xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 809a1e0ffd7af40ee27270ff8ba2ffc927330e71)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
183 CodeGenModule::~CodeGenModule() {}
184 
185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
405                                              llvm::Module &M) {
406   if (!LO.VisibilityFromDLLStorageClass)
407     return;
408 
409   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
410       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
411   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
412       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
413   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
414       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
415   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
416       CodeGenModule::GetLLVMVisibility(
417           LO.getExternDeclNoDLLStorageClassVisibility());
418 
419   for (llvm::GlobalValue &GV : M.global_values()) {
420     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
421       continue;
422 
423     // Reset DSO locality before setting the visibility. This removes
424     // any effects that visibility options and annotations may have
425     // had on the DSO locality. Setting the visibility will implicitly set
426     // appropriate globals to DSO Local; however, this will be pessimistic
427     // w.r.t. to the normal compiler IRGen.
428     GV.setDSOLocal(false);
429 
430     if (GV.isDeclarationForLinker()) {
431       GV.setVisibility(GV.getDLLStorageClass() ==
432                                llvm::GlobalValue::DLLImportStorageClass
433                            ? ExternDeclDLLImportVisibility
434                            : ExternDeclNoDLLStorageClassVisibility);
435     } else {
436       GV.setVisibility(GV.getDLLStorageClass() ==
437                                llvm::GlobalValue::DLLExportStorageClass
438                            ? DLLExportVisibility
439                            : NoDLLStorageClassVisibility);
440     }
441 
442     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
443   }
444 }
445 
446 void CodeGenModule::Release() {
447   EmitDeferred();
448   EmitVTablesOpportunistically();
449   applyGlobalValReplacements();
450   applyReplacements();
451   checkAliases();
452   emitMultiVersionFunctions();
453   EmitCXXGlobalInitFunc();
454   EmitCXXGlobalCleanUpFunc();
455   registerGlobalDtorsWithAtExit();
456   EmitCXXThreadLocalInitFunc();
457   if (ObjCRuntime)
458     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
459       AddGlobalCtor(ObjCInitFunction);
460   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
461       CUDARuntime) {
462     if (llvm::Function *CudaCtorFunction =
463             CUDARuntime->makeModuleCtorFunction())
464       AddGlobalCtor(CudaCtorFunction);
465   }
466   if (OpenMPRuntime) {
467     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
468             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
469       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
470     }
471     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
472     OpenMPRuntime->clear();
473   }
474   if (PGOReader) {
475     getModule().setProfileSummary(
476         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
477         llvm::ProfileSummary::PSK_Instr);
478     if (PGOStats.hasDiagnostics())
479       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
480   }
481   EmitCtorList(GlobalCtors, "llvm.global_ctors");
482   EmitCtorList(GlobalDtors, "llvm.global_dtors");
483   EmitGlobalAnnotations();
484   EmitStaticExternCAliases();
485   EmitDeferredUnusedCoverageMappings();
486   if (CoverageMapping)
487     CoverageMapping->emit();
488   if (CodeGenOpts.SanitizeCfiCrossDso) {
489     CodeGenFunction(*this).EmitCfiCheckFail();
490     CodeGenFunction(*this).EmitCfiCheckStub();
491   }
492   emitAtAvailableLinkGuard();
493   if (Context.getTargetInfo().getTriple().isWasm() &&
494       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
495     EmitMainVoidAlias();
496   }
497   emitLLVMUsed();
498   if (SanStats)
499     SanStats->finish();
500 
501   if (CodeGenOpts.Autolink &&
502       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
503     EmitModuleLinkOptions();
504   }
505 
506   // On ELF we pass the dependent library specifiers directly to the linker
507   // without manipulating them. This is in contrast to other platforms where
508   // they are mapped to a specific linker option by the compiler. This
509   // difference is a result of the greater variety of ELF linkers and the fact
510   // that ELF linkers tend to handle libraries in a more complicated fashion
511   // than on other platforms. This forces us to defer handling the dependent
512   // libs to the linker.
513   //
514   // CUDA/HIP device and host libraries are different. Currently there is no
515   // way to differentiate dependent libraries for host or device. Existing
516   // usage of #pragma comment(lib, *) is intended for host libraries on
517   // Windows. Therefore emit llvm.dependent-libraries only for host.
518   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
519     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
520     for (auto *MD : ELFDependentLibraries)
521       NMD->addOperand(MD);
522   }
523 
524   // Record mregparm value now so it is visible through rest of codegen.
525   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
526     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
527                               CodeGenOpts.NumRegisterParameters);
528 
529   if (CodeGenOpts.DwarfVersion) {
530     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
531                               CodeGenOpts.DwarfVersion);
532   }
533 
534   if (Context.getLangOpts().SemanticInterposition)
535     // Require various optimization to respect semantic interposition.
536     getModule().setSemanticInterposition(1);
537   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
538     // Allow dso_local on applicable targets.
539     getModule().setSemanticInterposition(0);
540 
541   if (CodeGenOpts.EmitCodeView) {
542     // Indicate that we want CodeView in the metadata.
543     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
544   }
545   if (CodeGenOpts.CodeViewGHash) {
546     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
547   }
548   if (CodeGenOpts.ControlFlowGuard) {
549     // Function ID tables and checks for Control Flow Guard (cfguard=2).
550     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
551   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
552     // Function ID tables for Control Flow Guard (cfguard=1).
553     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
554   }
555   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
556     // We don't support LTO with 2 with different StrictVTablePointers
557     // FIXME: we could support it by stripping all the information introduced
558     // by StrictVTablePointers.
559 
560     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
561 
562     llvm::Metadata *Ops[2] = {
563               llvm::MDString::get(VMContext, "StrictVTablePointers"),
564               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
565                   llvm::Type::getInt32Ty(VMContext), 1))};
566 
567     getModule().addModuleFlag(llvm::Module::Require,
568                               "StrictVTablePointersRequirement",
569                               llvm::MDNode::get(VMContext, Ops));
570   }
571   if (getModuleDebugInfo())
572     // We support a single version in the linked module. The LLVM
573     // parser will drop debug info with a different version number
574     // (and warn about it, too).
575     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
576                               llvm::DEBUG_METADATA_VERSION);
577 
578   // We need to record the widths of enums and wchar_t, so that we can generate
579   // the correct build attributes in the ARM backend. wchar_size is also used by
580   // TargetLibraryInfo.
581   uint64_t WCharWidth =
582       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
583   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
584 
585   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
586   if (   Arch == llvm::Triple::arm
587       || Arch == llvm::Triple::armeb
588       || Arch == llvm::Triple::thumb
589       || Arch == llvm::Triple::thumbeb) {
590     // The minimum width of an enum in bytes
591     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
592     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
593   }
594 
595   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
596     StringRef ABIStr = Target.getABI();
597     llvm::LLVMContext &Ctx = TheModule.getContext();
598     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
599                               llvm::MDString::get(Ctx, ABIStr));
600   }
601 
602   if (CodeGenOpts.SanitizeCfiCrossDso) {
603     // Indicate that we want cross-DSO control flow integrity checks.
604     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
605   }
606 
607   if (CodeGenOpts.WholeProgramVTables) {
608     // Indicate whether VFE was enabled for this module, so that the
609     // vcall_visibility metadata added under whole program vtables is handled
610     // appropriately in the optimizer.
611     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
612                               CodeGenOpts.VirtualFunctionElimination);
613   }
614 
615   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
616     getModule().addModuleFlag(llvm::Module::Override,
617                               "CFI Canonical Jump Tables",
618                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
619   }
620 
621   if (CodeGenOpts.CFProtectionReturn &&
622       Target.checkCFProtectionReturnSupported(getDiags())) {
623     // Indicate that we want to instrument return control flow protection.
624     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
625                               1);
626   }
627 
628   if (CodeGenOpts.CFProtectionBranch &&
629       Target.checkCFProtectionBranchSupported(getDiags())) {
630     // Indicate that we want to instrument branch control flow protection.
631     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
632                               1);
633   }
634 
635   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
636       Arch == llvm::Triple::aarch64_be) {
637     getModule().addModuleFlag(llvm::Module::Error,
638                               "branch-target-enforcement",
639                               LangOpts.BranchTargetEnforcement);
640 
641     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
642                               LangOpts.hasSignReturnAddress());
643 
644     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
645                               LangOpts.isSignReturnAddressScopeAll());
646 
647     getModule().addModuleFlag(llvm::Module::Error,
648                               "sign-return-address-with-bkey",
649                               !LangOpts.isSignReturnAddressWithAKey());
650   }
651 
652   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
653     llvm::LLVMContext &Ctx = TheModule.getContext();
654     getModule().addModuleFlag(
655         llvm::Module::Error, "MemProfProfileFilename",
656         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
657   }
658 
659   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
660     // Indicate whether __nvvm_reflect should be configured to flush denormal
661     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
662     // property.)
663     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
664                               CodeGenOpts.FP32DenormalMode.Output !=
665                                   llvm::DenormalMode::IEEE);
666   }
667 
668   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
669   if (LangOpts.OpenCL) {
670     EmitOpenCLMetadata();
671     // Emit SPIR version.
672     if (getTriple().isSPIR()) {
673       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
674       // opencl.spir.version named metadata.
675       // C++ is backwards compatible with OpenCL v2.0.
676       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
677       llvm::Metadata *SPIRVerElts[] = {
678           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679               Int32Ty, Version / 100)),
680           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
681               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
682       llvm::NamedMDNode *SPIRVerMD =
683           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
684       llvm::LLVMContext &Ctx = TheModule.getContext();
685       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
686     }
687   }
688 
689   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
690     assert(PLevel < 3 && "Invalid PIC Level");
691     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
692     if (Context.getLangOpts().PIE)
693       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
694   }
695 
696   if (getCodeGenOpts().CodeModel.size() > 0) {
697     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
698                   .Case("tiny", llvm::CodeModel::Tiny)
699                   .Case("small", llvm::CodeModel::Small)
700                   .Case("kernel", llvm::CodeModel::Kernel)
701                   .Case("medium", llvm::CodeModel::Medium)
702                   .Case("large", llvm::CodeModel::Large)
703                   .Default(~0u);
704     if (CM != ~0u) {
705       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
706       getModule().setCodeModel(codeModel);
707     }
708   }
709 
710   if (CodeGenOpts.NoPLT)
711     getModule().setRtLibUseGOT();
712 
713   SimplifyPersonality();
714 
715   if (getCodeGenOpts().EmitDeclMetadata)
716     EmitDeclMetadata();
717 
718   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
719     EmitCoverageFile();
720 
721   if (CGDebugInfo *DI = getModuleDebugInfo())
722     DI->finalize();
723 
724   if (getCodeGenOpts().EmitVersionIdentMetadata)
725     EmitVersionIdentMetadata();
726 
727   if (!getCodeGenOpts().RecordCommandLine.empty())
728     EmitCommandLineMetadata();
729 
730   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
731 
732   EmitBackendOptionsMetadata(getCodeGenOpts());
733 
734   // Set visibility from DLL storage class
735   // We do this at the end of LLVM IR generation; after any operation
736   // that might affect the DLL storage class or the visibility, and
737   // before anything that might act on these.
738   setVisibilityFromDLLStorageClass(LangOpts, getModule());
739 }
740 
741 void CodeGenModule::EmitOpenCLMetadata() {
742   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
743   // opencl.ocl.version named metadata node.
744   // C++ is backwards compatible with OpenCL v2.0.
745   // FIXME: We might need to add CXX version at some point too?
746   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
747   llvm::Metadata *OCLVerElts[] = {
748       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
749           Int32Ty, Version / 100)),
750       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
751           Int32Ty, (Version % 100) / 10))};
752   llvm::NamedMDNode *OCLVerMD =
753       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
754   llvm::LLVMContext &Ctx = TheModule.getContext();
755   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
756 }
757 
758 void CodeGenModule::EmitBackendOptionsMetadata(
759     const CodeGenOptions CodeGenOpts) {
760   switch (getTriple().getArch()) {
761   default:
762     break;
763   case llvm::Triple::riscv32:
764   case llvm::Triple::riscv64:
765     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
766                               CodeGenOpts.SmallDataLimit);
767     break;
768   }
769 }
770 
771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
772   // Make sure that this type is translated.
773   Types.UpdateCompletedType(TD);
774 }
775 
776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
777   // Make sure that this type is translated.
778   Types.RefreshTypeCacheForClass(RD);
779 }
780 
781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
782   if (!TBAA)
783     return nullptr;
784   return TBAA->getTypeInfo(QTy);
785 }
786 
787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
788   if (!TBAA)
789     return TBAAAccessInfo();
790   if (getLangOpts().CUDAIsDevice) {
791     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
792     // access info.
793     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
794       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
795           nullptr)
796         return TBAAAccessInfo();
797     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
798       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
799           nullptr)
800         return TBAAAccessInfo();
801     }
802   }
803   return TBAA->getAccessInfo(AccessType);
804 }
805 
806 TBAAAccessInfo
807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
808   if (!TBAA)
809     return TBAAAccessInfo();
810   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
811 }
812 
813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
814   if (!TBAA)
815     return nullptr;
816   return TBAA->getTBAAStructInfo(QTy);
817 }
818 
819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
820   if (!TBAA)
821     return nullptr;
822   return TBAA->getBaseTypeInfo(QTy);
823 }
824 
825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
826   if (!TBAA)
827     return nullptr;
828   return TBAA->getAccessTagInfo(Info);
829 }
830 
831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
832                                                    TBAAAccessInfo TargetInfo) {
833   if (!TBAA)
834     return TBAAAccessInfo();
835   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
836 }
837 
838 TBAAAccessInfo
839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
840                                                    TBAAAccessInfo InfoB) {
841   if (!TBAA)
842     return TBAAAccessInfo();
843   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
844 }
845 
846 TBAAAccessInfo
847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
848                                               TBAAAccessInfo SrcInfo) {
849   if (!TBAA)
850     return TBAAAccessInfo();
851   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
852 }
853 
854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
855                                                 TBAAAccessInfo TBAAInfo) {
856   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
857     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
858 }
859 
860 void CodeGenModule::DecorateInstructionWithInvariantGroup(
861     llvm::Instruction *I, const CXXRecordDecl *RD) {
862   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
863                  llvm::MDNode::get(getLLVMContext(), {}));
864 }
865 
866 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
867   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
868   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
869 }
870 
871 /// ErrorUnsupported - Print out an error that codegen doesn't support the
872 /// specified stmt yet.
873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
874   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
875                                                "cannot compile this %0 yet");
876   std::string Msg = Type;
877   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
878       << Msg << S->getSourceRange();
879 }
880 
881 /// ErrorUnsupported - Print out an error that codegen doesn't support the
882 /// specified decl yet.
883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
884   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
885                                                "cannot compile this %0 yet");
886   std::string Msg = Type;
887   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
888 }
889 
890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
891   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
892 }
893 
894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
895                                         const NamedDecl *D) const {
896   if (GV->hasDLLImportStorageClass())
897     return;
898   // Internal definitions always have default visibility.
899   if (GV->hasLocalLinkage()) {
900     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
901     return;
902   }
903   if (!D)
904     return;
905   // Set visibility for definitions, and for declarations if requested globally
906   // or set explicitly.
907   LinkageInfo LV = D->getLinkageAndVisibility();
908   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
909       !GV->isDeclarationForLinker())
910     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
911 }
912 
913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
914                                  llvm::GlobalValue *GV) {
915   if (GV->hasLocalLinkage())
916     return true;
917 
918   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
919     return true;
920 
921   // DLLImport explicitly marks the GV as external.
922   if (GV->hasDLLImportStorageClass())
923     return false;
924 
925   const llvm::Triple &TT = CGM.getTriple();
926   if (TT.isWindowsGNUEnvironment()) {
927     // In MinGW, variables without DLLImport can still be automatically
928     // imported from a DLL by the linker; don't mark variables that
929     // potentially could come from another DLL as DSO local.
930     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
931         !GV->isThreadLocal())
932       return false;
933   }
934 
935   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
936   // remain unresolved in the link, they can be resolved to zero, which is
937   // outside the current DSO.
938   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
939     return false;
940 
941   // Every other GV is local on COFF.
942   // Make an exception for windows OS in the triple: Some firmware builds use
943   // *-win32-macho triples. This (accidentally?) produced windows relocations
944   // without GOT tables in older clang versions; Keep this behaviour.
945   // FIXME: even thread local variables?
946   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
947     return true;
948 
949   const auto &CGOpts = CGM.getCodeGenOpts();
950   llvm::Reloc::Model RM = CGOpts.RelocationModel;
951   const auto &LOpts = CGM.getLangOpts();
952 
953   if (TT.isOSBinFormatMachO()) {
954     if (RM == llvm::Reloc::Static)
955       return true;
956     return GV->isStrongDefinitionForLinker();
957   }
958 
959   // Only handle COFF and ELF for now.
960   if (!TT.isOSBinFormatELF())
961     return false;
962 
963   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
964     // On ELF, if -fno-semantic-interposition is specified, we can set dso_local
965     // if using a local alias is preferable (can avoid GOT indirection).
966     // Currently only x86 supports local alias.
967     if (!TT.isOSBinFormatELF() ||
968         !CGM.getLangOpts().ExplicitNoSemanticInterposition ||
969         !GV->canBenefitFromLocalAlias())
970       return false;
971     // The allowed targets need to match AsmPrinter::getSymbolPreferLocal.
972     return TT.isX86();
973   }
974 
975   // A definition cannot be preempted from an executable.
976   if (!GV->isDeclarationForLinker())
977     return true;
978 
979   // Most PIC code sequences that assume that a symbol is local cannot produce a
980   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
981   // depended, it seems worth it to handle it here.
982   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
983     return false;
984 
985   // PowerPC64 prefers TOC indirection to avoid copy relocations.
986   if (TT.isPPC64())
987     return false;
988 
989   // If we can use copy relocations we can assume it is local.
990   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
991     if (!Var->isThreadLocal() &&
992         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
993       return true;
994 
995   // If we can use a plt entry as the symbol address we can assume it
996   // is local.
997   // FIXME: This should work for PIE, but the gold linker doesn't support it.
998   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
999     return true;
1000 
1001   // Otherwise don't assume it is local.
1002   return false;
1003 }
1004 
1005 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1006   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1007 }
1008 
1009 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1010                                           GlobalDecl GD) const {
1011   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1012   // C++ destructors have a few C++ ABI specific special cases.
1013   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1014     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1015     return;
1016   }
1017   setDLLImportDLLExport(GV, D);
1018 }
1019 
1020 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1021                                           const NamedDecl *D) const {
1022   if (D && D->isExternallyVisible()) {
1023     if (D->hasAttr<DLLImportAttr>())
1024       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1025     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1026       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1027   }
1028 }
1029 
1030 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1031                                     GlobalDecl GD) const {
1032   setDLLImportDLLExport(GV, GD);
1033   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1034 }
1035 
1036 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1037                                     const NamedDecl *D) const {
1038   setDLLImportDLLExport(GV, D);
1039   setGVPropertiesAux(GV, D);
1040 }
1041 
1042 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1043                                        const NamedDecl *D) const {
1044   setGlobalVisibility(GV, D);
1045   setDSOLocal(GV);
1046   GV->setPartition(CodeGenOpts.SymbolPartition);
1047 }
1048 
1049 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1050   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1051       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1052       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1053       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1054       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1055 }
1056 
1057 llvm::GlobalVariable::ThreadLocalMode
1058 CodeGenModule::GetDefaultLLVMTLSModel() const {
1059   switch (CodeGenOpts.getDefaultTLSModel()) {
1060   case CodeGenOptions::GeneralDynamicTLSModel:
1061     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1062   case CodeGenOptions::LocalDynamicTLSModel:
1063     return llvm::GlobalVariable::LocalDynamicTLSModel;
1064   case CodeGenOptions::InitialExecTLSModel:
1065     return llvm::GlobalVariable::InitialExecTLSModel;
1066   case CodeGenOptions::LocalExecTLSModel:
1067     return llvm::GlobalVariable::LocalExecTLSModel;
1068   }
1069   llvm_unreachable("Invalid TLS model!");
1070 }
1071 
1072 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1073   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1074 
1075   llvm::GlobalValue::ThreadLocalMode TLM;
1076   TLM = GetDefaultLLVMTLSModel();
1077 
1078   // Override the TLS model if it is explicitly specified.
1079   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1080     TLM = GetLLVMTLSModel(Attr->getModel());
1081   }
1082 
1083   GV->setThreadLocalMode(TLM);
1084 }
1085 
1086 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1087                                           StringRef Name) {
1088   const TargetInfo &Target = CGM.getTarget();
1089   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1090 }
1091 
1092 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1093                                                  const CPUSpecificAttr *Attr,
1094                                                  unsigned CPUIndex,
1095                                                  raw_ostream &Out) {
1096   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1097   // supported.
1098   if (Attr)
1099     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1100   else if (CGM.getTarget().supportsIFunc())
1101     Out << ".resolver";
1102 }
1103 
1104 static void AppendTargetMangling(const CodeGenModule &CGM,
1105                                  const TargetAttr *Attr, raw_ostream &Out) {
1106   if (Attr->isDefaultVersion())
1107     return;
1108 
1109   Out << '.';
1110   const TargetInfo &Target = CGM.getTarget();
1111   ParsedTargetAttr Info =
1112       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1113         // Multiversioning doesn't allow "no-${feature}", so we can
1114         // only have "+" prefixes here.
1115         assert(LHS.startswith("+") && RHS.startswith("+") &&
1116                "Features should always have a prefix.");
1117         return Target.multiVersionSortPriority(LHS.substr(1)) >
1118                Target.multiVersionSortPriority(RHS.substr(1));
1119       });
1120 
1121   bool IsFirst = true;
1122 
1123   if (!Info.Architecture.empty()) {
1124     IsFirst = false;
1125     Out << "arch_" << Info.Architecture;
1126   }
1127 
1128   for (StringRef Feat : Info.Features) {
1129     if (!IsFirst)
1130       Out << '_';
1131     IsFirst = false;
1132     Out << Feat.substr(1);
1133   }
1134 }
1135 
1136 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1137                                       const NamedDecl *ND,
1138                                       bool OmitMultiVersionMangling = false) {
1139   SmallString<256> Buffer;
1140   llvm::raw_svector_ostream Out(Buffer);
1141   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1142   if (MC.shouldMangleDeclName(ND))
1143     MC.mangleName(GD.getWithDecl(ND), Out);
1144   else {
1145     IdentifierInfo *II = ND->getIdentifier();
1146     assert(II && "Attempt to mangle unnamed decl.");
1147     const auto *FD = dyn_cast<FunctionDecl>(ND);
1148 
1149     if (FD &&
1150         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1151       Out << "__regcall3__" << II->getName();
1152     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1153                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1154       Out << "__device_stub__" << II->getName();
1155     } else {
1156       Out << II->getName();
1157     }
1158   }
1159 
1160   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1161     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1162       switch (FD->getMultiVersionKind()) {
1163       case MultiVersionKind::CPUDispatch:
1164       case MultiVersionKind::CPUSpecific:
1165         AppendCPUSpecificCPUDispatchMangling(CGM,
1166                                              FD->getAttr<CPUSpecificAttr>(),
1167                                              GD.getMultiVersionIndex(), Out);
1168         break;
1169       case MultiVersionKind::Target:
1170         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1171         break;
1172       case MultiVersionKind::None:
1173         llvm_unreachable("None multiversion type isn't valid here");
1174       }
1175     }
1176 
1177   return std::string(Out.str());
1178 }
1179 
1180 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1181                                             const FunctionDecl *FD) {
1182   if (!FD->isMultiVersion())
1183     return;
1184 
1185   // Get the name of what this would be without the 'target' attribute.  This
1186   // allows us to lookup the version that was emitted when this wasn't a
1187   // multiversion function.
1188   std::string NonTargetName =
1189       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1190   GlobalDecl OtherGD;
1191   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1192     assert(OtherGD.getCanonicalDecl()
1193                .getDecl()
1194                ->getAsFunction()
1195                ->isMultiVersion() &&
1196            "Other GD should now be a multiversioned function");
1197     // OtherFD is the version of this function that was mangled BEFORE
1198     // becoming a MultiVersion function.  It potentially needs to be updated.
1199     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1200                                       .getDecl()
1201                                       ->getAsFunction()
1202                                       ->getMostRecentDecl();
1203     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1204     // This is so that if the initial version was already the 'default'
1205     // version, we don't try to update it.
1206     if (OtherName != NonTargetName) {
1207       // Remove instead of erase, since others may have stored the StringRef
1208       // to this.
1209       const auto ExistingRecord = Manglings.find(NonTargetName);
1210       if (ExistingRecord != std::end(Manglings))
1211         Manglings.remove(&(*ExistingRecord));
1212       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1213       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1214       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1215         Entry->setName(OtherName);
1216     }
1217   }
1218 }
1219 
1220 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1221   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1222 
1223   // Some ABIs don't have constructor variants.  Make sure that base and
1224   // complete constructors get mangled the same.
1225   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1226     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1227       CXXCtorType OrigCtorType = GD.getCtorType();
1228       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1229       if (OrigCtorType == Ctor_Base)
1230         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1231     }
1232   }
1233 
1234   auto FoundName = MangledDeclNames.find(CanonicalGD);
1235   if (FoundName != MangledDeclNames.end())
1236     return FoundName->second;
1237 
1238   // Keep the first result in the case of a mangling collision.
1239   const auto *ND = cast<NamedDecl>(GD.getDecl());
1240   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1241 
1242   // Ensure either we have different ABIs between host and device compilations,
1243   // says host compilation following MSVC ABI but device compilation follows
1244   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1245   // mangling should be the same after name stubbing. The later checking is
1246   // very important as the device kernel name being mangled in host-compilation
1247   // is used to resolve the device binaries to be executed. Inconsistent naming
1248   // result in undefined behavior. Even though we cannot check that naming
1249   // directly between host- and device-compilations, the host- and
1250   // device-mangling in host compilation could help catching certain ones.
1251   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1252          getLangOpts().CUDAIsDevice ||
1253          (getContext().getAuxTargetInfo() &&
1254           (getContext().getAuxTargetInfo()->getCXXABI() !=
1255            getContext().getTargetInfo().getCXXABI())) ||
1256          getCUDARuntime().getDeviceSideName(ND) ==
1257              getMangledNameImpl(
1258                  *this,
1259                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1260                  ND));
1261 
1262   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1263   return MangledDeclNames[CanonicalGD] = Result.first->first();
1264 }
1265 
1266 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1267                                              const BlockDecl *BD) {
1268   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1269   const Decl *D = GD.getDecl();
1270 
1271   SmallString<256> Buffer;
1272   llvm::raw_svector_ostream Out(Buffer);
1273   if (!D)
1274     MangleCtx.mangleGlobalBlock(BD,
1275       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1276   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1277     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1278   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1279     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1280   else
1281     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1282 
1283   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1284   return Result.first->first();
1285 }
1286 
1287 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1288   return getModule().getNamedValue(Name);
1289 }
1290 
1291 /// AddGlobalCtor - Add a function to the list that will be called before
1292 /// main() runs.
1293 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1294                                   llvm::Constant *AssociatedData) {
1295   // FIXME: Type coercion of void()* types.
1296   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1297 }
1298 
1299 /// AddGlobalDtor - Add a function to the list that will be called
1300 /// when the module is unloaded.
1301 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1302                                   bool IsDtorAttrFunc) {
1303   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1304       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1305     DtorsUsingAtExit[Priority].push_back(Dtor);
1306     return;
1307   }
1308 
1309   // FIXME: Type coercion of void()* types.
1310   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1311 }
1312 
1313 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1314   if (Fns.empty()) return;
1315 
1316   // Ctor function type is void()*.
1317   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1318   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1319       TheModule.getDataLayout().getProgramAddressSpace());
1320 
1321   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1322   llvm::StructType *CtorStructTy = llvm::StructType::get(
1323       Int32Ty, CtorPFTy, VoidPtrTy);
1324 
1325   // Construct the constructor and destructor arrays.
1326   ConstantInitBuilder builder(*this);
1327   auto ctors = builder.beginArray(CtorStructTy);
1328   for (const auto &I : Fns) {
1329     auto ctor = ctors.beginStruct(CtorStructTy);
1330     ctor.addInt(Int32Ty, I.Priority);
1331     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1332     if (I.AssociatedData)
1333       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1334     else
1335       ctor.addNullPointer(VoidPtrTy);
1336     ctor.finishAndAddTo(ctors);
1337   }
1338 
1339   auto list =
1340     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1341                                 /*constant*/ false,
1342                                 llvm::GlobalValue::AppendingLinkage);
1343 
1344   // The LTO linker doesn't seem to like it when we set an alignment
1345   // on appending variables.  Take it off as a workaround.
1346   list->setAlignment(llvm::None);
1347 
1348   Fns.clear();
1349 }
1350 
1351 llvm::GlobalValue::LinkageTypes
1352 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1353   const auto *D = cast<FunctionDecl>(GD.getDecl());
1354 
1355   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1356 
1357   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1358     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1359 
1360   if (isa<CXXConstructorDecl>(D) &&
1361       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1362       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1363     // Our approach to inheriting constructors is fundamentally different from
1364     // that used by the MS ABI, so keep our inheriting constructor thunks
1365     // internal rather than trying to pick an unambiguous mangling for them.
1366     return llvm::GlobalValue::InternalLinkage;
1367   }
1368 
1369   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1370 }
1371 
1372 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1373   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1374   if (!MDS) return nullptr;
1375 
1376   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1377 }
1378 
1379 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1380                                               const CGFunctionInfo &Info,
1381                                               llvm::Function *F) {
1382   unsigned CallingConv;
1383   llvm::AttributeList PAL;
1384   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1385   F->setAttributes(PAL);
1386   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1387 }
1388 
1389 static void removeImageAccessQualifier(std::string& TyName) {
1390   std::string ReadOnlyQual("__read_only");
1391   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1392   if (ReadOnlyPos != std::string::npos)
1393     // "+ 1" for the space after access qualifier.
1394     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1395   else {
1396     std::string WriteOnlyQual("__write_only");
1397     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1398     if (WriteOnlyPos != std::string::npos)
1399       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1400     else {
1401       std::string ReadWriteQual("__read_write");
1402       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1403       if (ReadWritePos != std::string::npos)
1404         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1405     }
1406   }
1407 }
1408 
1409 // Returns the address space id that should be produced to the
1410 // kernel_arg_addr_space metadata. This is always fixed to the ids
1411 // as specified in the SPIR 2.0 specification in order to differentiate
1412 // for example in clGetKernelArgInfo() implementation between the address
1413 // spaces with targets without unique mapping to the OpenCL address spaces
1414 // (basically all single AS CPUs).
1415 static unsigned ArgInfoAddressSpace(LangAS AS) {
1416   switch (AS) {
1417   case LangAS::opencl_global:
1418     return 1;
1419   case LangAS::opencl_constant:
1420     return 2;
1421   case LangAS::opencl_local:
1422     return 3;
1423   case LangAS::opencl_generic:
1424     return 4; // Not in SPIR 2.0 specs.
1425   case LangAS::opencl_global_device:
1426     return 5;
1427   case LangAS::opencl_global_host:
1428     return 6;
1429   default:
1430     return 0; // Assume private.
1431   }
1432 }
1433 
1434 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1435                                          const FunctionDecl *FD,
1436                                          CodeGenFunction *CGF) {
1437   assert(((FD && CGF) || (!FD && !CGF)) &&
1438          "Incorrect use - FD and CGF should either be both null or not!");
1439   // Create MDNodes that represent the kernel arg metadata.
1440   // Each MDNode is a list in the form of "key", N number of values which is
1441   // the same number of values as their are kernel arguments.
1442 
1443   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1444 
1445   // MDNode for the kernel argument address space qualifiers.
1446   SmallVector<llvm::Metadata *, 8> addressQuals;
1447 
1448   // MDNode for the kernel argument access qualifiers (images only).
1449   SmallVector<llvm::Metadata *, 8> accessQuals;
1450 
1451   // MDNode for the kernel argument type names.
1452   SmallVector<llvm::Metadata *, 8> argTypeNames;
1453 
1454   // MDNode for the kernel argument base type names.
1455   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1456 
1457   // MDNode for the kernel argument type qualifiers.
1458   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1459 
1460   // MDNode for the kernel argument names.
1461   SmallVector<llvm::Metadata *, 8> argNames;
1462 
1463   if (FD && CGF)
1464     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1465       const ParmVarDecl *parm = FD->getParamDecl(i);
1466       QualType ty = parm->getType();
1467       std::string typeQuals;
1468 
1469       if (ty->isPointerType()) {
1470         QualType pointeeTy = ty->getPointeeType();
1471 
1472         // Get address qualifier.
1473         addressQuals.push_back(
1474             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1475                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1476 
1477         // Get argument type name.
1478         std::string typeName =
1479             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1480 
1481         // Turn "unsigned type" to "utype"
1482         std::string::size_type pos = typeName.find("unsigned");
1483         if (pointeeTy.isCanonical() && pos != std::string::npos)
1484           typeName.erase(pos + 1, 8);
1485 
1486         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1487 
1488         std::string baseTypeName =
1489             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1490                 Policy) +
1491             "*";
1492 
1493         // Turn "unsigned type" to "utype"
1494         pos = baseTypeName.find("unsigned");
1495         if (pos != std::string::npos)
1496           baseTypeName.erase(pos + 1, 8);
1497 
1498         argBaseTypeNames.push_back(
1499             llvm::MDString::get(VMContext, baseTypeName));
1500 
1501         // Get argument type qualifiers:
1502         if (ty.isRestrictQualified())
1503           typeQuals = "restrict";
1504         if (pointeeTy.isConstQualified() ||
1505             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1506           typeQuals += typeQuals.empty() ? "const" : " const";
1507         if (pointeeTy.isVolatileQualified())
1508           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1509       } else {
1510         uint32_t AddrSpc = 0;
1511         bool isPipe = ty->isPipeType();
1512         if (ty->isImageType() || isPipe)
1513           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1514 
1515         addressQuals.push_back(
1516             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1517 
1518         // Get argument type name.
1519         std::string typeName;
1520         if (isPipe)
1521           typeName = ty.getCanonicalType()
1522                          ->castAs<PipeType>()
1523                          ->getElementType()
1524                          .getAsString(Policy);
1525         else
1526           typeName = ty.getUnqualifiedType().getAsString(Policy);
1527 
1528         // Turn "unsigned type" to "utype"
1529         std::string::size_type pos = typeName.find("unsigned");
1530         if (ty.isCanonical() && pos != std::string::npos)
1531           typeName.erase(pos + 1, 8);
1532 
1533         std::string baseTypeName;
1534         if (isPipe)
1535           baseTypeName = ty.getCanonicalType()
1536                              ->castAs<PipeType>()
1537                              ->getElementType()
1538                              .getCanonicalType()
1539                              .getAsString(Policy);
1540         else
1541           baseTypeName =
1542               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1543 
1544         // Remove access qualifiers on images
1545         // (as they are inseparable from type in clang implementation,
1546         // but OpenCL spec provides a special query to get access qualifier
1547         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1548         if (ty->isImageType()) {
1549           removeImageAccessQualifier(typeName);
1550           removeImageAccessQualifier(baseTypeName);
1551         }
1552 
1553         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1554 
1555         // Turn "unsigned type" to "utype"
1556         pos = baseTypeName.find("unsigned");
1557         if (pos != std::string::npos)
1558           baseTypeName.erase(pos + 1, 8);
1559 
1560         argBaseTypeNames.push_back(
1561             llvm::MDString::get(VMContext, baseTypeName));
1562 
1563         if (isPipe)
1564           typeQuals = "pipe";
1565       }
1566 
1567       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1568 
1569       // Get image and pipe access qualifier:
1570       if (ty->isImageType() || ty->isPipeType()) {
1571         const Decl *PDecl = parm;
1572         if (auto *TD = dyn_cast<TypedefType>(ty))
1573           PDecl = TD->getDecl();
1574         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1575         if (A && A->isWriteOnly())
1576           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1577         else if (A && A->isReadWrite())
1578           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1579         else
1580           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1581       } else
1582         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1583 
1584       // Get argument name.
1585       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1586     }
1587 
1588   Fn->setMetadata("kernel_arg_addr_space",
1589                   llvm::MDNode::get(VMContext, addressQuals));
1590   Fn->setMetadata("kernel_arg_access_qual",
1591                   llvm::MDNode::get(VMContext, accessQuals));
1592   Fn->setMetadata("kernel_arg_type",
1593                   llvm::MDNode::get(VMContext, argTypeNames));
1594   Fn->setMetadata("kernel_arg_base_type",
1595                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1596   Fn->setMetadata("kernel_arg_type_qual",
1597                   llvm::MDNode::get(VMContext, argTypeQuals));
1598   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1599     Fn->setMetadata("kernel_arg_name",
1600                     llvm::MDNode::get(VMContext, argNames));
1601 }
1602 
1603 /// Determines whether the language options require us to model
1604 /// unwind exceptions.  We treat -fexceptions as mandating this
1605 /// except under the fragile ObjC ABI with only ObjC exceptions
1606 /// enabled.  This means, for example, that C with -fexceptions
1607 /// enables this.
1608 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1609   // If exceptions are completely disabled, obviously this is false.
1610   if (!LangOpts.Exceptions) return false;
1611 
1612   // If C++ exceptions are enabled, this is true.
1613   if (LangOpts.CXXExceptions) return true;
1614 
1615   // If ObjC exceptions are enabled, this depends on the ABI.
1616   if (LangOpts.ObjCExceptions) {
1617     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1618   }
1619 
1620   return true;
1621 }
1622 
1623 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1624                                                       const CXXMethodDecl *MD) {
1625   // Check that the type metadata can ever actually be used by a call.
1626   if (!CGM.getCodeGenOpts().LTOUnit ||
1627       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1628     return false;
1629 
1630   // Only functions whose address can be taken with a member function pointer
1631   // need this sort of type metadata.
1632   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1633          !isa<CXXDestructorDecl>(MD);
1634 }
1635 
1636 std::vector<const CXXRecordDecl *>
1637 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1638   llvm::SetVector<const CXXRecordDecl *> MostBases;
1639 
1640   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1641   CollectMostBases = [&](const CXXRecordDecl *RD) {
1642     if (RD->getNumBases() == 0)
1643       MostBases.insert(RD);
1644     for (const CXXBaseSpecifier &B : RD->bases())
1645       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1646   };
1647   CollectMostBases(RD);
1648   return MostBases.takeVector();
1649 }
1650 
1651 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1652                                                            llvm::Function *F) {
1653   llvm::AttrBuilder B;
1654 
1655   if (CodeGenOpts.UnwindTables)
1656     B.addAttribute(llvm::Attribute::UWTable);
1657 
1658   if (CodeGenOpts.StackClashProtector)
1659     B.addAttribute("probe-stack", "inline-asm");
1660 
1661   if (!hasUnwindExceptions(LangOpts))
1662     B.addAttribute(llvm::Attribute::NoUnwind);
1663 
1664   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1665     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1666       B.addAttribute(llvm::Attribute::StackProtect);
1667     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1668       B.addAttribute(llvm::Attribute::StackProtectStrong);
1669     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1670       B.addAttribute(llvm::Attribute::StackProtectReq);
1671   }
1672 
1673   if (!D) {
1674     // If we don't have a declaration to control inlining, the function isn't
1675     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1676     // disabled, mark the function as noinline.
1677     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1678         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1679       B.addAttribute(llvm::Attribute::NoInline);
1680 
1681     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1682     return;
1683   }
1684 
1685   // Track whether we need to add the optnone LLVM attribute,
1686   // starting with the default for this optimization level.
1687   bool ShouldAddOptNone =
1688       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1689   // We can't add optnone in the following cases, it won't pass the verifier.
1690   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1691   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1692 
1693   // Add optnone, but do so only if the function isn't always_inline.
1694   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1695       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1696     B.addAttribute(llvm::Attribute::OptimizeNone);
1697 
1698     // OptimizeNone implies noinline; we should not be inlining such functions.
1699     B.addAttribute(llvm::Attribute::NoInline);
1700 
1701     // We still need to handle naked functions even though optnone subsumes
1702     // much of their semantics.
1703     if (D->hasAttr<NakedAttr>())
1704       B.addAttribute(llvm::Attribute::Naked);
1705 
1706     // OptimizeNone wins over OptimizeForSize and MinSize.
1707     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1708     F->removeFnAttr(llvm::Attribute::MinSize);
1709   } else if (D->hasAttr<NakedAttr>()) {
1710     // Naked implies noinline: we should not be inlining such functions.
1711     B.addAttribute(llvm::Attribute::Naked);
1712     B.addAttribute(llvm::Attribute::NoInline);
1713   } else if (D->hasAttr<NoDuplicateAttr>()) {
1714     B.addAttribute(llvm::Attribute::NoDuplicate);
1715   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1716     // Add noinline if the function isn't always_inline.
1717     B.addAttribute(llvm::Attribute::NoInline);
1718   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1719              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1720     // (noinline wins over always_inline, and we can't specify both in IR)
1721     B.addAttribute(llvm::Attribute::AlwaysInline);
1722   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1723     // If we're not inlining, then force everything that isn't always_inline to
1724     // carry an explicit noinline attribute.
1725     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1726       B.addAttribute(llvm::Attribute::NoInline);
1727   } else {
1728     // Otherwise, propagate the inline hint attribute and potentially use its
1729     // absence to mark things as noinline.
1730     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1731       // Search function and template pattern redeclarations for inline.
1732       auto CheckForInline = [](const FunctionDecl *FD) {
1733         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1734           return Redecl->isInlineSpecified();
1735         };
1736         if (any_of(FD->redecls(), CheckRedeclForInline))
1737           return true;
1738         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1739         if (!Pattern)
1740           return false;
1741         return any_of(Pattern->redecls(), CheckRedeclForInline);
1742       };
1743       if (CheckForInline(FD)) {
1744         B.addAttribute(llvm::Attribute::InlineHint);
1745       } else if (CodeGenOpts.getInlining() ==
1746                      CodeGenOptions::OnlyHintInlining &&
1747                  !FD->isInlined() &&
1748                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1749         B.addAttribute(llvm::Attribute::NoInline);
1750       }
1751     }
1752   }
1753 
1754   // Add other optimization related attributes if we are optimizing this
1755   // function.
1756   if (!D->hasAttr<OptimizeNoneAttr>()) {
1757     if (D->hasAttr<ColdAttr>()) {
1758       if (!ShouldAddOptNone)
1759         B.addAttribute(llvm::Attribute::OptimizeForSize);
1760       B.addAttribute(llvm::Attribute::Cold);
1761     }
1762     if (D->hasAttr<HotAttr>())
1763       B.addAttribute(llvm::Attribute::Hot);
1764     if (D->hasAttr<MinSizeAttr>())
1765       B.addAttribute(llvm::Attribute::MinSize);
1766   }
1767 
1768   if (D->hasAttr<NoMergeAttr>())
1769     B.addAttribute(llvm::Attribute::NoMerge);
1770 
1771   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1772 
1773   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1774   if (alignment)
1775     F->setAlignment(llvm::Align(alignment));
1776 
1777   if (!D->hasAttr<AlignedAttr>())
1778     if (LangOpts.FunctionAlignment)
1779       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1780 
1781   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1782   // reserve a bit for differentiating between virtual and non-virtual member
1783   // functions. If the current target's C++ ABI requires this and this is a
1784   // member function, set its alignment accordingly.
1785   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1786     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1787       F->setAlignment(llvm::Align(2));
1788   }
1789 
1790   // In the cross-dso CFI mode with canonical jump tables, we want !type
1791   // attributes on definitions only.
1792   if (CodeGenOpts.SanitizeCfiCrossDso &&
1793       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1794     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1795       // Skip available_externally functions. They won't be codegen'ed in the
1796       // current module anyway.
1797       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1798         CreateFunctionTypeMetadataForIcall(FD, F);
1799     }
1800   }
1801 
1802   // Emit type metadata on member functions for member function pointer checks.
1803   // These are only ever necessary on definitions; we're guaranteed that the
1804   // definition will be present in the LTO unit as a result of LTO visibility.
1805   auto *MD = dyn_cast<CXXMethodDecl>(D);
1806   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1807     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1808       llvm::Metadata *Id =
1809           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1810               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1811       F->addTypeMetadata(0, Id);
1812     }
1813   }
1814 }
1815 
1816 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1817                                                   llvm::Function *F) {
1818   if (D->hasAttr<StrictFPAttr>()) {
1819     llvm::AttrBuilder FuncAttrs;
1820     FuncAttrs.addAttribute("strictfp");
1821     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1822   }
1823 }
1824 
1825 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1826   const Decl *D = GD.getDecl();
1827   if (dyn_cast_or_null<NamedDecl>(D))
1828     setGVProperties(GV, GD);
1829   else
1830     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1831 
1832   if (D && D->hasAttr<UsedAttr>())
1833     addUsedGlobal(GV);
1834 
1835   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1836     const auto *VD = cast<VarDecl>(D);
1837     if (VD->getType().isConstQualified() &&
1838         VD->getStorageDuration() == SD_Static)
1839       addUsedGlobal(GV);
1840   }
1841 }
1842 
1843 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1844                                                 llvm::AttrBuilder &Attrs) {
1845   // Add target-cpu and target-features attributes to functions. If
1846   // we have a decl for the function and it has a target attribute then
1847   // parse that and add it to the feature set.
1848   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1849   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1850   std::vector<std::string> Features;
1851   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1852   FD = FD ? FD->getMostRecentDecl() : FD;
1853   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1854   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1855   bool AddedAttr = false;
1856   if (TD || SD) {
1857     llvm::StringMap<bool> FeatureMap;
1858     getContext().getFunctionFeatureMap(FeatureMap, GD);
1859 
1860     // Produce the canonical string for this set of features.
1861     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1862       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1863 
1864     // Now add the target-cpu and target-features to the function.
1865     // While we populated the feature map above, we still need to
1866     // get and parse the target attribute so we can get the cpu for
1867     // the function.
1868     if (TD) {
1869       ParsedTargetAttr ParsedAttr = TD->parse();
1870       if (!ParsedAttr.Architecture.empty() &&
1871           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1872         TargetCPU = ParsedAttr.Architecture;
1873         TuneCPU = ""; // Clear the tune CPU.
1874       }
1875       if (!ParsedAttr.Tune.empty() &&
1876           getTarget().isValidCPUName(ParsedAttr.Tune))
1877         TuneCPU = ParsedAttr.Tune;
1878     }
1879   } else {
1880     // Otherwise just add the existing target cpu and target features to the
1881     // function.
1882     Features = getTarget().getTargetOpts().Features;
1883   }
1884 
1885   if (!TargetCPU.empty()) {
1886     Attrs.addAttribute("target-cpu", TargetCPU);
1887     AddedAttr = true;
1888   }
1889   if (!TuneCPU.empty()) {
1890     Attrs.addAttribute("tune-cpu", TuneCPU);
1891     AddedAttr = true;
1892   }
1893   if (!Features.empty()) {
1894     llvm::sort(Features);
1895     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1896     AddedAttr = true;
1897   }
1898 
1899   return AddedAttr;
1900 }
1901 
1902 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1903                                           llvm::GlobalObject *GO) {
1904   const Decl *D = GD.getDecl();
1905   SetCommonAttributes(GD, GO);
1906 
1907   if (D) {
1908     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1909       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1910         GV->addAttribute("bss-section", SA->getName());
1911       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1912         GV->addAttribute("data-section", SA->getName());
1913       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1914         GV->addAttribute("rodata-section", SA->getName());
1915       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1916         GV->addAttribute("relro-section", SA->getName());
1917     }
1918 
1919     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1920       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1921         if (!D->getAttr<SectionAttr>())
1922           F->addFnAttr("implicit-section-name", SA->getName());
1923 
1924       llvm::AttrBuilder Attrs;
1925       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1926         // We know that GetCPUAndFeaturesAttributes will always have the
1927         // newest set, since it has the newest possible FunctionDecl, so the
1928         // new ones should replace the old.
1929         llvm::AttrBuilder RemoveAttrs;
1930         RemoveAttrs.addAttribute("target-cpu");
1931         RemoveAttrs.addAttribute("target-features");
1932         RemoveAttrs.addAttribute("tune-cpu");
1933         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1934         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1935       }
1936     }
1937 
1938     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1939       GO->setSection(CSA->getName());
1940     else if (const auto *SA = D->getAttr<SectionAttr>())
1941       GO->setSection(SA->getName());
1942   }
1943 
1944   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1945 }
1946 
1947 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1948                                                   llvm::Function *F,
1949                                                   const CGFunctionInfo &FI) {
1950   const Decl *D = GD.getDecl();
1951   SetLLVMFunctionAttributes(GD, FI, F);
1952   SetLLVMFunctionAttributesForDefinition(D, F);
1953 
1954   F->setLinkage(llvm::Function::InternalLinkage);
1955 
1956   setNonAliasAttributes(GD, F);
1957 }
1958 
1959 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1960   // Set linkage and visibility in case we never see a definition.
1961   LinkageInfo LV = ND->getLinkageAndVisibility();
1962   // Don't set internal linkage on declarations.
1963   // "extern_weak" is overloaded in LLVM; we probably should have
1964   // separate linkage types for this.
1965   if (isExternallyVisible(LV.getLinkage()) &&
1966       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1967     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1968 }
1969 
1970 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1971                                                        llvm::Function *F) {
1972   // Only if we are checking indirect calls.
1973   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1974     return;
1975 
1976   // Non-static class methods are handled via vtable or member function pointer
1977   // checks elsewhere.
1978   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1979     return;
1980 
1981   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1982   F->addTypeMetadata(0, MD);
1983   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1984 
1985   // Emit a hash-based bit set entry for cross-DSO calls.
1986   if (CodeGenOpts.SanitizeCfiCrossDso)
1987     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1988       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1989 }
1990 
1991 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1992                                           bool IsIncompleteFunction,
1993                                           bool IsThunk) {
1994 
1995   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1996     // If this is an intrinsic function, set the function's attributes
1997     // to the intrinsic's attributes.
1998     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1999     return;
2000   }
2001 
2002   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2003 
2004   if (!IsIncompleteFunction)
2005     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
2006 
2007   // Add the Returned attribute for "this", except for iOS 5 and earlier
2008   // where substantial code, including the libstdc++ dylib, was compiled with
2009   // GCC and does not actually return "this".
2010   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2011       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2012     assert(!F->arg_empty() &&
2013            F->arg_begin()->getType()
2014              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2015            "unexpected this return");
2016     F->addAttribute(1, llvm::Attribute::Returned);
2017   }
2018 
2019   // Only a few attributes are set on declarations; these may later be
2020   // overridden by a definition.
2021 
2022   setLinkageForGV(F, FD);
2023   setGVProperties(F, FD);
2024 
2025   // Setup target-specific attributes.
2026   if (!IsIncompleteFunction && F->isDeclaration())
2027     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2028 
2029   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2030     F->setSection(CSA->getName());
2031   else if (const auto *SA = FD->getAttr<SectionAttr>())
2032      F->setSection(SA->getName());
2033 
2034   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2035   if (FD->isInlineBuiltinDeclaration()) {
2036     const FunctionDecl *FDBody;
2037     bool HasBody = FD->hasBody(FDBody);
2038     (void)HasBody;
2039     assert(HasBody && "Inline builtin declarations should always have an "
2040                       "available body!");
2041     if (shouldEmitFunction(FDBody))
2042       F->addAttribute(llvm::AttributeList::FunctionIndex,
2043                       llvm::Attribute::NoBuiltin);
2044   }
2045 
2046   if (FD->isReplaceableGlobalAllocationFunction()) {
2047     // A replaceable global allocation function does not act like a builtin by
2048     // default, only if it is invoked by a new-expression or delete-expression.
2049     F->addAttribute(llvm::AttributeList::FunctionIndex,
2050                     llvm::Attribute::NoBuiltin);
2051   }
2052 
2053   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2054     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2055   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2056     if (MD->isVirtual())
2057       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2058 
2059   // Don't emit entries for function declarations in the cross-DSO mode. This
2060   // is handled with better precision by the receiving DSO. But if jump tables
2061   // are non-canonical then we need type metadata in order to produce the local
2062   // jump table.
2063   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2064       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2065     CreateFunctionTypeMetadataForIcall(FD, F);
2066 
2067   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2068     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2069 
2070   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2071     // Annotate the callback behavior as metadata:
2072     //  - The callback callee (as argument number).
2073     //  - The callback payloads (as argument numbers).
2074     llvm::LLVMContext &Ctx = F->getContext();
2075     llvm::MDBuilder MDB(Ctx);
2076 
2077     // The payload indices are all but the first one in the encoding. The first
2078     // identifies the callback callee.
2079     int CalleeIdx = *CB->encoding_begin();
2080     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2081     F->addMetadata(llvm::LLVMContext::MD_callback,
2082                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2083                                                CalleeIdx, PayloadIndices,
2084                                                /* VarArgsArePassed */ false)}));
2085   }
2086 }
2087 
2088 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2089   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2090          "Only globals with definition can force usage.");
2091   LLVMUsed.emplace_back(GV);
2092 }
2093 
2094 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2095   assert(!GV->isDeclaration() &&
2096          "Only globals with definition can force usage.");
2097   LLVMCompilerUsed.emplace_back(GV);
2098 }
2099 
2100 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2101                      std::vector<llvm::WeakTrackingVH> &List) {
2102   // Don't create llvm.used if there is no need.
2103   if (List.empty())
2104     return;
2105 
2106   // Convert List to what ConstantArray needs.
2107   SmallVector<llvm::Constant*, 8> UsedArray;
2108   UsedArray.resize(List.size());
2109   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2110     UsedArray[i] =
2111         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2112             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2113   }
2114 
2115   if (UsedArray.empty())
2116     return;
2117   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2118 
2119   auto *GV = new llvm::GlobalVariable(
2120       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2121       llvm::ConstantArray::get(ATy, UsedArray), Name);
2122 
2123   GV->setSection("llvm.metadata");
2124 }
2125 
2126 void CodeGenModule::emitLLVMUsed() {
2127   emitUsed(*this, "llvm.used", LLVMUsed);
2128   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2129 }
2130 
2131 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2132   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2133   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2134 }
2135 
2136 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2137   llvm::SmallString<32> Opt;
2138   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2139   if (Opt.empty())
2140     return;
2141   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2142   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2143 }
2144 
2145 void CodeGenModule::AddDependentLib(StringRef Lib) {
2146   auto &C = getLLVMContext();
2147   if (getTarget().getTriple().isOSBinFormatELF()) {
2148       ELFDependentLibraries.push_back(
2149         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2150     return;
2151   }
2152 
2153   llvm::SmallString<24> Opt;
2154   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2155   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2156   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2157 }
2158 
2159 /// Add link options implied by the given module, including modules
2160 /// it depends on, using a postorder walk.
2161 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2162                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2163                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2164   // Import this module's parent.
2165   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2166     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2167   }
2168 
2169   // Import this module's dependencies.
2170   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2171     if (Visited.insert(Mod->Imports[I - 1]).second)
2172       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2173   }
2174 
2175   // Add linker options to link against the libraries/frameworks
2176   // described by this module.
2177   llvm::LLVMContext &Context = CGM.getLLVMContext();
2178   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2179 
2180   // For modules that use export_as for linking, use that module
2181   // name instead.
2182   if (Mod->UseExportAsModuleLinkName)
2183     return;
2184 
2185   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2186     // Link against a framework.  Frameworks are currently Darwin only, so we
2187     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2188     if (Mod->LinkLibraries[I-1].IsFramework) {
2189       llvm::Metadata *Args[2] = {
2190           llvm::MDString::get(Context, "-framework"),
2191           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2192 
2193       Metadata.push_back(llvm::MDNode::get(Context, Args));
2194       continue;
2195     }
2196 
2197     // Link against a library.
2198     if (IsELF) {
2199       llvm::Metadata *Args[2] = {
2200           llvm::MDString::get(Context, "lib"),
2201           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2202       };
2203       Metadata.push_back(llvm::MDNode::get(Context, Args));
2204     } else {
2205       llvm::SmallString<24> Opt;
2206       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2207           Mod->LinkLibraries[I - 1].Library, Opt);
2208       auto *OptString = llvm::MDString::get(Context, Opt);
2209       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2210     }
2211   }
2212 }
2213 
2214 void CodeGenModule::EmitModuleLinkOptions() {
2215   // Collect the set of all of the modules we want to visit to emit link
2216   // options, which is essentially the imported modules and all of their
2217   // non-explicit child modules.
2218   llvm::SetVector<clang::Module *> LinkModules;
2219   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2220   SmallVector<clang::Module *, 16> Stack;
2221 
2222   // Seed the stack with imported modules.
2223   for (Module *M : ImportedModules) {
2224     // Do not add any link flags when an implementation TU of a module imports
2225     // a header of that same module.
2226     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2227         !getLangOpts().isCompilingModule())
2228       continue;
2229     if (Visited.insert(M).second)
2230       Stack.push_back(M);
2231   }
2232 
2233   // Find all of the modules to import, making a little effort to prune
2234   // non-leaf modules.
2235   while (!Stack.empty()) {
2236     clang::Module *Mod = Stack.pop_back_val();
2237 
2238     bool AnyChildren = false;
2239 
2240     // Visit the submodules of this module.
2241     for (const auto &SM : Mod->submodules()) {
2242       // Skip explicit children; they need to be explicitly imported to be
2243       // linked against.
2244       if (SM->IsExplicit)
2245         continue;
2246 
2247       if (Visited.insert(SM).second) {
2248         Stack.push_back(SM);
2249         AnyChildren = true;
2250       }
2251     }
2252 
2253     // We didn't find any children, so add this module to the list of
2254     // modules to link against.
2255     if (!AnyChildren) {
2256       LinkModules.insert(Mod);
2257     }
2258   }
2259 
2260   // Add link options for all of the imported modules in reverse topological
2261   // order.  We don't do anything to try to order import link flags with respect
2262   // to linker options inserted by things like #pragma comment().
2263   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2264   Visited.clear();
2265   for (Module *M : LinkModules)
2266     if (Visited.insert(M).second)
2267       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2268   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2269   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2270 
2271   // Add the linker options metadata flag.
2272   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2273   for (auto *MD : LinkerOptionsMetadata)
2274     NMD->addOperand(MD);
2275 }
2276 
2277 void CodeGenModule::EmitDeferred() {
2278   // Emit deferred declare target declarations.
2279   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2280     getOpenMPRuntime().emitDeferredTargetDecls();
2281 
2282   // Emit code for any potentially referenced deferred decls.  Since a
2283   // previously unused static decl may become used during the generation of code
2284   // for a static function, iterate until no changes are made.
2285 
2286   if (!DeferredVTables.empty()) {
2287     EmitDeferredVTables();
2288 
2289     // Emitting a vtable doesn't directly cause more vtables to
2290     // become deferred, although it can cause functions to be
2291     // emitted that then need those vtables.
2292     assert(DeferredVTables.empty());
2293   }
2294 
2295   // Emit CUDA/HIP static device variables referenced by host code only.
2296   if (getLangOpts().CUDA)
2297     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2298       DeferredDeclsToEmit.push_back(V);
2299 
2300   // Stop if we're out of both deferred vtables and deferred declarations.
2301   if (DeferredDeclsToEmit.empty())
2302     return;
2303 
2304   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2305   // work, it will not interfere with this.
2306   std::vector<GlobalDecl> CurDeclsToEmit;
2307   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2308 
2309   for (GlobalDecl &D : CurDeclsToEmit) {
2310     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2311     // to get GlobalValue with exactly the type we need, not something that
2312     // might had been created for another decl with the same mangled name but
2313     // different type.
2314     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2315         GetAddrOfGlobal(D, ForDefinition));
2316 
2317     // In case of different address spaces, we may still get a cast, even with
2318     // IsForDefinition equal to true. Query mangled names table to get
2319     // GlobalValue.
2320     if (!GV)
2321       GV = GetGlobalValue(getMangledName(D));
2322 
2323     // Make sure GetGlobalValue returned non-null.
2324     assert(GV);
2325 
2326     // Check to see if we've already emitted this.  This is necessary
2327     // for a couple of reasons: first, decls can end up in the
2328     // deferred-decls queue multiple times, and second, decls can end
2329     // up with definitions in unusual ways (e.g. by an extern inline
2330     // function acquiring a strong function redefinition).  Just
2331     // ignore these cases.
2332     if (!GV->isDeclaration())
2333       continue;
2334 
2335     // If this is OpenMP, check if it is legal to emit this global normally.
2336     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2337       continue;
2338 
2339     // Otherwise, emit the definition and move on to the next one.
2340     EmitGlobalDefinition(D, GV);
2341 
2342     // If we found out that we need to emit more decls, do that recursively.
2343     // This has the advantage that the decls are emitted in a DFS and related
2344     // ones are close together, which is convenient for testing.
2345     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2346       EmitDeferred();
2347       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2348     }
2349   }
2350 }
2351 
2352 void CodeGenModule::EmitVTablesOpportunistically() {
2353   // Try to emit external vtables as available_externally if they have emitted
2354   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2355   // is not allowed to create new references to things that need to be emitted
2356   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2357 
2358   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2359          && "Only emit opportunistic vtables with optimizations");
2360 
2361   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2362     assert(getVTables().isVTableExternal(RD) &&
2363            "This queue should only contain external vtables");
2364     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2365       VTables.GenerateClassData(RD);
2366   }
2367   OpportunisticVTables.clear();
2368 }
2369 
2370 void CodeGenModule::EmitGlobalAnnotations() {
2371   if (Annotations.empty())
2372     return;
2373 
2374   // Create a new global variable for the ConstantStruct in the Module.
2375   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2376     Annotations[0]->getType(), Annotations.size()), Annotations);
2377   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2378                                       llvm::GlobalValue::AppendingLinkage,
2379                                       Array, "llvm.global.annotations");
2380   gv->setSection(AnnotationSection);
2381 }
2382 
2383 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2384   llvm::Constant *&AStr = AnnotationStrings[Str];
2385   if (AStr)
2386     return AStr;
2387 
2388   // Not found yet, create a new global.
2389   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2390   auto *gv =
2391       new llvm::GlobalVariable(getModule(), s->getType(), true,
2392                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2393   gv->setSection(AnnotationSection);
2394   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2395   AStr = gv;
2396   return gv;
2397 }
2398 
2399 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2400   SourceManager &SM = getContext().getSourceManager();
2401   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2402   if (PLoc.isValid())
2403     return EmitAnnotationString(PLoc.getFilename());
2404   return EmitAnnotationString(SM.getBufferName(Loc));
2405 }
2406 
2407 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2408   SourceManager &SM = getContext().getSourceManager();
2409   PresumedLoc PLoc = SM.getPresumedLoc(L);
2410   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2411     SM.getExpansionLineNumber(L);
2412   return llvm::ConstantInt::get(Int32Ty, LineNo);
2413 }
2414 
2415 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2416   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2417   if (Exprs.empty())
2418     return llvm::ConstantPointerNull::get(Int8PtrTy);
2419 
2420   llvm::FoldingSetNodeID ID;
2421   for (Expr *E : Exprs) {
2422     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2423   }
2424   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2425   if (Lookup)
2426     return Lookup;
2427 
2428   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2429   LLVMArgs.reserve(Exprs.size());
2430   ConstantEmitter ConstEmiter(*this);
2431   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2432     const auto *CE = cast<clang::ConstantExpr>(E);
2433     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2434                                     CE->getType());
2435   });
2436   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2437   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2438                                       llvm::GlobalValue::PrivateLinkage, Struct,
2439                                       ".args");
2440   GV->setSection(AnnotationSection);
2441   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2442   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2443 
2444   Lookup = Bitcasted;
2445   return Bitcasted;
2446 }
2447 
2448 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2449                                                 const AnnotateAttr *AA,
2450                                                 SourceLocation L) {
2451   // Get the globals for file name, annotation, and the line number.
2452   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2453                  *UnitGV = EmitAnnotationUnit(L),
2454                  *LineNoCst = EmitAnnotationLineNo(L),
2455                  *Args = EmitAnnotationArgs(AA);
2456 
2457   llvm::Constant *ASZeroGV = GV;
2458   if (GV->getAddressSpace() != 0) {
2459     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2460                    GV, GV->getValueType()->getPointerTo(0));
2461   }
2462 
2463   // Create the ConstantStruct for the global annotation.
2464   llvm::Constant *Fields[] = {
2465       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2466       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2467       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2468       LineNoCst,
2469       Args,
2470   };
2471   return llvm::ConstantStruct::getAnon(Fields);
2472 }
2473 
2474 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2475                                          llvm::GlobalValue *GV) {
2476   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2477   // Get the struct elements for these annotations.
2478   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2479     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2480 }
2481 
2482 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2483                                            llvm::Function *Fn,
2484                                            SourceLocation Loc) const {
2485   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2486   // Blacklist by function name.
2487   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2488     return true;
2489   // Blacklist by location.
2490   if (Loc.isValid())
2491     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2492   // If location is unknown, this may be a compiler-generated function. Assume
2493   // it's located in the main file.
2494   auto &SM = Context.getSourceManager();
2495   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2496     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2497   }
2498   return false;
2499 }
2500 
2501 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2502                                            SourceLocation Loc, QualType Ty,
2503                                            StringRef Category) const {
2504   // For now globals can be blacklisted only in ASan and KASan.
2505   const SanitizerMask EnabledAsanMask =
2506       LangOpts.Sanitize.Mask &
2507       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2508        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2509        SanitizerKind::MemTag);
2510   if (!EnabledAsanMask)
2511     return false;
2512   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2513   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2514     return true;
2515   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2516     return true;
2517   // Check global type.
2518   if (!Ty.isNull()) {
2519     // Drill down the array types: if global variable of a fixed type is
2520     // blacklisted, we also don't instrument arrays of them.
2521     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2522       Ty = AT->getElementType();
2523     Ty = Ty.getCanonicalType().getUnqualifiedType();
2524     // We allow to blacklist only record types (classes, structs etc.)
2525     if (Ty->isRecordType()) {
2526       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2527       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2528         return true;
2529     }
2530   }
2531   return false;
2532 }
2533 
2534 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2535                                    StringRef Category) const {
2536   const auto &XRayFilter = getContext().getXRayFilter();
2537   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2538   auto Attr = ImbueAttr::NONE;
2539   if (Loc.isValid())
2540     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2541   if (Attr == ImbueAttr::NONE)
2542     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2543   switch (Attr) {
2544   case ImbueAttr::NONE:
2545     return false;
2546   case ImbueAttr::ALWAYS:
2547     Fn->addFnAttr("function-instrument", "xray-always");
2548     break;
2549   case ImbueAttr::ALWAYS_ARG1:
2550     Fn->addFnAttr("function-instrument", "xray-always");
2551     Fn->addFnAttr("xray-log-args", "1");
2552     break;
2553   case ImbueAttr::NEVER:
2554     Fn->addFnAttr("function-instrument", "xray-never");
2555     break;
2556   }
2557   return true;
2558 }
2559 
2560 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2561   // Never defer when EmitAllDecls is specified.
2562   if (LangOpts.EmitAllDecls)
2563     return true;
2564 
2565   if (CodeGenOpts.KeepStaticConsts) {
2566     const auto *VD = dyn_cast<VarDecl>(Global);
2567     if (VD && VD->getType().isConstQualified() &&
2568         VD->getStorageDuration() == SD_Static)
2569       return true;
2570   }
2571 
2572   return getContext().DeclMustBeEmitted(Global);
2573 }
2574 
2575 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2576   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2577     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2578       // Implicit template instantiations may change linkage if they are later
2579       // explicitly instantiated, so they should not be emitted eagerly.
2580       return false;
2581     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2582     // not emit them eagerly unless we sure that the function must be emitted on
2583     // the host.
2584     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2585         !LangOpts.OpenMPIsDevice &&
2586         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2587         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2588       return false;
2589   }
2590   if (const auto *VD = dyn_cast<VarDecl>(Global))
2591     if (Context.getInlineVariableDefinitionKind(VD) ==
2592         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2593       // A definition of an inline constexpr static data member may change
2594       // linkage later if it's redeclared outside the class.
2595       return false;
2596   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2597   // codegen for global variables, because they may be marked as threadprivate.
2598   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2599       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2600       !isTypeConstant(Global->getType(), false) &&
2601       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2602     return false;
2603 
2604   return true;
2605 }
2606 
2607 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2608   StringRef Name = getMangledName(GD);
2609 
2610   // The UUID descriptor should be pointer aligned.
2611   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2612 
2613   // Look for an existing global.
2614   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2615     return ConstantAddress(GV, Alignment);
2616 
2617   ConstantEmitter Emitter(*this);
2618   llvm::Constant *Init;
2619 
2620   APValue &V = GD->getAsAPValue();
2621   if (!V.isAbsent()) {
2622     // If possible, emit the APValue version of the initializer. In particular,
2623     // this gets the type of the constant right.
2624     Init = Emitter.emitForInitializer(
2625         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2626   } else {
2627     // As a fallback, directly construct the constant.
2628     // FIXME: This may get padding wrong under esoteric struct layout rules.
2629     // MSVC appears to create a complete type 'struct __s_GUID' that it
2630     // presumably uses to represent these constants.
2631     MSGuidDecl::Parts Parts = GD->getParts();
2632     llvm::Constant *Fields[4] = {
2633         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2634         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2635         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2636         llvm::ConstantDataArray::getRaw(
2637             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2638             Int8Ty)};
2639     Init = llvm::ConstantStruct::getAnon(Fields);
2640   }
2641 
2642   auto *GV = new llvm::GlobalVariable(
2643       getModule(), Init->getType(),
2644       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2645   if (supportsCOMDAT())
2646     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2647   setDSOLocal(GV);
2648 
2649   llvm::Constant *Addr = GV;
2650   if (!V.isAbsent()) {
2651     Emitter.finalize(GV);
2652   } else {
2653     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2654     Addr = llvm::ConstantExpr::getBitCast(
2655         GV, Ty->getPointerTo(GV->getAddressSpace()));
2656   }
2657   return ConstantAddress(Addr, Alignment);
2658 }
2659 
2660 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2661     const TemplateParamObjectDecl *TPO) {
2662   StringRef Name = getMangledName(TPO);
2663   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2664 
2665   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2666     return ConstantAddress(GV, Alignment);
2667 
2668   ConstantEmitter Emitter(*this);
2669   llvm::Constant *Init = Emitter.emitForInitializer(
2670         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2671 
2672   if (!Init) {
2673     ErrorUnsupported(TPO, "template parameter object");
2674     return ConstantAddress::invalid();
2675   }
2676 
2677   auto *GV = new llvm::GlobalVariable(
2678       getModule(), Init->getType(),
2679       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2680   if (supportsCOMDAT())
2681     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2682   Emitter.finalize(GV);
2683 
2684   return ConstantAddress(GV, Alignment);
2685 }
2686 
2687 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2688   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2689   assert(AA && "No alias?");
2690 
2691   CharUnits Alignment = getContext().getDeclAlign(VD);
2692   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2693 
2694   // See if there is already something with the target's name in the module.
2695   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2696   if (Entry) {
2697     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2698     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2699     return ConstantAddress(Ptr, Alignment);
2700   }
2701 
2702   llvm::Constant *Aliasee;
2703   if (isa<llvm::FunctionType>(DeclTy))
2704     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2705                                       GlobalDecl(cast<FunctionDecl>(VD)),
2706                                       /*ForVTable=*/false);
2707   else
2708     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2709                                     llvm::PointerType::getUnqual(DeclTy),
2710                                     nullptr);
2711 
2712   auto *F = cast<llvm::GlobalValue>(Aliasee);
2713   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2714   WeakRefReferences.insert(F);
2715 
2716   return ConstantAddress(Aliasee, Alignment);
2717 }
2718 
2719 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2720   const auto *Global = cast<ValueDecl>(GD.getDecl());
2721 
2722   // Weak references don't produce any output by themselves.
2723   if (Global->hasAttr<WeakRefAttr>())
2724     return;
2725 
2726   // If this is an alias definition (which otherwise looks like a declaration)
2727   // emit it now.
2728   if (Global->hasAttr<AliasAttr>())
2729     return EmitAliasDefinition(GD);
2730 
2731   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2732   if (Global->hasAttr<IFuncAttr>())
2733     return emitIFuncDefinition(GD);
2734 
2735   // If this is a cpu_dispatch multiversion function, emit the resolver.
2736   if (Global->hasAttr<CPUDispatchAttr>())
2737     return emitCPUDispatchDefinition(GD);
2738 
2739   // If this is CUDA, be selective about which declarations we emit.
2740   if (LangOpts.CUDA) {
2741     if (LangOpts.CUDAIsDevice) {
2742       if (!Global->hasAttr<CUDADeviceAttr>() &&
2743           !Global->hasAttr<CUDAGlobalAttr>() &&
2744           !Global->hasAttr<CUDAConstantAttr>() &&
2745           !Global->hasAttr<CUDASharedAttr>() &&
2746           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2747           !Global->getType()->isCUDADeviceBuiltinTextureType())
2748         return;
2749     } else {
2750       // We need to emit host-side 'shadows' for all global
2751       // device-side variables because the CUDA runtime needs their
2752       // size and host-side address in order to provide access to
2753       // their device-side incarnations.
2754 
2755       // So device-only functions are the only things we skip.
2756       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2757           Global->hasAttr<CUDADeviceAttr>())
2758         return;
2759 
2760       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2761              "Expected Variable or Function");
2762     }
2763   }
2764 
2765   if (LangOpts.OpenMP) {
2766     // If this is OpenMP, check if it is legal to emit this global normally.
2767     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2768       return;
2769     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2770       if (MustBeEmitted(Global))
2771         EmitOMPDeclareReduction(DRD);
2772       return;
2773     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2774       if (MustBeEmitted(Global))
2775         EmitOMPDeclareMapper(DMD);
2776       return;
2777     }
2778   }
2779 
2780   // Ignore declarations, they will be emitted on their first use.
2781   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2782     // Forward declarations are emitted lazily on first use.
2783     if (!FD->doesThisDeclarationHaveABody()) {
2784       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2785         return;
2786 
2787       StringRef MangledName = getMangledName(GD);
2788 
2789       // Compute the function info and LLVM type.
2790       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2791       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2792 
2793       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2794                               /*DontDefer=*/false);
2795       return;
2796     }
2797   } else {
2798     const auto *VD = cast<VarDecl>(Global);
2799     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2800     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2801         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2802       if (LangOpts.OpenMP) {
2803         // Emit declaration of the must-be-emitted declare target variable.
2804         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2805                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2806           bool UnifiedMemoryEnabled =
2807               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2808           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2809               !UnifiedMemoryEnabled) {
2810             (void)GetAddrOfGlobalVar(VD);
2811           } else {
2812             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2813                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2814                      UnifiedMemoryEnabled)) &&
2815                    "Link clause or to clause with unified memory expected.");
2816             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2817           }
2818 
2819           return;
2820         }
2821       }
2822       // If this declaration may have caused an inline variable definition to
2823       // change linkage, make sure that it's emitted.
2824       if (Context.getInlineVariableDefinitionKind(VD) ==
2825           ASTContext::InlineVariableDefinitionKind::Strong)
2826         GetAddrOfGlobalVar(VD);
2827       return;
2828     }
2829   }
2830 
2831   // Defer code generation to first use when possible, e.g. if this is an inline
2832   // function. If the global must always be emitted, do it eagerly if possible
2833   // to benefit from cache locality.
2834   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2835     // Emit the definition if it can't be deferred.
2836     EmitGlobalDefinition(GD);
2837     return;
2838   }
2839 
2840   // If we're deferring emission of a C++ variable with an
2841   // initializer, remember the order in which it appeared in the file.
2842   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2843       cast<VarDecl>(Global)->hasInit()) {
2844     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2845     CXXGlobalInits.push_back(nullptr);
2846   }
2847 
2848   StringRef MangledName = getMangledName(GD);
2849   if (GetGlobalValue(MangledName) != nullptr) {
2850     // The value has already been used and should therefore be emitted.
2851     addDeferredDeclToEmit(GD);
2852   } else if (MustBeEmitted(Global)) {
2853     // The value must be emitted, but cannot be emitted eagerly.
2854     assert(!MayBeEmittedEagerly(Global));
2855     addDeferredDeclToEmit(GD);
2856   } else {
2857     // Otherwise, remember that we saw a deferred decl with this name.  The
2858     // first use of the mangled name will cause it to move into
2859     // DeferredDeclsToEmit.
2860     DeferredDecls[MangledName] = GD;
2861   }
2862 }
2863 
2864 // Check if T is a class type with a destructor that's not dllimport.
2865 static bool HasNonDllImportDtor(QualType T) {
2866   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2867     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2868       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2869         return true;
2870 
2871   return false;
2872 }
2873 
2874 namespace {
2875   struct FunctionIsDirectlyRecursive
2876       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2877     const StringRef Name;
2878     const Builtin::Context &BI;
2879     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2880         : Name(N), BI(C) {}
2881 
2882     bool VisitCallExpr(const CallExpr *E) {
2883       const FunctionDecl *FD = E->getDirectCallee();
2884       if (!FD)
2885         return false;
2886       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2887       if (Attr && Name == Attr->getLabel())
2888         return true;
2889       unsigned BuiltinID = FD->getBuiltinID();
2890       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2891         return false;
2892       StringRef BuiltinName = BI.getName(BuiltinID);
2893       if (BuiltinName.startswith("__builtin_") &&
2894           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2895         return true;
2896       }
2897       return false;
2898     }
2899 
2900     bool VisitStmt(const Stmt *S) {
2901       for (const Stmt *Child : S->children())
2902         if (Child && this->Visit(Child))
2903           return true;
2904       return false;
2905     }
2906   };
2907 
2908   // Make sure we're not referencing non-imported vars or functions.
2909   struct DLLImportFunctionVisitor
2910       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2911     bool SafeToInline = true;
2912 
2913     bool shouldVisitImplicitCode() const { return true; }
2914 
2915     bool VisitVarDecl(VarDecl *VD) {
2916       if (VD->getTLSKind()) {
2917         // A thread-local variable cannot be imported.
2918         SafeToInline = false;
2919         return SafeToInline;
2920       }
2921 
2922       // A variable definition might imply a destructor call.
2923       if (VD->isThisDeclarationADefinition())
2924         SafeToInline = !HasNonDllImportDtor(VD->getType());
2925 
2926       return SafeToInline;
2927     }
2928 
2929     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2930       if (const auto *D = E->getTemporary()->getDestructor())
2931         SafeToInline = D->hasAttr<DLLImportAttr>();
2932       return SafeToInline;
2933     }
2934 
2935     bool VisitDeclRefExpr(DeclRefExpr *E) {
2936       ValueDecl *VD = E->getDecl();
2937       if (isa<FunctionDecl>(VD))
2938         SafeToInline = VD->hasAttr<DLLImportAttr>();
2939       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2940         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2941       return SafeToInline;
2942     }
2943 
2944     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2945       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2946       return SafeToInline;
2947     }
2948 
2949     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2950       CXXMethodDecl *M = E->getMethodDecl();
2951       if (!M) {
2952         // Call through a pointer to member function. This is safe to inline.
2953         SafeToInline = true;
2954       } else {
2955         SafeToInline = M->hasAttr<DLLImportAttr>();
2956       }
2957       return SafeToInline;
2958     }
2959 
2960     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2961       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2962       return SafeToInline;
2963     }
2964 
2965     bool VisitCXXNewExpr(CXXNewExpr *E) {
2966       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2967       return SafeToInline;
2968     }
2969   };
2970 }
2971 
2972 // isTriviallyRecursive - Check if this function calls another
2973 // decl that, because of the asm attribute or the other decl being a builtin,
2974 // ends up pointing to itself.
2975 bool
2976 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2977   StringRef Name;
2978   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2979     // asm labels are a special kind of mangling we have to support.
2980     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2981     if (!Attr)
2982       return false;
2983     Name = Attr->getLabel();
2984   } else {
2985     Name = FD->getName();
2986   }
2987 
2988   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2989   const Stmt *Body = FD->getBody();
2990   return Body ? Walker.Visit(Body) : false;
2991 }
2992 
2993 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2994   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2995     return true;
2996   const auto *F = cast<FunctionDecl>(GD.getDecl());
2997   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2998     return false;
2999 
3000   if (F->hasAttr<DLLImportAttr>()) {
3001     // Check whether it would be safe to inline this dllimport function.
3002     DLLImportFunctionVisitor Visitor;
3003     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3004     if (!Visitor.SafeToInline)
3005       return false;
3006 
3007     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3008       // Implicit destructor invocations aren't captured in the AST, so the
3009       // check above can't see them. Check for them manually here.
3010       for (const Decl *Member : Dtor->getParent()->decls())
3011         if (isa<FieldDecl>(Member))
3012           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3013             return false;
3014       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3015         if (HasNonDllImportDtor(B.getType()))
3016           return false;
3017     }
3018   }
3019 
3020   // PR9614. Avoid cases where the source code is lying to us. An available
3021   // externally function should have an equivalent function somewhere else,
3022   // but a function that calls itself through asm label/`__builtin_` trickery is
3023   // clearly not equivalent to the real implementation.
3024   // This happens in glibc's btowc and in some configure checks.
3025   return !isTriviallyRecursive(F);
3026 }
3027 
3028 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3029   return CodeGenOpts.OptimizationLevel > 0;
3030 }
3031 
3032 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3033                                                        llvm::GlobalValue *GV) {
3034   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3035 
3036   if (FD->isCPUSpecificMultiVersion()) {
3037     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3038     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3039       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3040     // Requires multiple emits.
3041   } else
3042     EmitGlobalFunctionDefinition(GD, GV);
3043 }
3044 
3045 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3046   const auto *D = cast<ValueDecl>(GD.getDecl());
3047 
3048   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3049                                  Context.getSourceManager(),
3050                                  "Generating code for declaration");
3051 
3052   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3053     // At -O0, don't generate IR for functions with available_externally
3054     // linkage.
3055     if (!shouldEmitFunction(GD))
3056       return;
3057 
3058     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3059       std::string Name;
3060       llvm::raw_string_ostream OS(Name);
3061       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3062                                /*Qualified=*/true);
3063       return Name;
3064     });
3065 
3066     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3067       // Make sure to emit the definition(s) before we emit the thunks.
3068       // This is necessary for the generation of certain thunks.
3069       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3070         ABI->emitCXXStructor(GD);
3071       else if (FD->isMultiVersion())
3072         EmitMultiVersionFunctionDefinition(GD, GV);
3073       else
3074         EmitGlobalFunctionDefinition(GD, GV);
3075 
3076       if (Method->isVirtual())
3077         getVTables().EmitThunks(GD);
3078 
3079       return;
3080     }
3081 
3082     if (FD->isMultiVersion())
3083       return EmitMultiVersionFunctionDefinition(GD, GV);
3084     return EmitGlobalFunctionDefinition(GD, GV);
3085   }
3086 
3087   if (const auto *VD = dyn_cast<VarDecl>(D))
3088     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3089 
3090   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3091 }
3092 
3093 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3094                                                       llvm::Function *NewFn);
3095 
3096 static unsigned
3097 TargetMVPriority(const TargetInfo &TI,
3098                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3099   unsigned Priority = 0;
3100   for (StringRef Feat : RO.Conditions.Features)
3101     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3102 
3103   if (!RO.Conditions.Architecture.empty())
3104     Priority = std::max(
3105         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3106   return Priority;
3107 }
3108 
3109 void CodeGenModule::emitMultiVersionFunctions() {
3110   for (GlobalDecl GD : MultiVersionFuncs) {
3111     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3112     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3113     getContext().forEachMultiversionedFunctionVersion(
3114         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3115           GlobalDecl CurGD{
3116               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3117           StringRef MangledName = getMangledName(CurGD);
3118           llvm::Constant *Func = GetGlobalValue(MangledName);
3119           if (!Func) {
3120             if (CurFD->isDefined()) {
3121               EmitGlobalFunctionDefinition(CurGD, nullptr);
3122               Func = GetGlobalValue(MangledName);
3123             } else {
3124               const CGFunctionInfo &FI =
3125                   getTypes().arrangeGlobalDeclaration(GD);
3126               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3127               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3128                                        /*DontDefer=*/false, ForDefinition);
3129             }
3130             assert(Func && "This should have just been created");
3131           }
3132 
3133           const auto *TA = CurFD->getAttr<TargetAttr>();
3134           llvm::SmallVector<StringRef, 8> Feats;
3135           TA->getAddedFeatures(Feats);
3136 
3137           Options.emplace_back(cast<llvm::Function>(Func),
3138                                TA->getArchitecture(), Feats);
3139         });
3140 
3141     llvm::Function *ResolverFunc;
3142     const TargetInfo &TI = getTarget();
3143 
3144     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3145       ResolverFunc = cast<llvm::Function>(
3146           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3147       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3148     } else {
3149       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3150     }
3151 
3152     if (supportsCOMDAT())
3153       ResolverFunc->setComdat(
3154           getModule().getOrInsertComdat(ResolverFunc->getName()));
3155 
3156     llvm::stable_sort(
3157         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3158                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3159           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3160         });
3161     CodeGenFunction CGF(*this);
3162     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3163   }
3164 }
3165 
3166 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3167   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3168   assert(FD && "Not a FunctionDecl?");
3169   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3170   assert(DD && "Not a cpu_dispatch Function?");
3171   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3172 
3173   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3174     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3175     DeclTy = getTypes().GetFunctionType(FInfo);
3176   }
3177 
3178   StringRef ResolverName = getMangledName(GD);
3179 
3180   llvm::Type *ResolverType;
3181   GlobalDecl ResolverGD;
3182   if (getTarget().supportsIFunc())
3183     ResolverType = llvm::FunctionType::get(
3184         llvm::PointerType::get(DeclTy,
3185                                Context.getTargetAddressSpace(FD->getType())),
3186         false);
3187   else {
3188     ResolverType = DeclTy;
3189     ResolverGD = GD;
3190   }
3191 
3192   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3193       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3194   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3195   if (supportsCOMDAT())
3196     ResolverFunc->setComdat(
3197         getModule().getOrInsertComdat(ResolverFunc->getName()));
3198 
3199   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3200   const TargetInfo &Target = getTarget();
3201   unsigned Index = 0;
3202   for (const IdentifierInfo *II : DD->cpus()) {
3203     // Get the name of the target function so we can look it up/create it.
3204     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3205                               getCPUSpecificMangling(*this, II->getName());
3206 
3207     llvm::Constant *Func = GetGlobalValue(MangledName);
3208 
3209     if (!Func) {
3210       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3211       if (ExistingDecl.getDecl() &&
3212           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3213         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3214         Func = GetGlobalValue(MangledName);
3215       } else {
3216         if (!ExistingDecl.getDecl())
3217           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3218 
3219       Func = GetOrCreateLLVMFunction(
3220           MangledName, DeclTy, ExistingDecl,
3221           /*ForVTable=*/false, /*DontDefer=*/true,
3222           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3223       }
3224     }
3225 
3226     llvm::SmallVector<StringRef, 32> Features;
3227     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3228     llvm::transform(Features, Features.begin(),
3229                     [](StringRef Str) { return Str.substr(1); });
3230     Features.erase(std::remove_if(
3231         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3232           return !Target.validateCpuSupports(Feat);
3233         }), Features.end());
3234     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3235     ++Index;
3236   }
3237 
3238   llvm::sort(
3239       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3240                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3241         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3242                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3243       });
3244 
3245   // If the list contains multiple 'default' versions, such as when it contains
3246   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3247   // always run on at least a 'pentium'). We do this by deleting the 'least
3248   // advanced' (read, lowest mangling letter).
3249   while (Options.size() > 1 &&
3250          CodeGenFunction::GetX86CpuSupportsMask(
3251              (Options.end() - 2)->Conditions.Features) == 0) {
3252     StringRef LHSName = (Options.end() - 2)->Function->getName();
3253     StringRef RHSName = (Options.end() - 1)->Function->getName();
3254     if (LHSName.compare(RHSName) < 0)
3255       Options.erase(Options.end() - 2);
3256     else
3257       Options.erase(Options.end() - 1);
3258   }
3259 
3260   CodeGenFunction CGF(*this);
3261   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3262 
3263   if (getTarget().supportsIFunc()) {
3264     std::string AliasName = getMangledNameImpl(
3265         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3266     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3267     if (!AliasFunc) {
3268       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3269           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3270           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3271       auto *GA = llvm::GlobalAlias::create(
3272          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3273       GA->setLinkage(llvm::Function::WeakODRLinkage);
3274       SetCommonAttributes(GD, GA);
3275     }
3276   }
3277 }
3278 
3279 /// If a dispatcher for the specified mangled name is not in the module, create
3280 /// and return an llvm Function with the specified type.
3281 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3282     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3283   std::string MangledName =
3284       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3285 
3286   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3287   // a separate resolver).
3288   std::string ResolverName = MangledName;
3289   if (getTarget().supportsIFunc())
3290     ResolverName += ".ifunc";
3291   else if (FD->isTargetMultiVersion())
3292     ResolverName += ".resolver";
3293 
3294   // If this already exists, just return that one.
3295   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3296     return ResolverGV;
3297 
3298   // Since this is the first time we've created this IFunc, make sure
3299   // that we put this multiversioned function into the list to be
3300   // replaced later if necessary (target multiversioning only).
3301   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3302     MultiVersionFuncs.push_back(GD);
3303 
3304   if (getTarget().supportsIFunc()) {
3305     llvm::Type *ResolverType = llvm::FunctionType::get(
3306         llvm::PointerType::get(
3307             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3308         false);
3309     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3310         MangledName + ".resolver", ResolverType, GlobalDecl{},
3311         /*ForVTable=*/false);
3312     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3313         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3314     GIF->setName(ResolverName);
3315     SetCommonAttributes(FD, GIF);
3316 
3317     return GIF;
3318   }
3319 
3320   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3321       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3322   assert(isa<llvm::GlobalValue>(Resolver) &&
3323          "Resolver should be created for the first time");
3324   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3325   return Resolver;
3326 }
3327 
3328 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3329 /// module, create and return an llvm Function with the specified type. If there
3330 /// is something in the module with the specified name, return it potentially
3331 /// bitcasted to the right type.
3332 ///
3333 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3334 /// to set the attributes on the function when it is first created.
3335 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3336     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3337     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3338     ForDefinition_t IsForDefinition) {
3339   const Decl *D = GD.getDecl();
3340 
3341   // Any attempts to use a MultiVersion function should result in retrieving
3342   // the iFunc instead. Name Mangling will handle the rest of the changes.
3343   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3344     // For the device mark the function as one that should be emitted.
3345     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3346         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3347         !DontDefer && !IsForDefinition) {
3348       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3349         GlobalDecl GDDef;
3350         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3351           GDDef = GlobalDecl(CD, GD.getCtorType());
3352         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3353           GDDef = GlobalDecl(DD, GD.getDtorType());
3354         else
3355           GDDef = GlobalDecl(FDDef);
3356         EmitGlobal(GDDef);
3357       }
3358     }
3359 
3360     if (FD->isMultiVersion()) {
3361       if (FD->hasAttr<TargetAttr>())
3362         UpdateMultiVersionNames(GD, FD);
3363       if (!IsForDefinition)
3364         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3365     }
3366   }
3367 
3368   // Lookup the entry, lazily creating it if necessary.
3369   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3370   if (Entry) {
3371     if (WeakRefReferences.erase(Entry)) {
3372       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3373       if (FD && !FD->hasAttr<WeakAttr>())
3374         Entry->setLinkage(llvm::Function::ExternalLinkage);
3375     }
3376 
3377     // Handle dropped DLL attributes.
3378     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3379       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3380       setDSOLocal(Entry);
3381     }
3382 
3383     // If there are two attempts to define the same mangled name, issue an
3384     // error.
3385     if (IsForDefinition && !Entry->isDeclaration()) {
3386       GlobalDecl OtherGD;
3387       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3388       // to make sure that we issue an error only once.
3389       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3390           (GD.getCanonicalDecl().getDecl() !=
3391            OtherGD.getCanonicalDecl().getDecl()) &&
3392           DiagnosedConflictingDefinitions.insert(GD).second) {
3393         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3394             << MangledName;
3395         getDiags().Report(OtherGD.getDecl()->getLocation(),
3396                           diag::note_previous_definition);
3397       }
3398     }
3399 
3400     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3401         (Entry->getValueType() == Ty)) {
3402       return Entry;
3403     }
3404 
3405     // Make sure the result is of the correct type.
3406     // (If function is requested for a definition, we always need to create a new
3407     // function, not just return a bitcast.)
3408     if (!IsForDefinition)
3409       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3410   }
3411 
3412   // This function doesn't have a complete type (for example, the return
3413   // type is an incomplete struct). Use a fake type instead, and make
3414   // sure not to try to set attributes.
3415   bool IsIncompleteFunction = false;
3416 
3417   llvm::FunctionType *FTy;
3418   if (isa<llvm::FunctionType>(Ty)) {
3419     FTy = cast<llvm::FunctionType>(Ty);
3420   } else {
3421     FTy = llvm::FunctionType::get(VoidTy, false);
3422     IsIncompleteFunction = true;
3423   }
3424 
3425   llvm::Function *F =
3426       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3427                              Entry ? StringRef() : MangledName, &getModule());
3428 
3429   // If we already created a function with the same mangled name (but different
3430   // type) before, take its name and add it to the list of functions to be
3431   // replaced with F at the end of CodeGen.
3432   //
3433   // This happens if there is a prototype for a function (e.g. "int f()") and
3434   // then a definition of a different type (e.g. "int f(int x)").
3435   if (Entry) {
3436     F->takeName(Entry);
3437 
3438     // This might be an implementation of a function without a prototype, in
3439     // which case, try to do special replacement of calls which match the new
3440     // prototype.  The really key thing here is that we also potentially drop
3441     // arguments from the call site so as to make a direct call, which makes the
3442     // inliner happier and suppresses a number of optimizer warnings (!) about
3443     // dropping arguments.
3444     if (!Entry->use_empty()) {
3445       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3446       Entry->removeDeadConstantUsers();
3447     }
3448 
3449     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3450         F, Entry->getValueType()->getPointerTo());
3451     addGlobalValReplacement(Entry, BC);
3452   }
3453 
3454   assert(F->getName() == MangledName && "name was uniqued!");
3455   if (D)
3456     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3457   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3458     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3459     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3460   }
3461 
3462   if (!DontDefer) {
3463     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3464     // each other bottoming out with the base dtor.  Therefore we emit non-base
3465     // dtors on usage, even if there is no dtor definition in the TU.
3466     if (D && isa<CXXDestructorDecl>(D) &&
3467         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3468                                            GD.getDtorType()))
3469       addDeferredDeclToEmit(GD);
3470 
3471     // This is the first use or definition of a mangled name.  If there is a
3472     // deferred decl with this name, remember that we need to emit it at the end
3473     // of the file.
3474     auto DDI = DeferredDecls.find(MangledName);
3475     if (DDI != DeferredDecls.end()) {
3476       // Move the potentially referenced deferred decl to the
3477       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3478       // don't need it anymore).
3479       addDeferredDeclToEmit(DDI->second);
3480       DeferredDecls.erase(DDI);
3481 
3482       // Otherwise, there are cases we have to worry about where we're
3483       // using a declaration for which we must emit a definition but where
3484       // we might not find a top-level definition:
3485       //   - member functions defined inline in their classes
3486       //   - friend functions defined inline in some class
3487       //   - special member functions with implicit definitions
3488       // If we ever change our AST traversal to walk into class methods,
3489       // this will be unnecessary.
3490       //
3491       // We also don't emit a definition for a function if it's going to be an
3492       // entry in a vtable, unless it's already marked as used.
3493     } else if (getLangOpts().CPlusPlus && D) {
3494       // Look for a declaration that's lexically in a record.
3495       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3496            FD = FD->getPreviousDecl()) {
3497         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3498           if (FD->doesThisDeclarationHaveABody()) {
3499             addDeferredDeclToEmit(GD.getWithDecl(FD));
3500             break;
3501           }
3502         }
3503       }
3504     }
3505   }
3506 
3507   // Make sure the result is of the requested type.
3508   if (!IsIncompleteFunction) {
3509     assert(F->getFunctionType() == Ty);
3510     return F;
3511   }
3512 
3513   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3514   return llvm::ConstantExpr::getBitCast(F, PTy);
3515 }
3516 
3517 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3518 /// non-null, then this function will use the specified type if it has to
3519 /// create it (this occurs when we see a definition of the function).
3520 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3521                                                  llvm::Type *Ty,
3522                                                  bool ForVTable,
3523                                                  bool DontDefer,
3524                                               ForDefinition_t IsForDefinition) {
3525   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3526          "consteval function should never be emitted");
3527   // If there was no specific requested type, just convert it now.
3528   if (!Ty) {
3529     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3530     Ty = getTypes().ConvertType(FD->getType());
3531   }
3532 
3533   // Devirtualized destructor calls may come through here instead of via
3534   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3535   // of the complete destructor when necessary.
3536   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3537     if (getTarget().getCXXABI().isMicrosoft() &&
3538         GD.getDtorType() == Dtor_Complete &&
3539         DD->getParent()->getNumVBases() == 0)
3540       GD = GlobalDecl(DD, Dtor_Base);
3541   }
3542 
3543   StringRef MangledName = getMangledName(GD);
3544   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3545                                  /*IsThunk=*/false, llvm::AttributeList(),
3546                                  IsForDefinition);
3547 }
3548 
3549 static const FunctionDecl *
3550 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3551   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3552   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3553 
3554   IdentifierInfo &CII = C.Idents.get(Name);
3555   for (const auto &Result : DC->lookup(&CII))
3556     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3557       return FD;
3558 
3559   if (!C.getLangOpts().CPlusPlus)
3560     return nullptr;
3561 
3562   // Demangle the premangled name from getTerminateFn()
3563   IdentifierInfo &CXXII =
3564       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3565           ? C.Idents.get("terminate")
3566           : C.Idents.get(Name);
3567 
3568   for (const auto &N : {"__cxxabiv1", "std"}) {
3569     IdentifierInfo &NS = C.Idents.get(N);
3570     for (const auto &Result : DC->lookup(&NS)) {
3571       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3572       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3573         for (const auto &Result : LSD->lookup(&NS))
3574           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3575             break;
3576 
3577       if (ND)
3578         for (const auto &Result : ND->lookup(&CXXII))
3579           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3580             return FD;
3581     }
3582   }
3583 
3584   return nullptr;
3585 }
3586 
3587 /// CreateRuntimeFunction - Create a new runtime function with the specified
3588 /// type and name.
3589 llvm::FunctionCallee
3590 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3591                                      llvm::AttributeList ExtraAttrs, bool Local,
3592                                      bool AssumeConvergent) {
3593   if (AssumeConvergent) {
3594     ExtraAttrs =
3595         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3596                                 llvm::Attribute::Convergent);
3597   }
3598 
3599   llvm::Constant *C =
3600       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3601                               /*DontDefer=*/false, /*IsThunk=*/false,
3602                               ExtraAttrs);
3603 
3604   if (auto *F = dyn_cast<llvm::Function>(C)) {
3605     if (F->empty()) {
3606       F->setCallingConv(getRuntimeCC());
3607 
3608       // In Windows Itanium environments, try to mark runtime functions
3609       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3610       // will link their standard library statically or dynamically. Marking
3611       // functions imported when they are not imported can cause linker errors
3612       // and warnings.
3613       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3614           !getCodeGenOpts().LTOVisibilityPublicStd) {
3615         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3616         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3617           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3618           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3619         }
3620       }
3621       setDSOLocal(F);
3622     }
3623   }
3624 
3625   return {FTy, C};
3626 }
3627 
3628 /// isTypeConstant - Determine whether an object of this type can be emitted
3629 /// as a constant.
3630 ///
3631 /// If ExcludeCtor is true, the duration when the object's constructor runs
3632 /// will not be considered. The caller will need to verify that the object is
3633 /// not written to during its construction.
3634 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3635   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3636     return false;
3637 
3638   if (Context.getLangOpts().CPlusPlus) {
3639     if (const CXXRecordDecl *Record
3640           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3641       return ExcludeCtor && !Record->hasMutableFields() &&
3642              Record->hasTrivialDestructor();
3643   }
3644 
3645   return true;
3646 }
3647 
3648 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3649 /// create and return an llvm GlobalVariable with the specified type.  If there
3650 /// is something in the module with the specified name, return it potentially
3651 /// bitcasted to the right type.
3652 ///
3653 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3654 /// to set the attributes on the global when it is first created.
3655 ///
3656 /// If IsForDefinition is true, it is guaranteed that an actual global with
3657 /// type Ty will be returned, not conversion of a variable with the same
3658 /// mangled name but some other type.
3659 llvm::Constant *
3660 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3661                                      llvm::PointerType *Ty,
3662                                      const VarDecl *D,
3663                                      ForDefinition_t IsForDefinition) {
3664   // Lookup the entry, lazily creating it if necessary.
3665   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3666   if (Entry) {
3667     if (WeakRefReferences.erase(Entry)) {
3668       if (D && !D->hasAttr<WeakAttr>())
3669         Entry->setLinkage(llvm::Function::ExternalLinkage);
3670     }
3671 
3672     // Handle dropped DLL attributes.
3673     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3674       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3675 
3676     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3677       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3678 
3679     if (Entry->getType() == Ty)
3680       return Entry;
3681 
3682     // If there are two attempts to define the same mangled name, issue an
3683     // error.
3684     if (IsForDefinition && !Entry->isDeclaration()) {
3685       GlobalDecl OtherGD;
3686       const VarDecl *OtherD;
3687 
3688       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3689       // to make sure that we issue an error only once.
3690       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3691           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3692           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3693           OtherD->hasInit() &&
3694           DiagnosedConflictingDefinitions.insert(D).second) {
3695         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3696             << MangledName;
3697         getDiags().Report(OtherGD.getDecl()->getLocation(),
3698                           diag::note_previous_definition);
3699       }
3700     }
3701 
3702     // Make sure the result is of the correct type.
3703     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3704       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3705 
3706     // (If global is requested for a definition, we always need to create a new
3707     // global, not just return a bitcast.)
3708     if (!IsForDefinition)
3709       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3710   }
3711 
3712   auto AddrSpace = GetGlobalVarAddressSpace(D);
3713   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3714 
3715   auto *GV = new llvm::GlobalVariable(
3716       getModule(), Ty->getElementType(), false,
3717       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3718       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3719 
3720   // If we already created a global with the same mangled name (but different
3721   // type) before, take its name and remove it from its parent.
3722   if (Entry) {
3723     GV->takeName(Entry);
3724 
3725     if (!Entry->use_empty()) {
3726       llvm::Constant *NewPtrForOldDecl =
3727           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3728       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3729     }
3730 
3731     Entry->eraseFromParent();
3732   }
3733 
3734   // This is the first use or definition of a mangled name.  If there is a
3735   // deferred decl with this name, remember that we need to emit it at the end
3736   // of the file.
3737   auto DDI = DeferredDecls.find(MangledName);
3738   if (DDI != DeferredDecls.end()) {
3739     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3740     // list, and remove it from DeferredDecls (since we don't need it anymore).
3741     addDeferredDeclToEmit(DDI->second);
3742     DeferredDecls.erase(DDI);
3743   }
3744 
3745   // Handle things which are present even on external declarations.
3746   if (D) {
3747     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3748       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3749 
3750     // FIXME: This code is overly simple and should be merged with other global
3751     // handling.
3752     GV->setConstant(isTypeConstant(D->getType(), false));
3753 
3754     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3755 
3756     setLinkageForGV(GV, D);
3757 
3758     if (D->getTLSKind()) {
3759       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3760         CXXThreadLocals.push_back(D);
3761       setTLSMode(GV, *D);
3762     }
3763 
3764     setGVProperties(GV, D);
3765 
3766     // If required by the ABI, treat declarations of static data members with
3767     // inline initializers as definitions.
3768     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3769       EmitGlobalVarDefinition(D);
3770     }
3771 
3772     // Emit section information for extern variables.
3773     if (D->hasExternalStorage()) {
3774       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3775         GV->setSection(SA->getName());
3776     }
3777 
3778     // Handle XCore specific ABI requirements.
3779     if (getTriple().getArch() == llvm::Triple::xcore &&
3780         D->getLanguageLinkage() == CLanguageLinkage &&
3781         D->getType().isConstant(Context) &&
3782         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3783       GV->setSection(".cp.rodata");
3784 
3785     // Check if we a have a const declaration with an initializer, we may be
3786     // able to emit it as available_externally to expose it's value to the
3787     // optimizer.
3788     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3789         D->getType().isConstQualified() && !GV->hasInitializer() &&
3790         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3791       const auto *Record =
3792           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3793       bool HasMutableFields = Record && Record->hasMutableFields();
3794       if (!HasMutableFields) {
3795         const VarDecl *InitDecl;
3796         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3797         if (InitExpr) {
3798           ConstantEmitter emitter(*this);
3799           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3800           if (Init) {
3801             auto *InitType = Init->getType();
3802             if (GV->getValueType() != InitType) {
3803               // The type of the initializer does not match the definition.
3804               // This happens when an initializer has a different type from
3805               // the type of the global (because of padding at the end of a
3806               // structure for instance).
3807               GV->setName(StringRef());
3808               // Make a new global with the correct type, this is now guaranteed
3809               // to work.
3810               auto *NewGV = cast<llvm::GlobalVariable>(
3811                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3812                       ->stripPointerCasts());
3813 
3814               // Erase the old global, since it is no longer used.
3815               GV->eraseFromParent();
3816               GV = NewGV;
3817             } else {
3818               GV->setInitializer(Init);
3819               GV->setConstant(true);
3820               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3821             }
3822             emitter.finalize(GV);
3823           }
3824         }
3825       }
3826     }
3827   }
3828 
3829   if (GV->isDeclaration())
3830     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3831 
3832   LangAS ExpectedAS =
3833       D ? D->getType().getAddressSpace()
3834         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3835   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3836          Ty->getPointerAddressSpace());
3837   if (AddrSpace != ExpectedAS)
3838     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3839                                                        ExpectedAS, Ty);
3840 
3841   return GV;
3842 }
3843 
3844 llvm::Constant *
3845 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3846   const Decl *D = GD.getDecl();
3847 
3848   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3849     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3850                                 /*DontDefer=*/false, IsForDefinition);
3851 
3852   if (isa<CXXMethodDecl>(D)) {
3853     auto FInfo =
3854         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3855     auto Ty = getTypes().GetFunctionType(*FInfo);
3856     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3857                              IsForDefinition);
3858   }
3859 
3860   if (isa<FunctionDecl>(D)) {
3861     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3862     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3863     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3864                              IsForDefinition);
3865   }
3866 
3867   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3868 }
3869 
3870 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3871     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3872     unsigned Alignment) {
3873   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3874   llvm::GlobalVariable *OldGV = nullptr;
3875 
3876   if (GV) {
3877     // Check if the variable has the right type.
3878     if (GV->getValueType() == Ty)
3879       return GV;
3880 
3881     // Because C++ name mangling, the only way we can end up with an already
3882     // existing global with the same name is if it has been declared extern "C".
3883     assert(GV->isDeclaration() && "Declaration has wrong type!");
3884     OldGV = GV;
3885   }
3886 
3887   // Create a new variable.
3888   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3889                                 Linkage, nullptr, Name);
3890 
3891   if (OldGV) {
3892     // Replace occurrences of the old variable if needed.
3893     GV->takeName(OldGV);
3894 
3895     if (!OldGV->use_empty()) {
3896       llvm::Constant *NewPtrForOldDecl =
3897       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3898       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3899     }
3900 
3901     OldGV->eraseFromParent();
3902   }
3903 
3904   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3905       !GV->hasAvailableExternallyLinkage())
3906     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3907 
3908   GV->setAlignment(llvm::MaybeAlign(Alignment));
3909 
3910   return GV;
3911 }
3912 
3913 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3914 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3915 /// then it will be created with the specified type instead of whatever the
3916 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3917 /// that an actual global with type Ty will be returned, not conversion of a
3918 /// variable with the same mangled name but some other type.
3919 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3920                                                   llvm::Type *Ty,
3921                                            ForDefinition_t IsForDefinition) {
3922   assert(D->hasGlobalStorage() && "Not a global variable");
3923   QualType ASTTy = D->getType();
3924   if (!Ty)
3925     Ty = getTypes().ConvertTypeForMem(ASTTy);
3926 
3927   llvm::PointerType *PTy =
3928     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3929 
3930   StringRef MangledName = getMangledName(D);
3931   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3932 }
3933 
3934 /// CreateRuntimeVariable - Create a new runtime global variable with the
3935 /// specified type and name.
3936 llvm::Constant *
3937 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3938                                      StringRef Name) {
3939   auto PtrTy =
3940       getContext().getLangOpts().OpenCL
3941           ? llvm::PointerType::get(
3942                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3943           : llvm::PointerType::getUnqual(Ty);
3944   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3945   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3946   return Ret;
3947 }
3948 
3949 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3950   assert(!D->getInit() && "Cannot emit definite definitions here!");
3951 
3952   StringRef MangledName = getMangledName(D);
3953   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3954 
3955   // We already have a definition, not declaration, with the same mangled name.
3956   // Emitting of declaration is not required (and actually overwrites emitted
3957   // definition).
3958   if (GV && !GV->isDeclaration())
3959     return;
3960 
3961   // If we have not seen a reference to this variable yet, place it into the
3962   // deferred declarations table to be emitted if needed later.
3963   if (!MustBeEmitted(D) && !GV) {
3964       DeferredDecls[MangledName] = D;
3965       return;
3966   }
3967 
3968   // The tentative definition is the only definition.
3969   EmitGlobalVarDefinition(D);
3970 }
3971 
3972 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3973   EmitExternalVarDeclaration(D);
3974 }
3975 
3976 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3977   return Context.toCharUnitsFromBits(
3978       getDataLayout().getTypeStoreSizeInBits(Ty));
3979 }
3980 
3981 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3982   LangAS AddrSpace = LangAS::Default;
3983   if (LangOpts.OpenCL) {
3984     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3985     assert(AddrSpace == LangAS::opencl_global ||
3986            AddrSpace == LangAS::opencl_global_device ||
3987            AddrSpace == LangAS::opencl_global_host ||
3988            AddrSpace == LangAS::opencl_constant ||
3989            AddrSpace == LangAS::opencl_local ||
3990            AddrSpace >= LangAS::FirstTargetAddressSpace);
3991     return AddrSpace;
3992   }
3993 
3994   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3995     if (D && D->hasAttr<CUDAConstantAttr>())
3996       return LangAS::cuda_constant;
3997     else if (D && D->hasAttr<CUDASharedAttr>())
3998       return LangAS::cuda_shared;
3999     else if (D && D->hasAttr<CUDADeviceAttr>())
4000       return LangAS::cuda_device;
4001     else if (D && D->getType().isConstQualified())
4002       return LangAS::cuda_constant;
4003     else
4004       return LangAS::cuda_device;
4005   }
4006 
4007   if (LangOpts.OpenMP) {
4008     LangAS AS;
4009     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4010       return AS;
4011   }
4012   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4013 }
4014 
4015 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
4016   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4017   if (LangOpts.OpenCL)
4018     return LangAS::opencl_constant;
4019   if (auto AS = getTarget().getConstantAddressSpace())
4020     return AS.getValue();
4021   return LangAS::Default;
4022 }
4023 
4024 // In address space agnostic languages, string literals are in default address
4025 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4026 // emitted in constant address space in LLVM IR. To be consistent with other
4027 // parts of AST, string literal global variables in constant address space
4028 // need to be casted to default address space before being put into address
4029 // map and referenced by other part of CodeGen.
4030 // In OpenCL, string literals are in constant address space in AST, therefore
4031 // they should not be casted to default address space.
4032 static llvm::Constant *
4033 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4034                                        llvm::GlobalVariable *GV) {
4035   llvm::Constant *Cast = GV;
4036   if (!CGM.getLangOpts().OpenCL) {
4037     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4038       if (AS != LangAS::Default)
4039         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4040             CGM, GV, AS.getValue(), LangAS::Default,
4041             GV->getValueType()->getPointerTo(
4042                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4043     }
4044   }
4045   return Cast;
4046 }
4047 
4048 template<typename SomeDecl>
4049 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4050                                                llvm::GlobalValue *GV) {
4051   if (!getLangOpts().CPlusPlus)
4052     return;
4053 
4054   // Must have 'used' attribute, or else inline assembly can't rely on
4055   // the name existing.
4056   if (!D->template hasAttr<UsedAttr>())
4057     return;
4058 
4059   // Must have internal linkage and an ordinary name.
4060   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4061     return;
4062 
4063   // Must be in an extern "C" context. Entities declared directly within
4064   // a record are not extern "C" even if the record is in such a context.
4065   const SomeDecl *First = D->getFirstDecl();
4066   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4067     return;
4068 
4069   // OK, this is an internal linkage entity inside an extern "C" linkage
4070   // specification. Make a note of that so we can give it the "expected"
4071   // mangled name if nothing else is using that name.
4072   std::pair<StaticExternCMap::iterator, bool> R =
4073       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4074 
4075   // If we have multiple internal linkage entities with the same name
4076   // in extern "C" regions, none of them gets that name.
4077   if (!R.second)
4078     R.first->second = nullptr;
4079 }
4080 
4081 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4082   if (!CGM.supportsCOMDAT())
4083     return false;
4084 
4085   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4086   // them being "merged" by the COMDAT Folding linker optimization.
4087   if (D.hasAttr<CUDAGlobalAttr>())
4088     return false;
4089 
4090   if (D.hasAttr<SelectAnyAttr>())
4091     return true;
4092 
4093   GVALinkage Linkage;
4094   if (auto *VD = dyn_cast<VarDecl>(&D))
4095     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4096   else
4097     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4098 
4099   switch (Linkage) {
4100   case GVA_Internal:
4101   case GVA_AvailableExternally:
4102   case GVA_StrongExternal:
4103     return false;
4104   case GVA_DiscardableODR:
4105   case GVA_StrongODR:
4106     return true;
4107   }
4108   llvm_unreachable("No such linkage");
4109 }
4110 
4111 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4112                                           llvm::GlobalObject &GO) {
4113   if (!shouldBeInCOMDAT(*this, D))
4114     return;
4115   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4116 }
4117 
4118 /// Pass IsTentative as true if you want to create a tentative definition.
4119 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4120                                             bool IsTentative) {
4121   // OpenCL global variables of sampler type are translated to function calls,
4122   // therefore no need to be translated.
4123   QualType ASTTy = D->getType();
4124   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4125     return;
4126 
4127   // If this is OpenMP device, check if it is legal to emit this global
4128   // normally.
4129   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4130       OpenMPRuntime->emitTargetGlobalVariable(D))
4131     return;
4132 
4133   llvm::Constant *Init = nullptr;
4134   bool NeedsGlobalCtor = false;
4135   bool NeedsGlobalDtor =
4136       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4137 
4138   const VarDecl *InitDecl;
4139   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4140 
4141   Optional<ConstantEmitter> emitter;
4142 
4143   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4144   // as part of their declaration."  Sema has already checked for
4145   // error cases, so we just need to set Init to UndefValue.
4146   bool IsCUDASharedVar =
4147       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4148   // Shadows of initialized device-side global variables are also left
4149   // undefined.
4150   bool IsCUDAShadowVar =
4151       !getLangOpts().CUDAIsDevice &&
4152       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4153        D->hasAttr<CUDASharedAttr>());
4154   bool IsCUDADeviceShadowVar =
4155       getLangOpts().CUDAIsDevice &&
4156       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4157        D->getType()->isCUDADeviceBuiltinTextureType());
4158   // HIP pinned shadow of initialized host-side global variables are also
4159   // left undefined.
4160   if (getLangOpts().CUDA &&
4161       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4162     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4163   else if (D->hasAttr<LoaderUninitializedAttr>())
4164     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4165   else if (!InitExpr) {
4166     // This is a tentative definition; tentative definitions are
4167     // implicitly initialized with { 0 }.
4168     //
4169     // Note that tentative definitions are only emitted at the end of
4170     // a translation unit, so they should never have incomplete
4171     // type. In addition, EmitTentativeDefinition makes sure that we
4172     // never attempt to emit a tentative definition if a real one
4173     // exists. A use may still exists, however, so we still may need
4174     // to do a RAUW.
4175     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4176     Init = EmitNullConstant(D->getType());
4177   } else {
4178     initializedGlobalDecl = GlobalDecl(D);
4179     emitter.emplace(*this);
4180     Init = emitter->tryEmitForInitializer(*InitDecl);
4181 
4182     if (!Init) {
4183       QualType T = InitExpr->getType();
4184       if (D->getType()->isReferenceType())
4185         T = D->getType();
4186 
4187       if (getLangOpts().CPlusPlus) {
4188         Init = EmitNullConstant(T);
4189         NeedsGlobalCtor = true;
4190       } else {
4191         ErrorUnsupported(D, "static initializer");
4192         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4193       }
4194     } else {
4195       // We don't need an initializer, so remove the entry for the delayed
4196       // initializer position (just in case this entry was delayed) if we
4197       // also don't need to register a destructor.
4198       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4199         DelayedCXXInitPosition.erase(D);
4200     }
4201   }
4202 
4203   llvm::Type* InitType = Init->getType();
4204   llvm::Constant *Entry =
4205       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4206 
4207   // Strip off pointer casts if we got them.
4208   Entry = Entry->stripPointerCasts();
4209 
4210   // Entry is now either a Function or GlobalVariable.
4211   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4212 
4213   // We have a definition after a declaration with the wrong type.
4214   // We must make a new GlobalVariable* and update everything that used OldGV
4215   // (a declaration or tentative definition) with the new GlobalVariable*
4216   // (which will be a definition).
4217   //
4218   // This happens if there is a prototype for a global (e.g.
4219   // "extern int x[];") and then a definition of a different type (e.g.
4220   // "int x[10];"). This also happens when an initializer has a different type
4221   // from the type of the global (this happens with unions).
4222   if (!GV || GV->getValueType() != InitType ||
4223       GV->getType()->getAddressSpace() !=
4224           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4225 
4226     // Move the old entry aside so that we'll create a new one.
4227     Entry->setName(StringRef());
4228 
4229     // Make a new global with the correct type, this is now guaranteed to work.
4230     GV = cast<llvm::GlobalVariable>(
4231         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4232             ->stripPointerCasts());
4233 
4234     // Replace all uses of the old global with the new global
4235     llvm::Constant *NewPtrForOldDecl =
4236         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4237     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4238 
4239     // Erase the old global, since it is no longer used.
4240     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4241   }
4242 
4243   MaybeHandleStaticInExternC(D, GV);
4244 
4245   if (D->hasAttr<AnnotateAttr>())
4246     AddGlobalAnnotations(D, GV);
4247 
4248   // Set the llvm linkage type as appropriate.
4249   llvm::GlobalValue::LinkageTypes Linkage =
4250       getLLVMLinkageVarDefinition(D, GV->isConstant());
4251 
4252   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4253   // the device. [...]"
4254   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4255   // __device__, declares a variable that: [...]
4256   // Is accessible from all the threads within the grid and from the host
4257   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4258   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4259   if (GV && LangOpts.CUDA) {
4260     if (LangOpts.CUDAIsDevice) {
4261       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4262           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4263         GV->setExternallyInitialized(true);
4264     } else {
4265       // Host-side shadows of external declarations of device-side
4266       // global variables become internal definitions. These have to
4267       // be internal in order to prevent name conflicts with global
4268       // host variables with the same name in a different TUs.
4269       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4270         Linkage = llvm::GlobalValue::InternalLinkage;
4271         // Shadow variables and their properties must be registered with CUDA
4272         // runtime. Skip Extern global variables, which will be registered in
4273         // the TU where they are defined.
4274         //
4275         // Don't register a C++17 inline variable. The local symbol can be
4276         // discarded and referencing a discarded local symbol from outside the
4277         // comdat (__cuda_register_globals) is disallowed by the ELF spec.
4278         // TODO: Reject __device__ constexpr and __device__ inline in Sema.
4279         if (!D->hasExternalStorage() && !D->isInline())
4280           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4281                                              D->hasAttr<CUDAConstantAttr>());
4282       } else if (D->hasAttr<CUDASharedAttr>()) {
4283         // __shared__ variables are odd. Shadows do get created, but
4284         // they are not registered with the CUDA runtime, so they
4285         // can't really be used to access their device-side
4286         // counterparts. It's not clear yet whether it's nvcc's bug or
4287         // a feature, but we've got to do the same for compatibility.
4288         Linkage = llvm::GlobalValue::InternalLinkage;
4289       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4290                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4291         // Builtin surfaces and textures and their template arguments are
4292         // also registered with CUDA runtime.
4293         Linkage = llvm::GlobalValue::InternalLinkage;
4294         const ClassTemplateSpecializationDecl *TD =
4295             cast<ClassTemplateSpecializationDecl>(
4296                 D->getType()->getAs<RecordType>()->getDecl());
4297         const TemplateArgumentList &Args = TD->getTemplateArgs();
4298         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4299           assert(Args.size() == 2 &&
4300                  "Unexpected number of template arguments of CUDA device "
4301                  "builtin surface type.");
4302           auto SurfType = Args[1].getAsIntegral();
4303           if (!D->hasExternalStorage())
4304             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4305                                                 SurfType.getSExtValue());
4306         } else {
4307           assert(Args.size() == 3 &&
4308                  "Unexpected number of template arguments of CUDA device "
4309                  "builtin texture type.");
4310           auto TexType = Args[1].getAsIntegral();
4311           auto Normalized = Args[2].getAsIntegral();
4312           if (!D->hasExternalStorage())
4313             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4314                                                TexType.getSExtValue(),
4315                                                Normalized.getZExtValue());
4316         }
4317       }
4318     }
4319   }
4320 
4321   GV->setInitializer(Init);
4322   if (emitter)
4323     emitter->finalize(GV);
4324 
4325   // If it is safe to mark the global 'constant', do so now.
4326   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4327                   isTypeConstant(D->getType(), true));
4328 
4329   // If it is in a read-only section, mark it 'constant'.
4330   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4331     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4332     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4333       GV->setConstant(true);
4334   }
4335 
4336   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4337 
4338   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4339   // function is only defined alongside the variable, not also alongside
4340   // callers. Normally, all accesses to a thread_local go through the
4341   // thread-wrapper in order to ensure initialization has occurred, underlying
4342   // variable will never be used other than the thread-wrapper, so it can be
4343   // converted to internal linkage.
4344   //
4345   // However, if the variable has the 'constinit' attribute, it _can_ be
4346   // referenced directly, without calling the thread-wrapper, so the linkage
4347   // must not be changed.
4348   //
4349   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4350   // weak or linkonce, the de-duplication semantics are important to preserve,
4351   // so we don't change the linkage.
4352   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4353       Linkage == llvm::GlobalValue::ExternalLinkage &&
4354       Context.getTargetInfo().getTriple().isOSDarwin() &&
4355       !D->hasAttr<ConstInitAttr>())
4356     Linkage = llvm::GlobalValue::InternalLinkage;
4357 
4358   GV->setLinkage(Linkage);
4359   if (D->hasAttr<DLLImportAttr>())
4360     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4361   else if (D->hasAttr<DLLExportAttr>())
4362     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4363   else
4364     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4365 
4366   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4367     // common vars aren't constant even if declared const.
4368     GV->setConstant(false);
4369     // Tentative definition of global variables may be initialized with
4370     // non-zero null pointers. In this case they should have weak linkage
4371     // since common linkage must have zero initializer and must not have
4372     // explicit section therefore cannot have non-zero initial value.
4373     if (!GV->getInitializer()->isNullValue())
4374       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4375   }
4376 
4377   setNonAliasAttributes(D, GV);
4378 
4379   if (D->getTLSKind() && !GV->isThreadLocal()) {
4380     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4381       CXXThreadLocals.push_back(D);
4382     setTLSMode(GV, *D);
4383   }
4384 
4385   maybeSetTrivialComdat(*D, *GV);
4386 
4387   // Emit the initializer function if necessary.
4388   if (NeedsGlobalCtor || NeedsGlobalDtor)
4389     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4390 
4391   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4392 
4393   // Emit global variable debug information.
4394   if (CGDebugInfo *DI = getModuleDebugInfo())
4395     if (getCodeGenOpts().hasReducedDebugInfo())
4396       DI->EmitGlobalVariable(GV, D);
4397 }
4398 
4399 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4400   if (CGDebugInfo *DI = getModuleDebugInfo())
4401     if (getCodeGenOpts().hasReducedDebugInfo()) {
4402       QualType ASTTy = D->getType();
4403       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4404       llvm::PointerType *PTy =
4405           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4406       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4407       DI->EmitExternalVariable(
4408           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4409     }
4410 }
4411 
4412 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4413                                       CodeGenModule &CGM, const VarDecl *D,
4414                                       bool NoCommon) {
4415   // Don't give variables common linkage if -fno-common was specified unless it
4416   // was overridden by a NoCommon attribute.
4417   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4418     return true;
4419 
4420   // C11 6.9.2/2:
4421   //   A declaration of an identifier for an object that has file scope without
4422   //   an initializer, and without a storage-class specifier or with the
4423   //   storage-class specifier static, constitutes a tentative definition.
4424   if (D->getInit() || D->hasExternalStorage())
4425     return true;
4426 
4427   // A variable cannot be both common and exist in a section.
4428   if (D->hasAttr<SectionAttr>())
4429     return true;
4430 
4431   // A variable cannot be both common and exist in a section.
4432   // We don't try to determine which is the right section in the front-end.
4433   // If no specialized section name is applicable, it will resort to default.
4434   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4435       D->hasAttr<PragmaClangDataSectionAttr>() ||
4436       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4437       D->hasAttr<PragmaClangRodataSectionAttr>())
4438     return true;
4439 
4440   // Thread local vars aren't considered common linkage.
4441   if (D->getTLSKind())
4442     return true;
4443 
4444   // Tentative definitions marked with WeakImportAttr are true definitions.
4445   if (D->hasAttr<WeakImportAttr>())
4446     return true;
4447 
4448   // A variable cannot be both common and exist in a comdat.
4449   if (shouldBeInCOMDAT(CGM, *D))
4450     return true;
4451 
4452   // Declarations with a required alignment do not have common linkage in MSVC
4453   // mode.
4454   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4455     if (D->hasAttr<AlignedAttr>())
4456       return true;
4457     QualType VarType = D->getType();
4458     if (Context.isAlignmentRequired(VarType))
4459       return true;
4460 
4461     if (const auto *RT = VarType->getAs<RecordType>()) {
4462       const RecordDecl *RD = RT->getDecl();
4463       for (const FieldDecl *FD : RD->fields()) {
4464         if (FD->isBitField())
4465           continue;
4466         if (FD->hasAttr<AlignedAttr>())
4467           return true;
4468         if (Context.isAlignmentRequired(FD->getType()))
4469           return true;
4470       }
4471     }
4472   }
4473 
4474   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4475   // common symbols, so symbols with greater alignment requirements cannot be
4476   // common.
4477   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4478   // alignments for common symbols via the aligncomm directive, so this
4479   // restriction only applies to MSVC environments.
4480   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4481       Context.getTypeAlignIfKnown(D->getType()) >
4482           Context.toBits(CharUnits::fromQuantity(32)))
4483     return true;
4484 
4485   return false;
4486 }
4487 
4488 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4489     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4490   if (Linkage == GVA_Internal)
4491     return llvm::Function::InternalLinkage;
4492 
4493   if (D->hasAttr<WeakAttr>()) {
4494     if (IsConstantVariable)
4495       return llvm::GlobalVariable::WeakODRLinkage;
4496     else
4497       return llvm::GlobalVariable::WeakAnyLinkage;
4498   }
4499 
4500   if (const auto *FD = D->getAsFunction())
4501     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4502       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4503 
4504   // We are guaranteed to have a strong definition somewhere else,
4505   // so we can use available_externally linkage.
4506   if (Linkage == GVA_AvailableExternally)
4507     return llvm::GlobalValue::AvailableExternallyLinkage;
4508 
4509   // Note that Apple's kernel linker doesn't support symbol
4510   // coalescing, so we need to avoid linkonce and weak linkages there.
4511   // Normally, this means we just map to internal, but for explicit
4512   // instantiations we'll map to external.
4513 
4514   // In C++, the compiler has to emit a definition in every translation unit
4515   // that references the function.  We should use linkonce_odr because
4516   // a) if all references in this translation unit are optimized away, we
4517   // don't need to codegen it.  b) if the function persists, it needs to be
4518   // merged with other definitions. c) C++ has the ODR, so we know the
4519   // definition is dependable.
4520   if (Linkage == GVA_DiscardableODR)
4521     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4522                                             : llvm::Function::InternalLinkage;
4523 
4524   // An explicit instantiation of a template has weak linkage, since
4525   // explicit instantiations can occur in multiple translation units
4526   // and must all be equivalent. However, we are not allowed to
4527   // throw away these explicit instantiations.
4528   //
4529   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4530   // so say that CUDA templates are either external (for kernels) or internal.
4531   // This lets llvm perform aggressive inter-procedural optimizations. For
4532   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4533   // therefore we need to follow the normal linkage paradigm.
4534   if (Linkage == GVA_StrongODR) {
4535     if (getLangOpts().AppleKext)
4536       return llvm::Function::ExternalLinkage;
4537     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4538         !getLangOpts().GPURelocatableDeviceCode)
4539       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4540                                           : llvm::Function::InternalLinkage;
4541     return llvm::Function::WeakODRLinkage;
4542   }
4543 
4544   // C++ doesn't have tentative definitions and thus cannot have common
4545   // linkage.
4546   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4547       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4548                                  CodeGenOpts.NoCommon))
4549     return llvm::GlobalVariable::CommonLinkage;
4550 
4551   // selectany symbols are externally visible, so use weak instead of
4552   // linkonce.  MSVC optimizes away references to const selectany globals, so
4553   // all definitions should be the same and ODR linkage should be used.
4554   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4555   if (D->hasAttr<SelectAnyAttr>())
4556     return llvm::GlobalVariable::WeakODRLinkage;
4557 
4558   // Otherwise, we have strong external linkage.
4559   assert(Linkage == GVA_StrongExternal);
4560   return llvm::GlobalVariable::ExternalLinkage;
4561 }
4562 
4563 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4564     const VarDecl *VD, bool IsConstant) {
4565   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4566   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4567 }
4568 
4569 /// Replace the uses of a function that was declared with a non-proto type.
4570 /// We want to silently drop extra arguments from call sites
4571 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4572                                           llvm::Function *newFn) {
4573   // Fast path.
4574   if (old->use_empty()) return;
4575 
4576   llvm::Type *newRetTy = newFn->getReturnType();
4577   SmallVector<llvm::Value*, 4> newArgs;
4578   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4579 
4580   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4581          ui != ue; ) {
4582     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4583     llvm::User *user = use->getUser();
4584 
4585     // Recognize and replace uses of bitcasts.  Most calls to
4586     // unprototyped functions will use bitcasts.
4587     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4588       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4589         replaceUsesOfNonProtoConstant(bitcast, newFn);
4590       continue;
4591     }
4592 
4593     // Recognize calls to the function.
4594     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4595     if (!callSite) continue;
4596     if (!callSite->isCallee(&*use))
4597       continue;
4598 
4599     // If the return types don't match exactly, then we can't
4600     // transform this call unless it's dead.
4601     if (callSite->getType() != newRetTy && !callSite->use_empty())
4602       continue;
4603 
4604     // Get the call site's attribute list.
4605     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4606     llvm::AttributeList oldAttrs = callSite->getAttributes();
4607 
4608     // If the function was passed too few arguments, don't transform.
4609     unsigned newNumArgs = newFn->arg_size();
4610     if (callSite->arg_size() < newNumArgs)
4611       continue;
4612 
4613     // If extra arguments were passed, we silently drop them.
4614     // If any of the types mismatch, we don't transform.
4615     unsigned argNo = 0;
4616     bool dontTransform = false;
4617     for (llvm::Argument &A : newFn->args()) {
4618       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4619         dontTransform = true;
4620         break;
4621       }
4622 
4623       // Add any parameter attributes.
4624       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4625       argNo++;
4626     }
4627     if (dontTransform)
4628       continue;
4629 
4630     // Okay, we can transform this.  Create the new call instruction and copy
4631     // over the required information.
4632     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4633 
4634     // Copy over any operand bundles.
4635     callSite->getOperandBundlesAsDefs(newBundles);
4636 
4637     llvm::CallBase *newCall;
4638     if (dyn_cast<llvm::CallInst>(callSite)) {
4639       newCall =
4640           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4641     } else {
4642       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4643       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4644                                          oldInvoke->getUnwindDest(), newArgs,
4645                                          newBundles, "", callSite);
4646     }
4647     newArgs.clear(); // for the next iteration
4648 
4649     if (!newCall->getType()->isVoidTy())
4650       newCall->takeName(callSite);
4651     newCall->setAttributes(llvm::AttributeList::get(
4652         newFn->getContext(), oldAttrs.getFnAttributes(),
4653         oldAttrs.getRetAttributes(), newArgAttrs));
4654     newCall->setCallingConv(callSite->getCallingConv());
4655 
4656     // Finally, remove the old call, replacing any uses with the new one.
4657     if (!callSite->use_empty())
4658       callSite->replaceAllUsesWith(newCall);
4659 
4660     // Copy debug location attached to CI.
4661     if (callSite->getDebugLoc())
4662       newCall->setDebugLoc(callSite->getDebugLoc());
4663 
4664     callSite->eraseFromParent();
4665   }
4666 }
4667 
4668 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4669 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4670 /// existing call uses of the old function in the module, this adjusts them to
4671 /// call the new function directly.
4672 ///
4673 /// This is not just a cleanup: the always_inline pass requires direct calls to
4674 /// functions to be able to inline them.  If there is a bitcast in the way, it
4675 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4676 /// run at -O0.
4677 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4678                                                       llvm::Function *NewFn) {
4679   // If we're redefining a global as a function, don't transform it.
4680   if (!isa<llvm::Function>(Old)) return;
4681 
4682   replaceUsesOfNonProtoConstant(Old, NewFn);
4683 }
4684 
4685 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4686   auto DK = VD->isThisDeclarationADefinition();
4687   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4688     return;
4689 
4690   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4691   // If we have a definition, this might be a deferred decl. If the
4692   // instantiation is explicit, make sure we emit it at the end.
4693   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4694     GetAddrOfGlobalVar(VD);
4695 
4696   EmitTopLevelDecl(VD);
4697 }
4698 
4699 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4700                                                  llvm::GlobalValue *GV) {
4701   const auto *D = cast<FunctionDecl>(GD.getDecl());
4702 
4703   // Compute the function info and LLVM type.
4704   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4705   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4706 
4707   // Get or create the prototype for the function.
4708   if (!GV || (GV->getValueType() != Ty))
4709     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4710                                                    /*DontDefer=*/true,
4711                                                    ForDefinition));
4712 
4713   // Already emitted.
4714   if (!GV->isDeclaration())
4715     return;
4716 
4717   // We need to set linkage and visibility on the function before
4718   // generating code for it because various parts of IR generation
4719   // want to propagate this information down (e.g. to local static
4720   // declarations).
4721   auto *Fn = cast<llvm::Function>(GV);
4722   setFunctionLinkage(GD, Fn);
4723 
4724   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4725   setGVProperties(Fn, GD);
4726 
4727   MaybeHandleStaticInExternC(D, Fn);
4728 
4729   maybeSetTrivialComdat(*D, *Fn);
4730 
4731   // Set CodeGen attributes that represent floating point environment.
4732   setLLVMFunctionFEnvAttributes(D, Fn);
4733 
4734   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4735 
4736   setNonAliasAttributes(GD, Fn);
4737   SetLLVMFunctionAttributesForDefinition(D, Fn);
4738 
4739   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4740     AddGlobalCtor(Fn, CA->getPriority());
4741   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4742     AddGlobalDtor(Fn, DA->getPriority(), true);
4743   if (D->hasAttr<AnnotateAttr>())
4744     AddGlobalAnnotations(D, Fn);
4745 }
4746 
4747 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4748   const auto *D = cast<ValueDecl>(GD.getDecl());
4749   const AliasAttr *AA = D->getAttr<AliasAttr>();
4750   assert(AA && "Not an alias?");
4751 
4752   StringRef MangledName = getMangledName(GD);
4753 
4754   if (AA->getAliasee() == MangledName) {
4755     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4756     return;
4757   }
4758 
4759   // If there is a definition in the module, then it wins over the alias.
4760   // This is dubious, but allow it to be safe.  Just ignore the alias.
4761   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4762   if (Entry && !Entry->isDeclaration())
4763     return;
4764 
4765   Aliases.push_back(GD);
4766 
4767   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4768 
4769   // Create a reference to the named value.  This ensures that it is emitted
4770   // if a deferred decl.
4771   llvm::Constant *Aliasee;
4772   llvm::GlobalValue::LinkageTypes LT;
4773   if (isa<llvm::FunctionType>(DeclTy)) {
4774     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4775                                       /*ForVTable=*/false);
4776     LT = getFunctionLinkage(GD);
4777   } else {
4778     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4779                                     llvm::PointerType::getUnqual(DeclTy),
4780                                     /*D=*/nullptr);
4781     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4782       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4783     else
4784       LT = getFunctionLinkage(GD);
4785   }
4786 
4787   // Create the new alias itself, but don't set a name yet.
4788   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4789   auto *GA =
4790       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4791 
4792   if (Entry) {
4793     if (GA->getAliasee() == Entry) {
4794       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4795       return;
4796     }
4797 
4798     assert(Entry->isDeclaration());
4799 
4800     // If there is a declaration in the module, then we had an extern followed
4801     // by the alias, as in:
4802     //   extern int test6();
4803     //   ...
4804     //   int test6() __attribute__((alias("test7")));
4805     //
4806     // Remove it and replace uses of it with the alias.
4807     GA->takeName(Entry);
4808 
4809     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4810                                                           Entry->getType()));
4811     Entry->eraseFromParent();
4812   } else {
4813     GA->setName(MangledName);
4814   }
4815 
4816   // Set attributes which are particular to an alias; this is a
4817   // specialization of the attributes which may be set on a global
4818   // variable/function.
4819   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4820       D->isWeakImported()) {
4821     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4822   }
4823 
4824   if (const auto *VD = dyn_cast<VarDecl>(D))
4825     if (VD->getTLSKind())
4826       setTLSMode(GA, *VD);
4827 
4828   SetCommonAttributes(GD, GA);
4829 }
4830 
4831 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4832   const auto *D = cast<ValueDecl>(GD.getDecl());
4833   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4834   assert(IFA && "Not an ifunc?");
4835 
4836   StringRef MangledName = getMangledName(GD);
4837 
4838   if (IFA->getResolver() == MangledName) {
4839     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4840     return;
4841   }
4842 
4843   // Report an error if some definition overrides ifunc.
4844   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4845   if (Entry && !Entry->isDeclaration()) {
4846     GlobalDecl OtherGD;
4847     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4848         DiagnosedConflictingDefinitions.insert(GD).second) {
4849       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4850           << MangledName;
4851       Diags.Report(OtherGD.getDecl()->getLocation(),
4852                    diag::note_previous_definition);
4853     }
4854     return;
4855   }
4856 
4857   Aliases.push_back(GD);
4858 
4859   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4860   llvm::Constant *Resolver =
4861       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4862                               /*ForVTable=*/false);
4863   llvm::GlobalIFunc *GIF =
4864       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4865                                 "", Resolver, &getModule());
4866   if (Entry) {
4867     if (GIF->getResolver() == Entry) {
4868       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4869       return;
4870     }
4871     assert(Entry->isDeclaration());
4872 
4873     // If there is a declaration in the module, then we had an extern followed
4874     // by the ifunc, as in:
4875     //   extern int test();
4876     //   ...
4877     //   int test() __attribute__((ifunc("resolver")));
4878     //
4879     // Remove it and replace uses of it with the ifunc.
4880     GIF->takeName(Entry);
4881 
4882     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4883                                                           Entry->getType()));
4884     Entry->eraseFromParent();
4885   } else
4886     GIF->setName(MangledName);
4887 
4888   SetCommonAttributes(GD, GIF);
4889 }
4890 
4891 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4892                                             ArrayRef<llvm::Type*> Tys) {
4893   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4894                                          Tys);
4895 }
4896 
4897 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4898 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4899                          const StringLiteral *Literal, bool TargetIsLSB,
4900                          bool &IsUTF16, unsigned &StringLength) {
4901   StringRef String = Literal->getString();
4902   unsigned NumBytes = String.size();
4903 
4904   // Check for simple case.
4905   if (!Literal->containsNonAsciiOrNull()) {
4906     StringLength = NumBytes;
4907     return *Map.insert(std::make_pair(String, nullptr)).first;
4908   }
4909 
4910   // Otherwise, convert the UTF8 literals into a string of shorts.
4911   IsUTF16 = true;
4912 
4913   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4914   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4915   llvm::UTF16 *ToPtr = &ToBuf[0];
4916 
4917   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4918                                  ToPtr + NumBytes, llvm::strictConversion);
4919 
4920   // ConvertUTF8toUTF16 returns the length in ToPtr.
4921   StringLength = ToPtr - &ToBuf[0];
4922 
4923   // Add an explicit null.
4924   *ToPtr = 0;
4925   return *Map.insert(std::make_pair(
4926                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4927                                    (StringLength + 1) * 2),
4928                          nullptr)).first;
4929 }
4930 
4931 ConstantAddress
4932 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4933   unsigned StringLength = 0;
4934   bool isUTF16 = false;
4935   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4936       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4937                                getDataLayout().isLittleEndian(), isUTF16,
4938                                StringLength);
4939 
4940   if (auto *C = Entry.second)
4941     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4942 
4943   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4944   llvm::Constant *Zeros[] = { Zero, Zero };
4945 
4946   const ASTContext &Context = getContext();
4947   const llvm::Triple &Triple = getTriple();
4948 
4949   const auto CFRuntime = getLangOpts().CFRuntime;
4950   const bool IsSwiftABI =
4951       static_cast<unsigned>(CFRuntime) >=
4952       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4953   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4954 
4955   // If we don't already have it, get __CFConstantStringClassReference.
4956   if (!CFConstantStringClassRef) {
4957     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4958     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4959     Ty = llvm::ArrayType::get(Ty, 0);
4960 
4961     switch (CFRuntime) {
4962     default: break;
4963     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4964     case LangOptions::CoreFoundationABI::Swift5_0:
4965       CFConstantStringClassName =
4966           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4967                               : "$s10Foundation19_NSCFConstantStringCN";
4968       Ty = IntPtrTy;
4969       break;
4970     case LangOptions::CoreFoundationABI::Swift4_2:
4971       CFConstantStringClassName =
4972           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4973                               : "$S10Foundation19_NSCFConstantStringCN";
4974       Ty = IntPtrTy;
4975       break;
4976     case LangOptions::CoreFoundationABI::Swift4_1:
4977       CFConstantStringClassName =
4978           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4979                               : "__T010Foundation19_NSCFConstantStringCN";
4980       Ty = IntPtrTy;
4981       break;
4982     }
4983 
4984     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4985 
4986     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4987       llvm::GlobalValue *GV = nullptr;
4988 
4989       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4990         IdentifierInfo &II = Context.Idents.get(GV->getName());
4991         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4992         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4993 
4994         const VarDecl *VD = nullptr;
4995         for (const auto &Result : DC->lookup(&II))
4996           if ((VD = dyn_cast<VarDecl>(Result)))
4997             break;
4998 
4999         if (Triple.isOSBinFormatELF()) {
5000           if (!VD)
5001             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5002         } else {
5003           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5004           if (!VD || !VD->hasAttr<DLLExportAttr>())
5005             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5006           else
5007             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5008         }
5009 
5010         setDSOLocal(GV);
5011       }
5012     }
5013 
5014     // Decay array -> ptr
5015     CFConstantStringClassRef =
5016         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5017                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5018   }
5019 
5020   QualType CFTy = Context.getCFConstantStringType();
5021 
5022   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5023 
5024   ConstantInitBuilder Builder(*this);
5025   auto Fields = Builder.beginStruct(STy);
5026 
5027   // Class pointer.
5028   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5029 
5030   // Flags.
5031   if (IsSwiftABI) {
5032     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5033     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5034   } else {
5035     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5036   }
5037 
5038   // String pointer.
5039   llvm::Constant *C = nullptr;
5040   if (isUTF16) {
5041     auto Arr = llvm::makeArrayRef(
5042         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5043         Entry.first().size() / 2);
5044     C = llvm::ConstantDataArray::get(VMContext, Arr);
5045   } else {
5046     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5047   }
5048 
5049   // Note: -fwritable-strings doesn't make the backing store strings of
5050   // CFStrings writable. (See <rdar://problem/10657500>)
5051   auto *GV =
5052       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5053                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5054   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5055   // Don't enforce the target's minimum global alignment, since the only use
5056   // of the string is via this class initializer.
5057   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5058                             : Context.getTypeAlignInChars(Context.CharTy);
5059   GV->setAlignment(Align.getAsAlign());
5060 
5061   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5062   // Without it LLVM can merge the string with a non unnamed_addr one during
5063   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5064   if (Triple.isOSBinFormatMachO())
5065     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5066                            : "__TEXT,__cstring,cstring_literals");
5067   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5068   // the static linker to adjust permissions to read-only later on.
5069   else if (Triple.isOSBinFormatELF())
5070     GV->setSection(".rodata");
5071 
5072   // String.
5073   llvm::Constant *Str =
5074       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5075 
5076   if (isUTF16)
5077     // Cast the UTF16 string to the correct type.
5078     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5079   Fields.add(Str);
5080 
5081   // String length.
5082   llvm::IntegerType *LengthTy =
5083       llvm::IntegerType::get(getModule().getContext(),
5084                              Context.getTargetInfo().getLongWidth());
5085   if (IsSwiftABI) {
5086     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5087         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5088       LengthTy = Int32Ty;
5089     else
5090       LengthTy = IntPtrTy;
5091   }
5092   Fields.addInt(LengthTy, StringLength);
5093 
5094   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5095   // properly aligned on 32-bit platforms.
5096   CharUnits Alignment =
5097       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5098 
5099   // The struct.
5100   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5101                                     /*isConstant=*/false,
5102                                     llvm::GlobalVariable::PrivateLinkage);
5103   GV->addAttribute("objc_arc_inert");
5104   switch (Triple.getObjectFormat()) {
5105   case llvm::Triple::UnknownObjectFormat:
5106     llvm_unreachable("unknown file format");
5107   case llvm::Triple::GOFF:
5108     llvm_unreachable("GOFF is not yet implemented");
5109   case llvm::Triple::XCOFF:
5110     llvm_unreachable("XCOFF is not yet implemented");
5111   case llvm::Triple::COFF:
5112   case llvm::Triple::ELF:
5113   case llvm::Triple::Wasm:
5114     GV->setSection("cfstring");
5115     break;
5116   case llvm::Triple::MachO:
5117     GV->setSection("__DATA,__cfstring");
5118     break;
5119   }
5120   Entry.second = GV;
5121 
5122   return ConstantAddress(GV, Alignment);
5123 }
5124 
5125 bool CodeGenModule::getExpressionLocationsEnabled() const {
5126   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5127 }
5128 
5129 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5130   if (ObjCFastEnumerationStateType.isNull()) {
5131     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5132     D->startDefinition();
5133 
5134     QualType FieldTypes[] = {
5135       Context.UnsignedLongTy,
5136       Context.getPointerType(Context.getObjCIdType()),
5137       Context.getPointerType(Context.UnsignedLongTy),
5138       Context.getConstantArrayType(Context.UnsignedLongTy,
5139                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5140     };
5141 
5142     for (size_t i = 0; i < 4; ++i) {
5143       FieldDecl *Field = FieldDecl::Create(Context,
5144                                            D,
5145                                            SourceLocation(),
5146                                            SourceLocation(), nullptr,
5147                                            FieldTypes[i], /*TInfo=*/nullptr,
5148                                            /*BitWidth=*/nullptr,
5149                                            /*Mutable=*/false,
5150                                            ICIS_NoInit);
5151       Field->setAccess(AS_public);
5152       D->addDecl(Field);
5153     }
5154 
5155     D->completeDefinition();
5156     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5157   }
5158 
5159   return ObjCFastEnumerationStateType;
5160 }
5161 
5162 llvm::Constant *
5163 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5164   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5165 
5166   // Don't emit it as the address of the string, emit the string data itself
5167   // as an inline array.
5168   if (E->getCharByteWidth() == 1) {
5169     SmallString<64> Str(E->getString());
5170 
5171     // Resize the string to the right size, which is indicated by its type.
5172     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5173     Str.resize(CAT->getSize().getZExtValue());
5174     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5175   }
5176 
5177   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5178   llvm::Type *ElemTy = AType->getElementType();
5179   unsigned NumElements = AType->getNumElements();
5180 
5181   // Wide strings have either 2-byte or 4-byte elements.
5182   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5183     SmallVector<uint16_t, 32> Elements;
5184     Elements.reserve(NumElements);
5185 
5186     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5187       Elements.push_back(E->getCodeUnit(i));
5188     Elements.resize(NumElements);
5189     return llvm::ConstantDataArray::get(VMContext, Elements);
5190   }
5191 
5192   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5193   SmallVector<uint32_t, 32> Elements;
5194   Elements.reserve(NumElements);
5195 
5196   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5197     Elements.push_back(E->getCodeUnit(i));
5198   Elements.resize(NumElements);
5199   return llvm::ConstantDataArray::get(VMContext, Elements);
5200 }
5201 
5202 static llvm::GlobalVariable *
5203 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5204                       CodeGenModule &CGM, StringRef GlobalName,
5205                       CharUnits Alignment) {
5206   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5207       CGM.getStringLiteralAddressSpace());
5208 
5209   llvm::Module &M = CGM.getModule();
5210   // Create a global variable for this string
5211   auto *GV = new llvm::GlobalVariable(
5212       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5213       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5214   GV->setAlignment(Alignment.getAsAlign());
5215   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5216   if (GV->isWeakForLinker()) {
5217     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5218     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5219   }
5220   CGM.setDSOLocal(GV);
5221 
5222   return GV;
5223 }
5224 
5225 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5226 /// constant array for the given string literal.
5227 ConstantAddress
5228 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5229                                                   StringRef Name) {
5230   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5231 
5232   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5233   llvm::GlobalVariable **Entry = nullptr;
5234   if (!LangOpts.WritableStrings) {
5235     Entry = &ConstantStringMap[C];
5236     if (auto GV = *Entry) {
5237       if (Alignment.getQuantity() > GV->getAlignment())
5238         GV->setAlignment(Alignment.getAsAlign());
5239       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5240                              Alignment);
5241     }
5242   }
5243 
5244   SmallString<256> MangledNameBuffer;
5245   StringRef GlobalVariableName;
5246   llvm::GlobalValue::LinkageTypes LT;
5247 
5248   // Mangle the string literal if that's how the ABI merges duplicate strings.
5249   // Don't do it if they are writable, since we don't want writes in one TU to
5250   // affect strings in another.
5251   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5252       !LangOpts.WritableStrings) {
5253     llvm::raw_svector_ostream Out(MangledNameBuffer);
5254     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5255     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5256     GlobalVariableName = MangledNameBuffer;
5257   } else {
5258     LT = llvm::GlobalValue::PrivateLinkage;
5259     GlobalVariableName = Name;
5260   }
5261 
5262   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5263   if (Entry)
5264     *Entry = GV;
5265 
5266   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5267                                   QualType());
5268 
5269   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5270                          Alignment);
5271 }
5272 
5273 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5274 /// array for the given ObjCEncodeExpr node.
5275 ConstantAddress
5276 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5277   std::string Str;
5278   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5279 
5280   return GetAddrOfConstantCString(Str);
5281 }
5282 
5283 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5284 /// the literal and a terminating '\0' character.
5285 /// The result has pointer to array type.
5286 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5287     const std::string &Str, const char *GlobalName) {
5288   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5289   CharUnits Alignment =
5290     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5291 
5292   llvm::Constant *C =
5293       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5294 
5295   // Don't share any string literals if strings aren't constant.
5296   llvm::GlobalVariable **Entry = nullptr;
5297   if (!LangOpts.WritableStrings) {
5298     Entry = &ConstantStringMap[C];
5299     if (auto GV = *Entry) {
5300       if (Alignment.getQuantity() > GV->getAlignment())
5301         GV->setAlignment(Alignment.getAsAlign());
5302       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5303                              Alignment);
5304     }
5305   }
5306 
5307   // Get the default prefix if a name wasn't specified.
5308   if (!GlobalName)
5309     GlobalName = ".str";
5310   // Create a global variable for this.
5311   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5312                                   GlobalName, Alignment);
5313   if (Entry)
5314     *Entry = GV;
5315 
5316   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5317                          Alignment);
5318 }
5319 
5320 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5321     const MaterializeTemporaryExpr *E, const Expr *Init) {
5322   assert((E->getStorageDuration() == SD_Static ||
5323           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5324   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5325 
5326   // If we're not materializing a subobject of the temporary, keep the
5327   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5328   QualType MaterializedType = Init->getType();
5329   if (Init == E->getSubExpr())
5330     MaterializedType = E->getType();
5331 
5332   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5333 
5334   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5335     return ConstantAddress(Slot, Align);
5336 
5337   // FIXME: If an externally-visible declaration extends multiple temporaries,
5338   // we need to give each temporary the same name in every translation unit (and
5339   // we also need to make the temporaries externally-visible).
5340   SmallString<256> Name;
5341   llvm::raw_svector_ostream Out(Name);
5342   getCXXABI().getMangleContext().mangleReferenceTemporary(
5343       VD, E->getManglingNumber(), Out);
5344 
5345   APValue *Value = nullptr;
5346   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5347     // If the initializer of the extending declaration is a constant
5348     // initializer, we should have a cached constant initializer for this
5349     // temporary. Note that this might have a different value from the value
5350     // computed by evaluating the initializer if the surrounding constant
5351     // expression modifies the temporary.
5352     Value = E->getOrCreateValue(false);
5353   }
5354 
5355   // Try evaluating it now, it might have a constant initializer.
5356   Expr::EvalResult EvalResult;
5357   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5358       !EvalResult.hasSideEffects())
5359     Value = &EvalResult.Val;
5360 
5361   LangAS AddrSpace =
5362       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5363 
5364   Optional<ConstantEmitter> emitter;
5365   llvm::Constant *InitialValue = nullptr;
5366   bool Constant = false;
5367   llvm::Type *Type;
5368   if (Value) {
5369     // The temporary has a constant initializer, use it.
5370     emitter.emplace(*this);
5371     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5372                                                MaterializedType);
5373     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5374     Type = InitialValue->getType();
5375   } else {
5376     // No initializer, the initialization will be provided when we
5377     // initialize the declaration which performed lifetime extension.
5378     Type = getTypes().ConvertTypeForMem(MaterializedType);
5379   }
5380 
5381   // Create a global variable for this lifetime-extended temporary.
5382   llvm::GlobalValue::LinkageTypes Linkage =
5383       getLLVMLinkageVarDefinition(VD, Constant);
5384   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5385     const VarDecl *InitVD;
5386     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5387         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5388       // Temporaries defined inside a class get linkonce_odr linkage because the
5389       // class can be defined in multiple translation units.
5390       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5391     } else {
5392       // There is no need for this temporary to have external linkage if the
5393       // VarDecl has external linkage.
5394       Linkage = llvm::GlobalVariable::InternalLinkage;
5395     }
5396   }
5397   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5398   auto *GV = new llvm::GlobalVariable(
5399       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5400       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5401   if (emitter) emitter->finalize(GV);
5402   setGVProperties(GV, VD);
5403   GV->setAlignment(Align.getAsAlign());
5404   if (supportsCOMDAT() && GV->isWeakForLinker())
5405     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5406   if (VD->getTLSKind())
5407     setTLSMode(GV, *VD);
5408   llvm::Constant *CV = GV;
5409   if (AddrSpace != LangAS::Default)
5410     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5411         *this, GV, AddrSpace, LangAS::Default,
5412         Type->getPointerTo(
5413             getContext().getTargetAddressSpace(LangAS::Default)));
5414   MaterializedGlobalTemporaryMap[E] = CV;
5415   return ConstantAddress(CV, Align);
5416 }
5417 
5418 /// EmitObjCPropertyImplementations - Emit information for synthesized
5419 /// properties for an implementation.
5420 void CodeGenModule::EmitObjCPropertyImplementations(const
5421                                                     ObjCImplementationDecl *D) {
5422   for (const auto *PID : D->property_impls()) {
5423     // Dynamic is just for type-checking.
5424     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5425       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5426 
5427       // Determine which methods need to be implemented, some may have
5428       // been overridden. Note that ::isPropertyAccessor is not the method
5429       // we want, that just indicates if the decl came from a
5430       // property. What we want to know is if the method is defined in
5431       // this implementation.
5432       auto *Getter = PID->getGetterMethodDecl();
5433       if (!Getter || Getter->isSynthesizedAccessorStub())
5434         CodeGenFunction(*this).GenerateObjCGetter(
5435             const_cast<ObjCImplementationDecl *>(D), PID);
5436       auto *Setter = PID->getSetterMethodDecl();
5437       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5438         CodeGenFunction(*this).GenerateObjCSetter(
5439                                  const_cast<ObjCImplementationDecl *>(D), PID);
5440     }
5441   }
5442 }
5443 
5444 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5445   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5446   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5447        ivar; ivar = ivar->getNextIvar())
5448     if (ivar->getType().isDestructedType())
5449       return true;
5450 
5451   return false;
5452 }
5453 
5454 static bool AllTrivialInitializers(CodeGenModule &CGM,
5455                                    ObjCImplementationDecl *D) {
5456   CodeGenFunction CGF(CGM);
5457   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5458        E = D->init_end(); B != E; ++B) {
5459     CXXCtorInitializer *CtorInitExp = *B;
5460     Expr *Init = CtorInitExp->getInit();
5461     if (!CGF.isTrivialInitializer(Init))
5462       return false;
5463   }
5464   return true;
5465 }
5466 
5467 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5468 /// for an implementation.
5469 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5470   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5471   if (needsDestructMethod(D)) {
5472     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5473     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5474     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5475         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5476         getContext().VoidTy, nullptr, D,
5477         /*isInstance=*/true, /*isVariadic=*/false,
5478         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5479         /*isImplicitlyDeclared=*/true,
5480         /*isDefined=*/false, ObjCMethodDecl::Required);
5481     D->addInstanceMethod(DTORMethod);
5482     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5483     D->setHasDestructors(true);
5484   }
5485 
5486   // If the implementation doesn't have any ivar initializers, we don't need
5487   // a .cxx_construct.
5488   if (D->getNumIvarInitializers() == 0 ||
5489       AllTrivialInitializers(*this, D))
5490     return;
5491 
5492   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5493   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5494   // The constructor returns 'self'.
5495   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5496       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5497       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5498       /*isVariadic=*/false,
5499       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5500       /*isImplicitlyDeclared=*/true,
5501       /*isDefined=*/false, ObjCMethodDecl::Required);
5502   D->addInstanceMethod(CTORMethod);
5503   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5504   D->setHasNonZeroConstructors(true);
5505 }
5506 
5507 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5508 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5509   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5510       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5511     ErrorUnsupported(LSD, "linkage spec");
5512     return;
5513   }
5514 
5515   EmitDeclContext(LSD);
5516 }
5517 
5518 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5519   for (auto *I : DC->decls()) {
5520     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5521     // are themselves considered "top-level", so EmitTopLevelDecl on an
5522     // ObjCImplDecl does not recursively visit them. We need to do that in
5523     // case they're nested inside another construct (LinkageSpecDecl /
5524     // ExportDecl) that does stop them from being considered "top-level".
5525     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5526       for (auto *M : OID->methods())
5527         EmitTopLevelDecl(M);
5528     }
5529 
5530     EmitTopLevelDecl(I);
5531   }
5532 }
5533 
5534 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5535 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5536   // Ignore dependent declarations.
5537   if (D->isTemplated())
5538     return;
5539 
5540   // Consteval function shouldn't be emitted.
5541   if (auto *FD = dyn_cast<FunctionDecl>(D))
5542     if (FD->isConsteval())
5543       return;
5544 
5545   switch (D->getKind()) {
5546   case Decl::CXXConversion:
5547   case Decl::CXXMethod:
5548   case Decl::Function:
5549     EmitGlobal(cast<FunctionDecl>(D));
5550     // Always provide some coverage mapping
5551     // even for the functions that aren't emitted.
5552     AddDeferredUnusedCoverageMapping(D);
5553     break;
5554 
5555   case Decl::CXXDeductionGuide:
5556     // Function-like, but does not result in code emission.
5557     break;
5558 
5559   case Decl::Var:
5560   case Decl::Decomposition:
5561   case Decl::VarTemplateSpecialization:
5562     EmitGlobal(cast<VarDecl>(D));
5563     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5564       for (auto *B : DD->bindings())
5565         if (auto *HD = B->getHoldingVar())
5566           EmitGlobal(HD);
5567     break;
5568 
5569   // Indirect fields from global anonymous structs and unions can be
5570   // ignored; only the actual variable requires IR gen support.
5571   case Decl::IndirectField:
5572     break;
5573 
5574   // C++ Decls
5575   case Decl::Namespace:
5576     EmitDeclContext(cast<NamespaceDecl>(D));
5577     break;
5578   case Decl::ClassTemplateSpecialization: {
5579     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5580     if (CGDebugInfo *DI = getModuleDebugInfo())
5581       if (Spec->getSpecializationKind() ==
5582               TSK_ExplicitInstantiationDefinition &&
5583           Spec->hasDefinition())
5584         DI->completeTemplateDefinition(*Spec);
5585   } LLVM_FALLTHROUGH;
5586   case Decl::CXXRecord: {
5587     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5588     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5589       if (CRD->hasDefinition())
5590         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5591       if (auto *ES = D->getASTContext().getExternalSource())
5592         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5593           DI->completeUnusedClass(*CRD);
5594     }
5595     // Emit any static data members, they may be definitions.
5596     for (auto *I : CRD->decls())
5597       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5598         EmitTopLevelDecl(I);
5599     break;
5600   }
5601     // No code generation needed.
5602   case Decl::UsingShadow:
5603   case Decl::ClassTemplate:
5604   case Decl::VarTemplate:
5605   case Decl::Concept:
5606   case Decl::VarTemplatePartialSpecialization:
5607   case Decl::FunctionTemplate:
5608   case Decl::TypeAliasTemplate:
5609   case Decl::Block:
5610   case Decl::Empty:
5611   case Decl::Binding:
5612     break;
5613   case Decl::Using:          // using X; [C++]
5614     if (CGDebugInfo *DI = getModuleDebugInfo())
5615         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5616     break;
5617   case Decl::NamespaceAlias:
5618     if (CGDebugInfo *DI = getModuleDebugInfo())
5619         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5620     break;
5621   case Decl::UsingDirective: // using namespace X; [C++]
5622     if (CGDebugInfo *DI = getModuleDebugInfo())
5623       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5624     break;
5625   case Decl::CXXConstructor:
5626     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5627     break;
5628   case Decl::CXXDestructor:
5629     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5630     break;
5631 
5632   case Decl::StaticAssert:
5633     // Nothing to do.
5634     break;
5635 
5636   // Objective-C Decls
5637 
5638   // Forward declarations, no (immediate) code generation.
5639   case Decl::ObjCInterface:
5640   case Decl::ObjCCategory:
5641     break;
5642 
5643   case Decl::ObjCProtocol: {
5644     auto *Proto = cast<ObjCProtocolDecl>(D);
5645     if (Proto->isThisDeclarationADefinition())
5646       ObjCRuntime->GenerateProtocol(Proto);
5647     break;
5648   }
5649 
5650   case Decl::ObjCCategoryImpl:
5651     // Categories have properties but don't support synthesize so we
5652     // can ignore them here.
5653     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5654     break;
5655 
5656   case Decl::ObjCImplementation: {
5657     auto *OMD = cast<ObjCImplementationDecl>(D);
5658     EmitObjCPropertyImplementations(OMD);
5659     EmitObjCIvarInitializations(OMD);
5660     ObjCRuntime->GenerateClass(OMD);
5661     // Emit global variable debug information.
5662     if (CGDebugInfo *DI = getModuleDebugInfo())
5663       if (getCodeGenOpts().hasReducedDebugInfo())
5664         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5665             OMD->getClassInterface()), OMD->getLocation());
5666     break;
5667   }
5668   case Decl::ObjCMethod: {
5669     auto *OMD = cast<ObjCMethodDecl>(D);
5670     // If this is not a prototype, emit the body.
5671     if (OMD->getBody())
5672       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5673     break;
5674   }
5675   case Decl::ObjCCompatibleAlias:
5676     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5677     break;
5678 
5679   case Decl::PragmaComment: {
5680     const auto *PCD = cast<PragmaCommentDecl>(D);
5681     switch (PCD->getCommentKind()) {
5682     case PCK_Unknown:
5683       llvm_unreachable("unexpected pragma comment kind");
5684     case PCK_Linker:
5685       AppendLinkerOptions(PCD->getArg());
5686       break;
5687     case PCK_Lib:
5688         AddDependentLib(PCD->getArg());
5689       break;
5690     case PCK_Compiler:
5691     case PCK_ExeStr:
5692     case PCK_User:
5693       break; // We ignore all of these.
5694     }
5695     break;
5696   }
5697 
5698   case Decl::PragmaDetectMismatch: {
5699     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5700     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5701     break;
5702   }
5703 
5704   case Decl::LinkageSpec:
5705     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5706     break;
5707 
5708   case Decl::FileScopeAsm: {
5709     // File-scope asm is ignored during device-side CUDA compilation.
5710     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5711       break;
5712     // File-scope asm is ignored during device-side OpenMP compilation.
5713     if (LangOpts.OpenMPIsDevice)
5714       break;
5715     auto *AD = cast<FileScopeAsmDecl>(D);
5716     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5717     break;
5718   }
5719 
5720   case Decl::Import: {
5721     auto *Import = cast<ImportDecl>(D);
5722 
5723     // If we've already imported this module, we're done.
5724     if (!ImportedModules.insert(Import->getImportedModule()))
5725       break;
5726 
5727     // Emit debug information for direct imports.
5728     if (!Import->getImportedOwningModule()) {
5729       if (CGDebugInfo *DI = getModuleDebugInfo())
5730         DI->EmitImportDecl(*Import);
5731     }
5732 
5733     // Find all of the submodules and emit the module initializers.
5734     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5735     SmallVector<clang::Module *, 16> Stack;
5736     Visited.insert(Import->getImportedModule());
5737     Stack.push_back(Import->getImportedModule());
5738 
5739     while (!Stack.empty()) {
5740       clang::Module *Mod = Stack.pop_back_val();
5741       if (!EmittedModuleInitializers.insert(Mod).second)
5742         continue;
5743 
5744       for (auto *D : Context.getModuleInitializers(Mod))
5745         EmitTopLevelDecl(D);
5746 
5747       // Visit the submodules of this module.
5748       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5749                                              SubEnd = Mod->submodule_end();
5750            Sub != SubEnd; ++Sub) {
5751         // Skip explicit children; they need to be explicitly imported to emit
5752         // the initializers.
5753         if ((*Sub)->IsExplicit)
5754           continue;
5755 
5756         if (Visited.insert(*Sub).second)
5757           Stack.push_back(*Sub);
5758       }
5759     }
5760     break;
5761   }
5762 
5763   case Decl::Export:
5764     EmitDeclContext(cast<ExportDecl>(D));
5765     break;
5766 
5767   case Decl::OMPThreadPrivate:
5768     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5769     break;
5770 
5771   case Decl::OMPAllocate:
5772     break;
5773 
5774   case Decl::OMPDeclareReduction:
5775     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5776     break;
5777 
5778   case Decl::OMPDeclareMapper:
5779     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5780     break;
5781 
5782   case Decl::OMPRequires:
5783     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5784     break;
5785 
5786   case Decl::Typedef:
5787   case Decl::TypeAlias: // using foo = bar; [C++11]
5788     if (CGDebugInfo *DI = getModuleDebugInfo())
5789       DI->EmitAndRetainType(
5790           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5791     break;
5792 
5793   case Decl::Record:
5794     if (CGDebugInfo *DI = getModuleDebugInfo())
5795       if (cast<RecordDecl>(D)->getDefinition())
5796         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5797     break;
5798 
5799   case Decl::Enum:
5800     if (CGDebugInfo *DI = getModuleDebugInfo())
5801       if (cast<EnumDecl>(D)->getDefinition())
5802         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5803     break;
5804 
5805   default:
5806     // Make sure we handled everything we should, every other kind is a
5807     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5808     // function. Need to recode Decl::Kind to do that easily.
5809     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5810     break;
5811   }
5812 }
5813 
5814 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5815   // Do we need to generate coverage mapping?
5816   if (!CodeGenOpts.CoverageMapping)
5817     return;
5818   switch (D->getKind()) {
5819   case Decl::CXXConversion:
5820   case Decl::CXXMethod:
5821   case Decl::Function:
5822   case Decl::ObjCMethod:
5823   case Decl::CXXConstructor:
5824   case Decl::CXXDestructor: {
5825     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5826       break;
5827     SourceManager &SM = getContext().getSourceManager();
5828     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5829       break;
5830     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5831     if (I == DeferredEmptyCoverageMappingDecls.end())
5832       DeferredEmptyCoverageMappingDecls[D] = true;
5833     break;
5834   }
5835   default:
5836     break;
5837   };
5838 }
5839 
5840 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5841   // Do we need to generate coverage mapping?
5842   if (!CodeGenOpts.CoverageMapping)
5843     return;
5844   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5845     if (Fn->isTemplateInstantiation())
5846       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5847   }
5848   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5849   if (I == DeferredEmptyCoverageMappingDecls.end())
5850     DeferredEmptyCoverageMappingDecls[D] = false;
5851   else
5852     I->second = false;
5853 }
5854 
5855 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5856   // We call takeVector() here to avoid use-after-free.
5857   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5858   // we deserialize function bodies to emit coverage info for them, and that
5859   // deserializes more declarations. How should we handle that case?
5860   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5861     if (!Entry.second)
5862       continue;
5863     const Decl *D = Entry.first;
5864     switch (D->getKind()) {
5865     case Decl::CXXConversion:
5866     case Decl::CXXMethod:
5867     case Decl::Function:
5868     case Decl::ObjCMethod: {
5869       CodeGenPGO PGO(*this);
5870       GlobalDecl GD(cast<FunctionDecl>(D));
5871       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5872                                   getFunctionLinkage(GD));
5873       break;
5874     }
5875     case Decl::CXXConstructor: {
5876       CodeGenPGO PGO(*this);
5877       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5878       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5879                                   getFunctionLinkage(GD));
5880       break;
5881     }
5882     case Decl::CXXDestructor: {
5883       CodeGenPGO PGO(*this);
5884       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5885       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5886                                   getFunctionLinkage(GD));
5887       break;
5888     }
5889     default:
5890       break;
5891     };
5892   }
5893 }
5894 
5895 void CodeGenModule::EmitMainVoidAlias() {
5896   // In order to transition away from "__original_main" gracefully, emit an
5897   // alias for "main" in the no-argument case so that libc can detect when
5898   // new-style no-argument main is in used.
5899   if (llvm::Function *F = getModule().getFunction("main")) {
5900     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5901         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5902       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5903   }
5904 }
5905 
5906 /// Turns the given pointer into a constant.
5907 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5908                                           const void *Ptr) {
5909   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5910   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5911   return llvm::ConstantInt::get(i64, PtrInt);
5912 }
5913 
5914 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5915                                    llvm::NamedMDNode *&GlobalMetadata,
5916                                    GlobalDecl D,
5917                                    llvm::GlobalValue *Addr) {
5918   if (!GlobalMetadata)
5919     GlobalMetadata =
5920       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5921 
5922   // TODO: should we report variant information for ctors/dtors?
5923   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5924                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5925                                CGM.getLLVMContext(), D.getDecl()))};
5926   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5927 }
5928 
5929 /// For each function which is declared within an extern "C" region and marked
5930 /// as 'used', but has internal linkage, create an alias from the unmangled
5931 /// name to the mangled name if possible. People expect to be able to refer
5932 /// to such functions with an unmangled name from inline assembly within the
5933 /// same translation unit.
5934 void CodeGenModule::EmitStaticExternCAliases() {
5935   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5936     return;
5937   for (auto &I : StaticExternCValues) {
5938     IdentifierInfo *Name = I.first;
5939     llvm::GlobalValue *Val = I.second;
5940     if (Val && !getModule().getNamedValue(Name->getName()))
5941       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5942   }
5943 }
5944 
5945 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5946                                              GlobalDecl &Result) const {
5947   auto Res = Manglings.find(MangledName);
5948   if (Res == Manglings.end())
5949     return false;
5950   Result = Res->getValue();
5951   return true;
5952 }
5953 
5954 /// Emits metadata nodes associating all the global values in the
5955 /// current module with the Decls they came from.  This is useful for
5956 /// projects using IR gen as a subroutine.
5957 ///
5958 /// Since there's currently no way to associate an MDNode directly
5959 /// with an llvm::GlobalValue, we create a global named metadata
5960 /// with the name 'clang.global.decl.ptrs'.
5961 void CodeGenModule::EmitDeclMetadata() {
5962   llvm::NamedMDNode *GlobalMetadata = nullptr;
5963 
5964   for (auto &I : MangledDeclNames) {
5965     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5966     // Some mangled names don't necessarily have an associated GlobalValue
5967     // in this module, e.g. if we mangled it for DebugInfo.
5968     if (Addr)
5969       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5970   }
5971 }
5972 
5973 /// Emits metadata nodes for all the local variables in the current
5974 /// function.
5975 void CodeGenFunction::EmitDeclMetadata() {
5976   if (LocalDeclMap.empty()) return;
5977 
5978   llvm::LLVMContext &Context = getLLVMContext();
5979 
5980   // Find the unique metadata ID for this name.
5981   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5982 
5983   llvm::NamedMDNode *GlobalMetadata = nullptr;
5984 
5985   for (auto &I : LocalDeclMap) {
5986     const Decl *D = I.first;
5987     llvm::Value *Addr = I.second.getPointer();
5988     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5989       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5990       Alloca->setMetadata(
5991           DeclPtrKind, llvm::MDNode::get(
5992                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5993     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5994       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5995       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5996     }
5997   }
5998 }
5999 
6000 void CodeGenModule::EmitVersionIdentMetadata() {
6001   llvm::NamedMDNode *IdentMetadata =
6002     TheModule.getOrInsertNamedMetadata("llvm.ident");
6003   std::string Version = getClangFullVersion();
6004   llvm::LLVMContext &Ctx = TheModule.getContext();
6005 
6006   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6007   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6008 }
6009 
6010 void CodeGenModule::EmitCommandLineMetadata() {
6011   llvm::NamedMDNode *CommandLineMetadata =
6012     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6013   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6014   llvm::LLVMContext &Ctx = TheModule.getContext();
6015 
6016   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6017   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6018 }
6019 
6020 void CodeGenModule::EmitCoverageFile() {
6021   if (getCodeGenOpts().CoverageDataFile.empty() &&
6022       getCodeGenOpts().CoverageNotesFile.empty())
6023     return;
6024 
6025   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6026   if (!CUNode)
6027     return;
6028 
6029   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6030   llvm::LLVMContext &Ctx = TheModule.getContext();
6031   auto *CoverageDataFile =
6032       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6033   auto *CoverageNotesFile =
6034       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6035   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6036     llvm::MDNode *CU = CUNode->getOperand(i);
6037     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6038     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6039   }
6040 }
6041 
6042 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6043                                                        bool ForEH) {
6044   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6045   // FIXME: should we even be calling this method if RTTI is disabled
6046   // and it's not for EH?
6047   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6048       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6049        getTriple().isNVPTX()))
6050     return llvm::Constant::getNullValue(Int8PtrTy);
6051 
6052   if (ForEH && Ty->isObjCObjectPointerType() &&
6053       LangOpts.ObjCRuntime.isGNUFamily())
6054     return ObjCRuntime->GetEHType(Ty);
6055 
6056   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6057 }
6058 
6059 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6060   // Do not emit threadprivates in simd-only mode.
6061   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6062     return;
6063   for (auto RefExpr : D->varlists()) {
6064     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6065     bool PerformInit =
6066         VD->getAnyInitializer() &&
6067         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6068                                                         /*ForRef=*/false);
6069 
6070     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6071     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6072             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6073       CXXGlobalInits.push_back(InitFunction);
6074   }
6075 }
6076 
6077 llvm::Metadata *
6078 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6079                                             StringRef Suffix) {
6080   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6081   if (InternalId)
6082     return InternalId;
6083 
6084   if (isExternallyVisible(T->getLinkage())) {
6085     std::string OutName;
6086     llvm::raw_string_ostream Out(OutName);
6087     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6088     Out << Suffix;
6089 
6090     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6091   } else {
6092     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6093                                            llvm::ArrayRef<llvm::Metadata *>());
6094   }
6095 
6096   return InternalId;
6097 }
6098 
6099 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6100   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6101 }
6102 
6103 llvm::Metadata *
6104 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6105   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6106 }
6107 
6108 // Generalize pointer types to a void pointer with the qualifiers of the
6109 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6110 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6111 // 'void *'.
6112 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6113   if (!Ty->isPointerType())
6114     return Ty;
6115 
6116   return Ctx.getPointerType(
6117       QualType(Ctx.VoidTy).withCVRQualifiers(
6118           Ty->getPointeeType().getCVRQualifiers()));
6119 }
6120 
6121 // Apply type generalization to a FunctionType's return and argument types
6122 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6123   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6124     SmallVector<QualType, 8> GeneralizedParams;
6125     for (auto &Param : FnType->param_types())
6126       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6127 
6128     return Ctx.getFunctionType(
6129         GeneralizeType(Ctx, FnType->getReturnType()),
6130         GeneralizedParams, FnType->getExtProtoInfo());
6131   }
6132 
6133   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6134     return Ctx.getFunctionNoProtoType(
6135         GeneralizeType(Ctx, FnType->getReturnType()));
6136 
6137   llvm_unreachable("Encountered unknown FunctionType");
6138 }
6139 
6140 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6141   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6142                                       GeneralizedMetadataIdMap, ".generalized");
6143 }
6144 
6145 /// Returns whether this module needs the "all-vtables" type identifier.
6146 bool CodeGenModule::NeedAllVtablesTypeId() const {
6147   // Returns true if at least one of vtable-based CFI checkers is enabled and
6148   // is not in the trapping mode.
6149   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6150            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6151           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6152            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6153           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6154            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6155           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6156            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6157 }
6158 
6159 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6160                                           CharUnits Offset,
6161                                           const CXXRecordDecl *RD) {
6162   llvm::Metadata *MD =
6163       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6164   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6165 
6166   if (CodeGenOpts.SanitizeCfiCrossDso)
6167     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6168       VTable->addTypeMetadata(Offset.getQuantity(),
6169                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6170 
6171   if (NeedAllVtablesTypeId()) {
6172     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6173     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6174   }
6175 }
6176 
6177 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6178   if (!SanStats)
6179     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6180 
6181   return *SanStats;
6182 }
6183 llvm::Value *
6184 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6185                                                   CodeGenFunction &CGF) {
6186   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6187   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6188   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6189   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6190                                 "__translate_sampler_initializer"),
6191                                 {C});
6192 }
6193 
6194 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6195     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6196   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6197                                  /* forPointeeType= */ true);
6198 }
6199 
6200 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6201                                                  LValueBaseInfo *BaseInfo,
6202                                                  TBAAAccessInfo *TBAAInfo,
6203                                                  bool forPointeeType) {
6204   if (TBAAInfo)
6205     *TBAAInfo = getTBAAAccessInfo(T);
6206 
6207   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6208   // that doesn't return the information we need to compute BaseInfo.
6209 
6210   // Honor alignment typedef attributes even on incomplete types.
6211   // We also honor them straight for C++ class types, even as pointees;
6212   // there's an expressivity gap here.
6213   if (auto TT = T->getAs<TypedefType>()) {
6214     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6215       if (BaseInfo)
6216         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6217       return getContext().toCharUnitsFromBits(Align);
6218     }
6219   }
6220 
6221   bool AlignForArray = T->isArrayType();
6222 
6223   // Analyze the base element type, so we don't get confused by incomplete
6224   // array types.
6225   T = getContext().getBaseElementType(T);
6226 
6227   if (T->isIncompleteType()) {
6228     // We could try to replicate the logic from
6229     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6230     // type is incomplete, so it's impossible to test. We could try to reuse
6231     // getTypeAlignIfKnown, but that doesn't return the information we need
6232     // to set BaseInfo.  So just ignore the possibility that the alignment is
6233     // greater than one.
6234     if (BaseInfo)
6235       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6236     return CharUnits::One();
6237   }
6238 
6239   if (BaseInfo)
6240     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6241 
6242   CharUnits Alignment;
6243   const CXXRecordDecl *RD;
6244   if (T.getQualifiers().hasUnaligned()) {
6245     Alignment = CharUnits::One();
6246   } else if (forPointeeType && !AlignForArray &&
6247              (RD = T->getAsCXXRecordDecl())) {
6248     // For C++ class pointees, we don't know whether we're pointing at a
6249     // base or a complete object, so we generally need to use the
6250     // non-virtual alignment.
6251     Alignment = getClassPointerAlignment(RD);
6252   } else {
6253     Alignment = getContext().getTypeAlignInChars(T);
6254   }
6255 
6256   // Cap to the global maximum type alignment unless the alignment
6257   // was somehow explicit on the type.
6258   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6259     if (Alignment.getQuantity() > MaxAlign &&
6260         !getContext().isAlignmentRequired(T))
6261       Alignment = CharUnits::fromQuantity(MaxAlign);
6262   }
6263   return Alignment;
6264 }
6265 
6266 bool CodeGenModule::stopAutoInit() {
6267   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6268   if (StopAfter) {
6269     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6270     // used
6271     if (NumAutoVarInit >= StopAfter) {
6272       return true;
6273     }
6274     if (!NumAutoVarInit) {
6275       unsigned DiagID = getDiags().getCustomDiagID(
6276           DiagnosticsEngine::Warning,
6277           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6278           "number of times ftrivial-auto-var-init=%1 gets applied.");
6279       getDiags().Report(DiagID)
6280           << StopAfter
6281           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6282                       LangOptions::TrivialAutoVarInitKind::Zero
6283                   ? "zero"
6284                   : "pattern");
6285     }
6286     ++NumAutoVarInit;
6287   }
6288   return false;
6289 }
6290