1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 SizeSizeInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, 111 C.getTargetInfo().getMaxPointerWidth()); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 AllocaInt8PtrTy = Int8Ty->getPointerTo( 115 M.getDataLayout().getAllocaAddrSpace()); 116 117 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 118 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 119 120 if (LangOpts.ObjC1) 121 createObjCRuntime(); 122 if (LangOpts.OpenCL) 123 createOpenCLRuntime(); 124 if (LangOpts.OpenMP) 125 createOpenMPRuntime(); 126 if (LangOpts.CUDA) 127 createCUDARuntime(); 128 129 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 130 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 131 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 132 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 133 getCXXABI().getMangleContext())); 134 135 // If debug info or coverage generation is enabled, create the CGDebugInfo 136 // object. 137 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 138 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 139 DebugInfo.reset(new CGDebugInfo(*this)); 140 141 Block.GlobalUniqueCount = 0; 142 143 if (C.getLangOpts().ObjC1) 144 ObjCData.reset(new ObjCEntrypoints()); 145 146 if (CodeGenOpts.hasProfileClangUse()) { 147 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 148 CodeGenOpts.ProfileInstrumentUsePath); 149 if (auto E = ReaderOrErr.takeError()) { 150 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 151 "Could not read profile %0: %1"); 152 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 153 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 154 << EI.message(); 155 }); 156 } else 157 PGOReader = std::move(ReaderOrErr.get()); 158 } 159 160 // If coverage mapping generation is enabled, create the 161 // CoverageMappingModuleGen object. 162 if (CodeGenOpts.CoverageMapping) 163 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 164 } 165 166 CodeGenModule::~CodeGenModule() {} 167 168 void CodeGenModule::createObjCRuntime() { 169 // This is just isGNUFamily(), but we want to force implementors of 170 // new ABIs to decide how best to do this. 171 switch (LangOpts.ObjCRuntime.getKind()) { 172 case ObjCRuntime::GNUstep: 173 case ObjCRuntime::GCC: 174 case ObjCRuntime::ObjFW: 175 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 176 return; 177 178 case ObjCRuntime::FragileMacOSX: 179 case ObjCRuntime::MacOSX: 180 case ObjCRuntime::iOS: 181 case ObjCRuntime::WatchOS: 182 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 183 return; 184 } 185 llvm_unreachable("bad runtime kind"); 186 } 187 188 void CodeGenModule::createOpenCLRuntime() { 189 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 190 } 191 192 void CodeGenModule::createOpenMPRuntime() { 193 // Select a specialized code generation class based on the target, if any. 194 // If it does not exist use the default implementation. 195 switch (getTriple().getArch()) { 196 case llvm::Triple::nvptx: 197 case llvm::Triple::nvptx64: 198 assert(getLangOpts().OpenMPIsDevice && 199 "OpenMP NVPTX is only prepared to deal with device code."); 200 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 201 break; 202 default: 203 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 204 break; 205 } 206 } 207 208 void CodeGenModule::createCUDARuntime() { 209 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 210 } 211 212 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 213 Replacements[Name] = C; 214 } 215 216 void CodeGenModule::applyReplacements() { 217 for (auto &I : Replacements) { 218 StringRef MangledName = I.first(); 219 llvm::Constant *Replacement = I.second; 220 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 221 if (!Entry) 222 continue; 223 auto *OldF = cast<llvm::Function>(Entry); 224 auto *NewF = dyn_cast<llvm::Function>(Replacement); 225 if (!NewF) { 226 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 227 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 228 } else { 229 auto *CE = cast<llvm::ConstantExpr>(Replacement); 230 assert(CE->getOpcode() == llvm::Instruction::BitCast || 231 CE->getOpcode() == llvm::Instruction::GetElementPtr); 232 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 233 } 234 } 235 236 // Replace old with new, but keep the old order. 237 OldF->replaceAllUsesWith(Replacement); 238 if (NewF) { 239 NewF->removeFromParent(); 240 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 241 NewF); 242 } 243 OldF->eraseFromParent(); 244 } 245 } 246 247 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 248 GlobalValReplacements.push_back(std::make_pair(GV, C)); 249 } 250 251 void CodeGenModule::applyGlobalValReplacements() { 252 for (auto &I : GlobalValReplacements) { 253 llvm::GlobalValue *GV = I.first; 254 llvm::Constant *C = I.second; 255 256 GV->replaceAllUsesWith(C); 257 GV->eraseFromParent(); 258 } 259 } 260 261 // This is only used in aliases that we created and we know they have a 262 // linear structure. 263 static const llvm::GlobalObject *getAliasedGlobal( 264 const llvm::GlobalIndirectSymbol &GIS) { 265 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 266 const llvm::Constant *C = &GIS; 267 for (;;) { 268 C = C->stripPointerCasts(); 269 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 270 return GO; 271 // stripPointerCasts will not walk over weak aliases. 272 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 273 if (!GIS2) 274 return nullptr; 275 if (!Visited.insert(GIS2).second) 276 return nullptr; 277 C = GIS2->getIndirectSymbol(); 278 } 279 } 280 281 void CodeGenModule::checkAliases() { 282 // Check if the constructed aliases are well formed. It is really unfortunate 283 // that we have to do this in CodeGen, but we only construct mangled names 284 // and aliases during codegen. 285 bool Error = false; 286 DiagnosticsEngine &Diags = getDiags(); 287 for (const GlobalDecl &GD : Aliases) { 288 const auto *D = cast<ValueDecl>(GD.getDecl()); 289 SourceLocation Location; 290 bool IsIFunc = D->hasAttr<IFuncAttr>(); 291 if (const Attr *A = D->getDefiningAttr()) 292 Location = A->getLocation(); 293 else 294 llvm_unreachable("Not an alias or ifunc?"); 295 StringRef MangledName = getMangledName(GD); 296 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 297 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 298 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 299 if (!GV) { 300 Error = true; 301 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 302 } else if (GV->isDeclaration()) { 303 Error = true; 304 Diags.Report(Location, diag::err_alias_to_undefined) 305 << IsIFunc << IsIFunc; 306 } else if (IsIFunc) { 307 // Check resolver function type. 308 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 309 GV->getType()->getPointerElementType()); 310 assert(FTy); 311 if (!FTy->getReturnType()->isPointerTy()) 312 Diags.Report(Location, diag::err_ifunc_resolver_return); 313 if (FTy->getNumParams()) 314 Diags.Report(Location, diag::err_ifunc_resolver_params); 315 } 316 317 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 318 llvm::GlobalValue *AliaseeGV; 319 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 320 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 321 else 322 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 323 324 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 325 StringRef AliasSection = SA->getName(); 326 if (AliasSection != AliaseeGV->getSection()) 327 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 328 << AliasSection << IsIFunc << IsIFunc; 329 } 330 331 // We have to handle alias to weak aliases in here. LLVM itself disallows 332 // this since the object semantics would not match the IL one. For 333 // compatibility with gcc we implement it by just pointing the alias 334 // to its aliasee's aliasee. We also warn, since the user is probably 335 // expecting the link to be weak. 336 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 337 if (GA->isInterposable()) { 338 Diags.Report(Location, diag::warn_alias_to_weak_alias) 339 << GV->getName() << GA->getName() << IsIFunc; 340 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 341 GA->getIndirectSymbol(), Alias->getType()); 342 Alias->setIndirectSymbol(Aliasee); 343 } 344 } 345 } 346 if (!Error) 347 return; 348 349 for (const GlobalDecl &GD : Aliases) { 350 StringRef MangledName = getMangledName(GD); 351 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 352 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 353 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 354 Alias->eraseFromParent(); 355 } 356 } 357 358 void CodeGenModule::clear() { 359 DeferredDeclsToEmit.clear(); 360 if (OpenMPRuntime) 361 OpenMPRuntime->clear(); 362 } 363 364 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 365 StringRef MainFile) { 366 if (!hasDiagnostics()) 367 return; 368 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 369 if (MainFile.empty()) 370 MainFile = "<stdin>"; 371 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 372 } else 373 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 374 << Mismatched; 375 } 376 377 void CodeGenModule::Release() { 378 EmitDeferred(); 379 applyGlobalValReplacements(); 380 applyReplacements(); 381 checkAliases(); 382 EmitCXXGlobalInitFunc(); 383 EmitCXXGlobalDtorFunc(); 384 EmitCXXThreadLocalInitFunc(); 385 if (ObjCRuntime) 386 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 387 AddGlobalCtor(ObjCInitFunction); 388 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 389 CUDARuntime) { 390 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 391 AddGlobalCtor(CudaCtorFunction); 392 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 393 AddGlobalDtor(CudaDtorFunction); 394 } 395 if (OpenMPRuntime) 396 if (llvm::Function *OpenMPRegistrationFunction = 397 OpenMPRuntime->emitRegistrationFunction()) 398 AddGlobalCtor(OpenMPRegistrationFunction, 0); 399 if (PGOReader) { 400 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 401 if (PGOStats.hasDiagnostics()) 402 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 403 } 404 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 405 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 406 EmitGlobalAnnotations(); 407 EmitStaticExternCAliases(); 408 EmitDeferredUnusedCoverageMappings(); 409 if (CoverageMapping) 410 CoverageMapping->emit(); 411 if (CodeGenOpts.SanitizeCfiCrossDso) { 412 CodeGenFunction(*this).EmitCfiCheckFail(); 413 CodeGenFunction(*this).EmitCfiCheckStub(); 414 } 415 emitAtAvailableLinkGuard(); 416 emitLLVMUsed(); 417 if (SanStats) 418 SanStats->finish(); 419 420 if (CodeGenOpts.Autolink && 421 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 422 EmitModuleLinkOptions(); 423 } 424 425 // Record mregparm value now so it is visible through rest of codegen. 426 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 427 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 428 CodeGenOpts.NumRegisterParameters); 429 430 if (CodeGenOpts.DwarfVersion) { 431 // We actually want the latest version when there are conflicts. 432 // We can change from Warning to Latest if such mode is supported. 433 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 434 CodeGenOpts.DwarfVersion); 435 } 436 if (CodeGenOpts.EmitCodeView) { 437 // Indicate that we want CodeView in the metadata. 438 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 439 } 440 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 441 // We don't support LTO with 2 with different StrictVTablePointers 442 // FIXME: we could support it by stripping all the information introduced 443 // by StrictVTablePointers. 444 445 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 446 447 llvm::Metadata *Ops[2] = { 448 llvm::MDString::get(VMContext, "StrictVTablePointers"), 449 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 450 llvm::Type::getInt32Ty(VMContext), 1))}; 451 452 getModule().addModuleFlag(llvm::Module::Require, 453 "StrictVTablePointersRequirement", 454 llvm::MDNode::get(VMContext, Ops)); 455 } 456 if (DebugInfo) 457 // We support a single version in the linked module. The LLVM 458 // parser will drop debug info with a different version number 459 // (and warn about it, too). 460 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 461 llvm::DEBUG_METADATA_VERSION); 462 463 // We need to record the widths of enums and wchar_t, so that we can generate 464 // the correct build attributes in the ARM backend. 465 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 466 if ( Arch == llvm::Triple::arm 467 || Arch == llvm::Triple::armeb 468 || Arch == llvm::Triple::thumb 469 || Arch == llvm::Triple::thumbeb) { 470 // Width of wchar_t in bytes 471 uint64_t WCharWidth = 472 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 473 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 474 475 // The minimum width of an enum in bytes 476 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 477 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 478 } 479 480 if (CodeGenOpts.SanitizeCfiCrossDso) { 481 // Indicate that we want cross-DSO control flow integrity checks. 482 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 483 } 484 485 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 486 // Indicate whether __nvvm_reflect should be configured to flush denormal 487 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 488 // property.) 489 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 490 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 491 } 492 493 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 494 assert(PLevel < 3 && "Invalid PIC Level"); 495 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 496 if (Context.getLangOpts().PIE) 497 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 498 } 499 500 SimplifyPersonality(); 501 502 if (getCodeGenOpts().EmitDeclMetadata) 503 EmitDeclMetadata(); 504 505 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 506 EmitCoverageFile(); 507 508 if (DebugInfo) 509 DebugInfo->finalize(); 510 511 EmitVersionIdentMetadata(); 512 513 EmitTargetMetadata(); 514 } 515 516 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 517 // Make sure that this type is translated. 518 Types.UpdateCompletedType(TD); 519 } 520 521 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 522 // Make sure that this type is translated. 523 Types.RefreshTypeCacheForClass(RD); 524 } 525 526 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 527 if (!TBAA) 528 return nullptr; 529 return TBAA->getTBAAInfo(QTy); 530 } 531 532 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 533 if (!TBAA) 534 return nullptr; 535 return TBAA->getTBAAInfoForVTablePtr(); 536 } 537 538 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 539 if (!TBAA) 540 return nullptr; 541 return TBAA->getTBAAStructInfo(QTy); 542 } 543 544 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 545 llvm::MDNode *AccessN, 546 uint64_t O) { 547 if (!TBAA) 548 return nullptr; 549 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 550 } 551 552 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 553 /// and struct-path aware TBAA, the tag has the same format: 554 /// base type, access type and offset. 555 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 556 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 557 llvm::MDNode *TBAAInfo, 558 bool ConvertTypeToTag) { 559 if (ConvertTypeToTag && TBAA) 560 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 561 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 562 else 563 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 564 } 565 566 void CodeGenModule::DecorateInstructionWithInvariantGroup( 567 llvm::Instruction *I, const CXXRecordDecl *RD) { 568 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 569 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 570 // Check if we have to wrap MDString in MDNode. 571 if (!MetaDataNode) 572 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 573 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 574 } 575 576 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 577 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 578 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 579 } 580 581 /// ErrorUnsupported - Print out an error that codegen doesn't support the 582 /// specified stmt yet. 583 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 584 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 585 "cannot compile this %0 yet"); 586 std::string Msg = Type; 587 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 588 << Msg << S->getSourceRange(); 589 } 590 591 /// ErrorUnsupported - Print out an error that codegen doesn't support the 592 /// specified decl yet. 593 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 594 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 595 "cannot compile this %0 yet"); 596 std::string Msg = Type; 597 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 598 } 599 600 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 601 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 602 } 603 604 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 605 const NamedDecl *D) const { 606 // Internal definitions always have default visibility. 607 if (GV->hasLocalLinkage()) { 608 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 609 return; 610 } 611 612 // Set visibility for definitions. 613 LinkageInfo LV = D->getLinkageAndVisibility(); 614 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 615 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 616 } 617 618 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 619 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 620 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 621 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 622 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 623 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 624 } 625 626 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 627 CodeGenOptions::TLSModel M) { 628 switch (M) { 629 case CodeGenOptions::GeneralDynamicTLSModel: 630 return llvm::GlobalVariable::GeneralDynamicTLSModel; 631 case CodeGenOptions::LocalDynamicTLSModel: 632 return llvm::GlobalVariable::LocalDynamicTLSModel; 633 case CodeGenOptions::InitialExecTLSModel: 634 return llvm::GlobalVariable::InitialExecTLSModel; 635 case CodeGenOptions::LocalExecTLSModel: 636 return llvm::GlobalVariable::LocalExecTLSModel; 637 } 638 llvm_unreachable("Invalid TLS model!"); 639 } 640 641 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 642 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 643 644 llvm::GlobalValue::ThreadLocalMode TLM; 645 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 646 647 // Override the TLS model if it is explicitly specified. 648 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 649 TLM = GetLLVMTLSModel(Attr->getModel()); 650 } 651 652 GV->setThreadLocalMode(TLM); 653 } 654 655 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 656 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 657 658 // Some ABIs don't have constructor variants. Make sure that base and 659 // complete constructors get mangled the same. 660 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 661 if (!getTarget().getCXXABI().hasConstructorVariants()) { 662 CXXCtorType OrigCtorType = GD.getCtorType(); 663 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 664 if (OrigCtorType == Ctor_Base) 665 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 666 } 667 } 668 669 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 670 if (!FoundStr.empty()) 671 return FoundStr; 672 673 const auto *ND = cast<NamedDecl>(GD.getDecl()); 674 SmallString<256> Buffer; 675 StringRef Str; 676 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 677 llvm::raw_svector_ostream Out(Buffer); 678 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 679 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 680 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 681 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 682 else 683 getCXXABI().getMangleContext().mangleName(ND, Out); 684 Str = Out.str(); 685 } else { 686 IdentifierInfo *II = ND->getIdentifier(); 687 assert(II && "Attempt to mangle unnamed decl."); 688 const auto *FD = dyn_cast<FunctionDecl>(ND); 689 690 if (FD && 691 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 692 llvm::raw_svector_ostream Out(Buffer); 693 Out << "__regcall3__" << II->getName(); 694 Str = Out.str(); 695 } else { 696 Str = II->getName(); 697 } 698 } 699 700 // Keep the first result in the case of a mangling collision. 701 auto Result = Manglings.insert(std::make_pair(Str, GD)); 702 return FoundStr = Result.first->first(); 703 } 704 705 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 706 const BlockDecl *BD) { 707 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 708 const Decl *D = GD.getDecl(); 709 710 SmallString<256> Buffer; 711 llvm::raw_svector_ostream Out(Buffer); 712 if (!D) 713 MangleCtx.mangleGlobalBlock(BD, 714 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 715 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 716 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 717 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 718 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 719 else 720 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 721 722 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 723 return Result.first->first(); 724 } 725 726 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 727 return getModule().getNamedValue(Name); 728 } 729 730 /// AddGlobalCtor - Add a function to the list that will be called before 731 /// main() runs. 732 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 733 llvm::Constant *AssociatedData) { 734 // FIXME: Type coercion of void()* types. 735 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 736 } 737 738 /// AddGlobalDtor - Add a function to the list that will be called 739 /// when the module is unloaded. 740 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 741 // FIXME: Type coercion of void()* types. 742 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 743 } 744 745 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 746 if (Fns.empty()) return; 747 748 // Ctor function type is void()*. 749 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 750 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 751 752 // Get the type of a ctor entry, { i32, void ()*, i8* }. 753 llvm::StructType *CtorStructTy = llvm::StructType::get( 754 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 755 756 // Construct the constructor and destructor arrays. 757 ConstantInitBuilder builder(*this); 758 auto ctors = builder.beginArray(CtorStructTy); 759 for (const auto &I : Fns) { 760 auto ctor = ctors.beginStruct(CtorStructTy); 761 ctor.addInt(Int32Ty, I.Priority); 762 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 763 if (I.AssociatedData) 764 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 765 else 766 ctor.addNullPointer(VoidPtrTy); 767 ctor.finishAndAddTo(ctors); 768 } 769 770 auto list = 771 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 772 /*constant*/ false, 773 llvm::GlobalValue::AppendingLinkage); 774 775 // The LTO linker doesn't seem to like it when we set an alignment 776 // on appending variables. Take it off as a workaround. 777 list->setAlignment(0); 778 779 Fns.clear(); 780 } 781 782 llvm::GlobalValue::LinkageTypes 783 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 784 const auto *D = cast<FunctionDecl>(GD.getDecl()); 785 786 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 787 788 if (isa<CXXDestructorDecl>(D) && 789 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 790 GD.getDtorType())) { 791 // Destructor variants in the Microsoft C++ ABI are always internal or 792 // linkonce_odr thunks emitted on an as-needed basis. 793 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 794 : llvm::GlobalValue::LinkOnceODRLinkage; 795 } 796 797 if (isa<CXXConstructorDecl>(D) && 798 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 799 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 800 // Our approach to inheriting constructors is fundamentally different from 801 // that used by the MS ABI, so keep our inheriting constructor thunks 802 // internal rather than trying to pick an unambiguous mangling for them. 803 return llvm::GlobalValue::InternalLinkage; 804 } 805 806 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 807 } 808 809 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 810 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 811 812 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 813 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 814 // Don't dllexport/import destructor thunks. 815 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 816 return; 817 } 818 } 819 820 if (FD->hasAttr<DLLImportAttr>()) 821 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 822 else if (FD->hasAttr<DLLExportAttr>()) 823 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 824 else 825 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 826 } 827 828 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 829 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 830 if (!MDS) return nullptr; 831 832 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 833 } 834 835 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 836 llvm::Function *F) { 837 setNonAliasAttributes(D, F); 838 } 839 840 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 841 const CGFunctionInfo &Info, 842 llvm::Function *F) { 843 unsigned CallingConv; 844 AttributeListType AttributeList; 845 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 846 false); 847 F->setAttributes(llvm::AttributeList::get(getLLVMContext(), AttributeList)); 848 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 849 } 850 851 /// Determines whether the language options require us to model 852 /// unwind exceptions. We treat -fexceptions as mandating this 853 /// except under the fragile ObjC ABI with only ObjC exceptions 854 /// enabled. This means, for example, that C with -fexceptions 855 /// enables this. 856 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 857 // If exceptions are completely disabled, obviously this is false. 858 if (!LangOpts.Exceptions) return false; 859 860 // If C++ exceptions are enabled, this is true. 861 if (LangOpts.CXXExceptions) return true; 862 863 // If ObjC exceptions are enabled, this depends on the ABI. 864 if (LangOpts.ObjCExceptions) { 865 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 866 } 867 868 return true; 869 } 870 871 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 872 llvm::Function *F) { 873 llvm::AttrBuilder B; 874 875 if (CodeGenOpts.UnwindTables) 876 B.addAttribute(llvm::Attribute::UWTable); 877 878 if (!hasUnwindExceptions(LangOpts)) 879 B.addAttribute(llvm::Attribute::NoUnwind); 880 881 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 882 B.addAttribute(llvm::Attribute::StackProtect); 883 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 884 B.addAttribute(llvm::Attribute::StackProtectStrong); 885 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 886 B.addAttribute(llvm::Attribute::StackProtectReq); 887 888 if (!D) { 889 // If we don't have a declaration to control inlining, the function isn't 890 // explicitly marked as alwaysinline for semantic reasons, and inlining is 891 // disabled, mark the function as noinline. 892 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 893 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 894 B.addAttribute(llvm::Attribute::NoInline); 895 896 F->addAttributes( 897 llvm::AttributeList::FunctionIndex, 898 llvm::AttributeList::get(F->getContext(), 899 llvm::AttributeList::FunctionIndex, B)); 900 return; 901 } 902 903 if (D->hasAttr<OptimizeNoneAttr>()) { 904 B.addAttribute(llvm::Attribute::OptimizeNone); 905 906 // OptimizeNone implies noinline; we should not be inlining such functions. 907 B.addAttribute(llvm::Attribute::NoInline); 908 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 909 "OptimizeNone and AlwaysInline on same function!"); 910 911 // We still need to handle naked functions even though optnone subsumes 912 // much of their semantics. 913 if (D->hasAttr<NakedAttr>()) 914 B.addAttribute(llvm::Attribute::Naked); 915 916 // OptimizeNone wins over OptimizeForSize and MinSize. 917 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 918 F->removeFnAttr(llvm::Attribute::MinSize); 919 } else if (D->hasAttr<NakedAttr>()) { 920 // Naked implies noinline: we should not be inlining such functions. 921 B.addAttribute(llvm::Attribute::Naked); 922 B.addAttribute(llvm::Attribute::NoInline); 923 } else if (D->hasAttr<NoDuplicateAttr>()) { 924 B.addAttribute(llvm::Attribute::NoDuplicate); 925 } else if (D->hasAttr<NoInlineAttr>()) { 926 B.addAttribute(llvm::Attribute::NoInline); 927 } else if (D->hasAttr<AlwaysInlineAttr>() && 928 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 929 // (noinline wins over always_inline, and we can't specify both in IR) 930 B.addAttribute(llvm::Attribute::AlwaysInline); 931 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 932 // If we're not inlining, then force everything that isn't always_inline to 933 // carry an explicit noinline attribute. 934 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 935 B.addAttribute(llvm::Attribute::NoInline); 936 } else { 937 // Otherwise, propagate the inline hint attribute and potentially use its 938 // absence to mark things as noinline. 939 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 940 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 941 return Redecl->isInlineSpecified(); 942 })) { 943 B.addAttribute(llvm::Attribute::InlineHint); 944 } else if (CodeGenOpts.getInlining() == 945 CodeGenOptions::OnlyHintInlining && 946 !FD->isInlined() && 947 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 948 B.addAttribute(llvm::Attribute::NoInline); 949 } 950 } 951 } 952 953 // Add other optimization related attributes if we are optimizing this 954 // function. 955 if (!D->hasAttr<OptimizeNoneAttr>()) { 956 if (D->hasAttr<ColdAttr>()) { 957 B.addAttribute(llvm::Attribute::OptimizeForSize); 958 B.addAttribute(llvm::Attribute::Cold); 959 } 960 961 if (D->hasAttr<MinSizeAttr>()) 962 B.addAttribute(llvm::Attribute::MinSize); 963 } 964 965 F->addAttributes(llvm::AttributeList::FunctionIndex, 966 llvm::AttributeList::get( 967 F->getContext(), llvm::AttributeList::FunctionIndex, B)); 968 969 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 970 if (alignment) 971 F->setAlignment(alignment); 972 973 // Some C++ ABIs require 2-byte alignment for member functions, in order to 974 // reserve a bit for differentiating between virtual and non-virtual member 975 // functions. If the current target's C++ ABI requires this and this is a 976 // member function, set its alignment accordingly. 977 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 978 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 979 F->setAlignment(2); 980 } 981 982 // In the cross-dso CFI mode, we want !type attributes on definitions only. 983 if (CodeGenOpts.SanitizeCfiCrossDso) 984 if (auto *FD = dyn_cast<FunctionDecl>(D)) 985 CreateFunctionTypeMetadata(FD, F); 986 } 987 988 void CodeGenModule::SetCommonAttributes(const Decl *D, 989 llvm::GlobalValue *GV) { 990 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 991 setGlobalVisibility(GV, ND); 992 else 993 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 994 995 if (D && D->hasAttr<UsedAttr>()) 996 addUsedGlobal(GV); 997 } 998 999 void CodeGenModule::setAliasAttributes(const Decl *D, 1000 llvm::GlobalValue *GV) { 1001 SetCommonAttributes(D, GV); 1002 1003 // Process the dllexport attribute based on whether the original definition 1004 // (not necessarily the aliasee) was exported. 1005 if (D->hasAttr<DLLExportAttr>()) 1006 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1007 } 1008 1009 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1010 llvm::GlobalObject *GO) { 1011 SetCommonAttributes(D, GO); 1012 1013 if (D) 1014 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1015 GO->setSection(SA->getName()); 1016 1017 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1018 } 1019 1020 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1021 llvm::Function *F, 1022 const CGFunctionInfo &FI) { 1023 SetLLVMFunctionAttributes(D, FI, F); 1024 SetLLVMFunctionAttributesForDefinition(D, F); 1025 1026 F->setLinkage(llvm::Function::InternalLinkage); 1027 1028 setNonAliasAttributes(D, F); 1029 } 1030 1031 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1032 const NamedDecl *ND) { 1033 // Set linkage and visibility in case we never see a definition. 1034 LinkageInfo LV = ND->getLinkageAndVisibility(); 1035 if (LV.getLinkage() != ExternalLinkage) { 1036 // Don't set internal linkage on declarations. 1037 } else { 1038 if (ND->hasAttr<DLLImportAttr>()) { 1039 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1040 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1041 } else if (ND->hasAttr<DLLExportAttr>()) { 1042 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1043 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1044 // "extern_weak" is overloaded in LLVM; we probably should have 1045 // separate linkage types for this. 1046 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1047 } 1048 1049 // Set visibility on a declaration only if it's explicit. 1050 if (LV.isVisibilityExplicit()) 1051 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1052 } 1053 } 1054 1055 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1056 llvm::Function *F) { 1057 // Only if we are checking indirect calls. 1058 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1059 return; 1060 1061 // Non-static class methods are handled via vtable pointer checks elsewhere. 1062 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1063 return; 1064 1065 // Additionally, if building with cross-DSO support... 1066 if (CodeGenOpts.SanitizeCfiCrossDso) { 1067 // Skip available_externally functions. They won't be codegen'ed in the 1068 // current module anyway. 1069 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1070 return; 1071 } 1072 1073 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1074 F->addTypeMetadata(0, MD); 1075 1076 // Emit a hash-based bit set entry for cross-DSO calls. 1077 if (CodeGenOpts.SanitizeCfiCrossDso) 1078 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1079 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1080 } 1081 1082 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1083 bool IsIncompleteFunction, 1084 bool IsThunk) { 1085 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1086 // If this is an intrinsic function, set the function's attributes 1087 // to the intrinsic's attributes. 1088 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1089 return; 1090 } 1091 1092 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1093 1094 if (!IsIncompleteFunction) 1095 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1096 1097 // Add the Returned attribute for "this", except for iOS 5 and earlier 1098 // where substantial code, including the libstdc++ dylib, was compiled with 1099 // GCC and does not actually return "this". 1100 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1101 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1102 assert(!F->arg_empty() && 1103 F->arg_begin()->getType() 1104 ->canLosslesslyBitCastTo(F->getReturnType()) && 1105 "unexpected this return"); 1106 F->addAttribute(1, llvm::Attribute::Returned); 1107 } 1108 1109 // Only a few attributes are set on declarations; these may later be 1110 // overridden by a definition. 1111 1112 setLinkageAndVisibilityForGV(F, FD); 1113 1114 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1115 F->setSection(SA->getName()); 1116 1117 if (FD->isReplaceableGlobalAllocationFunction()) { 1118 // A replaceable global allocation function does not act like a builtin by 1119 // default, only if it is invoked by a new-expression or delete-expression. 1120 F->addAttribute(llvm::AttributeList::FunctionIndex, 1121 llvm::Attribute::NoBuiltin); 1122 1123 // A sane operator new returns a non-aliasing pointer. 1124 // FIXME: Also add NonNull attribute to the return value 1125 // for the non-nothrow forms? 1126 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1127 if (getCodeGenOpts().AssumeSaneOperatorNew && 1128 (Kind == OO_New || Kind == OO_Array_New)) 1129 F->addAttribute(llvm::AttributeList::ReturnIndex, 1130 llvm::Attribute::NoAlias); 1131 } 1132 1133 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1134 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1135 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1136 if (MD->isVirtual()) 1137 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1138 1139 // Don't emit entries for function declarations in the cross-DSO mode. This 1140 // is handled with better precision by the receiving DSO. 1141 if (!CodeGenOpts.SanitizeCfiCrossDso) 1142 CreateFunctionTypeMetadata(FD, F); 1143 } 1144 1145 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1146 assert(!GV->isDeclaration() && 1147 "Only globals with definition can force usage."); 1148 LLVMUsed.emplace_back(GV); 1149 } 1150 1151 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1152 assert(!GV->isDeclaration() && 1153 "Only globals with definition can force usage."); 1154 LLVMCompilerUsed.emplace_back(GV); 1155 } 1156 1157 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1158 std::vector<llvm::WeakVH> &List) { 1159 // Don't create llvm.used if there is no need. 1160 if (List.empty()) 1161 return; 1162 1163 // Convert List to what ConstantArray needs. 1164 SmallVector<llvm::Constant*, 8> UsedArray; 1165 UsedArray.resize(List.size()); 1166 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1167 UsedArray[i] = 1168 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1169 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1170 } 1171 1172 if (UsedArray.empty()) 1173 return; 1174 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1175 1176 auto *GV = new llvm::GlobalVariable( 1177 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1178 llvm::ConstantArray::get(ATy, UsedArray), Name); 1179 1180 GV->setSection("llvm.metadata"); 1181 } 1182 1183 void CodeGenModule::emitLLVMUsed() { 1184 emitUsed(*this, "llvm.used", LLVMUsed); 1185 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1186 } 1187 1188 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1189 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1190 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1191 } 1192 1193 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1194 llvm::SmallString<32> Opt; 1195 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1196 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1197 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1198 } 1199 1200 void CodeGenModule::AddDependentLib(StringRef Lib) { 1201 llvm::SmallString<24> Opt; 1202 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1203 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1204 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1205 } 1206 1207 /// \brief Add link options implied by the given module, including modules 1208 /// it depends on, using a postorder walk. 1209 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1210 SmallVectorImpl<llvm::Metadata *> &Metadata, 1211 llvm::SmallPtrSet<Module *, 16> &Visited) { 1212 // Import this module's parent. 1213 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1214 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1215 } 1216 1217 // Import this module's dependencies. 1218 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1219 if (Visited.insert(Mod->Imports[I - 1]).second) 1220 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1221 } 1222 1223 // Add linker options to link against the libraries/frameworks 1224 // described by this module. 1225 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1226 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1227 // Link against a framework. Frameworks are currently Darwin only, so we 1228 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1229 if (Mod->LinkLibraries[I-1].IsFramework) { 1230 llvm::Metadata *Args[2] = { 1231 llvm::MDString::get(Context, "-framework"), 1232 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1233 1234 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1235 continue; 1236 } 1237 1238 // Link against a library. 1239 llvm::SmallString<24> Opt; 1240 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1241 Mod->LinkLibraries[I-1].Library, Opt); 1242 auto *OptString = llvm::MDString::get(Context, Opt); 1243 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1244 } 1245 } 1246 1247 void CodeGenModule::EmitModuleLinkOptions() { 1248 // Collect the set of all of the modules we want to visit to emit link 1249 // options, which is essentially the imported modules and all of their 1250 // non-explicit child modules. 1251 llvm::SetVector<clang::Module *> LinkModules; 1252 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1253 SmallVector<clang::Module *, 16> Stack; 1254 1255 // Seed the stack with imported modules. 1256 for (Module *M : ImportedModules) { 1257 // Do not add any link flags when an implementation TU of a module imports 1258 // a header of that same module. 1259 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1260 !getLangOpts().isCompilingModule()) 1261 continue; 1262 if (Visited.insert(M).second) 1263 Stack.push_back(M); 1264 } 1265 1266 // Find all of the modules to import, making a little effort to prune 1267 // non-leaf modules. 1268 while (!Stack.empty()) { 1269 clang::Module *Mod = Stack.pop_back_val(); 1270 1271 bool AnyChildren = false; 1272 1273 // Visit the submodules of this module. 1274 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1275 SubEnd = Mod->submodule_end(); 1276 Sub != SubEnd; ++Sub) { 1277 // Skip explicit children; they need to be explicitly imported to be 1278 // linked against. 1279 if ((*Sub)->IsExplicit) 1280 continue; 1281 1282 if (Visited.insert(*Sub).second) { 1283 Stack.push_back(*Sub); 1284 AnyChildren = true; 1285 } 1286 } 1287 1288 // We didn't find any children, so add this module to the list of 1289 // modules to link against. 1290 if (!AnyChildren) { 1291 LinkModules.insert(Mod); 1292 } 1293 } 1294 1295 // Add link options for all of the imported modules in reverse topological 1296 // order. We don't do anything to try to order import link flags with respect 1297 // to linker options inserted by things like #pragma comment(). 1298 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1299 Visited.clear(); 1300 for (Module *M : LinkModules) 1301 if (Visited.insert(M).second) 1302 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1303 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1304 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1305 1306 // Add the linker options metadata flag. 1307 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1308 llvm::MDNode::get(getLLVMContext(), 1309 LinkerOptionsMetadata)); 1310 } 1311 1312 void CodeGenModule::EmitDeferred() { 1313 // Emit code for any potentially referenced deferred decls. Since a 1314 // previously unused static decl may become used during the generation of code 1315 // for a static function, iterate until no changes are made. 1316 1317 if (!DeferredVTables.empty()) { 1318 EmitDeferredVTables(); 1319 1320 // Emitting a vtable doesn't directly cause more vtables to 1321 // become deferred, although it can cause functions to be 1322 // emitted that then need those vtables. 1323 assert(DeferredVTables.empty()); 1324 } 1325 1326 // Stop if we're out of both deferred vtables and deferred declarations. 1327 if (DeferredDeclsToEmit.empty()) 1328 return; 1329 1330 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1331 // work, it will not interfere with this. 1332 std::vector<DeferredGlobal> CurDeclsToEmit; 1333 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1334 1335 for (DeferredGlobal &G : CurDeclsToEmit) { 1336 GlobalDecl D = G.GD; 1337 G.GV = nullptr; 1338 1339 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1340 // to get GlobalValue with exactly the type we need, not something that 1341 // might had been created for another decl with the same mangled name but 1342 // different type. 1343 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1344 GetAddrOfGlobal(D, ForDefinition)); 1345 1346 // In case of different address spaces, we may still get a cast, even with 1347 // IsForDefinition equal to true. Query mangled names table to get 1348 // GlobalValue. 1349 if (!GV) 1350 GV = GetGlobalValue(getMangledName(D)); 1351 1352 // Make sure GetGlobalValue returned non-null. 1353 assert(GV); 1354 1355 // Check to see if we've already emitted this. This is necessary 1356 // for a couple of reasons: first, decls can end up in the 1357 // deferred-decls queue multiple times, and second, decls can end 1358 // up with definitions in unusual ways (e.g. by an extern inline 1359 // function acquiring a strong function redefinition). Just 1360 // ignore these cases. 1361 if (!GV->isDeclaration()) 1362 continue; 1363 1364 // Otherwise, emit the definition and move on to the next one. 1365 EmitGlobalDefinition(D, GV); 1366 1367 // If we found out that we need to emit more decls, do that recursively. 1368 // This has the advantage that the decls are emitted in a DFS and related 1369 // ones are close together, which is convenient for testing. 1370 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1371 EmitDeferred(); 1372 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1373 } 1374 } 1375 } 1376 1377 void CodeGenModule::EmitGlobalAnnotations() { 1378 if (Annotations.empty()) 1379 return; 1380 1381 // Create a new global variable for the ConstantStruct in the Module. 1382 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1383 Annotations[0]->getType(), Annotations.size()), Annotations); 1384 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1385 llvm::GlobalValue::AppendingLinkage, 1386 Array, "llvm.global.annotations"); 1387 gv->setSection(AnnotationSection); 1388 } 1389 1390 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1391 llvm::Constant *&AStr = AnnotationStrings[Str]; 1392 if (AStr) 1393 return AStr; 1394 1395 // Not found yet, create a new global. 1396 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1397 auto *gv = 1398 new llvm::GlobalVariable(getModule(), s->getType(), true, 1399 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1400 gv->setSection(AnnotationSection); 1401 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1402 AStr = gv; 1403 return gv; 1404 } 1405 1406 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1407 SourceManager &SM = getContext().getSourceManager(); 1408 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1409 if (PLoc.isValid()) 1410 return EmitAnnotationString(PLoc.getFilename()); 1411 return EmitAnnotationString(SM.getBufferName(Loc)); 1412 } 1413 1414 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1415 SourceManager &SM = getContext().getSourceManager(); 1416 PresumedLoc PLoc = SM.getPresumedLoc(L); 1417 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1418 SM.getExpansionLineNumber(L); 1419 return llvm::ConstantInt::get(Int32Ty, LineNo); 1420 } 1421 1422 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1423 const AnnotateAttr *AA, 1424 SourceLocation L) { 1425 // Get the globals for file name, annotation, and the line number. 1426 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1427 *UnitGV = EmitAnnotationUnit(L), 1428 *LineNoCst = EmitAnnotationLineNo(L); 1429 1430 // Create the ConstantStruct for the global annotation. 1431 llvm::Constant *Fields[4] = { 1432 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1433 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1434 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1435 LineNoCst 1436 }; 1437 return llvm::ConstantStruct::getAnon(Fields); 1438 } 1439 1440 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1441 llvm::GlobalValue *GV) { 1442 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1443 // Get the struct elements for these annotations. 1444 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1445 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1446 } 1447 1448 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1449 SourceLocation Loc) const { 1450 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1451 // Blacklist by function name. 1452 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1453 return true; 1454 // Blacklist by location. 1455 if (Loc.isValid()) 1456 return SanitizerBL.isBlacklistedLocation(Loc); 1457 // If location is unknown, this may be a compiler-generated function. Assume 1458 // it's located in the main file. 1459 auto &SM = Context.getSourceManager(); 1460 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1461 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1462 } 1463 return false; 1464 } 1465 1466 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1467 SourceLocation Loc, QualType Ty, 1468 StringRef Category) const { 1469 // For now globals can be blacklisted only in ASan and KASan. 1470 if (!LangOpts.Sanitize.hasOneOf( 1471 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1472 return false; 1473 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1474 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1475 return true; 1476 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1477 return true; 1478 // Check global type. 1479 if (!Ty.isNull()) { 1480 // Drill down the array types: if global variable of a fixed type is 1481 // blacklisted, we also don't instrument arrays of them. 1482 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1483 Ty = AT->getElementType(); 1484 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1485 // We allow to blacklist only record types (classes, structs etc.) 1486 if (Ty->isRecordType()) { 1487 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1488 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1489 return true; 1490 } 1491 } 1492 return false; 1493 } 1494 1495 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1496 StringRef Category) const { 1497 if (!LangOpts.XRayInstrument) 1498 return false; 1499 const auto &XRayFilter = getContext().getXRayFilter(); 1500 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1501 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1502 if (Loc.isValid()) 1503 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1504 if (Attr == ImbueAttr::NONE) 1505 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1506 switch (Attr) { 1507 case ImbueAttr::NONE: 1508 return false; 1509 case ImbueAttr::ALWAYS: 1510 Fn->addFnAttr("function-instrument", "xray-always"); 1511 break; 1512 case ImbueAttr::NEVER: 1513 Fn->addFnAttr("function-instrument", "xray-never"); 1514 break; 1515 } 1516 return true; 1517 } 1518 1519 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1520 // Never defer when EmitAllDecls is specified. 1521 if (LangOpts.EmitAllDecls) 1522 return true; 1523 1524 return getContext().DeclMustBeEmitted(Global); 1525 } 1526 1527 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1528 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1529 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1530 // Implicit template instantiations may change linkage if they are later 1531 // explicitly instantiated, so they should not be emitted eagerly. 1532 return false; 1533 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1534 if (Context.getInlineVariableDefinitionKind(VD) == 1535 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1536 // A definition of an inline constexpr static data member may change 1537 // linkage later if it's redeclared outside the class. 1538 return false; 1539 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1540 // codegen for global variables, because they may be marked as threadprivate. 1541 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1542 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1543 return false; 1544 1545 return true; 1546 } 1547 1548 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1549 const CXXUuidofExpr* E) { 1550 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1551 // well-formed. 1552 StringRef Uuid = E->getUuidStr(); 1553 std::string Name = "_GUID_" + Uuid.lower(); 1554 std::replace(Name.begin(), Name.end(), '-', '_'); 1555 1556 // The UUID descriptor should be pointer aligned. 1557 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1558 1559 // Look for an existing global. 1560 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1561 return ConstantAddress(GV, Alignment); 1562 1563 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1564 assert(Init && "failed to initialize as constant"); 1565 1566 auto *GV = new llvm::GlobalVariable( 1567 getModule(), Init->getType(), 1568 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1569 if (supportsCOMDAT()) 1570 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1571 return ConstantAddress(GV, Alignment); 1572 } 1573 1574 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1575 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1576 assert(AA && "No alias?"); 1577 1578 CharUnits Alignment = getContext().getDeclAlign(VD); 1579 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1580 1581 // See if there is already something with the target's name in the module. 1582 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1583 if (Entry) { 1584 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1585 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1586 return ConstantAddress(Ptr, Alignment); 1587 } 1588 1589 llvm::Constant *Aliasee; 1590 if (isa<llvm::FunctionType>(DeclTy)) 1591 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1592 GlobalDecl(cast<FunctionDecl>(VD)), 1593 /*ForVTable=*/false); 1594 else 1595 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1596 llvm::PointerType::getUnqual(DeclTy), 1597 nullptr); 1598 1599 auto *F = cast<llvm::GlobalValue>(Aliasee); 1600 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1601 WeakRefReferences.insert(F); 1602 1603 return ConstantAddress(Aliasee, Alignment); 1604 } 1605 1606 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1607 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1608 1609 // Weak references don't produce any output by themselves. 1610 if (Global->hasAttr<WeakRefAttr>()) 1611 return; 1612 1613 // If this is an alias definition (which otherwise looks like a declaration) 1614 // emit it now. 1615 if (Global->hasAttr<AliasAttr>()) 1616 return EmitAliasDefinition(GD); 1617 1618 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1619 if (Global->hasAttr<IFuncAttr>()) 1620 return emitIFuncDefinition(GD); 1621 1622 // If this is CUDA, be selective about which declarations we emit. 1623 if (LangOpts.CUDA) { 1624 if (LangOpts.CUDAIsDevice) { 1625 if (!Global->hasAttr<CUDADeviceAttr>() && 1626 !Global->hasAttr<CUDAGlobalAttr>() && 1627 !Global->hasAttr<CUDAConstantAttr>() && 1628 !Global->hasAttr<CUDASharedAttr>()) 1629 return; 1630 } else { 1631 // We need to emit host-side 'shadows' for all global 1632 // device-side variables because the CUDA runtime needs their 1633 // size and host-side address in order to provide access to 1634 // their device-side incarnations. 1635 1636 // So device-only functions are the only things we skip. 1637 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1638 Global->hasAttr<CUDADeviceAttr>()) 1639 return; 1640 1641 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1642 "Expected Variable or Function"); 1643 } 1644 } 1645 1646 if (LangOpts.OpenMP) { 1647 // If this is OpenMP device, check if it is legal to emit this global 1648 // normally. 1649 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1650 return; 1651 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1652 if (MustBeEmitted(Global)) 1653 EmitOMPDeclareReduction(DRD); 1654 return; 1655 } 1656 } 1657 1658 // Ignore declarations, they will be emitted on their first use. 1659 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1660 // Forward declarations are emitted lazily on first use. 1661 if (!FD->doesThisDeclarationHaveABody()) { 1662 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1663 return; 1664 1665 StringRef MangledName = getMangledName(GD); 1666 1667 // Compute the function info and LLVM type. 1668 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1669 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1670 1671 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1672 /*DontDefer=*/false); 1673 return; 1674 } 1675 } else { 1676 const auto *VD = cast<VarDecl>(Global); 1677 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1678 // We need to emit device-side global CUDA variables even if a 1679 // variable does not have a definition -- we still need to define 1680 // host-side shadow for it. 1681 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1682 !VD->hasDefinition() && 1683 (VD->hasAttr<CUDAConstantAttr>() || 1684 VD->hasAttr<CUDADeviceAttr>()); 1685 if (!MustEmitForCuda && 1686 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1687 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1688 // If this declaration may have caused an inline variable definition to 1689 // change linkage, make sure that it's emitted. 1690 if (Context.getInlineVariableDefinitionKind(VD) == 1691 ASTContext::InlineVariableDefinitionKind::Strong) 1692 GetAddrOfGlobalVar(VD); 1693 return; 1694 } 1695 } 1696 1697 // Defer code generation to first use when possible, e.g. if this is an inline 1698 // function. If the global must always be emitted, do it eagerly if possible 1699 // to benefit from cache locality. 1700 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1701 // Emit the definition if it can't be deferred. 1702 EmitGlobalDefinition(GD); 1703 return; 1704 } 1705 1706 // If we're deferring emission of a C++ variable with an 1707 // initializer, remember the order in which it appeared in the file. 1708 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1709 cast<VarDecl>(Global)->hasInit()) { 1710 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1711 CXXGlobalInits.push_back(nullptr); 1712 } 1713 1714 StringRef MangledName = getMangledName(GD); 1715 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1716 // The value has already been used and should therefore be emitted. 1717 addDeferredDeclToEmit(GV, GD); 1718 } else if (MustBeEmitted(Global)) { 1719 // The value must be emitted, but cannot be emitted eagerly. 1720 assert(!MayBeEmittedEagerly(Global)); 1721 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1722 } else { 1723 // Otherwise, remember that we saw a deferred decl with this name. The 1724 // first use of the mangled name will cause it to move into 1725 // DeferredDeclsToEmit. 1726 DeferredDecls[MangledName] = GD; 1727 } 1728 } 1729 1730 // Check if T is a class type with a destructor that's not dllimport. 1731 static bool HasNonDllImportDtor(QualType T) { 1732 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1733 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1734 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1735 return true; 1736 1737 return false; 1738 } 1739 1740 namespace { 1741 struct FunctionIsDirectlyRecursive : 1742 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1743 const StringRef Name; 1744 const Builtin::Context &BI; 1745 bool Result; 1746 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1747 Name(N), BI(C), Result(false) { 1748 } 1749 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1750 1751 bool TraverseCallExpr(CallExpr *E) { 1752 const FunctionDecl *FD = E->getDirectCallee(); 1753 if (!FD) 1754 return true; 1755 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1756 if (Attr && Name == Attr->getLabel()) { 1757 Result = true; 1758 return false; 1759 } 1760 unsigned BuiltinID = FD->getBuiltinID(); 1761 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1762 return true; 1763 StringRef BuiltinName = BI.getName(BuiltinID); 1764 if (BuiltinName.startswith("__builtin_") && 1765 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1766 Result = true; 1767 return false; 1768 } 1769 return true; 1770 } 1771 }; 1772 1773 // Make sure we're not referencing non-imported vars or functions. 1774 struct DLLImportFunctionVisitor 1775 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1776 bool SafeToInline = true; 1777 1778 bool shouldVisitImplicitCode() const { return true; } 1779 1780 bool VisitVarDecl(VarDecl *VD) { 1781 if (VD->getTLSKind()) { 1782 // A thread-local variable cannot be imported. 1783 SafeToInline = false; 1784 return SafeToInline; 1785 } 1786 1787 // A variable definition might imply a destructor call. 1788 if (VD->isThisDeclarationADefinition()) 1789 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1790 1791 return SafeToInline; 1792 } 1793 1794 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1795 if (const auto *D = E->getTemporary()->getDestructor()) 1796 SafeToInline = D->hasAttr<DLLImportAttr>(); 1797 return SafeToInline; 1798 } 1799 1800 bool VisitDeclRefExpr(DeclRefExpr *E) { 1801 ValueDecl *VD = E->getDecl(); 1802 if (isa<FunctionDecl>(VD)) 1803 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1804 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1805 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1806 return SafeToInline; 1807 } 1808 1809 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1810 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1811 return SafeToInline; 1812 } 1813 1814 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1815 CXXMethodDecl *M = E->getMethodDecl(); 1816 if (!M) { 1817 // Call through a pointer to member function. This is safe to inline. 1818 SafeToInline = true; 1819 } else { 1820 SafeToInline = M->hasAttr<DLLImportAttr>(); 1821 } 1822 return SafeToInline; 1823 } 1824 1825 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1826 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1827 return SafeToInline; 1828 } 1829 1830 bool VisitCXXNewExpr(CXXNewExpr *E) { 1831 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1832 return SafeToInline; 1833 } 1834 }; 1835 } 1836 1837 // isTriviallyRecursive - Check if this function calls another 1838 // decl that, because of the asm attribute or the other decl being a builtin, 1839 // ends up pointing to itself. 1840 bool 1841 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1842 StringRef Name; 1843 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1844 // asm labels are a special kind of mangling we have to support. 1845 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1846 if (!Attr) 1847 return false; 1848 Name = Attr->getLabel(); 1849 } else { 1850 Name = FD->getName(); 1851 } 1852 1853 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1854 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1855 return Walker.Result; 1856 } 1857 1858 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1859 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1860 return true; 1861 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1862 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1863 return false; 1864 1865 if (F->hasAttr<DLLImportAttr>()) { 1866 // Check whether it would be safe to inline this dllimport function. 1867 DLLImportFunctionVisitor Visitor; 1868 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1869 if (!Visitor.SafeToInline) 1870 return false; 1871 1872 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1873 // Implicit destructor invocations aren't captured in the AST, so the 1874 // check above can't see them. Check for them manually here. 1875 for (const Decl *Member : Dtor->getParent()->decls()) 1876 if (isa<FieldDecl>(Member)) 1877 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1878 return false; 1879 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1880 if (HasNonDllImportDtor(B.getType())) 1881 return false; 1882 } 1883 } 1884 1885 // PR9614. Avoid cases where the source code is lying to us. An available 1886 // externally function should have an equivalent function somewhere else, 1887 // but a function that calls itself is clearly not equivalent to the real 1888 // implementation. 1889 // This happens in glibc's btowc and in some configure checks. 1890 return !isTriviallyRecursive(F); 1891 } 1892 1893 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1894 const auto *D = cast<ValueDecl>(GD.getDecl()); 1895 1896 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1897 Context.getSourceManager(), 1898 "Generating code for declaration"); 1899 1900 if (isa<FunctionDecl>(D)) { 1901 // At -O0, don't generate IR for functions with available_externally 1902 // linkage. 1903 if (!shouldEmitFunction(GD)) 1904 return; 1905 1906 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1907 // Make sure to emit the definition(s) before we emit the thunks. 1908 // This is necessary for the generation of certain thunks. 1909 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1910 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1911 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1912 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1913 else 1914 EmitGlobalFunctionDefinition(GD, GV); 1915 1916 if (Method->isVirtual()) 1917 getVTables().EmitThunks(GD); 1918 1919 return; 1920 } 1921 1922 return EmitGlobalFunctionDefinition(GD, GV); 1923 } 1924 1925 if (const auto *VD = dyn_cast<VarDecl>(D)) 1926 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1927 1928 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1929 } 1930 1931 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1932 llvm::Function *NewFn); 1933 1934 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1935 /// module, create and return an llvm Function with the specified type. If there 1936 /// is something in the module with the specified name, return it potentially 1937 /// bitcasted to the right type. 1938 /// 1939 /// If D is non-null, it specifies a decl that correspond to this. This is used 1940 /// to set the attributes on the function when it is first created. 1941 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 1942 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 1943 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 1944 ForDefinition_t IsForDefinition) { 1945 const Decl *D = GD.getDecl(); 1946 1947 // Lookup the entry, lazily creating it if necessary. 1948 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1949 if (Entry) { 1950 if (WeakRefReferences.erase(Entry)) { 1951 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1952 if (FD && !FD->hasAttr<WeakAttr>()) 1953 Entry->setLinkage(llvm::Function::ExternalLinkage); 1954 } 1955 1956 // Handle dropped DLL attributes. 1957 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1958 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1959 1960 // If there are two attempts to define the same mangled name, issue an 1961 // error. 1962 if (IsForDefinition && !Entry->isDeclaration()) { 1963 GlobalDecl OtherGD; 1964 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1965 // to make sure that we issue an error only once. 1966 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1967 (GD.getCanonicalDecl().getDecl() != 1968 OtherGD.getCanonicalDecl().getDecl()) && 1969 DiagnosedConflictingDefinitions.insert(GD).second) { 1970 getDiags().Report(D->getLocation(), 1971 diag::err_duplicate_mangled_name); 1972 getDiags().Report(OtherGD.getDecl()->getLocation(), 1973 diag::note_previous_definition); 1974 } 1975 } 1976 1977 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1978 (Entry->getType()->getElementType() == Ty)) { 1979 return Entry; 1980 } 1981 1982 // Make sure the result is of the correct type. 1983 // (If function is requested for a definition, we always need to create a new 1984 // function, not just return a bitcast.) 1985 if (!IsForDefinition) 1986 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1987 } 1988 1989 // This function doesn't have a complete type (for example, the return 1990 // type is an incomplete struct). Use a fake type instead, and make 1991 // sure not to try to set attributes. 1992 bool IsIncompleteFunction = false; 1993 1994 llvm::FunctionType *FTy; 1995 if (isa<llvm::FunctionType>(Ty)) { 1996 FTy = cast<llvm::FunctionType>(Ty); 1997 } else { 1998 FTy = llvm::FunctionType::get(VoidTy, false); 1999 IsIncompleteFunction = true; 2000 } 2001 2002 llvm::Function *F = 2003 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2004 Entry ? StringRef() : MangledName, &getModule()); 2005 2006 // If we already created a function with the same mangled name (but different 2007 // type) before, take its name and add it to the list of functions to be 2008 // replaced with F at the end of CodeGen. 2009 // 2010 // This happens if there is a prototype for a function (e.g. "int f()") and 2011 // then a definition of a different type (e.g. "int f(int x)"). 2012 if (Entry) { 2013 F->takeName(Entry); 2014 2015 // This might be an implementation of a function without a prototype, in 2016 // which case, try to do special replacement of calls which match the new 2017 // prototype. The really key thing here is that we also potentially drop 2018 // arguments from the call site so as to make a direct call, which makes the 2019 // inliner happier and suppresses a number of optimizer warnings (!) about 2020 // dropping arguments. 2021 if (!Entry->use_empty()) { 2022 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2023 Entry->removeDeadConstantUsers(); 2024 } 2025 2026 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2027 F, Entry->getType()->getElementType()->getPointerTo()); 2028 addGlobalValReplacement(Entry, BC); 2029 } 2030 2031 assert(F->getName() == MangledName && "name was uniqued!"); 2032 if (D) 2033 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2034 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2035 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2036 F->addAttributes(llvm::AttributeList::FunctionIndex, 2037 llvm::AttributeList::get( 2038 VMContext, llvm::AttributeList::FunctionIndex, B)); 2039 } 2040 2041 if (!DontDefer) { 2042 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2043 // each other bottoming out with the base dtor. Therefore we emit non-base 2044 // dtors on usage, even if there is no dtor definition in the TU. 2045 if (D && isa<CXXDestructorDecl>(D) && 2046 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2047 GD.getDtorType())) 2048 addDeferredDeclToEmit(F, GD); 2049 2050 // This is the first use or definition of a mangled name. If there is a 2051 // deferred decl with this name, remember that we need to emit it at the end 2052 // of the file. 2053 auto DDI = DeferredDecls.find(MangledName); 2054 if (DDI != DeferredDecls.end()) { 2055 // Move the potentially referenced deferred decl to the 2056 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2057 // don't need it anymore). 2058 addDeferredDeclToEmit(F, DDI->second); 2059 DeferredDecls.erase(DDI); 2060 2061 // Otherwise, there are cases we have to worry about where we're 2062 // using a declaration for which we must emit a definition but where 2063 // we might not find a top-level definition: 2064 // - member functions defined inline in their classes 2065 // - friend functions defined inline in some class 2066 // - special member functions with implicit definitions 2067 // If we ever change our AST traversal to walk into class methods, 2068 // this will be unnecessary. 2069 // 2070 // We also don't emit a definition for a function if it's going to be an 2071 // entry in a vtable, unless it's already marked as used. 2072 } else if (getLangOpts().CPlusPlus && D) { 2073 // Look for a declaration that's lexically in a record. 2074 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2075 FD = FD->getPreviousDecl()) { 2076 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2077 if (FD->doesThisDeclarationHaveABody()) { 2078 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 2079 break; 2080 } 2081 } 2082 } 2083 } 2084 } 2085 2086 // Make sure the result is of the requested type. 2087 if (!IsIncompleteFunction) { 2088 assert(F->getType()->getElementType() == Ty); 2089 return F; 2090 } 2091 2092 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2093 return llvm::ConstantExpr::getBitCast(F, PTy); 2094 } 2095 2096 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2097 /// non-null, then this function will use the specified type if it has to 2098 /// create it (this occurs when we see a definition of the function). 2099 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2100 llvm::Type *Ty, 2101 bool ForVTable, 2102 bool DontDefer, 2103 ForDefinition_t IsForDefinition) { 2104 // If there was no specific requested type, just convert it now. 2105 if (!Ty) { 2106 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2107 auto CanonTy = Context.getCanonicalType(FD->getType()); 2108 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2109 } 2110 2111 StringRef MangledName = getMangledName(GD); 2112 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2113 /*IsThunk=*/false, llvm::AttributeList(), 2114 IsForDefinition); 2115 } 2116 2117 static const FunctionDecl * 2118 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2119 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2120 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2121 2122 IdentifierInfo &CII = C.Idents.get(Name); 2123 for (const auto &Result : DC->lookup(&CII)) 2124 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2125 return FD; 2126 2127 if (!C.getLangOpts().CPlusPlus) 2128 return nullptr; 2129 2130 // Demangle the premangled name from getTerminateFn() 2131 IdentifierInfo &CXXII = 2132 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2133 ? C.Idents.get("terminate") 2134 : C.Idents.get(Name); 2135 2136 for (const auto &N : {"__cxxabiv1", "std"}) { 2137 IdentifierInfo &NS = C.Idents.get(N); 2138 for (const auto &Result : DC->lookup(&NS)) { 2139 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2140 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2141 for (const auto &Result : LSD->lookup(&NS)) 2142 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2143 break; 2144 2145 if (ND) 2146 for (const auto &Result : ND->lookup(&CXXII)) 2147 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2148 return FD; 2149 } 2150 } 2151 2152 return nullptr; 2153 } 2154 2155 /// CreateRuntimeFunction - Create a new runtime function with the specified 2156 /// type and name. 2157 llvm::Constant * 2158 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2159 llvm::AttributeList ExtraAttrs, 2160 bool Local) { 2161 llvm::Constant *C = 2162 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2163 /*DontDefer=*/false, /*IsThunk=*/false, 2164 ExtraAttrs); 2165 2166 if (auto *F = dyn_cast<llvm::Function>(C)) { 2167 if (F->empty()) { 2168 F->setCallingConv(getRuntimeCC()); 2169 2170 if (!Local && getTriple().isOSBinFormatCOFF() && 2171 !getCodeGenOpts().LTOVisibilityPublicStd) { 2172 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2173 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2174 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2175 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2176 } 2177 } 2178 } 2179 } 2180 2181 return C; 2182 } 2183 2184 /// CreateBuiltinFunction - Create a new builtin function with the specified 2185 /// type and name. 2186 llvm::Constant * 2187 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2188 llvm::AttributeList ExtraAttrs) { 2189 llvm::Constant *C = 2190 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2191 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2192 if (auto *F = dyn_cast<llvm::Function>(C)) 2193 if (F->empty()) 2194 F->setCallingConv(getBuiltinCC()); 2195 return C; 2196 } 2197 2198 /// isTypeConstant - Determine whether an object of this type can be emitted 2199 /// as a constant. 2200 /// 2201 /// If ExcludeCtor is true, the duration when the object's constructor runs 2202 /// will not be considered. The caller will need to verify that the object is 2203 /// not written to during its construction. 2204 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2205 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2206 return false; 2207 2208 if (Context.getLangOpts().CPlusPlus) { 2209 if (const CXXRecordDecl *Record 2210 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2211 return ExcludeCtor && !Record->hasMutableFields() && 2212 Record->hasTrivialDestructor(); 2213 } 2214 2215 return true; 2216 } 2217 2218 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2219 /// create and return an llvm GlobalVariable with the specified type. If there 2220 /// is something in the module with the specified name, return it potentially 2221 /// bitcasted to the right type. 2222 /// 2223 /// If D is non-null, it specifies a decl that correspond to this. This is used 2224 /// to set the attributes on the global when it is first created. 2225 /// 2226 /// If IsForDefinition is true, it is guranteed that an actual global with 2227 /// type Ty will be returned, not conversion of a variable with the same 2228 /// mangled name but some other type. 2229 llvm::Constant * 2230 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2231 llvm::PointerType *Ty, 2232 const VarDecl *D, 2233 ForDefinition_t IsForDefinition) { 2234 // Lookup the entry, lazily creating it if necessary. 2235 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2236 if (Entry) { 2237 if (WeakRefReferences.erase(Entry)) { 2238 if (D && !D->hasAttr<WeakAttr>()) 2239 Entry->setLinkage(llvm::Function::ExternalLinkage); 2240 } 2241 2242 // Handle dropped DLL attributes. 2243 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2244 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2245 2246 if (Entry->getType() == Ty) 2247 return Entry; 2248 2249 // If there are two attempts to define the same mangled name, issue an 2250 // error. 2251 if (IsForDefinition && !Entry->isDeclaration()) { 2252 GlobalDecl OtherGD; 2253 const VarDecl *OtherD; 2254 2255 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2256 // to make sure that we issue an error only once. 2257 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2258 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2259 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2260 OtherD->hasInit() && 2261 DiagnosedConflictingDefinitions.insert(D).second) { 2262 getDiags().Report(D->getLocation(), 2263 diag::err_duplicate_mangled_name); 2264 getDiags().Report(OtherGD.getDecl()->getLocation(), 2265 diag::note_previous_definition); 2266 } 2267 } 2268 2269 // Make sure the result is of the correct type. 2270 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2271 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2272 2273 // (If global is requested for a definition, we always need to create a new 2274 // global, not just return a bitcast.) 2275 if (!IsForDefinition) 2276 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2277 } 2278 2279 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2280 auto *GV = new llvm::GlobalVariable( 2281 getModule(), Ty->getElementType(), false, 2282 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2283 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2284 2285 // If we already created a global with the same mangled name (but different 2286 // type) before, take its name and remove it from its parent. 2287 if (Entry) { 2288 GV->takeName(Entry); 2289 2290 if (!Entry->use_empty()) { 2291 llvm::Constant *NewPtrForOldDecl = 2292 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2293 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2294 } 2295 2296 Entry->eraseFromParent(); 2297 } 2298 2299 // This is the first use or definition of a mangled name. If there is a 2300 // deferred decl with this name, remember that we need to emit it at the end 2301 // of the file. 2302 auto DDI = DeferredDecls.find(MangledName); 2303 if (DDI != DeferredDecls.end()) { 2304 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2305 // list, and remove it from DeferredDecls (since we don't need it anymore). 2306 addDeferredDeclToEmit(GV, DDI->second); 2307 DeferredDecls.erase(DDI); 2308 } 2309 2310 // Handle things which are present even on external declarations. 2311 if (D) { 2312 // FIXME: This code is overly simple and should be merged with other global 2313 // handling. 2314 GV->setConstant(isTypeConstant(D->getType(), false)); 2315 2316 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2317 2318 setLinkageAndVisibilityForGV(GV, D); 2319 2320 if (D->getTLSKind()) { 2321 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2322 CXXThreadLocals.push_back(D); 2323 setTLSMode(GV, *D); 2324 } 2325 2326 // If required by the ABI, treat declarations of static data members with 2327 // inline initializers as definitions. 2328 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2329 EmitGlobalVarDefinition(D); 2330 } 2331 2332 // Handle XCore specific ABI requirements. 2333 if (getTriple().getArch() == llvm::Triple::xcore && 2334 D->getLanguageLinkage() == CLanguageLinkage && 2335 D->getType().isConstant(Context) && 2336 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2337 GV->setSection(".cp.rodata"); 2338 } 2339 2340 if (AddrSpace != Ty->getAddressSpace()) 2341 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2342 2343 return GV; 2344 } 2345 2346 llvm::Constant * 2347 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2348 ForDefinition_t IsForDefinition) { 2349 const Decl *D = GD.getDecl(); 2350 if (isa<CXXConstructorDecl>(D)) 2351 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2352 getFromCtorType(GD.getCtorType()), 2353 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2354 /*DontDefer=*/false, IsForDefinition); 2355 else if (isa<CXXDestructorDecl>(D)) 2356 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2357 getFromDtorType(GD.getDtorType()), 2358 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2359 /*DontDefer=*/false, IsForDefinition); 2360 else if (isa<CXXMethodDecl>(D)) { 2361 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2362 cast<CXXMethodDecl>(D)); 2363 auto Ty = getTypes().GetFunctionType(*FInfo); 2364 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2365 IsForDefinition); 2366 } else if (isa<FunctionDecl>(D)) { 2367 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2368 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2369 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2370 IsForDefinition); 2371 } else 2372 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2373 IsForDefinition); 2374 } 2375 2376 llvm::GlobalVariable * 2377 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2378 llvm::Type *Ty, 2379 llvm::GlobalValue::LinkageTypes Linkage) { 2380 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2381 llvm::GlobalVariable *OldGV = nullptr; 2382 2383 if (GV) { 2384 // Check if the variable has the right type. 2385 if (GV->getType()->getElementType() == Ty) 2386 return GV; 2387 2388 // Because C++ name mangling, the only way we can end up with an already 2389 // existing global with the same name is if it has been declared extern "C". 2390 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2391 OldGV = GV; 2392 } 2393 2394 // Create a new variable. 2395 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2396 Linkage, nullptr, Name); 2397 2398 if (OldGV) { 2399 // Replace occurrences of the old variable if needed. 2400 GV->takeName(OldGV); 2401 2402 if (!OldGV->use_empty()) { 2403 llvm::Constant *NewPtrForOldDecl = 2404 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2405 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2406 } 2407 2408 OldGV->eraseFromParent(); 2409 } 2410 2411 if (supportsCOMDAT() && GV->isWeakForLinker() && 2412 !GV->hasAvailableExternallyLinkage()) 2413 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2414 2415 return GV; 2416 } 2417 2418 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2419 /// given global variable. If Ty is non-null and if the global doesn't exist, 2420 /// then it will be created with the specified type instead of whatever the 2421 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2422 /// that an actual global with type Ty will be returned, not conversion of a 2423 /// variable with the same mangled name but some other type. 2424 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2425 llvm::Type *Ty, 2426 ForDefinition_t IsForDefinition) { 2427 assert(D->hasGlobalStorage() && "Not a global variable"); 2428 QualType ASTTy = D->getType(); 2429 if (!Ty) 2430 Ty = getTypes().ConvertTypeForMem(ASTTy); 2431 2432 llvm::PointerType *PTy = 2433 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2434 2435 StringRef MangledName = getMangledName(D); 2436 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2437 } 2438 2439 /// CreateRuntimeVariable - Create a new runtime global variable with the 2440 /// specified type and name. 2441 llvm::Constant * 2442 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2443 StringRef Name) { 2444 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2445 } 2446 2447 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2448 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2449 2450 StringRef MangledName = getMangledName(D); 2451 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2452 2453 // We already have a definition, not declaration, with the same mangled name. 2454 // Emitting of declaration is not required (and actually overwrites emitted 2455 // definition). 2456 if (GV && !GV->isDeclaration()) 2457 return; 2458 2459 // If we have not seen a reference to this variable yet, place it into the 2460 // deferred declarations table to be emitted if needed later. 2461 if (!MustBeEmitted(D) && !GV) { 2462 DeferredDecls[MangledName] = D; 2463 return; 2464 } 2465 2466 // The tentative definition is the only definition. 2467 EmitGlobalVarDefinition(D); 2468 } 2469 2470 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2471 return Context.toCharUnitsFromBits( 2472 getDataLayout().getTypeStoreSizeInBits(Ty)); 2473 } 2474 2475 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2476 unsigned AddrSpace) { 2477 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2478 if (D->hasAttr<CUDAConstantAttr>()) 2479 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2480 else if (D->hasAttr<CUDASharedAttr>()) 2481 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2482 else 2483 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2484 } 2485 2486 return AddrSpace; 2487 } 2488 2489 template<typename SomeDecl> 2490 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2491 llvm::GlobalValue *GV) { 2492 if (!getLangOpts().CPlusPlus) 2493 return; 2494 2495 // Must have 'used' attribute, or else inline assembly can't rely on 2496 // the name existing. 2497 if (!D->template hasAttr<UsedAttr>()) 2498 return; 2499 2500 // Must have internal linkage and an ordinary name. 2501 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2502 return; 2503 2504 // Must be in an extern "C" context. Entities declared directly within 2505 // a record are not extern "C" even if the record is in such a context. 2506 const SomeDecl *First = D->getFirstDecl(); 2507 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2508 return; 2509 2510 // OK, this is an internal linkage entity inside an extern "C" linkage 2511 // specification. Make a note of that so we can give it the "expected" 2512 // mangled name if nothing else is using that name. 2513 std::pair<StaticExternCMap::iterator, bool> R = 2514 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2515 2516 // If we have multiple internal linkage entities with the same name 2517 // in extern "C" regions, none of them gets that name. 2518 if (!R.second) 2519 R.first->second = nullptr; 2520 } 2521 2522 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2523 if (!CGM.supportsCOMDAT()) 2524 return false; 2525 2526 if (D.hasAttr<SelectAnyAttr>()) 2527 return true; 2528 2529 GVALinkage Linkage; 2530 if (auto *VD = dyn_cast<VarDecl>(&D)) 2531 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2532 else 2533 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2534 2535 switch (Linkage) { 2536 case GVA_Internal: 2537 case GVA_AvailableExternally: 2538 case GVA_StrongExternal: 2539 return false; 2540 case GVA_DiscardableODR: 2541 case GVA_StrongODR: 2542 return true; 2543 } 2544 llvm_unreachable("No such linkage"); 2545 } 2546 2547 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2548 llvm::GlobalObject &GO) { 2549 if (!shouldBeInCOMDAT(*this, D)) 2550 return; 2551 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2552 } 2553 2554 /// Pass IsTentative as true if you want to create a tentative definition. 2555 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2556 bool IsTentative) { 2557 // OpenCL global variables of sampler type are translated to function calls, 2558 // therefore no need to be translated. 2559 QualType ASTTy = D->getType(); 2560 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2561 return; 2562 2563 llvm::Constant *Init = nullptr; 2564 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2565 bool NeedsGlobalCtor = false; 2566 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2567 2568 const VarDecl *InitDecl; 2569 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2570 2571 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2572 // as part of their declaration." Sema has already checked for 2573 // error cases, so we just need to set Init to UndefValue. 2574 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2575 D->hasAttr<CUDASharedAttr>()) 2576 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2577 else if (!InitExpr) { 2578 // This is a tentative definition; tentative definitions are 2579 // implicitly initialized with { 0 }. 2580 // 2581 // Note that tentative definitions are only emitted at the end of 2582 // a translation unit, so they should never have incomplete 2583 // type. In addition, EmitTentativeDefinition makes sure that we 2584 // never attempt to emit a tentative definition if a real one 2585 // exists. A use may still exists, however, so we still may need 2586 // to do a RAUW. 2587 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2588 Init = EmitNullConstant(D->getType()); 2589 } else { 2590 initializedGlobalDecl = GlobalDecl(D); 2591 Init = EmitConstantInit(*InitDecl); 2592 2593 if (!Init) { 2594 QualType T = InitExpr->getType(); 2595 if (D->getType()->isReferenceType()) 2596 T = D->getType(); 2597 2598 if (getLangOpts().CPlusPlus) { 2599 Init = EmitNullConstant(T); 2600 NeedsGlobalCtor = true; 2601 } else { 2602 ErrorUnsupported(D, "static initializer"); 2603 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2604 } 2605 } else { 2606 // We don't need an initializer, so remove the entry for the delayed 2607 // initializer position (just in case this entry was delayed) if we 2608 // also don't need to register a destructor. 2609 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2610 DelayedCXXInitPosition.erase(D); 2611 } 2612 } 2613 2614 llvm::Type* InitType = Init->getType(); 2615 llvm::Constant *Entry = 2616 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2617 2618 // Strip off a bitcast if we got one back. 2619 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2620 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2621 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2622 // All zero index gep. 2623 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2624 Entry = CE->getOperand(0); 2625 } 2626 2627 // Entry is now either a Function or GlobalVariable. 2628 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2629 2630 // We have a definition after a declaration with the wrong type. 2631 // We must make a new GlobalVariable* and update everything that used OldGV 2632 // (a declaration or tentative definition) with the new GlobalVariable* 2633 // (which will be a definition). 2634 // 2635 // This happens if there is a prototype for a global (e.g. 2636 // "extern int x[];") and then a definition of a different type (e.g. 2637 // "int x[10];"). This also happens when an initializer has a different type 2638 // from the type of the global (this happens with unions). 2639 if (!GV || 2640 GV->getType()->getElementType() != InitType || 2641 GV->getType()->getAddressSpace() != 2642 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2643 2644 // Move the old entry aside so that we'll create a new one. 2645 Entry->setName(StringRef()); 2646 2647 // Make a new global with the correct type, this is now guaranteed to work. 2648 GV = cast<llvm::GlobalVariable>( 2649 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2650 2651 // Replace all uses of the old global with the new global 2652 llvm::Constant *NewPtrForOldDecl = 2653 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2654 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2655 2656 // Erase the old global, since it is no longer used. 2657 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2658 } 2659 2660 MaybeHandleStaticInExternC(D, GV); 2661 2662 if (D->hasAttr<AnnotateAttr>()) 2663 AddGlobalAnnotations(D, GV); 2664 2665 // Set the llvm linkage type as appropriate. 2666 llvm::GlobalValue::LinkageTypes Linkage = 2667 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2668 2669 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2670 // the device. [...]" 2671 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2672 // __device__, declares a variable that: [...] 2673 // Is accessible from all the threads within the grid and from the host 2674 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2675 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2676 if (GV && LangOpts.CUDA) { 2677 if (LangOpts.CUDAIsDevice) { 2678 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2679 GV->setExternallyInitialized(true); 2680 } else { 2681 // Host-side shadows of external declarations of device-side 2682 // global variables become internal definitions. These have to 2683 // be internal in order to prevent name conflicts with global 2684 // host variables with the same name in a different TUs. 2685 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2686 Linkage = llvm::GlobalValue::InternalLinkage; 2687 2688 // Shadow variables and their properties must be registered 2689 // with CUDA runtime. 2690 unsigned Flags = 0; 2691 if (!D->hasDefinition()) 2692 Flags |= CGCUDARuntime::ExternDeviceVar; 2693 if (D->hasAttr<CUDAConstantAttr>()) 2694 Flags |= CGCUDARuntime::ConstantDeviceVar; 2695 getCUDARuntime().registerDeviceVar(*GV, Flags); 2696 } else if (D->hasAttr<CUDASharedAttr>()) 2697 // __shared__ variables are odd. Shadows do get created, but 2698 // they are not registered with the CUDA runtime, so they 2699 // can't really be used to access their device-side 2700 // counterparts. It's not clear yet whether it's nvcc's bug or 2701 // a feature, but we've got to do the same for compatibility. 2702 Linkage = llvm::GlobalValue::InternalLinkage; 2703 } 2704 } 2705 GV->setInitializer(Init); 2706 2707 // If it is safe to mark the global 'constant', do so now. 2708 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2709 isTypeConstant(D->getType(), true)); 2710 2711 // If it is in a read-only section, mark it 'constant'. 2712 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2713 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2714 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2715 GV->setConstant(true); 2716 } 2717 2718 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2719 2720 2721 // On Darwin, if the normal linkage of a C++ thread_local variable is 2722 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2723 // copies within a linkage unit; otherwise, the backing variable has 2724 // internal linkage and all accesses should just be calls to the 2725 // Itanium-specified entry point, which has the normal linkage of the 2726 // variable. This is to preserve the ability to change the implementation 2727 // behind the scenes. 2728 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2729 Context.getTargetInfo().getTriple().isOSDarwin() && 2730 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2731 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2732 Linkage = llvm::GlobalValue::InternalLinkage; 2733 2734 GV->setLinkage(Linkage); 2735 if (D->hasAttr<DLLImportAttr>()) 2736 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2737 else if (D->hasAttr<DLLExportAttr>()) 2738 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2739 else 2740 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2741 2742 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2743 // common vars aren't constant even if declared const. 2744 GV->setConstant(false); 2745 // Tentative definition of global variables may be initialized with 2746 // non-zero null pointers. In this case they should have weak linkage 2747 // since common linkage must have zero initializer and must not have 2748 // explicit section therefore cannot have non-zero initial value. 2749 if (!GV->getInitializer()->isNullValue()) 2750 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2751 } 2752 2753 setNonAliasAttributes(D, GV); 2754 2755 if (D->getTLSKind() && !GV->isThreadLocal()) { 2756 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2757 CXXThreadLocals.push_back(D); 2758 setTLSMode(GV, *D); 2759 } 2760 2761 maybeSetTrivialComdat(*D, *GV); 2762 2763 // Emit the initializer function if necessary. 2764 if (NeedsGlobalCtor || NeedsGlobalDtor) 2765 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2766 2767 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2768 2769 // Emit global variable debug information. 2770 if (CGDebugInfo *DI = getModuleDebugInfo()) 2771 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2772 DI->EmitGlobalVariable(GV, D); 2773 } 2774 2775 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2776 CodeGenModule &CGM, const VarDecl *D, 2777 bool NoCommon) { 2778 // Don't give variables common linkage if -fno-common was specified unless it 2779 // was overridden by a NoCommon attribute. 2780 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2781 return true; 2782 2783 // C11 6.9.2/2: 2784 // A declaration of an identifier for an object that has file scope without 2785 // an initializer, and without a storage-class specifier or with the 2786 // storage-class specifier static, constitutes a tentative definition. 2787 if (D->getInit() || D->hasExternalStorage()) 2788 return true; 2789 2790 // A variable cannot be both common and exist in a section. 2791 if (D->hasAttr<SectionAttr>()) 2792 return true; 2793 2794 // Thread local vars aren't considered common linkage. 2795 if (D->getTLSKind()) 2796 return true; 2797 2798 // Tentative definitions marked with WeakImportAttr are true definitions. 2799 if (D->hasAttr<WeakImportAttr>()) 2800 return true; 2801 2802 // A variable cannot be both common and exist in a comdat. 2803 if (shouldBeInCOMDAT(CGM, *D)) 2804 return true; 2805 2806 // Declarations with a required alignment do not have common linkage in MSVC 2807 // mode. 2808 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2809 if (D->hasAttr<AlignedAttr>()) 2810 return true; 2811 QualType VarType = D->getType(); 2812 if (Context.isAlignmentRequired(VarType)) 2813 return true; 2814 2815 if (const auto *RT = VarType->getAs<RecordType>()) { 2816 const RecordDecl *RD = RT->getDecl(); 2817 for (const FieldDecl *FD : RD->fields()) { 2818 if (FD->isBitField()) 2819 continue; 2820 if (FD->hasAttr<AlignedAttr>()) 2821 return true; 2822 if (Context.isAlignmentRequired(FD->getType())) 2823 return true; 2824 } 2825 } 2826 } 2827 2828 return false; 2829 } 2830 2831 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2832 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2833 if (Linkage == GVA_Internal) 2834 return llvm::Function::InternalLinkage; 2835 2836 if (D->hasAttr<WeakAttr>()) { 2837 if (IsConstantVariable) 2838 return llvm::GlobalVariable::WeakODRLinkage; 2839 else 2840 return llvm::GlobalVariable::WeakAnyLinkage; 2841 } 2842 2843 // We are guaranteed to have a strong definition somewhere else, 2844 // so we can use available_externally linkage. 2845 if (Linkage == GVA_AvailableExternally) 2846 return llvm::GlobalValue::AvailableExternallyLinkage; 2847 2848 // Note that Apple's kernel linker doesn't support symbol 2849 // coalescing, so we need to avoid linkonce and weak linkages there. 2850 // Normally, this means we just map to internal, but for explicit 2851 // instantiations we'll map to external. 2852 2853 // In C++, the compiler has to emit a definition in every translation unit 2854 // that references the function. We should use linkonce_odr because 2855 // a) if all references in this translation unit are optimized away, we 2856 // don't need to codegen it. b) if the function persists, it needs to be 2857 // merged with other definitions. c) C++ has the ODR, so we know the 2858 // definition is dependable. 2859 if (Linkage == GVA_DiscardableODR) 2860 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2861 : llvm::Function::InternalLinkage; 2862 2863 // An explicit instantiation of a template has weak linkage, since 2864 // explicit instantiations can occur in multiple translation units 2865 // and must all be equivalent. However, we are not allowed to 2866 // throw away these explicit instantiations. 2867 // 2868 // We don't currently support CUDA device code spread out across multiple TUs, 2869 // so say that CUDA templates are either external (for kernels) or internal. 2870 // This lets llvm perform aggressive inter-procedural optimizations. 2871 if (Linkage == GVA_StrongODR) { 2872 if (Context.getLangOpts().AppleKext) 2873 return llvm::Function::ExternalLinkage; 2874 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2875 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2876 : llvm::Function::InternalLinkage; 2877 return llvm::Function::WeakODRLinkage; 2878 } 2879 2880 // C++ doesn't have tentative definitions and thus cannot have common 2881 // linkage. 2882 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2883 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2884 CodeGenOpts.NoCommon)) 2885 return llvm::GlobalVariable::CommonLinkage; 2886 2887 // selectany symbols are externally visible, so use weak instead of 2888 // linkonce. MSVC optimizes away references to const selectany globals, so 2889 // all definitions should be the same and ODR linkage should be used. 2890 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2891 if (D->hasAttr<SelectAnyAttr>()) 2892 return llvm::GlobalVariable::WeakODRLinkage; 2893 2894 // Otherwise, we have strong external linkage. 2895 assert(Linkage == GVA_StrongExternal); 2896 return llvm::GlobalVariable::ExternalLinkage; 2897 } 2898 2899 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2900 const VarDecl *VD, bool IsConstant) { 2901 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2902 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2903 } 2904 2905 /// Replace the uses of a function that was declared with a non-proto type. 2906 /// We want to silently drop extra arguments from call sites 2907 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2908 llvm::Function *newFn) { 2909 // Fast path. 2910 if (old->use_empty()) return; 2911 2912 llvm::Type *newRetTy = newFn->getReturnType(); 2913 SmallVector<llvm::Value*, 4> newArgs; 2914 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2915 2916 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2917 ui != ue; ) { 2918 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2919 llvm::User *user = use->getUser(); 2920 2921 // Recognize and replace uses of bitcasts. Most calls to 2922 // unprototyped functions will use bitcasts. 2923 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2924 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2925 replaceUsesOfNonProtoConstant(bitcast, newFn); 2926 continue; 2927 } 2928 2929 // Recognize calls to the function. 2930 llvm::CallSite callSite(user); 2931 if (!callSite) continue; 2932 if (!callSite.isCallee(&*use)) continue; 2933 2934 // If the return types don't match exactly, then we can't 2935 // transform this call unless it's dead. 2936 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2937 continue; 2938 2939 // Get the call site's attribute list. 2940 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 2941 llvm::AttributeList oldAttrs = callSite.getAttributes(); 2942 2943 // If the function was passed too few arguments, don't transform. 2944 unsigned newNumArgs = newFn->arg_size(); 2945 if (callSite.arg_size() < newNumArgs) continue; 2946 2947 // If extra arguments were passed, we silently drop them. 2948 // If any of the types mismatch, we don't transform. 2949 unsigned argNo = 0; 2950 bool dontTransform = false; 2951 for (llvm::Argument &A : newFn->args()) { 2952 if (callSite.getArgument(argNo)->getType() != A.getType()) { 2953 dontTransform = true; 2954 break; 2955 } 2956 2957 // Add any parameter attributes. 2958 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 2959 argNo++; 2960 } 2961 if (dontTransform) 2962 continue; 2963 2964 // Okay, we can transform this. Create the new call instruction and copy 2965 // over the required information. 2966 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2967 2968 // Copy over any operand bundles. 2969 callSite.getOperandBundlesAsDefs(newBundles); 2970 2971 llvm::CallSite newCall; 2972 if (callSite.isCall()) { 2973 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2974 callSite.getInstruction()); 2975 } else { 2976 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2977 newCall = llvm::InvokeInst::Create(newFn, 2978 oldInvoke->getNormalDest(), 2979 oldInvoke->getUnwindDest(), 2980 newArgs, newBundles, "", 2981 callSite.getInstruction()); 2982 } 2983 newArgs.clear(); // for the next iteration 2984 2985 if (!newCall->getType()->isVoidTy()) 2986 newCall->takeName(callSite.getInstruction()); 2987 newCall.setAttributes(llvm::AttributeList::get( 2988 newFn->getContext(), oldAttrs.getFnAttributes(), 2989 oldAttrs.getRetAttributes(), newArgAttrs)); 2990 newCall.setCallingConv(callSite.getCallingConv()); 2991 2992 // Finally, remove the old call, replacing any uses with the new one. 2993 if (!callSite->use_empty()) 2994 callSite->replaceAllUsesWith(newCall.getInstruction()); 2995 2996 // Copy debug location attached to CI. 2997 if (callSite->getDebugLoc()) 2998 newCall->setDebugLoc(callSite->getDebugLoc()); 2999 3000 callSite->eraseFromParent(); 3001 } 3002 } 3003 3004 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3005 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3006 /// existing call uses of the old function in the module, this adjusts them to 3007 /// call the new function directly. 3008 /// 3009 /// This is not just a cleanup: the always_inline pass requires direct calls to 3010 /// functions to be able to inline them. If there is a bitcast in the way, it 3011 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3012 /// run at -O0. 3013 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3014 llvm::Function *NewFn) { 3015 // If we're redefining a global as a function, don't transform it. 3016 if (!isa<llvm::Function>(Old)) return; 3017 3018 replaceUsesOfNonProtoConstant(Old, NewFn); 3019 } 3020 3021 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3022 auto DK = VD->isThisDeclarationADefinition(); 3023 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3024 return; 3025 3026 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3027 // If we have a definition, this might be a deferred decl. If the 3028 // instantiation is explicit, make sure we emit it at the end. 3029 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3030 GetAddrOfGlobalVar(VD); 3031 3032 EmitTopLevelDecl(VD); 3033 } 3034 3035 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3036 llvm::GlobalValue *GV) { 3037 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3038 3039 // Compute the function info and LLVM type. 3040 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3041 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3042 3043 // Get or create the prototype for the function. 3044 if (!GV || (GV->getType()->getElementType() != Ty)) 3045 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3046 /*DontDefer=*/true, 3047 ForDefinition)); 3048 3049 // Already emitted. 3050 if (!GV->isDeclaration()) 3051 return; 3052 3053 // We need to set linkage and visibility on the function before 3054 // generating code for it because various parts of IR generation 3055 // want to propagate this information down (e.g. to local static 3056 // declarations). 3057 auto *Fn = cast<llvm::Function>(GV); 3058 setFunctionLinkage(GD, Fn); 3059 setFunctionDLLStorageClass(GD, Fn); 3060 3061 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3062 setGlobalVisibility(Fn, D); 3063 3064 MaybeHandleStaticInExternC(D, Fn); 3065 3066 maybeSetTrivialComdat(*D, *Fn); 3067 3068 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3069 3070 setFunctionDefinitionAttributes(D, Fn); 3071 SetLLVMFunctionAttributesForDefinition(D, Fn); 3072 3073 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3074 AddGlobalCtor(Fn, CA->getPriority()); 3075 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3076 AddGlobalDtor(Fn, DA->getPriority()); 3077 if (D->hasAttr<AnnotateAttr>()) 3078 AddGlobalAnnotations(D, Fn); 3079 } 3080 3081 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3082 const auto *D = cast<ValueDecl>(GD.getDecl()); 3083 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3084 assert(AA && "Not an alias?"); 3085 3086 StringRef MangledName = getMangledName(GD); 3087 3088 if (AA->getAliasee() == MangledName) { 3089 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3090 return; 3091 } 3092 3093 // If there is a definition in the module, then it wins over the alias. 3094 // This is dubious, but allow it to be safe. Just ignore the alias. 3095 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3096 if (Entry && !Entry->isDeclaration()) 3097 return; 3098 3099 Aliases.push_back(GD); 3100 3101 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3102 3103 // Create a reference to the named value. This ensures that it is emitted 3104 // if a deferred decl. 3105 llvm::Constant *Aliasee; 3106 if (isa<llvm::FunctionType>(DeclTy)) 3107 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3108 /*ForVTable=*/false); 3109 else 3110 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3111 llvm::PointerType::getUnqual(DeclTy), 3112 /*D=*/nullptr); 3113 3114 // Create the new alias itself, but don't set a name yet. 3115 auto *GA = llvm::GlobalAlias::create( 3116 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3117 3118 if (Entry) { 3119 if (GA->getAliasee() == Entry) { 3120 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3121 return; 3122 } 3123 3124 assert(Entry->isDeclaration()); 3125 3126 // If there is a declaration in the module, then we had an extern followed 3127 // by the alias, as in: 3128 // extern int test6(); 3129 // ... 3130 // int test6() __attribute__((alias("test7"))); 3131 // 3132 // Remove it and replace uses of it with the alias. 3133 GA->takeName(Entry); 3134 3135 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3136 Entry->getType())); 3137 Entry->eraseFromParent(); 3138 } else { 3139 GA->setName(MangledName); 3140 } 3141 3142 // Set attributes which are particular to an alias; this is a 3143 // specialization of the attributes which may be set on a global 3144 // variable/function. 3145 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3146 D->isWeakImported()) { 3147 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3148 } 3149 3150 if (const auto *VD = dyn_cast<VarDecl>(D)) 3151 if (VD->getTLSKind()) 3152 setTLSMode(GA, *VD); 3153 3154 setAliasAttributes(D, GA); 3155 } 3156 3157 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3158 const auto *D = cast<ValueDecl>(GD.getDecl()); 3159 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3160 assert(IFA && "Not an ifunc?"); 3161 3162 StringRef MangledName = getMangledName(GD); 3163 3164 if (IFA->getResolver() == MangledName) { 3165 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3166 return; 3167 } 3168 3169 // Report an error if some definition overrides ifunc. 3170 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3171 if (Entry && !Entry->isDeclaration()) { 3172 GlobalDecl OtherGD; 3173 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3174 DiagnosedConflictingDefinitions.insert(GD).second) { 3175 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3176 Diags.Report(OtherGD.getDecl()->getLocation(), 3177 diag::note_previous_definition); 3178 } 3179 return; 3180 } 3181 3182 Aliases.push_back(GD); 3183 3184 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3185 llvm::Constant *Resolver = 3186 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3187 /*ForVTable=*/false); 3188 llvm::GlobalIFunc *GIF = 3189 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3190 "", Resolver, &getModule()); 3191 if (Entry) { 3192 if (GIF->getResolver() == Entry) { 3193 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3194 return; 3195 } 3196 assert(Entry->isDeclaration()); 3197 3198 // If there is a declaration in the module, then we had an extern followed 3199 // by the ifunc, as in: 3200 // extern int test(); 3201 // ... 3202 // int test() __attribute__((ifunc("resolver"))); 3203 // 3204 // Remove it and replace uses of it with the ifunc. 3205 GIF->takeName(Entry); 3206 3207 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3208 Entry->getType())); 3209 Entry->eraseFromParent(); 3210 } else 3211 GIF->setName(MangledName); 3212 3213 SetCommonAttributes(D, GIF); 3214 } 3215 3216 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3217 ArrayRef<llvm::Type*> Tys) { 3218 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3219 Tys); 3220 } 3221 3222 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3223 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3224 const StringLiteral *Literal, bool TargetIsLSB, 3225 bool &IsUTF16, unsigned &StringLength) { 3226 StringRef String = Literal->getString(); 3227 unsigned NumBytes = String.size(); 3228 3229 // Check for simple case. 3230 if (!Literal->containsNonAsciiOrNull()) { 3231 StringLength = NumBytes; 3232 return *Map.insert(std::make_pair(String, nullptr)).first; 3233 } 3234 3235 // Otherwise, convert the UTF8 literals into a string of shorts. 3236 IsUTF16 = true; 3237 3238 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3239 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3240 llvm::UTF16 *ToPtr = &ToBuf[0]; 3241 3242 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3243 ToPtr + NumBytes, llvm::strictConversion); 3244 3245 // ConvertUTF8toUTF16 returns the length in ToPtr. 3246 StringLength = ToPtr - &ToBuf[0]; 3247 3248 // Add an explicit null. 3249 *ToPtr = 0; 3250 return *Map.insert(std::make_pair( 3251 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3252 (StringLength + 1) * 2), 3253 nullptr)).first; 3254 } 3255 3256 ConstantAddress 3257 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3258 unsigned StringLength = 0; 3259 bool isUTF16 = false; 3260 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3261 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3262 getDataLayout().isLittleEndian(), isUTF16, 3263 StringLength); 3264 3265 if (auto *C = Entry.second) 3266 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3267 3268 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3269 llvm::Constant *Zeros[] = { Zero, Zero }; 3270 3271 // If we don't already have it, get __CFConstantStringClassReference. 3272 if (!CFConstantStringClassRef) { 3273 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3274 Ty = llvm::ArrayType::get(Ty, 0); 3275 llvm::Constant *GV = 3276 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3277 3278 if (getTriple().isOSBinFormatCOFF()) { 3279 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3280 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3281 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3282 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3283 3284 const VarDecl *VD = nullptr; 3285 for (const auto &Result : DC->lookup(&II)) 3286 if ((VD = dyn_cast<VarDecl>(Result))) 3287 break; 3288 3289 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3290 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3291 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3292 } else { 3293 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3294 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3295 } 3296 } 3297 3298 // Decay array -> ptr 3299 CFConstantStringClassRef = 3300 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3301 } 3302 3303 QualType CFTy = getContext().getCFConstantStringType(); 3304 3305 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3306 3307 ConstantInitBuilder Builder(*this); 3308 auto Fields = Builder.beginStruct(STy); 3309 3310 // Class pointer. 3311 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3312 3313 // Flags. 3314 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3315 3316 // String pointer. 3317 llvm::Constant *C = nullptr; 3318 if (isUTF16) { 3319 auto Arr = llvm::makeArrayRef( 3320 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3321 Entry.first().size() / 2); 3322 C = llvm::ConstantDataArray::get(VMContext, Arr); 3323 } else { 3324 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3325 } 3326 3327 // Note: -fwritable-strings doesn't make the backing store strings of 3328 // CFStrings writable. (See <rdar://problem/10657500>) 3329 auto *GV = 3330 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3331 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3332 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3333 // Don't enforce the target's minimum global alignment, since the only use 3334 // of the string is via this class initializer. 3335 CharUnits Align = isUTF16 3336 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3337 : getContext().getTypeAlignInChars(getContext().CharTy); 3338 GV->setAlignment(Align.getQuantity()); 3339 3340 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3341 // Without it LLVM can merge the string with a non unnamed_addr one during 3342 // LTO. Doing that changes the section it ends in, which surprises ld64. 3343 if (getTriple().isOSBinFormatMachO()) 3344 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3345 : "__TEXT,__cstring,cstring_literals"); 3346 3347 // String. 3348 llvm::Constant *Str = 3349 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3350 3351 if (isUTF16) 3352 // Cast the UTF16 string to the correct type. 3353 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3354 Fields.add(Str); 3355 3356 // String length. 3357 auto Ty = getTypes().ConvertType(getContext().LongTy); 3358 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3359 3360 CharUnits Alignment = getPointerAlign(); 3361 3362 // The struct. 3363 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3364 /*isConstant=*/false, 3365 llvm::GlobalVariable::PrivateLinkage); 3366 switch (getTriple().getObjectFormat()) { 3367 case llvm::Triple::UnknownObjectFormat: 3368 llvm_unreachable("unknown file format"); 3369 case llvm::Triple::COFF: 3370 case llvm::Triple::ELF: 3371 case llvm::Triple::Wasm: 3372 GV->setSection("cfstring"); 3373 break; 3374 case llvm::Triple::MachO: 3375 GV->setSection("__DATA,__cfstring"); 3376 break; 3377 } 3378 Entry.second = GV; 3379 3380 return ConstantAddress(GV, Alignment); 3381 } 3382 3383 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3384 if (ObjCFastEnumerationStateType.isNull()) { 3385 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3386 D->startDefinition(); 3387 3388 QualType FieldTypes[] = { 3389 Context.UnsignedLongTy, 3390 Context.getPointerType(Context.getObjCIdType()), 3391 Context.getPointerType(Context.UnsignedLongTy), 3392 Context.getConstantArrayType(Context.UnsignedLongTy, 3393 llvm::APInt(32, 5), ArrayType::Normal, 0) 3394 }; 3395 3396 for (size_t i = 0; i < 4; ++i) { 3397 FieldDecl *Field = FieldDecl::Create(Context, 3398 D, 3399 SourceLocation(), 3400 SourceLocation(), nullptr, 3401 FieldTypes[i], /*TInfo=*/nullptr, 3402 /*BitWidth=*/nullptr, 3403 /*Mutable=*/false, 3404 ICIS_NoInit); 3405 Field->setAccess(AS_public); 3406 D->addDecl(Field); 3407 } 3408 3409 D->completeDefinition(); 3410 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3411 } 3412 3413 return ObjCFastEnumerationStateType; 3414 } 3415 3416 llvm::Constant * 3417 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3418 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3419 3420 // Don't emit it as the address of the string, emit the string data itself 3421 // as an inline array. 3422 if (E->getCharByteWidth() == 1) { 3423 SmallString<64> Str(E->getString()); 3424 3425 // Resize the string to the right size, which is indicated by its type. 3426 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3427 Str.resize(CAT->getSize().getZExtValue()); 3428 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3429 } 3430 3431 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3432 llvm::Type *ElemTy = AType->getElementType(); 3433 unsigned NumElements = AType->getNumElements(); 3434 3435 // Wide strings have either 2-byte or 4-byte elements. 3436 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3437 SmallVector<uint16_t, 32> Elements; 3438 Elements.reserve(NumElements); 3439 3440 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3441 Elements.push_back(E->getCodeUnit(i)); 3442 Elements.resize(NumElements); 3443 return llvm::ConstantDataArray::get(VMContext, Elements); 3444 } 3445 3446 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3447 SmallVector<uint32_t, 32> Elements; 3448 Elements.reserve(NumElements); 3449 3450 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3451 Elements.push_back(E->getCodeUnit(i)); 3452 Elements.resize(NumElements); 3453 return llvm::ConstantDataArray::get(VMContext, Elements); 3454 } 3455 3456 static llvm::GlobalVariable * 3457 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3458 CodeGenModule &CGM, StringRef GlobalName, 3459 CharUnits Alignment) { 3460 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3461 unsigned AddrSpace = 0; 3462 if (CGM.getLangOpts().OpenCL) 3463 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3464 3465 llvm::Module &M = CGM.getModule(); 3466 // Create a global variable for this string 3467 auto *GV = new llvm::GlobalVariable( 3468 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3469 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3470 GV->setAlignment(Alignment.getQuantity()); 3471 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3472 if (GV->isWeakForLinker()) { 3473 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3474 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3475 } 3476 3477 return GV; 3478 } 3479 3480 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3481 /// constant array for the given string literal. 3482 ConstantAddress 3483 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3484 StringRef Name) { 3485 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3486 3487 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3488 llvm::GlobalVariable **Entry = nullptr; 3489 if (!LangOpts.WritableStrings) { 3490 Entry = &ConstantStringMap[C]; 3491 if (auto GV = *Entry) { 3492 if (Alignment.getQuantity() > GV->getAlignment()) 3493 GV->setAlignment(Alignment.getQuantity()); 3494 return ConstantAddress(GV, Alignment); 3495 } 3496 } 3497 3498 SmallString<256> MangledNameBuffer; 3499 StringRef GlobalVariableName; 3500 llvm::GlobalValue::LinkageTypes LT; 3501 3502 // Mangle the string literal if the ABI allows for it. However, we cannot 3503 // do this if we are compiling with ASan or -fwritable-strings because they 3504 // rely on strings having normal linkage. 3505 if (!LangOpts.WritableStrings && 3506 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3507 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3508 llvm::raw_svector_ostream Out(MangledNameBuffer); 3509 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3510 3511 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3512 GlobalVariableName = MangledNameBuffer; 3513 } else { 3514 LT = llvm::GlobalValue::PrivateLinkage; 3515 GlobalVariableName = Name; 3516 } 3517 3518 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3519 if (Entry) 3520 *Entry = GV; 3521 3522 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3523 QualType()); 3524 return ConstantAddress(GV, Alignment); 3525 } 3526 3527 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3528 /// array for the given ObjCEncodeExpr node. 3529 ConstantAddress 3530 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3531 std::string Str; 3532 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3533 3534 return GetAddrOfConstantCString(Str); 3535 } 3536 3537 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3538 /// the literal and a terminating '\0' character. 3539 /// The result has pointer to array type. 3540 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3541 const std::string &Str, const char *GlobalName) { 3542 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3543 CharUnits Alignment = 3544 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3545 3546 llvm::Constant *C = 3547 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3548 3549 // Don't share any string literals if strings aren't constant. 3550 llvm::GlobalVariable **Entry = nullptr; 3551 if (!LangOpts.WritableStrings) { 3552 Entry = &ConstantStringMap[C]; 3553 if (auto GV = *Entry) { 3554 if (Alignment.getQuantity() > GV->getAlignment()) 3555 GV->setAlignment(Alignment.getQuantity()); 3556 return ConstantAddress(GV, Alignment); 3557 } 3558 } 3559 3560 // Get the default prefix if a name wasn't specified. 3561 if (!GlobalName) 3562 GlobalName = ".str"; 3563 // Create a global variable for this. 3564 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3565 GlobalName, Alignment); 3566 if (Entry) 3567 *Entry = GV; 3568 return ConstantAddress(GV, Alignment); 3569 } 3570 3571 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3572 const MaterializeTemporaryExpr *E, const Expr *Init) { 3573 assert((E->getStorageDuration() == SD_Static || 3574 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3575 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3576 3577 // If we're not materializing a subobject of the temporary, keep the 3578 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3579 QualType MaterializedType = Init->getType(); 3580 if (Init == E->GetTemporaryExpr()) 3581 MaterializedType = E->getType(); 3582 3583 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3584 3585 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3586 return ConstantAddress(Slot, Align); 3587 3588 // FIXME: If an externally-visible declaration extends multiple temporaries, 3589 // we need to give each temporary the same name in every translation unit (and 3590 // we also need to make the temporaries externally-visible). 3591 SmallString<256> Name; 3592 llvm::raw_svector_ostream Out(Name); 3593 getCXXABI().getMangleContext().mangleReferenceTemporary( 3594 VD, E->getManglingNumber(), Out); 3595 3596 APValue *Value = nullptr; 3597 if (E->getStorageDuration() == SD_Static) { 3598 // We might have a cached constant initializer for this temporary. Note 3599 // that this might have a different value from the value computed by 3600 // evaluating the initializer if the surrounding constant expression 3601 // modifies the temporary. 3602 Value = getContext().getMaterializedTemporaryValue(E, false); 3603 if (Value && Value->isUninit()) 3604 Value = nullptr; 3605 } 3606 3607 // Try evaluating it now, it might have a constant initializer. 3608 Expr::EvalResult EvalResult; 3609 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3610 !EvalResult.hasSideEffects()) 3611 Value = &EvalResult.Val; 3612 3613 llvm::Constant *InitialValue = nullptr; 3614 bool Constant = false; 3615 llvm::Type *Type; 3616 if (Value) { 3617 // The temporary has a constant initializer, use it. 3618 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3619 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3620 Type = InitialValue->getType(); 3621 } else { 3622 // No initializer, the initialization will be provided when we 3623 // initialize the declaration which performed lifetime extension. 3624 Type = getTypes().ConvertTypeForMem(MaterializedType); 3625 } 3626 3627 // Create a global variable for this lifetime-extended temporary. 3628 llvm::GlobalValue::LinkageTypes Linkage = 3629 getLLVMLinkageVarDefinition(VD, Constant); 3630 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3631 const VarDecl *InitVD; 3632 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3633 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3634 // Temporaries defined inside a class get linkonce_odr linkage because the 3635 // class can be defined in multipe translation units. 3636 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3637 } else { 3638 // There is no need for this temporary to have external linkage if the 3639 // VarDecl has external linkage. 3640 Linkage = llvm::GlobalVariable::InternalLinkage; 3641 } 3642 } 3643 unsigned AddrSpace = GetGlobalVarAddressSpace( 3644 VD, getContext().getTargetAddressSpace(MaterializedType)); 3645 auto *GV = new llvm::GlobalVariable( 3646 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3647 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3648 AddrSpace); 3649 setGlobalVisibility(GV, VD); 3650 GV->setAlignment(Align.getQuantity()); 3651 if (supportsCOMDAT() && GV->isWeakForLinker()) 3652 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3653 if (VD->getTLSKind()) 3654 setTLSMode(GV, *VD); 3655 MaterializedGlobalTemporaryMap[E] = GV; 3656 return ConstantAddress(GV, Align); 3657 } 3658 3659 /// EmitObjCPropertyImplementations - Emit information for synthesized 3660 /// properties for an implementation. 3661 void CodeGenModule::EmitObjCPropertyImplementations(const 3662 ObjCImplementationDecl *D) { 3663 for (const auto *PID : D->property_impls()) { 3664 // Dynamic is just for type-checking. 3665 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3666 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3667 3668 // Determine which methods need to be implemented, some may have 3669 // been overridden. Note that ::isPropertyAccessor is not the method 3670 // we want, that just indicates if the decl came from a 3671 // property. What we want to know is if the method is defined in 3672 // this implementation. 3673 if (!D->getInstanceMethod(PD->getGetterName())) 3674 CodeGenFunction(*this).GenerateObjCGetter( 3675 const_cast<ObjCImplementationDecl *>(D), PID); 3676 if (!PD->isReadOnly() && 3677 !D->getInstanceMethod(PD->getSetterName())) 3678 CodeGenFunction(*this).GenerateObjCSetter( 3679 const_cast<ObjCImplementationDecl *>(D), PID); 3680 } 3681 } 3682 } 3683 3684 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3685 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3686 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3687 ivar; ivar = ivar->getNextIvar()) 3688 if (ivar->getType().isDestructedType()) 3689 return true; 3690 3691 return false; 3692 } 3693 3694 static bool AllTrivialInitializers(CodeGenModule &CGM, 3695 ObjCImplementationDecl *D) { 3696 CodeGenFunction CGF(CGM); 3697 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3698 E = D->init_end(); B != E; ++B) { 3699 CXXCtorInitializer *CtorInitExp = *B; 3700 Expr *Init = CtorInitExp->getInit(); 3701 if (!CGF.isTrivialInitializer(Init)) 3702 return false; 3703 } 3704 return true; 3705 } 3706 3707 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3708 /// for an implementation. 3709 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3710 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3711 if (needsDestructMethod(D)) { 3712 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3713 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3714 ObjCMethodDecl *DTORMethod = 3715 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3716 cxxSelector, getContext().VoidTy, nullptr, D, 3717 /*isInstance=*/true, /*isVariadic=*/false, 3718 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3719 /*isDefined=*/false, ObjCMethodDecl::Required); 3720 D->addInstanceMethod(DTORMethod); 3721 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3722 D->setHasDestructors(true); 3723 } 3724 3725 // If the implementation doesn't have any ivar initializers, we don't need 3726 // a .cxx_construct. 3727 if (D->getNumIvarInitializers() == 0 || 3728 AllTrivialInitializers(*this, D)) 3729 return; 3730 3731 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3732 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3733 // The constructor returns 'self'. 3734 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3735 D->getLocation(), 3736 D->getLocation(), 3737 cxxSelector, 3738 getContext().getObjCIdType(), 3739 nullptr, D, /*isInstance=*/true, 3740 /*isVariadic=*/false, 3741 /*isPropertyAccessor=*/true, 3742 /*isImplicitlyDeclared=*/true, 3743 /*isDefined=*/false, 3744 ObjCMethodDecl::Required); 3745 D->addInstanceMethod(CTORMethod); 3746 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3747 D->setHasNonZeroConstructors(true); 3748 } 3749 3750 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3751 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3752 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3753 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3754 ErrorUnsupported(LSD, "linkage spec"); 3755 return; 3756 } 3757 3758 EmitDeclContext(LSD); 3759 } 3760 3761 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3762 for (auto *I : DC->decls()) { 3763 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3764 // are themselves considered "top-level", so EmitTopLevelDecl on an 3765 // ObjCImplDecl does not recursively visit them. We need to do that in 3766 // case they're nested inside another construct (LinkageSpecDecl / 3767 // ExportDecl) that does stop them from being considered "top-level". 3768 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3769 for (auto *M : OID->methods()) 3770 EmitTopLevelDecl(M); 3771 } 3772 3773 EmitTopLevelDecl(I); 3774 } 3775 } 3776 3777 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3778 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3779 // Ignore dependent declarations. 3780 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3781 return; 3782 3783 switch (D->getKind()) { 3784 case Decl::CXXConversion: 3785 case Decl::CXXMethod: 3786 case Decl::Function: 3787 // Skip function templates 3788 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3789 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3790 return; 3791 3792 EmitGlobal(cast<FunctionDecl>(D)); 3793 // Always provide some coverage mapping 3794 // even for the functions that aren't emitted. 3795 AddDeferredUnusedCoverageMapping(D); 3796 break; 3797 3798 case Decl::Var: 3799 case Decl::Decomposition: 3800 // Skip variable templates 3801 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3802 return; 3803 case Decl::VarTemplateSpecialization: 3804 EmitGlobal(cast<VarDecl>(D)); 3805 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3806 for (auto *B : DD->bindings()) 3807 if (auto *HD = B->getHoldingVar()) 3808 EmitGlobal(HD); 3809 break; 3810 3811 // Indirect fields from global anonymous structs and unions can be 3812 // ignored; only the actual variable requires IR gen support. 3813 case Decl::IndirectField: 3814 break; 3815 3816 // C++ Decls 3817 case Decl::Namespace: 3818 EmitDeclContext(cast<NamespaceDecl>(D)); 3819 break; 3820 case Decl::CXXRecord: 3821 if (DebugInfo) { 3822 if (auto *ES = D->getASTContext().getExternalSource()) 3823 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 3824 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 3825 } 3826 // Emit any static data members, they may be definitions. 3827 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3828 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3829 EmitTopLevelDecl(I); 3830 break; 3831 // No code generation needed. 3832 case Decl::UsingShadow: 3833 case Decl::ClassTemplate: 3834 case Decl::VarTemplate: 3835 case Decl::VarTemplatePartialSpecialization: 3836 case Decl::FunctionTemplate: 3837 case Decl::TypeAliasTemplate: 3838 case Decl::Block: 3839 case Decl::Empty: 3840 break; 3841 case Decl::Using: // using X; [C++] 3842 if (CGDebugInfo *DI = getModuleDebugInfo()) 3843 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3844 return; 3845 case Decl::NamespaceAlias: 3846 if (CGDebugInfo *DI = getModuleDebugInfo()) 3847 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3848 return; 3849 case Decl::UsingDirective: // using namespace X; [C++] 3850 if (CGDebugInfo *DI = getModuleDebugInfo()) 3851 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3852 return; 3853 case Decl::CXXConstructor: 3854 // Skip function templates 3855 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3856 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3857 return; 3858 3859 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3860 break; 3861 case Decl::CXXDestructor: 3862 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3863 return; 3864 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3865 break; 3866 3867 case Decl::StaticAssert: 3868 // Nothing to do. 3869 break; 3870 3871 // Objective-C Decls 3872 3873 // Forward declarations, no (immediate) code generation. 3874 case Decl::ObjCInterface: 3875 case Decl::ObjCCategory: 3876 break; 3877 3878 case Decl::ObjCProtocol: { 3879 auto *Proto = cast<ObjCProtocolDecl>(D); 3880 if (Proto->isThisDeclarationADefinition()) 3881 ObjCRuntime->GenerateProtocol(Proto); 3882 break; 3883 } 3884 3885 case Decl::ObjCCategoryImpl: 3886 // Categories have properties but don't support synthesize so we 3887 // can ignore them here. 3888 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3889 break; 3890 3891 case Decl::ObjCImplementation: { 3892 auto *OMD = cast<ObjCImplementationDecl>(D); 3893 EmitObjCPropertyImplementations(OMD); 3894 EmitObjCIvarInitializations(OMD); 3895 ObjCRuntime->GenerateClass(OMD); 3896 // Emit global variable debug information. 3897 if (CGDebugInfo *DI = getModuleDebugInfo()) 3898 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3899 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3900 OMD->getClassInterface()), OMD->getLocation()); 3901 break; 3902 } 3903 case Decl::ObjCMethod: { 3904 auto *OMD = cast<ObjCMethodDecl>(D); 3905 // If this is not a prototype, emit the body. 3906 if (OMD->getBody()) 3907 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3908 break; 3909 } 3910 case Decl::ObjCCompatibleAlias: 3911 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3912 break; 3913 3914 case Decl::PragmaComment: { 3915 const auto *PCD = cast<PragmaCommentDecl>(D); 3916 switch (PCD->getCommentKind()) { 3917 case PCK_Unknown: 3918 llvm_unreachable("unexpected pragma comment kind"); 3919 case PCK_Linker: 3920 AppendLinkerOptions(PCD->getArg()); 3921 break; 3922 case PCK_Lib: 3923 AddDependentLib(PCD->getArg()); 3924 break; 3925 case PCK_Compiler: 3926 case PCK_ExeStr: 3927 case PCK_User: 3928 break; // We ignore all of these. 3929 } 3930 break; 3931 } 3932 3933 case Decl::PragmaDetectMismatch: { 3934 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3935 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3936 break; 3937 } 3938 3939 case Decl::LinkageSpec: 3940 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3941 break; 3942 3943 case Decl::FileScopeAsm: { 3944 // File-scope asm is ignored during device-side CUDA compilation. 3945 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3946 break; 3947 // File-scope asm is ignored during device-side OpenMP compilation. 3948 if (LangOpts.OpenMPIsDevice) 3949 break; 3950 auto *AD = cast<FileScopeAsmDecl>(D); 3951 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3952 break; 3953 } 3954 3955 case Decl::Import: { 3956 auto *Import = cast<ImportDecl>(D); 3957 3958 // If we've already imported this module, we're done. 3959 if (!ImportedModules.insert(Import->getImportedModule())) 3960 break; 3961 3962 // Emit debug information for direct imports. 3963 if (!Import->getImportedOwningModule()) { 3964 if (CGDebugInfo *DI = getModuleDebugInfo()) 3965 DI->EmitImportDecl(*Import); 3966 } 3967 3968 // Find all of the submodules and emit the module initializers. 3969 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3970 SmallVector<clang::Module *, 16> Stack; 3971 Visited.insert(Import->getImportedModule()); 3972 Stack.push_back(Import->getImportedModule()); 3973 3974 while (!Stack.empty()) { 3975 clang::Module *Mod = Stack.pop_back_val(); 3976 if (!EmittedModuleInitializers.insert(Mod).second) 3977 continue; 3978 3979 for (auto *D : Context.getModuleInitializers(Mod)) 3980 EmitTopLevelDecl(D); 3981 3982 // Visit the submodules of this module. 3983 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3984 SubEnd = Mod->submodule_end(); 3985 Sub != SubEnd; ++Sub) { 3986 // Skip explicit children; they need to be explicitly imported to emit 3987 // the initializers. 3988 if ((*Sub)->IsExplicit) 3989 continue; 3990 3991 if (Visited.insert(*Sub).second) 3992 Stack.push_back(*Sub); 3993 } 3994 } 3995 break; 3996 } 3997 3998 case Decl::Export: 3999 EmitDeclContext(cast<ExportDecl>(D)); 4000 break; 4001 4002 case Decl::OMPThreadPrivate: 4003 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4004 break; 4005 4006 case Decl::ClassTemplateSpecialization: { 4007 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4008 if (DebugInfo && 4009 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4010 Spec->hasDefinition()) 4011 DebugInfo->completeTemplateDefinition(*Spec); 4012 break; 4013 } 4014 4015 case Decl::OMPDeclareReduction: 4016 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4017 break; 4018 4019 default: 4020 // Make sure we handled everything we should, every other kind is a 4021 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4022 // function. Need to recode Decl::Kind to do that easily. 4023 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4024 break; 4025 } 4026 } 4027 4028 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4029 // Do we need to generate coverage mapping? 4030 if (!CodeGenOpts.CoverageMapping) 4031 return; 4032 switch (D->getKind()) { 4033 case Decl::CXXConversion: 4034 case Decl::CXXMethod: 4035 case Decl::Function: 4036 case Decl::ObjCMethod: 4037 case Decl::CXXConstructor: 4038 case Decl::CXXDestructor: { 4039 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4040 return; 4041 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4042 if (I == DeferredEmptyCoverageMappingDecls.end()) 4043 DeferredEmptyCoverageMappingDecls[D] = true; 4044 break; 4045 } 4046 default: 4047 break; 4048 }; 4049 } 4050 4051 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4052 // Do we need to generate coverage mapping? 4053 if (!CodeGenOpts.CoverageMapping) 4054 return; 4055 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4056 if (Fn->isTemplateInstantiation()) 4057 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4058 } 4059 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4060 if (I == DeferredEmptyCoverageMappingDecls.end()) 4061 DeferredEmptyCoverageMappingDecls[D] = false; 4062 else 4063 I->second = false; 4064 } 4065 4066 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4067 std::vector<const Decl *> DeferredDecls; 4068 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4069 if (!I.second) 4070 continue; 4071 DeferredDecls.push_back(I.first); 4072 } 4073 // Sort the declarations by their location to make sure that the tests get a 4074 // predictable order for the coverage mapping for the unused declarations. 4075 if (CodeGenOpts.DumpCoverageMapping) 4076 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4077 [] (const Decl *LHS, const Decl *RHS) { 4078 return LHS->getLocStart() < RHS->getLocStart(); 4079 }); 4080 for (const auto *D : DeferredDecls) { 4081 switch (D->getKind()) { 4082 case Decl::CXXConversion: 4083 case Decl::CXXMethod: 4084 case Decl::Function: 4085 case Decl::ObjCMethod: { 4086 CodeGenPGO PGO(*this); 4087 GlobalDecl GD(cast<FunctionDecl>(D)); 4088 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4089 getFunctionLinkage(GD)); 4090 break; 4091 } 4092 case Decl::CXXConstructor: { 4093 CodeGenPGO PGO(*this); 4094 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4095 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4096 getFunctionLinkage(GD)); 4097 break; 4098 } 4099 case Decl::CXXDestructor: { 4100 CodeGenPGO PGO(*this); 4101 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4102 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4103 getFunctionLinkage(GD)); 4104 break; 4105 } 4106 default: 4107 break; 4108 }; 4109 } 4110 } 4111 4112 /// Turns the given pointer into a constant. 4113 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4114 const void *Ptr) { 4115 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4116 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4117 return llvm::ConstantInt::get(i64, PtrInt); 4118 } 4119 4120 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4121 llvm::NamedMDNode *&GlobalMetadata, 4122 GlobalDecl D, 4123 llvm::GlobalValue *Addr) { 4124 if (!GlobalMetadata) 4125 GlobalMetadata = 4126 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4127 4128 // TODO: should we report variant information for ctors/dtors? 4129 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4130 llvm::ConstantAsMetadata::get(GetPointerConstant( 4131 CGM.getLLVMContext(), D.getDecl()))}; 4132 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4133 } 4134 4135 /// For each function which is declared within an extern "C" region and marked 4136 /// as 'used', but has internal linkage, create an alias from the unmangled 4137 /// name to the mangled name if possible. People expect to be able to refer 4138 /// to such functions with an unmangled name from inline assembly within the 4139 /// same translation unit. 4140 void CodeGenModule::EmitStaticExternCAliases() { 4141 // Don't do anything if we're generating CUDA device code -- the NVPTX 4142 // assembly target doesn't support aliases. 4143 if (Context.getTargetInfo().getTriple().isNVPTX()) 4144 return; 4145 for (auto &I : StaticExternCValues) { 4146 IdentifierInfo *Name = I.first; 4147 llvm::GlobalValue *Val = I.second; 4148 if (Val && !getModule().getNamedValue(Name->getName())) 4149 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4150 } 4151 } 4152 4153 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4154 GlobalDecl &Result) const { 4155 auto Res = Manglings.find(MangledName); 4156 if (Res == Manglings.end()) 4157 return false; 4158 Result = Res->getValue(); 4159 return true; 4160 } 4161 4162 /// Emits metadata nodes associating all the global values in the 4163 /// current module with the Decls they came from. This is useful for 4164 /// projects using IR gen as a subroutine. 4165 /// 4166 /// Since there's currently no way to associate an MDNode directly 4167 /// with an llvm::GlobalValue, we create a global named metadata 4168 /// with the name 'clang.global.decl.ptrs'. 4169 void CodeGenModule::EmitDeclMetadata() { 4170 llvm::NamedMDNode *GlobalMetadata = nullptr; 4171 4172 for (auto &I : MangledDeclNames) { 4173 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4174 // Some mangled names don't necessarily have an associated GlobalValue 4175 // in this module, e.g. if we mangled it for DebugInfo. 4176 if (Addr) 4177 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4178 } 4179 } 4180 4181 /// Emits metadata nodes for all the local variables in the current 4182 /// function. 4183 void CodeGenFunction::EmitDeclMetadata() { 4184 if (LocalDeclMap.empty()) return; 4185 4186 llvm::LLVMContext &Context = getLLVMContext(); 4187 4188 // Find the unique metadata ID for this name. 4189 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4190 4191 llvm::NamedMDNode *GlobalMetadata = nullptr; 4192 4193 for (auto &I : LocalDeclMap) { 4194 const Decl *D = I.first; 4195 llvm::Value *Addr = I.second.getPointer(); 4196 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4197 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4198 Alloca->setMetadata( 4199 DeclPtrKind, llvm::MDNode::get( 4200 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4201 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4202 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4203 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4204 } 4205 } 4206 } 4207 4208 void CodeGenModule::EmitVersionIdentMetadata() { 4209 llvm::NamedMDNode *IdentMetadata = 4210 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4211 std::string Version = getClangFullVersion(); 4212 llvm::LLVMContext &Ctx = TheModule.getContext(); 4213 4214 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4215 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4216 } 4217 4218 void CodeGenModule::EmitTargetMetadata() { 4219 // Warning, new MangledDeclNames may be appended within this loop. 4220 // We rely on MapVector insertions adding new elements to the end 4221 // of the container. 4222 // FIXME: Move this loop into the one target that needs it, and only 4223 // loop over those declarations for which we couldn't emit the target 4224 // metadata when we emitted the declaration. 4225 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4226 auto Val = *(MangledDeclNames.begin() + I); 4227 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4228 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4229 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4230 } 4231 } 4232 4233 void CodeGenModule::EmitCoverageFile() { 4234 if (getCodeGenOpts().CoverageDataFile.empty() && 4235 getCodeGenOpts().CoverageNotesFile.empty()) 4236 return; 4237 4238 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4239 if (!CUNode) 4240 return; 4241 4242 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4243 llvm::LLVMContext &Ctx = TheModule.getContext(); 4244 auto *CoverageDataFile = 4245 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4246 auto *CoverageNotesFile = 4247 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4248 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4249 llvm::MDNode *CU = CUNode->getOperand(i); 4250 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4251 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4252 } 4253 } 4254 4255 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4256 // Sema has checked that all uuid strings are of the form 4257 // "12345678-1234-1234-1234-1234567890ab". 4258 assert(Uuid.size() == 36); 4259 for (unsigned i = 0; i < 36; ++i) { 4260 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4261 else assert(isHexDigit(Uuid[i])); 4262 } 4263 4264 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4265 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4266 4267 llvm::Constant *Field3[8]; 4268 for (unsigned Idx = 0; Idx < 8; ++Idx) 4269 Field3[Idx] = llvm::ConstantInt::get( 4270 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4271 4272 llvm::Constant *Fields[4] = { 4273 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4274 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4275 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4276 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4277 }; 4278 4279 return llvm::ConstantStruct::getAnon(Fields); 4280 } 4281 4282 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4283 bool ForEH) { 4284 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4285 // FIXME: should we even be calling this method if RTTI is disabled 4286 // and it's not for EH? 4287 if (!ForEH && !getLangOpts().RTTI) 4288 return llvm::Constant::getNullValue(Int8PtrTy); 4289 4290 if (ForEH && Ty->isObjCObjectPointerType() && 4291 LangOpts.ObjCRuntime.isGNUFamily()) 4292 return ObjCRuntime->GetEHType(Ty); 4293 4294 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4295 } 4296 4297 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4298 for (auto RefExpr : D->varlists()) { 4299 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4300 bool PerformInit = 4301 VD->getAnyInitializer() && 4302 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4303 /*ForRef=*/false); 4304 4305 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4306 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4307 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4308 CXXGlobalInits.push_back(InitFunction); 4309 } 4310 } 4311 4312 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4313 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4314 if (InternalId) 4315 return InternalId; 4316 4317 if (isExternallyVisible(T->getLinkage())) { 4318 std::string OutName; 4319 llvm::raw_string_ostream Out(OutName); 4320 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4321 4322 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4323 } else { 4324 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4325 llvm::ArrayRef<llvm::Metadata *>()); 4326 } 4327 4328 return InternalId; 4329 } 4330 4331 /// Returns whether this module needs the "all-vtables" type identifier. 4332 bool CodeGenModule::NeedAllVtablesTypeId() const { 4333 // Returns true if at least one of vtable-based CFI checkers is enabled and 4334 // is not in the trapping mode. 4335 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4336 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4337 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4338 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4339 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4340 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4341 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4342 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4343 } 4344 4345 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4346 CharUnits Offset, 4347 const CXXRecordDecl *RD) { 4348 llvm::Metadata *MD = 4349 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4350 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4351 4352 if (CodeGenOpts.SanitizeCfiCrossDso) 4353 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4354 VTable->addTypeMetadata(Offset.getQuantity(), 4355 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4356 4357 if (NeedAllVtablesTypeId()) { 4358 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4359 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4360 } 4361 } 4362 4363 // Fills in the supplied string map with the set of target features for the 4364 // passed in function. 4365 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4366 const FunctionDecl *FD) { 4367 StringRef TargetCPU = Target.getTargetOpts().CPU; 4368 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4369 // If we have a TargetAttr build up the feature map based on that. 4370 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4371 4372 // Make a copy of the features as passed on the command line into the 4373 // beginning of the additional features from the function to override. 4374 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4375 Target.getTargetOpts().FeaturesAsWritten.begin(), 4376 Target.getTargetOpts().FeaturesAsWritten.end()); 4377 4378 if (ParsedAttr.second != "") 4379 TargetCPU = ParsedAttr.second; 4380 4381 // Now populate the feature map, first with the TargetCPU which is either 4382 // the default or a new one from the target attribute string. Then we'll use 4383 // the passed in features (FeaturesAsWritten) along with the new ones from 4384 // the attribute. 4385 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4386 } else { 4387 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4388 Target.getTargetOpts().Features); 4389 } 4390 } 4391 4392 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4393 if (!SanStats) 4394 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4395 4396 return *SanStats; 4397 } 4398 llvm::Value * 4399 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4400 CodeGenFunction &CGF) { 4401 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4402 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4403 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4404 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4405 "__translate_sampler_initializer"), 4406 {C}); 4407 } 4408