strip off a bitcast if we got one back.
3560   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3561     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3562            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3563            // All zero index gep.
3564            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3565     Entry = CE->getOperand(0);
3566   }
3567 
3568   // Entry is now either a Function or GlobalVariable.
3569   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3570 
3571   // We have a definition after a declaration with the wrong type.
3572   // We must make a new GlobalVariable* and update everything that used OldGV
3573   // (a declaration or tentative definition) with the new GlobalVariable*
3574   // (which will be a definition).
3575   //
3576   // This happens if there is a prototype for a global (e.g.
3577   // "extern int x[];") and then a definition of a different type (e.g.
3578   // "int x[10];"). This also happens when an initializer has a different type
3579   // from the type of the global (this happens with unions).
3580   if (!GV || GV->getType()->getElementType() != InitType ||
3581       GV->getType()->getAddressSpace() !=
3582           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3583 
3584     // Move the old entry aside so that we'll create a new one.
3585     Entry->setName(StringRef());
3586 
3587     // Make a new global with the correct type, this is now guaranteed to work.
3588     GV = cast<llvm::GlobalVariable>(
3589         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3590 
3591     // Replace all uses of the old global with the new global
3592     llvm::Constant *NewPtrForOldDecl =
3593         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3594     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3595 
3596     // Erase the old global, since it is no longer used.
3597     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3598   }
3599 
3600   MaybeHandleStaticInExternC(D, GV);
3601 
3602   if (D->hasAttr<AnnotateAttr>())
3603     AddGlobalAnnotations(D, GV);
3604 
3605   // Set the llvm linkage type as appropriate.
3606   llvm::GlobalValue::LinkageTypes Linkage =
3607       getLLVMLinkageVarDefinition(D, GV->isConstant());
3608 
3609   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3610   // the device. [...]"
3611   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3612   // __device__, declares a variable that: [...]
3613   // Is accessible from all the threads within the grid and from the host
3614   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3615   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3616   if (GV && LangOpts.CUDA) {
3617     if (LangOpts.CUDAIsDevice) {
3618       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3619         GV->setExternallyInitialized(true);
3620     } else {
3621       // Host-side shadows of external declarations of device-side
3622       // global variables become internal definitions. These have to
3623       // be internal in order to prevent name conflicts with global
3624       // host variables with the same name in a different TUs.
3625       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3626         Linkage = llvm::GlobalValue::InternalLinkage;
3627 
3628         // Shadow variables and their properties must be registered
3629         // with CUDA runtime.
3630         unsigned Flags = 0;
3631         if (!D->hasDefinition())
3632           Flags |= CGCUDARuntime::ExternDeviceVar;
3633         if (D->hasAttr<CUDAConstantAttr>())
3634           Flags |= CGCUDARuntime::ConstantDeviceVar;
3635         // Extern global variables will be registered in the TU where they are
3636         // defined.
3637         if (!D->hasExternalStorage())
3638           getCUDARuntime().registerDeviceVar(*GV, Flags);
3639       } else if (D->hasAttr<CUDASharedAttr>())
3640         // __shared__ variables are odd. Shadows do get created, but
3641         // they are not registered with the CUDA runtime, so they
3642         // can't really be used to access their device-side
3643         // counterparts. It's not clear yet whether it's nvcc's bug or
3644         // a feature, but we've got to do the same for compatibility.
3645         Linkage = llvm::GlobalValue::InternalLinkage;
3646     }
3647   }
3648 
3649   GV->setInitializer(Init);
3650   if (emitter) emitter->finalize(GV);
3651 
3652   // If it is safe to mark the global 'constant', do so now.
3653   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3654                   isTypeConstant(D->getType(), true));
3655 
3656   // If it is in a read-only section, mark it 'constant'.
3657   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3658     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3659     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3660       GV->setConstant(true);
3661   }
3662 
3663   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3664 
3665 
3666   // On Darwin, if the normal linkage of a C++ thread_local variable is
3667   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3668   // copies within a linkage unit; otherwise, the backing variable has
3669   // internal linkage and all accesses should just be calls to the
3670   // Itanium-specified entry point, which has the normal linkage of the
3671   // variable. This is to preserve the ability to change the implementation
3672   // behind the scenes.
3673   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3674       Context.getTargetInfo().getTriple().isOSDarwin() &&
3675       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3676       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3677     Linkage = llvm::GlobalValue::InternalLinkage;
3678 
3679   GV->setLinkage(Linkage);
3680   if (D->hasAttr<DLLImportAttr>())
3681     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3682   else if (D->hasAttr<DLLExportAttr>())
3683     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3684   else
3685     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3686 
3687   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3688     // common vars aren't constant even if declared const.
3689     GV->setConstant(false);
3690     // Tentative definition of global variables may be initialized with
3691     // non-zero null pointers. In this case they should have weak linkage
3692     // since common linkage must have zero initializer and must not have
3693     // explicit section therefore cannot have non-zero initial value.
3694     if (!GV->getInitializer()->isNullValue())
3695       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3696   }
3697 
3698   setNonAliasAttributes(D, GV);
3699 
3700   if (D->getTLSKind() && !GV->isThreadLocal()) {
3701     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3702       CXXThreadLocals.push_back(D);
3703     setTLSMode(GV, *D);
3704   }
3705 
3706   maybeSetTrivialComdat(*D, *GV);
3707 
3708   // Emit the initializer function if necessary.
3709   if (NeedsGlobalCtor || NeedsGlobalDtor)
3710     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3711 
3712   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3713 
3714   // Emit global variable debug information.
3715   if (CGDebugInfo *DI = getModuleDebugInfo())
3716     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3717       DI->EmitGlobalVariable(GV, D);
3718 }
3719 
3720 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3721                                       CodeGenModule &CGM, const VarDecl *D,
3722                                       bool NoCommon) {
3723   // Don't give variables common linkage if -fno-common was specified unless it
3724   // was overridden by a NoCommon attribute.
3725   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3726     return true;
3727 
3728   // C11 6.9.2/2:
3729   //   A declaration of an identifier for an object that has file scope without
3730   //   an initializer, and without a storage-class specifier or with the
3731   //   storage-class specifier static, constitutes a tentative definition.
3732   if (D->getInit() || D->hasExternalStorage())
3733     return true;
3734 
3735   // A variable cannot be both common and exist in a section.
3736   if (D->hasAttr<SectionAttr>())
3737     return true;
3738 
3739   // A variable cannot be both common and exist in a section.
3740   // We don't try to determine which is the right section in the front-end.
3741   // If no specialized section name is applicable, it will resort to default.
3742   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3743       D->hasAttr<PragmaClangDataSectionAttr>() ||
3744       D->hasAttr<PragmaClangRodataSectionAttr>())
3745     return true;
3746 
3747   // Thread local vars aren't considered common linkage.
3748   if (D->getTLSKind())
3749     return true;
3750 
3751   // Tentative definitions marked with WeakImportAttr are true definitions.
3752   if (D->hasAttr<WeakImportAttr>())
3753     return true;
3754 
3755   // A variable cannot be both common and exist in a comdat.
3756   if (shouldBeInCOMDAT(CGM, *D))
3757     return true;
3758 
3759   // Declarations with a required alignment do not have common linkage in MSVC
3760   // mode.
3761   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3762     if (D->hasAttr<AlignedAttr>())
3763       return true;
3764     QualType VarType = D->getType();
3765     if (Context.isAlignmentRequired(VarType))
3766       return true;
3767 
3768     if (const auto *RT = VarType->getAs<RecordType>()) {
3769       const RecordDecl *RD = RT->getDecl();
3770       for (const FieldDecl *FD : RD->fields()) {
3771         if (FD->isBitField())
3772           continue;
3773         if (FD->hasAttr<AlignedAttr>())
3774           return true;
3775         if (Context.isAlignmentRequired(FD->getType()))
3776           return true;
3777       }
3778     }
3779   }
3780 
3781   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
3782   // common symbols, so symbols with greater alignment requirements cannot be
3783   // common.
3784   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
3785   // alignments for common symbols via the aligncomm directive, so this
3786   // restriction only applies to MSVC environments.
3787   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
3788       Context.getTypeAlignIfKnown(D->getType()) >
3789           Context.toBits(CharUnits::fromQuantity(32)))
3790     return true;
3791 
3792   return false;
3793 }
3794 
3795 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3796     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3797   if (Linkage == GVA_Internal)
3798     return llvm::Function::InternalLinkage;
3799 
3800   if (D->hasAttr<WeakAttr>()) {
3801     if (IsConstantVariable)
3802       return llvm::GlobalVariable::WeakODRLinkage;
3803     else
3804       return llvm::GlobalVariable::WeakAnyLinkage;
3805   }
3806 
3807   if (const auto *FD = D->getAsFunction())
3808     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
3809       return llvm::GlobalVariable::LinkOnceAnyLinkage;
3810 
3811   // We are guaranteed to have a strong definition somewhere else,
3812   // so we can use available_externally linkage.
3813   if (Linkage == GVA_AvailableExternally)
3814     return llvm::GlobalValue::AvailableExternallyLinkage;
3815 
3816   // Note that Apple's kernel linker doesn't support symbol
3817   // coalescing, so we need to avoid linkonce and weak linkages there.
3818   // Normally, this means we just map to internal, but for explicit
3819   // instantiations we'll map to external.
3820 
3821   // In C++, the compiler has to emit a definition in every translation unit
3822   // that references the function.  We should use linkonce_odr because
3823   // a) if all references in this translation unit are optimized away, we
3824   // don't need to codegen it.  b) if the function persists, it needs to be
3825   // merged with other definitions. c) C++ has the ODR, so we know the
3826   // definition is dependable.
3827   if (Linkage == GVA_DiscardableODR)
3828     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3829                                             : llvm::Function::InternalLinkage;
3830 
3831   // An explicit instantiation of a template has weak linkage, since
3832   // explicit instantiations can occur in multiple translation units
3833   // and must all be equivalent. However, we are not allowed to
3834   // throw away these explicit instantiations.
3835   //
3836   // We don't currently support CUDA device code spread out across multiple TUs,
3837   // so say that CUDA templates are either external (for kernels) or internal.
3838   // This lets llvm perform aggressive inter-procedural optimizations.
3839   if (Linkage == GVA_StrongODR) {
3840     if (Context.getLangOpts().AppleKext)
3841       return llvm::Function::ExternalLinkage;
3842     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3843       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3844                                           : llvm::Function::InternalLinkage;
3845     return llvm::Function::WeakODRLinkage;
3846   }
3847 
3848   // C++ doesn't have tentative definitions and thus cannot have common
3849   // linkage.
3850   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3851       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3852                                  CodeGenOpts.NoCommon))
3853     return llvm::GlobalVariable::CommonLinkage;
3854 
3855   // selectany symbols are externally visible, so use weak instead of
3856   // linkonce.  MSVC optimizes away references to const selectany globals, so
3857   // all definitions should be the same and ODR linkage should be used.
3858   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3859   if (D->hasAttr<SelectAnyAttr>())
3860     return llvm::GlobalVariable::WeakODRLinkage;
3861 
3862   // Otherwise, we have strong external linkage.
3863   assert(Linkage == GVA_StrongExternal);
3864   return llvm::GlobalVariable::ExternalLinkage;
3865 }
3866 
3867 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3868     const VarDecl *VD, bool IsConstant) {
3869   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3870   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3871 }
3872 
3873 /// Replace the uses of a function that was declared with a non-proto type.
3874 /// We want to silently drop extra arguments from call sites
3875 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3876                                           llvm::Function *newFn) {
3877   // Fast path.
3878   if (old->use_empty()) return;
3879 
3880   llvm::Type *newRetTy = newFn->getReturnType();
3881   SmallVector<llvm::Value*, 4> newArgs;
3882   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3883 
3884   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3885          ui != ue; ) {
3886     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3887     llvm::User *user = use->getUser();
3888 
3889     // Recognize and replace uses of bitcasts.  Most calls to
3890     // unprototyped functions will use bitcasts.
3891     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3892       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3893         replaceUsesOfNonProtoConstant(bitcast, newFn);
3894       continue;
3895     }
3896 
3897     // Recognize calls to the function.
3898     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
3899     if (!callSite) continue;
3900     if (!callSite->isCallee(&*use))
3901       continue;
3902 
3903     // If the return types don't match exactly, then we can't
3904     // transform this call unless it's dead.
3905     if (callSite->getType() != newRetTy && !callSite->use_empty())
3906       continue;
3907 
3908     // Get the call site's attribute list.
3909     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3910     llvm::AttributeList oldAttrs = callSite->getAttributes();
3911 
3912     // If the function was passed too few arguments, don't transform.
3913     unsigned newNumArgs = newFn->arg_size();
3914     if (callSite->arg_size() < newNumArgs)
3915       continue;
3916 
3917     // If extra arguments were passed, we silently drop them.
3918     // If any of the types mismatch, we don't transform.
3919     unsigned argNo = 0;
3920     bool dontTransform = false;
3921     for (llvm::Argument &A : newFn->args()) {
3922       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
3923         dontTransform = true;
3924         break;
3925       }
3926 
3927       // Add any parameter attributes.
3928       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3929       argNo++;
3930     }
3931     if (dontTransform)
3932       continue;
3933 
3934     // Okay, we can transform this.  Create the new call instruction and copy
3935     // over the required information.
3936     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
3937 
3938     // Copy over any operand bundles.
3939     callSite->getOperandBundlesAsDefs(newBundles);
3940 
3941     llvm::CallBase *newCall;
3942     if (dyn_cast<llvm::CallInst>(callSite)) {
3943       newCall =
3944           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
3945     } else {
3946       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
3947       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
3948                                          oldInvoke->getUnwindDest(), newArgs,
3949                                          newBundles, "", callSite);
3950     }
3951     newArgs.clear(); // for the next iteration
3952 
3953     if (!newCall->getType()->isVoidTy())
3954       newCall->takeName(callSite);
3955     newCall->setAttributes(llvm::AttributeList::get(
3956         newFn->getContext(), oldAttrs.getFnAttributes(),
3957         oldAttrs.getRetAttributes(), newArgAttrs));
3958     newCall->setCallingConv(callSite->getCallingConv());
3959 
3960     // Finally, remove the old call, replacing any uses with the new one.
3961     if (!callSite->use_empty())
3962       callSite->replaceAllUsesWith(newCall);
3963 
3964     // Copy debug location attached to CI.
3965     if (callSite->getDebugLoc())
3966       newCall->setDebugLoc(callSite->getDebugLoc());
3967 
3968     callSite->eraseFromParent();
3969   }
3970 }
3971 
3972 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3973 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3974 /// existing call uses of the old function in the module, this adjusts them to
3975 /// call the new function directly.
3976 ///
3977 /// This is not just a cleanup: the always_inline pass requires direct calls to
3978 /// functions to be able to inline them.  If there is a bitcast in the way, it
3979 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3980 /// run at -O0.
3981 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3982                                                       llvm::Function *NewFn) {
3983   // If we're redefining a global as a function, don't transform it.
3984   if (!isa<llvm::Function>(Old)) return;
3985 
3986   replaceUsesOfNonProtoConstant(Old, NewFn);
3987 }
3988 
3989 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3990   auto DK = VD->isThisDeclarationADefinition();
3991   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3992     return;
3993 
3994   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3995   // If we have a definition, this might be a deferred decl. If the
3996   // instantiation is explicit, make sure we emit it at the end.
3997   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3998     GetAddrOfGlobalVar(VD);
3999 
4000   EmitTopLevelDecl(VD);
4001 }
4002 
4003 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4004                                                  llvm::GlobalValue *GV) {
4005   const auto *D = cast<FunctionDecl>(GD.getDecl());
4006 
4007   // Compute the function info and LLVM type.
4008   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4009   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4010 
4011   // Get or create the prototype for the function.
4012   if (!GV || (GV->getType()->getElementType() != Ty))
4013     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4014                                                    /*DontDefer=*/true,
4015                                                    ForDefinition));
4016 
4017   // Already emitted.
4018   if (!GV->isDeclaration())
4019     return;
4020 
4021   // We need to set linkage and visibility on the function before
4022   // generating code for it because various parts of IR generation
4023   // want to propagate this information down (e.g. to local static
4024   // declarations).
4025   auto *Fn = cast<llvm::Function>(GV);
4026   setFunctionLinkage(GD, Fn);
4027 
4028   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4029   setGVProperties(Fn, GD);
4030 
4031   MaybeHandleStaticInExternC(D, Fn);
4032 
4033 
4034   maybeSetTrivialComdat(*D, *Fn);
4035 
4036   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4037 
4038   setNonAliasAttributes(GD, Fn);
4039   SetLLVMFunctionAttributesForDefinition(D, Fn);
4040 
4041   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4042     AddGlobalCtor(Fn, CA->getPriority());
4043   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4044     AddGlobalDtor(Fn, DA->getPriority());
4045   if (D->hasAttr<AnnotateAttr>())
4046     AddGlobalAnnotations(D, Fn);
4047 }
4048 
4049 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4050   const auto *D = cast<ValueDecl>(GD.getDecl());
4051   const AliasAttr *AA = D->getAttr<AliasAttr>();
4052   assert(AA && "Not an alias?");
4053 
4054   StringRef MangledName = getMangledName(GD);
4055 
4056   if (AA->getAliasee() == MangledName) {
4057     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4058     return;
4059   }
4060 
4061   // If there is a definition in the module, then it wins over the alias.
4062   // This is dubious, but allow it to be safe.  Just ignore the alias.
4063   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4064   if (Entry && !Entry->isDeclaration())
4065     return;
4066 
4067   Aliases.push_back(GD);
4068 
4069   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4070 
4071   // Create a reference to the named value.  This ensures that it is emitted
4072   // if a deferred decl.
4073   llvm::Constant *Aliasee;
4074   if (isa<llvm::FunctionType>(DeclTy))
4075     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4076                                       /*ForVTable=*/false);
4077   else
4078     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4079                                     llvm::PointerType::getUnqual(DeclTy),
4080                                     /*D=*/nullptr);
4081 
4082   // Create the new alias itself, but don't set a name yet.
4083   auto *GA = llvm::GlobalAlias::create(
4084       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4085 
4086   if (Entry) {
4087     if (GA->getAliasee() == Entry) {
4088       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4089       return;
4090     }
4091 
4092     assert(Entry->isDeclaration());
4093 
4094     // If there is a declaration in the module, then we had an extern followed
4095     // by the alias, as in:
4096     //   extern int test6();
4097     //   ...
4098     //   int test6() __attribute__((alias("test7")));
4099     //
4100     // Remove it and replace uses of it with the alias.
4101     GA->takeName(Entry);
4102 
4103     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4104                                                           Entry->getType()));
4105     Entry->eraseFromParent();
4106   } else {
4107     GA->setName(MangledName);
4108   }
4109 
4110   // Set attributes which are particular to an alias; this is a
4111   // specialization of the attributes which may be set on a global
4112   // variable/function.
4113   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4114       D->isWeakImported()) {
4115     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4116   }
4117 
4118   if (const auto *VD = dyn_cast<VarDecl>(D))
4119     if (VD->getTLSKind())
4120       setTLSMode(GA, *VD);
4121 
4122   SetCommonAttributes(GD, GA);
4123 }
4124 
4125 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4126   const auto *D = cast<ValueDecl>(GD.getDecl());
4127   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4128   assert(IFA && "Not an ifunc?");
4129 
4130   StringRef MangledName = getMangledName(GD);
4131 
4132   if (IFA->getResolver() == MangledName) {
4133     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4134     return;
4135   }
4136 
4137   // Report an error if some definition overrides ifunc.
4138   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4139   if (Entry && !Entry->isDeclaration()) {
4140     GlobalDecl OtherGD;
4141     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4142         DiagnosedConflictingDefinitions.insert(GD).second) {
4143       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4144           << MangledName;
4145       Diags.Report(OtherGD.getDecl()->getLocation(),
4146                    diag::note_previous_definition);
4147     }
4148     return;
4149   }
4150 
4151   Aliases.push_back(GD);
4152 
4153   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4154   llvm::Constant *Resolver =
4155       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4156                               /*ForVTable=*/false);
4157   llvm::GlobalIFunc *GIF =
4158       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4159                                 "", Resolver, &getModule());
4160   if (Entry) {
4161     if (GIF->getResolver() == Entry) {
4162       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4163       return;
4164     }
4165     assert(Entry->isDeclaration());
4166 
4167     // If there is a declaration in the module, then we had an extern followed
4168     // by the ifunc, as in:
4169     //   extern int test();
4170     //   ...
4171     //   int test() __attribute__((ifunc("resolver")));
4172     //
4173     // Remove it and replace uses of it with the ifunc.
4174     GIF->takeName(Entry);
4175 
4176     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4177                                                           Entry->getType()));
4178     Entry->eraseFromParent();
4179   } else
4180     GIF->setName(MangledName);
4181 
4182   SetCommonAttributes(GD, GIF);
4183 }
4184 
4185 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4186                                             ArrayRef<llvm::Type*> Tys) {
4187   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4188                                          Tys);
4189 }
4190 
4191 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4192 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4193                          const StringLiteral *Literal, bool TargetIsLSB,
4194                          bool &IsUTF16, unsigned &StringLength) {
4195   StringRef String = Literal->getString();
4196   unsigned NumBytes = String.size();
4197 
4198   // Check for simple case.
4199   if (!Literal->containsNonAsciiOrNull()) {
4200     StringLength = NumBytes;
4201     return *Map.insert(std::make_pair(String, nullptr)).first;
4202   }
4203 
4204   // Otherwise, convert the UTF8 literals into a string of shorts.
4205   IsUTF16 = true;
4206 
4207   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4208   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4209   llvm::UTF16 *ToPtr = &ToBuf[0];
4210 
4211   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4212                                  ToPtr + NumBytes, llvm::strictConversion);
4213 
4214   // ConvertUTF8toUTF16 returns the length in ToPtr.
4215   StringLength = ToPtr - &ToBuf[0];
4216 
4217   // Add an explicit null.
4218   *ToPtr = 0;
4219   return *Map.insert(std::make_pair(
4220                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4221                                    (StringLength + 1) * 2),
4222                          nullptr)).first;
4223 }
4224 
4225 ConstantAddress
4226 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4227   unsigned StringLength = 0;
4228   bool isUTF16 = false;
4229   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4230       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4231                                getDataLayout().isLittleEndian(), isUTF16,
4232                                StringLength);
4233 
4234   if (auto *C = Entry.second)
4235     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4236 
4237   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4238   llvm::Constant *Zeros[] = { Zero, Zero };
4239 
4240   const ASTContext &Context = getContext();
4241   const llvm::Triple &Triple = getTriple();
4242 
4243   const auto CFRuntime = getLangOpts().CFRuntime;
4244   const bool IsSwiftABI =
4245       static_cast<unsigned>(CFRuntime) >=
4246       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4247   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4248 
4249   // If we don't already have it, get __CFConstantStringClassReference.
4250   if (!CFConstantStringClassRef) {
4251     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4252     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4253     Ty = llvm::ArrayType::get(Ty, 0);
4254 
4255     switch (CFRuntime) {
4256     default: break;
4257     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4258     case LangOptions::CoreFoundationABI::Swift5_0:
4259       CFConstantStringClassName =
4260           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4261                               : "$s10Foundation19_NSCFConstantStringCN";
4262       Ty = IntPtrTy;
4263       break;
4264     case LangOptions::CoreFoundationABI::Swift4_2:
4265       CFConstantStringClassName =
4266           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4267                               : "$S10Foundation19_NSCFConstantStringCN";
4268       Ty = IntPtrTy;
4269       break;
4270     case LangOptions::CoreFoundationABI::Swift4_1:
4271       CFConstantStringClassName =
4272           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4273                               : "__T010Foundation19_NSCFConstantStringCN";
4274       Ty = IntPtrTy;
4275       break;
4276     }
4277 
4278     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4279 
4280     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4281       llvm::GlobalValue *GV = nullptr;
4282 
4283       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4284         IdentifierInfo &II = Context.Idents.get(GV->getName());
4285         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4286         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4287 
4288         const VarDecl *VD = nullptr;
4289         for (const auto &Result : DC->lookup(&II))
4290           if ((VD = dyn_cast<VarDecl>(Result)))
4291             break;
4292 
4293         if (Triple.isOSBinFormatELF()) {
4294           if (!VD)
4295             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4296         } else {
4297           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4298           if (!VD || !VD->hasAttr<DLLExportAttr>())
4299             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4300           else
4301             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4302         }
4303 
4304         setDSOLocal(GV);
4305       }
4306     }
4307 
4308     // Decay array -> ptr
4309     CFConstantStringClassRef =
4310         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4311                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4312   }
4313 
4314   QualType CFTy = Context.getCFConstantStringType();
4315 
4316   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4317 
4318   ConstantInitBuilder Builder(*this);
4319   auto Fields = Builder.beginStruct(STy);
4320 
4321   // Class pointer.
4322   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4323 
4324   // Flags.
4325   if (IsSwiftABI) {
4326     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4327     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4328   } else {
4329     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4330   }
4331 
4332   // String pointer.
4333   llvm::Constant *C = nullptr;
4334   if (isUTF16) {
4335     auto Arr = llvm::makeArrayRef(
4336         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4337         Entry.first().size() / 2);
4338     C = llvm::ConstantDataArray::get(VMContext, Arr);
4339   } else {
4340     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4341   }
4342 
4343   // Note: -fwritable-strings doesn't make the backing store strings of
4344   // CFStrings writable. (See <rdar://problem/10657500>)
4345   auto *GV =
4346       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4347                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4348   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4349   // Don't enforce the target's minimum global alignment, since the only use
4350   // of the string is via this class initializer.
4351   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4352                             : Context.getTypeAlignInChars(Context.CharTy);
4353   GV->setAlignment(Align.getQuantity());
4354 
4355   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4356   // Without it LLVM can merge the string with a non unnamed_addr one during
4357   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4358   if (Triple.isOSBinFormatMachO())
4359     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4360                            : "__TEXT,__cstring,cstring_literals");
4361   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4362   // the static linker to adjust permissions to read-only later on.
4363   else if (Triple.isOSBinFormatELF())
4364     GV->setSection(".rodata");
4365 
4366   // String.
4367   llvm::Constant *Str =
4368       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4369 
4370   if (isUTF16)
4371     // Cast the UTF16 string to the correct type.
4372     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4373   Fields.add(Str);
4374 
4375   // String length.
4376   llvm::IntegerType *LengthTy =
4377       llvm::IntegerType::get(getModule().getContext(),
4378                              Context.getTargetInfo().getLongWidth());
4379   if (IsSwiftABI) {
4380     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4381         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4382       LengthTy = Int32Ty;
4383     else
4384       LengthTy = IntPtrTy;
4385   }
4386   Fields.addInt(LengthTy, StringLength);
4387 
4388   CharUnits Alignment = getPointerAlign();
4389 
4390   // The struct.
4391   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4392                                     /*isConstant=*/false,
4393                                     llvm::GlobalVariable::PrivateLinkage);
4394   switch (Triple.getObjectFormat()) {
4395   case llvm::Triple::UnknownObjectFormat:
4396     llvm_unreachable("unknown file format");
4397   case llvm::Triple::COFF:
4398   case llvm::Triple::ELF:
4399   case llvm::Triple::Wasm:
4400     GV->setSection("cfstring");
4401     break;
4402   case llvm::Triple::MachO:
4403     GV->setSection("__DATA,__cfstring");
4404     break;
4405   }
4406   Entry.second = GV;
4407 
4408   return ConstantAddress(GV, Alignment);
4409 }
4410 
4411 bool CodeGenModule::getExpressionLocationsEnabled() const {
4412   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4413 }
4414 
4415 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4416   if (ObjCFastEnumerationStateType.isNull()) {
4417     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4418     D->startDefinition();
4419 
4420     QualType FieldTypes[] = {
4421       Context.UnsignedLongTy,
4422       Context.getPointerType(Context.getObjCIdType()),
4423       Context.getPointerType(Context.UnsignedLongTy),
4424       Context.getConstantArrayType(Context.UnsignedLongTy,
4425                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4426     };
4427 
4428     for (size_t i = 0; i < 4; ++i) {
4429       FieldDecl *Field = FieldDecl::Create(Context,
4430                                            D,
4431                                            SourceLocation(),
4432                                            SourceLocation(), nullptr,
4433                                            FieldTypes[i], /*TInfo=*/nullptr,
4434                                            /*BitWidth=*/nullptr,
4435                                            /*Mutable=*/false,
4436                                            ICIS_NoInit);
4437       Field->setAccess(AS_public);
4438       D->addDecl(Field);
4439     }
4440 
4441     D->completeDefinition();
4442     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4443   }
4444 
4445   return ObjCFastEnumerationStateType;
4446 }
4447 
4448 llvm::Constant *
4449 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4450   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4451 
4452   // Don't emit it as the address of the string, emit the string data itself
4453   // as an inline array.
4454   if (E->getCharByteWidth() == 1) {
4455     SmallString<64> Str(E->getString());
4456 
4457     // Resize the string to the right size, which is indicated by its type.
4458     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4459     Str.resize(CAT->getSize().getZExtValue());
4460     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4461   }
4462 
4463   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4464   llvm::Type *ElemTy = AType->getElementType();
4465   unsigned NumElements = AType->getNumElements();
4466 
4467   // Wide strings have either 2-byte or 4-byte elements.
4468   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4469     SmallVector<uint16_t, 32> Elements;
4470     Elements.reserve(NumElements);
4471 
4472     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4473       Elements.push_back(E->getCodeUnit(i));
4474     Elements.resize(NumElements);
4475     return llvm::ConstantDataArray::get(VMContext, Elements);
4476   }
4477 
4478   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4479   SmallVector<uint32_t, 32> Elements;
4480   Elements.reserve(NumElements);
4481 
4482   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4483     Elements.push_back(E->getCodeUnit(i));
4484   Elements.resize(NumElements);
4485   return llvm::ConstantDataArray::get(VMContext, Elements);
4486 }
4487 
4488 static llvm::GlobalVariable *
4489 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4490                       CodeGenModule &CGM, StringRef GlobalName,
4491                       CharUnits Alignment) {
4492   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4493       CGM.getStringLiteralAddressSpace());
4494 
4495   llvm::Module &M = CGM.getModule();
4496   // Create a global variable for this string
4497   auto *GV = new llvm::GlobalVariable(
4498       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4499       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4500   GV->setAlignment(Alignment.getQuantity());
4501   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4502   if (GV->isWeakForLinker()) {
4503     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4504     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4505   }
4506   CGM.setDSOLocal(GV);
4507 
4508   return GV;
4509 }
4510 
4511 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4512 /// constant array for the given string literal.
4513 ConstantAddress
4514 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4515                                                   StringRef Name) {
4516   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4517 
4518   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4519   llvm::GlobalVariable **Entry = nullptr;
4520   if (!LangOpts.WritableStrings) {
4521     Entry = &ConstantStringMap[C];
4522     if (auto GV = *Entry) {
4523       if (Alignment.getQuantity() > GV->getAlignment())
4524         GV->setAlignment(Alignment.getQuantity());
4525       return ConstantAddress(GV, Alignment);
4526     }
4527   }
4528 
4529   SmallString<256> MangledNameBuffer;
4530   StringRef GlobalVariableName;
4531   llvm::GlobalValue::LinkageTypes LT;
4532 
4533   // Mangle the string literal if that's how the ABI merges duplicate strings.
4534   // Don't do it if they are writable, since we don't want writes in one TU to
4535   // affect strings in another.
4536   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4537       !LangOpts.WritableStrings) {
4538     llvm::raw_svector_ostream Out(MangledNameBuffer);
4539     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4540     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4541     GlobalVariableName = MangledNameBuffer;
4542   } else {
4543     LT = llvm::GlobalValue::PrivateLinkage;
4544     GlobalVariableName = Name;
4545   }
4546 
4547   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4548   if (Entry)
4549     *Entry = GV;
4550 
4551   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4552                                   QualType());
4553 
4554   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4555                          Alignment);
4556 }
4557 
4558 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4559 /// array for the given ObjCEncodeExpr node.
4560 ConstantAddress
4561 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4562   std::string Str;
4563   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4564 
4565   return GetAddrOfConstantCString(Str);
4566 }
4567 
4568 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4569 /// the literal and a terminating '\0' character.
4570 /// The result has pointer to array type.
4571 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4572     const std::string &Str, const char *GlobalName) {
4573   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4574   CharUnits Alignment =
4575     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4576 
4577   llvm::Constant *C =
4578       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4579 
4580   // Don't share any string literals if strings aren't constant.
4581   llvm::GlobalVariable **Entry = nullptr;
4582   if (!LangOpts.WritableStrings) {
4583     Entry = &ConstantStringMap[C];
4584     if (auto GV = *Entry) {
4585       if (Alignment.getQuantity() > GV->getAlignment())
4586         GV->setAlignment(Alignment.getQuantity());
4587       return ConstantAddress(GV, Alignment);
4588     }
4589   }
4590 
4591   // Get the default prefix if a name wasn't specified.
4592   if (!GlobalName)
4593     GlobalName = ".str";
4594   // Create a global variable for this.
4595   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4596                                   GlobalName, Alignment);
4597   if (Entry)
4598     *Entry = GV;
4599 
4600   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4601                          Alignment);
4602 }
4603 
4604 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4605     const MaterializeTemporaryExpr *E, const Expr *Init) {
4606   assert((E->getStorageDuration() == SD_Static ||
4607           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4608   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4609 
4610   // If we're not materializing a subobject of the temporary, keep the
4611   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4612   QualType MaterializedType = Init->getType();
4613   if (Init == E->GetTemporaryExpr())
4614     MaterializedType = E->getType();
4615 
4616   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4617 
4618   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4619     return ConstantAddress(Slot, Align);
4620 
4621   // FIXME: If an externally-visible declaration extends multiple temporaries,
4622   // we need to give each temporary the same name in every translation unit (and
4623   // we also need to make the temporaries externally-visible).
4624   SmallString<256> Name;
4625   llvm::raw_svector_ostream Out(Name);
4626   getCXXABI().getMangleContext().mangleReferenceTemporary(
4627       VD, E->getManglingNumber(), Out);
4628 
4629   APValue *Value = nullptr;
4630   if (E->getStorageDuration() == SD_Static) {
4631     // We might have a cached constant initializer for this temporary. Note
4632     // that this might have a different value from the value computed by
4633     // evaluating the initializer if the surrounding constant expression
4634     // modifies the temporary.
4635     Value = getContext().getMaterializedTemporaryValue(E, false);
4636     if (Value && Value->isUninit())
4637       Value = nullptr;
4638   }
4639 
4640   // Try evaluating it now, it might have a constant initializer.
4641   Expr::EvalResult EvalResult;
4642   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4643       !EvalResult.hasSideEffects())
4644     Value = &EvalResult.Val;
4645 
4646   LangAS AddrSpace =
4647       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4648 
4649   Optional<ConstantEmitter> emitter;
4650   llvm::Constant *InitialValue = nullptr;
4651   bool Constant = false;
4652   llvm::Type *Type;
4653   if (Value) {
4654     // The temporary has a constant initializer, use it.
4655     emitter.emplace(*this);
4656     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4657                                                MaterializedType);
4658     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4659     Type = InitialValue->getType();
4660   } else {
4661     // No initializer, the initialization will be provided when we
4662     // initialize the declaration which performed lifetime extension.
4663     Type = getTypes().ConvertTypeForMem(MaterializedType);
4664   }
4665 
4666   // Create a global variable for this lifetime-extended temporary.
4667   llvm::GlobalValue::LinkageTypes Linkage =
4668       getLLVMLinkageVarDefinition(VD, Constant);
4669   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4670     const VarDecl *InitVD;
4671     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4672         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4673       // Temporaries defined inside a class get linkonce_odr linkage because the
4674       // class can be defined in multiple translation units.
4675       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4676     } else {
4677       // There is no need for this temporary to have external linkage if the
4678       // VarDecl has external linkage.
4679       Linkage = llvm::GlobalVariable::InternalLinkage;
4680     }
4681   }
4682   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4683   auto *GV = new llvm::GlobalVariable(
4684       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4685       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4686   if (emitter) emitter->finalize(GV);
4687   setGVProperties(GV, VD);
4688   GV->setAlignment(Align.getQuantity());
4689   if (supportsCOMDAT() && GV->isWeakForLinker())
4690     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4691   if (VD->getTLSKind())
4692     setTLSMode(GV, *VD);
4693   llvm::Constant *CV = GV;
4694   if (AddrSpace != LangAS::Default)
4695     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4696         *this, GV, AddrSpace, LangAS::Default,
4697         Type->getPointerTo(
4698             getContext().getTargetAddressSpace(LangAS::Default)));
4699   MaterializedGlobalTemporaryMap[E] = CV;
4700   return ConstantAddress(CV, Align);
4701 }
4702 
4703 /// EmitObjCPropertyImplementations - Emit information for synthesized
4704 /// properties for an implementation.
4705 void CodeGenModule::EmitObjCPropertyImplementations(const
4706                                                     ObjCImplementationDecl *D) {
4707   for (const auto *PID : D->property_impls()) {
4708     // Dynamic is just for type-checking.
4709     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4710       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4711 
4712       // Determine which methods need to be implemented, some may have
4713       // been overridden. Note that ::isPropertyAccessor is not the method
4714       // we want, that just indicates if the decl came from a
4715       // property. What we want to know is if the method is defined in
4716       // this implementation.
4717       if (!D->getInstanceMethod(PD->getGetterName()))
4718         CodeGenFunction(*this).GenerateObjCGetter(
4719                                  const_cast<ObjCImplementationDecl *>(D), PID);
4720       if (!PD->isReadOnly() &&
4721           !D->getInstanceMethod(PD->getSetterName()))
4722         CodeGenFunction(*this).GenerateObjCSetter(
4723                                  const_cast<ObjCImplementationDecl *>(D), PID);
4724     }
4725   }
4726 }
4727 
4728 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4729   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4730   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4731        ivar; ivar = ivar->getNextIvar())
4732     if (ivar->getType().isDestructedType())
4733       return true;
4734 
4735   return false;
4736 }
4737 
4738 static bool AllTrivialInitializers(CodeGenModule &CGM,
4739                                    ObjCImplementationDecl *D) {
4740   CodeGenFunction CGF(CGM);
4741   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4742        E = D->init_end(); B != E; ++B) {
4743     CXXCtorInitializer *CtorInitExp = *B;
4744     Expr *Init = CtorInitExp->getInit();
4745     if (!CGF.isTrivialInitializer(Init))
4746       return false;
4747   }
4748   return true;
4749 }
4750 
4751 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4752 /// for an implementation.
4753 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4754   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4755   if (needsDestructMethod(D)) {
4756     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4757     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4758     ObjCMethodDecl *DTORMethod =
4759       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4760                              cxxSelector, getContext().VoidTy, nullptr, D,
4761                              /*isInstance=*/true, /*isVariadic=*/false,
4762                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4763                              /*isDefined=*/false, ObjCMethodDecl::Required);
4764     D->addInstanceMethod(DTORMethod);
4765     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4766     D->setHasDestructors(true);
4767   }
4768 
4769   // If the implementation doesn't have any ivar initializers, we don't need
4770   // a .cxx_construct.
4771   if (D->getNumIvarInitializers() == 0 ||
4772       AllTrivialInitializers(*this, D))
4773     return;
4774 
4775   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4776   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4777   // The constructor returns 'self'.
4778   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4779                                                 D->getLocation(),
4780                                                 D->getLocation(),
4781                                                 cxxSelector,
4782                                                 getContext().getObjCIdType(),
4783                                                 nullptr, D, /*isInstance=*/true,
4784                                                 /*isVariadic=*/false,
4785                                                 /*isPropertyAccessor=*/true,
4786                                                 /*isImplicitlyDeclared=*/true,
4787                                                 /*isDefined=*/false,
4788                                                 ObjCMethodDecl::Required);
4789   D->addInstanceMethod(CTORMethod);
4790   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4791   D->setHasNonZeroConstructors(true);
4792 }
4793 
4794 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4795 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4796   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4797       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4798     ErrorUnsupported(LSD, "linkage spec");
4799     return;
4800   }
4801 
4802   EmitDeclContext(LSD);
4803 }
4804 
4805 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4806   for (auto *I : DC->decls()) {
4807     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4808     // are themselves considered "top-level", so EmitTopLevelDecl on an
4809     // ObjCImplDecl does not recursively visit them. We need to do that in
4810     // case they're nested inside another construct (LinkageSpecDecl /
4811     // ExportDecl) that does stop them from being considered "top-level".
4812     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4813       for (auto *M : OID->methods())
4814         EmitTopLevelDecl(M);
4815     }
4816 
4817     EmitTopLevelDecl(I);
4818   }
4819 }
4820 
4821 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4822 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4823   // Ignore dependent declarations.
4824   if (D->isTemplated())
4825     return;
4826 
4827   switch (D->getKind()) {
4828   case Decl::CXXConversion:
4829   case Decl::CXXMethod:
4830   case Decl::Function:
4831     EmitGlobal(cast<FunctionDecl>(D));
4832     // Always provide some coverage mapping
4833     // even for the functions that aren't emitted.
4834     AddDeferredUnusedCoverageMapping(D);
4835     break;
4836 
4837   case Decl::CXXDeductionGuide:
4838     // Function-like, but does not result in code emission.
4839     break;
4840 
4841   case Decl::Var:
4842   case Decl::Decomposition:
4843   case Decl::VarTemplateSpecialization:
4844     EmitGlobal(cast<VarDecl>(D));
4845     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4846       for (auto *B : DD->bindings())
4847         if (auto *HD = B->getHoldingVar())
4848           EmitGlobal(HD);
4849     break;
4850 
4851   // Indirect fields from global anonymous structs and unions can be
4852   // ignored; only the actual variable requires IR gen support.
4853   case Decl::IndirectField:
4854     break;
4855 
4856   // C++ Decls
4857   case Decl::Namespace:
4858     EmitDeclContext(cast<NamespaceDecl>(D));
4859     break;
4860   case Decl::ClassTemplateSpecialization: {
4861     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4862     if (DebugInfo &&
4863         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4864         Spec->hasDefinition())
4865       DebugInfo->completeTemplateDefinition(*Spec);
4866   } LLVM_FALLTHROUGH;
4867   case Decl::CXXRecord:
4868     if (DebugInfo) {
4869       if (auto *ES = D->getASTContext().getExternalSource())
4870         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4871           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4872     }
4873     // Emit any static data members, they may be definitions.
4874     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4875       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4876         EmitTopLevelDecl(I);
4877     break;
4878     // No code generation needed.
4879   case Decl::UsingShadow:
4880   case Decl::ClassTemplate:
4881   case Decl::VarTemplate:
4882   case Decl::VarTemplatePartialSpecialization:
4883   case Decl::FunctionTemplate:
4884   case Decl::TypeAliasTemplate:
4885   case Decl::Block:
4886   case Decl::Empty:
4887   case Decl::Binding:
4888     break;
4889   case Decl::Using:          // using X; [C++]
4890     if (CGDebugInfo *DI = getModuleDebugInfo())
4891         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4892     return;
4893   case Decl::NamespaceAlias:
4894     if (CGDebugInfo *DI = getModuleDebugInfo())
4895         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4896     return;
4897   case Decl::UsingDirective: // using namespace X; [C++]
4898     if (CGDebugInfo *DI = getModuleDebugInfo())
4899       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4900     return;
4901   case Decl::CXXConstructor:
4902     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4903     break;
4904   case Decl::CXXDestructor:
4905     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4906     break;
4907 
4908   case Decl::StaticAssert:
4909     // Nothing to do.
4910     break;
4911 
4912   // Objective-C Decls
4913 
4914   // Forward declarations, no (immediate) code generation.
4915   case Decl::ObjCInterface:
4916   case Decl::ObjCCategory:
4917     break;
4918 
4919   case Decl::ObjCProtocol: {
4920     auto *Proto = cast<ObjCProtocolDecl>(D);
4921     if (Proto->isThisDeclarationADefinition())
4922       ObjCRuntime->GenerateProtocol(Proto);
4923     break;
4924   }
4925 
4926   case Decl::ObjCCategoryImpl:
4927     // Categories have properties but don't support synthesize so we
4928     // can ignore them here.
4929     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4930     break;
4931 
4932   case Decl::ObjCImplementation: {
4933     auto *OMD = cast<ObjCImplementationDecl>(D);
4934     EmitObjCPropertyImplementations(OMD);
4935     EmitObjCIvarInitializations(OMD);
4936     ObjCRuntime->GenerateClass(OMD);
4937     // Emit global variable debug information.
4938     if (CGDebugInfo *DI = getModuleDebugInfo())
4939       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4940         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4941             OMD->getClassInterface()), OMD->getLocation());
4942     break;
4943   }
4944   case Decl::ObjCMethod: {
4945     auto *OMD = cast<ObjCMethodDecl>(D);
4946     // If this is not a prototype, emit the body.
4947     if (OMD->getBody())
4948       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4949     break;
4950   }
4951   case Decl::ObjCCompatibleAlias:
4952     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4953     break;
4954 
4955   case Decl::PragmaComment: {
4956     const auto *PCD = cast<PragmaCommentDecl>(D);
4957     switch (PCD->getCommentKind()) {
4958     case PCK_Unknown:
4959       llvm_unreachable("unexpected pragma comment kind");
4960     case PCK_Linker:
4961       AppendLinkerOptions(PCD->getArg());
4962       break;
4963     case PCK_Lib:
4964       if (getTarget().getTriple().isOSBinFormatELF() &&
4965           !getTarget().getTriple().isPS4())
4966         AddELFLibDirective(PCD->getArg());
4967       else
4968         AddDependentLib(PCD->getArg());
4969       break;
4970     case PCK_Compiler:
4971     case PCK_ExeStr:
4972     case PCK_User:
4973       break; // We ignore all of these.
4974     }
4975     break;
4976   }
4977 
4978   case Decl::PragmaDetectMismatch: {
4979     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4980     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4981     break;
4982   }
4983 
4984   case Decl::LinkageSpec:
4985     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4986     break;
4987 
4988   case Decl::FileScopeAsm: {
4989     // File-scope asm is ignored during device-side CUDA compilation.
4990     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4991       break;
4992     // File-scope asm is ignored during device-side OpenMP compilation.
4993     if (LangOpts.OpenMPIsDevice)
4994       break;
4995     auto *AD = cast<FileScopeAsmDecl>(D);
4996     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4997     break;
4998   }
4999 
5000   case Decl::Import: {
5001     auto *Import = cast<ImportDecl>(D);
5002 
5003     // If we've already imported this module, we're done.
5004     if (!ImportedModules.insert(Import->getImportedModule()))
5005       break;
5006 
5007     // Emit debug information for direct imports.
5008     if (!Import->getImportedOwningModule()) {
5009       if (CGDebugInfo *DI = getModuleDebugInfo())
5010         DI->EmitImportDecl(*Import);
5011     }
5012 
5013     // Find all of the submodules and emit the module initializers.
5014     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5015     SmallVector<clang::Module *, 16> Stack;
5016     Visited.insert(Import->getImportedModule());
5017     Stack.push_back(Import->getImportedModule());
5018 
5019     while (!Stack.empty()) {
5020       clang::Module *Mod = Stack.pop_back_val();
5021       if (!EmittedModuleInitializers.insert(Mod).second)
5022         continue;
5023 
5024       for (auto *D : Context.getModuleInitializers(Mod))
5025         EmitTopLevelDecl(D);
5026 
5027       // Visit the submodules of this module.
5028       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5029                                              SubEnd = Mod->submodule_end();
5030            Sub != SubEnd; ++Sub) {
5031         // Skip explicit children; they need to be explicitly imported to emit
5032         // the initializers.
5033         if ((*Sub)->IsExplicit)
5034           continue;
5035 
5036         if (Visited.insert(*Sub).second)
5037           Stack.push_back(*Sub);
5038       }
5039     }
5040     break;
5041   }
5042 
5043   case Decl::Export:
5044     EmitDeclContext(cast<ExportDecl>(D));
5045     break;
5046 
5047   case Decl::OMPThreadPrivate:
5048     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5049     break;
5050 
5051   case Decl::OMPDeclareReduction:
5052     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5053     break;
5054 
5055   case Decl::OMPDeclareMapper:
5056     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5057     break;
5058 
5059   case Decl::OMPRequires:
5060     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5061     break;
5062 
5063   default:
5064     // Make sure we handled everything we should, every other kind is a
5065     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5066     // function. Need to recode Decl::Kind to do that easily.
5067     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5068     break;
5069   }
5070 }
5071 
5072 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5073   // Do we need to generate coverage mapping?
5074   if (!CodeGenOpts.CoverageMapping)
5075     return;
5076   switch (D->getKind()) {
5077   case Decl::CXXConversion:
5078   case Decl::CXXMethod:
5079   case Decl::Function:
5080   case Decl::ObjCMethod:
5081   case Decl::CXXConstructor:
5082   case Decl::CXXDestructor: {
5083     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5084       return;
5085     SourceManager &SM = getContext().getSourceManager();
5086     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5087       return;
5088     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5089     if (I == DeferredEmptyCoverageMappingDecls.end())
5090       DeferredEmptyCoverageMappingDecls[D] = true;
5091     break;
5092   }
5093   default:
5094     break;
5095   };
5096 }
5097 
5098 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5099   // Do we need to generate coverage mapping?
5100   if (!CodeGenOpts.CoverageMapping)
5101     return;
5102   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5103     if (Fn->isTemplateInstantiation())
5104       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5105   }
5106   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5107   if (I == DeferredEmptyCoverageMappingDecls.end())
5108     DeferredEmptyCoverageMappingDecls[D] = false;
5109   else
5110     I->second = false;
5111 }
5112 
5113 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5114   // We call takeVector() here to avoid use-after-free.
5115   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5116   // we deserialize function bodies to emit coverage info for them, and that
5117   // deserializes more declarations. How should we handle that case?
5118   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5119     if (!Entry.second)
5120       continue;
5121     const Decl *D = Entry.first;
5122     switch (D->getKind()) {
5123     case Decl::CXXConversion:
5124     case Decl::CXXMethod:
5125     case Decl::Function:
5126     case Decl::ObjCMethod: {
5127       CodeGenPGO PGO(*this);
5128       GlobalDecl GD(cast<FunctionDecl>(D));
5129       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5130                                   getFunctionLinkage(GD));
5131       break;
5132     }
5133     case Decl::CXXConstructor: {
5134       CodeGenPGO PGO(*this);
5135       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5136       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5137                                   getFunctionLinkage(GD));
5138       break;
5139     }
5140     case Decl::CXXDestructor: {
5141       CodeGenPGO PGO(*this);
5142       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5143       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5144                                   getFunctionLinkage(GD));
5145       break;
5146     }
5147     default:
5148       break;
5149     };
5150   }
5151 }
5152 
5153 /// Turns the given pointer into a constant.
5154 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5155                                           const void *Ptr) {
5156   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5157   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5158   return llvm::ConstantInt::get(i64, PtrInt);
5159 }
5160 
5161 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5162                                    llvm::NamedMDNode *&GlobalMetadata,
5163                                    GlobalDecl D,
5164                                    llvm::GlobalValue *Addr) {
5165   if (!GlobalMetadata)
5166     GlobalMetadata =
5167       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5168 
5169   // TODO: should we report variant information for ctors/dtors?
5170   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5171                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5172                                CGM.getLLVMContext(), D.getDecl()))};
5173   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5174 }
5175 
5176 /// For each function which is declared within an extern "C" region and marked
5177 /// as 'used', but has internal linkage, create an alias from the unmangled
5178 /// name to the mangled name if possible. People expect to be able to refer
5179 /// to such functions with an unmangled name from inline assembly within the
5180 /// same translation unit.
5181 void CodeGenModule::EmitStaticExternCAliases() {
5182   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5183     return;
5184   for (auto &I : StaticExternCValues) {
5185     IdentifierInfo *Name = I.first;
5186     llvm::GlobalValue *Val = I.second;
5187     if (Val && !getModule().getNamedValue(Name->getName()))
5188       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5189   }
5190 }
5191 
5192 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5193                                              GlobalDecl &Result) const {
5194   auto Res = Manglings.find(MangledName);
5195   if (Res == Manglings.end())
5196     return false;
5197   Result = Res->getValue();
5198   return true;
5199 }
5200 
5201 /// Emits metadata nodes associating all the global values in the
5202 /// current module with the Decls they came from.  This is useful for
5203 /// projects using IR gen as a subroutine.
5204 ///
5205 /// Since there's currently no way to associate an MDNode directly
5206 /// with an llvm::GlobalValue, we create a global named metadata
5207 /// with the name 'clang.global.decl.ptrs'.
5208 void CodeGenModule::EmitDeclMetadata() {
5209   llvm::NamedMDNode *GlobalMetadata = nullptr;
5210 
5211   for (auto &I : MangledDeclNames) {
5212     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5213     // Some mangled names don't necessarily have an associated GlobalValue
5214     // in this module, e.g. if we mangled it for DebugInfo.
5215     if (Addr)
5216       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5217   }
5218 }
5219 
5220 /// Emits metadata nodes for all the local variables in the current
5221 /// function.
5222 void CodeGenFunction::EmitDeclMetadata() {
5223   if (LocalDeclMap.empty()) return;
5224 
5225   llvm::LLVMContext &Context = getLLVMContext();
5226 
5227   // Find the unique metadata ID for this name.
5228   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5229 
5230   llvm::NamedMDNode *GlobalMetadata = nullptr;
5231 
5232   for (auto &I : LocalDeclMap) {
5233     const Decl *D = I.first;
5234     llvm::Value *Addr = I.second.getPointer();
5235     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5236       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5237       Alloca->setMetadata(
5238           DeclPtrKind, llvm::MDNode::get(
5239                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5240     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5241       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5242       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5243     }
5244   }
5245 }
5246 
5247 void CodeGenModule::EmitVersionIdentMetadata() {
5248   llvm::NamedMDNode *IdentMetadata =
5249     TheModule.getOrInsertNamedMetadata("llvm.ident");
5250   std::string Version = getClangFullVersion();
5251   llvm::LLVMContext &Ctx = TheModule.getContext();
5252 
5253   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5254   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5255 }
5256 
5257 void CodeGenModule::EmitCommandLineMetadata() {
5258   llvm::NamedMDNode *CommandLineMetadata =
5259     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5260   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5261   llvm::LLVMContext &Ctx = TheModule.getContext();
5262 
5263   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5264   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5265 }
5266 
5267 void CodeGenModule::EmitTargetMetadata() {
5268   // Warning, new MangledDeclNames may be appended within this loop.
5269   // We rely on MapVector insertions adding new elements to the end
5270   // of the container.
5271   // FIXME: Move this loop into the one target that needs it, and only
5272   // loop over those declarations for which we couldn't emit the target
5273   // metadata when we emitted the declaration.
5274   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5275     auto Val = *(MangledDeclNames.begin() + I);
5276     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5277     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5278     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5279   }
5280 }
5281 
5282 void CodeGenModule::EmitCoverageFile() {
5283   if (getCodeGenOpts().CoverageDataFile.empty() &&
5284       getCodeGenOpts().CoverageNotesFile.empty())
5285     return;
5286 
5287   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5288   if (!CUNode)
5289     return;
5290 
5291   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5292   llvm::LLVMContext &Ctx = TheModule.getContext();
5293   auto *CoverageDataFile =
5294       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5295   auto *CoverageNotesFile =
5296       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5297   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5298     llvm::MDNode *CU = CUNode->getOperand(i);
5299     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5300     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5301   }
5302 }
5303 
5304 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5305   // Sema has checked that all uuid strings are of the form
5306   // "12345678-1234-1234-1234-1234567890ab".
5307   assert(Uuid.size() == 36);
5308   for (unsigned i = 0; i < 36; ++i) {
5309     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5310     else                                         assert(isHexDigit(Uuid[i]));
5311   }
5312 
5313   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5314   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5315 
5316   llvm::Constant *Field3[8];
5317   for (unsigned Idx = 0; Idx < 8; ++Idx)
5318     Field3[Idx] = llvm::ConstantInt::get(
5319         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5320 
5321   llvm::Constant *Fields[4] = {
5322     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5323     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5324     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5325     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5326   };
5327 
5328   return llvm::ConstantStruct::getAnon(Fields);
5329 }
5330 
5331 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5332                                                        bool ForEH) {
5333   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5334   // FIXME: should we even be calling this method if RTTI is disabled
5335   // and it's not for EH?
5336   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5337     return llvm::Constant::getNullValue(Int8PtrTy);
5338 
5339   if (ForEH && Ty->isObjCObjectPointerType() &&
5340       LangOpts.ObjCRuntime.isGNUFamily())
5341     return ObjCRuntime->GetEHType(Ty);
5342 
5343   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5344 }
5345 
5346 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5347   // Do not emit threadprivates in simd-only mode.
5348   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5349     return;
5350   for (auto RefExpr : D->varlists()) {
5351     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5352     bool PerformInit =
5353         VD->getAnyInitializer() &&
5354         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5355                                                         /*ForRef=*/false);
5356 
5357     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5358     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5359             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5360       CXXGlobalInits.push_back(InitFunction);
5361   }
5362 }
5363 
5364 llvm::Metadata *
5365 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5366                                             StringRef Suffix) {
5367   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5368   if (InternalId)
5369     return InternalId;
5370 
5371   if (isExternallyVisible(T->getLinkage())) {
5372     std::string OutName;
5373     llvm::raw_string_ostream Out(OutName);
5374     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5375     Out << Suffix;
5376 
5377     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5378   } else {
5379     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5380                                            llvm::ArrayRef<llvm::Metadata *>());
5381   }
5382 
5383   return InternalId;
5384 }
5385 
5386 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5387   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5388 }
5389 
5390 llvm::Metadata *
5391 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5392   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5393 }
5394 
5395 // Generalize pointer types to a void pointer with the qualifiers of the
5396 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5397 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5398 // 'void *'.
5399 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5400   if (!Ty->isPointerType())
5401     return Ty;
5402 
5403   return Ctx.getPointerType(
5404       QualType(Ctx.VoidTy).withCVRQualifiers(
5405           Ty->getPointeeType().getCVRQualifiers()));
5406 }
5407 
5408 // Apply type generalization to a FunctionType's return and argument types
5409 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5410   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5411     SmallVector<QualType, 8> GeneralizedParams;
5412     for (auto &Param : FnType->param_types())
5413       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5414 
5415     return Ctx.getFunctionType(
5416         GeneralizeType(Ctx, FnType->getReturnType()),
5417         GeneralizedParams, FnType->getExtProtoInfo());
5418   }
5419 
5420   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5421     return Ctx.getFunctionNoProtoType(
5422         GeneralizeType(Ctx, FnType->getReturnType()));
5423 
5424   llvm_unreachable("Encountered unknown FunctionType");
5425 }
5426 
5427 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5428   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5429                                       GeneralizedMetadataIdMap, ".generalized");
5430 }
5431 
5432 /// Returns whether this module needs the "all-vtables" type identifier.
5433 bool CodeGenModule::NeedAllVtablesTypeId() const {
5434   // Returns true if at least one of vtable-based CFI checkers is enabled and
5435   // is not in the trapping mode.
5436   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5437            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5438           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5439            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5440           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5441            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5442           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5443            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5444 }
5445 
5446 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5447                                           CharUnits Offset,
5448                                           const CXXRecordDecl *RD) {
5449   llvm::Metadata *MD =
5450       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5451   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5452 
5453   if (CodeGenOpts.SanitizeCfiCrossDso)
5454     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5455       VTable->addTypeMetadata(Offset.getQuantity(),
5456                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5457 
5458   if (NeedAllVtablesTypeId()) {
5459     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5460     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5461   }
5462 }
5463 
5464 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5465   assert(TD != nullptr);
5466   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5467 
5468   ParsedAttr.Features.erase(
5469       llvm::remove_if(ParsedAttr.Features,
5470                       [&](const std::string &Feat) {
5471                         return !Target.isValidFeatureName(
5472                             StringRef{Feat}.substr(1));
5473                       }),
5474       ParsedAttr.Features.end());
5475   return ParsedAttr;
5476 }
5477 
5478 
5479 // Fills in the supplied string map with the set of target features for the
5480 // passed in function.
5481 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5482                                           GlobalDecl GD) {
5483   StringRef TargetCPU = Target.getTargetOpts().CPU;
5484   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5485   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5486     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5487 
5488     // Make a copy of the features as passed on the command line into the
5489     // beginning of the additional features from the function to override.
5490     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5491                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5492                             Target.getTargetOpts().FeaturesAsWritten.end());
5493 
5494     if (ParsedAttr.Architecture != "" &&
5495         Target.isValidCPUName(ParsedAttr.Architecture))
5496       TargetCPU = ParsedAttr.Architecture;
5497 
5498     // Now populate the feature map, first with the TargetCPU which is either
5499     // the default or a new one from the target attribute string. Then we'll use
5500     // the passed in features (FeaturesAsWritten) along with the new ones from
5501     // the attribute.
5502     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5503                           ParsedAttr.Features);
5504   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5505     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5506     Target.getCPUSpecificCPUDispatchFeatures(
5507         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5508     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5509     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5510   } else {
5511     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5512                           Target.getTargetOpts().Features);
5513   }
5514 }
5515 
5516 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5517   if (!SanStats)
5518     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5519 
5520   return *SanStats;
5521 }
5522 llvm::Value *
5523 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5524                                                   CodeGenFunction &CGF) {
5525   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5526   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5527   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5528   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5529                                 "__translate_sampler_initializer"),
5530                                 {C});
5531 }
5532