1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeGPU.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/StringSwitch.h" 51 #include "llvm/ADT/Triple.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 54 #include "llvm/IR/CallingConv.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ProfileSummary.h" 60 #include "llvm/ProfileData/InstrProfReader.h" 61 #include "llvm/Support/CodeGen.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/ConvertUTF.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/MD5.h" 66 #include "llvm/Support/TimeProfiler.h" 67 #include "llvm/Support/X86TargetParser.h" 68 69 using namespace clang; 70 using namespace CodeGen; 71 72 static llvm::cl::opt<bool> LimitedCoverage( 73 "limited-coverage-experimental", llvm::cl::Hidden, 74 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 75 76 static const char AnnotationSection[] = "llvm.metadata"; 77 78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 79 switch (CGM.getContext().getCXXABIKind()) { 80 case TargetCXXABI::AppleARM64: 81 case TargetCXXABI::Fuchsia: 82 case TargetCXXABI::GenericAArch64: 83 case TargetCXXABI::GenericARM: 84 case TargetCXXABI::iOS: 85 case TargetCXXABI::WatchOS: 86 case TargetCXXABI::GenericMIPS: 87 case TargetCXXABI::GenericItanium: 88 case TargetCXXABI::WebAssembly: 89 case TargetCXXABI::XL: 90 return CreateItaniumCXXABI(CGM); 91 case TargetCXXABI::Microsoft: 92 return CreateMicrosoftCXXABI(CGM); 93 } 94 95 llvm_unreachable("invalid C++ ABI kind"); 96 } 97 98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 99 const PreprocessorOptions &PPO, 100 const CodeGenOptions &CGO, llvm::Module &M, 101 DiagnosticsEngine &diags, 102 CoverageSourceInfo *CoverageInfo) 103 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 104 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 105 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 106 VMContext(M.getContext()), Types(*this), VTables(*this), 107 SanitizerMD(new SanitizerMetadata(*this)) { 108 109 // Initialize the type cache. 110 llvm::LLVMContext &LLVMContext = M.getContext(); 111 VoidTy = llvm::Type::getVoidTy(LLVMContext); 112 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 113 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 114 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 115 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 116 HalfTy = llvm::Type::getHalfTy(LLVMContext); 117 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 118 FloatTy = llvm::Type::getFloatTy(LLVMContext); 119 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 120 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 121 PointerAlignInBytes = 122 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 123 SizeSizeInBytes = 124 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 125 IntAlignInBytes = 126 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 127 CharTy = 128 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 129 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 130 IntPtrTy = llvm::IntegerType::get(LLVMContext, 131 C.getTargetInfo().getMaxPointerWidth()); 132 Int8PtrTy = Int8Ty->getPointerTo(0); 133 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 134 const llvm::DataLayout &DL = M.getDataLayout(); 135 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 136 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 137 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 138 139 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 140 141 if (LangOpts.ObjC) 142 createObjCRuntime(); 143 if (LangOpts.OpenCL) 144 createOpenCLRuntime(); 145 if (LangOpts.OpenMP) 146 createOpenMPRuntime(); 147 if (LangOpts.CUDA) 148 createCUDARuntime(); 149 if (LangOpts.HLSL) 150 createHLSLRuntime(); 151 152 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 153 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 154 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 155 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 156 getCXXABI().getMangleContext())); 157 158 // If debug info or coverage generation is enabled, create the CGDebugInfo 159 // object. 160 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 161 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 162 DebugInfo.reset(new CGDebugInfo(*this)); 163 164 Block.GlobalUniqueCount = 0; 165 166 if (C.getLangOpts().ObjC) 167 ObjCData.reset(new ObjCEntrypoints()); 168 169 if (CodeGenOpts.hasProfileClangUse()) { 170 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 171 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 172 if (auto E = ReaderOrErr.takeError()) { 173 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 174 "Could not read profile %0: %1"); 175 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 176 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 177 << EI.message(); 178 }); 179 } else 180 PGOReader = std::move(ReaderOrErr.get()); 181 } 182 183 // If coverage mapping generation is enabled, create the 184 // CoverageMappingModuleGen object. 185 if (CodeGenOpts.CoverageMapping) 186 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 187 188 // Generate the module name hash here if needed. 189 if (CodeGenOpts.UniqueInternalLinkageNames && 190 !getModule().getSourceFileName().empty()) { 191 std::string Path = getModule().getSourceFileName(); 192 // Check if a path substitution is needed from the MacroPrefixMap. 193 for (const auto &Entry : LangOpts.MacroPrefixMap) 194 if (Path.rfind(Entry.first, 0) != std::string::npos) { 195 Path = Entry.second + Path.substr(Entry.first.size()); 196 break; 197 } 198 llvm::MD5 Md5; 199 Md5.update(Path); 200 llvm::MD5::MD5Result R; 201 Md5.final(R); 202 SmallString<32> Str; 203 llvm::MD5::stringifyResult(R, Str); 204 // Convert MD5hash to Decimal. Demangler suffixes can either contain 205 // numbers or characters but not both. 206 llvm::APInt IntHash(128, Str.str(), 16); 207 // Prepend "__uniq" before the hash for tools like profilers to understand 208 // that this symbol is of internal linkage type. The "__uniq" is the 209 // pre-determined prefix that is used to tell tools that this symbol was 210 // created with -funique-internal-linakge-symbols and the tools can strip or 211 // keep the prefix as needed. 212 ModuleNameHash = (Twine(".__uniq.") + 213 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 214 } 215 } 216 217 CodeGenModule::~CodeGenModule() {} 218 219 void CodeGenModule::createObjCRuntime() { 220 // This is just isGNUFamily(), but we want to force implementors of 221 // new ABIs to decide how best to do this. 222 switch (LangOpts.ObjCRuntime.getKind()) { 223 case ObjCRuntime::GNUstep: 224 case ObjCRuntime::GCC: 225 case ObjCRuntime::ObjFW: 226 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 227 return; 228 229 case ObjCRuntime::FragileMacOSX: 230 case ObjCRuntime::MacOSX: 231 case ObjCRuntime::iOS: 232 case ObjCRuntime::WatchOS: 233 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 234 return; 235 } 236 llvm_unreachable("bad runtime kind"); 237 } 238 239 void CodeGenModule::createOpenCLRuntime() { 240 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 241 } 242 243 void CodeGenModule::createOpenMPRuntime() { 244 // Select a specialized code generation class based on the target, if any. 245 // If it does not exist use the default implementation. 246 switch (getTriple().getArch()) { 247 case llvm::Triple::nvptx: 248 case llvm::Triple::nvptx64: 249 case llvm::Triple::amdgcn: 250 assert(getLangOpts().OpenMPIsDevice && 251 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 252 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 253 break; 254 default: 255 if (LangOpts.OpenMPSimd) 256 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 257 else 258 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 259 break; 260 } 261 } 262 263 void CodeGenModule::createCUDARuntime() { 264 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 265 } 266 267 void CodeGenModule::createHLSLRuntime() { 268 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 269 } 270 271 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 272 Replacements[Name] = C; 273 } 274 275 void CodeGenModule::applyReplacements() { 276 for (auto &I : Replacements) { 277 StringRef MangledName = I.first(); 278 llvm::Constant *Replacement = I.second; 279 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 280 if (!Entry) 281 continue; 282 auto *OldF = cast<llvm::Function>(Entry); 283 auto *NewF = dyn_cast<llvm::Function>(Replacement); 284 if (!NewF) { 285 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 286 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 287 } else { 288 auto *CE = cast<llvm::ConstantExpr>(Replacement); 289 assert(CE->getOpcode() == llvm::Instruction::BitCast || 290 CE->getOpcode() == llvm::Instruction::GetElementPtr); 291 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 292 } 293 } 294 295 // Replace old with new, but keep the old order. 296 OldF->replaceAllUsesWith(Replacement); 297 if (NewF) { 298 NewF->removeFromParent(); 299 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 300 NewF); 301 } 302 OldF->eraseFromParent(); 303 } 304 } 305 306 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 307 GlobalValReplacements.push_back(std::make_pair(GV, C)); 308 } 309 310 void CodeGenModule::applyGlobalValReplacements() { 311 for (auto &I : GlobalValReplacements) { 312 llvm::GlobalValue *GV = I.first; 313 llvm::Constant *C = I.second; 314 315 GV->replaceAllUsesWith(C); 316 GV->eraseFromParent(); 317 } 318 } 319 320 // This is only used in aliases that we created and we know they have a 321 // linear structure. 322 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 323 const llvm::Constant *C; 324 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 325 C = GA->getAliasee(); 326 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 327 C = GI->getResolver(); 328 else 329 return GV; 330 331 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 332 if (!AliaseeGV) 333 return nullptr; 334 335 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 336 if (FinalGV == GV) 337 return nullptr; 338 339 return FinalGV; 340 } 341 342 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 343 SourceLocation Location, bool IsIFunc, 344 const llvm::GlobalValue *Alias, 345 const llvm::GlobalValue *&GV) { 346 GV = getAliasedGlobal(Alias); 347 if (!GV) { 348 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 349 return false; 350 } 351 352 if (GV->isDeclaration()) { 353 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 354 return false; 355 } 356 357 if (IsIFunc) { 358 // Check resolver function type. 359 const auto *F = dyn_cast<llvm::Function>(GV); 360 if (!F) { 361 Diags.Report(Location, diag::err_alias_to_undefined) 362 << IsIFunc << IsIFunc; 363 return false; 364 } 365 366 llvm::FunctionType *FTy = F->getFunctionType(); 367 if (!FTy->getReturnType()->isPointerTy()) { 368 Diags.Report(Location, diag::err_ifunc_resolver_return); 369 return false; 370 } 371 } 372 373 return true; 374 } 375 376 void CodeGenModule::checkAliases() { 377 // Check if the constructed aliases are well formed. It is really unfortunate 378 // that we have to do this in CodeGen, but we only construct mangled names 379 // and aliases during codegen. 380 bool Error = false; 381 DiagnosticsEngine &Diags = getDiags(); 382 for (const GlobalDecl &GD : Aliases) { 383 const auto *D = cast<ValueDecl>(GD.getDecl()); 384 SourceLocation Location; 385 bool IsIFunc = D->hasAttr<IFuncAttr>(); 386 if (const Attr *A = D->getDefiningAttr()) 387 Location = A->getLocation(); 388 else 389 llvm_unreachable("Not an alias or ifunc?"); 390 391 StringRef MangledName = getMangledName(GD); 392 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 393 const llvm::GlobalValue *GV = nullptr; 394 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 395 Error = true; 396 continue; 397 } 398 399 llvm::Constant *Aliasee = 400 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 401 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 402 403 llvm::GlobalValue *AliaseeGV; 404 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 405 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 406 else 407 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 408 409 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 410 StringRef AliasSection = SA->getName(); 411 if (AliasSection != AliaseeGV->getSection()) 412 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 413 << AliasSection << IsIFunc << IsIFunc; 414 } 415 416 // We have to handle alias to weak aliases in here. LLVM itself disallows 417 // this since the object semantics would not match the IL one. For 418 // compatibility with gcc we implement it by just pointing the alias 419 // to its aliasee's aliasee. We also warn, since the user is probably 420 // expecting the link to be weak. 421 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 422 if (GA->isInterposable()) { 423 Diags.Report(Location, diag::warn_alias_to_weak_alias) 424 << GV->getName() << GA->getName() << IsIFunc; 425 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 426 GA->getAliasee(), Alias->getType()); 427 428 if (IsIFunc) 429 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 430 else 431 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 432 } 433 } 434 } 435 if (!Error) 436 return; 437 438 for (const GlobalDecl &GD : Aliases) { 439 StringRef MangledName = getMangledName(GD); 440 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 441 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 442 Alias->eraseFromParent(); 443 } 444 } 445 446 void CodeGenModule::clear() { 447 DeferredDeclsToEmit.clear(); 448 EmittedDeferredDecls.clear(); 449 if (OpenMPRuntime) 450 OpenMPRuntime->clear(); 451 } 452 453 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 454 StringRef MainFile) { 455 if (!hasDiagnostics()) 456 return; 457 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 458 if (MainFile.empty()) 459 MainFile = "<stdin>"; 460 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 461 } else { 462 if (Mismatched > 0) 463 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 464 465 if (Missing > 0) 466 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 467 } 468 } 469 470 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 471 llvm::Module &M) { 472 if (!LO.VisibilityFromDLLStorageClass) 473 return; 474 475 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 476 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 477 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 478 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 479 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 480 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 481 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 482 CodeGenModule::GetLLVMVisibility( 483 LO.getExternDeclNoDLLStorageClassVisibility()); 484 485 for (llvm::GlobalValue &GV : M.global_values()) { 486 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 487 continue; 488 489 // Reset DSO locality before setting the visibility. This removes 490 // any effects that visibility options and annotations may have 491 // had on the DSO locality. Setting the visibility will implicitly set 492 // appropriate globals to DSO Local; however, this will be pessimistic 493 // w.r.t. to the normal compiler IRGen. 494 GV.setDSOLocal(false); 495 496 if (GV.isDeclarationForLinker()) { 497 GV.setVisibility(GV.getDLLStorageClass() == 498 llvm::GlobalValue::DLLImportStorageClass 499 ? ExternDeclDLLImportVisibility 500 : ExternDeclNoDLLStorageClassVisibility); 501 } else { 502 GV.setVisibility(GV.getDLLStorageClass() == 503 llvm::GlobalValue::DLLExportStorageClass 504 ? DLLExportVisibility 505 : NoDLLStorageClassVisibility); 506 } 507 508 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 509 } 510 } 511 512 void CodeGenModule::Release() { 513 EmitDeferred(); 514 DeferredDecls.insert(EmittedDeferredDecls.begin(), 515 EmittedDeferredDecls.end()); 516 EmittedDeferredDecls.clear(); 517 EmitVTablesOpportunistically(); 518 applyGlobalValReplacements(); 519 applyReplacements(); 520 emitMultiVersionFunctions(); 521 EmitCXXGlobalInitFunc(); 522 EmitCXXGlobalCleanUpFunc(); 523 registerGlobalDtorsWithAtExit(); 524 EmitCXXThreadLocalInitFunc(); 525 if (ObjCRuntime) 526 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 527 AddGlobalCtor(ObjCInitFunction); 528 if (Context.getLangOpts().CUDA && CUDARuntime) { 529 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 530 AddGlobalCtor(CudaCtorFunction); 531 } 532 if (OpenMPRuntime) { 533 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 534 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 535 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 536 } 537 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 538 OpenMPRuntime->clear(); 539 } 540 if (PGOReader) { 541 getModule().setProfileSummary( 542 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 543 llvm::ProfileSummary::PSK_Instr); 544 if (PGOStats.hasDiagnostics()) 545 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 546 } 547 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 548 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 549 EmitGlobalAnnotations(); 550 EmitStaticExternCAliases(); 551 checkAliases(); 552 EmitDeferredUnusedCoverageMappings(); 553 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 554 if (CoverageMapping) 555 CoverageMapping->emit(); 556 if (CodeGenOpts.SanitizeCfiCrossDso) { 557 CodeGenFunction(*this).EmitCfiCheckFail(); 558 CodeGenFunction(*this).EmitCfiCheckStub(); 559 } 560 emitAtAvailableLinkGuard(); 561 if (Context.getTargetInfo().getTriple().isWasm()) 562 EmitMainVoidAlias(); 563 564 if (getTriple().isAMDGPU()) { 565 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 566 // preserve ASAN functions in bitcode libraries. 567 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 568 auto *FT = llvm::FunctionType::get(VoidTy, {}); 569 auto *F = llvm::Function::Create( 570 FT, llvm::GlobalValue::ExternalLinkage, 571 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 572 auto *Var = new llvm::GlobalVariable( 573 getModule(), FT->getPointerTo(), 574 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 575 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 576 llvm::GlobalVariable::NotThreadLocal); 577 addCompilerUsedGlobal(Var); 578 } 579 // Emit amdgpu_code_object_version module flag, which is code object version 580 // times 100. 581 // ToDo: Enable module flag for all code object version when ROCm device 582 // library is ready. 583 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 584 getModule().addModuleFlag(llvm::Module::Error, 585 "amdgpu_code_object_version", 586 getTarget().getTargetOpts().CodeObjectVersion); 587 } 588 } 589 590 // Emit a global array containing all external kernels or device variables 591 // used by host functions and mark it as used for CUDA/HIP. This is necessary 592 // to get kernels or device variables in archives linked in even if these 593 // kernels or device variables are only used in host functions. 594 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 595 SmallVector<llvm::Constant *, 8> UsedArray; 596 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 597 GlobalDecl GD; 598 if (auto *FD = dyn_cast<FunctionDecl>(D)) 599 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 600 else 601 GD = GlobalDecl(D); 602 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 603 GetAddrOfGlobal(GD), Int8PtrTy)); 604 } 605 606 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 607 608 auto *GV = new llvm::GlobalVariable( 609 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 610 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 611 addCompilerUsedGlobal(GV); 612 } 613 614 emitLLVMUsed(); 615 if (SanStats) 616 SanStats->finish(); 617 618 if (CodeGenOpts.Autolink && 619 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 620 EmitModuleLinkOptions(); 621 } 622 623 // On ELF we pass the dependent library specifiers directly to the linker 624 // without manipulating them. This is in contrast to other platforms where 625 // they are mapped to a specific linker option by the compiler. This 626 // difference is a result of the greater variety of ELF linkers and the fact 627 // that ELF linkers tend to handle libraries in a more complicated fashion 628 // than on other platforms. This forces us to defer handling the dependent 629 // libs to the linker. 630 // 631 // CUDA/HIP device and host libraries are different. Currently there is no 632 // way to differentiate dependent libraries for host or device. Existing 633 // usage of #pragma comment(lib, *) is intended for host libraries on 634 // Windows. Therefore emit llvm.dependent-libraries only for host. 635 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 636 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 637 for (auto *MD : ELFDependentLibraries) 638 NMD->addOperand(MD); 639 } 640 641 // Record mregparm value now so it is visible through rest of codegen. 642 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 643 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 644 CodeGenOpts.NumRegisterParameters); 645 646 if (CodeGenOpts.DwarfVersion) { 647 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 648 CodeGenOpts.DwarfVersion); 649 } 650 651 if (CodeGenOpts.Dwarf64) 652 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 653 654 if (Context.getLangOpts().SemanticInterposition) 655 // Require various optimization to respect semantic interposition. 656 getModule().setSemanticInterposition(true); 657 658 if (CodeGenOpts.EmitCodeView) { 659 // Indicate that we want CodeView in the metadata. 660 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 661 } 662 if (CodeGenOpts.CodeViewGHash) { 663 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 664 } 665 if (CodeGenOpts.ControlFlowGuard) { 666 // Function ID tables and checks for Control Flow Guard (cfguard=2). 667 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 668 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 669 // Function ID tables for Control Flow Guard (cfguard=1). 670 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 671 } 672 if (CodeGenOpts.EHContGuard) { 673 // Function ID tables for EH Continuation Guard. 674 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 675 } 676 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 677 // We don't support LTO with 2 with different StrictVTablePointers 678 // FIXME: we could support it by stripping all the information introduced 679 // by StrictVTablePointers. 680 681 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 682 683 llvm::Metadata *Ops[2] = { 684 llvm::MDString::get(VMContext, "StrictVTablePointers"), 685 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 686 llvm::Type::getInt32Ty(VMContext), 1))}; 687 688 getModule().addModuleFlag(llvm::Module::Require, 689 "StrictVTablePointersRequirement", 690 llvm::MDNode::get(VMContext, Ops)); 691 } 692 if (getModuleDebugInfo()) 693 // We support a single version in the linked module. The LLVM 694 // parser will drop debug info with a different version number 695 // (and warn about it, too). 696 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 697 llvm::DEBUG_METADATA_VERSION); 698 699 // We need to record the widths of enums and wchar_t, so that we can generate 700 // the correct build attributes in the ARM backend. wchar_size is also used by 701 // TargetLibraryInfo. 702 uint64_t WCharWidth = 703 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 704 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 705 706 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 707 if ( Arch == llvm::Triple::arm 708 || Arch == llvm::Triple::armeb 709 || Arch == llvm::Triple::thumb 710 || Arch == llvm::Triple::thumbeb) { 711 // The minimum width of an enum in bytes 712 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 713 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 714 } 715 716 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 717 StringRef ABIStr = Target.getABI(); 718 llvm::LLVMContext &Ctx = TheModule.getContext(); 719 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 720 llvm::MDString::get(Ctx, ABIStr)); 721 } 722 723 if (CodeGenOpts.SanitizeCfiCrossDso) { 724 // Indicate that we want cross-DSO control flow integrity checks. 725 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 726 } 727 728 if (CodeGenOpts.WholeProgramVTables) { 729 // Indicate whether VFE was enabled for this module, so that the 730 // vcall_visibility metadata added under whole program vtables is handled 731 // appropriately in the optimizer. 732 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 733 CodeGenOpts.VirtualFunctionElimination); 734 } 735 736 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 737 getModule().addModuleFlag(llvm::Module::Override, 738 "CFI Canonical Jump Tables", 739 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 740 } 741 742 if (CodeGenOpts.CFProtectionReturn && 743 Target.checkCFProtectionReturnSupported(getDiags())) { 744 // Indicate that we want to instrument return control flow protection. 745 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 746 1); 747 } 748 749 if (CodeGenOpts.CFProtectionBranch && 750 Target.checkCFProtectionBranchSupported(getDiags())) { 751 // Indicate that we want to instrument branch control flow protection. 752 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 753 1); 754 } 755 756 if (CodeGenOpts.IBTSeal) 757 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 758 759 // Add module metadata for return address signing (ignoring 760 // non-leaf/all) and stack tagging. These are actually turned on by function 761 // attributes, but we use module metadata to emit build attributes. This is 762 // needed for LTO, where the function attributes are inside bitcode 763 // serialised into a global variable by the time build attributes are 764 // emitted, so we can't access them. LTO objects could be compiled with 765 // different flags therefore module flags are set to "Min" behavior to achieve 766 // the same end result of the normal build where e.g BTI is off if any object 767 // doesn't support it. 768 if (Context.getTargetInfo().hasFeature("ptrauth") && 769 LangOpts.getSignReturnAddressScope() != 770 LangOptions::SignReturnAddressScopeKind::None) 771 getModule().addModuleFlag(llvm::Module::Override, 772 "sign-return-address-buildattr", 1); 773 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 774 getModule().addModuleFlag(llvm::Module::Override, 775 "tag-stack-memory-buildattr", 1); 776 777 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 778 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 779 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 780 Arch == llvm::Triple::aarch64_be) { 781 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 782 LangOpts.BranchTargetEnforcement); 783 784 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 785 LangOpts.hasSignReturnAddress()); 786 787 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 788 LangOpts.isSignReturnAddressScopeAll()); 789 790 getModule().addModuleFlag(llvm::Module::Min, 791 "sign-return-address-with-bkey", 792 !LangOpts.isSignReturnAddressWithAKey()); 793 } 794 795 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 796 llvm::LLVMContext &Ctx = TheModule.getContext(); 797 getModule().addModuleFlag( 798 llvm::Module::Error, "MemProfProfileFilename", 799 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 800 } 801 802 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 803 // Indicate whether __nvvm_reflect should be configured to flush denormal 804 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 805 // property.) 806 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 807 CodeGenOpts.FP32DenormalMode.Output != 808 llvm::DenormalMode::IEEE); 809 } 810 811 if (LangOpts.EHAsynch) 812 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 813 814 // Indicate whether this Module was compiled with -fopenmp 815 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 816 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 817 if (getLangOpts().OpenMPIsDevice) 818 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 819 LangOpts.OpenMP); 820 821 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 822 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 823 EmitOpenCLMetadata(); 824 // Emit SPIR version. 825 if (getTriple().isSPIR()) { 826 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 827 // opencl.spir.version named metadata. 828 // C++ for OpenCL has a distinct mapping for version compatibility with 829 // OpenCL. 830 auto Version = LangOpts.getOpenCLCompatibleVersion(); 831 llvm::Metadata *SPIRVerElts[] = { 832 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 833 Int32Ty, Version / 100)), 834 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 835 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 836 llvm::NamedMDNode *SPIRVerMD = 837 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 838 llvm::LLVMContext &Ctx = TheModule.getContext(); 839 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 840 } 841 } 842 843 // HLSL related end of code gen work items. 844 if (LangOpts.HLSL) 845 getHLSLRuntime().finishCodeGen(); 846 847 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 848 assert(PLevel < 3 && "Invalid PIC Level"); 849 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 850 if (Context.getLangOpts().PIE) 851 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 852 } 853 854 if (getCodeGenOpts().CodeModel.size() > 0) { 855 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 856 .Case("tiny", llvm::CodeModel::Tiny) 857 .Case("small", llvm::CodeModel::Small) 858 .Case("kernel", llvm::CodeModel::Kernel) 859 .Case("medium", llvm::CodeModel::Medium) 860 .Case("large", llvm::CodeModel::Large) 861 .Default(~0u); 862 if (CM != ~0u) { 863 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 864 getModule().setCodeModel(codeModel); 865 } 866 } 867 868 if (CodeGenOpts.NoPLT) 869 getModule().setRtLibUseGOT(); 870 if (CodeGenOpts.UnwindTables) 871 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 872 873 switch (CodeGenOpts.getFramePointer()) { 874 case CodeGenOptions::FramePointerKind::None: 875 // 0 ("none") is the default. 876 break; 877 case CodeGenOptions::FramePointerKind::NonLeaf: 878 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 879 break; 880 case CodeGenOptions::FramePointerKind::All: 881 getModule().setFramePointer(llvm::FramePointerKind::All); 882 break; 883 } 884 885 SimplifyPersonality(); 886 887 if (getCodeGenOpts().EmitDeclMetadata) 888 EmitDeclMetadata(); 889 890 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 891 EmitCoverageFile(); 892 893 if (CGDebugInfo *DI = getModuleDebugInfo()) 894 DI->finalize(); 895 896 if (getCodeGenOpts().EmitVersionIdentMetadata) 897 EmitVersionIdentMetadata(); 898 899 if (!getCodeGenOpts().RecordCommandLine.empty()) 900 EmitCommandLineMetadata(); 901 902 if (!getCodeGenOpts().StackProtectorGuard.empty()) 903 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 904 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 905 getModule().setStackProtectorGuardReg( 906 getCodeGenOpts().StackProtectorGuardReg); 907 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 908 getModule().setStackProtectorGuardSymbol( 909 getCodeGenOpts().StackProtectorGuardSymbol); 910 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 911 getModule().setStackProtectorGuardOffset( 912 getCodeGenOpts().StackProtectorGuardOffset); 913 if (getCodeGenOpts().StackAlignment) 914 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 915 if (getCodeGenOpts().SkipRaxSetup) 916 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 917 918 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 919 920 EmitBackendOptionsMetadata(getCodeGenOpts()); 921 922 // If there is device offloading code embed it in the host now. 923 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 924 925 // Set visibility from DLL storage class 926 // We do this at the end of LLVM IR generation; after any operation 927 // that might affect the DLL storage class or the visibility, and 928 // before anything that might act on these. 929 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 930 } 931 932 void CodeGenModule::EmitOpenCLMetadata() { 933 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 934 // opencl.ocl.version named metadata node. 935 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 936 auto Version = LangOpts.getOpenCLCompatibleVersion(); 937 llvm::Metadata *OCLVerElts[] = { 938 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 939 Int32Ty, Version / 100)), 940 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 941 Int32Ty, (Version % 100) / 10))}; 942 llvm::NamedMDNode *OCLVerMD = 943 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 944 llvm::LLVMContext &Ctx = TheModule.getContext(); 945 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 946 } 947 948 void CodeGenModule::EmitBackendOptionsMetadata( 949 const CodeGenOptions CodeGenOpts) { 950 switch (getTriple().getArch()) { 951 default: 952 break; 953 case llvm::Triple::riscv32: 954 case llvm::Triple::riscv64: 955 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 956 CodeGenOpts.SmallDataLimit); 957 break; 958 } 959 } 960 961 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 962 // Make sure that this type is translated. 963 Types.UpdateCompletedType(TD); 964 } 965 966 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 967 // Make sure that this type is translated. 968 Types.RefreshTypeCacheForClass(RD); 969 } 970 971 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 972 if (!TBAA) 973 return nullptr; 974 return TBAA->getTypeInfo(QTy); 975 } 976 977 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 978 if (!TBAA) 979 return TBAAAccessInfo(); 980 if (getLangOpts().CUDAIsDevice) { 981 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 982 // access info. 983 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 984 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 985 nullptr) 986 return TBAAAccessInfo(); 987 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 988 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 989 nullptr) 990 return TBAAAccessInfo(); 991 } 992 } 993 return TBAA->getAccessInfo(AccessType); 994 } 995 996 TBAAAccessInfo 997 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 998 if (!TBAA) 999 return TBAAAccessInfo(); 1000 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1001 } 1002 1003 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1004 if (!TBAA) 1005 return nullptr; 1006 return TBAA->getTBAAStructInfo(QTy); 1007 } 1008 1009 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1010 if (!TBAA) 1011 return nullptr; 1012 return TBAA->getBaseTypeInfo(QTy); 1013 } 1014 1015 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1016 if (!TBAA) 1017 return nullptr; 1018 return TBAA->getAccessTagInfo(Info); 1019 } 1020 1021 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1022 TBAAAccessInfo TargetInfo) { 1023 if (!TBAA) 1024 return TBAAAccessInfo(); 1025 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1026 } 1027 1028 TBAAAccessInfo 1029 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1030 TBAAAccessInfo InfoB) { 1031 if (!TBAA) 1032 return TBAAAccessInfo(); 1033 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1034 } 1035 1036 TBAAAccessInfo 1037 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1038 TBAAAccessInfo SrcInfo) { 1039 if (!TBAA) 1040 return TBAAAccessInfo(); 1041 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1042 } 1043 1044 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1045 TBAAAccessInfo TBAAInfo) { 1046 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1047 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1048 } 1049 1050 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1051 llvm::Instruction *I, const CXXRecordDecl *RD) { 1052 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1053 llvm::MDNode::get(getLLVMContext(), {})); 1054 } 1055 1056 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1057 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1058 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1059 } 1060 1061 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1062 /// specified stmt yet. 1063 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1064 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1065 "cannot compile this %0 yet"); 1066 std::string Msg = Type; 1067 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1068 << Msg << S->getSourceRange(); 1069 } 1070 1071 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1072 /// specified decl yet. 1073 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1074 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1075 "cannot compile this %0 yet"); 1076 std::string Msg = Type; 1077 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1078 } 1079 1080 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1081 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1082 } 1083 1084 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1085 const NamedDecl *D) const { 1086 if (GV->hasDLLImportStorageClass()) 1087 return; 1088 // Internal definitions always have default visibility. 1089 if (GV->hasLocalLinkage()) { 1090 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1091 return; 1092 } 1093 if (!D) 1094 return; 1095 // Set visibility for definitions, and for declarations if requested globally 1096 // or set explicitly. 1097 LinkageInfo LV = D->getLinkageAndVisibility(); 1098 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1099 !GV->isDeclarationForLinker()) 1100 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1101 } 1102 1103 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1104 llvm::GlobalValue *GV) { 1105 if (GV->hasLocalLinkage()) 1106 return true; 1107 1108 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1109 return true; 1110 1111 // DLLImport explicitly marks the GV as external. 1112 if (GV->hasDLLImportStorageClass()) 1113 return false; 1114 1115 const llvm::Triple &TT = CGM.getTriple(); 1116 if (TT.isWindowsGNUEnvironment()) { 1117 // In MinGW, variables without DLLImport can still be automatically 1118 // imported from a DLL by the linker; don't mark variables that 1119 // potentially could come from another DLL as DSO local. 1120 1121 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1122 // (and this actually happens in the public interface of libstdc++), so 1123 // such variables can't be marked as DSO local. (Native TLS variables 1124 // can't be dllimported at all, though.) 1125 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1126 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1127 return false; 1128 } 1129 1130 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1131 // remain unresolved in the link, they can be resolved to zero, which is 1132 // outside the current DSO. 1133 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1134 return false; 1135 1136 // Every other GV is local on COFF. 1137 // Make an exception for windows OS in the triple: Some firmware builds use 1138 // *-win32-macho triples. This (accidentally?) produced windows relocations 1139 // without GOT tables in older clang versions; Keep this behaviour. 1140 // FIXME: even thread local variables? 1141 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1142 return true; 1143 1144 // Only handle COFF and ELF for now. 1145 if (!TT.isOSBinFormatELF()) 1146 return false; 1147 1148 // If this is not an executable, don't assume anything is local. 1149 const auto &CGOpts = CGM.getCodeGenOpts(); 1150 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1151 const auto &LOpts = CGM.getLangOpts(); 1152 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1153 // On ELF, if -fno-semantic-interposition is specified and the target 1154 // supports local aliases, there will be neither CC1 1155 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1156 // dso_local on the function if using a local alias is preferable (can avoid 1157 // PLT indirection). 1158 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1159 return false; 1160 return !(CGM.getLangOpts().SemanticInterposition || 1161 CGM.getLangOpts().HalfNoSemanticInterposition); 1162 } 1163 1164 // A definition cannot be preempted from an executable. 1165 if (!GV->isDeclarationForLinker()) 1166 return true; 1167 1168 // Most PIC code sequences that assume that a symbol is local cannot produce a 1169 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1170 // depended, it seems worth it to handle it here. 1171 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1172 return false; 1173 1174 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1175 if (TT.isPPC64()) 1176 return false; 1177 1178 if (CGOpts.DirectAccessExternalData) { 1179 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1180 // for non-thread-local variables. If the symbol is not defined in the 1181 // executable, a copy relocation will be needed at link time. dso_local is 1182 // excluded for thread-local variables because they generally don't support 1183 // copy relocations. 1184 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1185 if (!Var->isThreadLocal()) 1186 return true; 1187 1188 // -fno-pic sets dso_local on a function declaration to allow direct 1189 // accesses when taking its address (similar to a data symbol). If the 1190 // function is not defined in the executable, a canonical PLT entry will be 1191 // needed at link time. -fno-direct-access-external-data can avoid the 1192 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1193 // it could just cause trouble without providing perceptible benefits. 1194 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1195 return true; 1196 } 1197 1198 // If we can use copy relocations we can assume it is local. 1199 1200 // Otherwise don't assume it is local. 1201 return false; 1202 } 1203 1204 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1205 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1206 } 1207 1208 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1209 GlobalDecl GD) const { 1210 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1211 // C++ destructors have a few C++ ABI specific special cases. 1212 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1213 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1214 return; 1215 } 1216 setDLLImportDLLExport(GV, D); 1217 } 1218 1219 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1220 const NamedDecl *D) const { 1221 if (D && D->isExternallyVisible()) { 1222 if (D->hasAttr<DLLImportAttr>()) 1223 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1224 else if ((D->hasAttr<DLLExportAttr>() || 1225 shouldMapVisibilityToDLLExport(D)) && 1226 !GV->isDeclarationForLinker()) 1227 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1228 } 1229 } 1230 1231 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1232 GlobalDecl GD) const { 1233 setDLLImportDLLExport(GV, GD); 1234 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1235 } 1236 1237 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1238 const NamedDecl *D) const { 1239 setDLLImportDLLExport(GV, D); 1240 setGVPropertiesAux(GV, D); 1241 } 1242 1243 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1244 const NamedDecl *D) const { 1245 setGlobalVisibility(GV, D); 1246 setDSOLocal(GV); 1247 GV->setPartition(CodeGenOpts.SymbolPartition); 1248 } 1249 1250 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1251 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1252 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1253 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1254 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1255 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1256 } 1257 1258 llvm::GlobalVariable::ThreadLocalMode 1259 CodeGenModule::GetDefaultLLVMTLSModel() const { 1260 switch (CodeGenOpts.getDefaultTLSModel()) { 1261 case CodeGenOptions::GeneralDynamicTLSModel: 1262 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1263 case CodeGenOptions::LocalDynamicTLSModel: 1264 return llvm::GlobalVariable::LocalDynamicTLSModel; 1265 case CodeGenOptions::InitialExecTLSModel: 1266 return llvm::GlobalVariable::InitialExecTLSModel; 1267 case CodeGenOptions::LocalExecTLSModel: 1268 return llvm::GlobalVariable::LocalExecTLSModel; 1269 } 1270 llvm_unreachable("Invalid TLS model!"); 1271 } 1272 1273 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1274 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1275 1276 llvm::GlobalValue::ThreadLocalMode TLM; 1277 TLM = GetDefaultLLVMTLSModel(); 1278 1279 // Override the TLS model if it is explicitly specified. 1280 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1281 TLM = GetLLVMTLSModel(Attr->getModel()); 1282 } 1283 1284 GV->setThreadLocalMode(TLM); 1285 } 1286 1287 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1288 StringRef Name) { 1289 const TargetInfo &Target = CGM.getTarget(); 1290 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1291 } 1292 1293 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1294 const CPUSpecificAttr *Attr, 1295 unsigned CPUIndex, 1296 raw_ostream &Out) { 1297 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1298 // supported. 1299 if (Attr) 1300 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1301 else if (CGM.getTarget().supportsIFunc()) 1302 Out << ".resolver"; 1303 } 1304 1305 static void AppendTargetMangling(const CodeGenModule &CGM, 1306 const TargetAttr *Attr, raw_ostream &Out) { 1307 if (Attr->isDefaultVersion()) 1308 return; 1309 1310 Out << '.'; 1311 const TargetInfo &Target = CGM.getTarget(); 1312 ParsedTargetAttr Info = 1313 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1314 // Multiversioning doesn't allow "no-${feature}", so we can 1315 // only have "+" prefixes here. 1316 assert(LHS.startswith("+") && RHS.startswith("+") && 1317 "Features should always have a prefix."); 1318 return Target.multiVersionSortPriority(LHS.substr(1)) > 1319 Target.multiVersionSortPriority(RHS.substr(1)); 1320 }); 1321 1322 bool IsFirst = true; 1323 1324 if (!Info.Architecture.empty()) { 1325 IsFirst = false; 1326 Out << "arch_" << Info.Architecture; 1327 } 1328 1329 for (StringRef Feat : Info.Features) { 1330 if (!IsFirst) 1331 Out << '_'; 1332 IsFirst = false; 1333 Out << Feat.substr(1); 1334 } 1335 } 1336 1337 // Returns true if GD is a function decl with internal linkage and 1338 // needs a unique suffix after the mangled name. 1339 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1340 CodeGenModule &CGM) { 1341 const Decl *D = GD.getDecl(); 1342 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1343 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1344 } 1345 1346 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1347 const TargetClonesAttr *Attr, 1348 unsigned VersionIndex, 1349 raw_ostream &Out) { 1350 Out << '.'; 1351 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1352 if (FeatureStr.startswith("arch=")) 1353 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1354 else 1355 Out << FeatureStr; 1356 1357 Out << '.' << Attr->getMangledIndex(VersionIndex); 1358 } 1359 1360 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1361 const NamedDecl *ND, 1362 bool OmitMultiVersionMangling = false) { 1363 SmallString<256> Buffer; 1364 llvm::raw_svector_ostream Out(Buffer); 1365 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1366 if (!CGM.getModuleNameHash().empty()) 1367 MC.needsUniqueInternalLinkageNames(); 1368 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1369 if (ShouldMangle) 1370 MC.mangleName(GD.getWithDecl(ND), Out); 1371 else { 1372 IdentifierInfo *II = ND->getIdentifier(); 1373 assert(II && "Attempt to mangle unnamed decl."); 1374 const auto *FD = dyn_cast<FunctionDecl>(ND); 1375 1376 if (FD && 1377 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1378 Out << "__regcall3__" << II->getName(); 1379 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1380 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1381 Out << "__device_stub__" << II->getName(); 1382 } else { 1383 Out << II->getName(); 1384 } 1385 } 1386 1387 // Check if the module name hash should be appended for internal linkage 1388 // symbols. This should come before multi-version target suffixes are 1389 // appended. This is to keep the name and module hash suffix of the 1390 // internal linkage function together. The unique suffix should only be 1391 // added when name mangling is done to make sure that the final name can 1392 // be properly demangled. For example, for C functions without prototypes, 1393 // name mangling is not done and the unique suffix should not be appeneded 1394 // then. 1395 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1396 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1397 "Hash computed when not explicitly requested"); 1398 Out << CGM.getModuleNameHash(); 1399 } 1400 1401 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1402 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1403 switch (FD->getMultiVersionKind()) { 1404 case MultiVersionKind::CPUDispatch: 1405 case MultiVersionKind::CPUSpecific: 1406 AppendCPUSpecificCPUDispatchMangling(CGM, 1407 FD->getAttr<CPUSpecificAttr>(), 1408 GD.getMultiVersionIndex(), Out); 1409 break; 1410 case MultiVersionKind::Target: 1411 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1412 break; 1413 case MultiVersionKind::TargetClones: 1414 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1415 GD.getMultiVersionIndex(), Out); 1416 break; 1417 case MultiVersionKind::None: 1418 llvm_unreachable("None multiversion type isn't valid here"); 1419 } 1420 } 1421 1422 // Make unique name for device side static file-scope variable for HIP. 1423 if (CGM.getContext().shouldExternalize(ND) && 1424 CGM.getLangOpts().GPURelocatableDeviceCode && 1425 CGM.getLangOpts().CUDAIsDevice) 1426 CGM.printPostfixForExternalizedDecl(Out, ND); 1427 1428 return std::string(Out.str()); 1429 } 1430 1431 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1432 const FunctionDecl *FD, 1433 StringRef &CurName) { 1434 if (!FD->isMultiVersion()) 1435 return; 1436 1437 // Get the name of what this would be without the 'target' attribute. This 1438 // allows us to lookup the version that was emitted when this wasn't a 1439 // multiversion function. 1440 std::string NonTargetName = 1441 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1442 GlobalDecl OtherGD; 1443 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1444 assert(OtherGD.getCanonicalDecl() 1445 .getDecl() 1446 ->getAsFunction() 1447 ->isMultiVersion() && 1448 "Other GD should now be a multiversioned function"); 1449 // OtherFD is the version of this function that was mangled BEFORE 1450 // becoming a MultiVersion function. It potentially needs to be updated. 1451 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1452 .getDecl() 1453 ->getAsFunction() 1454 ->getMostRecentDecl(); 1455 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1456 // This is so that if the initial version was already the 'default' 1457 // version, we don't try to update it. 1458 if (OtherName != NonTargetName) { 1459 // Remove instead of erase, since others may have stored the StringRef 1460 // to this. 1461 const auto ExistingRecord = Manglings.find(NonTargetName); 1462 if (ExistingRecord != std::end(Manglings)) 1463 Manglings.remove(&(*ExistingRecord)); 1464 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1465 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1466 Result.first->first(); 1467 // If this is the current decl is being created, make sure we update the name. 1468 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1469 CurName = OtherNameRef; 1470 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1471 Entry->setName(OtherName); 1472 } 1473 } 1474 } 1475 1476 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1477 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1478 1479 // Some ABIs don't have constructor variants. Make sure that base and 1480 // complete constructors get mangled the same. 1481 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1482 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1483 CXXCtorType OrigCtorType = GD.getCtorType(); 1484 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1485 if (OrigCtorType == Ctor_Base) 1486 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1487 } 1488 } 1489 1490 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1491 // static device variable depends on whether the variable is referenced by 1492 // a host or device host function. Therefore the mangled name cannot be 1493 // cached. 1494 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1495 auto FoundName = MangledDeclNames.find(CanonicalGD); 1496 if (FoundName != MangledDeclNames.end()) 1497 return FoundName->second; 1498 } 1499 1500 // Keep the first result in the case of a mangling collision. 1501 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1502 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1503 1504 // Ensure either we have different ABIs between host and device compilations, 1505 // says host compilation following MSVC ABI but device compilation follows 1506 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1507 // mangling should be the same after name stubbing. The later checking is 1508 // very important as the device kernel name being mangled in host-compilation 1509 // is used to resolve the device binaries to be executed. Inconsistent naming 1510 // result in undefined behavior. Even though we cannot check that naming 1511 // directly between host- and device-compilations, the host- and 1512 // device-mangling in host compilation could help catching certain ones. 1513 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1514 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1515 (getContext().getAuxTargetInfo() && 1516 (getContext().getAuxTargetInfo()->getCXXABI() != 1517 getContext().getTargetInfo().getCXXABI())) || 1518 getCUDARuntime().getDeviceSideName(ND) == 1519 getMangledNameImpl( 1520 *this, 1521 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1522 ND)); 1523 1524 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1525 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1526 } 1527 1528 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1529 const BlockDecl *BD) { 1530 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1531 const Decl *D = GD.getDecl(); 1532 1533 SmallString<256> Buffer; 1534 llvm::raw_svector_ostream Out(Buffer); 1535 if (!D) 1536 MangleCtx.mangleGlobalBlock(BD, 1537 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1538 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1539 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1540 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1541 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1542 else 1543 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1544 1545 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1546 return Result.first->first(); 1547 } 1548 1549 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1550 auto it = MangledDeclNames.begin(); 1551 while (it != MangledDeclNames.end()) { 1552 if (it->second == Name) 1553 return it->first; 1554 it++; 1555 } 1556 return GlobalDecl(); 1557 } 1558 1559 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1560 return getModule().getNamedValue(Name); 1561 } 1562 1563 /// AddGlobalCtor - Add a function to the list that will be called before 1564 /// main() runs. 1565 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1566 llvm::Constant *AssociatedData) { 1567 // FIXME: Type coercion of void()* types. 1568 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1569 } 1570 1571 /// AddGlobalDtor - Add a function to the list that will be called 1572 /// when the module is unloaded. 1573 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1574 bool IsDtorAttrFunc) { 1575 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1576 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1577 DtorsUsingAtExit[Priority].push_back(Dtor); 1578 return; 1579 } 1580 1581 // FIXME: Type coercion of void()* types. 1582 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1583 } 1584 1585 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1586 if (Fns.empty()) return; 1587 1588 // Ctor function type is void()*. 1589 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1590 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1591 TheModule.getDataLayout().getProgramAddressSpace()); 1592 1593 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1594 llvm::StructType *CtorStructTy = llvm::StructType::get( 1595 Int32Ty, CtorPFTy, VoidPtrTy); 1596 1597 // Construct the constructor and destructor arrays. 1598 ConstantInitBuilder builder(*this); 1599 auto ctors = builder.beginArray(CtorStructTy); 1600 for (const auto &I : Fns) { 1601 auto ctor = ctors.beginStruct(CtorStructTy); 1602 ctor.addInt(Int32Ty, I.Priority); 1603 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1604 if (I.AssociatedData) 1605 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1606 else 1607 ctor.addNullPointer(VoidPtrTy); 1608 ctor.finishAndAddTo(ctors); 1609 } 1610 1611 auto list = 1612 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1613 /*constant*/ false, 1614 llvm::GlobalValue::AppendingLinkage); 1615 1616 // The LTO linker doesn't seem to like it when we set an alignment 1617 // on appending variables. Take it off as a workaround. 1618 list->setAlignment(llvm::None); 1619 1620 Fns.clear(); 1621 } 1622 1623 llvm::GlobalValue::LinkageTypes 1624 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1625 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1626 1627 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1628 1629 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1630 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1631 1632 if (isa<CXXConstructorDecl>(D) && 1633 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1634 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1635 // Our approach to inheriting constructors is fundamentally different from 1636 // that used by the MS ABI, so keep our inheriting constructor thunks 1637 // internal rather than trying to pick an unambiguous mangling for them. 1638 return llvm::GlobalValue::InternalLinkage; 1639 } 1640 1641 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1642 } 1643 1644 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1645 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1646 if (!MDS) return nullptr; 1647 1648 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1649 } 1650 1651 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1652 const CGFunctionInfo &Info, 1653 llvm::Function *F, bool IsThunk) { 1654 unsigned CallingConv; 1655 llvm::AttributeList PAL; 1656 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1657 /*AttrOnCallSite=*/false, IsThunk); 1658 F->setAttributes(PAL); 1659 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1660 } 1661 1662 static void removeImageAccessQualifier(std::string& TyName) { 1663 std::string ReadOnlyQual("__read_only"); 1664 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1665 if (ReadOnlyPos != std::string::npos) 1666 // "+ 1" for the space after access qualifier. 1667 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1668 else { 1669 std::string WriteOnlyQual("__write_only"); 1670 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1671 if (WriteOnlyPos != std::string::npos) 1672 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1673 else { 1674 std::string ReadWriteQual("__read_write"); 1675 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1676 if (ReadWritePos != std::string::npos) 1677 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1678 } 1679 } 1680 } 1681 1682 // Returns the address space id that should be produced to the 1683 // kernel_arg_addr_space metadata. This is always fixed to the ids 1684 // as specified in the SPIR 2.0 specification in order to differentiate 1685 // for example in clGetKernelArgInfo() implementation between the address 1686 // spaces with targets without unique mapping to the OpenCL address spaces 1687 // (basically all single AS CPUs). 1688 static unsigned ArgInfoAddressSpace(LangAS AS) { 1689 switch (AS) { 1690 case LangAS::opencl_global: 1691 return 1; 1692 case LangAS::opencl_constant: 1693 return 2; 1694 case LangAS::opencl_local: 1695 return 3; 1696 case LangAS::opencl_generic: 1697 return 4; // Not in SPIR 2.0 specs. 1698 case LangAS::opencl_global_device: 1699 return 5; 1700 case LangAS::opencl_global_host: 1701 return 6; 1702 default: 1703 return 0; // Assume private. 1704 } 1705 } 1706 1707 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1708 const FunctionDecl *FD, 1709 CodeGenFunction *CGF) { 1710 assert(((FD && CGF) || (!FD && !CGF)) && 1711 "Incorrect use - FD and CGF should either be both null or not!"); 1712 // Create MDNodes that represent the kernel arg metadata. 1713 // Each MDNode is a list in the form of "key", N number of values which is 1714 // the same number of values as their are kernel arguments. 1715 1716 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1717 1718 // MDNode for the kernel argument address space qualifiers. 1719 SmallVector<llvm::Metadata *, 8> addressQuals; 1720 1721 // MDNode for the kernel argument access qualifiers (images only). 1722 SmallVector<llvm::Metadata *, 8> accessQuals; 1723 1724 // MDNode for the kernel argument type names. 1725 SmallVector<llvm::Metadata *, 8> argTypeNames; 1726 1727 // MDNode for the kernel argument base type names. 1728 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1729 1730 // MDNode for the kernel argument type qualifiers. 1731 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1732 1733 // MDNode for the kernel argument names. 1734 SmallVector<llvm::Metadata *, 8> argNames; 1735 1736 if (FD && CGF) 1737 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1738 const ParmVarDecl *parm = FD->getParamDecl(i); 1739 // Get argument name. 1740 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1741 1742 if (!getLangOpts().OpenCL) 1743 continue; 1744 QualType ty = parm->getType(); 1745 std::string typeQuals; 1746 1747 // Get image and pipe access qualifier: 1748 if (ty->isImageType() || ty->isPipeType()) { 1749 const Decl *PDecl = parm; 1750 if (const auto *TD = ty->getAs<TypedefType>()) 1751 PDecl = TD->getDecl(); 1752 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1753 if (A && A->isWriteOnly()) 1754 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1755 else if (A && A->isReadWrite()) 1756 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1757 else 1758 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1759 } else 1760 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1761 1762 auto getTypeSpelling = [&](QualType Ty) { 1763 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1764 1765 if (Ty.isCanonical()) { 1766 StringRef typeNameRef = typeName; 1767 // Turn "unsigned type" to "utype" 1768 if (typeNameRef.consume_front("unsigned ")) 1769 return std::string("u") + typeNameRef.str(); 1770 if (typeNameRef.consume_front("signed ")) 1771 return typeNameRef.str(); 1772 } 1773 1774 return typeName; 1775 }; 1776 1777 if (ty->isPointerType()) { 1778 QualType pointeeTy = ty->getPointeeType(); 1779 1780 // Get address qualifier. 1781 addressQuals.push_back( 1782 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1783 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1784 1785 // Get argument type name. 1786 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1787 std::string baseTypeName = 1788 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1789 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1790 argBaseTypeNames.push_back( 1791 llvm::MDString::get(VMContext, baseTypeName)); 1792 1793 // Get argument type qualifiers: 1794 if (ty.isRestrictQualified()) 1795 typeQuals = "restrict"; 1796 if (pointeeTy.isConstQualified() || 1797 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1798 typeQuals += typeQuals.empty() ? "const" : " const"; 1799 if (pointeeTy.isVolatileQualified()) 1800 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1801 } else { 1802 uint32_t AddrSpc = 0; 1803 bool isPipe = ty->isPipeType(); 1804 if (ty->isImageType() || isPipe) 1805 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1806 1807 addressQuals.push_back( 1808 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1809 1810 // Get argument type name. 1811 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1812 std::string typeName = getTypeSpelling(ty); 1813 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1814 1815 // Remove access qualifiers on images 1816 // (as they are inseparable from type in clang implementation, 1817 // but OpenCL spec provides a special query to get access qualifier 1818 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1819 if (ty->isImageType()) { 1820 removeImageAccessQualifier(typeName); 1821 removeImageAccessQualifier(baseTypeName); 1822 } 1823 1824 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1825 argBaseTypeNames.push_back( 1826 llvm::MDString::get(VMContext, baseTypeName)); 1827 1828 if (isPipe) 1829 typeQuals = "pipe"; 1830 } 1831 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1832 } 1833 1834 if (getLangOpts().OpenCL) { 1835 Fn->setMetadata("kernel_arg_addr_space", 1836 llvm::MDNode::get(VMContext, addressQuals)); 1837 Fn->setMetadata("kernel_arg_access_qual", 1838 llvm::MDNode::get(VMContext, accessQuals)); 1839 Fn->setMetadata("kernel_arg_type", 1840 llvm::MDNode::get(VMContext, argTypeNames)); 1841 Fn->setMetadata("kernel_arg_base_type", 1842 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1843 Fn->setMetadata("kernel_arg_type_qual", 1844 llvm::MDNode::get(VMContext, argTypeQuals)); 1845 } 1846 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1847 getCodeGenOpts().HIPSaveKernelArgName) 1848 Fn->setMetadata("kernel_arg_name", 1849 llvm::MDNode::get(VMContext, argNames)); 1850 } 1851 1852 /// Determines whether the language options require us to model 1853 /// unwind exceptions. We treat -fexceptions as mandating this 1854 /// except under the fragile ObjC ABI with only ObjC exceptions 1855 /// enabled. This means, for example, that C with -fexceptions 1856 /// enables this. 1857 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1858 // If exceptions are completely disabled, obviously this is false. 1859 if (!LangOpts.Exceptions) return false; 1860 1861 // If C++ exceptions are enabled, this is true. 1862 if (LangOpts.CXXExceptions) return true; 1863 1864 // If ObjC exceptions are enabled, this depends on the ABI. 1865 if (LangOpts.ObjCExceptions) { 1866 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1867 } 1868 1869 return true; 1870 } 1871 1872 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1873 const CXXMethodDecl *MD) { 1874 // Check that the type metadata can ever actually be used by a call. 1875 if (!CGM.getCodeGenOpts().LTOUnit || 1876 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1877 return false; 1878 1879 // Only functions whose address can be taken with a member function pointer 1880 // need this sort of type metadata. 1881 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1882 !isa<CXXDestructorDecl>(MD); 1883 } 1884 1885 std::vector<const CXXRecordDecl *> 1886 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1887 llvm::SetVector<const CXXRecordDecl *> MostBases; 1888 1889 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1890 CollectMostBases = [&](const CXXRecordDecl *RD) { 1891 if (RD->getNumBases() == 0) 1892 MostBases.insert(RD); 1893 for (const CXXBaseSpecifier &B : RD->bases()) 1894 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1895 }; 1896 CollectMostBases(RD); 1897 return MostBases.takeVector(); 1898 } 1899 1900 llvm::GlobalVariable * 1901 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1902 auto It = RTTIProxyMap.find(Addr); 1903 if (It != RTTIProxyMap.end()) 1904 return It->second; 1905 1906 auto *FTRTTIProxy = new llvm::GlobalVariable( 1907 TheModule, Addr->getType(), 1908 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1909 "__llvm_rtti_proxy"); 1910 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1911 1912 RTTIProxyMap[Addr] = FTRTTIProxy; 1913 return FTRTTIProxy; 1914 } 1915 1916 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1917 llvm::Function *F) { 1918 llvm::AttrBuilder B(F->getContext()); 1919 1920 if (CodeGenOpts.UnwindTables) 1921 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1922 1923 if (CodeGenOpts.StackClashProtector) 1924 B.addAttribute("probe-stack", "inline-asm"); 1925 1926 if (!hasUnwindExceptions(LangOpts)) 1927 B.addAttribute(llvm::Attribute::NoUnwind); 1928 1929 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1930 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1931 B.addAttribute(llvm::Attribute::StackProtect); 1932 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1933 B.addAttribute(llvm::Attribute::StackProtectStrong); 1934 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1935 B.addAttribute(llvm::Attribute::StackProtectReq); 1936 } 1937 1938 if (!D) { 1939 // If we don't have a declaration to control inlining, the function isn't 1940 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1941 // disabled, mark the function as noinline. 1942 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1943 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1944 B.addAttribute(llvm::Attribute::NoInline); 1945 1946 F->addFnAttrs(B); 1947 return; 1948 } 1949 1950 // Track whether we need to add the optnone LLVM attribute, 1951 // starting with the default for this optimization level. 1952 bool ShouldAddOptNone = 1953 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1954 // We can't add optnone in the following cases, it won't pass the verifier. 1955 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1956 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1957 1958 // Add optnone, but do so only if the function isn't always_inline. 1959 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1960 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1961 B.addAttribute(llvm::Attribute::OptimizeNone); 1962 1963 // OptimizeNone implies noinline; we should not be inlining such functions. 1964 B.addAttribute(llvm::Attribute::NoInline); 1965 1966 // We still need to handle naked functions even though optnone subsumes 1967 // much of their semantics. 1968 if (D->hasAttr<NakedAttr>()) 1969 B.addAttribute(llvm::Attribute::Naked); 1970 1971 // OptimizeNone wins over OptimizeForSize and MinSize. 1972 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1973 F->removeFnAttr(llvm::Attribute::MinSize); 1974 } else if (D->hasAttr<NakedAttr>()) { 1975 // Naked implies noinline: we should not be inlining such functions. 1976 B.addAttribute(llvm::Attribute::Naked); 1977 B.addAttribute(llvm::Attribute::NoInline); 1978 } else if (D->hasAttr<NoDuplicateAttr>()) { 1979 B.addAttribute(llvm::Attribute::NoDuplicate); 1980 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1981 // Add noinline if the function isn't always_inline. 1982 B.addAttribute(llvm::Attribute::NoInline); 1983 } else if (D->hasAttr<AlwaysInlineAttr>() && 1984 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1985 // (noinline wins over always_inline, and we can't specify both in IR) 1986 B.addAttribute(llvm::Attribute::AlwaysInline); 1987 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1988 // If we're not inlining, then force everything that isn't always_inline to 1989 // carry an explicit noinline attribute. 1990 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1991 B.addAttribute(llvm::Attribute::NoInline); 1992 } else { 1993 // Otherwise, propagate the inline hint attribute and potentially use its 1994 // absence to mark things as noinline. 1995 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1996 // Search function and template pattern redeclarations for inline. 1997 auto CheckForInline = [](const FunctionDecl *FD) { 1998 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1999 return Redecl->isInlineSpecified(); 2000 }; 2001 if (any_of(FD->redecls(), CheckRedeclForInline)) 2002 return true; 2003 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2004 if (!Pattern) 2005 return false; 2006 return any_of(Pattern->redecls(), CheckRedeclForInline); 2007 }; 2008 if (CheckForInline(FD)) { 2009 B.addAttribute(llvm::Attribute::InlineHint); 2010 } else if (CodeGenOpts.getInlining() == 2011 CodeGenOptions::OnlyHintInlining && 2012 !FD->isInlined() && 2013 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2014 B.addAttribute(llvm::Attribute::NoInline); 2015 } 2016 } 2017 } 2018 2019 // Add other optimization related attributes if we are optimizing this 2020 // function. 2021 if (!D->hasAttr<OptimizeNoneAttr>()) { 2022 if (D->hasAttr<ColdAttr>()) { 2023 if (!ShouldAddOptNone) 2024 B.addAttribute(llvm::Attribute::OptimizeForSize); 2025 B.addAttribute(llvm::Attribute::Cold); 2026 } 2027 if (D->hasAttr<HotAttr>()) 2028 B.addAttribute(llvm::Attribute::Hot); 2029 if (D->hasAttr<MinSizeAttr>()) 2030 B.addAttribute(llvm::Attribute::MinSize); 2031 } 2032 2033 F->addFnAttrs(B); 2034 2035 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2036 if (alignment) 2037 F->setAlignment(llvm::Align(alignment)); 2038 2039 if (!D->hasAttr<AlignedAttr>()) 2040 if (LangOpts.FunctionAlignment) 2041 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2042 2043 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2044 // reserve a bit for differentiating between virtual and non-virtual member 2045 // functions. If the current target's C++ ABI requires this and this is a 2046 // member function, set its alignment accordingly. 2047 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2048 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2049 F->setAlignment(llvm::Align(2)); 2050 } 2051 2052 // In the cross-dso CFI mode with canonical jump tables, we want !type 2053 // attributes on definitions only. 2054 if (CodeGenOpts.SanitizeCfiCrossDso && 2055 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2056 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2057 // Skip available_externally functions. They won't be codegen'ed in the 2058 // current module anyway. 2059 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2060 CreateFunctionTypeMetadataForIcall(FD, F); 2061 } 2062 } 2063 2064 // Emit type metadata on member functions for member function pointer checks. 2065 // These are only ever necessary on definitions; we're guaranteed that the 2066 // definition will be present in the LTO unit as a result of LTO visibility. 2067 auto *MD = dyn_cast<CXXMethodDecl>(D); 2068 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2069 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2070 llvm::Metadata *Id = 2071 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2072 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2073 F->addTypeMetadata(0, Id); 2074 } 2075 } 2076 } 2077 2078 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2079 llvm::Function *F) { 2080 if (D->hasAttr<StrictFPAttr>()) { 2081 llvm::AttrBuilder FuncAttrs(F->getContext()); 2082 FuncAttrs.addAttribute("strictfp"); 2083 F->addFnAttrs(FuncAttrs); 2084 } 2085 } 2086 2087 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2088 const Decl *D = GD.getDecl(); 2089 if (isa_and_nonnull<NamedDecl>(D)) 2090 setGVProperties(GV, GD); 2091 else 2092 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2093 2094 if (D && D->hasAttr<UsedAttr>()) 2095 addUsedOrCompilerUsedGlobal(GV); 2096 2097 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2098 const auto *VD = cast<VarDecl>(D); 2099 if (VD->getType().isConstQualified() && 2100 VD->getStorageDuration() == SD_Static) 2101 addUsedOrCompilerUsedGlobal(GV); 2102 } 2103 } 2104 2105 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2106 llvm::AttrBuilder &Attrs) { 2107 // Add target-cpu and target-features attributes to functions. If 2108 // we have a decl for the function and it has a target attribute then 2109 // parse that and add it to the feature set. 2110 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2111 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2112 std::vector<std::string> Features; 2113 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2114 FD = FD ? FD->getMostRecentDecl() : FD; 2115 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2116 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2117 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2118 bool AddedAttr = false; 2119 if (TD || SD || TC) { 2120 llvm::StringMap<bool> FeatureMap; 2121 getContext().getFunctionFeatureMap(FeatureMap, GD); 2122 2123 // Produce the canonical string for this set of features. 2124 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2125 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2126 2127 // Now add the target-cpu and target-features to the function. 2128 // While we populated the feature map above, we still need to 2129 // get and parse the target attribute so we can get the cpu for 2130 // the function. 2131 if (TD) { 2132 ParsedTargetAttr ParsedAttr = TD->parse(); 2133 if (!ParsedAttr.Architecture.empty() && 2134 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2135 TargetCPU = ParsedAttr.Architecture; 2136 TuneCPU = ""; // Clear the tune CPU. 2137 } 2138 if (!ParsedAttr.Tune.empty() && 2139 getTarget().isValidCPUName(ParsedAttr.Tune)) 2140 TuneCPU = ParsedAttr.Tune; 2141 } 2142 2143 if (SD) { 2144 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2145 // favor this processor. 2146 TuneCPU = getTarget().getCPUSpecificTuneName( 2147 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2148 } 2149 } else { 2150 // Otherwise just add the existing target cpu and target features to the 2151 // function. 2152 Features = getTarget().getTargetOpts().Features; 2153 } 2154 2155 if (!TargetCPU.empty()) { 2156 Attrs.addAttribute("target-cpu", TargetCPU); 2157 AddedAttr = true; 2158 } 2159 if (!TuneCPU.empty()) { 2160 Attrs.addAttribute("tune-cpu", TuneCPU); 2161 AddedAttr = true; 2162 } 2163 if (!Features.empty()) { 2164 llvm::sort(Features); 2165 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2166 AddedAttr = true; 2167 } 2168 2169 return AddedAttr; 2170 } 2171 2172 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2173 llvm::GlobalObject *GO) { 2174 const Decl *D = GD.getDecl(); 2175 SetCommonAttributes(GD, GO); 2176 2177 if (D) { 2178 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2179 if (D->hasAttr<RetainAttr>()) 2180 addUsedGlobal(GV); 2181 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2182 GV->addAttribute("bss-section", SA->getName()); 2183 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2184 GV->addAttribute("data-section", SA->getName()); 2185 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2186 GV->addAttribute("rodata-section", SA->getName()); 2187 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2188 GV->addAttribute("relro-section", SA->getName()); 2189 } 2190 2191 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2192 if (D->hasAttr<RetainAttr>()) 2193 addUsedGlobal(F); 2194 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2195 if (!D->getAttr<SectionAttr>()) 2196 F->addFnAttr("implicit-section-name", SA->getName()); 2197 2198 llvm::AttrBuilder Attrs(F->getContext()); 2199 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2200 // We know that GetCPUAndFeaturesAttributes will always have the 2201 // newest set, since it has the newest possible FunctionDecl, so the 2202 // new ones should replace the old. 2203 llvm::AttributeMask RemoveAttrs; 2204 RemoveAttrs.addAttribute("target-cpu"); 2205 RemoveAttrs.addAttribute("target-features"); 2206 RemoveAttrs.addAttribute("tune-cpu"); 2207 F->removeFnAttrs(RemoveAttrs); 2208 F->addFnAttrs(Attrs); 2209 } 2210 } 2211 2212 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2213 GO->setSection(CSA->getName()); 2214 else if (const auto *SA = D->getAttr<SectionAttr>()) 2215 GO->setSection(SA->getName()); 2216 } 2217 2218 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2219 } 2220 2221 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2222 llvm::Function *F, 2223 const CGFunctionInfo &FI) { 2224 const Decl *D = GD.getDecl(); 2225 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2226 SetLLVMFunctionAttributesForDefinition(D, F); 2227 2228 F->setLinkage(llvm::Function::InternalLinkage); 2229 2230 setNonAliasAttributes(GD, F); 2231 } 2232 2233 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2234 // Set linkage and visibility in case we never see a definition. 2235 LinkageInfo LV = ND->getLinkageAndVisibility(); 2236 // Don't set internal linkage on declarations. 2237 // "extern_weak" is overloaded in LLVM; we probably should have 2238 // separate linkage types for this. 2239 if (isExternallyVisible(LV.getLinkage()) && 2240 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2241 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2242 } 2243 2244 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2245 llvm::Function *F) { 2246 // Only if we are checking indirect calls. 2247 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2248 return; 2249 2250 // Non-static class methods are handled via vtable or member function pointer 2251 // checks elsewhere. 2252 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2253 return; 2254 2255 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2256 F->addTypeMetadata(0, MD); 2257 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2258 2259 // Emit a hash-based bit set entry for cross-DSO calls. 2260 if (CodeGenOpts.SanitizeCfiCrossDso) 2261 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2262 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2263 } 2264 2265 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2266 bool IsIncompleteFunction, 2267 bool IsThunk) { 2268 2269 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2270 // If this is an intrinsic function, set the function's attributes 2271 // to the intrinsic's attributes. 2272 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2273 return; 2274 } 2275 2276 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2277 2278 if (!IsIncompleteFunction) 2279 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2280 IsThunk); 2281 2282 // Add the Returned attribute for "this", except for iOS 5 and earlier 2283 // where substantial code, including the libstdc++ dylib, was compiled with 2284 // GCC and does not actually return "this". 2285 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2286 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2287 assert(!F->arg_empty() && 2288 F->arg_begin()->getType() 2289 ->canLosslesslyBitCastTo(F->getReturnType()) && 2290 "unexpected this return"); 2291 F->addParamAttr(0, llvm::Attribute::Returned); 2292 } 2293 2294 // Only a few attributes are set on declarations; these may later be 2295 // overridden by a definition. 2296 2297 setLinkageForGV(F, FD); 2298 setGVProperties(F, FD); 2299 2300 // Setup target-specific attributes. 2301 if (!IsIncompleteFunction && F->isDeclaration()) 2302 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2303 2304 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2305 F->setSection(CSA->getName()); 2306 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2307 F->setSection(SA->getName()); 2308 2309 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2310 if (EA->isError()) 2311 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2312 else if (EA->isWarning()) 2313 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2314 } 2315 2316 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2317 if (FD->isInlineBuiltinDeclaration()) { 2318 const FunctionDecl *FDBody; 2319 bool HasBody = FD->hasBody(FDBody); 2320 (void)HasBody; 2321 assert(HasBody && "Inline builtin declarations should always have an " 2322 "available body!"); 2323 if (shouldEmitFunction(FDBody)) 2324 F->addFnAttr(llvm::Attribute::NoBuiltin); 2325 } 2326 2327 if (FD->isReplaceableGlobalAllocationFunction()) { 2328 // A replaceable global allocation function does not act like a builtin by 2329 // default, only if it is invoked by a new-expression or delete-expression. 2330 F->addFnAttr(llvm::Attribute::NoBuiltin); 2331 } 2332 2333 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2334 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2335 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2336 if (MD->isVirtual()) 2337 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2338 2339 // Don't emit entries for function declarations in the cross-DSO mode. This 2340 // is handled with better precision by the receiving DSO. But if jump tables 2341 // are non-canonical then we need type metadata in order to produce the local 2342 // jump table. 2343 if (!CodeGenOpts.SanitizeCfiCrossDso || 2344 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2345 CreateFunctionTypeMetadataForIcall(FD, F); 2346 2347 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2348 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2349 2350 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2351 // Annotate the callback behavior as metadata: 2352 // - The callback callee (as argument number). 2353 // - The callback payloads (as argument numbers). 2354 llvm::LLVMContext &Ctx = F->getContext(); 2355 llvm::MDBuilder MDB(Ctx); 2356 2357 // The payload indices are all but the first one in the encoding. The first 2358 // identifies the callback callee. 2359 int CalleeIdx = *CB->encoding_begin(); 2360 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2361 F->addMetadata(llvm::LLVMContext::MD_callback, 2362 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2363 CalleeIdx, PayloadIndices, 2364 /* VarArgsArePassed */ false)})); 2365 } 2366 } 2367 2368 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2369 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2370 "Only globals with definition can force usage."); 2371 LLVMUsed.emplace_back(GV); 2372 } 2373 2374 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2375 assert(!GV->isDeclaration() && 2376 "Only globals with definition can force usage."); 2377 LLVMCompilerUsed.emplace_back(GV); 2378 } 2379 2380 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2381 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2382 "Only globals with definition can force usage."); 2383 if (getTriple().isOSBinFormatELF()) 2384 LLVMCompilerUsed.emplace_back(GV); 2385 else 2386 LLVMUsed.emplace_back(GV); 2387 } 2388 2389 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2390 std::vector<llvm::WeakTrackingVH> &List) { 2391 // Don't create llvm.used if there is no need. 2392 if (List.empty()) 2393 return; 2394 2395 // Convert List to what ConstantArray needs. 2396 SmallVector<llvm::Constant*, 8> UsedArray; 2397 UsedArray.resize(List.size()); 2398 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2399 UsedArray[i] = 2400 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2401 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2402 } 2403 2404 if (UsedArray.empty()) 2405 return; 2406 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2407 2408 auto *GV = new llvm::GlobalVariable( 2409 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2410 llvm::ConstantArray::get(ATy, UsedArray), Name); 2411 2412 GV->setSection("llvm.metadata"); 2413 } 2414 2415 void CodeGenModule::emitLLVMUsed() { 2416 emitUsed(*this, "llvm.used", LLVMUsed); 2417 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2418 } 2419 2420 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2421 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2422 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2423 } 2424 2425 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2426 llvm::SmallString<32> Opt; 2427 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2428 if (Opt.empty()) 2429 return; 2430 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2431 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2432 } 2433 2434 void CodeGenModule::AddDependentLib(StringRef Lib) { 2435 auto &C = getLLVMContext(); 2436 if (getTarget().getTriple().isOSBinFormatELF()) { 2437 ELFDependentLibraries.push_back( 2438 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2439 return; 2440 } 2441 2442 llvm::SmallString<24> Opt; 2443 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2444 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2445 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2446 } 2447 2448 /// Add link options implied by the given module, including modules 2449 /// it depends on, using a postorder walk. 2450 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2451 SmallVectorImpl<llvm::MDNode *> &Metadata, 2452 llvm::SmallPtrSet<Module *, 16> &Visited) { 2453 // Import this module's parent. 2454 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2455 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2456 } 2457 2458 // Import this module's dependencies. 2459 for (Module *Import : llvm::reverse(Mod->Imports)) { 2460 if (Visited.insert(Import).second) 2461 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2462 } 2463 2464 // Add linker options to link against the libraries/frameworks 2465 // described by this module. 2466 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2467 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2468 2469 // For modules that use export_as for linking, use that module 2470 // name instead. 2471 if (Mod->UseExportAsModuleLinkName) 2472 return; 2473 2474 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2475 // Link against a framework. Frameworks are currently Darwin only, so we 2476 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2477 if (LL.IsFramework) { 2478 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2479 llvm::MDString::get(Context, LL.Library)}; 2480 2481 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2482 continue; 2483 } 2484 2485 // Link against a library. 2486 if (IsELF) { 2487 llvm::Metadata *Args[2] = { 2488 llvm::MDString::get(Context, "lib"), 2489 llvm::MDString::get(Context, LL.Library), 2490 }; 2491 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2492 } else { 2493 llvm::SmallString<24> Opt; 2494 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2495 auto *OptString = llvm::MDString::get(Context, Opt); 2496 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2497 } 2498 } 2499 } 2500 2501 void CodeGenModule::EmitModuleLinkOptions() { 2502 // Collect the set of all of the modules we want to visit to emit link 2503 // options, which is essentially the imported modules and all of their 2504 // non-explicit child modules. 2505 llvm::SetVector<clang::Module *> LinkModules; 2506 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2507 SmallVector<clang::Module *, 16> Stack; 2508 2509 // Seed the stack with imported modules. 2510 for (Module *M : ImportedModules) { 2511 // Do not add any link flags when an implementation TU of a module imports 2512 // a header of that same module. 2513 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2514 !getLangOpts().isCompilingModule()) 2515 continue; 2516 if (Visited.insert(M).second) 2517 Stack.push_back(M); 2518 } 2519 2520 // Find all of the modules to import, making a little effort to prune 2521 // non-leaf modules. 2522 while (!Stack.empty()) { 2523 clang::Module *Mod = Stack.pop_back_val(); 2524 2525 bool AnyChildren = false; 2526 2527 // Visit the submodules of this module. 2528 for (const auto &SM : Mod->submodules()) { 2529 // Skip explicit children; they need to be explicitly imported to be 2530 // linked against. 2531 if (SM->IsExplicit) 2532 continue; 2533 2534 if (Visited.insert(SM).second) { 2535 Stack.push_back(SM); 2536 AnyChildren = true; 2537 } 2538 } 2539 2540 // We didn't find any children, so add this module to the list of 2541 // modules to link against. 2542 if (!AnyChildren) { 2543 LinkModules.insert(Mod); 2544 } 2545 } 2546 2547 // Add link options for all of the imported modules in reverse topological 2548 // order. We don't do anything to try to order import link flags with respect 2549 // to linker options inserted by things like #pragma comment(). 2550 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2551 Visited.clear(); 2552 for (Module *M : LinkModules) 2553 if (Visited.insert(M).second) 2554 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2555 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2556 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2557 2558 // Add the linker options metadata flag. 2559 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2560 for (auto *MD : LinkerOptionsMetadata) 2561 NMD->addOperand(MD); 2562 } 2563 2564 void CodeGenModule::EmitDeferred() { 2565 // Emit deferred declare target declarations. 2566 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2567 getOpenMPRuntime().emitDeferredTargetDecls(); 2568 2569 // Emit code for any potentially referenced deferred decls. Since a 2570 // previously unused static decl may become used during the generation of code 2571 // for a static function, iterate until no changes are made. 2572 2573 if (!DeferredVTables.empty()) { 2574 EmitDeferredVTables(); 2575 2576 // Emitting a vtable doesn't directly cause more vtables to 2577 // become deferred, although it can cause functions to be 2578 // emitted that then need those vtables. 2579 assert(DeferredVTables.empty()); 2580 } 2581 2582 // Emit CUDA/HIP static device variables referenced by host code only. 2583 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2584 // needed for further handling. 2585 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2586 llvm::append_range(DeferredDeclsToEmit, 2587 getContext().CUDADeviceVarODRUsedByHost); 2588 2589 // Stop if we're out of both deferred vtables and deferred declarations. 2590 if (DeferredDeclsToEmit.empty()) 2591 return; 2592 2593 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2594 // work, it will not interfere with this. 2595 std::vector<GlobalDecl> CurDeclsToEmit; 2596 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2597 2598 for (GlobalDecl &D : CurDeclsToEmit) { 2599 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2600 // to get GlobalValue with exactly the type we need, not something that 2601 // might had been created for another decl with the same mangled name but 2602 // different type. 2603 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2604 GetAddrOfGlobal(D, ForDefinition)); 2605 2606 // In case of different address spaces, we may still get a cast, even with 2607 // IsForDefinition equal to true. Query mangled names table to get 2608 // GlobalValue. 2609 if (!GV) 2610 GV = GetGlobalValue(getMangledName(D)); 2611 2612 // Make sure GetGlobalValue returned non-null. 2613 assert(GV); 2614 2615 // Check to see if we've already emitted this. This is necessary 2616 // for a couple of reasons: first, decls can end up in the 2617 // deferred-decls queue multiple times, and second, decls can end 2618 // up with definitions in unusual ways (e.g. by an extern inline 2619 // function acquiring a strong function redefinition). Just 2620 // ignore these cases. 2621 if (!GV->isDeclaration()) 2622 continue; 2623 2624 // If this is OpenMP, check if it is legal to emit this global normally. 2625 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2626 continue; 2627 2628 // Otherwise, emit the definition and move on to the next one. 2629 EmitGlobalDefinition(D, GV); 2630 2631 // If we found out that we need to emit more decls, do that recursively. 2632 // This has the advantage that the decls are emitted in a DFS and related 2633 // ones are close together, which is convenient for testing. 2634 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2635 EmitDeferred(); 2636 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2637 } 2638 } 2639 } 2640 2641 void CodeGenModule::EmitVTablesOpportunistically() { 2642 // Try to emit external vtables as available_externally if they have emitted 2643 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2644 // is not allowed to create new references to things that need to be emitted 2645 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2646 2647 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2648 && "Only emit opportunistic vtables with optimizations"); 2649 2650 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2651 assert(getVTables().isVTableExternal(RD) && 2652 "This queue should only contain external vtables"); 2653 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2654 VTables.GenerateClassData(RD); 2655 } 2656 OpportunisticVTables.clear(); 2657 } 2658 2659 void CodeGenModule::EmitGlobalAnnotations() { 2660 if (Annotations.empty()) 2661 return; 2662 2663 // Create a new global variable for the ConstantStruct in the Module. 2664 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2665 Annotations[0]->getType(), Annotations.size()), Annotations); 2666 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2667 llvm::GlobalValue::AppendingLinkage, 2668 Array, "llvm.global.annotations"); 2669 gv->setSection(AnnotationSection); 2670 } 2671 2672 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2673 llvm::Constant *&AStr = AnnotationStrings[Str]; 2674 if (AStr) 2675 return AStr; 2676 2677 // Not found yet, create a new global. 2678 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2679 auto *gv = 2680 new llvm::GlobalVariable(getModule(), s->getType(), true, 2681 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2682 gv->setSection(AnnotationSection); 2683 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2684 AStr = gv; 2685 return gv; 2686 } 2687 2688 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2689 SourceManager &SM = getContext().getSourceManager(); 2690 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2691 if (PLoc.isValid()) 2692 return EmitAnnotationString(PLoc.getFilename()); 2693 return EmitAnnotationString(SM.getBufferName(Loc)); 2694 } 2695 2696 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2697 SourceManager &SM = getContext().getSourceManager(); 2698 PresumedLoc PLoc = SM.getPresumedLoc(L); 2699 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2700 SM.getExpansionLineNumber(L); 2701 return llvm::ConstantInt::get(Int32Ty, LineNo); 2702 } 2703 2704 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2705 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2706 if (Exprs.empty()) 2707 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2708 2709 llvm::FoldingSetNodeID ID; 2710 for (Expr *E : Exprs) { 2711 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2712 } 2713 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2714 if (Lookup) 2715 return Lookup; 2716 2717 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2718 LLVMArgs.reserve(Exprs.size()); 2719 ConstantEmitter ConstEmiter(*this); 2720 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2721 const auto *CE = cast<clang::ConstantExpr>(E); 2722 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2723 CE->getType()); 2724 }); 2725 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2726 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2727 llvm::GlobalValue::PrivateLinkage, Struct, 2728 ".args"); 2729 GV->setSection(AnnotationSection); 2730 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2731 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2732 2733 Lookup = Bitcasted; 2734 return Bitcasted; 2735 } 2736 2737 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2738 const AnnotateAttr *AA, 2739 SourceLocation L) { 2740 // Get the globals for file name, annotation, and the line number. 2741 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2742 *UnitGV = EmitAnnotationUnit(L), 2743 *LineNoCst = EmitAnnotationLineNo(L), 2744 *Args = EmitAnnotationArgs(AA); 2745 2746 llvm::Constant *GVInGlobalsAS = GV; 2747 if (GV->getAddressSpace() != 2748 getDataLayout().getDefaultGlobalsAddressSpace()) { 2749 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2750 GV, GV->getValueType()->getPointerTo( 2751 getDataLayout().getDefaultGlobalsAddressSpace())); 2752 } 2753 2754 // Create the ConstantStruct for the global annotation. 2755 llvm::Constant *Fields[] = { 2756 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2757 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2758 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2759 LineNoCst, 2760 Args, 2761 }; 2762 return llvm::ConstantStruct::getAnon(Fields); 2763 } 2764 2765 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2766 llvm::GlobalValue *GV) { 2767 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2768 // Get the struct elements for these annotations. 2769 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2770 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2771 } 2772 2773 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2774 SourceLocation Loc) const { 2775 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2776 // NoSanitize by function name. 2777 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2778 return true; 2779 // NoSanitize by location. 2780 if (Loc.isValid()) 2781 return NoSanitizeL.containsLocation(Kind, Loc); 2782 // If location is unknown, this may be a compiler-generated function. Assume 2783 // it's located in the main file. 2784 auto &SM = Context.getSourceManager(); 2785 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2786 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2787 } 2788 return false; 2789 } 2790 2791 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2792 llvm::GlobalVariable *GV, 2793 SourceLocation Loc, QualType Ty, 2794 StringRef Category) const { 2795 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2796 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2797 return true; 2798 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2799 return true; 2800 // Check global type. 2801 if (!Ty.isNull()) { 2802 // Drill down the array types: if global variable of a fixed type is 2803 // not sanitized, we also don't instrument arrays of them. 2804 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2805 Ty = AT->getElementType(); 2806 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2807 // Only record types (classes, structs etc.) are ignored. 2808 if (Ty->isRecordType()) { 2809 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2810 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2811 return true; 2812 } 2813 } 2814 return false; 2815 } 2816 2817 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2818 StringRef Category) const { 2819 const auto &XRayFilter = getContext().getXRayFilter(); 2820 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2821 auto Attr = ImbueAttr::NONE; 2822 if (Loc.isValid()) 2823 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2824 if (Attr == ImbueAttr::NONE) 2825 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2826 switch (Attr) { 2827 case ImbueAttr::NONE: 2828 return false; 2829 case ImbueAttr::ALWAYS: 2830 Fn->addFnAttr("function-instrument", "xray-always"); 2831 break; 2832 case ImbueAttr::ALWAYS_ARG1: 2833 Fn->addFnAttr("function-instrument", "xray-always"); 2834 Fn->addFnAttr("xray-log-args", "1"); 2835 break; 2836 case ImbueAttr::NEVER: 2837 Fn->addFnAttr("function-instrument", "xray-never"); 2838 break; 2839 } 2840 return true; 2841 } 2842 2843 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2844 SourceLocation Loc) const { 2845 const auto &ProfileList = getContext().getProfileList(); 2846 // If the profile list is empty, then instrument everything. 2847 if (ProfileList.isEmpty()) 2848 return false; 2849 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2850 // First, check the function name. 2851 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2852 if (V) 2853 return *V; 2854 // Next, check the source location. 2855 if (Loc.isValid()) { 2856 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2857 if (V) 2858 return *V; 2859 } 2860 // If location is unknown, this may be a compiler-generated function. Assume 2861 // it's located in the main file. 2862 auto &SM = Context.getSourceManager(); 2863 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2864 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2865 if (V) 2866 return *V; 2867 } 2868 return ProfileList.getDefault(); 2869 } 2870 2871 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2872 // Never defer when EmitAllDecls is specified. 2873 if (LangOpts.EmitAllDecls) 2874 return true; 2875 2876 if (CodeGenOpts.KeepStaticConsts) { 2877 const auto *VD = dyn_cast<VarDecl>(Global); 2878 if (VD && VD->getType().isConstQualified() && 2879 VD->getStorageDuration() == SD_Static) 2880 return true; 2881 } 2882 2883 return getContext().DeclMustBeEmitted(Global); 2884 } 2885 2886 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2887 // In OpenMP 5.0 variables and function may be marked as 2888 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2889 // that they must be emitted on the host/device. To be sure we need to have 2890 // seen a declare target with an explicit mentioning of the function, we know 2891 // we have if the level of the declare target attribute is -1. Note that we 2892 // check somewhere else if we should emit this at all. 2893 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2894 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2895 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2896 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2897 return false; 2898 } 2899 2900 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2901 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2902 // Implicit template instantiations may change linkage if they are later 2903 // explicitly instantiated, so they should not be emitted eagerly. 2904 return false; 2905 } 2906 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2907 if (Context.getInlineVariableDefinitionKind(VD) == 2908 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2909 // A definition of an inline constexpr static data member may change 2910 // linkage later if it's redeclared outside the class. 2911 return false; 2912 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2913 // codegen for global variables, because they may be marked as threadprivate. 2914 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2915 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2916 !isTypeConstant(Global->getType(), false) && 2917 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2918 return false; 2919 2920 return true; 2921 } 2922 2923 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2924 StringRef Name = getMangledName(GD); 2925 2926 // The UUID descriptor should be pointer aligned. 2927 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2928 2929 // Look for an existing global. 2930 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2931 return ConstantAddress(GV, GV->getValueType(), Alignment); 2932 2933 ConstantEmitter Emitter(*this); 2934 llvm::Constant *Init; 2935 2936 APValue &V = GD->getAsAPValue(); 2937 if (!V.isAbsent()) { 2938 // If possible, emit the APValue version of the initializer. In particular, 2939 // this gets the type of the constant right. 2940 Init = Emitter.emitForInitializer( 2941 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2942 } else { 2943 // As a fallback, directly construct the constant. 2944 // FIXME: This may get padding wrong under esoteric struct layout rules. 2945 // MSVC appears to create a complete type 'struct __s_GUID' that it 2946 // presumably uses to represent these constants. 2947 MSGuidDecl::Parts Parts = GD->getParts(); 2948 llvm::Constant *Fields[4] = { 2949 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2950 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2951 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2952 llvm::ConstantDataArray::getRaw( 2953 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2954 Int8Ty)}; 2955 Init = llvm::ConstantStruct::getAnon(Fields); 2956 } 2957 2958 auto *GV = new llvm::GlobalVariable( 2959 getModule(), Init->getType(), 2960 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2961 if (supportsCOMDAT()) 2962 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2963 setDSOLocal(GV); 2964 2965 if (!V.isAbsent()) { 2966 Emitter.finalize(GV); 2967 return ConstantAddress(GV, GV->getValueType(), Alignment); 2968 } 2969 2970 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2971 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2972 GV, Ty->getPointerTo(GV->getAddressSpace())); 2973 return ConstantAddress(Addr, Ty, Alignment); 2974 } 2975 2976 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 2977 const UnnamedGlobalConstantDecl *GCD) { 2978 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 2979 2980 llvm::GlobalVariable **Entry = nullptr; 2981 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 2982 if (*Entry) 2983 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 2984 2985 ConstantEmitter Emitter(*this); 2986 llvm::Constant *Init; 2987 2988 const APValue &V = GCD->getValue(); 2989 2990 assert(!V.isAbsent()); 2991 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 2992 GCD->getType()); 2993 2994 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 2995 /*isConstant=*/true, 2996 llvm::GlobalValue::PrivateLinkage, Init, 2997 ".constant"); 2998 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2999 GV->setAlignment(Alignment.getAsAlign()); 3000 3001 Emitter.finalize(GV); 3002 3003 *Entry = GV; 3004 return ConstantAddress(GV, GV->getValueType(), Alignment); 3005 } 3006 3007 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3008 const TemplateParamObjectDecl *TPO) { 3009 StringRef Name = getMangledName(TPO); 3010 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3011 3012 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3013 return ConstantAddress(GV, GV->getValueType(), Alignment); 3014 3015 ConstantEmitter Emitter(*this); 3016 llvm::Constant *Init = Emitter.emitForInitializer( 3017 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3018 3019 if (!Init) { 3020 ErrorUnsupported(TPO, "template parameter object"); 3021 return ConstantAddress::invalid(); 3022 } 3023 3024 auto *GV = new llvm::GlobalVariable( 3025 getModule(), Init->getType(), 3026 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3027 if (supportsCOMDAT()) 3028 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3029 Emitter.finalize(GV); 3030 3031 return ConstantAddress(GV, GV->getValueType(), Alignment); 3032 } 3033 3034 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3035 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3036 assert(AA && "No alias?"); 3037 3038 CharUnits Alignment = getContext().getDeclAlign(VD); 3039 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3040 3041 // See if there is already something with the target's name in the module. 3042 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3043 if (Entry) { 3044 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 3045 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3046 return ConstantAddress(Ptr, DeclTy, Alignment); 3047 } 3048 3049 llvm::Constant *Aliasee; 3050 if (isa<llvm::FunctionType>(DeclTy)) 3051 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3052 GlobalDecl(cast<FunctionDecl>(VD)), 3053 /*ForVTable=*/false); 3054 else 3055 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3056 nullptr); 3057 3058 auto *F = cast<llvm::GlobalValue>(Aliasee); 3059 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3060 WeakRefReferences.insert(F); 3061 3062 return ConstantAddress(Aliasee, DeclTy, Alignment); 3063 } 3064 3065 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3066 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3067 3068 // Weak references don't produce any output by themselves. 3069 if (Global->hasAttr<WeakRefAttr>()) 3070 return; 3071 3072 // If this is an alias definition (which otherwise looks like a declaration) 3073 // emit it now. 3074 if (Global->hasAttr<AliasAttr>()) 3075 return EmitAliasDefinition(GD); 3076 3077 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3078 if (Global->hasAttr<IFuncAttr>()) 3079 return emitIFuncDefinition(GD); 3080 3081 // If this is a cpu_dispatch multiversion function, emit the resolver. 3082 if (Global->hasAttr<CPUDispatchAttr>()) 3083 return emitCPUDispatchDefinition(GD); 3084 3085 // If this is CUDA, be selective about which declarations we emit. 3086 if (LangOpts.CUDA) { 3087 if (LangOpts.CUDAIsDevice) { 3088 if (!Global->hasAttr<CUDADeviceAttr>() && 3089 !Global->hasAttr<CUDAGlobalAttr>() && 3090 !Global->hasAttr<CUDAConstantAttr>() && 3091 !Global->hasAttr<CUDASharedAttr>() && 3092 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3093 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3094 return; 3095 } else { 3096 // We need to emit host-side 'shadows' for all global 3097 // device-side variables because the CUDA runtime needs their 3098 // size and host-side address in order to provide access to 3099 // their device-side incarnations. 3100 3101 // So device-only functions are the only things we skip. 3102 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3103 Global->hasAttr<CUDADeviceAttr>()) 3104 return; 3105 3106 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3107 "Expected Variable or Function"); 3108 } 3109 } 3110 3111 if (LangOpts.OpenMP) { 3112 // If this is OpenMP, check if it is legal to emit this global normally. 3113 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3114 return; 3115 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3116 if (MustBeEmitted(Global)) 3117 EmitOMPDeclareReduction(DRD); 3118 return; 3119 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3120 if (MustBeEmitted(Global)) 3121 EmitOMPDeclareMapper(DMD); 3122 return; 3123 } 3124 } 3125 3126 // Ignore declarations, they will be emitted on their first use. 3127 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3128 // Forward declarations are emitted lazily on first use. 3129 if (!FD->doesThisDeclarationHaveABody()) { 3130 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3131 return; 3132 3133 StringRef MangledName = getMangledName(GD); 3134 3135 // Compute the function info and LLVM type. 3136 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3137 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3138 3139 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3140 /*DontDefer=*/false); 3141 return; 3142 } 3143 } else { 3144 const auto *VD = cast<VarDecl>(Global); 3145 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3146 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3147 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3148 if (LangOpts.OpenMP) { 3149 // Emit declaration of the must-be-emitted declare target variable. 3150 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3151 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3152 bool UnifiedMemoryEnabled = 3153 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3154 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3155 !UnifiedMemoryEnabled) { 3156 (void)GetAddrOfGlobalVar(VD); 3157 } else { 3158 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3159 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3160 UnifiedMemoryEnabled)) && 3161 "Link clause or to clause with unified memory expected."); 3162 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3163 } 3164 3165 return; 3166 } 3167 } 3168 // If this declaration may have caused an inline variable definition to 3169 // change linkage, make sure that it's emitted. 3170 if (Context.getInlineVariableDefinitionKind(VD) == 3171 ASTContext::InlineVariableDefinitionKind::Strong) 3172 GetAddrOfGlobalVar(VD); 3173 return; 3174 } 3175 } 3176 3177 // Defer code generation to first use when possible, e.g. if this is an inline 3178 // function. If the global must always be emitted, do it eagerly if possible 3179 // to benefit from cache locality. 3180 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3181 // Emit the definition if it can't be deferred. 3182 EmitGlobalDefinition(GD); 3183 return; 3184 } 3185 3186 // If we're deferring emission of a C++ variable with an 3187 // initializer, remember the order in which it appeared in the file. 3188 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3189 cast<VarDecl>(Global)->hasInit()) { 3190 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3191 CXXGlobalInits.push_back(nullptr); 3192 } 3193 3194 StringRef MangledName = getMangledName(GD); 3195 if (GetGlobalValue(MangledName) != nullptr) { 3196 // The value has already been used and should therefore be emitted. 3197 addDeferredDeclToEmit(GD); 3198 } else if (MustBeEmitted(Global)) { 3199 // The value must be emitted, but cannot be emitted eagerly. 3200 assert(!MayBeEmittedEagerly(Global)); 3201 addDeferredDeclToEmit(GD); 3202 } else { 3203 // Otherwise, remember that we saw a deferred decl with this name. The 3204 // first use of the mangled name will cause it to move into 3205 // DeferredDeclsToEmit. 3206 DeferredDecls[MangledName] = GD; 3207 } 3208 } 3209 3210 // Check if T is a class type with a destructor that's not dllimport. 3211 static bool HasNonDllImportDtor(QualType T) { 3212 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3213 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3214 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3215 return true; 3216 3217 return false; 3218 } 3219 3220 namespace { 3221 struct FunctionIsDirectlyRecursive 3222 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3223 const StringRef Name; 3224 const Builtin::Context &BI; 3225 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3226 : Name(N), BI(C) {} 3227 3228 bool VisitCallExpr(const CallExpr *E) { 3229 const FunctionDecl *FD = E->getDirectCallee(); 3230 if (!FD) 3231 return false; 3232 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3233 if (Attr && Name == Attr->getLabel()) 3234 return true; 3235 unsigned BuiltinID = FD->getBuiltinID(); 3236 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3237 return false; 3238 StringRef BuiltinName = BI.getName(BuiltinID); 3239 if (BuiltinName.startswith("__builtin_") && 3240 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3241 return true; 3242 } 3243 return false; 3244 } 3245 3246 bool VisitStmt(const Stmt *S) { 3247 for (const Stmt *Child : S->children()) 3248 if (Child && this->Visit(Child)) 3249 return true; 3250 return false; 3251 } 3252 }; 3253 3254 // Make sure we're not referencing non-imported vars or functions. 3255 struct DLLImportFunctionVisitor 3256 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3257 bool SafeToInline = true; 3258 3259 bool shouldVisitImplicitCode() const { return true; } 3260 3261 bool VisitVarDecl(VarDecl *VD) { 3262 if (VD->getTLSKind()) { 3263 // A thread-local variable cannot be imported. 3264 SafeToInline = false; 3265 return SafeToInline; 3266 } 3267 3268 // A variable definition might imply a destructor call. 3269 if (VD->isThisDeclarationADefinition()) 3270 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3271 3272 return SafeToInline; 3273 } 3274 3275 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3276 if (const auto *D = E->getTemporary()->getDestructor()) 3277 SafeToInline = D->hasAttr<DLLImportAttr>(); 3278 return SafeToInline; 3279 } 3280 3281 bool VisitDeclRefExpr(DeclRefExpr *E) { 3282 ValueDecl *VD = E->getDecl(); 3283 if (isa<FunctionDecl>(VD)) 3284 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3285 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3286 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3287 return SafeToInline; 3288 } 3289 3290 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3291 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3292 return SafeToInline; 3293 } 3294 3295 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3296 CXXMethodDecl *M = E->getMethodDecl(); 3297 if (!M) { 3298 // Call through a pointer to member function. This is safe to inline. 3299 SafeToInline = true; 3300 } else { 3301 SafeToInline = M->hasAttr<DLLImportAttr>(); 3302 } 3303 return SafeToInline; 3304 } 3305 3306 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3307 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3308 return SafeToInline; 3309 } 3310 3311 bool VisitCXXNewExpr(CXXNewExpr *E) { 3312 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3313 return SafeToInline; 3314 } 3315 }; 3316 } 3317 3318 // isTriviallyRecursive - Check if this function calls another 3319 // decl that, because of the asm attribute or the other decl being a builtin, 3320 // ends up pointing to itself. 3321 bool 3322 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3323 StringRef Name; 3324 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3325 // asm labels are a special kind of mangling we have to support. 3326 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3327 if (!Attr) 3328 return false; 3329 Name = Attr->getLabel(); 3330 } else { 3331 Name = FD->getName(); 3332 } 3333 3334 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3335 const Stmt *Body = FD->getBody(); 3336 return Body ? Walker.Visit(Body) : false; 3337 } 3338 3339 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3340 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3341 return true; 3342 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3343 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3344 return false; 3345 3346 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3347 // Check whether it would be safe to inline this dllimport function. 3348 DLLImportFunctionVisitor Visitor; 3349 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3350 if (!Visitor.SafeToInline) 3351 return false; 3352 3353 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3354 // Implicit destructor invocations aren't captured in the AST, so the 3355 // check above can't see them. Check for them manually here. 3356 for (const Decl *Member : Dtor->getParent()->decls()) 3357 if (isa<FieldDecl>(Member)) 3358 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3359 return false; 3360 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3361 if (HasNonDllImportDtor(B.getType())) 3362 return false; 3363 } 3364 } 3365 3366 // Inline builtins declaration must be emitted. They often are fortified 3367 // functions. 3368 if (F->isInlineBuiltinDeclaration()) 3369 return true; 3370 3371 // PR9614. Avoid cases where the source code is lying to us. An available 3372 // externally function should have an equivalent function somewhere else, 3373 // but a function that calls itself through asm label/`__builtin_` trickery is 3374 // clearly not equivalent to the real implementation. 3375 // This happens in glibc's btowc and in some configure checks. 3376 return !isTriviallyRecursive(F); 3377 } 3378 3379 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3380 return CodeGenOpts.OptimizationLevel > 0; 3381 } 3382 3383 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3384 llvm::GlobalValue *GV) { 3385 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3386 3387 if (FD->isCPUSpecificMultiVersion()) { 3388 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3389 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3390 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3391 } else if (FD->isTargetClonesMultiVersion()) { 3392 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3393 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3394 if (Clone->isFirstOfVersion(I)) 3395 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3396 // Ensure that the resolver function is also emitted. 3397 GetOrCreateMultiVersionResolver(GD); 3398 } else 3399 EmitGlobalFunctionDefinition(GD, GV); 3400 } 3401 3402 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3403 const auto *D = cast<ValueDecl>(GD.getDecl()); 3404 3405 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3406 Context.getSourceManager(), 3407 "Generating code for declaration"); 3408 3409 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3410 // At -O0, don't generate IR for functions with available_externally 3411 // linkage. 3412 if (!shouldEmitFunction(GD)) 3413 return; 3414 3415 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3416 std::string Name; 3417 llvm::raw_string_ostream OS(Name); 3418 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3419 /*Qualified=*/true); 3420 return Name; 3421 }); 3422 3423 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3424 // Make sure to emit the definition(s) before we emit the thunks. 3425 // This is necessary for the generation of certain thunks. 3426 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3427 ABI->emitCXXStructor(GD); 3428 else if (FD->isMultiVersion()) 3429 EmitMultiVersionFunctionDefinition(GD, GV); 3430 else 3431 EmitGlobalFunctionDefinition(GD, GV); 3432 3433 if (Method->isVirtual()) 3434 getVTables().EmitThunks(GD); 3435 3436 return; 3437 } 3438 3439 if (FD->isMultiVersion()) 3440 return EmitMultiVersionFunctionDefinition(GD, GV); 3441 return EmitGlobalFunctionDefinition(GD, GV); 3442 } 3443 3444 if (const auto *VD = dyn_cast<VarDecl>(D)) 3445 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3446 3447 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3448 } 3449 3450 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3451 llvm::Function *NewFn); 3452 3453 static unsigned 3454 TargetMVPriority(const TargetInfo &TI, 3455 const CodeGenFunction::MultiVersionResolverOption &RO) { 3456 unsigned Priority = 0; 3457 for (StringRef Feat : RO.Conditions.Features) 3458 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3459 3460 if (!RO.Conditions.Architecture.empty()) 3461 Priority = std::max( 3462 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3463 return Priority; 3464 } 3465 3466 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3467 // TU can forward declare the function without causing problems. Particularly 3468 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3469 // work with internal linkage functions, so that the same function name can be 3470 // used with internal linkage in multiple TUs. 3471 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3472 GlobalDecl GD) { 3473 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3474 if (FD->getFormalLinkage() == InternalLinkage) 3475 return llvm::GlobalValue::InternalLinkage; 3476 return llvm::GlobalValue::WeakODRLinkage; 3477 } 3478 3479 void CodeGenModule::emitMultiVersionFunctions() { 3480 std::vector<GlobalDecl> MVFuncsToEmit; 3481 MultiVersionFuncs.swap(MVFuncsToEmit); 3482 for (GlobalDecl GD : MVFuncsToEmit) { 3483 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3484 assert(FD && "Expected a FunctionDecl"); 3485 3486 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3487 if (FD->isTargetMultiVersion()) { 3488 getContext().forEachMultiversionedFunctionVersion( 3489 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3490 GlobalDecl CurGD{ 3491 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3492 StringRef MangledName = getMangledName(CurGD); 3493 llvm::Constant *Func = GetGlobalValue(MangledName); 3494 if (!Func) { 3495 if (CurFD->isDefined()) { 3496 EmitGlobalFunctionDefinition(CurGD, nullptr); 3497 Func = GetGlobalValue(MangledName); 3498 } else { 3499 const CGFunctionInfo &FI = 3500 getTypes().arrangeGlobalDeclaration(GD); 3501 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3502 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3503 /*DontDefer=*/false, ForDefinition); 3504 } 3505 assert(Func && "This should have just been created"); 3506 } 3507 3508 const auto *TA = CurFD->getAttr<TargetAttr>(); 3509 llvm::SmallVector<StringRef, 8> Feats; 3510 TA->getAddedFeatures(Feats); 3511 3512 Options.emplace_back(cast<llvm::Function>(Func), 3513 TA->getArchitecture(), Feats); 3514 }); 3515 } else if (FD->isTargetClonesMultiVersion()) { 3516 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3517 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3518 ++VersionIndex) { 3519 if (!TC->isFirstOfVersion(VersionIndex)) 3520 continue; 3521 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3522 VersionIndex}; 3523 StringRef Version = TC->getFeatureStr(VersionIndex); 3524 StringRef MangledName = getMangledName(CurGD); 3525 llvm::Constant *Func = GetGlobalValue(MangledName); 3526 if (!Func) { 3527 if (FD->isDefined()) { 3528 EmitGlobalFunctionDefinition(CurGD, nullptr); 3529 Func = GetGlobalValue(MangledName); 3530 } else { 3531 const CGFunctionInfo &FI = 3532 getTypes().arrangeGlobalDeclaration(CurGD); 3533 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3534 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3535 /*DontDefer=*/false, ForDefinition); 3536 } 3537 assert(Func && "This should have just been created"); 3538 } 3539 3540 StringRef Architecture; 3541 llvm::SmallVector<StringRef, 1> Feature; 3542 3543 if (Version.startswith("arch=")) 3544 Architecture = Version.drop_front(sizeof("arch=") - 1); 3545 else if (Version != "default") 3546 Feature.push_back(Version); 3547 3548 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3549 } 3550 } else { 3551 assert(0 && "Expected a target or target_clones multiversion function"); 3552 continue; 3553 } 3554 3555 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3556 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3557 ResolverConstant = IFunc->getResolver(); 3558 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3559 3560 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3561 3562 if (supportsCOMDAT()) 3563 ResolverFunc->setComdat( 3564 getModule().getOrInsertComdat(ResolverFunc->getName())); 3565 3566 const TargetInfo &TI = getTarget(); 3567 llvm::stable_sort( 3568 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3569 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3570 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3571 }); 3572 CodeGenFunction CGF(*this); 3573 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3574 } 3575 3576 // Ensure that any additions to the deferred decls list caused by emitting a 3577 // variant are emitted. This can happen when the variant itself is inline and 3578 // calls a function without linkage. 3579 if (!MVFuncsToEmit.empty()) 3580 EmitDeferred(); 3581 3582 // Ensure that any additions to the multiversion funcs list from either the 3583 // deferred decls or the multiversion functions themselves are emitted. 3584 if (!MultiVersionFuncs.empty()) 3585 emitMultiVersionFunctions(); 3586 } 3587 3588 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3589 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3590 assert(FD && "Not a FunctionDecl?"); 3591 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3592 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3593 assert(DD && "Not a cpu_dispatch Function?"); 3594 3595 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3596 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3597 3598 StringRef ResolverName = getMangledName(GD); 3599 UpdateMultiVersionNames(GD, FD, ResolverName); 3600 3601 llvm::Type *ResolverType; 3602 GlobalDecl ResolverGD; 3603 if (getTarget().supportsIFunc()) { 3604 ResolverType = llvm::FunctionType::get( 3605 llvm::PointerType::get(DeclTy, 3606 Context.getTargetAddressSpace(FD->getType())), 3607 false); 3608 } 3609 else { 3610 ResolverType = DeclTy; 3611 ResolverGD = GD; 3612 } 3613 3614 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3615 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3616 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3617 if (supportsCOMDAT()) 3618 ResolverFunc->setComdat( 3619 getModule().getOrInsertComdat(ResolverFunc->getName())); 3620 3621 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3622 const TargetInfo &Target = getTarget(); 3623 unsigned Index = 0; 3624 for (const IdentifierInfo *II : DD->cpus()) { 3625 // Get the name of the target function so we can look it up/create it. 3626 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3627 getCPUSpecificMangling(*this, II->getName()); 3628 3629 llvm::Constant *Func = GetGlobalValue(MangledName); 3630 3631 if (!Func) { 3632 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3633 if (ExistingDecl.getDecl() && 3634 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3635 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3636 Func = GetGlobalValue(MangledName); 3637 } else { 3638 if (!ExistingDecl.getDecl()) 3639 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3640 3641 Func = GetOrCreateLLVMFunction( 3642 MangledName, DeclTy, ExistingDecl, 3643 /*ForVTable=*/false, /*DontDefer=*/true, 3644 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3645 } 3646 } 3647 3648 llvm::SmallVector<StringRef, 32> Features; 3649 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3650 llvm::transform(Features, Features.begin(), 3651 [](StringRef Str) { return Str.substr(1); }); 3652 llvm::erase_if(Features, [&Target](StringRef Feat) { 3653 return !Target.validateCpuSupports(Feat); 3654 }); 3655 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3656 ++Index; 3657 } 3658 3659 llvm::stable_sort( 3660 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3661 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3662 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3663 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3664 }); 3665 3666 // If the list contains multiple 'default' versions, such as when it contains 3667 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3668 // always run on at least a 'pentium'). We do this by deleting the 'least 3669 // advanced' (read, lowest mangling letter). 3670 while (Options.size() > 1 && 3671 llvm::X86::getCpuSupportsMask( 3672 (Options.end() - 2)->Conditions.Features) == 0) { 3673 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3674 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3675 if (LHSName.compare(RHSName) < 0) 3676 Options.erase(Options.end() - 2); 3677 else 3678 Options.erase(Options.end() - 1); 3679 } 3680 3681 CodeGenFunction CGF(*this); 3682 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3683 3684 if (getTarget().supportsIFunc()) { 3685 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3686 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3687 3688 // Fix up function declarations that were created for cpu_specific before 3689 // cpu_dispatch was known 3690 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3691 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3692 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3693 &getModule()); 3694 GI->takeName(IFunc); 3695 IFunc->replaceAllUsesWith(GI); 3696 IFunc->eraseFromParent(); 3697 IFunc = GI; 3698 } 3699 3700 std::string AliasName = getMangledNameImpl( 3701 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3702 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3703 if (!AliasFunc) { 3704 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3705 &getModule()); 3706 SetCommonAttributes(GD, GA); 3707 } 3708 } 3709 } 3710 3711 /// If a dispatcher for the specified mangled name is not in the module, create 3712 /// and return an llvm Function with the specified type. 3713 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3714 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3715 assert(FD && "Not a FunctionDecl?"); 3716 3717 std::string MangledName = 3718 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3719 3720 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3721 // a separate resolver). 3722 std::string ResolverName = MangledName; 3723 if (getTarget().supportsIFunc()) 3724 ResolverName += ".ifunc"; 3725 else if (FD->isTargetMultiVersion()) 3726 ResolverName += ".resolver"; 3727 3728 // If the resolver has already been created, just return it. 3729 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3730 return ResolverGV; 3731 3732 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3733 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3734 3735 // The resolver needs to be created. For target and target_clones, defer 3736 // creation until the end of the TU. 3737 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3738 MultiVersionFuncs.push_back(GD); 3739 3740 // For cpu_specific, don't create an ifunc yet because we don't know if the 3741 // cpu_dispatch will be emitted in this translation unit. 3742 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3743 llvm::Type *ResolverType = llvm::FunctionType::get( 3744 llvm::PointerType::get( 3745 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3746 false); 3747 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3748 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3749 /*ForVTable=*/false); 3750 llvm::GlobalIFunc *GIF = 3751 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3752 "", Resolver, &getModule()); 3753 GIF->setName(ResolverName); 3754 SetCommonAttributes(FD, GIF); 3755 3756 return GIF; 3757 } 3758 3759 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3760 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3761 assert(isa<llvm::GlobalValue>(Resolver) && 3762 "Resolver should be created for the first time"); 3763 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3764 return Resolver; 3765 } 3766 3767 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3768 /// module, create and return an llvm Function with the specified type. If there 3769 /// is something in the module with the specified name, return it potentially 3770 /// bitcasted to the right type. 3771 /// 3772 /// If D is non-null, it specifies a decl that correspond to this. This is used 3773 /// to set the attributes on the function when it is first created. 3774 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3775 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3776 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3777 ForDefinition_t IsForDefinition) { 3778 const Decl *D = GD.getDecl(); 3779 3780 // Any attempts to use a MultiVersion function should result in retrieving 3781 // the iFunc instead. Name Mangling will handle the rest of the changes. 3782 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3783 // For the device mark the function as one that should be emitted. 3784 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3785 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3786 !DontDefer && !IsForDefinition) { 3787 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3788 GlobalDecl GDDef; 3789 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3790 GDDef = GlobalDecl(CD, GD.getCtorType()); 3791 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3792 GDDef = GlobalDecl(DD, GD.getDtorType()); 3793 else 3794 GDDef = GlobalDecl(FDDef); 3795 EmitGlobal(GDDef); 3796 } 3797 } 3798 3799 if (FD->isMultiVersion()) { 3800 UpdateMultiVersionNames(GD, FD, MangledName); 3801 if (!IsForDefinition) 3802 return GetOrCreateMultiVersionResolver(GD); 3803 } 3804 } 3805 3806 // Lookup the entry, lazily creating it if necessary. 3807 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3808 if (Entry) { 3809 if (WeakRefReferences.erase(Entry)) { 3810 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3811 if (FD && !FD->hasAttr<WeakAttr>()) 3812 Entry->setLinkage(llvm::Function::ExternalLinkage); 3813 } 3814 3815 // Handle dropped DLL attributes. 3816 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 3817 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 3818 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3819 setDSOLocal(Entry); 3820 } 3821 3822 // If there are two attempts to define the same mangled name, issue an 3823 // error. 3824 if (IsForDefinition && !Entry->isDeclaration()) { 3825 GlobalDecl OtherGD; 3826 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3827 // to make sure that we issue an error only once. 3828 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3829 (GD.getCanonicalDecl().getDecl() != 3830 OtherGD.getCanonicalDecl().getDecl()) && 3831 DiagnosedConflictingDefinitions.insert(GD).second) { 3832 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3833 << MangledName; 3834 getDiags().Report(OtherGD.getDecl()->getLocation(), 3835 diag::note_previous_definition); 3836 } 3837 } 3838 3839 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3840 (Entry->getValueType() == Ty)) { 3841 return Entry; 3842 } 3843 3844 // Make sure the result is of the correct type. 3845 // (If function is requested for a definition, we always need to create a new 3846 // function, not just return a bitcast.) 3847 if (!IsForDefinition) 3848 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3849 } 3850 3851 // This function doesn't have a complete type (for example, the return 3852 // type is an incomplete struct). Use a fake type instead, and make 3853 // sure not to try to set attributes. 3854 bool IsIncompleteFunction = false; 3855 3856 llvm::FunctionType *FTy; 3857 if (isa<llvm::FunctionType>(Ty)) { 3858 FTy = cast<llvm::FunctionType>(Ty); 3859 } else { 3860 FTy = llvm::FunctionType::get(VoidTy, false); 3861 IsIncompleteFunction = true; 3862 } 3863 3864 llvm::Function *F = 3865 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3866 Entry ? StringRef() : MangledName, &getModule()); 3867 3868 // If we already created a function with the same mangled name (but different 3869 // type) before, take its name and add it to the list of functions to be 3870 // replaced with F at the end of CodeGen. 3871 // 3872 // This happens if there is a prototype for a function (e.g. "int f()") and 3873 // then a definition of a different type (e.g. "int f(int x)"). 3874 if (Entry) { 3875 F->takeName(Entry); 3876 3877 // This might be an implementation of a function without a prototype, in 3878 // which case, try to do special replacement of calls which match the new 3879 // prototype. The really key thing here is that we also potentially drop 3880 // arguments from the call site so as to make a direct call, which makes the 3881 // inliner happier and suppresses a number of optimizer warnings (!) about 3882 // dropping arguments. 3883 if (!Entry->use_empty()) { 3884 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3885 Entry->removeDeadConstantUsers(); 3886 } 3887 3888 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3889 F, Entry->getValueType()->getPointerTo()); 3890 addGlobalValReplacement(Entry, BC); 3891 } 3892 3893 assert(F->getName() == MangledName && "name was uniqued!"); 3894 if (D) 3895 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3896 if (ExtraAttrs.hasFnAttrs()) { 3897 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3898 F->addFnAttrs(B); 3899 } 3900 3901 if (!DontDefer) { 3902 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3903 // each other bottoming out with the base dtor. Therefore we emit non-base 3904 // dtors on usage, even if there is no dtor definition in the TU. 3905 if (D && isa<CXXDestructorDecl>(D) && 3906 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3907 GD.getDtorType())) 3908 addDeferredDeclToEmit(GD); 3909 3910 // This is the first use or definition of a mangled name. If there is a 3911 // deferred decl with this name, remember that we need to emit it at the end 3912 // of the file. 3913 auto DDI = DeferredDecls.find(MangledName); 3914 if (DDI != DeferredDecls.end()) { 3915 // Move the potentially referenced deferred decl to the 3916 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3917 // don't need it anymore). 3918 addDeferredDeclToEmit(DDI->second); 3919 DeferredDecls.erase(DDI); 3920 3921 // Otherwise, there are cases we have to worry about where we're 3922 // using a declaration for which we must emit a definition but where 3923 // we might not find a top-level definition: 3924 // - member functions defined inline in their classes 3925 // - friend functions defined inline in some class 3926 // - special member functions with implicit definitions 3927 // If we ever change our AST traversal to walk into class methods, 3928 // this will be unnecessary. 3929 // 3930 // We also don't emit a definition for a function if it's going to be an 3931 // entry in a vtable, unless it's already marked as used. 3932 } else if (getLangOpts().CPlusPlus && D) { 3933 // Look for a declaration that's lexically in a record. 3934 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3935 FD = FD->getPreviousDecl()) { 3936 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3937 if (FD->doesThisDeclarationHaveABody()) { 3938 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3939 break; 3940 } 3941 } 3942 } 3943 } 3944 } 3945 3946 // Make sure the result is of the requested type. 3947 if (!IsIncompleteFunction) { 3948 assert(F->getFunctionType() == Ty); 3949 return F; 3950 } 3951 3952 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3953 return llvm::ConstantExpr::getBitCast(F, PTy); 3954 } 3955 3956 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3957 /// non-null, then this function will use the specified type if it has to 3958 /// create it (this occurs when we see a definition of the function). 3959 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3960 llvm::Type *Ty, 3961 bool ForVTable, 3962 bool DontDefer, 3963 ForDefinition_t IsForDefinition) { 3964 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3965 "consteval function should never be emitted"); 3966 // If there was no specific requested type, just convert it now. 3967 if (!Ty) { 3968 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3969 Ty = getTypes().ConvertType(FD->getType()); 3970 } 3971 3972 // Devirtualized destructor calls may come through here instead of via 3973 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3974 // of the complete destructor when necessary. 3975 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3976 if (getTarget().getCXXABI().isMicrosoft() && 3977 GD.getDtorType() == Dtor_Complete && 3978 DD->getParent()->getNumVBases() == 0) 3979 GD = GlobalDecl(DD, Dtor_Base); 3980 } 3981 3982 StringRef MangledName = getMangledName(GD); 3983 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3984 /*IsThunk=*/false, llvm::AttributeList(), 3985 IsForDefinition); 3986 // Returns kernel handle for HIP kernel stub function. 3987 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3988 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3989 auto *Handle = getCUDARuntime().getKernelHandle( 3990 cast<llvm::Function>(F->stripPointerCasts()), GD); 3991 if (IsForDefinition) 3992 return F; 3993 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3994 } 3995 return F; 3996 } 3997 3998 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 3999 llvm::GlobalValue *F = 4000 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4001 4002 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 4003 llvm::Type::getInt8PtrTy(VMContext)); 4004 } 4005 4006 static const FunctionDecl * 4007 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4008 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4009 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4010 4011 IdentifierInfo &CII = C.Idents.get(Name); 4012 for (const auto *Result : DC->lookup(&CII)) 4013 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4014 return FD; 4015 4016 if (!C.getLangOpts().CPlusPlus) 4017 return nullptr; 4018 4019 // Demangle the premangled name from getTerminateFn() 4020 IdentifierInfo &CXXII = 4021 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4022 ? C.Idents.get("terminate") 4023 : C.Idents.get(Name); 4024 4025 for (const auto &N : {"__cxxabiv1", "std"}) { 4026 IdentifierInfo &NS = C.Idents.get(N); 4027 for (const auto *Result : DC->lookup(&NS)) { 4028 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4029 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4030 for (const auto *Result : LSD->lookup(&NS)) 4031 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4032 break; 4033 4034 if (ND) 4035 for (const auto *Result : ND->lookup(&CXXII)) 4036 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4037 return FD; 4038 } 4039 } 4040 4041 return nullptr; 4042 } 4043 4044 /// CreateRuntimeFunction - Create a new runtime function with the specified 4045 /// type and name. 4046 llvm::FunctionCallee 4047 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4048 llvm::AttributeList ExtraAttrs, bool Local, 4049 bool AssumeConvergent) { 4050 if (AssumeConvergent) { 4051 ExtraAttrs = 4052 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4053 } 4054 4055 llvm::Constant *C = 4056 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4057 /*DontDefer=*/false, /*IsThunk=*/false, 4058 ExtraAttrs); 4059 4060 if (auto *F = dyn_cast<llvm::Function>(C)) { 4061 if (F->empty()) { 4062 F->setCallingConv(getRuntimeCC()); 4063 4064 // In Windows Itanium environments, try to mark runtime functions 4065 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4066 // will link their standard library statically or dynamically. Marking 4067 // functions imported when they are not imported can cause linker errors 4068 // and warnings. 4069 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4070 !getCodeGenOpts().LTOVisibilityPublicStd) { 4071 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4072 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4073 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4074 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4075 } 4076 } 4077 setDSOLocal(F); 4078 } 4079 } 4080 4081 return {FTy, C}; 4082 } 4083 4084 /// isTypeConstant - Determine whether an object of this type can be emitted 4085 /// as a constant. 4086 /// 4087 /// If ExcludeCtor is true, the duration when the object's constructor runs 4088 /// will not be considered. The caller will need to verify that the object is 4089 /// not written to during its construction. 4090 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4091 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4092 return false; 4093 4094 if (Context.getLangOpts().CPlusPlus) { 4095 if (const CXXRecordDecl *Record 4096 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4097 return ExcludeCtor && !Record->hasMutableFields() && 4098 Record->hasTrivialDestructor(); 4099 } 4100 4101 return true; 4102 } 4103 4104 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4105 /// create and return an llvm GlobalVariable with the specified type and address 4106 /// space. If there is something in the module with the specified name, return 4107 /// it potentially bitcasted to the right type. 4108 /// 4109 /// If D is non-null, it specifies a decl that correspond to this. This is used 4110 /// to set the attributes on the global when it is first created. 4111 /// 4112 /// If IsForDefinition is true, it is guaranteed that an actual global with 4113 /// type Ty will be returned, not conversion of a variable with the same 4114 /// mangled name but some other type. 4115 llvm::Constant * 4116 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4117 LangAS AddrSpace, const VarDecl *D, 4118 ForDefinition_t IsForDefinition) { 4119 // Lookup the entry, lazily creating it if necessary. 4120 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4121 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4122 if (Entry) { 4123 if (WeakRefReferences.erase(Entry)) { 4124 if (D && !D->hasAttr<WeakAttr>()) 4125 Entry->setLinkage(llvm::Function::ExternalLinkage); 4126 } 4127 4128 // Handle dropped DLL attributes. 4129 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4130 !shouldMapVisibilityToDLLExport(D)) 4131 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4132 4133 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4134 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4135 4136 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4137 return Entry; 4138 4139 // If there are two attempts to define the same mangled name, issue an 4140 // error. 4141 if (IsForDefinition && !Entry->isDeclaration()) { 4142 GlobalDecl OtherGD; 4143 const VarDecl *OtherD; 4144 4145 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4146 // to make sure that we issue an error only once. 4147 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4148 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4149 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4150 OtherD->hasInit() && 4151 DiagnosedConflictingDefinitions.insert(D).second) { 4152 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4153 << MangledName; 4154 getDiags().Report(OtherGD.getDecl()->getLocation(), 4155 diag::note_previous_definition); 4156 } 4157 } 4158 4159 // Make sure the result is of the correct type. 4160 if (Entry->getType()->getAddressSpace() != TargetAS) { 4161 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4162 Ty->getPointerTo(TargetAS)); 4163 } 4164 4165 // (If global is requested for a definition, we always need to create a new 4166 // global, not just return a bitcast.) 4167 if (!IsForDefinition) 4168 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4169 } 4170 4171 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4172 4173 auto *GV = new llvm::GlobalVariable( 4174 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4175 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4176 getContext().getTargetAddressSpace(DAddrSpace)); 4177 4178 // If we already created a global with the same mangled name (but different 4179 // type) before, take its name and remove it from its parent. 4180 if (Entry) { 4181 GV->takeName(Entry); 4182 4183 if (!Entry->use_empty()) { 4184 llvm::Constant *NewPtrForOldDecl = 4185 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4186 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4187 } 4188 4189 Entry->eraseFromParent(); 4190 } 4191 4192 // This is the first use or definition of a mangled name. If there is a 4193 // deferred decl with this name, remember that we need to emit it at the end 4194 // of the file. 4195 auto DDI = DeferredDecls.find(MangledName); 4196 if (DDI != DeferredDecls.end()) { 4197 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4198 // list, and remove it from DeferredDecls (since we don't need it anymore). 4199 addDeferredDeclToEmit(DDI->second); 4200 DeferredDecls.erase(DDI); 4201 } 4202 4203 // Handle things which are present even on external declarations. 4204 if (D) { 4205 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4206 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4207 4208 // FIXME: This code is overly simple and should be merged with other global 4209 // handling. 4210 GV->setConstant(isTypeConstant(D->getType(), false)); 4211 4212 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4213 4214 setLinkageForGV(GV, D); 4215 4216 if (D->getTLSKind()) { 4217 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4218 CXXThreadLocals.push_back(D); 4219 setTLSMode(GV, *D); 4220 } 4221 4222 setGVProperties(GV, D); 4223 4224 // If required by the ABI, treat declarations of static data members with 4225 // inline initializers as definitions. 4226 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4227 EmitGlobalVarDefinition(D); 4228 } 4229 4230 // Emit section information for extern variables. 4231 if (D->hasExternalStorage()) { 4232 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4233 GV->setSection(SA->getName()); 4234 } 4235 4236 // Handle XCore specific ABI requirements. 4237 if (getTriple().getArch() == llvm::Triple::xcore && 4238 D->getLanguageLinkage() == CLanguageLinkage && 4239 D->getType().isConstant(Context) && 4240 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4241 GV->setSection(".cp.rodata"); 4242 4243 // Check if we a have a const declaration with an initializer, we may be 4244 // able to emit it as available_externally to expose it's value to the 4245 // optimizer. 4246 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4247 D->getType().isConstQualified() && !GV->hasInitializer() && 4248 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4249 const auto *Record = 4250 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4251 bool HasMutableFields = Record && Record->hasMutableFields(); 4252 if (!HasMutableFields) { 4253 const VarDecl *InitDecl; 4254 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4255 if (InitExpr) { 4256 ConstantEmitter emitter(*this); 4257 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4258 if (Init) { 4259 auto *InitType = Init->getType(); 4260 if (GV->getValueType() != InitType) { 4261 // The type of the initializer does not match the definition. 4262 // This happens when an initializer has a different type from 4263 // the type of the global (because of padding at the end of a 4264 // structure for instance). 4265 GV->setName(StringRef()); 4266 // Make a new global with the correct type, this is now guaranteed 4267 // to work. 4268 auto *NewGV = cast<llvm::GlobalVariable>( 4269 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4270 ->stripPointerCasts()); 4271 4272 // Erase the old global, since it is no longer used. 4273 GV->eraseFromParent(); 4274 GV = NewGV; 4275 } else { 4276 GV->setInitializer(Init); 4277 GV->setConstant(true); 4278 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4279 } 4280 emitter.finalize(GV); 4281 } 4282 } 4283 } 4284 } 4285 } 4286 4287 if (GV->isDeclaration()) { 4288 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4289 // External HIP managed variables needed to be recorded for transformation 4290 // in both device and host compilations. 4291 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4292 D->hasExternalStorage()) 4293 getCUDARuntime().handleVarRegistration(D, *GV); 4294 } 4295 4296 LangAS ExpectedAS = 4297 D ? D->getType().getAddressSpace() 4298 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4299 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4300 if (DAddrSpace != ExpectedAS) { 4301 return getTargetCodeGenInfo().performAddrSpaceCast( 4302 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4303 } 4304 4305 return GV; 4306 } 4307 4308 llvm::Constant * 4309 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4310 const Decl *D = GD.getDecl(); 4311 4312 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4313 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4314 /*DontDefer=*/false, IsForDefinition); 4315 4316 if (isa<CXXMethodDecl>(D)) { 4317 auto FInfo = 4318 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4319 auto Ty = getTypes().GetFunctionType(*FInfo); 4320 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4321 IsForDefinition); 4322 } 4323 4324 if (isa<FunctionDecl>(D)) { 4325 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4326 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4327 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4328 IsForDefinition); 4329 } 4330 4331 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4332 } 4333 4334 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4335 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4336 unsigned Alignment) { 4337 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4338 llvm::GlobalVariable *OldGV = nullptr; 4339 4340 if (GV) { 4341 // Check if the variable has the right type. 4342 if (GV->getValueType() == Ty) 4343 return GV; 4344 4345 // Because C++ name mangling, the only way we can end up with an already 4346 // existing global with the same name is if it has been declared extern "C". 4347 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4348 OldGV = GV; 4349 } 4350 4351 // Create a new variable. 4352 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4353 Linkage, nullptr, Name); 4354 4355 if (OldGV) { 4356 // Replace occurrences of the old variable if needed. 4357 GV->takeName(OldGV); 4358 4359 if (!OldGV->use_empty()) { 4360 llvm::Constant *NewPtrForOldDecl = 4361 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4362 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4363 } 4364 4365 OldGV->eraseFromParent(); 4366 } 4367 4368 if (supportsCOMDAT() && GV->isWeakForLinker() && 4369 !GV->hasAvailableExternallyLinkage()) 4370 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4371 4372 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4373 4374 return GV; 4375 } 4376 4377 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4378 /// given global variable. If Ty is non-null and if the global doesn't exist, 4379 /// then it will be created with the specified type instead of whatever the 4380 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4381 /// that an actual global with type Ty will be returned, not conversion of a 4382 /// variable with the same mangled name but some other type. 4383 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4384 llvm::Type *Ty, 4385 ForDefinition_t IsForDefinition) { 4386 assert(D->hasGlobalStorage() && "Not a global variable"); 4387 QualType ASTTy = D->getType(); 4388 if (!Ty) 4389 Ty = getTypes().ConvertTypeForMem(ASTTy); 4390 4391 StringRef MangledName = getMangledName(D); 4392 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4393 IsForDefinition); 4394 } 4395 4396 /// CreateRuntimeVariable - Create a new runtime global variable with the 4397 /// specified type and name. 4398 llvm::Constant * 4399 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4400 StringRef Name) { 4401 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4402 : LangAS::Default; 4403 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4404 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4405 return Ret; 4406 } 4407 4408 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4409 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4410 4411 StringRef MangledName = getMangledName(D); 4412 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4413 4414 // We already have a definition, not declaration, with the same mangled name. 4415 // Emitting of declaration is not required (and actually overwrites emitted 4416 // definition). 4417 if (GV && !GV->isDeclaration()) 4418 return; 4419 4420 // If we have not seen a reference to this variable yet, place it into the 4421 // deferred declarations table to be emitted if needed later. 4422 if (!MustBeEmitted(D) && !GV) { 4423 DeferredDecls[MangledName] = D; 4424 return; 4425 } 4426 4427 // The tentative definition is the only definition. 4428 EmitGlobalVarDefinition(D); 4429 } 4430 4431 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4432 EmitExternalVarDeclaration(D); 4433 } 4434 4435 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4436 return Context.toCharUnitsFromBits( 4437 getDataLayout().getTypeStoreSizeInBits(Ty)); 4438 } 4439 4440 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4441 if (LangOpts.OpenCL) { 4442 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4443 assert(AS == LangAS::opencl_global || 4444 AS == LangAS::opencl_global_device || 4445 AS == LangAS::opencl_global_host || 4446 AS == LangAS::opencl_constant || 4447 AS == LangAS::opencl_local || 4448 AS >= LangAS::FirstTargetAddressSpace); 4449 return AS; 4450 } 4451 4452 if (LangOpts.SYCLIsDevice && 4453 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4454 return LangAS::sycl_global; 4455 4456 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4457 if (D && D->hasAttr<CUDAConstantAttr>()) 4458 return LangAS::cuda_constant; 4459 else if (D && D->hasAttr<CUDASharedAttr>()) 4460 return LangAS::cuda_shared; 4461 else if (D && D->hasAttr<CUDADeviceAttr>()) 4462 return LangAS::cuda_device; 4463 else if (D && D->getType().isConstQualified()) 4464 return LangAS::cuda_constant; 4465 else 4466 return LangAS::cuda_device; 4467 } 4468 4469 if (LangOpts.OpenMP) { 4470 LangAS AS; 4471 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4472 return AS; 4473 } 4474 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4475 } 4476 4477 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4478 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4479 if (LangOpts.OpenCL) 4480 return LangAS::opencl_constant; 4481 if (LangOpts.SYCLIsDevice) 4482 return LangAS::sycl_global; 4483 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4484 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4485 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4486 // with OpVariable instructions with Generic storage class which is not 4487 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4488 // UniformConstant storage class is not viable as pointers to it may not be 4489 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4490 return LangAS::cuda_device; 4491 if (auto AS = getTarget().getConstantAddressSpace()) 4492 return *AS; 4493 return LangAS::Default; 4494 } 4495 4496 // In address space agnostic languages, string literals are in default address 4497 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4498 // emitted in constant address space in LLVM IR. To be consistent with other 4499 // parts of AST, string literal global variables in constant address space 4500 // need to be casted to default address space before being put into address 4501 // map and referenced by other part of CodeGen. 4502 // In OpenCL, string literals are in constant address space in AST, therefore 4503 // they should not be casted to default address space. 4504 static llvm::Constant * 4505 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4506 llvm::GlobalVariable *GV) { 4507 llvm::Constant *Cast = GV; 4508 if (!CGM.getLangOpts().OpenCL) { 4509 auto AS = CGM.GetGlobalConstantAddressSpace(); 4510 if (AS != LangAS::Default) 4511 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4512 CGM, GV, AS, LangAS::Default, 4513 GV->getValueType()->getPointerTo( 4514 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4515 } 4516 return Cast; 4517 } 4518 4519 template<typename SomeDecl> 4520 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4521 llvm::GlobalValue *GV) { 4522 if (!getLangOpts().CPlusPlus) 4523 return; 4524 4525 // Must have 'used' attribute, or else inline assembly can't rely on 4526 // the name existing. 4527 if (!D->template hasAttr<UsedAttr>()) 4528 return; 4529 4530 // Must have internal linkage and an ordinary name. 4531 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4532 return; 4533 4534 // Must be in an extern "C" context. Entities declared directly within 4535 // a record are not extern "C" even if the record is in such a context. 4536 const SomeDecl *First = D->getFirstDecl(); 4537 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4538 return; 4539 4540 // OK, this is an internal linkage entity inside an extern "C" linkage 4541 // specification. Make a note of that so we can give it the "expected" 4542 // mangled name if nothing else is using that name. 4543 std::pair<StaticExternCMap::iterator, bool> R = 4544 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4545 4546 // If we have multiple internal linkage entities with the same name 4547 // in extern "C" regions, none of them gets that name. 4548 if (!R.second) 4549 R.first->second = nullptr; 4550 } 4551 4552 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4553 if (!CGM.supportsCOMDAT()) 4554 return false; 4555 4556 if (D.hasAttr<SelectAnyAttr>()) 4557 return true; 4558 4559 GVALinkage Linkage; 4560 if (auto *VD = dyn_cast<VarDecl>(&D)) 4561 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4562 else 4563 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4564 4565 switch (Linkage) { 4566 case GVA_Internal: 4567 case GVA_AvailableExternally: 4568 case GVA_StrongExternal: 4569 return false; 4570 case GVA_DiscardableODR: 4571 case GVA_StrongODR: 4572 return true; 4573 } 4574 llvm_unreachable("No such linkage"); 4575 } 4576 4577 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4578 llvm::GlobalObject &GO) { 4579 if (!shouldBeInCOMDAT(*this, D)) 4580 return; 4581 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4582 } 4583 4584 /// Pass IsTentative as true if you want to create a tentative definition. 4585 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4586 bool IsTentative) { 4587 // OpenCL global variables of sampler type are translated to function calls, 4588 // therefore no need to be translated. 4589 QualType ASTTy = D->getType(); 4590 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4591 return; 4592 4593 // If this is OpenMP device, check if it is legal to emit this global 4594 // normally. 4595 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4596 OpenMPRuntime->emitTargetGlobalVariable(D)) 4597 return; 4598 4599 llvm::TrackingVH<llvm::Constant> Init; 4600 bool NeedsGlobalCtor = false; 4601 bool NeedsGlobalDtor = 4602 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4603 4604 const VarDecl *InitDecl; 4605 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4606 4607 Optional<ConstantEmitter> emitter; 4608 4609 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4610 // as part of their declaration." Sema has already checked for 4611 // error cases, so we just need to set Init to UndefValue. 4612 bool IsCUDASharedVar = 4613 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4614 // Shadows of initialized device-side global variables are also left 4615 // undefined. 4616 // Managed Variables should be initialized on both host side and device side. 4617 bool IsCUDAShadowVar = 4618 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4619 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4620 D->hasAttr<CUDASharedAttr>()); 4621 bool IsCUDADeviceShadowVar = 4622 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4623 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4624 D->getType()->isCUDADeviceBuiltinTextureType()); 4625 if (getLangOpts().CUDA && 4626 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4627 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4628 else if (D->hasAttr<LoaderUninitializedAttr>()) 4629 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4630 else if (!InitExpr) { 4631 // This is a tentative definition; tentative definitions are 4632 // implicitly initialized with { 0 }. 4633 // 4634 // Note that tentative definitions are only emitted at the end of 4635 // a translation unit, so they should never have incomplete 4636 // type. In addition, EmitTentativeDefinition makes sure that we 4637 // never attempt to emit a tentative definition if a real one 4638 // exists. A use may still exists, however, so we still may need 4639 // to do a RAUW. 4640 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4641 Init = EmitNullConstant(D->getType()); 4642 } else { 4643 initializedGlobalDecl = GlobalDecl(D); 4644 emitter.emplace(*this); 4645 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4646 if (!Initializer) { 4647 QualType T = InitExpr->getType(); 4648 if (D->getType()->isReferenceType()) 4649 T = D->getType(); 4650 4651 if (getLangOpts().CPlusPlus) { 4652 if (InitDecl->hasFlexibleArrayInit(getContext())) 4653 ErrorUnsupported(D, "flexible array initializer"); 4654 Init = EmitNullConstant(T); 4655 NeedsGlobalCtor = true; 4656 } else { 4657 ErrorUnsupported(D, "static initializer"); 4658 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4659 } 4660 } else { 4661 Init = Initializer; 4662 // We don't need an initializer, so remove the entry for the delayed 4663 // initializer position (just in case this entry was delayed) if we 4664 // also don't need to register a destructor. 4665 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4666 DelayedCXXInitPosition.erase(D); 4667 4668 #ifndef NDEBUG 4669 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4670 InitDecl->getFlexibleArrayInitChars(getContext()); 4671 CharUnits CstSize = CharUnits::fromQuantity( 4672 getDataLayout().getTypeAllocSize(Init->getType())); 4673 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4674 #endif 4675 } 4676 } 4677 4678 llvm::Type* InitType = Init->getType(); 4679 llvm::Constant *Entry = 4680 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4681 4682 // Strip off pointer casts if we got them. 4683 Entry = Entry->stripPointerCasts(); 4684 4685 // Entry is now either a Function or GlobalVariable. 4686 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4687 4688 // We have a definition after a declaration with the wrong type. 4689 // We must make a new GlobalVariable* and update everything that used OldGV 4690 // (a declaration or tentative definition) with the new GlobalVariable* 4691 // (which will be a definition). 4692 // 4693 // This happens if there is a prototype for a global (e.g. 4694 // "extern int x[];") and then a definition of a different type (e.g. 4695 // "int x[10];"). This also happens when an initializer has a different type 4696 // from the type of the global (this happens with unions). 4697 if (!GV || GV->getValueType() != InitType || 4698 GV->getType()->getAddressSpace() != 4699 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4700 4701 // Move the old entry aside so that we'll create a new one. 4702 Entry->setName(StringRef()); 4703 4704 // Make a new global with the correct type, this is now guaranteed to work. 4705 GV = cast<llvm::GlobalVariable>( 4706 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4707 ->stripPointerCasts()); 4708 4709 // Replace all uses of the old global with the new global 4710 llvm::Constant *NewPtrForOldDecl = 4711 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4712 Entry->getType()); 4713 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4714 4715 // Erase the old global, since it is no longer used. 4716 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4717 } 4718 4719 MaybeHandleStaticInExternC(D, GV); 4720 4721 if (D->hasAttr<AnnotateAttr>()) 4722 AddGlobalAnnotations(D, GV); 4723 4724 // Set the llvm linkage type as appropriate. 4725 llvm::GlobalValue::LinkageTypes Linkage = 4726 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4727 4728 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4729 // the device. [...]" 4730 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4731 // __device__, declares a variable that: [...] 4732 // Is accessible from all the threads within the grid and from the host 4733 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4734 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4735 if (GV && LangOpts.CUDA) { 4736 if (LangOpts.CUDAIsDevice) { 4737 if (Linkage != llvm::GlobalValue::InternalLinkage && 4738 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4739 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4740 D->getType()->isCUDADeviceBuiltinTextureType())) 4741 GV->setExternallyInitialized(true); 4742 } else { 4743 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4744 } 4745 getCUDARuntime().handleVarRegistration(D, *GV); 4746 } 4747 4748 GV->setInitializer(Init); 4749 if (emitter) 4750 emitter->finalize(GV); 4751 4752 // If it is safe to mark the global 'constant', do so now. 4753 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4754 isTypeConstant(D->getType(), true)); 4755 4756 // If it is in a read-only section, mark it 'constant'. 4757 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4758 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4759 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4760 GV->setConstant(true); 4761 } 4762 4763 CharUnits AlignVal = getContext().getDeclAlign(D); 4764 // Check for alignment specifed in an 'omp allocate' directive. 4765 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4766 getOMPAllocateAlignment(D)) 4767 AlignVal = *AlignValFromAllocate; 4768 GV->setAlignment(AlignVal.getAsAlign()); 4769 4770 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4771 // function is only defined alongside the variable, not also alongside 4772 // callers. Normally, all accesses to a thread_local go through the 4773 // thread-wrapper in order to ensure initialization has occurred, underlying 4774 // variable will never be used other than the thread-wrapper, so it can be 4775 // converted to internal linkage. 4776 // 4777 // However, if the variable has the 'constinit' attribute, it _can_ be 4778 // referenced directly, without calling the thread-wrapper, so the linkage 4779 // must not be changed. 4780 // 4781 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4782 // weak or linkonce, the de-duplication semantics are important to preserve, 4783 // so we don't change the linkage. 4784 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4785 Linkage == llvm::GlobalValue::ExternalLinkage && 4786 Context.getTargetInfo().getTriple().isOSDarwin() && 4787 !D->hasAttr<ConstInitAttr>()) 4788 Linkage = llvm::GlobalValue::InternalLinkage; 4789 4790 GV->setLinkage(Linkage); 4791 if (D->hasAttr<DLLImportAttr>()) 4792 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4793 else if (D->hasAttr<DLLExportAttr>()) 4794 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4795 else 4796 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4797 4798 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4799 // common vars aren't constant even if declared const. 4800 GV->setConstant(false); 4801 // Tentative definition of global variables may be initialized with 4802 // non-zero null pointers. In this case they should have weak linkage 4803 // since common linkage must have zero initializer and must not have 4804 // explicit section therefore cannot have non-zero initial value. 4805 if (!GV->getInitializer()->isNullValue()) 4806 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4807 } 4808 4809 setNonAliasAttributes(D, GV); 4810 4811 if (D->getTLSKind() && !GV->isThreadLocal()) { 4812 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4813 CXXThreadLocals.push_back(D); 4814 setTLSMode(GV, *D); 4815 } 4816 4817 maybeSetTrivialComdat(*D, *GV); 4818 4819 // Emit the initializer function if necessary. 4820 if (NeedsGlobalCtor || NeedsGlobalDtor) 4821 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4822 4823 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 4824 4825 // Emit global variable debug information. 4826 if (CGDebugInfo *DI = getModuleDebugInfo()) 4827 if (getCodeGenOpts().hasReducedDebugInfo()) 4828 DI->EmitGlobalVariable(GV, D); 4829 } 4830 4831 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4832 if (CGDebugInfo *DI = getModuleDebugInfo()) 4833 if (getCodeGenOpts().hasReducedDebugInfo()) { 4834 QualType ASTTy = D->getType(); 4835 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4836 llvm::Constant *GV = 4837 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4838 DI->EmitExternalVariable( 4839 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4840 } 4841 } 4842 4843 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4844 CodeGenModule &CGM, const VarDecl *D, 4845 bool NoCommon) { 4846 // Don't give variables common linkage if -fno-common was specified unless it 4847 // was overridden by a NoCommon attribute. 4848 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4849 return true; 4850 4851 // C11 6.9.2/2: 4852 // A declaration of an identifier for an object that has file scope without 4853 // an initializer, and without a storage-class specifier or with the 4854 // storage-class specifier static, constitutes a tentative definition. 4855 if (D->getInit() || D->hasExternalStorage()) 4856 return true; 4857 4858 // A variable cannot be both common and exist in a section. 4859 if (D->hasAttr<SectionAttr>()) 4860 return true; 4861 4862 // A variable cannot be both common and exist in a section. 4863 // We don't try to determine which is the right section in the front-end. 4864 // If no specialized section name is applicable, it will resort to default. 4865 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4866 D->hasAttr<PragmaClangDataSectionAttr>() || 4867 D->hasAttr<PragmaClangRelroSectionAttr>() || 4868 D->hasAttr<PragmaClangRodataSectionAttr>()) 4869 return true; 4870 4871 // Thread local vars aren't considered common linkage. 4872 if (D->getTLSKind()) 4873 return true; 4874 4875 // Tentative definitions marked with WeakImportAttr are true definitions. 4876 if (D->hasAttr<WeakImportAttr>()) 4877 return true; 4878 4879 // A variable cannot be both common and exist in a comdat. 4880 if (shouldBeInCOMDAT(CGM, *D)) 4881 return true; 4882 4883 // Declarations with a required alignment do not have common linkage in MSVC 4884 // mode. 4885 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4886 if (D->hasAttr<AlignedAttr>()) 4887 return true; 4888 QualType VarType = D->getType(); 4889 if (Context.isAlignmentRequired(VarType)) 4890 return true; 4891 4892 if (const auto *RT = VarType->getAs<RecordType>()) { 4893 const RecordDecl *RD = RT->getDecl(); 4894 for (const FieldDecl *FD : RD->fields()) { 4895 if (FD->isBitField()) 4896 continue; 4897 if (FD->hasAttr<AlignedAttr>()) 4898 return true; 4899 if (Context.isAlignmentRequired(FD->getType())) 4900 return true; 4901 } 4902 } 4903 } 4904 4905 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4906 // common symbols, so symbols with greater alignment requirements cannot be 4907 // common. 4908 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4909 // alignments for common symbols via the aligncomm directive, so this 4910 // restriction only applies to MSVC environments. 4911 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4912 Context.getTypeAlignIfKnown(D->getType()) > 4913 Context.toBits(CharUnits::fromQuantity(32))) 4914 return true; 4915 4916 return false; 4917 } 4918 4919 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4920 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4921 if (Linkage == GVA_Internal) 4922 return llvm::Function::InternalLinkage; 4923 4924 if (D->hasAttr<WeakAttr>()) 4925 return llvm::GlobalVariable::WeakAnyLinkage; 4926 4927 if (const auto *FD = D->getAsFunction()) 4928 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4929 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4930 4931 // We are guaranteed to have a strong definition somewhere else, 4932 // so we can use available_externally linkage. 4933 if (Linkage == GVA_AvailableExternally) 4934 return llvm::GlobalValue::AvailableExternallyLinkage; 4935 4936 // Note that Apple's kernel linker doesn't support symbol 4937 // coalescing, so we need to avoid linkonce and weak linkages there. 4938 // Normally, this means we just map to internal, but for explicit 4939 // instantiations we'll map to external. 4940 4941 // In C++, the compiler has to emit a definition in every translation unit 4942 // that references the function. We should use linkonce_odr because 4943 // a) if all references in this translation unit are optimized away, we 4944 // don't need to codegen it. b) if the function persists, it needs to be 4945 // merged with other definitions. c) C++ has the ODR, so we know the 4946 // definition is dependable. 4947 if (Linkage == GVA_DiscardableODR) 4948 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4949 : llvm::Function::InternalLinkage; 4950 4951 // An explicit instantiation of a template has weak linkage, since 4952 // explicit instantiations can occur in multiple translation units 4953 // and must all be equivalent. However, we are not allowed to 4954 // throw away these explicit instantiations. 4955 // 4956 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4957 // so say that CUDA templates are either external (for kernels) or internal. 4958 // This lets llvm perform aggressive inter-procedural optimizations. For 4959 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4960 // therefore we need to follow the normal linkage paradigm. 4961 if (Linkage == GVA_StrongODR) { 4962 if (getLangOpts().AppleKext) 4963 return llvm::Function::ExternalLinkage; 4964 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4965 !getLangOpts().GPURelocatableDeviceCode) 4966 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4967 : llvm::Function::InternalLinkage; 4968 return llvm::Function::WeakODRLinkage; 4969 } 4970 4971 // C++ doesn't have tentative definitions and thus cannot have common 4972 // linkage. 4973 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4974 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4975 CodeGenOpts.NoCommon)) 4976 return llvm::GlobalVariable::CommonLinkage; 4977 4978 // selectany symbols are externally visible, so use weak instead of 4979 // linkonce. MSVC optimizes away references to const selectany globals, so 4980 // all definitions should be the same and ODR linkage should be used. 4981 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4982 if (D->hasAttr<SelectAnyAttr>()) 4983 return llvm::GlobalVariable::WeakODRLinkage; 4984 4985 // Otherwise, we have strong external linkage. 4986 assert(Linkage == GVA_StrongExternal); 4987 return llvm::GlobalVariable::ExternalLinkage; 4988 } 4989 4990 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4991 const VarDecl *VD, bool IsConstant) { 4992 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4993 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4994 } 4995 4996 /// Replace the uses of a function that was declared with a non-proto type. 4997 /// We want to silently drop extra arguments from call sites 4998 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4999 llvm::Function *newFn) { 5000 // Fast path. 5001 if (old->use_empty()) return; 5002 5003 llvm::Type *newRetTy = newFn->getReturnType(); 5004 SmallVector<llvm::Value*, 4> newArgs; 5005 5006 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5007 ui != ue; ) { 5008 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5009 llvm::User *user = use->getUser(); 5010 5011 // Recognize and replace uses of bitcasts. Most calls to 5012 // unprototyped functions will use bitcasts. 5013 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5014 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5015 replaceUsesOfNonProtoConstant(bitcast, newFn); 5016 continue; 5017 } 5018 5019 // Recognize calls to the function. 5020 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5021 if (!callSite) continue; 5022 if (!callSite->isCallee(&*use)) 5023 continue; 5024 5025 // If the return types don't match exactly, then we can't 5026 // transform this call unless it's dead. 5027 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5028 continue; 5029 5030 // Get the call site's attribute list. 5031 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5032 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5033 5034 // If the function was passed too few arguments, don't transform. 5035 unsigned newNumArgs = newFn->arg_size(); 5036 if (callSite->arg_size() < newNumArgs) 5037 continue; 5038 5039 // If extra arguments were passed, we silently drop them. 5040 // If any of the types mismatch, we don't transform. 5041 unsigned argNo = 0; 5042 bool dontTransform = false; 5043 for (llvm::Argument &A : newFn->args()) { 5044 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5045 dontTransform = true; 5046 break; 5047 } 5048 5049 // Add any parameter attributes. 5050 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5051 argNo++; 5052 } 5053 if (dontTransform) 5054 continue; 5055 5056 // Okay, we can transform this. Create the new call instruction and copy 5057 // over the required information. 5058 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5059 5060 // Copy over any operand bundles. 5061 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5062 callSite->getOperandBundlesAsDefs(newBundles); 5063 5064 llvm::CallBase *newCall; 5065 if (isa<llvm::CallInst>(callSite)) { 5066 newCall = 5067 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5068 } else { 5069 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5070 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5071 oldInvoke->getUnwindDest(), newArgs, 5072 newBundles, "", callSite); 5073 } 5074 newArgs.clear(); // for the next iteration 5075 5076 if (!newCall->getType()->isVoidTy()) 5077 newCall->takeName(callSite); 5078 newCall->setAttributes( 5079 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5080 oldAttrs.getRetAttrs(), newArgAttrs)); 5081 newCall->setCallingConv(callSite->getCallingConv()); 5082 5083 // Finally, remove the old call, replacing any uses with the new one. 5084 if (!callSite->use_empty()) 5085 callSite->replaceAllUsesWith(newCall); 5086 5087 // Copy debug location attached to CI. 5088 if (callSite->getDebugLoc()) 5089 newCall->setDebugLoc(callSite->getDebugLoc()); 5090 5091 callSite->eraseFromParent(); 5092 } 5093 } 5094 5095 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5096 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5097 /// existing call uses of the old function in the module, this adjusts them to 5098 /// call the new function directly. 5099 /// 5100 /// This is not just a cleanup: the always_inline pass requires direct calls to 5101 /// functions to be able to inline them. If there is a bitcast in the way, it 5102 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5103 /// run at -O0. 5104 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5105 llvm::Function *NewFn) { 5106 // If we're redefining a global as a function, don't transform it. 5107 if (!isa<llvm::Function>(Old)) return; 5108 5109 replaceUsesOfNonProtoConstant(Old, NewFn); 5110 } 5111 5112 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5113 auto DK = VD->isThisDeclarationADefinition(); 5114 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5115 return; 5116 5117 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5118 // If we have a definition, this might be a deferred decl. If the 5119 // instantiation is explicit, make sure we emit it at the end. 5120 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5121 GetAddrOfGlobalVar(VD); 5122 5123 EmitTopLevelDecl(VD); 5124 } 5125 5126 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5127 llvm::GlobalValue *GV) { 5128 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5129 5130 // Compute the function info and LLVM type. 5131 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5132 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5133 5134 // Get or create the prototype for the function. 5135 if (!GV || (GV->getValueType() != Ty)) 5136 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5137 /*DontDefer=*/true, 5138 ForDefinition)); 5139 5140 // Already emitted. 5141 if (!GV->isDeclaration()) 5142 return; 5143 5144 // We need to set linkage and visibility on the function before 5145 // generating code for it because various parts of IR generation 5146 // want to propagate this information down (e.g. to local static 5147 // declarations). 5148 auto *Fn = cast<llvm::Function>(GV); 5149 setFunctionLinkage(GD, Fn); 5150 5151 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5152 setGVProperties(Fn, GD); 5153 5154 MaybeHandleStaticInExternC(D, Fn); 5155 5156 maybeSetTrivialComdat(*D, *Fn); 5157 5158 // Set CodeGen attributes that represent floating point environment. 5159 setLLVMFunctionFEnvAttributes(D, Fn); 5160 5161 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5162 5163 setNonAliasAttributes(GD, Fn); 5164 SetLLVMFunctionAttributesForDefinition(D, Fn); 5165 5166 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5167 AddGlobalCtor(Fn, CA->getPriority()); 5168 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5169 AddGlobalDtor(Fn, DA->getPriority(), true); 5170 if (D->hasAttr<AnnotateAttr>()) 5171 AddGlobalAnnotations(D, Fn); 5172 } 5173 5174 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5175 const auto *D = cast<ValueDecl>(GD.getDecl()); 5176 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5177 assert(AA && "Not an alias?"); 5178 5179 StringRef MangledName = getMangledName(GD); 5180 5181 if (AA->getAliasee() == MangledName) { 5182 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5183 return; 5184 } 5185 5186 // If there is a definition in the module, then it wins over the alias. 5187 // This is dubious, but allow it to be safe. Just ignore the alias. 5188 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5189 if (Entry && !Entry->isDeclaration()) 5190 return; 5191 5192 Aliases.push_back(GD); 5193 5194 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5195 5196 // Create a reference to the named value. This ensures that it is emitted 5197 // if a deferred decl. 5198 llvm::Constant *Aliasee; 5199 llvm::GlobalValue::LinkageTypes LT; 5200 if (isa<llvm::FunctionType>(DeclTy)) { 5201 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5202 /*ForVTable=*/false); 5203 LT = getFunctionLinkage(GD); 5204 } else { 5205 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5206 /*D=*/nullptr); 5207 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5208 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5209 else 5210 LT = getFunctionLinkage(GD); 5211 } 5212 5213 // Create the new alias itself, but don't set a name yet. 5214 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5215 auto *GA = 5216 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5217 5218 if (Entry) { 5219 if (GA->getAliasee() == Entry) { 5220 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5221 return; 5222 } 5223 5224 assert(Entry->isDeclaration()); 5225 5226 // If there is a declaration in the module, then we had an extern followed 5227 // by the alias, as in: 5228 // extern int test6(); 5229 // ... 5230 // int test6() __attribute__((alias("test7"))); 5231 // 5232 // Remove it and replace uses of it with the alias. 5233 GA->takeName(Entry); 5234 5235 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5236 Entry->getType())); 5237 Entry->eraseFromParent(); 5238 } else { 5239 GA->setName(MangledName); 5240 } 5241 5242 // Set attributes which are particular to an alias; this is a 5243 // specialization of the attributes which may be set on a global 5244 // variable/function. 5245 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5246 D->isWeakImported()) { 5247 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5248 } 5249 5250 if (const auto *VD = dyn_cast<VarDecl>(D)) 5251 if (VD->getTLSKind()) 5252 setTLSMode(GA, *VD); 5253 5254 SetCommonAttributes(GD, GA); 5255 5256 // Emit global alias debug information. 5257 if (isa<VarDecl>(D)) 5258 if (CGDebugInfo *DI = getModuleDebugInfo()) 5259 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD); 5260 } 5261 5262 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5263 const auto *D = cast<ValueDecl>(GD.getDecl()); 5264 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5265 assert(IFA && "Not an ifunc?"); 5266 5267 StringRef MangledName = getMangledName(GD); 5268 5269 if (IFA->getResolver() == MangledName) { 5270 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5271 return; 5272 } 5273 5274 // Report an error if some definition overrides ifunc. 5275 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5276 if (Entry && !Entry->isDeclaration()) { 5277 GlobalDecl OtherGD; 5278 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5279 DiagnosedConflictingDefinitions.insert(GD).second) { 5280 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5281 << MangledName; 5282 Diags.Report(OtherGD.getDecl()->getLocation(), 5283 diag::note_previous_definition); 5284 } 5285 return; 5286 } 5287 5288 Aliases.push_back(GD); 5289 5290 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5291 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5292 llvm::Constant *Resolver = 5293 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5294 /*ForVTable=*/false); 5295 llvm::GlobalIFunc *GIF = 5296 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5297 "", Resolver, &getModule()); 5298 if (Entry) { 5299 if (GIF->getResolver() == Entry) { 5300 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5301 return; 5302 } 5303 assert(Entry->isDeclaration()); 5304 5305 // If there is a declaration in the module, then we had an extern followed 5306 // by the ifunc, as in: 5307 // extern int test(); 5308 // ... 5309 // int test() __attribute__((ifunc("resolver"))); 5310 // 5311 // Remove it and replace uses of it with the ifunc. 5312 GIF->takeName(Entry); 5313 5314 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5315 Entry->getType())); 5316 Entry->eraseFromParent(); 5317 } else 5318 GIF->setName(MangledName); 5319 5320 SetCommonAttributes(GD, GIF); 5321 } 5322 5323 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5324 ArrayRef<llvm::Type*> Tys) { 5325 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5326 Tys); 5327 } 5328 5329 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5330 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5331 const StringLiteral *Literal, bool TargetIsLSB, 5332 bool &IsUTF16, unsigned &StringLength) { 5333 StringRef String = Literal->getString(); 5334 unsigned NumBytes = String.size(); 5335 5336 // Check for simple case. 5337 if (!Literal->containsNonAsciiOrNull()) { 5338 StringLength = NumBytes; 5339 return *Map.insert(std::make_pair(String, nullptr)).first; 5340 } 5341 5342 // Otherwise, convert the UTF8 literals into a string of shorts. 5343 IsUTF16 = true; 5344 5345 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5346 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5347 llvm::UTF16 *ToPtr = &ToBuf[0]; 5348 5349 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5350 ToPtr + NumBytes, llvm::strictConversion); 5351 5352 // ConvertUTF8toUTF16 returns the length in ToPtr. 5353 StringLength = ToPtr - &ToBuf[0]; 5354 5355 // Add an explicit null. 5356 *ToPtr = 0; 5357 return *Map.insert(std::make_pair( 5358 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5359 (StringLength + 1) * 2), 5360 nullptr)).first; 5361 } 5362 5363 ConstantAddress 5364 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5365 unsigned StringLength = 0; 5366 bool isUTF16 = false; 5367 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5368 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5369 getDataLayout().isLittleEndian(), isUTF16, 5370 StringLength); 5371 5372 if (auto *C = Entry.second) 5373 return ConstantAddress( 5374 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5375 5376 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5377 llvm::Constant *Zeros[] = { Zero, Zero }; 5378 5379 const ASTContext &Context = getContext(); 5380 const llvm::Triple &Triple = getTriple(); 5381 5382 const auto CFRuntime = getLangOpts().CFRuntime; 5383 const bool IsSwiftABI = 5384 static_cast<unsigned>(CFRuntime) >= 5385 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5386 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5387 5388 // If we don't already have it, get __CFConstantStringClassReference. 5389 if (!CFConstantStringClassRef) { 5390 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5391 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5392 Ty = llvm::ArrayType::get(Ty, 0); 5393 5394 switch (CFRuntime) { 5395 default: break; 5396 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5397 case LangOptions::CoreFoundationABI::Swift5_0: 5398 CFConstantStringClassName = 5399 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5400 : "$s10Foundation19_NSCFConstantStringCN"; 5401 Ty = IntPtrTy; 5402 break; 5403 case LangOptions::CoreFoundationABI::Swift4_2: 5404 CFConstantStringClassName = 5405 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5406 : "$S10Foundation19_NSCFConstantStringCN"; 5407 Ty = IntPtrTy; 5408 break; 5409 case LangOptions::CoreFoundationABI::Swift4_1: 5410 CFConstantStringClassName = 5411 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5412 : "__T010Foundation19_NSCFConstantStringCN"; 5413 Ty = IntPtrTy; 5414 break; 5415 } 5416 5417 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5418 5419 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5420 llvm::GlobalValue *GV = nullptr; 5421 5422 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5423 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5424 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5425 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5426 5427 const VarDecl *VD = nullptr; 5428 for (const auto *Result : DC->lookup(&II)) 5429 if ((VD = dyn_cast<VarDecl>(Result))) 5430 break; 5431 5432 if (Triple.isOSBinFormatELF()) { 5433 if (!VD) 5434 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5435 } else { 5436 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5437 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5438 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5439 else 5440 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5441 } 5442 5443 setDSOLocal(GV); 5444 } 5445 } 5446 5447 // Decay array -> ptr 5448 CFConstantStringClassRef = 5449 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5450 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5451 } 5452 5453 QualType CFTy = Context.getCFConstantStringType(); 5454 5455 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5456 5457 ConstantInitBuilder Builder(*this); 5458 auto Fields = Builder.beginStruct(STy); 5459 5460 // Class pointer. 5461 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5462 5463 // Flags. 5464 if (IsSwiftABI) { 5465 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5466 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5467 } else { 5468 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5469 } 5470 5471 // String pointer. 5472 llvm::Constant *C = nullptr; 5473 if (isUTF16) { 5474 auto Arr = llvm::makeArrayRef( 5475 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5476 Entry.first().size() / 2); 5477 C = llvm::ConstantDataArray::get(VMContext, Arr); 5478 } else { 5479 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5480 } 5481 5482 // Note: -fwritable-strings doesn't make the backing store strings of 5483 // CFStrings writable. (See <rdar://problem/10657500>) 5484 auto *GV = 5485 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5486 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5487 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5488 // Don't enforce the target's minimum global alignment, since the only use 5489 // of the string is via this class initializer. 5490 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5491 : Context.getTypeAlignInChars(Context.CharTy); 5492 GV->setAlignment(Align.getAsAlign()); 5493 5494 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5495 // Without it LLVM can merge the string with a non unnamed_addr one during 5496 // LTO. Doing that changes the section it ends in, which surprises ld64. 5497 if (Triple.isOSBinFormatMachO()) 5498 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5499 : "__TEXT,__cstring,cstring_literals"); 5500 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5501 // the static linker to adjust permissions to read-only later on. 5502 else if (Triple.isOSBinFormatELF()) 5503 GV->setSection(".rodata"); 5504 5505 // String. 5506 llvm::Constant *Str = 5507 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5508 5509 if (isUTF16) 5510 // Cast the UTF16 string to the correct type. 5511 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5512 Fields.add(Str); 5513 5514 // String length. 5515 llvm::IntegerType *LengthTy = 5516 llvm::IntegerType::get(getModule().getContext(), 5517 Context.getTargetInfo().getLongWidth()); 5518 if (IsSwiftABI) { 5519 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5520 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5521 LengthTy = Int32Ty; 5522 else 5523 LengthTy = IntPtrTy; 5524 } 5525 Fields.addInt(LengthTy, StringLength); 5526 5527 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5528 // properly aligned on 32-bit platforms. 5529 CharUnits Alignment = 5530 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5531 5532 // The struct. 5533 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5534 /*isConstant=*/false, 5535 llvm::GlobalVariable::PrivateLinkage); 5536 GV->addAttribute("objc_arc_inert"); 5537 switch (Triple.getObjectFormat()) { 5538 case llvm::Triple::UnknownObjectFormat: 5539 llvm_unreachable("unknown file format"); 5540 case llvm::Triple::DXContainer: 5541 case llvm::Triple::GOFF: 5542 case llvm::Triple::SPIRV: 5543 case llvm::Triple::XCOFF: 5544 llvm_unreachable("unimplemented"); 5545 case llvm::Triple::COFF: 5546 case llvm::Triple::ELF: 5547 case llvm::Triple::Wasm: 5548 GV->setSection("cfstring"); 5549 break; 5550 case llvm::Triple::MachO: 5551 GV->setSection("__DATA,__cfstring"); 5552 break; 5553 } 5554 Entry.second = GV; 5555 5556 return ConstantAddress(GV, GV->getValueType(), Alignment); 5557 } 5558 5559 bool CodeGenModule::getExpressionLocationsEnabled() const { 5560 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5561 } 5562 5563 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5564 if (ObjCFastEnumerationStateType.isNull()) { 5565 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5566 D->startDefinition(); 5567 5568 QualType FieldTypes[] = { 5569 Context.UnsignedLongTy, 5570 Context.getPointerType(Context.getObjCIdType()), 5571 Context.getPointerType(Context.UnsignedLongTy), 5572 Context.getConstantArrayType(Context.UnsignedLongTy, 5573 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5574 }; 5575 5576 for (size_t i = 0; i < 4; ++i) { 5577 FieldDecl *Field = FieldDecl::Create(Context, 5578 D, 5579 SourceLocation(), 5580 SourceLocation(), nullptr, 5581 FieldTypes[i], /*TInfo=*/nullptr, 5582 /*BitWidth=*/nullptr, 5583 /*Mutable=*/false, 5584 ICIS_NoInit); 5585 Field->setAccess(AS_public); 5586 D->addDecl(Field); 5587 } 5588 5589 D->completeDefinition(); 5590 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5591 } 5592 5593 return ObjCFastEnumerationStateType; 5594 } 5595 5596 llvm::Constant * 5597 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5598 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5599 5600 // Don't emit it as the address of the string, emit the string data itself 5601 // as an inline array. 5602 if (E->getCharByteWidth() == 1) { 5603 SmallString<64> Str(E->getString()); 5604 5605 // Resize the string to the right size, which is indicated by its type. 5606 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5607 Str.resize(CAT->getSize().getZExtValue()); 5608 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5609 } 5610 5611 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5612 llvm::Type *ElemTy = AType->getElementType(); 5613 unsigned NumElements = AType->getNumElements(); 5614 5615 // Wide strings have either 2-byte or 4-byte elements. 5616 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5617 SmallVector<uint16_t, 32> Elements; 5618 Elements.reserve(NumElements); 5619 5620 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5621 Elements.push_back(E->getCodeUnit(i)); 5622 Elements.resize(NumElements); 5623 return llvm::ConstantDataArray::get(VMContext, Elements); 5624 } 5625 5626 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5627 SmallVector<uint32_t, 32> Elements; 5628 Elements.reserve(NumElements); 5629 5630 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5631 Elements.push_back(E->getCodeUnit(i)); 5632 Elements.resize(NumElements); 5633 return llvm::ConstantDataArray::get(VMContext, Elements); 5634 } 5635 5636 static llvm::GlobalVariable * 5637 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5638 CodeGenModule &CGM, StringRef GlobalName, 5639 CharUnits Alignment) { 5640 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5641 CGM.GetGlobalConstantAddressSpace()); 5642 5643 llvm::Module &M = CGM.getModule(); 5644 // Create a global variable for this string 5645 auto *GV = new llvm::GlobalVariable( 5646 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5647 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5648 GV->setAlignment(Alignment.getAsAlign()); 5649 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5650 if (GV->isWeakForLinker()) { 5651 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5652 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5653 } 5654 CGM.setDSOLocal(GV); 5655 5656 return GV; 5657 } 5658 5659 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5660 /// constant array for the given string literal. 5661 ConstantAddress 5662 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5663 StringRef Name) { 5664 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5665 5666 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5667 llvm::GlobalVariable **Entry = nullptr; 5668 if (!LangOpts.WritableStrings) { 5669 Entry = &ConstantStringMap[C]; 5670 if (auto GV = *Entry) { 5671 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5672 GV->setAlignment(Alignment.getAsAlign()); 5673 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5674 GV->getValueType(), Alignment); 5675 } 5676 } 5677 5678 SmallString<256> MangledNameBuffer; 5679 StringRef GlobalVariableName; 5680 llvm::GlobalValue::LinkageTypes LT; 5681 5682 // Mangle the string literal if that's how the ABI merges duplicate strings. 5683 // Don't do it if they are writable, since we don't want writes in one TU to 5684 // affect strings in another. 5685 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5686 !LangOpts.WritableStrings) { 5687 llvm::raw_svector_ostream Out(MangledNameBuffer); 5688 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5689 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5690 GlobalVariableName = MangledNameBuffer; 5691 } else { 5692 LT = llvm::GlobalValue::PrivateLinkage; 5693 GlobalVariableName = Name; 5694 } 5695 5696 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5697 5698 CGDebugInfo *DI = getModuleDebugInfo(); 5699 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5700 DI->AddStringLiteralDebugInfo(GV, S); 5701 5702 if (Entry) 5703 *Entry = GV; 5704 5705 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5706 5707 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5708 GV->getValueType(), Alignment); 5709 } 5710 5711 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5712 /// array for the given ObjCEncodeExpr node. 5713 ConstantAddress 5714 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5715 std::string Str; 5716 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5717 5718 return GetAddrOfConstantCString(Str); 5719 } 5720 5721 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5722 /// the literal and a terminating '\0' character. 5723 /// The result has pointer to array type. 5724 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5725 const std::string &Str, const char *GlobalName) { 5726 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5727 CharUnits Alignment = 5728 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5729 5730 llvm::Constant *C = 5731 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5732 5733 // Don't share any string literals if strings aren't constant. 5734 llvm::GlobalVariable **Entry = nullptr; 5735 if (!LangOpts.WritableStrings) { 5736 Entry = &ConstantStringMap[C]; 5737 if (auto GV = *Entry) { 5738 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5739 GV->setAlignment(Alignment.getAsAlign()); 5740 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5741 GV->getValueType(), Alignment); 5742 } 5743 } 5744 5745 // Get the default prefix if a name wasn't specified. 5746 if (!GlobalName) 5747 GlobalName = ".str"; 5748 // Create a global variable for this. 5749 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5750 GlobalName, Alignment); 5751 if (Entry) 5752 *Entry = GV; 5753 5754 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5755 GV->getValueType(), Alignment); 5756 } 5757 5758 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5759 const MaterializeTemporaryExpr *E, const Expr *Init) { 5760 assert((E->getStorageDuration() == SD_Static || 5761 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5762 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5763 5764 // If we're not materializing a subobject of the temporary, keep the 5765 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5766 QualType MaterializedType = Init->getType(); 5767 if (Init == E->getSubExpr()) 5768 MaterializedType = E->getType(); 5769 5770 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5771 5772 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5773 if (!InsertResult.second) { 5774 // We've seen this before: either we already created it or we're in the 5775 // process of doing so. 5776 if (!InsertResult.first->second) { 5777 // We recursively re-entered this function, probably during emission of 5778 // the initializer. Create a placeholder. We'll clean this up in the 5779 // outer call, at the end of this function. 5780 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5781 InsertResult.first->second = new llvm::GlobalVariable( 5782 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5783 nullptr); 5784 } 5785 return ConstantAddress(InsertResult.first->second, 5786 llvm::cast<llvm::GlobalVariable>( 5787 InsertResult.first->second->stripPointerCasts()) 5788 ->getValueType(), 5789 Align); 5790 } 5791 5792 // FIXME: If an externally-visible declaration extends multiple temporaries, 5793 // we need to give each temporary the same name in every translation unit (and 5794 // we also need to make the temporaries externally-visible). 5795 SmallString<256> Name; 5796 llvm::raw_svector_ostream Out(Name); 5797 getCXXABI().getMangleContext().mangleReferenceTemporary( 5798 VD, E->getManglingNumber(), Out); 5799 5800 APValue *Value = nullptr; 5801 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5802 // If the initializer of the extending declaration is a constant 5803 // initializer, we should have a cached constant initializer for this 5804 // temporary. Note that this might have a different value from the value 5805 // computed by evaluating the initializer if the surrounding constant 5806 // expression modifies the temporary. 5807 Value = E->getOrCreateValue(false); 5808 } 5809 5810 // Try evaluating it now, it might have a constant initializer. 5811 Expr::EvalResult EvalResult; 5812 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5813 !EvalResult.hasSideEffects()) 5814 Value = &EvalResult.Val; 5815 5816 LangAS AddrSpace = 5817 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5818 5819 Optional<ConstantEmitter> emitter; 5820 llvm::Constant *InitialValue = nullptr; 5821 bool Constant = false; 5822 llvm::Type *Type; 5823 if (Value) { 5824 // The temporary has a constant initializer, use it. 5825 emitter.emplace(*this); 5826 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5827 MaterializedType); 5828 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5829 Type = InitialValue->getType(); 5830 } else { 5831 // No initializer, the initialization will be provided when we 5832 // initialize the declaration which performed lifetime extension. 5833 Type = getTypes().ConvertTypeForMem(MaterializedType); 5834 } 5835 5836 // Create a global variable for this lifetime-extended temporary. 5837 llvm::GlobalValue::LinkageTypes Linkage = 5838 getLLVMLinkageVarDefinition(VD, Constant); 5839 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5840 const VarDecl *InitVD; 5841 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5842 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5843 // Temporaries defined inside a class get linkonce_odr linkage because the 5844 // class can be defined in multiple translation units. 5845 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5846 } else { 5847 // There is no need for this temporary to have external linkage if the 5848 // VarDecl has external linkage. 5849 Linkage = llvm::GlobalVariable::InternalLinkage; 5850 } 5851 } 5852 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5853 auto *GV = new llvm::GlobalVariable( 5854 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5855 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5856 if (emitter) emitter->finalize(GV); 5857 setGVProperties(GV, VD); 5858 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5859 // The reference temporary should never be dllexport. 5860 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5861 GV->setAlignment(Align.getAsAlign()); 5862 if (supportsCOMDAT() && GV->isWeakForLinker()) 5863 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5864 if (VD->getTLSKind()) 5865 setTLSMode(GV, *VD); 5866 llvm::Constant *CV = GV; 5867 if (AddrSpace != LangAS::Default) 5868 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5869 *this, GV, AddrSpace, LangAS::Default, 5870 Type->getPointerTo( 5871 getContext().getTargetAddressSpace(LangAS::Default))); 5872 5873 // Update the map with the new temporary. If we created a placeholder above, 5874 // replace it with the new global now. 5875 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5876 if (Entry) { 5877 Entry->replaceAllUsesWith( 5878 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5879 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5880 } 5881 Entry = CV; 5882 5883 return ConstantAddress(CV, Type, Align); 5884 } 5885 5886 /// EmitObjCPropertyImplementations - Emit information for synthesized 5887 /// properties for an implementation. 5888 void CodeGenModule::EmitObjCPropertyImplementations(const 5889 ObjCImplementationDecl *D) { 5890 for (const auto *PID : D->property_impls()) { 5891 // Dynamic is just for type-checking. 5892 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5893 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5894 5895 // Determine which methods need to be implemented, some may have 5896 // been overridden. Note that ::isPropertyAccessor is not the method 5897 // we want, that just indicates if the decl came from a 5898 // property. What we want to know is if the method is defined in 5899 // this implementation. 5900 auto *Getter = PID->getGetterMethodDecl(); 5901 if (!Getter || Getter->isSynthesizedAccessorStub()) 5902 CodeGenFunction(*this).GenerateObjCGetter( 5903 const_cast<ObjCImplementationDecl *>(D), PID); 5904 auto *Setter = PID->getSetterMethodDecl(); 5905 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5906 CodeGenFunction(*this).GenerateObjCSetter( 5907 const_cast<ObjCImplementationDecl *>(D), PID); 5908 } 5909 } 5910 } 5911 5912 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5913 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5914 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5915 ivar; ivar = ivar->getNextIvar()) 5916 if (ivar->getType().isDestructedType()) 5917 return true; 5918 5919 return false; 5920 } 5921 5922 static bool AllTrivialInitializers(CodeGenModule &CGM, 5923 ObjCImplementationDecl *D) { 5924 CodeGenFunction CGF(CGM); 5925 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5926 E = D->init_end(); B != E; ++B) { 5927 CXXCtorInitializer *CtorInitExp = *B; 5928 Expr *Init = CtorInitExp->getInit(); 5929 if (!CGF.isTrivialInitializer(Init)) 5930 return false; 5931 } 5932 return true; 5933 } 5934 5935 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5936 /// for an implementation. 5937 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5938 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5939 if (needsDestructMethod(D)) { 5940 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5941 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5942 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5943 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5944 getContext().VoidTy, nullptr, D, 5945 /*isInstance=*/true, /*isVariadic=*/false, 5946 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5947 /*isImplicitlyDeclared=*/true, 5948 /*isDefined=*/false, ObjCMethodDecl::Required); 5949 D->addInstanceMethod(DTORMethod); 5950 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5951 D->setHasDestructors(true); 5952 } 5953 5954 // If the implementation doesn't have any ivar initializers, we don't need 5955 // a .cxx_construct. 5956 if (D->getNumIvarInitializers() == 0 || 5957 AllTrivialInitializers(*this, D)) 5958 return; 5959 5960 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5961 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5962 // The constructor returns 'self'. 5963 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5964 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5965 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5966 /*isVariadic=*/false, 5967 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5968 /*isImplicitlyDeclared=*/true, 5969 /*isDefined=*/false, ObjCMethodDecl::Required); 5970 D->addInstanceMethod(CTORMethod); 5971 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5972 D->setHasNonZeroConstructors(true); 5973 } 5974 5975 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5976 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5977 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5978 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5979 ErrorUnsupported(LSD, "linkage spec"); 5980 return; 5981 } 5982 5983 EmitDeclContext(LSD); 5984 } 5985 5986 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5987 for (auto *I : DC->decls()) { 5988 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5989 // are themselves considered "top-level", so EmitTopLevelDecl on an 5990 // ObjCImplDecl does not recursively visit them. We need to do that in 5991 // case they're nested inside another construct (LinkageSpecDecl / 5992 // ExportDecl) that does stop them from being considered "top-level". 5993 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5994 for (auto *M : OID->methods()) 5995 EmitTopLevelDecl(M); 5996 } 5997 5998 EmitTopLevelDecl(I); 5999 } 6000 } 6001 6002 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6003 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6004 // Ignore dependent declarations. 6005 if (D->isTemplated()) 6006 return; 6007 6008 // Consteval function shouldn't be emitted. 6009 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6010 if (FD->isConsteval()) 6011 return; 6012 6013 switch (D->getKind()) { 6014 case Decl::CXXConversion: 6015 case Decl::CXXMethod: 6016 case Decl::Function: 6017 EmitGlobal(cast<FunctionDecl>(D)); 6018 // Always provide some coverage mapping 6019 // even for the functions that aren't emitted. 6020 AddDeferredUnusedCoverageMapping(D); 6021 break; 6022 6023 case Decl::CXXDeductionGuide: 6024 // Function-like, but does not result in code emission. 6025 break; 6026 6027 case Decl::Var: 6028 case Decl::Decomposition: 6029 case Decl::VarTemplateSpecialization: 6030 EmitGlobal(cast<VarDecl>(D)); 6031 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6032 for (auto *B : DD->bindings()) 6033 if (auto *HD = B->getHoldingVar()) 6034 EmitGlobal(HD); 6035 break; 6036 6037 // Indirect fields from global anonymous structs and unions can be 6038 // ignored; only the actual variable requires IR gen support. 6039 case Decl::IndirectField: 6040 break; 6041 6042 // C++ Decls 6043 case Decl::Namespace: 6044 EmitDeclContext(cast<NamespaceDecl>(D)); 6045 break; 6046 case Decl::ClassTemplateSpecialization: { 6047 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6048 if (CGDebugInfo *DI = getModuleDebugInfo()) 6049 if (Spec->getSpecializationKind() == 6050 TSK_ExplicitInstantiationDefinition && 6051 Spec->hasDefinition()) 6052 DI->completeTemplateDefinition(*Spec); 6053 } LLVM_FALLTHROUGH; 6054 case Decl::CXXRecord: { 6055 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6056 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6057 if (CRD->hasDefinition()) 6058 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6059 if (auto *ES = D->getASTContext().getExternalSource()) 6060 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6061 DI->completeUnusedClass(*CRD); 6062 } 6063 // Emit any static data members, they may be definitions. 6064 for (auto *I : CRD->decls()) 6065 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6066 EmitTopLevelDecl(I); 6067 break; 6068 } 6069 // No code generation needed. 6070 case Decl::UsingShadow: 6071 case Decl::ClassTemplate: 6072 case Decl::VarTemplate: 6073 case Decl::Concept: 6074 case Decl::VarTemplatePartialSpecialization: 6075 case Decl::FunctionTemplate: 6076 case Decl::TypeAliasTemplate: 6077 case Decl::Block: 6078 case Decl::Empty: 6079 case Decl::Binding: 6080 break; 6081 case Decl::Using: // using X; [C++] 6082 if (CGDebugInfo *DI = getModuleDebugInfo()) 6083 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6084 break; 6085 case Decl::UsingEnum: // using enum X; [C++] 6086 if (CGDebugInfo *DI = getModuleDebugInfo()) 6087 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6088 break; 6089 case Decl::NamespaceAlias: 6090 if (CGDebugInfo *DI = getModuleDebugInfo()) 6091 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6092 break; 6093 case Decl::UsingDirective: // using namespace X; [C++] 6094 if (CGDebugInfo *DI = getModuleDebugInfo()) 6095 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6096 break; 6097 case Decl::CXXConstructor: 6098 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6099 break; 6100 case Decl::CXXDestructor: 6101 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6102 break; 6103 6104 case Decl::StaticAssert: 6105 // Nothing to do. 6106 break; 6107 6108 // Objective-C Decls 6109 6110 // Forward declarations, no (immediate) code generation. 6111 case Decl::ObjCInterface: 6112 case Decl::ObjCCategory: 6113 break; 6114 6115 case Decl::ObjCProtocol: { 6116 auto *Proto = cast<ObjCProtocolDecl>(D); 6117 if (Proto->isThisDeclarationADefinition()) 6118 ObjCRuntime->GenerateProtocol(Proto); 6119 break; 6120 } 6121 6122 case Decl::ObjCCategoryImpl: 6123 // Categories have properties but don't support synthesize so we 6124 // can ignore them here. 6125 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6126 break; 6127 6128 case Decl::ObjCImplementation: { 6129 auto *OMD = cast<ObjCImplementationDecl>(D); 6130 EmitObjCPropertyImplementations(OMD); 6131 EmitObjCIvarInitializations(OMD); 6132 ObjCRuntime->GenerateClass(OMD); 6133 // Emit global variable debug information. 6134 if (CGDebugInfo *DI = getModuleDebugInfo()) 6135 if (getCodeGenOpts().hasReducedDebugInfo()) 6136 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6137 OMD->getClassInterface()), OMD->getLocation()); 6138 break; 6139 } 6140 case Decl::ObjCMethod: { 6141 auto *OMD = cast<ObjCMethodDecl>(D); 6142 // If this is not a prototype, emit the body. 6143 if (OMD->getBody()) 6144 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6145 break; 6146 } 6147 case Decl::ObjCCompatibleAlias: 6148 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6149 break; 6150 6151 case Decl::PragmaComment: { 6152 const auto *PCD = cast<PragmaCommentDecl>(D); 6153 switch (PCD->getCommentKind()) { 6154 case PCK_Unknown: 6155 llvm_unreachable("unexpected pragma comment kind"); 6156 case PCK_Linker: 6157 AppendLinkerOptions(PCD->getArg()); 6158 break; 6159 case PCK_Lib: 6160 AddDependentLib(PCD->getArg()); 6161 break; 6162 case PCK_Compiler: 6163 case PCK_ExeStr: 6164 case PCK_User: 6165 break; // We ignore all of these. 6166 } 6167 break; 6168 } 6169 6170 case Decl::PragmaDetectMismatch: { 6171 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6172 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6173 break; 6174 } 6175 6176 case Decl::LinkageSpec: 6177 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6178 break; 6179 6180 case Decl::FileScopeAsm: { 6181 // File-scope asm is ignored during device-side CUDA compilation. 6182 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6183 break; 6184 // File-scope asm is ignored during device-side OpenMP compilation. 6185 if (LangOpts.OpenMPIsDevice) 6186 break; 6187 // File-scope asm is ignored during device-side SYCL compilation. 6188 if (LangOpts.SYCLIsDevice) 6189 break; 6190 auto *AD = cast<FileScopeAsmDecl>(D); 6191 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6192 break; 6193 } 6194 6195 case Decl::Import: { 6196 auto *Import = cast<ImportDecl>(D); 6197 6198 // If we've already imported this module, we're done. 6199 if (!ImportedModules.insert(Import->getImportedModule())) 6200 break; 6201 6202 // Emit debug information for direct imports. 6203 if (!Import->getImportedOwningModule()) { 6204 if (CGDebugInfo *DI = getModuleDebugInfo()) 6205 DI->EmitImportDecl(*Import); 6206 } 6207 6208 // Find all of the submodules and emit the module initializers. 6209 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6210 SmallVector<clang::Module *, 16> Stack; 6211 Visited.insert(Import->getImportedModule()); 6212 Stack.push_back(Import->getImportedModule()); 6213 6214 while (!Stack.empty()) { 6215 clang::Module *Mod = Stack.pop_back_val(); 6216 if (!EmittedModuleInitializers.insert(Mod).second) 6217 continue; 6218 6219 for (auto *D : Context.getModuleInitializers(Mod)) 6220 EmitTopLevelDecl(D); 6221 6222 // Visit the submodules of this module. 6223 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6224 SubEnd = Mod->submodule_end(); 6225 Sub != SubEnd; ++Sub) { 6226 // Skip explicit children; they need to be explicitly imported to emit 6227 // the initializers. 6228 if ((*Sub)->IsExplicit) 6229 continue; 6230 6231 if (Visited.insert(*Sub).second) 6232 Stack.push_back(*Sub); 6233 } 6234 } 6235 break; 6236 } 6237 6238 case Decl::Export: 6239 EmitDeclContext(cast<ExportDecl>(D)); 6240 break; 6241 6242 case Decl::OMPThreadPrivate: 6243 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6244 break; 6245 6246 case Decl::OMPAllocate: 6247 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6248 break; 6249 6250 case Decl::OMPDeclareReduction: 6251 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6252 break; 6253 6254 case Decl::OMPDeclareMapper: 6255 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6256 break; 6257 6258 case Decl::OMPRequires: 6259 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6260 break; 6261 6262 case Decl::Typedef: 6263 case Decl::TypeAlias: // using foo = bar; [C++11] 6264 if (CGDebugInfo *DI = getModuleDebugInfo()) 6265 DI->EmitAndRetainType( 6266 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6267 break; 6268 6269 case Decl::Record: 6270 if (CGDebugInfo *DI = getModuleDebugInfo()) 6271 if (cast<RecordDecl>(D)->getDefinition()) 6272 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6273 break; 6274 6275 case Decl::Enum: 6276 if (CGDebugInfo *DI = getModuleDebugInfo()) 6277 if (cast<EnumDecl>(D)->getDefinition()) 6278 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6279 break; 6280 6281 default: 6282 // Make sure we handled everything we should, every other kind is a 6283 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6284 // function. Need to recode Decl::Kind to do that easily. 6285 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6286 break; 6287 } 6288 } 6289 6290 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6291 // Do we need to generate coverage mapping? 6292 if (!CodeGenOpts.CoverageMapping) 6293 return; 6294 switch (D->getKind()) { 6295 case Decl::CXXConversion: 6296 case Decl::CXXMethod: 6297 case Decl::Function: 6298 case Decl::ObjCMethod: 6299 case Decl::CXXConstructor: 6300 case Decl::CXXDestructor: { 6301 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6302 break; 6303 SourceManager &SM = getContext().getSourceManager(); 6304 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6305 break; 6306 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6307 if (I == DeferredEmptyCoverageMappingDecls.end()) 6308 DeferredEmptyCoverageMappingDecls[D] = true; 6309 break; 6310 } 6311 default: 6312 break; 6313 }; 6314 } 6315 6316 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6317 // Do we need to generate coverage mapping? 6318 if (!CodeGenOpts.CoverageMapping) 6319 return; 6320 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6321 if (Fn->isTemplateInstantiation()) 6322 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6323 } 6324 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6325 if (I == DeferredEmptyCoverageMappingDecls.end()) 6326 DeferredEmptyCoverageMappingDecls[D] = false; 6327 else 6328 I->second = false; 6329 } 6330 6331 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6332 // We call takeVector() here to avoid use-after-free. 6333 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6334 // we deserialize function bodies to emit coverage info for them, and that 6335 // deserializes more declarations. How should we handle that case? 6336 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6337 if (!Entry.second) 6338 continue; 6339 const Decl *D = Entry.first; 6340 switch (D->getKind()) { 6341 case Decl::CXXConversion: 6342 case Decl::CXXMethod: 6343 case Decl::Function: 6344 case Decl::ObjCMethod: { 6345 CodeGenPGO PGO(*this); 6346 GlobalDecl GD(cast<FunctionDecl>(D)); 6347 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6348 getFunctionLinkage(GD)); 6349 break; 6350 } 6351 case Decl::CXXConstructor: { 6352 CodeGenPGO PGO(*this); 6353 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6354 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6355 getFunctionLinkage(GD)); 6356 break; 6357 } 6358 case Decl::CXXDestructor: { 6359 CodeGenPGO PGO(*this); 6360 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6361 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6362 getFunctionLinkage(GD)); 6363 break; 6364 } 6365 default: 6366 break; 6367 }; 6368 } 6369 } 6370 6371 void CodeGenModule::EmitMainVoidAlias() { 6372 // In order to transition away from "__original_main" gracefully, emit an 6373 // alias for "main" in the no-argument case so that libc can detect when 6374 // new-style no-argument main is in used. 6375 if (llvm::Function *F = getModule().getFunction("main")) { 6376 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6377 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6378 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6379 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6380 } 6381 } 6382 } 6383 6384 /// Turns the given pointer into a constant. 6385 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6386 const void *Ptr) { 6387 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6388 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6389 return llvm::ConstantInt::get(i64, PtrInt); 6390 } 6391 6392 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6393 llvm::NamedMDNode *&GlobalMetadata, 6394 GlobalDecl D, 6395 llvm::GlobalValue *Addr) { 6396 if (!GlobalMetadata) 6397 GlobalMetadata = 6398 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6399 6400 // TODO: should we report variant information for ctors/dtors? 6401 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6402 llvm::ConstantAsMetadata::get(GetPointerConstant( 6403 CGM.getLLVMContext(), D.getDecl()))}; 6404 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6405 } 6406 6407 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6408 llvm::GlobalValue *CppFunc) { 6409 // Store the list of ifuncs we need to replace uses in. 6410 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6411 // List of ConstantExprs that we should be able to delete when we're done 6412 // here. 6413 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6414 6415 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6416 if (Elem == CppFunc) 6417 return false; 6418 6419 // First make sure that all users of this are ifuncs (or ifuncs via a 6420 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6421 // later. 6422 for (llvm::User *User : Elem->users()) { 6423 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6424 // ifunc directly. In any other case, just give up, as we don't know what we 6425 // could break by changing those. 6426 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6427 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6428 return false; 6429 6430 for (llvm::User *CEUser : ConstExpr->users()) { 6431 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6432 IFuncs.push_back(IFunc); 6433 } else { 6434 return false; 6435 } 6436 } 6437 CEs.push_back(ConstExpr); 6438 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6439 IFuncs.push_back(IFunc); 6440 } else { 6441 // This user is one we don't know how to handle, so fail redirection. This 6442 // will result in an ifunc retaining a resolver name that will ultimately 6443 // fail to be resolved to a defined function. 6444 return false; 6445 } 6446 } 6447 6448 // Now we know this is a valid case where we can do this alias replacement, we 6449 // need to remove all of the references to Elem (and the bitcasts!) so we can 6450 // delete it. 6451 for (llvm::GlobalIFunc *IFunc : IFuncs) 6452 IFunc->setResolver(nullptr); 6453 for (llvm::ConstantExpr *ConstExpr : CEs) 6454 ConstExpr->destroyConstant(); 6455 6456 // We should now be out of uses for the 'old' version of this function, so we 6457 // can erase it as well. 6458 Elem->eraseFromParent(); 6459 6460 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6461 // The type of the resolver is always just a function-type that returns the 6462 // type of the IFunc, so create that here. If the type of the actual 6463 // resolver doesn't match, it just gets bitcast to the right thing. 6464 auto *ResolverTy = 6465 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6466 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6467 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6468 IFunc->setResolver(Resolver); 6469 } 6470 return true; 6471 } 6472 6473 /// For each function which is declared within an extern "C" region and marked 6474 /// as 'used', but has internal linkage, create an alias from the unmangled 6475 /// name to the mangled name if possible. People expect to be able to refer 6476 /// to such functions with an unmangled name from inline assembly within the 6477 /// same translation unit. 6478 void CodeGenModule::EmitStaticExternCAliases() { 6479 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6480 return; 6481 for (auto &I : StaticExternCValues) { 6482 IdentifierInfo *Name = I.first; 6483 llvm::GlobalValue *Val = I.second; 6484 6485 // If Val is null, that implies there were multiple declarations that each 6486 // had a claim to the unmangled name. In this case, generation of the alias 6487 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6488 if (!Val) 6489 break; 6490 6491 llvm::GlobalValue *ExistingElem = 6492 getModule().getNamedValue(Name->getName()); 6493 6494 // If there is either not something already by this name, or we were able to 6495 // replace all uses from IFuncs, create the alias. 6496 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6497 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6498 } 6499 } 6500 6501 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6502 GlobalDecl &Result) const { 6503 auto Res = Manglings.find(MangledName); 6504 if (Res == Manglings.end()) 6505 return false; 6506 Result = Res->getValue(); 6507 return true; 6508 } 6509 6510 /// Emits metadata nodes associating all the global values in the 6511 /// current module with the Decls they came from. This is useful for 6512 /// projects using IR gen as a subroutine. 6513 /// 6514 /// Since there's currently no way to associate an MDNode directly 6515 /// with an llvm::GlobalValue, we create a global named metadata 6516 /// with the name 'clang.global.decl.ptrs'. 6517 void CodeGenModule::EmitDeclMetadata() { 6518 llvm::NamedMDNode *GlobalMetadata = nullptr; 6519 6520 for (auto &I : MangledDeclNames) { 6521 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6522 // Some mangled names don't necessarily have an associated GlobalValue 6523 // in this module, e.g. if we mangled it for DebugInfo. 6524 if (Addr) 6525 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6526 } 6527 } 6528 6529 /// Emits metadata nodes for all the local variables in the current 6530 /// function. 6531 void CodeGenFunction::EmitDeclMetadata() { 6532 if (LocalDeclMap.empty()) return; 6533 6534 llvm::LLVMContext &Context = getLLVMContext(); 6535 6536 // Find the unique metadata ID for this name. 6537 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6538 6539 llvm::NamedMDNode *GlobalMetadata = nullptr; 6540 6541 for (auto &I : LocalDeclMap) { 6542 const Decl *D = I.first; 6543 llvm::Value *Addr = I.second.getPointer(); 6544 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6545 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6546 Alloca->setMetadata( 6547 DeclPtrKind, llvm::MDNode::get( 6548 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6549 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6550 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6551 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6552 } 6553 } 6554 } 6555 6556 void CodeGenModule::EmitVersionIdentMetadata() { 6557 llvm::NamedMDNode *IdentMetadata = 6558 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6559 std::string Version = getClangFullVersion(); 6560 llvm::LLVMContext &Ctx = TheModule.getContext(); 6561 6562 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6563 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6564 } 6565 6566 void CodeGenModule::EmitCommandLineMetadata() { 6567 llvm::NamedMDNode *CommandLineMetadata = 6568 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6569 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6570 llvm::LLVMContext &Ctx = TheModule.getContext(); 6571 6572 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6573 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6574 } 6575 6576 void CodeGenModule::EmitCoverageFile() { 6577 if (getCodeGenOpts().CoverageDataFile.empty() && 6578 getCodeGenOpts().CoverageNotesFile.empty()) 6579 return; 6580 6581 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6582 if (!CUNode) 6583 return; 6584 6585 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6586 llvm::LLVMContext &Ctx = TheModule.getContext(); 6587 auto *CoverageDataFile = 6588 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6589 auto *CoverageNotesFile = 6590 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6591 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6592 llvm::MDNode *CU = CUNode->getOperand(i); 6593 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6594 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6595 } 6596 } 6597 6598 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6599 bool ForEH) { 6600 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6601 // FIXME: should we even be calling this method if RTTI is disabled 6602 // and it's not for EH? 6603 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6604 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6605 getTriple().isNVPTX())) 6606 return llvm::Constant::getNullValue(Int8PtrTy); 6607 6608 if (ForEH && Ty->isObjCObjectPointerType() && 6609 LangOpts.ObjCRuntime.isGNUFamily()) 6610 return ObjCRuntime->GetEHType(Ty); 6611 6612 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6613 } 6614 6615 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6616 // Do not emit threadprivates in simd-only mode. 6617 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6618 return; 6619 for (auto RefExpr : D->varlists()) { 6620 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6621 bool PerformInit = 6622 VD->getAnyInitializer() && 6623 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6624 /*ForRef=*/false); 6625 6626 Address Addr(GetAddrOfGlobalVar(VD), 6627 getTypes().ConvertTypeForMem(VD->getType()), 6628 getContext().getDeclAlign(VD)); 6629 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6630 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6631 CXXGlobalInits.push_back(InitFunction); 6632 } 6633 } 6634 6635 llvm::Metadata * 6636 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6637 StringRef Suffix) { 6638 if (auto *FnType = T->getAs<FunctionProtoType>()) 6639 T = getContext().getFunctionType( 6640 FnType->getReturnType(), FnType->getParamTypes(), 6641 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6642 6643 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6644 if (InternalId) 6645 return InternalId; 6646 6647 if (isExternallyVisible(T->getLinkage())) { 6648 std::string OutName; 6649 llvm::raw_string_ostream Out(OutName); 6650 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6651 Out << Suffix; 6652 6653 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6654 } else { 6655 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6656 llvm::ArrayRef<llvm::Metadata *>()); 6657 } 6658 6659 return InternalId; 6660 } 6661 6662 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6663 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6664 } 6665 6666 llvm::Metadata * 6667 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6668 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6669 } 6670 6671 // Generalize pointer types to a void pointer with the qualifiers of the 6672 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6673 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6674 // 'void *'. 6675 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6676 if (!Ty->isPointerType()) 6677 return Ty; 6678 6679 return Ctx.getPointerType( 6680 QualType(Ctx.VoidTy).withCVRQualifiers( 6681 Ty->getPointeeType().getCVRQualifiers())); 6682 } 6683 6684 // Apply type generalization to a FunctionType's return and argument types 6685 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6686 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6687 SmallVector<QualType, 8> GeneralizedParams; 6688 for (auto &Param : FnType->param_types()) 6689 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6690 6691 return Ctx.getFunctionType( 6692 GeneralizeType(Ctx, FnType->getReturnType()), 6693 GeneralizedParams, FnType->getExtProtoInfo()); 6694 } 6695 6696 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6697 return Ctx.getFunctionNoProtoType( 6698 GeneralizeType(Ctx, FnType->getReturnType())); 6699 6700 llvm_unreachable("Encountered unknown FunctionType"); 6701 } 6702 6703 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6704 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6705 GeneralizedMetadataIdMap, ".generalized"); 6706 } 6707 6708 /// Returns whether this module needs the "all-vtables" type identifier. 6709 bool CodeGenModule::NeedAllVtablesTypeId() const { 6710 // Returns true if at least one of vtable-based CFI checkers is enabled and 6711 // is not in the trapping mode. 6712 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6713 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6714 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6715 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6716 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6717 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6718 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6719 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6720 } 6721 6722 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6723 CharUnits Offset, 6724 const CXXRecordDecl *RD) { 6725 llvm::Metadata *MD = 6726 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6727 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6728 6729 if (CodeGenOpts.SanitizeCfiCrossDso) 6730 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6731 VTable->addTypeMetadata(Offset.getQuantity(), 6732 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6733 6734 if (NeedAllVtablesTypeId()) { 6735 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6736 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6737 } 6738 } 6739 6740 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6741 if (!SanStats) 6742 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6743 6744 return *SanStats; 6745 } 6746 6747 llvm::Value * 6748 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6749 CodeGenFunction &CGF) { 6750 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6751 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6752 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6753 auto *Call = CGF.EmitRuntimeCall( 6754 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6755 return Call; 6756 } 6757 6758 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6759 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6760 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6761 /* forPointeeType= */ true); 6762 } 6763 6764 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6765 LValueBaseInfo *BaseInfo, 6766 TBAAAccessInfo *TBAAInfo, 6767 bool forPointeeType) { 6768 if (TBAAInfo) 6769 *TBAAInfo = getTBAAAccessInfo(T); 6770 6771 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6772 // that doesn't return the information we need to compute BaseInfo. 6773 6774 // Honor alignment typedef attributes even on incomplete types. 6775 // We also honor them straight for C++ class types, even as pointees; 6776 // there's an expressivity gap here. 6777 if (auto TT = T->getAs<TypedefType>()) { 6778 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6779 if (BaseInfo) 6780 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6781 return getContext().toCharUnitsFromBits(Align); 6782 } 6783 } 6784 6785 bool AlignForArray = T->isArrayType(); 6786 6787 // Analyze the base element type, so we don't get confused by incomplete 6788 // array types. 6789 T = getContext().getBaseElementType(T); 6790 6791 if (T->isIncompleteType()) { 6792 // We could try to replicate the logic from 6793 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6794 // type is incomplete, so it's impossible to test. We could try to reuse 6795 // getTypeAlignIfKnown, but that doesn't return the information we need 6796 // to set BaseInfo. So just ignore the possibility that the alignment is 6797 // greater than one. 6798 if (BaseInfo) 6799 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6800 return CharUnits::One(); 6801 } 6802 6803 if (BaseInfo) 6804 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6805 6806 CharUnits Alignment; 6807 const CXXRecordDecl *RD; 6808 if (T.getQualifiers().hasUnaligned()) { 6809 Alignment = CharUnits::One(); 6810 } else if (forPointeeType && !AlignForArray && 6811 (RD = T->getAsCXXRecordDecl())) { 6812 // For C++ class pointees, we don't know whether we're pointing at a 6813 // base or a complete object, so we generally need to use the 6814 // non-virtual alignment. 6815 Alignment = getClassPointerAlignment(RD); 6816 } else { 6817 Alignment = getContext().getTypeAlignInChars(T); 6818 } 6819 6820 // Cap to the global maximum type alignment unless the alignment 6821 // was somehow explicit on the type. 6822 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6823 if (Alignment.getQuantity() > MaxAlign && 6824 !getContext().isAlignmentRequired(T)) 6825 Alignment = CharUnits::fromQuantity(MaxAlign); 6826 } 6827 return Alignment; 6828 } 6829 6830 bool CodeGenModule::stopAutoInit() { 6831 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6832 if (StopAfter) { 6833 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6834 // used 6835 if (NumAutoVarInit >= StopAfter) { 6836 return true; 6837 } 6838 if (!NumAutoVarInit) { 6839 unsigned DiagID = getDiags().getCustomDiagID( 6840 DiagnosticsEngine::Warning, 6841 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6842 "number of times ftrivial-auto-var-init=%1 gets applied."); 6843 getDiags().Report(DiagID) 6844 << StopAfter 6845 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6846 LangOptions::TrivialAutoVarInitKind::Zero 6847 ? "zero" 6848 : "pattern"); 6849 } 6850 ++NumAutoVarInit; 6851 } 6852 return false; 6853 } 6854 6855 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 6856 const Decl *D) const { 6857 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 6858 // postfix beginning with '.' since the symbol name can be demangled. 6859 if (LangOpts.HIP) 6860 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 6861 else 6862 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 6863 6864 // If the CUID is not specified we try to generate a unique postfix. 6865 if (getLangOpts().CUID.empty()) { 6866 SourceManager &SM = getContext().getSourceManager(); 6867 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 6868 assert(PLoc.isValid() && "Source location is expected to be valid."); 6869 6870 // Get the hash of the user defined macros. 6871 llvm::MD5 Hash; 6872 llvm::MD5::MD5Result Result; 6873 for (const auto &Arg : PreprocessorOpts.Macros) 6874 Hash.update(Arg.first); 6875 Hash.final(Result); 6876 6877 // Get the UniqueID for the file containing the decl. 6878 llvm::sys::fs::UniqueID ID; 6879 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 6880 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 6881 assert(PLoc.isValid() && "Source location is expected to be valid."); 6882 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 6883 SM.getDiagnostics().Report(diag::err_cannot_open_file) 6884 << PLoc.getFilename() << EC.message(); 6885 } 6886 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 6887 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 6888 } else { 6889 OS << getContext().getCUIDHash(); 6890 } 6891 } 6892